|  | //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of the scalar evolution expander, | 
|  | // which is used to generate the code corresponding to a given scalar evolution | 
|  | // expression. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, | 
|  | /// reusing an existing cast if a suitable one exists, moving an existing | 
|  | /// cast if a suitable one exists but isn't in the right place, or | 
|  | /// creating a new one. | 
|  | Value *SCEVExpander::ReuseOrCreateCast(Value *V, const Type *Ty, | 
|  | Instruction::CastOps Op, | 
|  | BasicBlock::iterator IP) { | 
|  | // Check to see if there is already a cast! | 
|  | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); | 
|  | UI != E; ++UI) { | 
|  | User *U = *UI; | 
|  | if (U->getType() == Ty) | 
|  | if (CastInst *CI = dyn_cast<CastInst>(U)) | 
|  | if (CI->getOpcode() == Op) { | 
|  | // If the cast isn't where we want it, fix it. | 
|  | if (BasicBlock::iterator(CI) != IP) { | 
|  | // Create a new cast, and leave the old cast in place in case | 
|  | // it is being used as an insert point. Clear its operand | 
|  | // so that it doesn't hold anything live. | 
|  | Instruction *NewCI = CastInst::Create(Op, V, Ty, IP); | 
|  | NewCI->takeName(CI); | 
|  | CI->replaceAllUsesWith(NewCI); | 
|  | CI->setOperand(0, UndefValue::get(V->getType())); | 
|  | rememberInstruction(NewCI); | 
|  | return NewCI; | 
|  | } | 
|  | rememberInstruction(CI); | 
|  | return CI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a new cast. | 
|  | Instruction *I = CastInst::Create(Op, V, Ty, IP); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | /// InsertNoopCastOfTo - Insert a cast of V to the specified type, | 
|  | /// which must be possible with a noop cast, doing what we can to share | 
|  | /// the casts. | 
|  | Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) { | 
|  | Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); | 
|  | assert((Op == Instruction::BitCast || | 
|  | Op == Instruction::PtrToInt || | 
|  | Op == Instruction::IntToPtr) && | 
|  | "InsertNoopCastOfTo cannot perform non-noop casts!"); | 
|  | assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && | 
|  | "InsertNoopCastOfTo cannot change sizes!"); | 
|  |  | 
|  | // Short-circuit unnecessary bitcasts. | 
|  | if (Op == Instruction::BitCast && V->getType() == Ty) | 
|  | return V; | 
|  |  | 
|  | // Short-circuit unnecessary inttoptr<->ptrtoint casts. | 
|  | if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && | 
|  | SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { | 
|  | if (CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | if ((CI->getOpcode() == Instruction::PtrToInt || | 
|  | CI->getOpcode() == Instruction::IntToPtr) && | 
|  | SE.getTypeSizeInBits(CI->getType()) == | 
|  | SE.getTypeSizeInBits(CI->getOperand(0)->getType())) | 
|  | return CI->getOperand(0); | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if ((CE->getOpcode() == Instruction::PtrToInt || | 
|  | CE->getOpcode() == Instruction::IntToPtr) && | 
|  | SE.getTypeSizeInBits(CE->getType()) == | 
|  | SE.getTypeSizeInBits(CE->getOperand(0)->getType())) | 
|  | return CE->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Fold a cast of a constant. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getCast(Op, C, Ty); | 
|  |  | 
|  | // Cast the argument at the beginning of the entry block, after | 
|  | // any bitcasts of other arguments. | 
|  | if (Argument *A = dyn_cast<Argument>(V)) { | 
|  | BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); | 
|  | while ((isa<BitCastInst>(IP) && | 
|  | isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && | 
|  | cast<BitCastInst>(IP)->getOperand(0) != A)) | 
|  | ++IP; | 
|  | return ReuseOrCreateCast(A, Ty, Op, IP); | 
|  | } | 
|  |  | 
|  | // Cast the instruction immediately after the instruction. | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | BasicBlock::iterator IP = I; ++IP; | 
|  | while (isa<PHINode>(IP)) ++IP; | 
|  | return ReuseOrCreateCast(I, Ty, Op, IP); | 
|  | } | 
|  |  | 
|  | /// InsertBinop - Insert the specified binary operator, doing a small amount | 
|  | /// of work to avoid inserting an obviously redundant operation. | 
|  | Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, | 
|  | Value *LHS, Value *RHS) { | 
|  | // Fold a binop with constant operands. | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | return ConstantExpr::get(Opcode, CLHS, CRHS); | 
|  |  | 
|  | // Do a quick scan to see if we have this binop nearby.  If so, reuse it. | 
|  | unsigned ScanLimit = 6; | 
|  | BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); | 
|  | // Scanning starts from the last instruction before the insertion point. | 
|  | BasicBlock::iterator IP = Builder.GetInsertPoint(); | 
|  | if (IP != BlockBegin) { | 
|  | --IP; | 
|  | for (; ScanLimit; --IP, --ScanLimit) { | 
|  | // Don't count dbg.value against the ScanLimit, to avoid perturbing the | 
|  | // generated code. | 
|  | if (ISA_DEBUG_INFO_INTRINSIC(IP)) | 
|  | ScanLimit++; | 
|  | if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && | 
|  | IP->getOperand(1) == RHS) | 
|  | return IP; | 
|  | if (IP == BlockBegin) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  |  | 
|  | // Move the insertion point out of as many loops as we can. | 
|  | while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { | 
|  | if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) break; | 
|  |  | 
|  | // Ok, move up a level. | 
|  | Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); | 
|  | } | 
|  |  | 
|  | // If we haven't found this binop, insert it. | 
|  | Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS); | 
|  | rememberInstruction(BO); | 
|  |  | 
|  | // Restore the original insert point. | 
|  | if (SaveInsertBB) | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  |  | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | /// FactorOutConstant - Test if S is divisible by Factor, using signed | 
|  | /// division. If so, update S with Factor divided out and return true. | 
|  | /// S need not be evenly divisible if a reasonable remainder can be | 
|  | /// computed. | 
|  | /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made | 
|  | /// unnecessary; in its place, just signed-divide Ops[i] by the scale and | 
|  | /// check to see if the divide was folded. | 
|  | static bool FactorOutConstant(const SCEV *&S, | 
|  | const SCEV *&Remainder, | 
|  | const SCEV *Factor, | 
|  | ScalarEvolution &SE, | 
|  | const TargetData *TD) { | 
|  | // Everything is divisible by one. | 
|  | if (Factor->isOne()) | 
|  | return true; | 
|  |  | 
|  | // x/x == 1. | 
|  | if (S == Factor) { | 
|  | S = SE.getConstant(S->getType(), 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For a Constant, check for a multiple of the given factor. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { | 
|  | // 0/x == 0. | 
|  | if (C->isZero()) | 
|  | return true; | 
|  | // Check for divisibility. | 
|  | if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { | 
|  | ConstantInt *CI = | 
|  | ConstantInt::get(SE.getContext(), | 
|  | C->getValue()->getValue().sdiv( | 
|  | FC->getValue()->getValue())); | 
|  | // If the quotient is zero and the remainder is non-zero, reject | 
|  | // the value at this scale. It will be considered for subsequent | 
|  | // smaller scales. | 
|  | if (!CI->isZero()) { | 
|  | const SCEV *Div = SE.getConstant(CI); | 
|  | S = Div; | 
|  | Remainder = | 
|  | SE.getAddExpr(Remainder, | 
|  | SE.getConstant(C->getValue()->getValue().srem( | 
|  | FC->getValue()->getValue()))); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // In a Mul, check if there is a constant operand which is a multiple | 
|  | // of the given factor. | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { | 
|  | if (TD) { | 
|  | // With TargetData, the size is known. Check if there is a constant | 
|  | // operand which is a multiple of the given factor. If so, we can | 
|  | // factor it. | 
|  | const SCEVConstant *FC = cast<SCEVConstant>(Factor); | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) | 
|  | if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) { | 
|  | SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); | 
|  | NewMulOps[0] = | 
|  | SE.getConstant(C->getValue()->getValue().sdiv( | 
|  | FC->getValue()->getValue())); | 
|  | S = SE.getMulExpr(NewMulOps); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // Without TargetData, check if Factor can be factored out of any of the | 
|  | // Mul's operands. If so, we can just remove it. | 
|  | for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { | 
|  | const SCEV *SOp = M->getOperand(i); | 
|  | const SCEV *Remainder = SE.getConstant(SOp->getType(), 0); | 
|  | if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) && | 
|  | Remainder->isZero()) { | 
|  | SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); | 
|  | NewMulOps[i] = SOp; | 
|  | S = SE.getMulExpr(NewMulOps); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // In an AddRec, check if both start and step are divisible. | 
|  | if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | const SCEV *Step = A->getStepRecurrence(SE); | 
|  | const SCEV *StepRem = SE.getConstant(Step->getType(), 0); | 
|  | if (!FactorOutConstant(Step, StepRem, Factor, SE, TD)) | 
|  | return false; | 
|  | if (!StepRem->isZero()) | 
|  | return false; | 
|  | const SCEV *Start = A->getStart(); | 
|  | if (!FactorOutConstant(Start, Remainder, Factor, SE, TD)) | 
|  | return false; | 
|  | S = SE.getAddRecExpr(Start, Step, A->getLoop()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs | 
|  | /// is the number of SCEVAddRecExprs present, which are kept at the end of | 
|  | /// the list. | 
|  | /// | 
|  | static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, | 
|  | const Type *Ty, | 
|  | ScalarEvolution &SE) { | 
|  | unsigned NumAddRecs = 0; | 
|  | for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) | 
|  | ++NumAddRecs; | 
|  | // Group Ops into non-addrecs and addrecs. | 
|  | SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); | 
|  | SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); | 
|  | // Let ScalarEvolution sort and simplify the non-addrecs list. | 
|  | const SCEV *Sum = NoAddRecs.empty() ? | 
|  | SE.getConstant(Ty, 0) : | 
|  | SE.getAddExpr(NoAddRecs); | 
|  | // If it returned an add, use the operands. Otherwise it simplified | 
|  | // the sum into a single value, so just use that. | 
|  | Ops.clear(); | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) | 
|  | Ops.append(Add->op_begin(), Add->op_end()); | 
|  | else if (!Sum->isZero()) | 
|  | Ops.push_back(Sum); | 
|  | // Then append the addrecs. | 
|  | Ops.append(AddRecs.begin(), AddRecs.end()); | 
|  | } | 
|  |  | 
|  | /// SplitAddRecs - Flatten a list of add operands, moving addrec start values | 
|  | /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. | 
|  | /// This helps expose more opportunities for folding parts of the expressions | 
|  | /// into GEP indices. | 
|  | /// | 
|  | static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, | 
|  | const Type *Ty, | 
|  | ScalarEvolution &SE) { | 
|  | // Find the addrecs. | 
|  | SmallVector<const SCEV *, 8> AddRecs; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { | 
|  | const SCEV *Start = A->getStart(); | 
|  | if (Start->isZero()) break; | 
|  | const SCEV *Zero = SE.getConstant(Ty, 0); | 
|  | AddRecs.push_back(SE.getAddRecExpr(Zero, | 
|  | A->getStepRecurrence(SE), | 
|  | A->getLoop())); | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { | 
|  | Ops[i] = Zero; | 
|  | Ops.append(Add->op_begin(), Add->op_end()); | 
|  | e += Add->getNumOperands(); | 
|  | } else { | 
|  | Ops[i] = Start; | 
|  | } | 
|  | } | 
|  | if (!AddRecs.empty()) { | 
|  | // Add the addrecs onto the end of the list. | 
|  | Ops.append(AddRecs.begin(), AddRecs.end()); | 
|  | // Resort the operand list, moving any constants to the front. | 
|  | SimplifyAddOperands(Ops, Ty, SE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expandAddToGEP - Expand an addition expression with a pointer type into | 
|  | /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps | 
|  | /// BasicAliasAnalysis and other passes analyze the result. See the rules | 
|  | /// for getelementptr vs. inttoptr in | 
|  | /// http://llvm.org/docs/LangRef.html#pointeraliasing | 
|  | /// for details. | 
|  | /// | 
|  | /// Design note: The correctness of using getelementptr here depends on | 
|  | /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as | 
|  | /// they may introduce pointer arithmetic which may not be safely converted | 
|  | /// into getelementptr. | 
|  | /// | 
|  | /// Design note: It might seem desirable for this function to be more | 
|  | /// loop-aware. If some of the indices are loop-invariant while others | 
|  | /// aren't, it might seem desirable to emit multiple GEPs, keeping the | 
|  | /// loop-invariant portions of the overall computation outside the loop. | 
|  | /// However, there are a few reasons this is not done here. Hoisting simple | 
|  | /// arithmetic is a low-level optimization that often isn't very | 
|  | /// important until late in the optimization process. In fact, passes | 
|  | /// like InstructionCombining will combine GEPs, even if it means | 
|  | /// pushing loop-invariant computation down into loops, so even if the | 
|  | /// GEPs were split here, the work would quickly be undone. The | 
|  | /// LoopStrengthReduction pass, which is usually run quite late (and | 
|  | /// after the last InstructionCombining pass), takes care of hoisting | 
|  | /// loop-invariant portions of expressions, after considering what | 
|  | /// can be folded using target addressing modes. | 
|  | /// | 
|  | Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, | 
|  | const SCEV *const *op_end, | 
|  | const PointerType *PTy, | 
|  | const Type *Ty, | 
|  | Value *V) { | 
|  | const Type *ElTy = PTy->getElementType(); | 
|  | SmallVector<Value *, 4> GepIndices; | 
|  | SmallVector<const SCEV *, 8> Ops(op_begin, op_end); | 
|  | bool AnyNonZeroIndices = false; | 
|  |  | 
|  | // Split AddRecs up into parts as either of the parts may be usable | 
|  | // without the other. | 
|  | SplitAddRecs(Ops, Ty, SE); | 
|  |  | 
|  | // Descend down the pointer's type and attempt to convert the other | 
|  | // operands into GEP indices, at each level. The first index in a GEP | 
|  | // indexes into the array implied by the pointer operand; the rest of | 
|  | // the indices index into the element or field type selected by the | 
|  | // preceding index. | 
|  | for (;;) { | 
|  | // If the scale size is not 0, attempt to factor out a scale for | 
|  | // array indexing. | 
|  | SmallVector<const SCEV *, 8> ScaledOps; | 
|  | if (ElTy->isSized()) { | 
|  | const SCEV *ElSize = SE.getSizeOfExpr(ElTy); | 
|  | if (!ElSize->isZero()) { | 
|  | SmallVector<const SCEV *, 8> NewOps; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | const SCEV *Op = Ops[i]; | 
|  | const SCEV *Remainder = SE.getConstant(Ty, 0); | 
|  | if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) { | 
|  | // Op now has ElSize factored out. | 
|  | ScaledOps.push_back(Op); | 
|  | if (!Remainder->isZero()) | 
|  | NewOps.push_back(Remainder); | 
|  | AnyNonZeroIndices = true; | 
|  | } else { | 
|  | // The operand was not divisible, so add it to the list of operands | 
|  | // we'll scan next iteration. | 
|  | NewOps.push_back(Ops[i]); | 
|  | } | 
|  | } | 
|  | // If we made any changes, update Ops. | 
|  | if (!ScaledOps.empty()) { | 
|  | Ops = NewOps; | 
|  | SimplifyAddOperands(Ops, Ty, SE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record the scaled array index for this level of the type. If | 
|  | // we didn't find any operands that could be factored, tentatively | 
|  | // assume that element zero was selected (since the zero offset | 
|  | // would obviously be folded away). | 
|  | Value *Scaled = ScaledOps.empty() ? | 
|  | Constant::getNullValue(Ty) : | 
|  | expandCodeFor(SE.getAddExpr(ScaledOps), Ty); | 
|  | GepIndices.push_back(Scaled); | 
|  |  | 
|  | // Collect struct field index operands. | 
|  | while (const StructType *STy = dyn_cast<StructType>(ElTy)) { | 
|  | bool FoundFieldNo = false; | 
|  | // An empty struct has no fields. | 
|  | if (STy->getNumElements() == 0) break; | 
|  | if (SE.TD) { | 
|  | // With TargetData, field offsets are known. See if a constant offset | 
|  | // falls within any of the struct fields. | 
|  | if (Ops.empty()) break; | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) | 
|  | if (SE.getTypeSizeInBits(C->getType()) <= 64) { | 
|  | const StructLayout &SL = *SE.TD->getStructLayout(STy); | 
|  | uint64_t FullOffset = C->getValue()->getZExtValue(); | 
|  | if (FullOffset < SL.getSizeInBytes()) { | 
|  | unsigned ElIdx = SL.getElementContainingOffset(FullOffset); | 
|  | GepIndices.push_back( | 
|  | ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); | 
|  | ElTy = STy->getTypeAtIndex(ElIdx); | 
|  | Ops[0] = | 
|  | SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); | 
|  | AnyNonZeroIndices = true; | 
|  | FoundFieldNo = true; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Without TargetData, just check for an offsetof expression of the | 
|  | // appropriate struct type. | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) { | 
|  | const Type *CTy; | 
|  | Constant *FieldNo; | 
|  | if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) { | 
|  | GepIndices.push_back(FieldNo); | 
|  | ElTy = | 
|  | STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue()); | 
|  | Ops[i] = SE.getConstant(Ty, 0); | 
|  | AnyNonZeroIndices = true; | 
|  | FoundFieldNo = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If no struct field offsets were found, tentatively assume that | 
|  | // field zero was selected (since the zero offset would obviously | 
|  | // be folded away). | 
|  | if (!FoundFieldNo) { | 
|  | ElTy = STy->getTypeAtIndex(0u); | 
|  | GepIndices.push_back( | 
|  | Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) | 
|  | ElTy = ATy->getElementType(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If none of the operands were convertible to proper GEP indices, cast | 
|  | // the base to i8* and do an ugly getelementptr with that. It's still | 
|  | // better than ptrtoint+arithmetic+inttoptr at least. | 
|  | if (!AnyNonZeroIndices) { | 
|  | // Cast the base to i8*. | 
|  | V = InsertNoopCastOfTo(V, | 
|  | Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); | 
|  |  | 
|  | // Expand the operands for a plain byte offset. | 
|  | Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); | 
|  |  | 
|  | // Fold a GEP with constant operands. | 
|  | if (Constant *CLHS = dyn_cast<Constant>(V)) | 
|  | if (Constant *CRHS = dyn_cast<Constant>(Idx)) | 
|  | return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1); | 
|  |  | 
|  | // Do a quick scan to see if we have this GEP nearby.  If so, reuse it. | 
|  | unsigned ScanLimit = 6; | 
|  | BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); | 
|  | // Scanning starts from the last instruction before the insertion point. | 
|  | BasicBlock::iterator IP = Builder.GetInsertPoint(); | 
|  | if (IP != BlockBegin) { | 
|  | --IP; | 
|  | for (; ScanLimit; --IP, --ScanLimit) { | 
|  | // Don't count dbg.value against the ScanLimit, to avoid perturbing the | 
|  | // generated code. | 
|  | if (ISA_DEBUG_INFO_INTRINSIC(IP)) | 
|  | ScanLimit++; | 
|  | if (IP->getOpcode() == Instruction::GetElementPtr && | 
|  | IP->getOperand(0) == V && IP->getOperand(1) == Idx) | 
|  | return IP; | 
|  | if (IP == BlockBegin) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  |  | 
|  | // Move the insertion point out of as many loops as we can. | 
|  | while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { | 
|  | if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) break; | 
|  |  | 
|  | // Ok, move up a level. | 
|  | Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); | 
|  | } | 
|  |  | 
|  | // Emit a GEP. | 
|  | Value *GEP = Builder.CreateGEP(V, Idx); | 
|  | rememberInstruction(GEP); | 
|  |  | 
|  | // Restore the original insert point. | 
|  | if (SaveInsertBB) | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  |  | 
|  | return GEP; | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  |  | 
|  | // Move the insertion point out of as many loops as we can. | 
|  | while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { | 
|  | if (!L->isLoopInvariant(V)) break; | 
|  |  | 
|  | bool AnyIndexNotLoopInvariant = false; | 
|  | for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(), | 
|  | E = GepIndices.end(); I != E; ++I) | 
|  | if (!L->isLoopInvariant(*I)) { | 
|  | AnyIndexNotLoopInvariant = true; | 
|  | break; | 
|  | } | 
|  | if (AnyIndexNotLoopInvariant) | 
|  | break; | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) break; | 
|  |  | 
|  | // Ok, move up a level. | 
|  | Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); | 
|  | } | 
|  |  | 
|  | // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, | 
|  | // because ScalarEvolution may have changed the address arithmetic to | 
|  | // compute a value which is beyond the end of the allocated object. | 
|  | Value *Casted = V; | 
|  | if (V->getType() != PTy) | 
|  | Casted = InsertNoopCastOfTo(Casted, PTy); | 
|  | Value *GEP = Builder.CreateGEP(Casted, | 
|  | GepIndices.begin(), | 
|  | GepIndices.end()); | 
|  | Ops.push_back(SE.getUnknown(GEP)); | 
|  | rememberInstruction(GEP); | 
|  |  | 
|  | // Restore the original insert point. | 
|  | if (SaveInsertBB) | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  |  | 
|  | return expand(SE.getAddExpr(Ops)); | 
|  | } | 
|  |  | 
|  | /// isNonConstantNegative - Return true if the specified scev is negated, but | 
|  | /// not a constant. | 
|  | static bool isNonConstantNegative(const SCEV *F) { | 
|  | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F); | 
|  | if (!Mul) return false; | 
|  |  | 
|  | // If there is a constant factor, it will be first. | 
|  | const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); | 
|  | if (!SC) return false; | 
|  |  | 
|  | // Return true if the value is negative, this matches things like (-42 * V). | 
|  | return SC->getValue()->getValue().isNegative(); | 
|  | } | 
|  |  | 
|  | /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for | 
|  | /// SCEV expansion. If they are nested, this is the most nested. If they are | 
|  | /// neighboring, pick the later. | 
|  | static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, | 
|  | DominatorTree &DT) { | 
|  | if (!A) return B; | 
|  | if (!B) return A; | 
|  | if (A->contains(B)) return B; | 
|  | if (B->contains(A)) return A; | 
|  | if (DT.dominates(A->getHeader(), B->getHeader())) return B; | 
|  | if (DT.dominates(B->getHeader(), A->getHeader())) return A; | 
|  | return A; // Arbitrarily break the tie. | 
|  | } | 
|  |  | 
|  | /// GetRelevantLoop - Get the most relevant loop associated with the given | 
|  | /// expression, according to PickMostRelevantLoop. | 
|  | static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI, | 
|  | DominatorTree &DT) { | 
|  | if (isa<SCEVConstant>(S)) | 
|  | return 0; | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) | 
|  | return LI.getLoopFor(I->getParent()); | 
|  | return 0; | 
|  | } | 
|  | if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { | 
|  | const Loop *L = 0; | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) | 
|  | L = AR->getLoop(); | 
|  | for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end(); | 
|  | I != E; ++I) | 
|  | L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT); | 
|  | return L; | 
|  | } | 
|  | if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) | 
|  | return GetRelevantLoop(C->getOperand(), LI, DT); | 
|  | if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) | 
|  | return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT), | 
|  | GetRelevantLoop(D->getRHS(), LI, DT), | 
|  | DT); | 
|  | llvm_unreachable("Unexpected SCEV type!"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// LoopCompare - Compare loops by PickMostRelevantLoop. | 
|  | class LoopCompare { | 
|  | DominatorTree &DT; | 
|  | public: | 
|  | explicit LoopCompare(DominatorTree &dt) : DT(dt) {} | 
|  |  | 
|  | bool operator()(std::pair<const Loop *, const SCEV *> LHS, | 
|  | std::pair<const Loop *, const SCEV *> RHS) const { | 
|  | // Keep pointer operands sorted at the end. | 
|  | if (LHS.second->getType()->isPointerTy() != | 
|  | RHS.second->getType()->isPointerTy()) | 
|  | return LHS.second->getType()->isPointerTy(); | 
|  |  | 
|  | // Compare loops with PickMostRelevantLoop. | 
|  | if (LHS.first != RHS.first) | 
|  | return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; | 
|  |  | 
|  | // If one operand is a non-constant negative and the other is not, | 
|  | // put the non-constant negative on the right so that a sub can | 
|  | // be used instead of a negate and add. | 
|  | if (isNonConstantNegative(LHS.second)) { | 
|  | if (!isNonConstantNegative(RHS.second)) | 
|  | return false; | 
|  | } else if (isNonConstantNegative(RHS.second)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise they are equivalent according to this comparison. | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  |  | 
|  | // Collect all the add operands in a loop, along with their associated loops. | 
|  | // Iterate in reverse so that constants are emitted last, all else equal, and | 
|  | // so that pointer operands are inserted first, which the code below relies on | 
|  | // to form more involved GEPs. | 
|  | SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; | 
|  | for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), | 
|  | E(S->op_begin()); I != E; ++I) | 
|  | OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT), | 
|  | *I)); | 
|  |  | 
|  | // Sort by loop. Use a stable sort so that constants follow non-constants and | 
|  | // pointer operands precede non-pointer operands. | 
|  | std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT)); | 
|  |  | 
|  | // Emit instructions to add all the operands. Hoist as much as possible | 
|  | // out of loops, and form meaningful getelementptrs where possible. | 
|  | Value *Sum = 0; | 
|  | for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator | 
|  | I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) { | 
|  | const Loop *CurLoop = I->first; | 
|  | const SCEV *Op = I->second; | 
|  | if (!Sum) { | 
|  | // This is the first operand. Just expand it. | 
|  | Sum = expand(Op); | 
|  | ++I; | 
|  | } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { | 
|  | // The running sum expression is a pointer. Try to form a getelementptr | 
|  | // at this level with that as the base. | 
|  | SmallVector<const SCEV *, 4> NewOps; | 
|  | for (; I != E && I->first == CurLoop; ++I) { | 
|  | // If the operand is SCEVUnknown and not instructions, peek through | 
|  | // it, to enable more of it to be folded into the GEP. | 
|  | const SCEV *X = I->second; | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) | 
|  | if (!isa<Instruction>(U->getValue())) | 
|  | X = SE.getSCEV(U->getValue()); | 
|  | NewOps.push_back(X); | 
|  | } | 
|  | Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); | 
|  | } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { | 
|  | // The running sum is an integer, and there's a pointer at this level. | 
|  | // Try to form a getelementptr. If the running sum is instructions, | 
|  | // use a SCEVUnknown to avoid re-analyzing them. | 
|  | SmallVector<const SCEV *, 4> NewOps; | 
|  | NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : | 
|  | SE.getSCEV(Sum)); | 
|  | for (++I; I != E && I->first == CurLoop; ++I) | 
|  | NewOps.push_back(I->second); | 
|  | Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); | 
|  | } else if (isNonConstantNegative(Op)) { | 
|  | // Instead of doing a negate and add, just do a subtract. | 
|  | Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); | 
|  | Sum = InsertNoopCastOfTo(Sum, Ty); | 
|  | Sum = InsertBinop(Instruction::Sub, Sum, W); | 
|  | ++I; | 
|  | } else { | 
|  | // A simple add. | 
|  | Value *W = expandCodeFor(Op, Ty); | 
|  | Sum = InsertNoopCastOfTo(Sum, Ty); | 
|  | // Canonicalize a constant to the RHS. | 
|  | if (isa<Constant>(Sum)) std::swap(Sum, W); | 
|  | Sum = InsertBinop(Instruction::Add, Sum, W); | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  |  | 
|  | // Collect all the mul operands in a loop, along with their associated loops. | 
|  | // Iterate in reverse so that constants are emitted last, all else equal. | 
|  | SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; | 
|  | for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), | 
|  | E(S->op_begin()); I != E; ++I) | 
|  | OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT), | 
|  | *I)); | 
|  |  | 
|  | // Sort by loop. Use a stable sort so that constants follow non-constants. | 
|  | std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT)); | 
|  |  | 
|  | // Emit instructions to mul all the operands. Hoist as much as possible | 
|  | // out of loops. | 
|  | Value *Prod = 0; | 
|  | for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator | 
|  | I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) { | 
|  | const SCEV *Op = I->second; | 
|  | if (!Prod) { | 
|  | // This is the first operand. Just expand it. | 
|  | Prod = expand(Op); | 
|  | ++I; | 
|  | } else if (Op->isAllOnesValue()) { | 
|  | // Instead of doing a multiply by negative one, just do a negate. | 
|  | Prod = InsertNoopCastOfTo(Prod, Ty); | 
|  | Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); | 
|  | ++I; | 
|  | } else { | 
|  | // A simple mul. | 
|  | Value *W = expandCodeFor(Op, Ty); | 
|  | Prod = InsertNoopCastOfTo(Prod, Ty); | 
|  | // Canonicalize a constant to the RHS. | 
|  | if (isa<Constant>(Prod)) std::swap(Prod, W); | 
|  | Prod = InsertBinop(Instruction::Mul, Prod, W); | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Prod; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  |  | 
|  | Value *LHS = expandCodeFor(S->getLHS(), Ty); | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { | 
|  | const APInt &RHS = SC->getValue()->getValue(); | 
|  | if (RHS.isPowerOf2()) | 
|  | return InsertBinop(Instruction::LShr, LHS, | 
|  | ConstantInt::get(Ty, RHS.logBase2())); | 
|  | } | 
|  |  | 
|  | Value *RHS = expandCodeFor(S->getRHS(), Ty); | 
|  | return InsertBinop(Instruction::UDiv, LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// Move parts of Base into Rest to leave Base with the minimal | 
|  | /// expression that provides a pointer operand suitable for a | 
|  | /// GEP expansion. | 
|  | static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, | 
|  | ScalarEvolution &SE) { | 
|  | while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { | 
|  | Base = A->getStart(); | 
|  | Rest = SE.getAddExpr(Rest, | 
|  | SE.getAddRecExpr(SE.getConstant(A->getType(), 0), | 
|  | A->getStepRecurrence(SE), | 
|  | A->getLoop())); | 
|  | } | 
|  | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { | 
|  | Base = A->getOperand(A->getNumOperands()-1); | 
|  | SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); | 
|  | NewAddOps.back() = Rest; | 
|  | Rest = SE.getAddExpr(NewAddOps); | 
|  | ExposePointerBase(Base, Rest, SE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand | 
|  | /// the base addrec, which is the addrec without any non-loop-dominating | 
|  | /// values, and return the PHI. | 
|  | PHINode * | 
|  | SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, | 
|  | const Loop *L, | 
|  | const Type *ExpandTy, | 
|  | const Type *IntTy) { | 
|  | // Reuse a previously-inserted PHI, if present. | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | if (SE.isSCEVable(PN->getType()) && | 
|  | (SE.getEffectiveSCEVType(PN->getType()) == | 
|  | SE.getEffectiveSCEVType(Normalized->getType())) && | 
|  | SE.getSCEV(PN) == Normalized) | 
|  | if (BasicBlock *LatchBlock = L->getLoopLatch()) { | 
|  | Instruction *IncV = | 
|  | cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); | 
|  |  | 
|  | // Determine if this is a well-behaved chain of instructions leading | 
|  | // back to the PHI. It probably will be, if we're scanning an inner | 
|  | // loop already visited by LSR for example, but it wouldn't have | 
|  | // to be. | 
|  | do { | 
|  | if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) { | 
|  | IncV = 0; | 
|  | break; | 
|  | } | 
|  | // If any of the operands don't dominate the insert position, bail. | 
|  | // Addrec operands are always loop-invariant, so this can only happen | 
|  | // if there are instructions which haven't been hoisted. | 
|  | for (User::op_iterator OI = IncV->op_begin()+1, | 
|  | OE = IncV->op_end(); OI != OE; ++OI) | 
|  | if (Instruction *OInst = dyn_cast<Instruction>(OI)) | 
|  | if (!SE.DT->dominates(OInst, IVIncInsertPos)) { | 
|  | IncV = 0; | 
|  | break; | 
|  | } | 
|  | if (!IncV) | 
|  | break; | 
|  | // Advance to the next instruction. | 
|  | IncV = dyn_cast<Instruction>(IncV->getOperand(0)); | 
|  | if (!IncV) | 
|  | break; | 
|  | if (IncV->mayHaveSideEffects()) { | 
|  | IncV = 0; | 
|  | break; | 
|  | } | 
|  | } while (IncV != PN); | 
|  |  | 
|  | if (IncV) { | 
|  | // Ok, the add recurrence looks usable. | 
|  | // Remember this PHI, even in post-inc mode. | 
|  | InsertedValues.insert(PN); | 
|  | // Remember the increment. | 
|  | IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); | 
|  | rememberInstruction(IncV); | 
|  | if (L == IVIncInsertLoop) | 
|  | do { | 
|  | if (SE.DT->dominates(IncV, IVIncInsertPos)) | 
|  | break; | 
|  | // Make sure the increment is where we want it. But don't move it | 
|  | // down past a potential existing post-inc user. | 
|  | IncV->moveBefore(IVIncInsertPos); | 
|  | IVIncInsertPos = IncV; | 
|  | IncV = cast<Instruction>(IncV->getOperand(0)); | 
|  | } while (IncV != PN); | 
|  | return PN; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  |  | 
|  | // Expand code for the start value. | 
|  | Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, | 
|  | L->getHeader()->begin()); | 
|  |  | 
|  | // Expand code for the step value. Insert instructions right before the | 
|  | // terminator corresponding to the back-edge. Do this before creating the PHI | 
|  | // so that PHI reuse code doesn't see an incomplete PHI. If the stride is | 
|  | // negative, insert a sub instead of an add for the increment (unless it's a | 
|  | // constant, because subtracts of constants are canonicalized to adds). | 
|  | const SCEV *Step = Normalized->getStepRecurrence(SE); | 
|  | bool isPointer = ExpandTy->isPointerTy(); | 
|  | bool isNegative = !isPointer && isNonConstantNegative(Step); | 
|  | if (isNegative) | 
|  | Step = SE.getNegativeSCEV(Step); | 
|  | Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin()); | 
|  |  | 
|  | // Create the PHI. | 
|  | Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin()); | 
|  | PHINode *PN = Builder.CreatePHI(ExpandTy); | 
|  | rememberInstruction(PN); | 
|  |  | 
|  | // Create the step instructions and populate the PHI. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header); | 
|  | HPI != HPE; ++HPI) { | 
|  | BasicBlock *Pred = *HPI; | 
|  |  | 
|  | // Add a start value. | 
|  | if (!L->contains(Pred)) { | 
|  | PN->addIncoming(StartV, Pred); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Create a step value and add it to the PHI. If IVIncInsertLoop is | 
|  | // non-null and equal to the addrec's loop, insert the instructions | 
|  | // at IVIncInsertPos. | 
|  | Instruction *InsertPos = L == IVIncInsertLoop ? | 
|  | IVIncInsertPos : Pred->getTerminator(); | 
|  | Builder.SetInsertPoint(InsertPos->getParent(), InsertPos); | 
|  | Value *IncV; | 
|  | // If the PHI is a pointer, use a GEP, otherwise use an add or sub. | 
|  | if (isPointer) { | 
|  | const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); | 
|  | // If the step isn't constant, don't use an implicitly scaled GEP, because | 
|  | // that would require a multiply inside the loop. | 
|  | if (!isa<ConstantInt>(StepV)) | 
|  | GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), | 
|  | GEPPtrTy->getAddressSpace()); | 
|  | const SCEV *const StepArray[1] = { SE.getSCEV(StepV) }; | 
|  | IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN); | 
|  | if (IncV->getType() != PN->getType()) { | 
|  | IncV = Builder.CreateBitCast(IncV, PN->getType()); | 
|  | rememberInstruction(IncV); | 
|  | } | 
|  | } else { | 
|  | IncV = isNegative ? | 
|  | Builder.CreateSub(PN, StepV) : | 
|  | Builder.CreateAdd(PN, StepV); | 
|  | rememberInstruction(IncV); | 
|  | } | 
|  | PN->addIncoming(IncV, Pred); | 
|  | } | 
|  |  | 
|  | // Restore the original insert point. | 
|  | if (SaveInsertBB) | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  |  | 
|  | // Remember this PHI, even in post-inc mode. | 
|  | InsertedValues.insert(PN); | 
|  |  | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { | 
|  | const Type *STy = S->getType(); | 
|  | const Type *IntTy = SE.getEffectiveSCEVType(STy); | 
|  | const Loop *L = S->getLoop(); | 
|  |  | 
|  | // Determine a normalized form of this expression, which is the expression | 
|  | // before any post-inc adjustment is made. | 
|  | const SCEVAddRecExpr *Normalized = S; | 
|  | if (PostIncLoops.count(L)) { | 
|  | PostIncLoopSet Loops; | 
|  | Loops.insert(L); | 
|  | Normalized = | 
|  | cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0, | 
|  | Loops, SE, *SE.DT)); | 
|  | } | 
|  |  | 
|  | // Strip off any non-loop-dominating component from the addrec start. | 
|  | const SCEV *Start = Normalized->getStart(); | 
|  | const SCEV *PostLoopOffset = 0; | 
|  | if (!Start->properlyDominates(L->getHeader(), SE.DT)) { | 
|  | PostLoopOffset = Start; | 
|  | Start = SE.getConstant(Normalized->getType(), 0); | 
|  | Normalized = | 
|  | cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, | 
|  | Normalized->getStepRecurrence(SE), | 
|  | Normalized->getLoop())); | 
|  | } | 
|  |  | 
|  | // Strip off any non-loop-dominating component from the addrec step. | 
|  | const SCEV *Step = Normalized->getStepRecurrence(SE); | 
|  | const SCEV *PostLoopScale = 0; | 
|  | if (!Step->dominates(L->getHeader(), SE.DT)) { | 
|  | PostLoopScale = Step; | 
|  | Step = SE.getConstant(Normalized->getType(), 1); | 
|  | Normalized = | 
|  | cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step, | 
|  | Normalized->getLoop())); | 
|  | } | 
|  |  | 
|  | // Expand the core addrec. If we need post-loop scaling, force it to | 
|  | // expand to an integer type to avoid the need for additional casting. | 
|  | const Type *ExpandTy = PostLoopScale ? IntTy : STy; | 
|  | PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy); | 
|  |  | 
|  | // Accommodate post-inc mode, if necessary. | 
|  | Value *Result; | 
|  | if (!PostIncLoops.count(L)) | 
|  | Result = PN; | 
|  | else { | 
|  | // In PostInc mode, use the post-incremented value. | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | assert(LatchBlock && "PostInc mode requires a unique loop latch!"); | 
|  | Result = PN->getIncomingValueForBlock(LatchBlock); | 
|  | } | 
|  |  | 
|  | // Re-apply any non-loop-dominating scale. | 
|  | if (PostLoopScale) { | 
|  | Result = InsertNoopCastOfTo(Result, IntTy); | 
|  | Result = Builder.CreateMul(Result, | 
|  | expandCodeFor(PostLoopScale, IntTy)); | 
|  | rememberInstruction(Result); | 
|  | } | 
|  |  | 
|  | // Re-apply any non-loop-dominating offset. | 
|  | if (PostLoopOffset) { | 
|  | if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { | 
|  | const SCEV *const OffsetArray[1] = { PostLoopOffset }; | 
|  | Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result); | 
|  | } else { | 
|  | Result = InsertNoopCastOfTo(Result, IntTy); | 
|  | Result = Builder.CreateAdd(Result, | 
|  | expandCodeFor(PostLoopOffset, IntTy)); | 
|  | rememberInstruction(Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { | 
|  | if (!CanonicalMode) return expandAddRecExprLiterally(S); | 
|  |  | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | const Loop *L = S->getLoop(); | 
|  |  | 
|  | // First check for an existing canonical IV in a suitable type. | 
|  | PHINode *CanonicalIV = 0; | 
|  | if (PHINode *PN = L->getCanonicalInductionVariable()) | 
|  | if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) | 
|  | CanonicalIV = PN; | 
|  |  | 
|  | // Rewrite an AddRec in terms of the canonical induction variable, if | 
|  | // its type is more narrow. | 
|  | if (CanonicalIV && | 
|  | SE.getTypeSizeInBits(CanonicalIV->getType()) > | 
|  | SE.getTypeSizeInBits(Ty)) { | 
|  | SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); | 
|  | for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) | 
|  | NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); | 
|  | Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop())); | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  | BasicBlock::iterator NewInsertPt = | 
|  | llvm::next(BasicBlock::iterator(cast<Instruction>(V))); | 
|  | while (isa<PHINode>(NewInsertPt) || ISA_DEBUG_INFO_INTRINSIC(NewInsertPt)) | 
|  | ++NewInsertPt; | 
|  | V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0, | 
|  | NewInsertPt); | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // {X,+,F} --> X + {0,+,F} | 
|  | if (!S->getStart()->isZero()) { | 
|  | SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); | 
|  | NewOps[0] = SE.getConstant(Ty, 0); | 
|  | const SCEV *Rest = SE.getAddRecExpr(NewOps, L); | 
|  |  | 
|  | // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the | 
|  | // comments on expandAddToGEP for details. | 
|  | const SCEV *Base = S->getStart(); | 
|  | const SCEV *RestArray[1] = { Rest }; | 
|  | // Dig into the expression to find the pointer base for a GEP. | 
|  | ExposePointerBase(Base, RestArray[0], SE); | 
|  | // If we found a pointer, expand the AddRec with a GEP. | 
|  | if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { | 
|  | // Make sure the Base isn't something exotic, such as a multiplied | 
|  | // or divided pointer value. In those cases, the result type isn't | 
|  | // actually a pointer type. | 
|  | if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { | 
|  | Value *StartV = expand(Base); | 
|  | assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); | 
|  | return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Just do a normal add. Pre-expand the operands to suppress folding. | 
|  | return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())), | 
|  | SE.getUnknown(expand(Rest)))); | 
|  | } | 
|  |  | 
|  | // If we don't yet have a canonical IV, create one. | 
|  | if (!CanonicalIV) { | 
|  | // Create and insert the PHI node for the induction variable in the | 
|  | // specified loop. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | CanonicalIV = PHINode::Create(Ty, Header->begin()); | 
|  | rememberInstruction(CanonicalIV); | 
|  |  | 
|  | Constant *One = ConstantInt::get(Ty, 1); | 
|  | for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header); | 
|  | HPI != HPE; ++HPI) { | 
|  | BasicBlock *HP = *HPI; | 
|  | if (L->contains(HP)) { | 
|  | // Insert a unit add instruction right before the terminator | 
|  | // corresponding to the back-edge. | 
|  | Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, | 
|  | HP->getTerminator()); | 
|  | rememberInstruction(Add); | 
|  | CanonicalIV->addIncoming(Add, HP); | 
|  | } else { | 
|  | CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // {0,+,1} --> Insert a canonical induction variable into the loop! | 
|  | if (S->isAffine() && S->getOperand(1)->isOne()) { | 
|  | assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && | 
|  | "IVs with types different from the canonical IV should " | 
|  | "already have been handled!"); | 
|  | return CanonicalIV; | 
|  | } | 
|  |  | 
|  | // {0,+,F} --> {0,+,1} * F | 
|  |  | 
|  | // If this is a simple linear addrec, emit it now as a special case. | 
|  | if (S->isAffine())    // {0,+,F} --> i*F | 
|  | return | 
|  | expand(SE.getTruncateOrNoop( | 
|  | SE.getMulExpr(SE.getUnknown(CanonicalIV), | 
|  | SE.getNoopOrAnyExtend(S->getOperand(1), | 
|  | CanonicalIV->getType())), | 
|  | Ty)); | 
|  |  | 
|  | // If this is a chain of recurrences, turn it into a closed form, using the | 
|  | // folders, then expandCodeFor the closed form.  This allows the folders to | 
|  | // simplify the expression without having to build a bunch of special code | 
|  | // into this folder. | 
|  | const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV. | 
|  |  | 
|  | // Promote S up to the canonical IV type, if the cast is foldable. | 
|  | const SCEV *NewS = S; | 
|  | const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); | 
|  | if (isa<SCEVAddRecExpr>(Ext)) | 
|  | NewS = Ext; | 
|  |  | 
|  | const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); | 
|  | //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n"; | 
|  |  | 
|  | // Truncate the result down to the original type, if needed. | 
|  | const SCEV *T = SE.getTruncateOrNoop(V, Ty); | 
|  | return expand(T); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | Value *V = expandCodeFor(S->getOperand(), | 
|  | SE.getEffectiveSCEVType(S->getOperand()->getType())); | 
|  | Value *I = Builder.CreateTrunc(V, Ty); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | Value *V = expandCodeFor(S->getOperand(), | 
|  | SE.getEffectiveSCEVType(S->getOperand()->getType())); | 
|  | Value *I = Builder.CreateZExt(V, Ty); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { | 
|  | const Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | Value *V = expandCodeFor(S->getOperand(), | 
|  | SE.getEffectiveSCEVType(S->getOperand()->getType())); | 
|  | Value *I = Builder.CreateSExt(V, Ty); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { | 
|  | Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); | 
|  | const Type *Ty = LHS->getType(); | 
|  | for (int i = S->getNumOperands()-2; i >= 0; --i) { | 
|  | // In the case of mixed integer and pointer types, do the | 
|  | // rest of the comparisons as integer. | 
|  | if (S->getOperand(i)->getType() != Ty) { | 
|  | Ty = SE.getEffectiveSCEVType(Ty); | 
|  | LHS = InsertNoopCastOfTo(LHS, Ty); | 
|  | } | 
|  | Value *RHS = expandCodeFor(S->getOperand(i), Ty); | 
|  | Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); | 
|  | rememberInstruction(ICmp); | 
|  | Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS); | 
|  | rememberInstruction(Sel); | 
|  | LHS = Sel; | 
|  | } | 
|  | // In the case of mixed integer and pointer types, cast the | 
|  | // final result back to the pointer type. | 
|  | if (LHS->getType() != S->getType()) | 
|  | LHS = InsertNoopCastOfTo(LHS, S->getType()); | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { | 
|  | Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); | 
|  | const Type *Ty = LHS->getType(); | 
|  | for (int i = S->getNumOperands()-2; i >= 0; --i) { | 
|  | // In the case of mixed integer and pointer types, do the | 
|  | // rest of the comparisons as integer. | 
|  | if (S->getOperand(i)->getType() != Ty) { | 
|  | Ty = SE.getEffectiveSCEVType(Ty); | 
|  | LHS = InsertNoopCastOfTo(LHS, Ty); | 
|  | } | 
|  | Value *RHS = expandCodeFor(S->getOperand(i), Ty); | 
|  | Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); | 
|  | rememberInstruction(ICmp); | 
|  | Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS); | 
|  | rememberInstruction(Sel); | 
|  | LHS = Sel; | 
|  | } | 
|  | // In the case of mixed integer and pointer types, cast the | 
|  | // final result back to the pointer type. | 
|  | if (LHS->getType() != S->getType()) | 
|  | LHS = InsertNoopCastOfTo(LHS, S->getType()); | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty, | 
|  | Instruction *I) { | 
|  | BasicBlock::iterator IP = I; | 
|  | while (isInsertedInstruction(IP) || ISA_DEBUG_INFO_INTRINSIC(IP)) | 
|  | ++IP; | 
|  | Builder.SetInsertPoint(IP->getParent(), IP); | 
|  | return expandCodeFor(SH, Ty); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) { | 
|  | // Expand the code for this SCEV. | 
|  | Value *V = expand(SH); | 
|  | if (Ty) { | 
|  | assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && | 
|  | "non-trivial casts should be done with the SCEVs directly!"); | 
|  | V = InsertNoopCastOfTo(V, Ty); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expand(const SCEV *S) { | 
|  | // Compute an insertion point for this SCEV object. Hoist the instructions | 
|  | // as far out in the loop nest as possible. | 
|  | Instruction *InsertPt = Builder.GetInsertPoint(); | 
|  | for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ; | 
|  | L = L->getParentLoop()) | 
|  | if (S->isLoopInvariant(L)) { | 
|  | if (!L) break; | 
|  | if (BasicBlock *Preheader = L->getLoopPreheader()) | 
|  | InsertPt = Preheader->getTerminator(); | 
|  | } else { | 
|  | // If the SCEV is computable at this level, insert it into the header | 
|  | // after the PHIs (and after any other instructions that we've inserted | 
|  | // there) so that it is guaranteed to dominate any user inside the loop. | 
|  | if (L && S->hasComputableLoopEvolution(L) && !PostIncLoops.count(L)) | 
|  | InsertPt = L->getHeader()->getFirstNonPHI(); | 
|  | while (isInsertedInstruction(InsertPt) || ISA_DEBUG_INFO_INTRINSIC(InsertPt)) | 
|  | InsertPt = llvm::next(BasicBlock::iterator(InsertPt)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check to see if we already expanded this here. | 
|  | std::map<std::pair<const SCEV *, Instruction *>, | 
|  | AssertingVH<Value> >::iterator I = | 
|  | InsertedExpressions.find(std::make_pair(S, InsertPt)); | 
|  | if (I != InsertedExpressions.end()) | 
|  | return I->second; | 
|  |  | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  | Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); | 
|  |  | 
|  | // Expand the expression into instructions. | 
|  | Value *V = visit(S); | 
|  |  | 
|  | // Remember the expanded value for this SCEV at this location. | 
|  | if (PostIncLoops.empty()) | 
|  | InsertedExpressions[std::make_pair(S, InsertPt)] = V; | 
|  |  | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | void SCEVExpander::rememberInstruction(Value *I) { | 
|  | if (!PostIncLoops.empty()) | 
|  | InsertedPostIncValues.insert(I); | 
|  | else | 
|  | InsertedValues.insert(I); | 
|  |  | 
|  | // If we just claimed an existing instruction and that instruction had | 
|  | // been the insert point, adjust the insert point forward so that | 
|  | // subsequently inserted code will be dominated. | 
|  | if (Builder.GetInsertPoint() == I) { | 
|  | BasicBlock::iterator It = cast<Instruction>(I); | 
|  | do { ++It; } while (isInsertedInstruction(It) || | 
|  | ISA_DEBUG_INFO_INTRINSIC(It)); | 
|  | Builder.SetInsertPoint(Builder.GetInsertBlock(), It); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) { | 
|  | // If we acquired more instructions since the old insert point was saved, | 
|  | // advance past them. | 
|  | while (isInsertedInstruction(I) || ISA_DEBUG_INFO_INTRINSIC(I)) ++I; | 
|  |  | 
|  | Builder.SetInsertPoint(BB, I); | 
|  | } | 
|  |  | 
|  | /// getOrInsertCanonicalInductionVariable - This method returns the | 
|  | /// canonical induction variable of the specified type for the specified | 
|  | /// loop (inserting one if there is none).  A canonical induction variable | 
|  | /// starts at zero and steps by one on each iteration. | 
|  | PHINode * | 
|  | SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, | 
|  | const Type *Ty) { | 
|  | assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); | 
|  |  | 
|  | // Build a SCEV for {0,+,1}<L>. | 
|  | const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), | 
|  | SE.getConstant(Ty, 1), L); | 
|  |  | 
|  | // Emit code for it. | 
|  | BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); | 
|  | BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); | 
|  | PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin())); | 
|  | if (SaveInsertBB) | 
|  | restoreInsertPoint(SaveInsertBB, SaveInsertPt); | 
|  |  | 
|  | return V; | 
|  | } |