|  | //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //==-----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// Defines an instruction selector for the AMDGPU target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPUISelDAGToDAG.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUInstrInfo.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" | 
|  | #include "MCTargetDesc/R600MCTargetDesc.h" | 
|  | #include "R600RegisterInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "llvm/Analysis/LegacyDivergenceAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/IR/IntrinsicsAMDGPU.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #endif | 
|  |  | 
|  | #define DEBUG_TYPE "amdgpu-isel" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction Selector Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | static SDValue stripBitcast(SDValue Val) { | 
|  | return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; | 
|  | } | 
|  |  | 
|  | // Figure out if this is really an extract of the high 16-bits of a dword. | 
|  | static bool isExtractHiElt(SDValue In, SDValue &Out) { | 
|  | In = stripBitcast(In); | 
|  |  | 
|  | if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { | 
|  | if (!Idx->isOne()) | 
|  | return false; | 
|  | Out = In.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (In.getOpcode() != ISD::TRUNCATE) | 
|  | return false; | 
|  |  | 
|  | SDValue Srl = In.getOperand(0); | 
|  | if (Srl.getOpcode() == ISD::SRL) { | 
|  | if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { | 
|  | if (ShiftAmt->getZExtValue() == 16) { | 
|  | Out = stripBitcast(Srl.getOperand(0)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look through operations that obscure just looking at the low 16-bits of the | 
|  | // same register. | 
|  | static SDValue stripExtractLoElt(SDValue In) { | 
|  | if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { | 
|  | if (Idx->isZero() && In.getValueSizeInBits() <= 32) | 
|  | return In.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (In.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue Src = In.getOperand(0); | 
|  | if (Src.getValueType().getSizeInBits() == 32) | 
|  | return stripBitcast(Src); | 
|  | } | 
|  |  | 
|  | return In; | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", | 
|  | "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) | 
|  | INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | #endif | 
|  | INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", | 
|  | "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) | 
|  |  | 
|  | /// This pass converts a legalized DAG into a AMDGPU-specific | 
|  | // DAG, ready for instruction scheduling. | 
|  | FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new AMDGPUDAGToDAGISel(TM, OptLevel); | 
|  | } | 
|  |  | 
|  | AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(ID, TM, OptLevel) { | 
|  | EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | for (auto &L : LI->getLoopsInPreorder()) { | 
|  | assert(L->isLCSSAForm(DT)); | 
|  | } | 
|  | #endif | 
|  | Subtarget = &MF.getSubtarget<GCNSubtarget>(); | 
|  | Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); | 
|  | return SelectionDAGISel::runOnMachineFunction(MF); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { | 
|  | // XXX - only need to list legal operations. | 
|  | switch (Opc) { | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FCANONICALIZE: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::FABS: | 
|  | // Fabs is lowered to a bit operation, but it's an and which will clear the | 
|  | // high bits anyway. | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FPOWI: | 
|  | case ISD::FPOW: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case AMDGPUISD::FRACT: | 
|  | case AMDGPUISD::CLAMP: | 
|  | case AMDGPUISD::COS_HW: | 
|  | case AMDGPUISD::SIN_HW: | 
|  | case AMDGPUISD::FMIN3: | 
|  | case AMDGPUISD::FMAX3: | 
|  | case AMDGPUISD::FMED3: | 
|  | case AMDGPUISD::FMAD_FTZ: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RSQ: | 
|  | case AMDGPUISD::RCP_IFLAG: | 
|  | case AMDGPUISD::LDEXP: | 
|  | // On gfx10, all 16-bit instructions preserve the high bits. | 
|  | return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; | 
|  | case ISD::FP_ROUND: | 
|  | // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the | 
|  | // high bits on gfx9. | 
|  | // TODO: If we had the source node we could see if the source was fma/mad | 
|  | return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: | 
|  | case AMDGPUISD::DIV_FIXUP: | 
|  | return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; | 
|  | default: | 
|  | // fcopysign, select and others may be lowered to 32-bit bit operations | 
|  | // which don't zero the high bits. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AMDGPUArgumentUsageInfo>(); | 
|  | AU.addRequired<LegacyDivergenceAnalysis>(); | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | #endif | 
|  | SelectionDAGISel::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { | 
|  | assert(Subtarget->d16PreservesUnusedBits()); | 
|  | MVT VT = N->getValueType(0).getSimpleVT(); | 
|  | if (VT != MVT::v2i16 && VT != MVT::v2f16) | 
|  | return false; | 
|  |  | 
|  | SDValue Lo = N->getOperand(0); | 
|  | SDValue Hi = N->getOperand(1); | 
|  |  | 
|  | LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); | 
|  |  | 
|  | // build_vector lo, (load ptr) -> load_d16_hi ptr, lo | 
|  | // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo | 
|  | // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo | 
|  |  | 
|  | // Need to check for possible indirect dependencies on the other half of the | 
|  | // vector to avoid introducing a cycle. | 
|  | if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { | 
|  | SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); | 
|  |  | 
|  | SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); | 
|  | SDValue Ops[] = { | 
|  | LdHi->getChain(), LdHi->getBasePtr(), TiedIn | 
|  | }; | 
|  |  | 
|  | unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; | 
|  | if (LdHi->getMemoryVT() == MVT::i8) { | 
|  | LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? | 
|  | AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; | 
|  | } else { | 
|  | assert(LdHi->getMemoryVT() == MVT::i16); | 
|  | } | 
|  |  | 
|  | SDValue NewLoadHi = | 
|  | CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, | 
|  | Ops, LdHi->getMemoryVT(), | 
|  | LdHi->getMemOperand()); | 
|  |  | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // build_vector (load ptr), hi -> load_d16_lo ptr, hi | 
|  | // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi | 
|  | // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi | 
|  | LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); | 
|  | if (LdLo && Lo.hasOneUse()) { | 
|  | SDValue TiedIn = getHi16Elt(Hi); | 
|  | if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) | 
|  | return false; | 
|  |  | 
|  | SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); | 
|  | unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; | 
|  | if (LdLo->getMemoryVT() == MVT::i8) { | 
|  | LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? | 
|  | AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; | 
|  | } else { | 
|  | assert(LdLo->getMemoryVT() == MVT::i16); | 
|  | } | 
|  |  | 
|  | TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | LdLo->getChain(), LdLo->getBasePtr(), TiedIn | 
|  | }; | 
|  |  | 
|  | SDValue NewLoadLo = | 
|  | CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, | 
|  | Ops, LdLo->getMemoryVT(), | 
|  | LdLo->getMemOperand()); | 
|  |  | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::PreprocessISelDAG() { | 
|  | if (!Subtarget->d16PreservesUnusedBits()) | 
|  | return; | 
|  |  | 
|  | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | if (N->use_empty()) | 
|  | continue; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::BUILD_VECTOR: | 
|  | MadeChange |= matchLoadD16FromBuildVector(N); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MadeChange) { | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | LLVM_DEBUG(dbgs() << "After PreProcess:\n"; | 
|  | CurDAG->dump();); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, | 
|  | bool Negated) const { | 
|  | if (N->isUndef()) | 
|  | return true; | 
|  |  | 
|  | const SIInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | if (Negated) { | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) | 
|  | return TII->isInlineConstant(-C->getAPIntValue()); | 
|  |  | 
|  | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) | 
|  | return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); | 
|  |  | 
|  | } else { | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) | 
|  | return TII->isInlineConstant(C->getAPIntValue()); | 
|  |  | 
|  | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) | 
|  | return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine the register class for \p OpNo | 
|  | /// \returns The register class of the virtual register that will be used for | 
|  | /// the given operand number \OpNo or NULL if the register class cannot be | 
|  | /// determined. | 
|  | const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, | 
|  | unsigned OpNo) const { | 
|  | if (!N->isMachineOpcode()) { | 
|  | if (N->getOpcode() == ISD::CopyToReg) { | 
|  | Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); | 
|  | if (Reg.isVirtual()) { | 
|  | MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); | 
|  | return MRI.getRegClass(Reg); | 
|  | } | 
|  |  | 
|  | const SIRegisterInfo *TRI | 
|  | = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); | 
|  | return TRI->getPhysRegBaseClass(Reg); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | switch (N->getMachineOpcode()) { | 
|  | default: { | 
|  | const MCInstrDesc &Desc = | 
|  | Subtarget->getInstrInfo()->get(N->getMachineOpcode()); | 
|  | unsigned OpIdx = Desc.getNumDefs() + OpNo; | 
|  | if (OpIdx >= Desc.getNumOperands()) | 
|  | return nullptr; | 
|  | int RegClass = Desc.operands()[OpIdx].RegClass; | 
|  | if (RegClass == -1) | 
|  | return nullptr; | 
|  |  | 
|  | return Subtarget->getRegisterInfo()->getRegClass(RegClass); | 
|  | } | 
|  | case AMDGPU::REG_SEQUENCE: { | 
|  | unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | const TargetRegisterClass *SuperRC = | 
|  | Subtarget->getRegisterInfo()->getRegClass(RCID); | 
|  |  | 
|  | SDValue SubRegOp = N->getOperand(OpNo + 1); | 
|  | unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); | 
|  | return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, | 
|  | SubRegIdx); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, | 
|  | SDValue Glue) const { | 
|  | SmallVector <SDValue, 8> Ops; | 
|  | Ops.push_back(NewChain); // Replace the chain. | 
|  | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(N->getOperand(i)); | 
|  |  | 
|  | Ops.push_back(Glue); | 
|  | return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); | 
|  | } | 
|  |  | 
|  | SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { | 
|  | const SITargetLowering& Lowering = | 
|  | *static_cast<const SITargetLowering*>(getTargetLowering()); | 
|  |  | 
|  | assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); | 
|  |  | 
|  | SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); | 
|  | return glueCopyToOp(N, M0, M0.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { | 
|  | unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); | 
|  | if (AS == AMDGPUAS::LOCAL_ADDRESS) { | 
|  | if (Subtarget->ldsRequiresM0Init()) | 
|  | return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); | 
|  | } else if (AS == AMDGPUAS::REGION_ADDRESS) { | 
|  | MachineFunction &MF = CurDAG->getMachineFunction(); | 
|  | unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); | 
|  | return | 
|  | glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, | 
|  | EVT VT) const { | 
|  | SDNode *Lo = CurDAG->getMachineNode( | 
|  | AMDGPU::S_MOV_B32, DL, MVT::i32, | 
|  | CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); | 
|  | SDNode *Hi = | 
|  | CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, | 
|  | CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); | 
|  | const SDValue Ops[] = { | 
|  | CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), | 
|  | SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; | 
|  |  | 
|  | return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumVectorElts = VT.getVectorNumElements(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDLoc DL(N); | 
|  | SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); | 
|  |  | 
|  | if (NumVectorElts == 1) { | 
|  | CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), | 
|  | RegClass); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " | 
|  | "supported yet"); | 
|  | // 32 = Max Num Vector Elements | 
|  | // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) | 
|  | // 1 = Vector Register Class | 
|  | SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); | 
|  |  | 
|  | bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == | 
|  | Triple::amdgcn; | 
|  | RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); | 
|  | bool IsRegSeq = true; | 
|  | unsigned NOps = N->getNumOperands(); | 
|  | for (unsigned i = 0; i < NOps; i++) { | 
|  | // XXX: Why is this here? | 
|  | if (isa<RegisterSDNode>(N->getOperand(i))) { | 
|  | IsRegSeq = false; | 
|  | break; | 
|  | } | 
|  | unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) | 
|  | : R600RegisterInfo::getSubRegFromChannel(i); | 
|  | RegSeqArgs[1 + (2 * i)] = N->getOperand(i); | 
|  | RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); | 
|  | } | 
|  | if (NOps != NumVectorElts) { | 
|  | // Fill in the missing undef elements if this was a scalar_to_vector. | 
|  | assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); | 
|  | MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, | 
|  | DL, EltVT); | 
|  | for (unsigned i = NOps; i < NumVectorElts; ++i) { | 
|  | unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) | 
|  | : R600RegisterInfo::getSubRegFromChannel(i); | 
|  | RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); | 
|  | RegSeqArgs[1 + (2 * i) + 1] = | 
|  | CurDAG->getTargetConstant(Sub, DL, MVT::i32); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IsRegSeq) | 
|  | SelectCode(N); | 
|  | CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::Select(SDNode *N) { | 
|  | unsigned int Opc = N->getOpcode(); | 
|  | if (N->isMachineOpcode()) { | 
|  | N->setNodeId(-1); | 
|  | return;   // Already selected. | 
|  | } | 
|  |  | 
|  | // isa<MemSDNode> almost works but is slightly too permissive for some DS | 
|  | // intrinsics. | 
|  | if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || | 
|  | (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || | 
|  | Opc == ISD::ATOMIC_LOAD_FADD || | 
|  | Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || | 
|  | Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { | 
|  | N = glueCopyToM0LDSInit(N); | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | // We are selecting i64 ADD here instead of custom lower it during | 
|  | // DAG legalization, so we can fold some i64 ADDs used for address | 
|  | // calculation into the LOAD and STORE instructions. | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE: { | 
|  | if (N->getValueType(0) != MVT::i64) | 
|  | break; | 
|  |  | 
|  | SelectADD_SUB_I64(N); | 
|  | return; | 
|  | } | 
|  | case ISD::ADDCARRY: | 
|  | case ISD::SUBCARRY: | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | break; | 
|  |  | 
|  | SelectAddcSubb(N); | 
|  | return; | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: { | 
|  | SelectUADDO_USUBO(N); | 
|  | return; | 
|  | } | 
|  | case AMDGPUISD::FMUL_W_CHAIN: { | 
|  | SelectFMUL_W_CHAIN(N); | 
|  | return; | 
|  | } | 
|  | case AMDGPUISD::FMA_W_CHAIN: { | 
|  | SelectFMA_W_CHAIN(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | case ISD::BUILD_VECTOR: { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumVectorElts = VT.getVectorNumElements(); | 
|  | if (VT.getScalarSizeInBits() == 16) { | 
|  | if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { | 
|  | if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { | 
|  | ReplaceNode(N, Packed); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(VT.getVectorElementType().bitsEq(MVT::i32)); | 
|  | unsigned RegClassID = | 
|  | SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); | 
|  | SelectBuildVector(N, RegClassID); | 
|  | return; | 
|  | } | 
|  | case ISD::BUILD_PAIR: { | 
|  | SDValue RC, SubReg0, SubReg1; | 
|  | SDLoc DL(N); | 
|  | if (N->getValueType(0) == MVT::i128) { | 
|  | RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); | 
|  | SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); | 
|  | SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); | 
|  | } else if (N->getValueType(0) == MVT::i64) { | 
|  | RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); | 
|  | SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); | 
|  | SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); | 
|  | } else { | 
|  | llvm_unreachable("Unhandled value type for BUILD_PAIR"); | 
|  | } | 
|  | const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, | 
|  | N->getOperand(1), SubReg1 }; | 
|  | ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, | 
|  | N->getValueType(0), Ops)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::Constant: | 
|  | case ISD::ConstantFP: { | 
|  | if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) | 
|  | break; | 
|  |  | 
|  | uint64_t Imm; | 
|  | if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) | 
|  | Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); | 
|  | else { | 
|  | ConstantSDNode *C = cast<ConstantSDNode>(N); | 
|  | Imm = C->getZExtValue(); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  | ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); | 
|  | return; | 
|  | } | 
|  | case AMDGPUISD::BFE_I32: | 
|  | case AMDGPUISD::BFE_U32: { | 
|  | // There is a scalar version available, but unlike the vector version which | 
|  | // has a separate operand for the offset and width, the scalar version packs | 
|  | // the width and offset into a single operand. Try to move to the scalar | 
|  | // version if the offsets are constant, so that we can try to keep extended | 
|  | // loads of kernel arguments in SGPRs. | 
|  |  | 
|  | // TODO: Technically we could try to pattern match scalar bitshifts of | 
|  | // dynamic values, but it's probably not useful. | 
|  | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!Offset) | 
|  | break; | 
|  |  | 
|  | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); | 
|  | if (!Width) | 
|  | break; | 
|  |  | 
|  | bool Signed = Opc == AMDGPUISD::BFE_I32; | 
|  |  | 
|  | uint32_t OffsetVal = Offset->getZExtValue(); | 
|  | uint32_t WidthVal = Width->getZExtValue(); | 
|  |  | 
|  | ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, | 
|  | WidthVal)); | 
|  | return; | 
|  | } | 
|  | case AMDGPUISD::DIV_SCALE: { | 
|  | SelectDIV_SCALE(N); | 
|  | return; | 
|  | } | 
|  | case AMDGPUISD::MAD_I64_I32: | 
|  | case AMDGPUISD::MAD_U64_U32: { | 
|  | SelectMAD_64_32(N); | 
|  | return; | 
|  | } | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | return SelectMUL_LOHI(N); | 
|  | case ISD::CopyToReg: { | 
|  | const SITargetLowering& Lowering = | 
|  | *static_cast<const SITargetLowering*>(getTargetLowering()); | 
|  | N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); | 
|  | break; | 
|  | } | 
|  | case ISD::AND: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | break; | 
|  |  | 
|  | SelectS_BFE(N); | 
|  | return; | 
|  | case ISD::BRCOND: | 
|  | SelectBRCOND(N); | 
|  | return; | 
|  | case ISD::FMAD: | 
|  | case ISD::FMA: | 
|  | SelectFMAD_FMA(N); | 
|  | return; | 
|  | case AMDGPUISD::CVT_PKRTZ_F16_F32: | 
|  | case AMDGPUISD::CVT_PKNORM_I16_F32: | 
|  | case AMDGPUISD::CVT_PKNORM_U16_F32: | 
|  | case AMDGPUISD::CVT_PK_U16_U32: | 
|  | case AMDGPUISD::CVT_PK_I16_I32: { | 
|  | // Hack around using a legal type if f16 is illegal. | 
|  | if (N->getValueType(0) == MVT::i32) { | 
|  | MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; | 
|  | N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), | 
|  | { N->getOperand(0), N->getOperand(1) }); | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | SelectINTRINSIC_W_CHAIN(N); | 
|  | return; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | SelectINTRINSIC_WO_CHAIN(N); | 
|  | return; | 
|  | } | 
|  | case ISD::INTRINSIC_VOID: { | 
|  | SelectINTRINSIC_VOID(N); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { | 
|  | const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); | 
|  | const Instruction *Term = BB->getTerminator(); | 
|  | return Term->getMetadata("amdgpu.uniform") || | 
|  | Term->getMetadata("structurizecfg.uniform"); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, | 
|  | unsigned ShAmtBits) const { | 
|  | assert(N->getOpcode() == ISD::AND); | 
|  |  | 
|  | const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); | 
|  | if (RHS.countTrailingOnes() >= ShAmtBits) | 
|  | return true; | 
|  |  | 
|  | const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; | 
|  | return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits; | 
|  | } | 
|  |  | 
|  | static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, | 
|  | SDValue &N0, SDValue &N1) { | 
|  | if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && | 
|  | Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. | 
|  | // (i64 (bitcast (v2i32 (build_vector | 
|  | //                        (or (extract_vector_elt V, 0), OFFSET), | 
|  | //                        (extract_vector_elt V, 1))))) | 
|  | SDValue Lo = Addr.getOperand(0).getOperand(0); | 
|  | if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { | 
|  | SDValue BaseLo = Lo.getOperand(0); | 
|  | SDValue BaseHi = Addr.getOperand(0).getOperand(1); | 
|  | // Check that split base (Lo and Hi) are extracted from the same one. | 
|  | if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | BaseLo.getOperand(0) == BaseHi.getOperand(0) && | 
|  | // Lo is statically extracted from index 0. | 
|  | isa<ConstantSDNode>(BaseLo.getOperand(1)) && | 
|  | BaseLo.getConstantOperandVal(1) == 0 && | 
|  | // Hi is statically extracted from index 0. | 
|  | isa<ConstantSDNode>(BaseHi.getOperand(1)) && | 
|  | BaseHi.getConstantOperandVal(1) == 1) { | 
|  | N0 = BaseLo.getOperand(0).getOperand(0); | 
|  | N1 = Lo.getOperand(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, | 
|  | SDValue &RHS) const { | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | LHS = Addr.getOperand(0); | 
|  | RHS = Addr.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { | 
|  | assert(LHS && RHS && isa<ConstantSDNode>(RHS)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringRef AMDGPUDAGToDAGISel::getPassName() const { | 
|  | return "AMDGPU DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Complex Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) { | 
|  | ConstantSDNode *C; | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | if ((C = dyn_cast<ConstantSDNode>(Addr))) { | 
|  | Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); | 
|  | Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); | 
|  | } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && | 
|  | (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { | 
|  | Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); | 
|  | Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); | 
|  | } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && | 
|  | (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { | 
|  | Base = Addr.getOperand(0); | 
|  | Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); | 
|  | } else { | 
|  | Base = Addr; | 
|  | Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, | 
|  | const SDLoc &DL) const { | 
|  | SDNode *Mov = CurDAG->getMachineNode( | 
|  | AMDGPU::S_MOV_B32, DL, MVT::i32, | 
|  | CurDAG->getTargetConstant(Val, DL, MVT::i32)); | 
|  | return SDValue(Mov, 0); | 
|  | } | 
|  |  | 
|  | // FIXME: Should only handle addcarry/subcarry | 
|  | void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { | 
|  | SDLoc DL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); | 
|  | bool ProduceCarry = | 
|  | ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; | 
|  | bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; | 
|  |  | 
|  | SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); | 
|  | SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); | 
|  |  | 
|  | SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | DL, MVT::i32, LHS, Sub0); | 
|  | SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | DL, MVT::i32, LHS, Sub1); | 
|  |  | 
|  | SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | DL, MVT::i32, RHS, Sub0); | 
|  | SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | DL, MVT::i32, RHS, Sub1); | 
|  |  | 
|  | SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); | 
|  |  | 
|  | static const unsigned OpcMap[2][2][2] = { | 
|  | {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, | 
|  | {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, | 
|  | {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, | 
|  | {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; | 
|  |  | 
|  | unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; | 
|  | unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; | 
|  |  | 
|  | SDNode *AddLo; | 
|  | if (!ConsumeCarry) { | 
|  | SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; | 
|  | AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); | 
|  | } else { | 
|  | SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; | 
|  | AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); | 
|  | } | 
|  | SDValue AddHiArgs[] = { | 
|  | SDValue(Hi0, 0), | 
|  | SDValue(Hi1, 0), | 
|  | SDValue(AddLo, 1) | 
|  | }; | 
|  | SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); | 
|  |  | 
|  | SDValue RegSequenceArgs[] = { | 
|  | CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), | 
|  | SDValue(AddLo,0), | 
|  | Sub0, | 
|  | SDValue(AddHi,0), | 
|  | Sub1, | 
|  | }; | 
|  | SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, | 
|  | MVT::i64, RegSequenceArgs); | 
|  |  | 
|  | if (ProduceCarry) { | 
|  | // Replace the carry-use | 
|  | ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); | 
|  | } | 
|  |  | 
|  | // Replace the remaining uses. | 
|  | ReplaceNode(N, RegSequence); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { | 
|  | SDLoc DL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue CI = N->getOperand(2); | 
|  |  | 
|  | if (N->isDivergent()) { | 
|  | unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 | 
|  | : AMDGPU::V_SUBB_U32_e64; | 
|  | CurDAG->SelectNodeTo( | 
|  | N, Opc, N->getVTList(), | 
|  | {LHS, RHS, CI, | 
|  | CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); | 
|  | } else { | 
|  | unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO | 
|  | : AMDGPU::S_SUB_CO_PSEUDO; | 
|  | CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { | 
|  | // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned | 
|  | // carry out despite the _i32 name. These were renamed in VI to _U32. | 
|  | // FIXME: We should probably rename the opcodes here. | 
|  | bool IsAdd = N->getOpcode() == ISD::UADDO; | 
|  | bool IsVALU = N->isDivergent(); | 
|  |  | 
|  | for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; | 
|  | ++UI) | 
|  | if (UI.getUse().getResNo() == 1) { | 
|  | if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || | 
|  | (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { | 
|  | IsVALU = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsVALU) { | 
|  | unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; | 
|  |  | 
|  | CurDAG->SelectNodeTo( | 
|  | N, Opc, N->getVTList(), | 
|  | {N->getOperand(0), N->getOperand(1), | 
|  | CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); | 
|  | } else { | 
|  | unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO | 
|  | : AMDGPU::S_USUBO_PSEUDO; | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, Opc, N->getVTList(), | 
|  | {N->getOperand(0), N->getOperand(1)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { | 
|  | SDLoc SL(N); | 
|  | //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod | 
|  | SDValue Ops[10]; | 
|  |  | 
|  | SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); | 
|  | SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); | 
|  | SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); | 
|  | Ops[8] = N->getOperand(0); | 
|  | Ops[9] = N->getOperand(4); | 
|  |  | 
|  | // If there are no source modifiers, prefer fmac over fma because it can use | 
|  | // the smaller VOP2 encoding. | 
|  | bool UseFMAC = Subtarget->hasDLInsts() && | 
|  | cast<ConstantSDNode>(Ops[0])->isZero() && | 
|  | cast<ConstantSDNode>(Ops[2])->isZero() && | 
|  | cast<ConstantSDNode>(Ops[4])->isZero(); | 
|  | unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; | 
|  | CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { | 
|  | SDLoc SL(N); | 
|  | //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod | 
|  | SDValue Ops[8]; | 
|  |  | 
|  | SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); | 
|  | SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); | 
|  | Ops[6] = N->getOperand(0); | 
|  | Ops[7] = N->getOperand(3); | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); | 
|  | } | 
|  |  | 
|  | // We need to handle this here because tablegen doesn't support matching | 
|  | // instructions with multiple outputs. | 
|  | void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | assert(VT == MVT::f32 || VT == MVT::f64); | 
|  |  | 
|  | unsigned Opc | 
|  | = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; | 
|  |  | 
|  | // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, | 
|  | // omod | 
|  | SDValue Ops[8]; | 
|  | SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); | 
|  | SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); | 
|  | SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); | 
|  | CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); | 
|  | } | 
|  |  | 
|  | // We need to handle this here because tablegen doesn't support matching | 
|  | // instructions with multiple outputs. | 
|  | void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { | 
|  | SDLoc SL(N); | 
|  | bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; | 
|  | unsigned Opc; | 
|  | if (Subtarget->hasMADIntraFwdBug()) | 
|  | Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 | 
|  | : AMDGPU::V_MAD_U64_U32_gfx11_e64; | 
|  | else | 
|  | Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; | 
|  |  | 
|  | SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); | 
|  | SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), | 
|  | Clamp }; | 
|  | CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); | 
|  | } | 
|  |  | 
|  | // We need to handle this here because tablegen doesn't support matching | 
|  | // instructions with multiple outputs. | 
|  | void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { | 
|  | SDLoc SL(N); | 
|  | bool Signed = N->getOpcode() == ISD::SMUL_LOHI; | 
|  | unsigned Opc; | 
|  | if (Subtarget->hasMADIntraFwdBug()) | 
|  | Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 | 
|  | : AMDGPU::V_MAD_U64_U32_gfx11_e64; | 
|  | else | 
|  | Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; | 
|  |  | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); | 
|  | SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); | 
|  | SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; | 
|  | SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); | 
|  | if (!SDValue(N, 0).use_empty()) { | 
|  | SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); | 
|  | SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, | 
|  | MVT::i32, SDValue(Mad, 0), Sub0); | 
|  | ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); | 
|  | } | 
|  | if (!SDValue(N, 1).use_empty()) { | 
|  | SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); | 
|  | SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, | 
|  | MVT::i32, SDValue(Mad, 0), Sub1); | 
|  | ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); | 
|  | } | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { | 
|  | if (!isUInt<16>(Offset)) | 
|  | return false; | 
|  |  | 
|  | if (!Base || Subtarget->hasUsableDSOffset() || | 
|  | Subtarget->unsafeDSOffsetFoldingEnabled()) | 
|  | return true; | 
|  |  | 
|  | // On Southern Islands instruction with a negative base value and an offset | 
|  | // don't seem to work. | 
|  | return CurDAG->SignBitIsZero(Base); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | SDLoc DL(Addr); | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | SDValue N0 = Addr.getOperand(0); | 
|  | SDValue N1 = Addr.getOperand(1); | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N1); | 
|  | if (isDSOffsetLegal(N0, C1->getSExtValue())) { | 
|  | // (add n0, c0) | 
|  | Base = N0; | 
|  | Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } else if (Addr.getOpcode() == ISD::SUB) { | 
|  | // sub C, x -> add (sub 0, x), C | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { | 
|  | int64_t ByteOffset = C->getSExtValue(); | 
|  | if (isDSOffsetLegal(SDValue(), ByteOffset)) { | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  |  | 
|  | // XXX - This is kind of hacky. Create a dummy sub node so we can check | 
|  | // the known bits in isDSOffsetLegal. We need to emit the selected node | 
|  | // here, so this is thrown away. | 
|  | SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, | 
|  | Zero, Addr.getOperand(1)); | 
|  |  | 
|  | if (isDSOffsetLegal(Sub, ByteOffset)) { | 
|  | SmallVector<SDValue, 3> Opnds; | 
|  | Opnds.push_back(Zero); | 
|  | Opnds.push_back(Addr.getOperand(1)); | 
|  |  | 
|  | // FIXME: Select to VOP3 version for with-carry. | 
|  | unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; | 
|  | if (Subtarget->hasAddNoCarry()) { | 
|  | SubOp = AMDGPU::V_SUB_U32_e64; | 
|  | Opnds.push_back( | 
|  | CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit | 
|  | } | 
|  |  | 
|  | MachineSDNode *MachineSub = | 
|  | CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); | 
|  |  | 
|  | Base = SDValue(MachineSub, 0); | 
|  | Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { | 
|  | // If we have a constant address, prefer to put the constant into the | 
|  | // offset. This can save moves to load the constant address since multiple | 
|  | // operations can share the zero base address register, and enables merging | 
|  | // into read2 / write2 instructions. | 
|  |  | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, | 
|  | DL, MVT::i32, Zero); | 
|  | Base = SDValue(MovZero, 0); | 
|  | Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // default case | 
|  | Base = Addr; | 
|  | Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, | 
|  | unsigned Offset1, | 
|  | unsigned Size) const { | 
|  | if (Offset0 % Size != 0 || Offset1 % Size != 0) | 
|  | return false; | 
|  | if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) | 
|  | return false; | 
|  |  | 
|  | if (!Base || Subtarget->hasUsableDSOffset() || | 
|  | Subtarget->unsafeDSOffsetFoldingEnabled()) | 
|  | return true; | 
|  |  | 
|  | // On Southern Islands instruction with a negative base value and an offset | 
|  | // don't seem to work. | 
|  | return CurDAG->SignBitIsZero(Base); | 
|  | } | 
|  |  | 
|  | // TODO: If offset is too big, put low 16-bit into offset. | 
|  | bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset0, | 
|  | SDValue &Offset1) const { | 
|  | return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset0, | 
|  | SDValue &Offset1) const { | 
|  | return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, | 
|  | SDValue &Offset0, SDValue &Offset1, | 
|  | unsigned Size) const { | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | SDValue N0 = Addr.getOperand(0); | 
|  | SDValue N1 = Addr.getOperand(1); | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N1); | 
|  | unsigned OffsetValue0 = C1->getZExtValue(); | 
|  | unsigned OffsetValue1 = OffsetValue0 + Size; | 
|  |  | 
|  | // (add n0, c0) | 
|  | if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { | 
|  | Base = N0; | 
|  | Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); | 
|  | Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); | 
|  | return true; | 
|  | } | 
|  | } else if (Addr.getOpcode() == ISD::SUB) { | 
|  | // sub C, x -> add (sub 0, x), C | 
|  | if (const ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { | 
|  | unsigned OffsetValue0 = C->getZExtValue(); | 
|  | unsigned OffsetValue1 = OffsetValue0 + Size; | 
|  |  | 
|  | if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { | 
|  | SDLoc DL(Addr); | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  |  | 
|  | // XXX - This is kind of hacky. Create a dummy sub node so we can check | 
|  | // the known bits in isDSOffsetLegal. We need to emit the selected node | 
|  | // here, so this is thrown away. | 
|  | SDValue Sub = | 
|  | CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); | 
|  |  | 
|  | if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { | 
|  | SmallVector<SDValue, 3> Opnds; | 
|  | Opnds.push_back(Zero); | 
|  | Opnds.push_back(Addr.getOperand(1)); | 
|  | unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; | 
|  | if (Subtarget->hasAddNoCarry()) { | 
|  | SubOp = AMDGPU::V_SUB_U32_e64; | 
|  | Opnds.push_back( | 
|  | CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit | 
|  | } | 
|  |  | 
|  | MachineSDNode *MachineSub = CurDAG->getMachineNode( | 
|  | SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); | 
|  |  | 
|  | Base = SDValue(MachineSub, 0); | 
|  | Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); | 
|  | Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { | 
|  | unsigned OffsetValue0 = CAddr->getZExtValue(); | 
|  | unsigned OffsetValue1 = OffsetValue0 + Size; | 
|  |  | 
|  | if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | MachineSDNode *MovZero = | 
|  | CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); | 
|  | Base = SDValue(MovZero, 0); | 
|  | Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); | 
|  | Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // default case | 
|  |  | 
|  | Base = Addr; | 
|  | Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); | 
|  | Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, | 
|  | SDValue &SOffset, SDValue &Offset, | 
|  | SDValue &Offen, SDValue &Idxen, | 
|  | SDValue &Addr64) const { | 
|  | // Subtarget prefers to use flat instruction | 
|  | // FIXME: This should be a pattern predicate and not reach here | 
|  | if (Subtarget->useFlatForGlobal()) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  | Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  | Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  | SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  |  | 
|  | ConstantSDNode *C1 = nullptr; | 
|  | SDValue N0 = Addr; | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | C1 = cast<ConstantSDNode>(Addr.getOperand(1)); | 
|  | if (isUInt<32>(C1->getZExtValue())) | 
|  | N0 = Addr.getOperand(0); | 
|  | else | 
|  | C1 = nullptr; | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::ADD) { | 
|  | // (add N2, N3) -> addr64, or | 
|  | // (add (add N2, N3), C1) -> addr64 | 
|  | SDValue N2 = N0.getOperand(0); | 
|  | SDValue N3 = N0.getOperand(1); | 
|  | Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); | 
|  |  | 
|  | if (N2->isDivergent()) { | 
|  | if (N3->isDivergent()) { | 
|  | // Both N2 and N3 are divergent. Use N0 (the result of the add) as the | 
|  | // addr64, and construct the resource from a 0 address. | 
|  | Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); | 
|  | VAddr = N0; | 
|  | } else { | 
|  | // N2 is divergent, N3 is not. | 
|  | Ptr = N3; | 
|  | VAddr = N2; | 
|  | } | 
|  | } else { | 
|  | // N2 is not divergent. | 
|  | Ptr = N2; | 
|  | VAddr = N3; | 
|  | } | 
|  | Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); | 
|  | } else if (N0->isDivergent()) { | 
|  | // N0 is divergent. Use it as the addr64, and construct the resource from a | 
|  | // 0 address. | 
|  | Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); | 
|  | VAddr = N0; | 
|  | Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); | 
|  | } else { | 
|  | // N0 -> offset, or | 
|  | // (N0 + C1) -> offset | 
|  | VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | Ptr = N0; | 
|  | } | 
|  |  | 
|  | if (!C1) { | 
|  | // No offset. | 
|  | Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { | 
|  | // Legal offset for instruction. | 
|  | Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Illegal offset, store it in soffset. | 
|  | Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); | 
|  | SOffset = | 
|  | SDValue(CurDAG->getMachineNode( | 
|  | AMDGPU::S_MOV_B32, DL, MVT::i32, | 
|  | CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), | 
|  | 0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, | 
|  | SDValue &VAddr, SDValue &SOffset, | 
|  | SDValue &Offset) const { | 
|  | SDValue Ptr, Offen, Idxen, Addr64; | 
|  |  | 
|  | // addr64 bit was removed for volcanic islands. | 
|  | // FIXME: This should be a pattern predicate and not reach here | 
|  | if (!Subtarget->hasAddr64()) | 
|  | return false; | 
|  |  | 
|  | if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *C = cast<ConstantSDNode>(Addr64); | 
|  | if (C->getSExtValue()) { | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | const SITargetLowering& Lowering = | 
|  | *static_cast<const SITargetLowering*>(getTargetLowering()); | 
|  |  | 
|  | SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | auto *FI = dyn_cast<FrameIndexSDNode>(N); | 
|  | SDValue TFI = | 
|  | FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; | 
|  |  | 
|  | // We rebase the base address into an absolute stack address and hence | 
|  | // use constant 0 for soffset. This value must be retained until | 
|  | // frame elimination and eliminateFrameIndex will choose the appropriate | 
|  | // frame register if need be. | 
|  | return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, | 
|  | SDValue Addr, SDValue &Rsrc, | 
|  | SDValue &VAddr, SDValue &SOffset, | 
|  | SDValue &ImmOffset) const { | 
|  |  | 
|  | SDLoc DL(Addr); | 
|  | MachineFunction &MF = CurDAG->getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); | 
|  |  | 
|  | if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { | 
|  | int64_t Imm = CAddr->getSExtValue(); | 
|  | const int64_t NullPtr = | 
|  | AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); | 
|  | // Don't fold null pointer. | 
|  | if (Imm != NullPtr) { | 
|  | SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); | 
|  | MachineSDNode *MovHighBits = CurDAG->getMachineNode( | 
|  | AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); | 
|  | VAddr = SDValue(MovHighBits, 0); | 
|  |  | 
|  | SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | // (add n0, c1) | 
|  |  | 
|  | SDValue N0 = Addr.getOperand(0); | 
|  | SDValue N1 = Addr.getOperand(1); | 
|  |  | 
|  | // Offsets in vaddr must be positive if range checking is enabled. | 
|  | // | 
|  | // The total computation of vaddr + soffset + offset must not overflow.  If | 
|  | // vaddr is negative, even if offset is 0 the sgpr offset add will end up | 
|  | // overflowing. | 
|  | // | 
|  | // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would | 
|  | // always perform a range check. If a negative vaddr base index was used, | 
|  | // this would fail the range check. The overall address computation would | 
|  | // compute a valid address, but this doesn't happen due to the range | 
|  | // check. For out-of-bounds MUBUF loads, a 0 is returned. | 
|  | // | 
|  | // Therefore it should be safe to fold any VGPR offset on gfx9 into the | 
|  | // MUBUF vaddr, but not on older subtargets which can only do this if the | 
|  | // sign bit is known 0. | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N1); | 
|  | if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && | 
|  | (!Subtarget->privateMemoryResourceIsRangeChecked() || | 
|  | CurDAG->SignBitIsZero(N0))) { | 
|  | std::tie(VAddr, SOffset) = foldFrameIndex(N0); | 
|  | ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (node) | 
|  | std::tie(VAddr, SOffset) = foldFrameIndex(Addr); | 
|  | ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { | 
|  | if (Val.getOpcode() != ISD::CopyFromReg) | 
|  | return false; | 
|  | auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg(); | 
|  | if (!Reg.isPhysical()) | 
|  | return false; | 
|  | auto RC = TRI.getPhysRegBaseClass(Reg); | 
|  | return RC && TRI.isSGPRClass(RC); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, | 
|  | SDValue Addr, | 
|  | SDValue &SRsrc, | 
|  | SDValue &SOffset, | 
|  | SDValue &Offset) const { | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); | 
|  | MachineFunction &MF = CurDAG->getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | // CopyFromReg <sgpr> | 
|  | if (IsCopyFromSGPR(*TRI, Addr)) { | 
|  | SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); | 
|  | SOffset = Addr; | 
|  | Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ConstantSDNode *CAddr; | 
|  | if (Addr.getOpcode() == ISD::ADD) { | 
|  | // Add (CopyFromReg <sgpr>) <constant> | 
|  | CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); | 
|  | if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) | 
|  | return false; | 
|  | if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | SOffset = Addr.getOperand(0); | 
|  | } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && | 
|  | SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { | 
|  | // <constant> | 
|  | SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); | 
|  |  | 
|  | Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, | 
|  | SDValue &SOffset, SDValue &Offset | 
|  | ) const { | 
|  | SDValue Ptr, VAddr, Offen, Idxen, Addr64; | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  |  | 
|  | if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) | 
|  | return false; | 
|  |  | 
|  | if (!cast<ConstantSDNode>(Offen)->getSExtValue() && | 
|  | !cast<ConstantSDNode>(Idxen)->getSExtValue() && | 
|  | !cast<ConstantSDNode>(Addr64)->getSExtValue()) { | 
|  | uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | | 
|  | APInt::getAllOnes(32).getZExtValue(); // Size | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | const SITargetLowering& Lowering = | 
|  | *static_cast<const SITargetLowering*>(getTargetLowering()); | 
|  |  | 
|  | SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find a load or store from corresponding pattern root. | 
|  | // Roots may be build_vector, bitconvert or their combinations. | 
|  | static MemSDNode* findMemSDNode(SDNode *N) { | 
|  | N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); | 
|  | if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) | 
|  | return MN; | 
|  | assert(isa<BuildVectorSDNode>(N)); | 
|  | for (SDValue V : N->op_values()) | 
|  | if (MemSDNode *MN = | 
|  | dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) | 
|  | return MN; | 
|  | llvm_unreachable("cannot find MemSDNode in the pattern!"); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, | 
|  | SDValue &VAddr, SDValue &Offset, | 
|  | uint64_t FlatVariant) const { | 
|  | int64_t OffsetVal = 0; | 
|  |  | 
|  | unsigned AS = findMemSDNode(N)->getAddressSpace(); | 
|  |  | 
|  | bool CanHaveFlatSegmentOffsetBug = | 
|  | Subtarget->hasFlatSegmentOffsetBug() && | 
|  | FlatVariant == SIInstrFlags::FLAT && | 
|  | (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); | 
|  |  | 
|  | if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { | 
|  | SDValue N0, N1; | 
|  | if (isBaseWithConstantOffset64(Addr, N0, N1)) { | 
|  | int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); | 
|  |  | 
|  | const SIInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { | 
|  | Addr = N0; | 
|  | OffsetVal = COffsetVal; | 
|  | } else { | 
|  | // If the offset doesn't fit, put the low bits into the offset field and | 
|  | // add the rest. | 
|  | // | 
|  | // For a FLAT instruction the hardware decides whether to access | 
|  | // global/scratch/shared memory based on the high bits of vaddr, | 
|  | // ignoring the offset field, so we have to ensure that when we add | 
|  | // remainder to vaddr it still points into the same underlying object. | 
|  | // The easiest way to do that is to make sure that we split the offset | 
|  | // into two pieces that are both >= 0 or both <= 0. | 
|  |  | 
|  | SDLoc DL(N); | 
|  | uint64_t RemainderOffset; | 
|  |  | 
|  | std::tie(OffsetVal, RemainderOffset) = | 
|  | TII->splitFlatOffset(COffsetVal, AS, FlatVariant); | 
|  |  | 
|  | SDValue AddOffsetLo = | 
|  | getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); | 
|  | SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  |  | 
|  | if (Addr.getValueType().getSizeInBits() == 32) { | 
|  | SmallVector<SDValue, 3> Opnds; | 
|  | Opnds.push_back(N0); | 
|  | Opnds.push_back(AddOffsetLo); | 
|  | unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; | 
|  | if (Subtarget->hasAddNoCarry()) { | 
|  | AddOp = AMDGPU::V_ADD_U32_e64; | 
|  | Opnds.push_back(Clamp); | 
|  | } | 
|  | Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); | 
|  | } else { | 
|  | // TODO: Should this try to use a scalar add pseudo if the base address | 
|  | // is uniform and saddr is usable? | 
|  | SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); | 
|  | SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); | 
|  |  | 
|  | SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | DL, MVT::i32, N0, Sub0); | 
|  | SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | DL, MVT::i32, N0, Sub1); | 
|  |  | 
|  | SDValue AddOffsetHi = | 
|  | getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); | 
|  |  | 
|  | SDNode *Add = | 
|  | CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, | 
|  | {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); | 
|  |  | 
|  | SDNode *Addc = CurDAG->getMachineNode( | 
|  | AMDGPU::V_ADDC_U32_e64, DL, VTs, | 
|  | {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); | 
|  |  | 
|  | SDValue RegSequenceArgs[] = { | 
|  | CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), | 
|  | SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; | 
|  |  | 
|  | Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, | 
|  | MVT::i64, RegSequenceArgs), | 
|  | 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VAddr = Addr; | 
|  | Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, | 
|  | SDValue &VAddr, | 
|  | SDValue &Offset) const { | 
|  | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, | 
|  | SDValue &VAddr, | 
|  | SDValue &Offset) const { | 
|  | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, | 
|  | SDValue &VAddr, | 
|  | SDValue &Offset) const { | 
|  | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, | 
|  | SIInstrFlags::FlatScratch); | 
|  | } | 
|  |  | 
|  | // If this matches zero_extend i32:x, return x | 
|  | static SDValue matchZExtFromI32(SDValue Op) { | 
|  | if (Op.getOpcode() != ISD::ZERO_EXTEND) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ExtSrc = Op.getOperand(0); | 
|  | return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); | 
|  | } | 
|  |  | 
|  | // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) | 
|  | bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, | 
|  | SDValue Addr, | 
|  | SDValue &SAddr, | 
|  | SDValue &VOffset, | 
|  | SDValue &Offset) const { | 
|  | int64_t ImmOffset = 0; | 
|  |  | 
|  | // Match the immediate offset first, which canonically is moved as low as | 
|  | // possible. | 
|  |  | 
|  | SDValue LHS, RHS; | 
|  | if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { | 
|  | int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); | 
|  | const SIInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  |  | 
|  | if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, | 
|  | SIInstrFlags::FlatGlobal)) { | 
|  | Addr = LHS; | 
|  | ImmOffset = COffsetVal; | 
|  | } else if (!LHS->isDivergent()) { | 
|  | if (COffsetVal > 0) { | 
|  | SDLoc SL(N); | 
|  | // saddr + large_offset -> saddr + | 
|  | //                         (voffset = large_offset & ~MaxOffset) + | 
|  | //                         (large_offset & MaxOffset); | 
|  | int64_t SplitImmOffset, RemainderOffset; | 
|  | std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( | 
|  | COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); | 
|  |  | 
|  | if (isUInt<32>(RemainderOffset)) { | 
|  | SDNode *VMov = CurDAG->getMachineNode( | 
|  | AMDGPU::V_MOV_B32_e32, SL, MVT::i32, | 
|  | CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); | 
|  | VOffset = SDValue(VMov, 0); | 
|  | SAddr = LHS; | 
|  | Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are adding a 64 bit SGPR and a constant. If constant bus limit | 
|  | // is 1 we would need to perform 1 or 2 extra moves for each half of | 
|  | // the constant and it is better to do a scalar add and then issue a | 
|  | // single VALU instruction to materialize zero. Otherwise it is less | 
|  | // instructions to perform VALU adds with immediates or inline literals. | 
|  | unsigned NumLiterals = | 
|  | !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + | 
|  | !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); | 
|  | if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Match the variable offset. | 
|  | if (Addr.getOpcode() == ISD::ADD) { | 
|  | LHS = Addr.getOperand(0); | 
|  | RHS = Addr.getOperand(1); | 
|  |  | 
|  | if (!LHS->isDivergent()) { | 
|  | // add (i64 sgpr), (zero_extend (i32 vgpr)) | 
|  | if (SDValue ZextRHS = matchZExtFromI32(RHS)) { | 
|  | SAddr = LHS; | 
|  | VOffset = ZextRHS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SAddr && !RHS->isDivergent()) { | 
|  | // add (zero_extend (i32 vgpr)), (i64 sgpr) | 
|  | if (SDValue ZextLHS = matchZExtFromI32(LHS)) { | 
|  | SAddr = RHS; | 
|  | VOffset = ZextLHS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SAddr) { | 
|  | Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || | 
|  | isa<ConstantSDNode>(Addr)) | 
|  | return false; | 
|  |  | 
|  | // It's cheaper to materialize a single 32-bit zero for vaddr than the two | 
|  | // moves required to copy a 64-bit SGPR to VGPR. | 
|  | SAddr = Addr; | 
|  | SDNode *VMov = | 
|  | CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, | 
|  | CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); | 
|  | VOffset = SDValue(VMov, 0); | 
|  | Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { | 
|  | if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { | 
|  | SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); | 
|  | } else if (SAddr.getOpcode() == ISD::ADD && | 
|  | isa<FrameIndexSDNode>(SAddr.getOperand(0))) { | 
|  | // Materialize this into a scalar move for scalar address to avoid | 
|  | // readfirstlane. | 
|  | auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); | 
|  | SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), | 
|  | FI->getValueType(0)); | 
|  | SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), | 
|  | MVT::i32, TFI, SAddr.getOperand(1)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | return SAddr; | 
|  | } | 
|  |  | 
|  | // Match (32-bit SGPR base) + sext(imm offset) | 
|  | bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, | 
|  | SDValue &SAddr, | 
|  | SDValue &Offset) const { | 
|  | if (Addr->isDivergent()) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(Addr); | 
|  |  | 
|  | int64_t COffsetVal = 0; | 
|  |  | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr)) { | 
|  | COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); | 
|  | SAddr = Addr.getOperand(0); | 
|  | } else { | 
|  | SAddr = Addr; | 
|  | } | 
|  |  | 
|  | SAddr = SelectSAddrFI(CurDAG, SAddr); | 
|  |  | 
|  | const SIInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  |  | 
|  | if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, | 
|  | SIInstrFlags::FlatScratch)) { | 
|  | int64_t SplitImmOffset, RemainderOffset; | 
|  | std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( | 
|  | COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); | 
|  |  | 
|  | COffsetVal = SplitImmOffset; | 
|  |  | 
|  | SDValue AddOffset = | 
|  | SAddr.getOpcode() == ISD::TargetFrameIndex | 
|  | ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) | 
|  | : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); | 
|  | SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, | 
|  | SAddr, AddOffset), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether the flat scratch SVS swizzle bug affects this access. | 
|  | bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( | 
|  | SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { | 
|  | if (!Subtarget->hasFlatScratchSVSSwizzleBug()) | 
|  | return false; | 
|  |  | 
|  | // The bug affects the swizzling of SVS accesses if there is any carry out | 
|  | // from the two low order bits (i.e. from bit 1 into bit 2) when adding | 
|  | // voffset to (soffset + inst_offset). | 
|  | KnownBits VKnown = CurDAG->computeKnownBits(VAddr); | 
|  | KnownBits SKnown = KnownBits::computeForAddSub( | 
|  | true, false, CurDAG->computeKnownBits(SAddr), | 
|  | KnownBits::makeConstant(APInt(32, ImmOffset))); | 
|  | uint64_t VMax = VKnown.getMaxValue().getZExtValue(); | 
|  | uint64_t SMax = SKnown.getMaxValue().getZExtValue(); | 
|  | return (VMax & 3) + (SMax & 3) >= 4; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, | 
|  | SDValue &VAddr, SDValue &SAddr, | 
|  | SDValue &Offset) const  { | 
|  | int64_t ImmOffset = 0; | 
|  |  | 
|  | SDValue LHS, RHS; | 
|  | if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { | 
|  | int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); | 
|  | const SIInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  |  | 
|  | if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { | 
|  | Addr = LHS; | 
|  | ImmOffset = COffsetVal; | 
|  | } else if (!LHS->isDivergent() && COffsetVal > 0) { | 
|  | SDLoc SL(N); | 
|  | // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + | 
|  | //                         (large_offset & MaxOffset); | 
|  | int64_t SplitImmOffset, RemainderOffset; | 
|  | std::tie(SplitImmOffset, RemainderOffset) | 
|  | = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); | 
|  |  | 
|  | if (isUInt<32>(RemainderOffset)) { | 
|  | SDNode *VMov = CurDAG->getMachineNode( | 
|  | AMDGPU::V_MOV_B32_e32, SL, MVT::i32, | 
|  | CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); | 
|  | VAddr = SDValue(VMov, 0); | 
|  | SAddr = LHS; | 
|  | if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) | 
|  | return false; | 
|  | Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Addr.getOpcode() != ISD::ADD) | 
|  | return false; | 
|  |  | 
|  | LHS = Addr.getOperand(0); | 
|  | RHS = Addr.getOperand(1); | 
|  |  | 
|  | if (!LHS->isDivergent() && RHS->isDivergent()) { | 
|  | SAddr = LHS; | 
|  | VAddr = RHS; | 
|  | } else if (!RHS->isDivergent() && LHS->isDivergent()) { | 
|  | SAddr = RHS; | 
|  | VAddr = LHS; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) | 
|  | return false; | 
|  | SAddr = SelectSAddrFI(CurDAG, SAddr); | 
|  | Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Match an immediate (if Offset is not null) or an SGPR (if SOffset is | 
|  | // not null) offset. If Imm32Only is true, match only 32-bit immediate | 
|  | // offsets available on CI. | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, | 
|  | SDValue *SOffset, SDValue *Offset, | 
|  | bool Imm32Only, bool IsBuffer) const { | 
|  | assert((!SOffset || !Offset) && | 
|  | "Cannot match both soffset and offset at the same time!"); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); | 
|  | if (!C) { | 
|  | if (!SOffset) | 
|  | return false; | 
|  | if (ByteOffsetNode.getValueType().isScalarInteger() && | 
|  | ByteOffsetNode.getValueType().getSizeInBits() == 32) { | 
|  | *SOffset = ByteOffsetNode; | 
|  | return true; | 
|  | } | 
|  | if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { | 
|  | *SOffset = ByteOffsetNode.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDLoc SL(ByteOffsetNode); | 
|  |  | 
|  | // GFX9 and GFX10 have signed byte immediate offsets. The immediate | 
|  | // offset for S_BUFFER instructions is unsigned. | 
|  | int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); | 
|  | std::optional<int64_t> EncodedOffset = | 
|  | AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, IsBuffer); | 
|  | if (EncodedOffset && Offset && !Imm32Only) { | 
|  | *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SGPR and literal offsets are unsigned. | 
|  | if (ByteOffset < 0) | 
|  | return false; | 
|  |  | 
|  | EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); | 
|  | if (EncodedOffset && Offset && Imm32Only) { | 
|  | *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) | 
|  | return false; | 
|  |  | 
|  | if (SOffset) { | 
|  | SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); | 
|  | *SOffset = SDValue( | 
|  | CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { | 
|  | if (Addr.getValueType() != MVT::i32) | 
|  | return Addr; | 
|  |  | 
|  | // Zero-extend a 32-bit address. | 
|  | SDLoc SL(Addr); | 
|  |  | 
|  | const MachineFunction &MF = CurDAG->getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned AddrHiVal = Info->get32BitAddressHighBits(); | 
|  | SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); | 
|  |  | 
|  | const SDValue Ops[] = { | 
|  | CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), | 
|  | Addr, | 
|  | CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), | 
|  | SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), | 
|  | 0), | 
|  | CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), | 
|  | }; | 
|  |  | 
|  | return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, | 
|  | Ops), 0); | 
|  | } | 
|  |  | 
|  | // Match a base and an immediate (if Offset is not null) or an SGPR (if | 
|  | // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is | 
|  | // true, match only 32-bit immediate offsets available on CI. | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, | 
|  | SDValue *SOffset, SDValue *Offset, | 
|  | bool Imm32Only, | 
|  | bool IsBuffer) const { | 
|  | if (SOffset && Offset) { | 
|  | assert(!Imm32Only && !IsBuffer); | 
|  | SDValue B; | 
|  | return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) && | 
|  | SelectSMRDBaseOffset(B, SBase, SOffset, nullptr); | 
|  | } | 
|  |  | 
|  | // A 32-bit (address + offset) should not cause unsigned 32-bit integer | 
|  | // wraparound, because s_load instructions perform the addition in 64 bits. | 
|  | if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && | 
|  | !Addr->getFlags().hasNoUnsignedWrap()) | 
|  | return false; | 
|  |  | 
|  | SDValue N0, N1; | 
|  | // Extract the base and offset if possible. | 
|  | if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) { | 
|  | N0 = Addr.getOperand(0); | 
|  | N1 = Addr.getOperand(1); | 
|  | } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { | 
|  | assert(N0 && N1 && isa<ConstantSDNode>(N1)); | 
|  | } | 
|  | if (!N0 || !N1) | 
|  | return false; | 
|  | if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer)) { | 
|  | SBase = N0; | 
|  | return true; | 
|  | } | 
|  | if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer)) { | 
|  | SBase = N1; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, | 
|  | SDValue *SOffset, SDValue *Offset, | 
|  | bool Imm32Only) const { | 
|  | if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { | 
|  | SBase = Expand32BitAddress(SBase); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { | 
|  | SBase = Expand32BitAddress(Addr); | 
|  | *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, | 
|  | SDValue &Offset) const { | 
|  | return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, | 
|  | SDValue &Offset) const { | 
|  | assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); | 
|  | return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset, | 
|  | /* Imm32Only */ true); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, | 
|  | SDValue &SOffset) const { | 
|  | return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, | 
|  | SDValue &SOffset, | 
|  | SDValue &Offset) const { | 
|  | return SelectSMRD(Addr, SBase, &SOffset, &Offset); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { | 
|  | return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, | 
|  | /* Imm32Only */ false, /* IsBuffer */ true); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, | 
|  | SDValue &Offset) const { | 
|  | assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); | 
|  | return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, | 
|  | /* Imm32Only */ true, /* IsBuffer */ true); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, | 
|  | SDValue &Offset) const { | 
|  | // Match the (soffset + offset) pair as a 32-bit register base and | 
|  | // an immediate offset. | 
|  | return N.getValueType() == MVT::i32 && | 
|  | SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr, | 
|  | &Offset, /* Imm32Only */ false, | 
|  | /* IsBuffer */ true); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, | 
|  | SDValue &Base, | 
|  | SDValue &Offset) const { | 
|  | SDLoc DL(Index); | 
|  |  | 
|  | if (CurDAG->isBaseWithConstantOffset(Index)) { | 
|  | SDValue N0 = Index.getOperand(0); | 
|  | SDValue N1 = Index.getOperand(1); | 
|  | ConstantSDNode *C1 = cast<ConstantSDNode>(N1); | 
|  |  | 
|  | // (add n0, c0) | 
|  | // Don't peel off the offset (c0) if doing so could possibly lead | 
|  | // the base (n0) to be negative. | 
|  | // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. | 
|  | if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || | 
|  | (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { | 
|  | Base = N0; | 
|  | Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantSDNode>(Index)) | 
|  | return false; | 
|  |  | 
|  | Base = Index; | 
|  | Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, | 
|  | SDValue Val, uint32_t Offset, | 
|  | uint32_t Width) { | 
|  | if (Val->isDivergent()) { | 
|  | unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; | 
|  | SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); | 
|  | SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); | 
|  |  | 
|  | return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); | 
|  | } | 
|  | unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; | 
|  | // Transformation function, pack the offset and width of a BFE into | 
|  | // the format expected by the S_BFE_I32 / S_BFE_U32. In the second | 
|  | // source, bits [5:0] contain the offset and bits [22:16] the width. | 
|  | uint32_t PackedVal = Offset | (Width << 16); | 
|  | SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); | 
|  |  | 
|  | return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { | 
|  | // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) | 
|  | // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) | 
|  | // Predicate: 0 < b <= c < 32 | 
|  |  | 
|  | const SDValue &Shl = N->getOperand(0); | 
|  | ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  |  | 
|  | if (B && C) { | 
|  | uint32_t BVal = B->getZExtValue(); | 
|  | uint32_t CVal = C->getZExtValue(); | 
|  |  | 
|  | if (0 < BVal && BVal <= CVal && CVal < 32) { | 
|  | bool Signed = N->getOpcode() == ISD::SRA; | 
|  | ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, | 
|  | 32 - CVal)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::AND: | 
|  | if (N->getOperand(0).getOpcode() == ISD::SRL) { | 
|  | // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" | 
|  | // Predicate: isMask(mask) | 
|  | const SDValue &Srl = N->getOperand(0); | 
|  | ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); | 
|  | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  |  | 
|  | if (Shift && Mask) { | 
|  | uint32_t ShiftVal = Shift->getZExtValue(); | 
|  | uint32_t MaskVal = Mask->getZExtValue(); | 
|  |  | 
|  | if (isMask_32(MaskVal)) { | 
|  | uint32_t WidthVal = llvm::popcount(MaskVal); | 
|  | ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, | 
|  | WidthVal)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (N->getOperand(0).getOpcode() == ISD::AND) { | 
|  | // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" | 
|  | // Predicate: isMask(mask >> b) | 
|  | const SDValue &And = N->getOperand(0); | 
|  | ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); | 
|  |  | 
|  | if (Shift && Mask) { | 
|  | uint32_t ShiftVal = Shift->getZExtValue(); | 
|  | uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; | 
|  |  | 
|  | if (isMask_32(MaskVal)) { | 
|  | uint32_t WidthVal = llvm::popcount(MaskVal); | 
|  | ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, | 
|  | WidthVal)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (N->getOperand(0).getOpcode() == ISD::SHL) { | 
|  | SelectS_BFEFromShifts(N); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::SRA: | 
|  | if (N->getOperand(0).getOpcode() == ISD::SHL) { | 
|  | SelectS_BFEFromShifts(N); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (Src.getOpcode() != ISD::SRL) | 
|  | break; | 
|  |  | 
|  | const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); | 
|  | if (!Amt) | 
|  | break; | 
|  |  | 
|  | unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); | 
|  | ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), | 
|  | Amt->getZExtValue(), Width)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { | 
|  | assert(N->getOpcode() == ISD::BRCOND); | 
|  | if (!N->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | SDValue Cond = N->getOperand(1); | 
|  | if (Cond.getOpcode() == ISD::CopyToReg) | 
|  | Cond = Cond.getOperand(2); | 
|  |  | 
|  | if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | MVT VT = Cond.getOperand(0).getSimpleValueType(); | 
|  | if (VT == MVT::i32) | 
|  | return true; | 
|  |  | 
|  | if (VT == MVT::i64) { | 
|  | auto ST = static_cast<const GCNSubtarget *>(Subtarget); | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  | return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { | 
|  | SDValue Cond = N->getOperand(1); | 
|  |  | 
|  | if (Cond.isUndef()) { | 
|  | CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, | 
|  | N->getOperand(2), N->getOperand(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); | 
|  | const SIRegisterInfo *TRI = ST->getRegisterInfo(); | 
|  |  | 
|  | bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); | 
|  | unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; | 
|  | Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | if (!UseSCCBr) { | 
|  | // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not | 
|  | // analyzed what generates the vcc value, so we do not know whether vcc | 
|  | // bits for disabled lanes are 0.  Thus we need to mask out bits for | 
|  | // disabled lanes. | 
|  | // | 
|  | // For the case that we select S_CBRANCH_SCC1 and it gets | 
|  | // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls | 
|  | // SIInstrInfo::moveToVALU which inserts the S_AND). | 
|  | // | 
|  | // We could add an analysis of what generates the vcc value here and omit | 
|  | // the S_AND when is unnecessary. But it would be better to add a separate | 
|  | // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it | 
|  | // catches both cases. | 
|  | Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 | 
|  | : AMDGPU::S_AND_B64, | 
|  | SL, MVT::i1, | 
|  | CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO | 
|  | : AMDGPU::EXEC, | 
|  | MVT::i1), | 
|  | Cond), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); | 
|  | CurDAG->SelectNodeTo(N, BrOp, MVT::Other, | 
|  | N->getOperand(2), // Basic Block | 
|  | VCC.getValue(0)); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | bool IsFMA = N->getOpcode() == ISD::FMA; | 
|  | if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && | 
|  | !Subtarget->hasFmaMixInsts()) || | 
|  | ((IsFMA && Subtarget->hasMadMixInsts()) || | 
|  | (!IsFMA && Subtarget->hasFmaMixInsts()))) { | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Src0 = N->getOperand(0); | 
|  | SDValue Src1 = N->getOperand(1); | 
|  | SDValue Src2 = N->getOperand(2); | 
|  | unsigned Src0Mods, Src1Mods, Src2Mods; | 
|  |  | 
|  | // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand | 
|  | // using the conversion from f16. | 
|  | bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); | 
|  | bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); | 
|  | bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); | 
|  |  | 
|  | assert((IsFMA || !Mode.allFP32Denormals()) && | 
|  | "fmad selected with denormals enabled"); | 
|  | // TODO: We can select this with f32 denormals enabled if all the sources are | 
|  | // converted from f16 (in which case fmad isn't legal). | 
|  |  | 
|  | if (Sel0 || Sel1 || Sel2) { | 
|  | // For dummy operands. | 
|  | SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); | 
|  | SDValue Ops[] = { | 
|  | CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, | 
|  | CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, | 
|  | CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, | 
|  | CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), | 
|  | Zero, Zero | 
|  | }; | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, | 
|  | IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, | 
|  | MVT::f32, Ops); | 
|  | } else { | 
|  | SelectCode(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { | 
|  | // The address is assumed to be uniform, so if it ends up in a VGPR, it will | 
|  | // be copied to an SGPR with readfirstlane. | 
|  | unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? | 
|  | AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; | 
|  |  | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Ptr = N->getOperand(2); | 
|  | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); | 
|  | MachineMemOperand *MMO = M->getMemOperand(); | 
|  | bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; | 
|  |  | 
|  | SDValue Offset; | 
|  | if (CurDAG->isBaseWithConstantOffset(Ptr)) { | 
|  | SDValue PtrBase = Ptr.getOperand(0); | 
|  | SDValue PtrOffset = Ptr.getOperand(1); | 
|  |  | 
|  | const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); | 
|  | if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { | 
|  | N = glueCopyToM0(N, PtrBase); | 
|  | Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Offset) { | 
|  | N = glueCopyToM0(N, Ptr); | 
|  | Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | Offset, | 
|  | CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), | 
|  | Chain, | 
|  | N->getOperand(N->getNumOperands() - 1) // New glue | 
|  | }; | 
|  |  | 
|  | SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); | 
|  | } | 
|  |  | 
|  | // We need to handle this here because tablegen doesn't support matching | 
|  | // instructions with multiple outputs. | 
|  | void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { | 
|  | unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; | 
|  | SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4), | 
|  | N->getOperand(5), N->getOperand(0)}; | 
|  |  | 
|  | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); | 
|  | MachineMemOperand *MMO = M->getMemOperand(); | 
|  | SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); | 
|  | } | 
|  |  | 
|  | static unsigned gwsIntrinToOpcode(unsigned IntrID) { | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_ds_gws_init: | 
|  | return AMDGPU::DS_GWS_INIT; | 
|  | case Intrinsic::amdgcn_ds_gws_barrier: | 
|  | return AMDGPU::DS_GWS_BARRIER; | 
|  | case Intrinsic::amdgcn_ds_gws_sema_v: | 
|  | return AMDGPU::DS_GWS_SEMA_V; | 
|  | case Intrinsic::amdgcn_ds_gws_sema_br: | 
|  | return AMDGPU::DS_GWS_SEMA_BR; | 
|  | case Intrinsic::amdgcn_ds_gws_sema_p: | 
|  | return AMDGPU::DS_GWS_SEMA_P; | 
|  | case Intrinsic::amdgcn_ds_gws_sema_release_all: | 
|  | return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; | 
|  | default: | 
|  | llvm_unreachable("not a gws intrinsic"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { | 
|  | if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && | 
|  | !Subtarget->hasGWSSemaReleaseAll()) { | 
|  | // Let this error. | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Chain, intrinsic ID, vsrc, offset | 
|  | const bool HasVSrc = N->getNumOperands() == 4; | 
|  | assert(HasVSrc || N->getNumOperands() == 3); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); | 
|  | int ImmOffset = 0; | 
|  | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); | 
|  | MachineMemOperand *MMO = M->getMemOperand(); | 
|  |  | 
|  | // Don't worry if the offset ends up in a VGPR. Only one lane will have | 
|  | // effect, so SIFixSGPRCopies will validly insert readfirstlane. | 
|  |  | 
|  | // The resource id offset is computed as (<isa opaque base> + M0[21:16] + | 
|  | // offset field) % 64. Some versions of the programming guide omit the m0 | 
|  | // part, or claim it's from offset 0. | 
|  | if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { | 
|  | // If we have a constant offset, try to use the 0 in m0 as the base. | 
|  | // TODO: Look into changing the default m0 initialization value. If the | 
|  | // default -1 only set the low 16-bits, we could leave it as-is and add 1 to | 
|  | // the immediate offset. | 
|  | glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); | 
|  | ImmOffset = ConstOffset->getZExtValue(); | 
|  | } else { | 
|  | if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { | 
|  | ImmOffset = BaseOffset.getConstantOperandVal(1); | 
|  | BaseOffset = BaseOffset.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Prefer to do the shift in an SGPR since it should be possible to use m0 | 
|  | // as the result directly. If it's already an SGPR, it will be eliminated | 
|  | // later. | 
|  | SDNode *SGPROffset | 
|  | = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, | 
|  | BaseOffset); | 
|  | // Shift to offset in m0 | 
|  | SDNode *M0Base | 
|  | = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, | 
|  | SDValue(SGPROffset, 0), | 
|  | CurDAG->getTargetConstant(16, SL, MVT::i32)); | 
|  | glueCopyToM0(N, SDValue(M0Base, 0)); | 
|  | } | 
|  |  | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); | 
|  |  | 
|  | const unsigned Opc = gwsIntrinToOpcode(IntrID); | 
|  | SmallVector<SDValue, 5> Ops; | 
|  | if (HasVSrc) | 
|  | Ops.push_back(N->getOperand(2)); | 
|  | Ops.push_back(OffsetField); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { | 
|  | if (Subtarget->getLDSBankCount() != 16) { | 
|  | // This is a single instruction with a pattern. | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // This requires 2 instructions. It is possible to write a pattern to support | 
|  | // this, but the generated isel emitter doesn't correctly deal with multiple | 
|  | // output instructions using the same physical register input. The copy to m0 | 
|  | // is incorrectly placed before the second instruction. | 
|  | // | 
|  | // TODO: Match source modifiers. | 
|  | // | 
|  | // def : Pat < | 
|  | //   (int_amdgcn_interp_p1_f16 | 
|  | //    (VOP3Mods f32:$src0, i32:$src0_modifiers), | 
|  | //                             (i32 timm:$attrchan), (i32 timm:$attr), | 
|  | //                             (i1 timm:$high), M0), | 
|  | //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, | 
|  | //       timm:$attrchan, 0, | 
|  | //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { | 
|  | //   let Predicates = [has16BankLDS]; | 
|  | // } | 
|  |  | 
|  | // 16 bank LDS | 
|  | SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, | 
|  | N->getOperand(5), SDValue()); | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); | 
|  |  | 
|  | SDNode *InterpMov = | 
|  | CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { | 
|  | CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 | 
|  | N->getOperand(3),  // Attr | 
|  | N->getOperand(2),  // Attrchan | 
|  | ToM0.getValue(1) // In glue | 
|  | }); | 
|  |  | 
|  | SDNode *InterpP1LV = | 
|  | CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers | 
|  | N->getOperand(1), // Src0 | 
|  | N->getOperand(3), // Attr | 
|  | N->getOperand(2), // Attrchan | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers | 
|  | SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high | 
|  | N->getOperand(4), // high | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod | 
|  | SDValue(InterpMov, 1) | 
|  | }); | 
|  |  | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { | 
|  | unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_ds_append: | 
|  | case Intrinsic::amdgcn_ds_consume: { | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | break; | 
|  | SelectDSAppendConsume(N, IntrID); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::amdgcn_ds_bvh_stack_rtn: | 
|  | SelectDSBvhStackIntrinsic(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { | 
|  | unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | unsigned Opcode; | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_wqm: | 
|  | Opcode = AMDGPU::WQM; | 
|  | break; | 
|  | case Intrinsic::amdgcn_softwqm: | 
|  | Opcode = AMDGPU::SOFT_WQM; | 
|  | break; | 
|  | case Intrinsic::amdgcn_wwm: | 
|  | case Intrinsic::amdgcn_strict_wwm: | 
|  | Opcode = AMDGPU::STRICT_WWM; | 
|  | break; | 
|  | case Intrinsic::amdgcn_strict_wqm: | 
|  | Opcode = AMDGPU::STRICT_WQM; | 
|  | break; | 
|  | case Intrinsic::amdgcn_interp_p1_f16: | 
|  | SelectInterpP1F16(N); | 
|  | return; | 
|  | default: | 
|  | SelectCode(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Src = N->getOperand(1); | 
|  | CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { | 
|  | unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_ds_gws_init: | 
|  | case Intrinsic::amdgcn_ds_gws_barrier: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_v: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_br: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_p: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_release_all: | 
|  | SelectDS_GWS(N, IntrID); | 
|  | return; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, | 
|  | unsigned &Mods, | 
|  | bool AllowAbs) const { | 
|  | Mods = 0; | 
|  | Src = In; | 
|  |  | 
|  | if (Src.getOpcode() == ISD::FNEG) { | 
|  | Mods |= SISrcMods::NEG; | 
|  | Src = Src.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (AllowAbs && Src.getOpcode() == ISD::FABS) { | 
|  | Mods |= SISrcMods::ABS; | 
|  | Src = Src.getOperand(0); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | unsigned Mods; | 
|  | if (SelectVOP3ModsImpl(In, Src, Mods)) { | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | unsigned Mods; | 
|  | if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { | 
|  | if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) | 
|  | return false; | 
|  |  | 
|  | Src = In; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods, | 
|  | bool OpSel) const { | 
|  | unsigned Mods; | 
|  | if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { | 
|  | if (OpSel) | 
|  | Mods |= SISrcMods::OP_SEL_0; | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods, SDValue &Clamp, | 
|  | SDValue &Omod) const { | 
|  | SDLoc DL(In); | 
|  | Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  | Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  |  | 
|  | return SelectVOP3Mods(In, Src, SrcMods); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods, SDValue &Clamp, | 
|  | SDValue &Omod) const { | 
|  | SDLoc DL(In); | 
|  | Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  | Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  |  | 
|  | return SelectVOP3BMods(In, Src, SrcMods); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, | 
|  | SDValue &Clamp, SDValue &Omod) const { | 
|  | Src = In; | 
|  |  | 
|  | SDLoc DL(In); | 
|  | Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  | Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods, bool IsDOT) const { | 
|  | unsigned Mods = 0; | 
|  | Src = In; | 
|  |  | 
|  | if (Src.getOpcode() == ISD::FNEG) { | 
|  | Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); | 
|  | Src = Src.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && | 
|  | (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { | 
|  | unsigned VecMods = Mods; | 
|  |  | 
|  | SDValue Lo = stripBitcast(Src.getOperand(0)); | 
|  | SDValue Hi = stripBitcast(Src.getOperand(1)); | 
|  |  | 
|  | if (Lo.getOpcode() == ISD::FNEG) { | 
|  | Lo = stripBitcast(Lo.getOperand(0)); | 
|  | Mods ^= SISrcMods::NEG; | 
|  | } | 
|  |  | 
|  | if (Hi.getOpcode() == ISD::FNEG) { | 
|  | Hi = stripBitcast(Hi.getOperand(0)); | 
|  | Mods ^= SISrcMods::NEG_HI; | 
|  | } | 
|  |  | 
|  | if (isExtractHiElt(Lo, Lo)) | 
|  | Mods |= SISrcMods::OP_SEL_0; | 
|  |  | 
|  | if (isExtractHiElt(Hi, Hi)) | 
|  | Mods |= SISrcMods::OP_SEL_1; | 
|  |  | 
|  | unsigned VecSize = Src.getValueSizeInBits(); | 
|  | Lo = stripExtractLoElt(Lo); | 
|  | Hi = stripExtractLoElt(Hi); | 
|  |  | 
|  | if (Lo.getValueSizeInBits() > VecSize) { | 
|  | Lo = CurDAG->getTargetExtractSubreg( | 
|  | (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), | 
|  | MVT::getIntegerVT(VecSize), Lo); | 
|  | } | 
|  |  | 
|  | if (Hi.getValueSizeInBits() > VecSize) { | 
|  | Hi = CurDAG->getTargetExtractSubreg( | 
|  | (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), | 
|  | MVT::getIntegerVT(VecSize), Hi); | 
|  | } | 
|  |  | 
|  | assert(Lo.getValueSizeInBits() <= VecSize && | 
|  | Hi.getValueSizeInBits() <= VecSize); | 
|  |  | 
|  | if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { | 
|  | // Really a scalar input. Just select from the low half of the register to | 
|  | // avoid packing. | 
|  |  | 
|  | if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { | 
|  | Src = Lo; | 
|  | } else { | 
|  | assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); | 
|  |  | 
|  | SDLoc SL(In); | 
|  | SDValue Undef = SDValue( | 
|  | CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, | 
|  | Lo.getValueType()), 0); | 
|  | auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID | 
|  | : AMDGPU::SReg_64RegClassID; | 
|  | const SDValue Ops[] = { | 
|  | CurDAG->getTargetConstant(RC, SL, MVT::i32), | 
|  | Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), | 
|  | Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; | 
|  |  | 
|  | Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, | 
|  | Src.getValueType(), Ops), 0); | 
|  | } | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { | 
|  | uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() | 
|  | .bitcastToAPInt().getZExtValue(); | 
|  | if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { | 
|  | Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Mods = VecMods; | 
|  | } | 
|  |  | 
|  | // Packed instructions do not have abs modifiers. | 
|  | Mods |= SISrcMods::OP_SEL_1; | 
|  |  | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | return SelectVOP3PMods(In, Src, SrcMods, true); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectDotIUVOP3PMods(SDValue In, SDValue &Src) const { | 
|  | const ConstantSDNode *C = cast<ConstantSDNode>(In); | 
|  | // Literal i1 value set in intrinsic, represents SrcMods for the next operand. | 
|  | // 1 promotes packed values to signed, 0 treats them as unsigned. | 
|  | assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); | 
|  |  | 
|  | unsigned Mods = SISrcMods::OP_SEL_1; | 
|  | unsigned SrcSign = C->getAPIntValue().getZExtValue(); | 
|  | if (SrcSign == 1) | 
|  | Mods ^= SISrcMods::NEG; | 
|  |  | 
|  | Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, | 
|  | SDValue &Src) const { | 
|  | const ConstantSDNode *C = cast<ConstantSDNode>(In); | 
|  | assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); | 
|  |  | 
|  | unsigned Mods = SISrcMods::OP_SEL_1; | 
|  | unsigned SrcVal = C->getAPIntValue().getZExtValue(); | 
|  | if (SrcVal == 1) | 
|  | Mods |= SISrcMods::OP_SEL_0; | 
|  |  | 
|  | Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | Src = In; | 
|  | // FIXME: Handle op_sel | 
|  | SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | // FIXME: Handle op_sel | 
|  | return SelectVOP3Mods(In, Src, SrcMods); | 
|  | } | 
|  |  | 
|  | // The return value is not whether the match is possible (which it always is), | 
|  | // but whether or not it a conversion is really used. | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, | 
|  | unsigned &Mods) const { | 
|  | Mods = 0; | 
|  | SelectVOP3ModsImpl(In, Src, Mods); | 
|  |  | 
|  | if (Src.getOpcode() == ISD::FP_EXTEND) { | 
|  | Src = Src.getOperand(0); | 
|  | assert(Src.getValueType() == MVT::f16); | 
|  | Src = stripBitcast(Src); | 
|  |  | 
|  | // Be careful about folding modifiers if we already have an abs. fneg is | 
|  | // applied last, so we don't want to apply an earlier fneg. | 
|  | if ((Mods & SISrcMods::ABS) == 0) { | 
|  | unsigned ModsTmp; | 
|  | SelectVOP3ModsImpl(Src, Src, ModsTmp); | 
|  |  | 
|  | if ((ModsTmp & SISrcMods::NEG) != 0) | 
|  | Mods ^= SISrcMods::NEG; | 
|  |  | 
|  | if ((ModsTmp & SISrcMods::ABS) != 0) | 
|  | Mods |= SISrcMods::ABS; | 
|  | } | 
|  |  | 
|  | // op_sel/op_sel_hi decide the source type and source. | 
|  | // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. | 
|  | // If the sources's op_sel is set, it picks the high half of the source | 
|  | // register. | 
|  |  | 
|  | Mods |= SISrcMods::OP_SEL_1; | 
|  | if (isExtractHiElt(Src, Src)) { | 
|  | Mods |= SISrcMods::OP_SEL_0; | 
|  |  | 
|  | // TODO: Should we try to look for neg/abs here? | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, | 
|  | SDValue &SrcMods) const { | 
|  | unsigned Mods = 0; | 
|  | SelectVOP3PMadMixModsImpl(In, Src, Mods); | 
|  | SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { | 
|  | if (In.isUndef()) | 
|  | return CurDAG->getUNDEF(MVT::i32); | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { | 
|  | SDLoc SL(In); | 
|  | return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); | 
|  | } | 
|  |  | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { | 
|  | SDLoc SL(In); | 
|  | return CurDAG->getConstant( | 
|  | C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); | 
|  | } | 
|  |  | 
|  | SDValue Src; | 
|  | if (isExtractHiElt(In, Src)) | 
|  | return Src; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { | 
|  | assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); | 
|  |  | 
|  | const SIRegisterInfo *SIRI = | 
|  | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); | 
|  | const SIInstrInfo * SII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  |  | 
|  | unsigned Limit = 0; | 
|  | bool AllUsesAcceptSReg = true; | 
|  | for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); | 
|  | Limit < 10 && U != E; ++U, ++Limit) { | 
|  | const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); | 
|  |  | 
|  | // If the register class is unknown, it could be an unknown | 
|  | // register class that needs to be an SGPR, e.g. an inline asm | 
|  | // constraint | 
|  | if (!RC || SIRI->isSGPRClass(RC)) | 
|  | return false; | 
|  |  | 
|  | if (RC != &AMDGPU::VS_32RegClass) { | 
|  | AllUsesAcceptSReg = false; | 
|  | SDNode * User = *U; | 
|  | if (User->isMachineOpcode()) { | 
|  | unsigned Opc = User->getMachineOpcode(); | 
|  | const MCInstrDesc &Desc = SII->get(Opc); | 
|  | if (Desc.isCommutable()) { | 
|  | unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); | 
|  | unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; | 
|  | if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { | 
|  | unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); | 
|  | const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); | 
|  | if (CommutedRC == &AMDGPU::VS_32RegClass) | 
|  | AllUsesAcceptSReg = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If "AllUsesAcceptSReg == false" so far we haven't succeeded | 
|  | // commuting current user. This means have at least one use | 
|  | // that strictly require VGPR. Thus, we will not attempt to commute | 
|  | // other user instructions. | 
|  | if (!AllUsesAcceptSReg) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return !AllUsesAcceptSReg && (Limit < 10); | 
|  | } | 
|  |  | 
|  | bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { | 
|  | auto Ld = cast<LoadSDNode>(N); | 
|  |  | 
|  | if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(Ld->getMemOperand())) | 
|  | return false; | 
|  |  | 
|  | return Ld->getAlign() >= Align(4) && | 
|  | ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || | 
|  | (Subtarget->getScalarizeGlobalBehavior() && | 
|  | Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && | 
|  | Ld->isSimple() && | 
|  | static_cast<const SITargetLowering *>(getTargetLowering()) | 
|  | ->isMemOpHasNoClobberedMemOperand(N))); | 
|  | } | 
|  |  | 
|  | void AMDGPUDAGToDAGISel::PostprocessISelDAG() { | 
|  | const AMDGPUTargetLowering& Lowering = | 
|  | *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); | 
|  | bool IsModified = false; | 
|  | do { | 
|  | IsModified = false; | 
|  |  | 
|  | // Go over all selected nodes and try to fold them a bit more | 
|  | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); | 
|  | while (Position != CurDAG->allnodes_end()) { | 
|  | SDNode *Node = &*Position++; | 
|  | MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); | 
|  | if (!MachineNode) | 
|  | continue; | 
|  |  | 
|  | SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); | 
|  | if (ResNode != Node) { | 
|  | if (ResNode) | 
|  | ReplaceUses(Node, ResNode); | 
|  | IsModified = true; | 
|  | } | 
|  | } | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } while (IsModified); | 
|  | } | 
|  |  | 
|  | char AMDGPUDAGToDAGISel::ID = 0; |