|  | //===- ELFObject.cpp ------------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ELFObject.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/BinaryFormat/ELF.h" | 
|  | #include "llvm/MC/MCTargetOptions.h" | 
|  | #include "llvm/Object/ELF.h" | 
|  | #include "llvm/Object/ELFObjectFile.h" | 
|  | #include "llvm/Support/Compression.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include <algorithm> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <unordered_set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::objcopy::elf; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { | 
|  | uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + | 
|  | Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); | 
|  | Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); | 
|  | Phdr.p_type = Seg.Type; | 
|  | Phdr.p_flags = Seg.Flags; | 
|  | Phdr.p_offset = Seg.Offset; | 
|  | Phdr.p_vaddr = Seg.VAddr; | 
|  | Phdr.p_paddr = Seg.PAddr; | 
|  | Phdr.p_filesz = Seg.FileSize; | 
|  | Phdr.p_memsz = Seg.MemSize; | 
|  | Phdr.p_align = Seg.Align; | 
|  | } | 
|  |  | 
|  | Error SectionBase::removeSectionReferences( | 
|  | bool, function_ref<bool(const SectionBase *)>) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error SectionBase::initialize(SectionTableRef) { return Error::success(); } | 
|  | void SectionBase::finalize() {} | 
|  | void SectionBase::markSymbols() {} | 
|  | void SectionBase::replaceSectionReferences( | 
|  | const DenseMap<SectionBase *, SectionBase *> &) {} | 
|  | void SectionBase::onRemove() {} | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { | 
|  | uint8_t *B = | 
|  | reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset; | 
|  | Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); | 
|  | Shdr.sh_name = Sec.NameIndex; | 
|  | Shdr.sh_type = Sec.Type; | 
|  | Shdr.sh_flags = Sec.Flags; | 
|  | Shdr.sh_addr = Sec.Addr; | 
|  | Shdr.sh_offset = Sec.Offset; | 
|  | Shdr.sh_size = Sec.Size; | 
|  | Shdr.sh_link = Sec.Link; | 
|  | Shdr.sh_info = Sec.Info; | 
|  | Shdr.sh_addralign = Sec.Align; | 
|  | Shdr.sh_entsize = Sec.EntrySize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { | 
|  | Sec.EntrySize = sizeof(Elf_Sym); | 
|  | Sec.Size = Sec.Symbols.size() * Sec.EntrySize; | 
|  | // Align to the largest field in Elf_Sym. | 
|  | Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { | 
|  | Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); | 
|  | Sec.Size = Sec.Relocations.size() * Sec.EntrySize; | 
|  | // Align to the largest field in Elf_Rel(a). | 
|  | Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) { | 
|  | Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) { | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write symbol section index table '" + | 
|  | Sec.Name + "' "); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write symbol table '" + Sec.Name + | 
|  | "' out to binary"); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const RelocationSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write relocation section '" + Sec.Name + | 
|  | "' out to binary"); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write '" + Sec.Name + "' out to binary"); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const GroupSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write '" + Sec.Name + "' out to binary"); | 
|  | } | 
|  |  | 
|  | Error SectionWriter::visit(const Section &Sec) { | 
|  | if (Sec.Type != SHT_NOBITS) | 
|  | llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | static bool addressOverflows32bit(uint64_t Addr) { | 
|  | // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok | 
|  | return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; | 
|  | } | 
|  |  | 
|  | template <class T> static T checkedGetHex(StringRef S) { | 
|  | T Value; | 
|  | bool Fail = S.getAsInteger(16, Value); | 
|  | assert(!Fail); | 
|  | (void)Fail; | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | // Fills exactly Len bytes of buffer with hexadecimal characters | 
|  | // representing value 'X' | 
|  | template <class T, class Iterator> | 
|  | static Iterator toHexStr(T X, Iterator It, size_t Len) { | 
|  | // Fill range with '0' | 
|  | std::fill(It, It + Len, '0'); | 
|  |  | 
|  | for (long I = Len - 1; I >= 0; --I) { | 
|  | unsigned char Mod = static_cast<unsigned char>(X) & 15; | 
|  | *(It + I) = hexdigit(Mod, false); | 
|  | X >>= 4; | 
|  | } | 
|  | assert(X == 0); | 
|  | return It + Len; | 
|  | } | 
|  |  | 
|  | uint8_t IHexRecord::getChecksum(StringRef S) { | 
|  | assert((S.size() & 1) == 0); | 
|  | uint8_t Checksum = 0; | 
|  | while (!S.empty()) { | 
|  | Checksum += checkedGetHex<uint8_t>(S.take_front(2)); | 
|  | S = S.drop_front(2); | 
|  | } | 
|  | return -Checksum; | 
|  | } | 
|  |  | 
|  | IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, | 
|  | ArrayRef<uint8_t> Data) { | 
|  | IHexLineData Line(getLineLength(Data.size())); | 
|  | assert(Line.size()); | 
|  | auto Iter = Line.begin(); | 
|  | *Iter++ = ':'; | 
|  | Iter = toHexStr(Data.size(), Iter, 2); | 
|  | Iter = toHexStr(Addr, Iter, 4); | 
|  | Iter = toHexStr(Type, Iter, 2); | 
|  | for (uint8_t X : Data) | 
|  | Iter = toHexStr(X, Iter, 2); | 
|  | StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter)); | 
|  | Iter = toHexStr(getChecksum(S), Iter, 2); | 
|  | *Iter++ = '\r'; | 
|  | *Iter++ = '\n'; | 
|  | assert(Iter == Line.end()); | 
|  | return Line; | 
|  | } | 
|  |  | 
|  | static Error checkRecord(const IHexRecord &R) { | 
|  | switch (R.Type) { | 
|  | case IHexRecord::Data: | 
|  | if (R.HexData.size() == 0) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "zero data length is not allowed for data records"); | 
|  | break; | 
|  | case IHexRecord::EndOfFile: | 
|  | break; | 
|  | case IHexRecord::SegmentAddr: | 
|  | // 20-bit segment address. Data length must be 2 bytes | 
|  | // (4 bytes in hex) | 
|  | if (R.HexData.size() != 4) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "segment address data should be 2 bytes in size"); | 
|  | break; | 
|  | case IHexRecord::StartAddr80x86: | 
|  | case IHexRecord::StartAddr: | 
|  | if (R.HexData.size() != 8) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "start address data should be 4 bytes in size"); | 
|  | // According to Intel HEX specification '03' record | 
|  | // only specifies the code address within the 20-bit | 
|  | // segmented address space of the 8086/80186. This | 
|  | // means 12 high order bits should be zeroes. | 
|  | if (R.Type == IHexRecord::StartAddr80x86 && | 
|  | R.HexData.take_front(3) != "000") | 
|  | return createStringError(errc::invalid_argument, | 
|  | "start address exceeds 20 bit for 80x86"); | 
|  | break; | 
|  | case IHexRecord::ExtendedAddr: | 
|  | // 16-31 bits of linear base address | 
|  | if (R.HexData.size() != 4) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "extended address data should be 2 bytes in size"); | 
|  | break; | 
|  | default: | 
|  | // Unknown record type | 
|  | return createStringError(errc::invalid_argument, "unknown record type: %u", | 
|  | static_cast<unsigned>(R.Type)); | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | // Checks that IHEX line contains valid characters. | 
|  | // This allows converting hexadecimal data to integers | 
|  | // without extra verification. | 
|  | static Error checkChars(StringRef Line) { | 
|  | assert(!Line.empty()); | 
|  | if (Line[0] != ':') | 
|  | return createStringError(errc::invalid_argument, | 
|  | "missing ':' in the beginning of line."); | 
|  |  | 
|  | for (size_t Pos = 1; Pos < Line.size(); ++Pos) | 
|  | if (hexDigitValue(Line[Pos]) == -1U) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "invalid character at position %zu.", Pos + 1); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Expected<IHexRecord> IHexRecord::parse(StringRef Line) { | 
|  | assert(!Line.empty()); | 
|  |  | 
|  | // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' | 
|  | if (Line.size() < 11) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "line is too short: %zu chars.", Line.size()); | 
|  |  | 
|  | if (Error E = checkChars(Line)) | 
|  | return std::move(E); | 
|  |  | 
|  | IHexRecord Rec; | 
|  | size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2)); | 
|  | if (Line.size() != getLength(DataLen)) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "invalid line length %zu (should be %zu)", | 
|  | Line.size(), getLength(DataLen)); | 
|  |  | 
|  | Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4)); | 
|  | Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2)); | 
|  | Rec.HexData = Line.substr(9, DataLen * 2); | 
|  |  | 
|  | if (getChecksum(Line.drop_front(1)) != 0) | 
|  | return createStringError(errc::invalid_argument, "incorrect checksum."); | 
|  | if (Error E = checkRecord(Rec)) | 
|  | return std::move(E); | 
|  | return Rec; | 
|  | } | 
|  |  | 
|  | static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { | 
|  | Segment *Seg = Sec->ParentSegment; | 
|  | if (Seg && Seg->Type != ELF::PT_LOAD) | 
|  | Seg = nullptr; | 
|  | return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset | 
|  | : Sec->Addr; | 
|  | } | 
|  |  | 
|  | void IHexSectionWriterBase::writeSection(const SectionBase *Sec, | 
|  | ArrayRef<uint8_t> Data) { | 
|  | assert(Data.size() == Sec->Size); | 
|  | const uint32_t ChunkSize = 16; | 
|  | uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; | 
|  | while (!Data.empty()) { | 
|  | uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); | 
|  | if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { | 
|  | if (Addr > 0xFFFFFU) { | 
|  | // Write extended address record, zeroing segment address | 
|  | // if needed. | 
|  | if (SegmentAddr != 0) | 
|  | SegmentAddr = writeSegmentAddr(0U); | 
|  | BaseAddr = writeBaseAddr(Addr); | 
|  | } else { | 
|  | // We can still remain 16-bit | 
|  | SegmentAddr = writeSegmentAddr(Addr); | 
|  | } | 
|  | } | 
|  | uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; | 
|  | assert(SegOffset <= 0xFFFFU); | 
|  | DataSize = std::min(DataSize, 0x10000U - SegOffset); | 
|  | writeData(0, SegOffset, Data.take_front(DataSize)); | 
|  | Addr += DataSize; | 
|  | Data = Data.drop_front(DataSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { | 
|  | assert(Addr <= 0xFFFFFU); | 
|  | uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0}; | 
|  | writeData(2, 0, Data); | 
|  | return Addr & 0xF0000U; | 
|  | } | 
|  |  | 
|  | uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { | 
|  | assert(Addr <= 0xFFFFFFFFU); | 
|  | uint64_t Base = Addr & 0xFFFF0000U; | 
|  | uint8_t Data[] = {static_cast<uint8_t>(Base >> 24), | 
|  | static_cast<uint8_t>((Base >> 16) & 0xFF)}; | 
|  | writeData(4, 0, Data); | 
|  | return Base; | 
|  | } | 
|  |  | 
|  | void IHexSectionWriterBase::writeData(uint8_t, uint16_t, | 
|  | ArrayRef<uint8_t> Data) { | 
|  | Offset += IHexRecord::getLineLength(Data.size()); | 
|  | } | 
|  |  | 
|  | Error IHexSectionWriterBase::visit(const Section &Sec) { | 
|  | writeSection(&Sec, Sec.Contents); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { | 
|  | writeSection(&Sec, Sec.Data); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { | 
|  | // Check that sizer has already done its work | 
|  | assert(Sec.Size == Sec.StrTabBuilder.getSize()); | 
|  | // We are free to pass an invalid pointer to writeSection as long | 
|  | // as we don't actually write any data. The real writer class has | 
|  | // to override this method . | 
|  | writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)}); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { | 
|  | writeSection(&Sec, Sec.Contents); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, | 
|  | ArrayRef<uint8_t> Data) { | 
|  | IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); | 
|  | memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size()); | 
|  | Offset += HexData.size(); | 
|  | } | 
|  |  | 
|  | Error IHexSectionWriter::visit(const StringTableSection &Sec) { | 
|  | assert(Sec.Size == Sec.StrTabBuilder.getSize()); | 
|  | std::vector<uint8_t> Data(Sec.Size); | 
|  | Sec.StrTabBuilder.write(Data.data()); | 
|  | writeSection(&Sec, Data); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error Section::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error Section::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error SectionWriter::visit(const OwnedDataSection &Sec) { | 
|  | llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { | 
|  | ArrayRef<uint8_t> Compressed = | 
|  | Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>)); | 
|  | SmallVector<uint8_t, 128> Decompressed; | 
|  | DebugCompressionType Type; | 
|  | switch (Sec.ChType) { | 
|  | case ELFCOMPRESS_ZLIB: | 
|  | Type = DebugCompressionType::Zlib; | 
|  | break; | 
|  | case ELFCOMPRESS_ZSTD: | 
|  | Type = DebugCompressionType::Zstd; | 
|  | break; | 
|  | default: | 
|  | return createStringError(errc::invalid_argument, | 
|  | "--decompress-debug-sections: ch_type (" + | 
|  | Twine(Sec.ChType) + ") of section '" + | 
|  | Sec.Name + "' is unsupported"); | 
|  | } | 
|  | if (auto *Reason = | 
|  | compression::getReasonIfUnsupported(compression::formatFor(Type))) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "failed to decompress section '" + Sec.Name + | 
|  | "': " + Reason); | 
|  | if (Error E = compression::decompress(Type, Compressed, Decompressed, | 
|  | static_cast<size_t>(Sec.Size))) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "failed to decompress section '" + Sec.Name + | 
|  | "': " + toString(std::move(E))); | 
|  |  | 
|  | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; | 
|  | std::copy(Decompressed.begin(), Decompressed.end(), Buf); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const DecompressedSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write compressed section '" + Sec.Name + | 
|  | "' "); | 
|  | } | 
|  |  | 
|  | Error DecompressedSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error OwnedDataSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void OwnedDataSection::appendHexData(StringRef HexData) { | 
|  | assert((HexData.size() & 1) == 0); | 
|  | while (!HexData.empty()) { | 
|  | Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2))); | 
|  | HexData = HexData.drop_front(2); | 
|  | } | 
|  | Size = Data.size(); | 
|  | } | 
|  |  | 
|  | Error BinarySectionWriter::visit(const CompressedSection &Sec) { | 
|  | return createStringError(errc::operation_not_permitted, | 
|  | "cannot write compressed section '" + Sec.Name + | 
|  | "' "); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { | 
|  | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; | 
|  | Elf_Chdr_Impl<ELFT> Chdr = {}; | 
|  | switch (Sec.CompressionType) { | 
|  | case DebugCompressionType::None: | 
|  | std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); | 
|  | return Error::success(); | 
|  | case DebugCompressionType::Zlib: | 
|  | Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; | 
|  | break; | 
|  | case DebugCompressionType::Zstd: | 
|  | Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD; | 
|  | break; | 
|  | } | 
|  | Chdr.ch_size = Sec.DecompressedSize; | 
|  | Chdr.ch_addralign = Sec.DecompressedAlign; | 
|  | memcpy(Buf, &Chdr, sizeof(Chdr)); | 
|  | Buf += sizeof(Chdr); | 
|  |  | 
|  | std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | CompressedSection::CompressedSection(const SectionBase &Sec, | 
|  | DebugCompressionType CompressionType, | 
|  | bool Is64Bits) | 
|  | : SectionBase(Sec), CompressionType(CompressionType), | 
|  | DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { | 
|  | compression::compress(compression::Params(CompressionType), OriginalData, | 
|  | CompressedData); | 
|  |  | 
|  | Flags |= ELF::SHF_COMPRESSED; | 
|  | size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>) | 
|  | : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>); | 
|  | Size = ChdrSize + CompressedData.size(); | 
|  | Align = 8; | 
|  | } | 
|  |  | 
|  | CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, | 
|  | uint32_t ChType, uint64_t DecompressedSize, | 
|  | uint64_t DecompressedAlign) | 
|  | : ChType(ChType), CompressionType(DebugCompressionType::None), | 
|  | DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { | 
|  | OriginalData = CompressedData; | 
|  | } | 
|  |  | 
|  | Error CompressedSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error CompressedSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); } | 
|  |  | 
|  | uint32_t StringTableSection::findIndex(StringRef Name) const { | 
|  | return StrTabBuilder.getOffset(Name); | 
|  | } | 
|  |  | 
|  | void StringTableSection::prepareForLayout() { | 
|  | StrTabBuilder.finalize(); | 
|  | Size = StrTabBuilder.getSize(); | 
|  | } | 
|  |  | 
|  | Error SectionWriter::visit(const StringTableSection &Sec) { | 
|  | Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) + | 
|  | Sec.Offset); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error StringTableSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error StringTableSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { | 
|  | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; | 
|  | llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf)); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error SectionIndexSection::initialize(SectionTableRef SecTable) { | 
|  | Size = 0; | 
|  | Expected<SymbolTableSection *> Sec = | 
|  | SecTable.getSectionOfType<SymbolTableSection>( | 
|  | Link, | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is invalid", | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is not a symbol table"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | setSymTab(*Sec); | 
|  | Symbols->setShndxTable(this); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void SectionIndexSection::finalize() { Link = Symbols->Index; } | 
|  |  | 
|  | Error SectionIndexSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { | 
|  | switch (Index) { | 
|  | case SHN_ABS: | 
|  | case SHN_COMMON: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Machine == EM_AMDGPU) { | 
|  | return Index == SHN_AMDGPU_LDS; | 
|  | } | 
|  |  | 
|  | if (Machine == EM_MIPS) { | 
|  | switch (Index) { | 
|  | case SHN_MIPS_ACOMMON: | 
|  | case SHN_MIPS_SCOMMON: | 
|  | case SHN_MIPS_SUNDEFINED: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Machine == EM_HEXAGON) { | 
|  | switch (Index) { | 
|  | case SHN_HEXAGON_SCOMMON: | 
|  | case SHN_HEXAGON_SCOMMON_1: | 
|  | case SHN_HEXAGON_SCOMMON_2: | 
|  | case SHN_HEXAGON_SCOMMON_4: | 
|  | case SHN_HEXAGON_SCOMMON_8: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Large indexes force us to clarify exactly what this function should do. This | 
|  | // function should return the value that will appear in st_shndx when written | 
|  | // out. | 
|  | uint16_t Symbol::getShndx() const { | 
|  | if (DefinedIn != nullptr) { | 
|  | if (DefinedIn->Index >= SHN_LORESERVE) | 
|  | return SHN_XINDEX; | 
|  | return DefinedIn->Index; | 
|  | } | 
|  |  | 
|  | if (ShndxType == SYMBOL_SIMPLE_INDEX) { | 
|  | // This means that we don't have a defined section but we do need to | 
|  | // output a legitimate section index. | 
|  | return SHN_UNDEF; | 
|  | } | 
|  |  | 
|  | assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || | 
|  | (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || | 
|  | (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); | 
|  | return static_cast<uint16_t>(ShndxType); | 
|  | } | 
|  |  | 
|  | bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } | 
|  |  | 
|  | void SymbolTableSection::assignIndices() { | 
|  | uint32_t Index = 0; | 
|  | for (auto &Sym : Symbols) | 
|  | Sym->Index = Index++; | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, | 
|  | SectionBase *DefinedIn, uint64_t Value, | 
|  | uint8_t Visibility, uint16_t Shndx, | 
|  | uint64_t SymbolSize) { | 
|  | Symbol Sym; | 
|  | Sym.Name = Name.str(); | 
|  | Sym.Binding = Bind; | 
|  | Sym.Type = Type; | 
|  | Sym.DefinedIn = DefinedIn; | 
|  | if (DefinedIn != nullptr) | 
|  | DefinedIn->HasSymbol = true; | 
|  | if (DefinedIn == nullptr) { | 
|  | if (Shndx >= SHN_LORESERVE) | 
|  | Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); | 
|  | else | 
|  | Sym.ShndxType = SYMBOL_SIMPLE_INDEX; | 
|  | } | 
|  | Sym.Value = Value; | 
|  | Sym.Visibility = Visibility; | 
|  | Sym.Size = SymbolSize; | 
|  | Sym.Index = Symbols.size(); | 
|  | Symbols.emplace_back(std::make_unique<Symbol>(Sym)); | 
|  | Size += this->EntrySize; | 
|  | } | 
|  |  | 
|  | Error SymbolTableSection::removeSectionReferences( | 
|  | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { | 
|  | if (ToRemove(SectionIndexTable)) | 
|  | SectionIndexTable = nullptr; | 
|  | if (ToRemove(SymbolNames)) { | 
|  | if (!AllowBrokenLinks) | 
|  | return createStringError( | 
|  | llvm::errc::invalid_argument, | 
|  | "string table '%s' cannot be removed because it is " | 
|  | "referenced by the symbol table '%s'", | 
|  | SymbolNames->Name.data(), this->Name.data()); | 
|  | SymbolNames = nullptr; | 
|  | } | 
|  | return removeSymbols( | 
|  | [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { | 
|  | for (SymPtr &Sym : llvm::drop_begin(Symbols)) | 
|  | Callable(*Sym); | 
|  | std::stable_partition( | 
|  | std::begin(Symbols), std::end(Symbols), | 
|  | [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); | 
|  | assignIndices(); | 
|  | } | 
|  |  | 
|  | Error SymbolTableSection::removeSymbols( | 
|  | function_ref<bool(const Symbol &)> ToRemove) { | 
|  | Symbols.erase( | 
|  | std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), | 
|  | [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), | 
|  | std::end(Symbols)); | 
|  | Size = Symbols.size() * EntrySize; | 
|  | assignIndices(); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::replaceSectionReferences( | 
|  | const DenseMap<SectionBase *, SectionBase *> &FromTo) { | 
|  | for (std::unique_ptr<Symbol> &Sym : Symbols) | 
|  | if (SectionBase *To = FromTo.lookup(Sym->DefinedIn)) | 
|  | Sym->DefinedIn = To; | 
|  | } | 
|  |  | 
|  | Error SymbolTableSection::initialize(SectionTableRef SecTable) { | 
|  | Size = 0; | 
|  | Expected<StringTableSection *> Sec = | 
|  | SecTable.getSectionOfType<StringTableSection>( | 
|  | Link, | 
|  | "Symbol table has link index of " + Twine(Link) + | 
|  | " which is not a valid index", | 
|  | "Symbol table has link index of " + Twine(Link) + | 
|  | " which is not a string table"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | setStrTab(*Sec); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::finalize() { | 
|  | uint32_t MaxLocalIndex = 0; | 
|  | for (std::unique_ptr<Symbol> &Sym : Symbols) { | 
|  | Sym->NameIndex = | 
|  | SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name); | 
|  | if (Sym->Binding == STB_LOCAL) | 
|  | MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); | 
|  | } | 
|  | // Now we need to set the Link and Info fields. | 
|  | Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; | 
|  | Info = MaxLocalIndex + 1; | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::prepareForLayout() { | 
|  | // Reserve proper amount of space in section index table, so we can | 
|  | // layout sections correctly. We will fill the table with correct | 
|  | // indexes later in fillShdnxTable. | 
|  | if (SectionIndexTable) | 
|  | SectionIndexTable->reserve(Symbols.size()); | 
|  |  | 
|  | // Add all of our strings to SymbolNames so that SymbolNames has the right | 
|  | // size before layout is decided. | 
|  | // If the symbol names section has been removed, don't try to add strings to | 
|  | // the table. | 
|  | if (SymbolNames != nullptr) | 
|  | for (std::unique_ptr<Symbol> &Sym : Symbols) | 
|  | SymbolNames->addString(Sym->Name); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::fillShndxTable() { | 
|  | if (SectionIndexTable == nullptr) | 
|  | return; | 
|  | // Fill section index table with real section indexes. This function must | 
|  | // be called after assignOffsets. | 
|  | for (const std::unique_ptr<Symbol> &Sym : Symbols) { | 
|  | if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) | 
|  | SectionIndexTable->addIndex(Sym->DefinedIn->Index); | 
|  | else | 
|  | SectionIndexTable->addIndex(SHN_UNDEF); | 
|  | } | 
|  | } | 
|  |  | 
|  | Expected<const Symbol *> | 
|  | SymbolTableSection::getSymbolByIndex(uint32_t Index) const { | 
|  | if (Symbols.size() <= Index) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "invalid symbol index: " + Twine(Index)); | 
|  | return Symbols[Index].get(); | 
|  | } | 
|  |  | 
|  | Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) { | 
|  | Expected<const Symbol *> Sym = | 
|  | static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index); | 
|  | if (!Sym) | 
|  | return Sym.takeError(); | 
|  |  | 
|  | return const_cast<Symbol *>(*Sym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { | 
|  | Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset); | 
|  | // Loop though symbols setting each entry of the symbol table. | 
|  | for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) { | 
|  | Sym->st_name = Symbol->NameIndex; | 
|  | Sym->st_value = Symbol->Value; | 
|  | Sym->st_size = Symbol->Size; | 
|  | Sym->st_other = Symbol->Visibility; | 
|  | Sym->setBinding(Symbol->Binding); | 
|  | Sym->setType(Symbol->Type); | 
|  | Sym->st_shndx = Symbol->getShndx(); | 
|  | ++Sym; | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error SymbolTableSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | StringRef RelocationSectionBase::getNamePrefix() const { | 
|  | switch (Type) { | 
|  | case SHT_REL: | 
|  | return ".rel"; | 
|  | case SHT_RELA: | 
|  | return ".rela"; | 
|  | default: | 
|  | llvm_unreachable("not a relocation section"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Error RelocationSection::removeSectionReferences( | 
|  | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { | 
|  | if (ToRemove(Symbols)) { | 
|  | if (!AllowBrokenLinks) | 
|  | return createStringError( | 
|  | llvm::errc::invalid_argument, | 
|  | "symbol table '%s' cannot be removed because it is " | 
|  | "referenced by the relocation section '%s'", | 
|  | Symbols->Name.data(), this->Name.data()); | 
|  | Symbols = nullptr; | 
|  | } | 
|  |  | 
|  | for (const Relocation &R : Relocations) { | 
|  | if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || | 
|  | !ToRemove(R.RelocSymbol->DefinedIn)) | 
|  | continue; | 
|  | return createStringError(llvm::errc::invalid_argument, | 
|  | "section '%s' cannot be removed: (%s+0x%" PRIx64 | 
|  | ") has relocation against symbol '%s'", | 
|  | R.RelocSymbol->DefinedIn->Name.data(), | 
|  | SecToApplyRel->Name.data(), R.Offset, | 
|  | R.RelocSymbol->Name.c_str()); | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class SymTabType> | 
|  | Error RelocSectionWithSymtabBase<SymTabType>::initialize( | 
|  | SectionTableRef SecTable) { | 
|  | if (Link != SHN_UNDEF) { | 
|  | Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>( | 
|  | Link, | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is invalid", | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is not a symbol table"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | setSymTab(*Sec); | 
|  | } | 
|  |  | 
|  | if (Info != SHN_UNDEF) { | 
|  | Expected<SectionBase *> Sec = | 
|  | SecTable.getSection(Info, "Info field value " + Twine(Info) + | 
|  | " in section " + Name + " is invalid"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | setSection(*Sec); | 
|  | } else | 
|  | setSection(nullptr); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class SymTabType> | 
|  | void RelocSectionWithSymtabBase<SymTabType>::finalize() { | 
|  | this->Link = Symbols ? Symbols->Index : 0; | 
|  |  | 
|  | if (SecToApplyRel != nullptr) | 
|  | this->Info = SecToApplyRel->Index; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { | 
|  | Rela.r_addend = Addend; | 
|  | } | 
|  |  | 
|  | template <class RelRange, class T> | 
|  | static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { | 
|  | for (const auto &Reloc : Relocations) { | 
|  | Buf->r_offset = Reloc.Offset; | 
|  | setAddend(*Buf, Reloc.Addend); | 
|  | Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, | 
|  | Reloc.Type, IsMips64EL); | 
|  | ++Buf; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { | 
|  | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; | 
|  | if (Sec.Type == SHT_REL) | 
|  | writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf), | 
|  | Sec.getObject().IsMips64EL); | 
|  | else | 
|  | writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf), | 
|  | Sec.getObject().IsMips64EL); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error RelocationSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error RelocationSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error RelocationSection::removeSymbols( | 
|  | function_ref<bool(const Symbol &)> ToRemove) { | 
|  | for (const Relocation &Reloc : Relocations) | 
|  | if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) | 
|  | return createStringError( | 
|  | llvm::errc::invalid_argument, | 
|  | "not stripping symbol '%s' because it is named in a relocation", | 
|  | Reloc.RelocSymbol->Name.data()); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void RelocationSection::markSymbols() { | 
|  | for (const Relocation &Reloc : Relocations) | 
|  | if (Reloc.RelocSymbol) | 
|  | Reloc.RelocSymbol->Referenced = true; | 
|  | } | 
|  |  | 
|  | void RelocationSection::replaceSectionReferences( | 
|  | const DenseMap<SectionBase *, SectionBase *> &FromTo) { | 
|  | // Update the target section if it was replaced. | 
|  | if (SectionBase *To = FromTo.lookup(SecToApplyRel)) | 
|  | SecToApplyRel = To; | 
|  | } | 
|  |  | 
|  | Error SectionWriter::visit(const DynamicRelocationSection &Sec) { | 
|  | llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error DynamicRelocationSection::removeSectionReferences( | 
|  | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { | 
|  | if (ToRemove(Symbols)) { | 
|  | if (!AllowBrokenLinks) | 
|  | return createStringError( | 
|  | llvm::errc::invalid_argument, | 
|  | "symbol table '%s' cannot be removed because it is " | 
|  | "referenced by the relocation section '%s'", | 
|  | Symbols->Name.data(), this->Name.data()); | 
|  | Symbols = nullptr; | 
|  | } | 
|  |  | 
|  | // SecToApplyRel contains a section referenced by sh_info field. It keeps | 
|  | // a section to which the relocation section applies. When we remove any | 
|  | // sections we also remove their relocation sections. Since we do that much | 
|  | // earlier, this assert should never be triggered. | 
|  | assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error Section::removeSectionReferences( | 
|  | bool AllowBrokenDependency, | 
|  | function_ref<bool(const SectionBase *)> ToRemove) { | 
|  | if (ToRemove(LinkSection)) { | 
|  | if (!AllowBrokenDependency) | 
|  | return createStringError(llvm::errc::invalid_argument, | 
|  | "section '%s' cannot be removed because it is " | 
|  | "referenced by the section '%s'", | 
|  | LinkSection->Name.data(), this->Name.data()); | 
|  | LinkSection = nullptr; | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void GroupSection::finalize() { | 
|  | this->Info = Sym ? Sym->Index : 0; | 
|  | this->Link = SymTab ? SymTab->Index : 0; | 
|  | // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global | 
|  | // status is not part of the equation. If Sym is localized, the intention is | 
|  | // likely to make the group fully localized. Drop GRP_COMDAT to suppress | 
|  | // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc | 
|  | if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) | 
|  | this->FlagWord &= ~GRP_COMDAT; | 
|  | } | 
|  |  | 
|  | Error GroupSection::removeSectionReferences( | 
|  | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { | 
|  | if (ToRemove(SymTab)) { | 
|  | if (!AllowBrokenLinks) | 
|  | return createStringError( | 
|  | llvm::errc::invalid_argument, | 
|  | "section '.symtab' cannot be removed because it is " | 
|  | "referenced by the group section '%s'", | 
|  | this->Name.data()); | 
|  | SymTab = nullptr; | 
|  | Sym = nullptr; | 
|  | } | 
|  | llvm::erase_if(GroupMembers, ToRemove); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { | 
|  | if (ToRemove(*Sym)) | 
|  | return createStringError(llvm::errc::invalid_argument, | 
|  | "symbol '%s' cannot be removed because it is " | 
|  | "referenced by the section '%s[%d]'", | 
|  | Sym->Name.data(), this->Name.data(), this->Index); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void GroupSection::markSymbols() { | 
|  | if (Sym) | 
|  | Sym->Referenced = true; | 
|  | } | 
|  |  | 
|  | void GroupSection::replaceSectionReferences( | 
|  | const DenseMap<SectionBase *, SectionBase *> &FromTo) { | 
|  | for (SectionBase *&Sec : GroupMembers) | 
|  | if (SectionBase *To = FromTo.lookup(Sec)) | 
|  | Sec = To; | 
|  | } | 
|  |  | 
|  | void GroupSection::onRemove() { | 
|  | // As the header section of the group is removed, drop the Group flag in its | 
|  | // former members. | 
|  | for (SectionBase *Sec : GroupMembers) | 
|  | Sec->Flags &= ~SHF_GROUP; | 
|  | } | 
|  |  | 
|  | Error Section::initialize(SectionTableRef SecTable) { | 
|  | if (Link == ELF::SHN_UNDEF) | 
|  | return Error::success(); | 
|  |  | 
|  | Expected<SectionBase *> Sec = | 
|  | SecTable.getSection(Link, "Link field value " + Twine(Link) + | 
|  | " in section " + Name + " is invalid"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | LinkSection = *Sec; | 
|  |  | 
|  | if (LinkSection->Type == ELF::SHT_SYMTAB) | 
|  | LinkSection = nullptr; | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } | 
|  |  | 
|  | void GnuDebugLinkSection::init(StringRef File) { | 
|  | FileName = sys::path::filename(File); | 
|  | // The format for the .gnu_debuglink starts with the file name and is | 
|  | // followed by a null terminator and then the CRC32 of the file. The CRC32 | 
|  | // should be 4 byte aligned. So we add the FileName size, a 1 for the null | 
|  | // byte, and then finally push the size to alignment and add 4. | 
|  | Size = alignTo(FileName.size() + 1, 4) + 4; | 
|  | // The CRC32 will only be aligned if we align the whole section. | 
|  | Align = 4; | 
|  | Type = OriginalType = ELF::SHT_PROGBITS; | 
|  | Name = ".gnu_debuglink"; | 
|  | // For sections not found in segments, OriginalOffset is only used to | 
|  | // establish the order that sections should go in. By using the maximum | 
|  | // possible offset we cause this section to wind up at the end. | 
|  | OriginalOffset = std::numeric_limits<uint64_t>::max(); | 
|  | } | 
|  |  | 
|  | GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, | 
|  | uint32_t PrecomputedCRC) | 
|  | : FileName(File), CRC32(PrecomputedCRC) { | 
|  | init(File); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { | 
|  | unsigned char *Buf = | 
|  | reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; | 
|  | Elf_Word *CRC = | 
|  | reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); | 
|  | *CRC = Sec.CRC32; | 
|  | llvm::copy(Sec.FileName, Buf); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { | 
|  | ELF::Elf32_Word *Buf = | 
|  | reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); | 
|  | support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord); | 
|  | for (SectionBase *S : Sec.GroupMembers) | 
|  | support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error GroupSection::accept(SectionVisitor &Visitor) const { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | Error GroupSection::accept(MutableSectionVisitor &Visitor) { | 
|  | return Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | // Returns true IFF a section is wholly inside the range of a segment | 
|  | static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { | 
|  | // If a section is empty it should be treated like it has a size of 1. This is | 
|  | // to clarify the case when an empty section lies on a boundary between two | 
|  | // segments and ensures that the section "belongs" to the second segment and | 
|  | // not the first. | 
|  | uint64_t SecSize = Sec.Size ? Sec.Size : 1; | 
|  |  | 
|  | // Ignore just added sections. | 
|  | if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max()) | 
|  | return false; | 
|  |  | 
|  | if (Sec.Type == SHT_NOBITS) { | 
|  | if (!(Sec.Flags & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | bool SectionIsTLS = Sec.Flags & SHF_TLS; | 
|  | bool SegmentIsTLS = Seg.Type == PT_TLS; | 
|  | if (SectionIsTLS != SegmentIsTLS) | 
|  | return false; | 
|  |  | 
|  | return Seg.VAddr <= Sec.Addr && | 
|  | Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; | 
|  | } | 
|  |  | 
|  | return Seg.Offset <= Sec.OriginalOffset && | 
|  | Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; | 
|  | } | 
|  |  | 
|  | // Returns true IFF a segment's original offset is inside of another segment's | 
|  | // range. | 
|  | static bool segmentOverlapsSegment(const Segment &Child, | 
|  | const Segment &Parent) { | 
|  |  | 
|  | return Parent.OriginalOffset <= Child.OriginalOffset && | 
|  | Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; | 
|  | } | 
|  |  | 
|  | static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { | 
|  | // Any segment without a parent segment should come before a segment | 
|  | // that has a parent segment. | 
|  | if (A->OriginalOffset < B->OriginalOffset) | 
|  | return true; | 
|  | if (A->OriginalOffset > B->OriginalOffset) | 
|  | return false; | 
|  | return A->Index < B->Index; | 
|  | } | 
|  |  | 
|  | void BasicELFBuilder::initFileHeader() { | 
|  | Obj->Flags = 0x0; | 
|  | Obj->Type = ET_REL; | 
|  | Obj->OSABI = ELFOSABI_NONE; | 
|  | Obj->ABIVersion = 0; | 
|  | Obj->Entry = 0x0; | 
|  | Obj->Machine = EM_NONE; | 
|  | Obj->Version = 1; | 
|  | } | 
|  |  | 
|  | void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } | 
|  |  | 
|  | StringTableSection *BasicELFBuilder::addStrTab() { | 
|  | auto &StrTab = Obj->addSection<StringTableSection>(); | 
|  | StrTab.Name = ".strtab"; | 
|  |  | 
|  | Obj->SectionNames = &StrTab; | 
|  | return &StrTab; | 
|  | } | 
|  |  | 
|  | SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { | 
|  | auto &SymTab = Obj->addSection<SymbolTableSection>(); | 
|  |  | 
|  | SymTab.Name = ".symtab"; | 
|  | SymTab.Link = StrTab->Index; | 
|  |  | 
|  | // The symbol table always needs a null symbol | 
|  | SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); | 
|  |  | 
|  | Obj->SymbolTable = &SymTab; | 
|  | return &SymTab; | 
|  | } | 
|  |  | 
|  | Error BasicELFBuilder::initSections() { | 
|  | for (SectionBase &Sec : Obj->sections()) | 
|  | if (Error Err = Sec.initialize(Obj->sections())) | 
|  | return Err; | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { | 
|  | auto Data = ArrayRef<uint8_t>( | 
|  | reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), | 
|  | MemBuf->getBufferSize()); | 
|  | auto &DataSection = Obj->addSection<Section>(Data); | 
|  | DataSection.Name = ".data"; | 
|  | DataSection.Type = ELF::SHT_PROGBITS; | 
|  | DataSection.Size = Data.size(); | 
|  | DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; | 
|  |  | 
|  | std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); | 
|  | std::replace_if( | 
|  | std::begin(SanitizedFilename), std::end(SanitizedFilename), | 
|  | [](char C) { return !isAlnum(C); }, '_'); | 
|  | Twine Prefix = Twine("_binary_") + SanitizedFilename; | 
|  |  | 
|  | SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, | 
|  | /*Value=*/0, NewSymbolVisibility, 0, 0); | 
|  | SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, | 
|  | /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0); | 
|  | SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, | 
|  | /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() { | 
|  | initFileHeader(); | 
|  | initHeaderSegment(); | 
|  |  | 
|  | SymbolTableSection *SymTab = addSymTab(addStrTab()); | 
|  | if (Error Err = initSections()) | 
|  | return std::move(Err); | 
|  | addData(SymTab); | 
|  |  | 
|  | return std::move(Obj); | 
|  | } | 
|  |  | 
|  | // Adds sections from IHEX data file. Data should have been | 
|  | // fully validated by this time. | 
|  | void IHexELFBuilder::addDataSections() { | 
|  | OwnedDataSection *Section = nullptr; | 
|  | uint64_t SegmentAddr = 0, BaseAddr = 0; | 
|  | uint32_t SecNo = 1; | 
|  |  | 
|  | for (const IHexRecord &R : Records) { | 
|  | uint64_t RecAddr; | 
|  | switch (R.Type) { | 
|  | case IHexRecord::Data: | 
|  | // Ignore empty data records | 
|  | if (R.HexData.empty()) | 
|  | continue; | 
|  | RecAddr = R.Addr + SegmentAddr + BaseAddr; | 
|  | if (!Section || Section->Addr + Section->Size != RecAddr) { | 
|  | // OriginalOffset field is only used to sort sections before layout, so | 
|  | // instead of keeping track of real offsets in IHEX file, and as | 
|  | // layoutSections() and layoutSectionsForOnlyKeepDebug() use | 
|  | // llvm::stable_sort(), we can just set it to a constant (zero). | 
|  | Section = &Obj->addSection<OwnedDataSection>( | 
|  | ".sec" + std::to_string(SecNo), RecAddr, | 
|  | ELF::SHF_ALLOC | ELF::SHF_WRITE, 0); | 
|  | SecNo++; | 
|  | } | 
|  | Section->appendHexData(R.HexData); | 
|  | break; | 
|  | case IHexRecord::EndOfFile: | 
|  | break; | 
|  | case IHexRecord::SegmentAddr: | 
|  | // 20-bit segment address. | 
|  | SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4; | 
|  | break; | 
|  | case IHexRecord::StartAddr80x86: | 
|  | case IHexRecord::StartAddr: | 
|  | Obj->Entry = checkedGetHex<uint32_t>(R.HexData); | 
|  | assert(Obj->Entry <= 0xFFFFFU); | 
|  | break; | 
|  | case IHexRecord::ExtendedAddr: | 
|  | // 16-31 bits of linear base address | 
|  | BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unknown record type"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Expected<std::unique_ptr<Object>> IHexELFBuilder::build() { | 
|  | initFileHeader(); | 
|  | initHeaderSegment(); | 
|  | StringTableSection *StrTab = addStrTab(); | 
|  | addSymTab(StrTab); | 
|  | if (Error Err = initSections()) | 
|  | return std::move(Err); | 
|  | addDataSections(); | 
|  |  | 
|  | return std::move(Obj); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj, | 
|  | std::optional<StringRef> ExtractPartition) | 
|  | : ElfFile(ElfObj.getELFFile()), Obj(Obj), | 
|  | ExtractPartition(ExtractPartition) { | 
|  | Obj.IsMips64EL = ElfFile.isMips64EL(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { | 
|  | for (Segment &Parent : Obj.segments()) { | 
|  | // Every segment will overlap with itself but we don't want a segment to | 
|  | // be its own parent so we avoid that situation. | 
|  | if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { | 
|  | // We want a canonical "most parental" segment but this requires | 
|  | // inspecting the ParentSegment. | 
|  | if (compareSegmentsByOffset(&Parent, &Child)) | 
|  | if (Child.ParentSegment == nullptr || | 
|  | compareSegmentsByOffset(&Parent, Child.ParentSegment)) { | 
|  | Child.ParentSegment = &Parent; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() { | 
|  | if (!ExtractPartition) | 
|  | return Error::success(); | 
|  |  | 
|  | for (const SectionBase &Sec : Obj.sections()) { | 
|  | if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { | 
|  | EhdrOffset = Sec.Offset; | 
|  | return Error::success(); | 
|  | } | 
|  | } | 
|  | return createStringError(errc::invalid_argument, | 
|  | "could not find partition named '" + | 
|  | *ExtractPartition + "'"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) { | 
|  | uint32_t Index = 0; | 
|  |  | 
|  | Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers = | 
|  | HeadersFile.program_headers(); | 
|  | if (!Headers) | 
|  | return Headers.takeError(); | 
|  |  | 
|  | for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) { | 
|  | if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) + | 
|  | " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) + | 
|  | " goes past the end of the file"); | 
|  |  | 
|  | ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset, | 
|  | (size_t)Phdr.p_filesz}; | 
|  | Segment &Seg = Obj.addSegment(Data); | 
|  | Seg.Type = Phdr.p_type; | 
|  | Seg.Flags = Phdr.p_flags; | 
|  | Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; | 
|  | Seg.Offset = Phdr.p_offset + EhdrOffset; | 
|  | Seg.VAddr = Phdr.p_vaddr; | 
|  | Seg.PAddr = Phdr.p_paddr; | 
|  | Seg.FileSize = Phdr.p_filesz; | 
|  | Seg.MemSize = Phdr.p_memsz; | 
|  | Seg.Align = Phdr.p_align; | 
|  | Seg.Index = Index++; | 
|  | for (SectionBase &Sec : Obj.sections()) | 
|  | if (sectionWithinSegment(Sec, Seg)) { | 
|  | Seg.addSection(&Sec); | 
|  | if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) | 
|  | Sec.ParentSegment = &Seg; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto &ElfHdr = Obj.ElfHdrSegment; | 
|  | ElfHdr.Index = Index++; | 
|  | ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; | 
|  |  | 
|  | const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); | 
|  | auto &PrHdr = Obj.ProgramHdrSegment; | 
|  | PrHdr.Type = PT_PHDR; | 
|  | PrHdr.Flags = 0; | 
|  | // The spec requires us to have p_vaddr % p_align == p_offset % p_align. | 
|  | // Whereas this works automatically for ElfHdr, here OriginalOffset is | 
|  | // always non-zero and to ensure the equation we assign the same value to | 
|  | // VAddr as well. | 
|  | PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; | 
|  | PrHdr.PAddr = 0; | 
|  | PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; | 
|  | // The spec requires us to naturally align all the fields. | 
|  | PrHdr.Align = sizeof(Elf_Addr); | 
|  | PrHdr.Index = Index++; | 
|  |  | 
|  | // Now we do an O(n^2) loop through the segments in order to match up | 
|  | // segments. | 
|  | for (Segment &Child : Obj.segments()) | 
|  | setParentSegment(Child); | 
|  | setParentSegment(ElfHdr); | 
|  | setParentSegment(PrHdr); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { | 
|  | if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "invalid alignment " + Twine(GroupSec->Align) + | 
|  | " of group section '" + GroupSec->Name + "'"); | 
|  | SectionTableRef SecTable = Obj.sections(); | 
|  | if (GroupSec->Link != SHN_UNDEF) { | 
|  | auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( | 
|  | GroupSec->Link, | 
|  | "link field value '" + Twine(GroupSec->Link) + "' in section '" + | 
|  | GroupSec->Name + "' is invalid", | 
|  | "link field value '" + Twine(GroupSec->Link) + "' in section '" + | 
|  | GroupSec->Name + "' is not a symbol table"); | 
|  | if (!SymTab) | 
|  | return SymTab.takeError(); | 
|  |  | 
|  | Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info); | 
|  | if (!Sym) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "info field value '" + Twine(GroupSec->Info) + | 
|  | "' in section '" + GroupSec->Name + | 
|  | "' is not a valid symbol index"); | 
|  | GroupSec->setSymTab(*SymTab); | 
|  | GroupSec->setSymbol(*Sym); | 
|  | } | 
|  | if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || | 
|  | GroupSec->Contents.empty()) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "the content of the section " + GroupSec->Name + | 
|  | " is malformed"); | 
|  | const ELF::Elf32_Word *Word = | 
|  | reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); | 
|  | const ELF::Elf32_Word *End = | 
|  | Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); | 
|  | GroupSec->setFlagWord( | 
|  | support::endian::read32<ELFT::TargetEndianness>(Word++)); | 
|  | for (; Word != End; ++Word) { | 
|  | uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word); | 
|  | Expected<SectionBase *> Sec = SecTable.getSection( | 
|  | Index, "group member index " + Twine(Index) + " in section '" + | 
|  | GroupSec->Name + "' is invalid"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | GroupSec->addMember(*Sec); | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { | 
|  | Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index); | 
|  | if (!Shdr) | 
|  | return Shdr.takeError(); | 
|  |  | 
|  | Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr); | 
|  | if (!StrTabData) | 
|  | return StrTabData.takeError(); | 
|  |  | 
|  | ArrayRef<Elf_Word> ShndxData; | 
|  |  | 
|  | Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols = | 
|  | ElfFile.symbols(*Shdr); | 
|  | if (!Symbols) | 
|  | return Symbols.takeError(); | 
|  |  | 
|  | for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) { | 
|  | SectionBase *DefSection = nullptr; | 
|  |  | 
|  | Expected<StringRef> Name = Sym.getName(*StrTabData); | 
|  | if (!Name) | 
|  | return Name.takeError(); | 
|  |  | 
|  | if (Sym.st_shndx == SHN_XINDEX) { | 
|  | if (SymTab->getShndxTable() == nullptr) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "symbol '" + *Name + | 
|  | "' has index SHN_XINDEX but no " | 
|  | "SHT_SYMTAB_SHNDX section exists"); | 
|  | if (ShndxData.data() == nullptr) { | 
|  | Expected<const Elf_Shdr *> ShndxSec = | 
|  | ElfFile.getSection(SymTab->getShndxTable()->Index); | 
|  | if (!ShndxSec) | 
|  | return ShndxSec.takeError(); | 
|  |  | 
|  | Expected<ArrayRef<Elf_Word>> Data = | 
|  | ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec); | 
|  | if (!Data) | 
|  | return Data.takeError(); | 
|  |  | 
|  | ShndxData = *Data; | 
|  | if (ShndxData.size() != Symbols->size()) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "symbol section index table does not have the same number of " | 
|  | "entries as the symbol table"); | 
|  | } | 
|  | Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; | 
|  | Expected<SectionBase *> Sec = Obj.sections().getSection( | 
|  | Index, | 
|  | "symbol '" + *Name + "' has invalid section index " + Twine(Index)); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | DefSection = *Sec; | 
|  | } else if (Sym.st_shndx >= SHN_LORESERVE) { | 
|  | if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "symbol '" + *Name + | 
|  | "' has unsupported value greater than or equal " | 
|  | "to SHN_LORESERVE: " + | 
|  | Twine(Sym.st_shndx)); | 
|  | } | 
|  | } else if (Sym.st_shndx != SHN_UNDEF) { | 
|  | Expected<SectionBase *> Sec = Obj.sections().getSection( | 
|  | Sym.st_shndx, "symbol '" + *Name + | 
|  | "' is defined has invalid section index " + | 
|  | Twine(Sym.st_shndx)); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | DefSection = *Sec; | 
|  | } | 
|  |  | 
|  | SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection, | 
|  | Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { | 
|  | ToSet = Rela.r_addend; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static Error initRelocations(RelocationSection *Relocs, T RelRange) { | 
|  | for (const auto &Rel : RelRange) { | 
|  | Relocation ToAdd; | 
|  | ToAdd.Offset = Rel.r_offset; | 
|  | getAddend(ToAdd.Addend, Rel); | 
|  | ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); | 
|  |  | 
|  | if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { | 
|  | if (!Relocs->getObject().SymbolTable) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "'" + Relocs->Name + "': relocation references symbol with index " + | 
|  | Twine(Sym) + ", but there is no symbol table"); | 
|  | Expected<Symbol *> SymByIndex = | 
|  | Relocs->getObject().SymbolTable->getSymbolByIndex(Sym); | 
|  | if (!SymByIndex) | 
|  | return SymByIndex.takeError(); | 
|  |  | 
|  | ToAdd.RelocSymbol = *SymByIndex; | 
|  | } | 
|  |  | 
|  | Relocs->addRelocation(ToAdd); | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index, | 
|  | Twine ErrMsg) { | 
|  | if (Index == SHN_UNDEF || Index > Sections.size()) | 
|  | return createStringError(errc::invalid_argument, ErrMsg); | 
|  | return Sections[Index - 1].get(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index, | 
|  | Twine IndexErrMsg, | 
|  | Twine TypeErrMsg) { | 
|  | Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg); | 
|  | if (!BaseSec) | 
|  | return BaseSec.takeError(); | 
|  |  | 
|  | if (T *Sec = dyn_cast<T>(*BaseSec)) | 
|  | return Sec; | 
|  |  | 
|  | return createStringError(errc::invalid_argument, TypeErrMsg); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { | 
|  | switch (Shdr.sh_type) { | 
|  | case SHT_REL: | 
|  | case SHT_RELA: | 
|  | if (Shdr.sh_flags & SHF_ALLOC) { | 
|  | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) | 
|  | return Obj.addSection<DynamicRelocationSection>(*Data); | 
|  | else | 
|  | return Data.takeError(); | 
|  | } | 
|  | return Obj.addSection<RelocationSection>(Obj); | 
|  | case SHT_STRTAB: | 
|  | // If a string table is allocated we don't want to mess with it. That would | 
|  | // mean altering the memory image. There are no special link types or | 
|  | // anything so we can just use a Section. | 
|  | if (Shdr.sh_flags & SHF_ALLOC) { | 
|  | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) | 
|  | return Obj.addSection<Section>(*Data); | 
|  | else | 
|  | return Data.takeError(); | 
|  | } | 
|  | return Obj.addSection<StringTableSection>(); | 
|  | case SHT_HASH: | 
|  | case SHT_GNU_HASH: | 
|  | // Hash tables should refer to SHT_DYNSYM which we're not going to change. | 
|  | // Because of this we don't need to mess with the hash tables either. | 
|  | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) | 
|  | return Obj.addSection<Section>(*Data); | 
|  | else | 
|  | return Data.takeError(); | 
|  | case SHT_GROUP: | 
|  | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) | 
|  | return Obj.addSection<GroupSection>(*Data); | 
|  | else | 
|  | return Data.takeError(); | 
|  | case SHT_DYNSYM: | 
|  | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) | 
|  | return Obj.addSection<DynamicSymbolTableSection>(*Data); | 
|  | else | 
|  | return Data.takeError(); | 
|  | case SHT_DYNAMIC: | 
|  | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) | 
|  | return Obj.addSection<DynamicSection>(*Data); | 
|  | else | 
|  | return Data.takeError(); | 
|  | case SHT_SYMTAB: { | 
|  | auto &SymTab = Obj.addSection<SymbolTableSection>(); | 
|  | Obj.SymbolTable = &SymTab; | 
|  | return SymTab; | 
|  | } | 
|  | case SHT_SYMTAB_SHNDX: { | 
|  | auto &ShndxSection = Obj.addSection<SectionIndexSection>(); | 
|  | Obj.SectionIndexTable = &ShndxSection; | 
|  | return ShndxSection; | 
|  | } | 
|  | case SHT_NOBITS: | 
|  | return Obj.addSection<Section>(ArrayRef<uint8_t>()); | 
|  | default: { | 
|  | Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr); | 
|  | if (!Data) | 
|  | return Data.takeError(); | 
|  |  | 
|  | Expected<StringRef> Name = ElfFile.getSectionName(Shdr); | 
|  | if (!Name) | 
|  | return Name.takeError(); | 
|  |  | 
|  | if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED)) | 
|  | return Obj.addSection<Section>(*Data); | 
|  | auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data()); | 
|  | return Obj.addSection<CompressedSection>(CompressedSection( | 
|  | *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() { | 
|  | uint32_t Index = 0; | 
|  | Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = | 
|  | ElfFile.sections(); | 
|  | if (!Sections) | 
|  | return Sections.takeError(); | 
|  |  | 
|  | for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) { | 
|  | if (Index == 0) { | 
|  | ++Index; | 
|  | continue; | 
|  | } | 
|  | Expected<SectionBase &> Sec = makeSection(Shdr); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | Expected<StringRef> SecName = ElfFile.getSectionName(Shdr); | 
|  | if (!SecName) | 
|  | return SecName.takeError(); | 
|  | Sec->Name = SecName->str(); | 
|  | Sec->Type = Sec->OriginalType = Shdr.sh_type; | 
|  | Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; | 
|  | Sec->Addr = Shdr.sh_addr; | 
|  | Sec->Offset = Shdr.sh_offset; | 
|  | Sec->OriginalOffset = Shdr.sh_offset; | 
|  | Sec->Size = Shdr.sh_size; | 
|  | Sec->Link = Shdr.sh_link; | 
|  | Sec->Info = Shdr.sh_info; | 
|  | Sec->Align = Shdr.sh_addralign; | 
|  | Sec->EntrySize = Shdr.sh_entsize; | 
|  | Sec->Index = Index++; | 
|  | Sec->OriginalIndex = Sec->Index; | 
|  | Sec->OriginalData = ArrayRef<uint8_t>( | 
|  | ElfFile.base() + Shdr.sh_offset, | 
|  | (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) { | 
|  | uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; | 
|  | if (ShstrIndex == SHN_XINDEX) { | 
|  | Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | ShstrIndex = (*Sec)->sh_link; | 
|  | } | 
|  |  | 
|  | if (ShstrIndex == SHN_UNDEF) | 
|  | Obj.HadShdrs = false; | 
|  | else { | 
|  | Expected<StringTableSection *> Sec = | 
|  | Obj.sections().template getSectionOfType<StringTableSection>( | 
|  | ShstrIndex, | 
|  | "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + | 
|  | " is invalid", | 
|  | "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + | 
|  | " does not reference a string table"); | 
|  | if (!Sec) | 
|  | return Sec.takeError(); | 
|  |  | 
|  | Obj.SectionNames = *Sec; | 
|  | } | 
|  |  | 
|  | // If a section index table exists we'll need to initialize it before we | 
|  | // initialize the symbol table because the symbol table might need to | 
|  | // reference it. | 
|  | if (Obj.SectionIndexTable) | 
|  | if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections())) | 
|  | return Err; | 
|  |  | 
|  | // Now that all of the sections have been added we can fill out some extra | 
|  | // details about symbol tables. We need the symbol table filled out before | 
|  | // any relocations. | 
|  | if (Obj.SymbolTable) { | 
|  | if (Error Err = Obj.SymbolTable->initialize(Obj.sections())) | 
|  | return Err; | 
|  | if (Error Err = initSymbolTable(Obj.SymbolTable)) | 
|  | return Err; | 
|  | } else if (EnsureSymtab) { | 
|  | if (Error Err = Obj.addNewSymbolTable()) | 
|  | return Err; | 
|  | } | 
|  |  | 
|  | // Now that all sections and symbols have been added we can add | 
|  | // relocations that reference symbols and set the link and info fields for | 
|  | // relocation sections. | 
|  | for (SectionBase &Sec : Obj.sections()) { | 
|  | if (&Sec == Obj.SymbolTable) | 
|  | continue; | 
|  | if (Error Err = Sec.initialize(Obj.sections())) | 
|  | return Err; | 
|  | if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) { | 
|  | Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = | 
|  | ElfFile.sections(); | 
|  | if (!Sections) | 
|  | return Sections.takeError(); | 
|  |  | 
|  | const typename ELFFile<ELFT>::Elf_Shdr *Shdr = | 
|  | Sections->begin() + RelSec->Index; | 
|  | if (RelSec->Type == SHT_REL) { | 
|  | Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels = | 
|  | ElfFile.rels(*Shdr); | 
|  | if (!Rels) | 
|  | return Rels.takeError(); | 
|  |  | 
|  | if (Error Err = initRelocations(RelSec, *Rels)) | 
|  | return Err; | 
|  | } else { | 
|  | Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = | 
|  | ElfFile.relas(*Shdr); | 
|  | if (!Relas) | 
|  | return Relas.takeError(); | 
|  |  | 
|  | if (Error Err = initRelocations(RelSec, *Relas)) | 
|  | return Err; | 
|  | } | 
|  | } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) { | 
|  | if (Error Err = initGroupSection(GroupSec)) | 
|  | return Err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) { | 
|  | if (Error E = readSectionHeaders()) | 
|  | return E; | 
|  | if (Error E = findEhdrOffset()) | 
|  | return E; | 
|  |  | 
|  | // The ELFFile whose ELF headers and program headers are copied into the | 
|  | // output file. Normally the same as ElfFile, but if we're extracting a | 
|  | // loadable partition it will point to the partition's headers. | 
|  | Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef( | 
|  | {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); | 
|  | if (!HeadersFile) | 
|  | return HeadersFile.takeError(); | 
|  |  | 
|  | const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); | 
|  | Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64; | 
|  | Obj.OSABI = Ehdr.e_ident[EI_OSABI]; | 
|  | Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; | 
|  | Obj.Type = Ehdr.e_type; | 
|  | Obj.Machine = Ehdr.e_machine; | 
|  | Obj.Version = Ehdr.e_version; | 
|  | Obj.Entry = Ehdr.e_entry; | 
|  | Obj.Flags = Ehdr.e_flags; | 
|  |  | 
|  | if (Error E = readSections(EnsureSymtab)) | 
|  | return E; | 
|  | return readProgramHeaders(*HeadersFile); | 
|  | } | 
|  |  | 
|  | Writer::~Writer() = default; | 
|  |  | 
|  | Reader::~Reader() = default; | 
|  |  | 
|  | Expected<std::unique_ptr<Object>> | 
|  | BinaryReader::create(bool /*EnsureSymtab*/) const { | 
|  | return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); | 
|  | } | 
|  |  | 
|  | Expected<std::vector<IHexRecord>> IHexReader::parse() const { | 
|  | SmallVector<StringRef, 16> Lines; | 
|  | std::vector<IHexRecord> Records; | 
|  | bool HasSections = false; | 
|  |  | 
|  | MemBuf->getBuffer().split(Lines, '\n'); | 
|  | Records.reserve(Lines.size()); | 
|  | for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { | 
|  | StringRef Line = Lines[LineNo - 1].trim(); | 
|  | if (Line.empty()) | 
|  | continue; | 
|  |  | 
|  | Expected<IHexRecord> R = IHexRecord::parse(Line); | 
|  | if (!R) | 
|  | return parseError(LineNo, R.takeError()); | 
|  | if (R->Type == IHexRecord::EndOfFile) | 
|  | break; | 
|  | HasSections |= (R->Type == IHexRecord::Data); | 
|  | Records.push_back(*R); | 
|  | } | 
|  | if (!HasSections) | 
|  | return parseError(-1U, "no sections"); | 
|  |  | 
|  | return std::move(Records); | 
|  | } | 
|  |  | 
|  | Expected<std::unique_ptr<Object>> | 
|  | IHexReader::create(bool /*EnsureSymtab*/) const { | 
|  | Expected<std::vector<IHexRecord>> Records = parse(); | 
|  | if (!Records) | 
|  | return Records.takeError(); | 
|  |  | 
|  | return IHexELFBuilder(*Records).build(); | 
|  | } | 
|  |  | 
|  | Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const { | 
|  | auto Obj = std::make_unique<Object>(); | 
|  | if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { | 
|  | ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition); | 
|  | if (Error Err = Builder.build(EnsureSymtab)) | 
|  | return std::move(Err); | 
|  | return std::move(Obj); | 
|  | } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { | 
|  | ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition); | 
|  | if (Error Err = Builder.build(EnsureSymtab)) | 
|  | return std::move(Err); | 
|  | return std::move(Obj); | 
|  | } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { | 
|  | ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition); | 
|  | if (Error Err = Builder.build(EnsureSymtab)) | 
|  | return std::move(Err); | 
|  | return std::move(Obj); | 
|  | } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { | 
|  | ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition); | 
|  | if (Error Err = Builder.build(EnsureSymtab)) | 
|  | return std::move(Err); | 
|  | return std::move(Obj); | 
|  | } | 
|  | return createStringError(errc::invalid_argument, "invalid file type"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { | 
|  | Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart()); | 
|  | std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); | 
|  | Ehdr.e_ident[EI_MAG0] = 0x7f; | 
|  | Ehdr.e_ident[EI_MAG1] = 'E'; | 
|  | Ehdr.e_ident[EI_MAG2] = 'L'; | 
|  | Ehdr.e_ident[EI_MAG3] = 'F'; | 
|  | Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | Ehdr.e_ident[EI_DATA] = | 
|  | ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB; | 
|  | Ehdr.e_ident[EI_VERSION] = EV_CURRENT; | 
|  | Ehdr.e_ident[EI_OSABI] = Obj.OSABI; | 
|  | Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; | 
|  |  | 
|  | Ehdr.e_type = Obj.Type; | 
|  | Ehdr.e_machine = Obj.Machine; | 
|  | Ehdr.e_version = Obj.Version; | 
|  | Ehdr.e_entry = Obj.Entry; | 
|  | // We have to use the fully-qualified name llvm::size | 
|  | // since some compilers complain on ambiguous resolution. | 
|  | Ehdr.e_phnum = llvm::size(Obj.segments()); | 
|  | Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; | 
|  | Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; | 
|  | Ehdr.e_flags = Obj.Flags; | 
|  | Ehdr.e_ehsize = sizeof(Elf_Ehdr); | 
|  | if (WriteSectionHeaders && Obj.sections().size() != 0) { | 
|  | Ehdr.e_shentsize = sizeof(Elf_Shdr); | 
|  | Ehdr.e_shoff = Obj.SHOff; | 
|  | // """ | 
|  | // If the number of sections is greater than or equal to | 
|  | // SHN_LORESERVE (0xff00), this member has the value zero and the actual | 
|  | // number of section header table entries is contained in the sh_size field | 
|  | // of the section header at index 0. | 
|  | // """ | 
|  | auto Shnum = Obj.sections().size() + 1; | 
|  | if (Shnum >= SHN_LORESERVE) | 
|  | Ehdr.e_shnum = 0; | 
|  | else | 
|  | Ehdr.e_shnum = Shnum; | 
|  | // """ | 
|  | // If the section name string table section index is greater than or equal | 
|  | // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) | 
|  | // and the actual index of the section name string table section is | 
|  | // contained in the sh_link field of the section header at index 0. | 
|  | // """ | 
|  | if (Obj.SectionNames->Index >= SHN_LORESERVE) | 
|  | Ehdr.e_shstrndx = SHN_XINDEX; | 
|  | else | 
|  | Ehdr.e_shstrndx = Obj.SectionNames->Index; | 
|  | } else { | 
|  | Ehdr.e_shentsize = 0; | 
|  | Ehdr.e_shoff = 0; | 
|  | Ehdr.e_shnum = 0; | 
|  | Ehdr.e_shstrndx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { | 
|  | for (auto &Seg : Obj.segments()) | 
|  | writePhdr(Seg); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { | 
|  | // This reference serves to write the dummy section header at the begining | 
|  | // of the file. It is not used for anything else | 
|  | Elf_Shdr &Shdr = | 
|  | *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff); | 
|  | Shdr.sh_name = 0; | 
|  | Shdr.sh_type = SHT_NULL; | 
|  | Shdr.sh_flags = 0; | 
|  | Shdr.sh_addr = 0; | 
|  | Shdr.sh_offset = 0; | 
|  | // See writeEhdr for why we do this. | 
|  | uint64_t Shnum = Obj.sections().size() + 1; | 
|  | if (Shnum >= SHN_LORESERVE) | 
|  | Shdr.sh_size = Shnum; | 
|  | else | 
|  | Shdr.sh_size = 0; | 
|  | // See writeEhdr for why we do this. | 
|  | if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) | 
|  | Shdr.sh_link = Obj.SectionNames->Index; | 
|  | else | 
|  | Shdr.sh_link = 0; | 
|  | Shdr.sh_info = 0; | 
|  | Shdr.sh_addralign = 0; | 
|  | Shdr.sh_entsize = 0; | 
|  |  | 
|  | for (SectionBase &Sec : Obj.sections()) | 
|  | writeShdr(Sec); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() { | 
|  | for (SectionBase &Sec : Obj.sections()) | 
|  | // Segments are responsible for writing their contents, so only write the | 
|  | // section data if the section is not in a segment. Note that this renders | 
|  | // sections in segments effectively immutable. | 
|  | if (Sec.ParentSegment == nullptr) | 
|  | if (Error Err = Sec.accept(*SecWriter)) | 
|  | return Err; | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() { | 
|  | for (Segment &Seg : Obj.segments()) { | 
|  | size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size()); | 
|  | std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(), | 
|  | Size); | 
|  | } | 
|  |  | 
|  | for (auto it : Obj.getUpdatedSections()) { | 
|  | SectionBase *Sec = it.first; | 
|  | ArrayRef<uint8_t> Data = it.second; | 
|  |  | 
|  | auto *Parent = Sec->ParentSegment; | 
|  | assert(Parent && "This section should've been part of a segment."); | 
|  | uint64_t Offset = | 
|  | Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; | 
|  | llvm::copy(Data, Buf->getBufferStart() + Offset); | 
|  | } | 
|  |  | 
|  | // Iterate over removed sections and overwrite their old data with zeroes. | 
|  | for (auto &Sec : Obj.removedSections()) { | 
|  | Segment *Parent = Sec.ParentSegment; | 
|  | if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) | 
|  | continue; | 
|  | uint64_t Offset = | 
|  | Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; | 
|  | std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, | 
|  | bool OnlyKeepDebug) | 
|  | : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), | 
|  | OnlyKeepDebug(OnlyKeepDebug) {} | 
|  |  | 
|  | Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) { | 
|  | auto It = llvm::find_if(Sections, | 
|  | [&](const SecPtr &Sec) { return Sec->Name == Name; }); | 
|  | if (It == Sections.end()) | 
|  | return createStringError(errc::invalid_argument, "section '%s' not found", | 
|  | Name.str().c_str()); | 
|  |  | 
|  | auto *OldSec = It->get(); | 
|  | if (!OldSec->hasContents()) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "section '%s' cannot be updated because it does not have contents", | 
|  | Name.str().c_str()); | 
|  |  | 
|  | if (Data.size() > OldSec->Size && OldSec->ParentSegment) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "cannot fit data of size %zu into section '%s' " | 
|  | "with size %" PRIu64 " that is part of a segment", | 
|  | Data.size(), Name.str().c_str(), OldSec->Size); | 
|  |  | 
|  | if (!OldSec->ParentSegment) { | 
|  | *It = std::make_unique<OwnedDataSection>(*OldSec, Data); | 
|  | } else { | 
|  | // The segment writer will be in charge of updating these contents. | 
|  | OldSec->Size = Data.size(); | 
|  | UpdatedSections[OldSec] = Data; | 
|  | } | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error Object::removeSections( | 
|  | bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) { | 
|  |  | 
|  | auto Iter = std::stable_partition( | 
|  | std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { | 
|  | if (ToRemove(*Sec)) | 
|  | return false; | 
|  | if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { | 
|  | if (auto ToRelSec = RelSec->getSection()) | 
|  | return !ToRemove(*ToRelSec); | 
|  | } | 
|  | return true; | 
|  | }); | 
|  | if (SymbolTable != nullptr && ToRemove(*SymbolTable)) | 
|  | SymbolTable = nullptr; | 
|  | if (SectionNames != nullptr && ToRemove(*SectionNames)) | 
|  | SectionNames = nullptr; | 
|  | if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) | 
|  | SectionIndexTable = nullptr; | 
|  | // Now make sure there are no remaining references to the sections that will | 
|  | // be removed. Sometimes it is impossible to remove a reference so we emit | 
|  | // an error here instead. | 
|  | std::unordered_set<const SectionBase *> RemoveSections; | 
|  | RemoveSections.reserve(std::distance(Iter, std::end(Sections))); | 
|  | for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { | 
|  | for (auto &Segment : Segments) | 
|  | Segment->removeSection(RemoveSec.get()); | 
|  | RemoveSec->onRemove(); | 
|  | RemoveSections.insert(RemoveSec.get()); | 
|  | } | 
|  |  | 
|  | // For each section that remains alive, we want to remove the dead references. | 
|  | // This either might update the content of the section (e.g. remove symbols | 
|  | // from symbol table that belongs to removed section) or trigger an error if | 
|  | // a live section critically depends on a section being removed somehow | 
|  | // (e.g. the removed section is referenced by a relocation). | 
|  | for (auto &KeepSec : make_range(std::begin(Sections), Iter)) { | 
|  | if (Error E = KeepSec->removeSectionReferences( | 
|  | AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { | 
|  | return RemoveSections.find(Sec) != RemoveSections.end(); | 
|  | })) | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // Transfer removed sections into the Object RemovedSections container for use | 
|  | // later. | 
|  | std::move(Iter, Sections.end(), std::back_inserter(RemovedSections)); | 
|  | // Now finally get rid of them all together. | 
|  | Sections.erase(Iter, std::end(Sections)); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error Object::replaceSections( | 
|  | const DenseMap<SectionBase *, SectionBase *> &FromTo) { | 
|  | auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { | 
|  | return Lhs->Index < Rhs->Index; | 
|  | }; | 
|  | assert(llvm::is_sorted(Sections, SectionIndexLess) && | 
|  | "Sections are expected to be sorted by Index"); | 
|  | // Set indices of new sections so that they can be later sorted into positions | 
|  | // of removed ones. | 
|  | for (auto &I : FromTo) | 
|  | I.second->Index = I.first->Index; | 
|  |  | 
|  | // Notify all sections about the replacement. | 
|  | for (auto &Sec : Sections) | 
|  | Sec->replaceSectionReferences(FromTo); | 
|  |  | 
|  | if (Error E = removeSections( | 
|  | /*AllowBrokenLinks=*/false, | 
|  | [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; })) | 
|  | return E; | 
|  | llvm::sort(Sections, SectionIndexLess); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { | 
|  | if (SymbolTable) | 
|  | for (const SecPtr &Sec : Sections) | 
|  | if (Error E = Sec->removeSymbols(ToRemove)) | 
|  | return E; | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error Object::addNewSymbolTable() { | 
|  | assert(!SymbolTable && "Object must not has a SymbolTable."); | 
|  |  | 
|  | // Reuse an existing SHT_STRTAB section if it exists. | 
|  | StringTableSection *StrTab = nullptr; | 
|  | for (SectionBase &Sec : sections()) { | 
|  | if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { | 
|  | StrTab = static_cast<StringTableSection *>(&Sec); | 
|  |  | 
|  | // Prefer a string table that is not the section header string table, if | 
|  | // such a table exists. | 
|  | if (SectionNames != &Sec) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!StrTab) | 
|  | StrTab = &addSection<StringTableSection>(); | 
|  |  | 
|  | SymbolTableSection &SymTab = addSection<SymbolTableSection>(); | 
|  | SymTab.Name = ".symtab"; | 
|  | SymTab.Link = StrTab->Index; | 
|  | if (Error Err = SymTab.initialize(sections())) | 
|  | return Err; | 
|  | SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); | 
|  |  | 
|  | SymbolTable = &SymTab; | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | // Orders segments such that if x = y->ParentSegment then y comes before x. | 
|  | static void orderSegments(std::vector<Segment *> &Segments) { | 
|  | llvm::stable_sort(Segments, compareSegmentsByOffset); | 
|  | } | 
|  |  | 
|  | // This function finds a consistent layout for a list of segments starting from | 
|  | // an Offset. It assumes that Segments have been sorted by orderSegments and | 
|  | // returns an Offset one past the end of the last segment. | 
|  | static uint64_t layoutSegments(std::vector<Segment *> &Segments, | 
|  | uint64_t Offset) { | 
|  | assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); | 
|  | // The only way a segment should move is if a section was between two | 
|  | // segments and that section was removed. If that section isn't in a segment | 
|  | // then it's acceptable, but not ideal, to simply move it to after the | 
|  | // segments. So we can simply layout segments one after the other accounting | 
|  | // for alignment. | 
|  | for (Segment *Seg : Segments) { | 
|  | // We assume that segments have been ordered by OriginalOffset and Index | 
|  | // such that a parent segment will always come before a child segment in | 
|  | // OrderedSegments. This means that the Offset of the ParentSegment should | 
|  | // already be set and we can set our offset relative to it. | 
|  | if (Seg->ParentSegment != nullptr) { | 
|  | Segment *Parent = Seg->ParentSegment; | 
|  | Seg->Offset = | 
|  | Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; | 
|  | } else { | 
|  | Seg->Offset = | 
|  | alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr); | 
|  | } | 
|  | Offset = std::max(Offset, Seg->Offset + Seg->FileSize); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | // This function finds a consistent layout for a list of sections. It assumes | 
|  | // that the ->ParentSegment of each section has already been laid out. The | 
|  | // supplied starting Offset is used for the starting offset of any section that | 
|  | // does not have a ParentSegment. It returns either the offset given if all | 
|  | // sections had a ParentSegment or an offset one past the last section if there | 
|  | // was a section that didn't have a ParentSegment. | 
|  | template <class Range> | 
|  | static uint64_t layoutSections(Range Sections, uint64_t Offset) { | 
|  | // Now the offset of every segment has been set we can assign the offsets | 
|  | // of each section. For sections that are covered by a segment we should use | 
|  | // the segment's original offset and the section's original offset to compute | 
|  | // the offset from the start of the segment. Using the offset from the start | 
|  | // of the segment we can assign a new offset to the section. For sections not | 
|  | // covered by segments we can just bump Offset to the next valid location. | 
|  | // While it is not necessary, layout the sections in the order based on their | 
|  | // original offsets to resemble the input file as close as possible. | 
|  | std::vector<SectionBase *> OutOfSegmentSections; | 
|  | uint32_t Index = 1; | 
|  | for (auto &Sec : Sections) { | 
|  | Sec.Index = Index++; | 
|  | if (Sec.ParentSegment != nullptr) { | 
|  | auto Segment = *Sec.ParentSegment; | 
|  | Sec.Offset = | 
|  | Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); | 
|  | } else | 
|  | OutOfSegmentSections.push_back(&Sec); | 
|  | } | 
|  |  | 
|  | llvm::stable_sort(OutOfSegmentSections, | 
|  | [](const SectionBase *Lhs, const SectionBase *Rhs) { | 
|  | return Lhs->OriginalOffset < Rhs->OriginalOffset; | 
|  | }); | 
|  | for (auto *Sec : OutOfSegmentSections) { | 
|  | Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align); | 
|  | Sec->Offset = Offset; | 
|  | if (Sec->Type != SHT_NOBITS) | 
|  | Offset += Sec->Size; | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus | 
|  | // occupy no space in the file. | 
|  | static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { | 
|  | // The layout algorithm requires the sections to be handled in the order of | 
|  | // their offsets in the input file, at least inside segments. | 
|  | std::vector<SectionBase *> Sections; | 
|  | Sections.reserve(Obj.sections().size()); | 
|  | uint32_t Index = 1; | 
|  | for (auto &Sec : Obj.sections()) { | 
|  | Sec.Index = Index++; | 
|  | Sections.push_back(&Sec); | 
|  | } | 
|  | llvm::stable_sort(Sections, | 
|  | [](const SectionBase *Lhs, const SectionBase *Rhs) { | 
|  | return Lhs->OriginalOffset < Rhs->OriginalOffset; | 
|  | }); | 
|  |  | 
|  | for (auto *Sec : Sections) { | 
|  | auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD | 
|  | ? Sec->ParentSegment->firstSection() | 
|  | : nullptr; | 
|  |  | 
|  | // The first section in a PT_LOAD has to have congruent offset and address | 
|  | // modulo the alignment, which usually equals the maximum page size. | 
|  | if (FirstSec && FirstSec == Sec) | 
|  | Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr); | 
|  |  | 
|  | // sh_offset is not significant for SHT_NOBITS sections, but the congruence | 
|  | // rule must be followed if it is the first section in a PT_LOAD. Do not | 
|  | // advance Off. | 
|  | if (Sec->Type == SHT_NOBITS) { | 
|  | Sec->Offset = Off; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!FirstSec) { | 
|  | // FirstSec being nullptr generally means that Sec does not have the | 
|  | // SHF_ALLOC flag. | 
|  | Off = Sec->Align ? alignTo(Off, Sec->Align) : Off; | 
|  | } else if (FirstSec != Sec) { | 
|  | // The offset is relative to the first section in the PT_LOAD segment. Use | 
|  | // sh_offset for non-SHF_ALLOC sections. | 
|  | Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; | 
|  | } | 
|  | Sec->Offset = Off; | 
|  | Off += Sec->Size; | 
|  | } | 
|  | return Off; | 
|  | } | 
|  |  | 
|  | // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values | 
|  | // have been updated. | 
|  | static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments, | 
|  | uint64_t HdrEnd) { | 
|  | uint64_t MaxOffset = 0; | 
|  | for (Segment *Seg : Segments) { | 
|  | if (Seg->Type == PT_PHDR) | 
|  | continue; | 
|  |  | 
|  | // The segment offset is generally the offset of the first section. | 
|  | // | 
|  | // For a segment containing no section (see sectionWithinSegment), if it has | 
|  | // a parent segment, copy the parent segment's offset field. This works for | 
|  | // empty PT_TLS. If no parent segment, use 0: the segment is not useful for | 
|  | // debugging anyway. | 
|  | const SectionBase *FirstSec = Seg->firstSection(); | 
|  | uint64_t Offset = | 
|  | FirstSec ? FirstSec->Offset | 
|  | : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); | 
|  | uint64_t FileSize = 0; | 
|  | for (const SectionBase *Sec : Seg->Sections) { | 
|  | uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; | 
|  | if (Sec->Offset + Size > Offset) | 
|  | FileSize = std::max(FileSize, Sec->Offset + Size - Offset); | 
|  | } | 
|  |  | 
|  | // If the segment includes EHDR and program headers, don't make it smaller | 
|  | // than the headers. | 
|  | if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { | 
|  | FileSize += Offset - Seg->Offset; | 
|  | Offset = Seg->Offset; | 
|  | FileSize = std::max(FileSize, HdrEnd - Offset); | 
|  | } | 
|  |  | 
|  | Seg->Offset = Offset; | 
|  | Seg->FileSize = FileSize; | 
|  | MaxOffset = std::max(MaxOffset, Offset + FileSize); | 
|  | } | 
|  | return MaxOffset; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { | 
|  | Segment &ElfHdr = Obj.ElfHdrSegment; | 
|  | ElfHdr.Type = PT_PHDR; | 
|  | ElfHdr.Flags = 0; | 
|  | ElfHdr.VAddr = 0; | 
|  | ElfHdr.PAddr = 0; | 
|  | ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); | 
|  | ElfHdr.Align = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { | 
|  | // We need a temporary list of segments that has a special order to it | 
|  | // so that we know that anytime ->ParentSegment is set that segment has | 
|  | // already had its offset properly set. | 
|  | std::vector<Segment *> OrderedSegments; | 
|  | for (Segment &Segment : Obj.segments()) | 
|  | OrderedSegments.push_back(&Segment); | 
|  | OrderedSegments.push_back(&Obj.ElfHdrSegment); | 
|  | OrderedSegments.push_back(&Obj.ProgramHdrSegment); | 
|  | orderSegments(OrderedSegments); | 
|  |  | 
|  | uint64_t Offset; | 
|  | if (OnlyKeepDebug) { | 
|  | // For --only-keep-debug, the sections that did not preserve contents were | 
|  | // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and | 
|  | // then rewrite p_offset/p_filesz of program headers. | 
|  | uint64_t HdrEnd = | 
|  | sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); | 
|  | Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); | 
|  | Offset = std::max(Offset, | 
|  | layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd)); | 
|  | } else { | 
|  | // Offset is used as the start offset of the first segment to be laid out. | 
|  | // Since the ELF Header (ElfHdrSegment) must be at the start of the file, | 
|  | // we start at offset 0. | 
|  | Offset = layoutSegments(OrderedSegments, 0); | 
|  | Offset = layoutSections(Obj.sections(), Offset); | 
|  | } | 
|  | // If we need to write the section header table out then we need to align the | 
|  | // Offset so that SHOffset is valid. | 
|  | if (WriteSectionHeaders) | 
|  | Offset = alignTo(Offset, sizeof(Elf_Addr)); | 
|  | Obj.SHOff = Offset; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { | 
|  | // We already have the section header offset so we can calculate the total | 
|  | // size by just adding up the size of each section header. | 
|  | if (!WriteSectionHeaders) | 
|  | return Obj.SHOff; | 
|  | size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. | 
|  | return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFWriter<ELFT>::write() { | 
|  | // Segment data must be written first, so that the ELF header and program | 
|  | // header tables can overwrite it, if covered by a segment. | 
|  | writeSegmentData(); | 
|  | writeEhdr(); | 
|  | writePhdrs(); | 
|  | if (Error E = writeSectionData()) | 
|  | return E; | 
|  | if (WriteSectionHeaders) | 
|  | writeShdrs(); | 
|  |  | 
|  | // TODO: Implement direct writing to the output stream (without intermediate | 
|  | // memory buffer Buf). | 
|  | Out.write(Buf->getBufferStart(), Buf->getBufferSize()); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | static Error removeUnneededSections(Object &Obj) { | 
|  | // We can remove an empty symbol table from non-relocatable objects. | 
|  | // Relocatable objects typically have relocation sections whose | 
|  | // sh_link field points to .symtab, so we can't remove .symtab | 
|  | // even if it is empty. | 
|  | if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || | 
|  | !Obj.SymbolTable->empty()) | 
|  | return Error::success(); | 
|  |  | 
|  | // .strtab can be used for section names. In such a case we shouldn't | 
|  | // remove it. | 
|  | auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames | 
|  | ? nullptr | 
|  | : Obj.SymbolTable->getStrTab(); | 
|  | return Obj.removeSections(false, [&](const SectionBase &Sec) { | 
|  | return &Sec == Obj.SymbolTable || &Sec == StrTab; | 
|  | }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> Error ELFWriter<ELFT>::finalize() { | 
|  | // It could happen that SectionNames has been removed and yet the user wants | 
|  | // a section header table output. We need to throw an error if a user tries | 
|  | // to do that. | 
|  | if (Obj.SectionNames == nullptr && WriteSectionHeaders) | 
|  | return createStringError(llvm::errc::invalid_argument, | 
|  | "cannot write section header table because " | 
|  | "section header string table was removed"); | 
|  |  | 
|  | if (Error E = removeUnneededSections(Obj)) | 
|  | return E; | 
|  |  | 
|  | // We need to assign indexes before we perform layout because we need to know | 
|  | // if we need large indexes or not. We can assign indexes first and check as | 
|  | // we go to see if we will actully need large indexes. | 
|  | bool NeedsLargeIndexes = false; | 
|  | if (Obj.sections().size() >= SHN_LORESERVE) { | 
|  | SectionTableRef Sections = Obj.sections(); | 
|  | // Sections doesn't include the null section header, so account for this | 
|  | // when skipping the first N sections. | 
|  | NeedsLargeIndexes = | 
|  | any_of(drop_begin(Sections, SHN_LORESERVE - 1), | 
|  | [](const SectionBase &Sec) { return Sec.HasSymbol; }); | 
|  | // TODO: handle case where only one section needs the large index table but | 
|  | // only needs it because the large index table hasn't been removed yet. | 
|  | } | 
|  |  | 
|  | if (NeedsLargeIndexes) { | 
|  | // This means we definitely need to have a section index table but if we | 
|  | // already have one then we should use it instead of making a new one. | 
|  | if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { | 
|  | // Addition of a section to the end does not invalidate the indexes of | 
|  | // other sections and assigns the correct index to the new section. | 
|  | auto &Shndx = Obj.addSection<SectionIndexSection>(); | 
|  | Obj.SymbolTable->setShndxTable(&Shndx); | 
|  | Shndx.setSymTab(Obj.SymbolTable); | 
|  | } | 
|  | } else { | 
|  | // Since we don't need SectionIndexTable we should remove it and all | 
|  | // references to it. | 
|  | if (Obj.SectionIndexTable != nullptr) { | 
|  | // We do not support sections referring to the section index table. | 
|  | if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/, | 
|  | [this](const SectionBase &Sec) { | 
|  | return &Sec == Obj.SectionIndexTable; | 
|  | })) | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we add the names of all the sections. Importantly this must be | 
|  | // done after we decide to add or remove SectionIndexes. | 
|  | if (Obj.SectionNames != nullptr) | 
|  | for (const SectionBase &Sec : Obj.sections()) | 
|  | Obj.SectionNames->addString(Sec.Name); | 
|  |  | 
|  | initEhdrSegment(); | 
|  |  | 
|  | // Before we can prepare for layout the indexes need to be finalized. | 
|  | // Also, the output arch may not be the same as the input arch, so fix up | 
|  | // size-related fields before doing layout calculations. | 
|  | uint64_t Index = 0; | 
|  | auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>(); | 
|  | for (SectionBase &Sec : Obj.sections()) { | 
|  | Sec.Index = Index++; | 
|  | if (Error Err = Sec.accept(*SecSizer)) | 
|  | return Err; | 
|  | } | 
|  |  | 
|  | // The symbol table does not update all other sections on update. For | 
|  | // instance, symbol names are not added as new symbols are added. This means | 
|  | // that some sections, like .strtab, don't yet have their final size. | 
|  | if (Obj.SymbolTable != nullptr) | 
|  | Obj.SymbolTable->prepareForLayout(); | 
|  |  | 
|  | // Now that all strings are added we want to finalize string table builders, | 
|  | // because that affects section sizes which in turn affects section offsets. | 
|  | for (SectionBase &Sec : Obj.sections()) | 
|  | if (auto StrTab = dyn_cast<StringTableSection>(&Sec)) | 
|  | StrTab->prepareForLayout(); | 
|  |  | 
|  | assignOffsets(); | 
|  |  | 
|  | // layoutSections could have modified section indexes, so we need | 
|  | // to fill the index table after assignOffsets. | 
|  | if (Obj.SymbolTable != nullptr) | 
|  | Obj.SymbolTable->fillShndxTable(); | 
|  |  | 
|  | // Finally now that all offsets and indexes have been set we can finalize any | 
|  | // remaining issues. | 
|  | uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); | 
|  | for (SectionBase &Sec : Obj.sections()) { | 
|  | Sec.HeaderOffset = Offset; | 
|  | Offset += sizeof(Elf_Shdr); | 
|  | if (WriteSectionHeaders) | 
|  | Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name); | 
|  | Sec.finalize(); | 
|  | } | 
|  |  | 
|  | size_t TotalSize = totalSize(); | 
|  | Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); | 
|  | if (!Buf) | 
|  | return createStringError(errc::not_enough_memory, | 
|  | "failed to allocate memory buffer of " + | 
|  | Twine::utohexstr(TotalSize) + " bytes"); | 
|  |  | 
|  | SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error BinaryWriter::write() { | 
|  | for (const SectionBase &Sec : Obj.allocSections()) | 
|  | if (Error Err = Sec.accept(*SecWriter)) | 
|  | return Err; | 
|  |  | 
|  | // TODO: Implement direct writing to the output stream (without intermediate | 
|  | // memory buffer Buf). | 
|  | Out.write(Buf->getBufferStart(), Buf->getBufferSize()); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error BinaryWriter::finalize() { | 
|  | // Compute the section LMA based on its sh_offset and the containing segment's | 
|  | // p_offset and p_paddr. Also compute the minimum LMA of all non-empty | 
|  | // sections as MinAddr. In the output, the contents between address 0 and | 
|  | // MinAddr will be skipped. | 
|  | uint64_t MinAddr = UINT64_MAX; | 
|  | for (SectionBase &Sec : Obj.allocSections()) { | 
|  | // If Sec's type is changed from SHT_NOBITS due to --set-section-flags, | 
|  | // Offset may not be aligned. Align it to max(Align, 1). | 
|  | if (Sec.ParentSegment != nullptr) | 
|  | Sec.Addr = alignTo(Sec.Offset - Sec.ParentSegment->Offset + | 
|  | Sec.ParentSegment->PAddr, | 
|  | std::max(Sec.Align, uint64_t(1))); | 
|  | if (Sec.Type != SHT_NOBITS && Sec.Size > 0) | 
|  | MinAddr = std::min(MinAddr, Sec.Addr); | 
|  | } | 
|  |  | 
|  | // Now that every section has been laid out we just need to compute the total | 
|  | // file size. This might not be the same as the offset returned by | 
|  | // layoutSections, because we want to truncate the last segment to the end of | 
|  | // its last non-empty section, to match GNU objcopy's behaviour. | 
|  | TotalSize = 0; | 
|  | for (SectionBase &Sec : Obj.allocSections()) | 
|  | if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { | 
|  | Sec.Offset = Sec.Addr - MinAddr; | 
|  | TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size); | 
|  | } | 
|  |  | 
|  | Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); | 
|  | if (!Buf) | 
|  | return createStringError(errc::not_enough_memory, | 
|  | "failed to allocate memory buffer of " + | 
|  | Twine::utohexstr(TotalSize) + " bytes"); | 
|  | SecWriter = std::make_unique<BinarySectionWriter>(*Buf); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs, | 
|  | const SectionBase *Rhs) const { | 
|  | return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) < | 
|  | (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU); | 
|  | } | 
|  |  | 
|  | uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { | 
|  | IHexLineData HexData; | 
|  | uint8_t Data[4] = {}; | 
|  | // We don't write entry point record if entry is zero. | 
|  | if (Obj.Entry == 0) | 
|  | return 0; | 
|  |  | 
|  | if (Obj.Entry <= 0xFFFFFU) { | 
|  | Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; | 
|  | support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry), | 
|  | support::big); | 
|  | HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data); | 
|  | } else { | 
|  | support::endian::write(Data, static_cast<uint32_t>(Obj.Entry), | 
|  | support::big); | 
|  | HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data); | 
|  | } | 
|  | memcpy(Buf, HexData.data(), HexData.size()); | 
|  | return HexData.size(); | 
|  | } | 
|  |  | 
|  | uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { | 
|  | IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {}); | 
|  | memcpy(Buf, HexData.data(), HexData.size()); | 
|  | return HexData.size(); | 
|  | } | 
|  |  | 
|  | Error IHexWriter::write() { | 
|  | IHexSectionWriter Writer(*Buf); | 
|  | // Write sections. | 
|  | for (const SectionBase *Sec : Sections) | 
|  | if (Error Err = Sec->accept(Writer)) | 
|  | return Err; | 
|  |  | 
|  | uint64_t Offset = Writer.getBufferOffset(); | 
|  | // Write entry point address. | 
|  | Offset += writeEntryPointRecord( | 
|  | reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); | 
|  | // Write EOF. | 
|  | Offset += writeEndOfFileRecord( | 
|  | reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); | 
|  | assert(Offset == TotalSize); | 
|  |  | 
|  | // TODO: Implement direct writing to the output stream (without intermediate | 
|  | // memory buffer Buf). | 
|  | Out.write(Buf->getBufferStart(), Buf->getBufferSize()); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error IHexWriter::checkSection(const SectionBase &Sec) { | 
|  | uint64_t Addr = sectionPhysicalAddr(&Sec); | 
|  | if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1)) | 
|  | return createStringError( | 
|  | errc::invalid_argument, | 
|  | "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", | 
|  | Sec.Name.c_str(), Addr, Addr + Sec.Size - 1); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Error IHexWriter::finalize() { | 
|  | // We can't write 64-bit addresses. | 
|  | if (addressOverflows32bit(Obj.Entry)) | 
|  | return createStringError(errc::invalid_argument, | 
|  | "Entry point address 0x%llx overflows 32 bits", | 
|  | Obj.Entry); | 
|  |  | 
|  | for (const SectionBase &Sec : Obj.sections()) | 
|  | if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS && | 
|  | Sec.Size > 0) { | 
|  | if (Error E = checkSection(Sec)) | 
|  | return E; | 
|  | Sections.insert(&Sec); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<WritableMemoryBuffer> EmptyBuffer = | 
|  | WritableMemoryBuffer::getNewMemBuffer(0); | 
|  | if (!EmptyBuffer) | 
|  | return createStringError(errc::not_enough_memory, | 
|  | "failed to allocate memory buffer of 0 bytes"); | 
|  |  | 
|  | IHexSectionWriterBase LengthCalc(*EmptyBuffer); | 
|  | for (const SectionBase *Sec : Sections) | 
|  | if (Error Err = Sec->accept(LengthCalc)) | 
|  | return Err; | 
|  |  | 
|  | // We need space to write section records + StartAddress record | 
|  | // (if start adress is not zero) + EndOfFile record. | 
|  | TotalSize = LengthCalc.getBufferOffset() + | 
|  | (Obj.Entry ? IHexRecord::getLineLength(4) : 0) + | 
|  | IHexRecord::getLineLength(0); | 
|  |  | 
|  | Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); | 
|  | if (!Buf) | 
|  | return createStringError(errc::not_enough_memory, | 
|  | "failed to allocate memory buffer of " + | 
|  | Twine::utohexstr(TotalSize) + " bytes"); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | namespace objcopy { | 
|  | namespace elf { | 
|  |  | 
|  | template class ELFBuilder<ELF64LE>; | 
|  | template class ELFBuilder<ELF64BE>; | 
|  | template class ELFBuilder<ELF32LE>; | 
|  | template class ELFBuilder<ELF32BE>; | 
|  |  | 
|  | template class ELFWriter<ELF64LE>; | 
|  | template class ELFWriter<ELF64BE>; | 
|  | template class ELFWriter<ELF32LE>; | 
|  | template class ELFWriter<ELF32BE>; | 
|  |  | 
|  | } // end namespace elf | 
|  | } // end namespace objcopy | 
|  | } // end namespace llvm |