| //===-- Value.cpp - Implement the Value class -----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Value, ValueHandle, and User classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "LLVMContextImpl.h" | 
 | #include "llvm/Constant.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/InstrTypes.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Operator.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/ValueSymbolTable.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/LeakDetector.h" | 
 | #include "llvm/Support/ManagedStatic.h" | 
 | #include "llvm/Support/ValueHandle.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                Value Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static inline Type *checkType(Type *Ty) { | 
 |   assert(Ty && "Value defined with a null type: Error!"); | 
 |   return const_cast<Type*>(Ty); | 
 | } | 
 |  | 
 | Value::Value(Type *ty, unsigned scid) | 
 |   : SubclassID(scid), HasValueHandle(0), | 
 |     SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)), | 
 |     UseList(0), Name(0) { | 
 |   // FIXME: Why isn't this in the subclass gunk?? | 
 |   if (isa<CallInst>(this) || isa<InvokeInst>(this)) | 
 |     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && | 
 |            "invalid CallInst type!"); | 
 |   else if (!isa<Constant>(this) && !isa<BasicBlock>(this)) | 
 |     assert((VTy->isFirstClassType() || VTy->isVoidTy()) && | 
 |            "Cannot create non-first-class values except for constants!"); | 
 | } | 
 |  | 
 | Value::~Value() { | 
 |   // Notify all ValueHandles (if present) that this value is going away. | 
 |   if (HasValueHandle) | 
 |     ValueHandleBase::ValueIsDeleted(this); | 
 |  | 
 | #ifndef NDEBUG      // Only in -g mode... | 
 |   // Check to make sure that there are no uses of this value that are still | 
 |   // around when the value is destroyed.  If there are, then we have a dangling | 
 |   // reference and something is wrong.  This code is here to print out what is | 
 |   // still being referenced.  The value in question should be printed as | 
 |   // a <badref> | 
 |   // | 
 |   if (!use_empty()) { | 
 |     dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n"; | 
 |     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I) | 
 |       dbgs() << "Use still stuck around after Def is destroyed:" | 
 |            << **I << "\n"; | 
 |   } | 
 | #endif | 
 |   assert(use_empty() && "Uses remain when a value is destroyed!"); | 
 |  | 
 |   // If this value is named, destroy the name.  This should not be in a symtab | 
 |   // at this point. | 
 |   if (Name) | 
 |     Name->Destroy(); | 
 |  | 
 |   // There should be no uses of this object anymore, remove it. | 
 |   LeakDetector::removeGarbageObject(this); | 
 | } | 
 |  | 
 | /// hasNUses - Return true if this Value has exactly N users. | 
 | /// | 
 | bool Value::hasNUses(unsigned N) const { | 
 |   const_use_iterator UI = use_begin(), E = use_end(); | 
 |  | 
 |   for (; N; --N, ++UI) | 
 |     if (UI == E) return false;  // Too few. | 
 |   return UI == E; | 
 | } | 
 |  | 
 | /// hasNUsesOrMore - Return true if this value has N users or more.  This is | 
 | /// logically equivalent to getNumUses() >= N. | 
 | /// | 
 | bool Value::hasNUsesOrMore(unsigned N) const { | 
 |   const_use_iterator UI = use_begin(), E = use_end(); | 
 |  | 
 |   for (; N; --N, ++UI) | 
 |     if (UI == E) return false;  // Too few. | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// isUsedInBasicBlock - Return true if this value is used in the specified | 
 | /// basic block. | 
 | bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { | 
 |   for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) { | 
 |     const Instruction *User = dyn_cast<Instruction>(*I); | 
 |     if (User && User->getParent() == BB) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// getNumUses - This method computes the number of uses of this Value.  This | 
 | /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific | 
 | /// values. | 
 | unsigned Value::getNumUses() const { | 
 |   return (unsigned)std::distance(use_begin(), use_end()); | 
 | } | 
 |  | 
 | static bool getSymTab(Value *V, ValueSymbolTable *&ST) { | 
 |   ST = 0; | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) { | 
 |     if (BasicBlock *P = I->getParent()) | 
 |       if (Function *PP = P->getParent()) | 
 |         ST = &PP->getValueSymbolTable(); | 
 |   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { | 
 |     if (Function *P = BB->getParent()) | 
 |       ST = &P->getValueSymbolTable(); | 
 |   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
 |     if (Module *P = GV->getParent()) | 
 |       ST = &P->getValueSymbolTable(); | 
 |   } else if (Argument *A = dyn_cast<Argument>(V)) { | 
 |     if (Function *P = A->getParent()) | 
 |       ST = &P->getValueSymbolTable(); | 
 |   } else if (isa<MDString>(V)) | 
 |     return true; | 
 |   else { | 
 |     assert(isa<Constant>(V) && "Unknown value type!"); | 
 |     return true;  // no name is setable for this. | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | StringRef Value::getName() const { | 
 |   // Make sure the empty string is still a C string. For historical reasons, | 
 |   // some clients want to call .data() on the result and expect it to be null | 
 |   // terminated. | 
 |   if (!Name) return StringRef("", 0); | 
 |   return Name->getKey(); | 
 | } | 
 |  | 
 | std::string Value::getNameStr() const { | 
 |   return getName().str(); | 
 | } | 
 |  | 
 | void Value::setName(const Twine &NewName) { | 
 |   // Fast path for common IRBuilder case of setName("") when there is no name. | 
 |   if (NewName.isTriviallyEmpty() && !hasName()) | 
 |     return; | 
 |  | 
 |   SmallString<256> NameData; | 
 |   StringRef NameRef = NewName.toStringRef(NameData); | 
 |  | 
 |   // Name isn't changing? | 
 |   if (getName() == NameRef) | 
 |     return; | 
 |  | 
 |   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); | 
 |  | 
 |   // Get the symbol table to update for this object. | 
 |   ValueSymbolTable *ST; | 
 |   if (getSymTab(this, ST)) | 
 |     return;  // Cannot set a name on this value (e.g. constant). | 
 |  | 
 |   if (!ST) { // No symbol table to update?  Just do the change. | 
 |     if (NameRef.empty()) { | 
 |       // Free the name for this value. | 
 |       Name->Destroy(); | 
 |       Name = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (Name) | 
 |       Name->Destroy(); | 
 |  | 
 |     // NOTE: Could optimize for the case the name is shrinking to not deallocate | 
 |     // then reallocated. | 
 |  | 
 |     // Create the new name. | 
 |     Name = ValueName::Create(NameRef.begin(), NameRef.end()); | 
 |     Name->setValue(this); | 
 |     return; | 
 |   } | 
 |  | 
 |   // NOTE: Could optimize for the case the name is shrinking to not deallocate | 
 |   // then reallocated. | 
 |   if (hasName()) { | 
 |     // Remove old name. | 
 |     ST->removeValueName(Name); | 
 |     Name->Destroy(); | 
 |     Name = 0; | 
 |  | 
 |     if (NameRef.empty()) | 
 |       return; | 
 |   } | 
 |  | 
 |   // Name is changing to something new. | 
 |   Name = ST->createValueName(NameRef, this); | 
 | } | 
 |  | 
 |  | 
 | /// takeName - transfer the name from V to this value, setting V's name to | 
 | /// empty.  It is an error to call V->takeName(V). | 
 | void Value::takeName(Value *V) { | 
 |   ValueSymbolTable *ST = 0; | 
 |   // If this value has a name, drop it. | 
 |   if (hasName()) { | 
 |     // Get the symtab this is in. | 
 |     if (getSymTab(this, ST)) { | 
 |       // We can't set a name on this value, but we need to clear V's name if | 
 |       // it has one. | 
 |       if (V->hasName()) V->setName(""); | 
 |       return;  // Cannot set a name on this value (e.g. constant). | 
 |     } | 
 |  | 
 |     // Remove old name. | 
 |     if (ST) | 
 |       ST->removeValueName(Name); | 
 |     Name->Destroy(); | 
 |     Name = 0; | 
 |   } | 
 |  | 
 |   // Now we know that this has no name. | 
 |  | 
 |   // If V has no name either, we're done. | 
 |   if (!V->hasName()) return; | 
 |  | 
 |   // Get this's symtab if we didn't before. | 
 |   if (!ST) { | 
 |     if (getSymTab(this, ST)) { | 
 |       // Clear V's name. | 
 |       V->setName(""); | 
 |       return;  // Cannot set a name on this value (e.g. constant). | 
 |     } | 
 |   } | 
 |  | 
 |   // Get V's ST, this should always succed, because V has a name. | 
 |   ValueSymbolTable *VST; | 
 |   bool Failure = getSymTab(V, VST); | 
 |   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; | 
 |  | 
 |   // If these values are both in the same symtab, we can do this very fast. | 
 |   // This works even if both values have no symtab yet. | 
 |   if (ST == VST) { | 
 |     // Take the name! | 
 |     Name = V->Name; | 
 |     V->Name = 0; | 
 |     Name->setValue(this); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, things are slightly more complex.  Remove V's name from VST and | 
 |   // then reinsert it into ST. | 
 |  | 
 |   if (VST) | 
 |     VST->removeValueName(V->Name); | 
 |   Name = V->Name; | 
 |   V->Name = 0; | 
 |   Name->setValue(this); | 
 |  | 
 |   if (ST) | 
 |     ST->reinsertValue(this); | 
 | } | 
 |  | 
 |  | 
 | void Value::replaceAllUsesWith(Value *New) { | 
 |   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); | 
 |   assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!"); | 
 |   assert(New->getType() == getType() && | 
 |          "replaceAllUses of value with new value of different type!"); | 
 |  | 
 |   // Notify all ValueHandles (if present) that this value is going away. | 
 |   if (HasValueHandle) | 
 |     ValueHandleBase::ValueIsRAUWd(this, New); | 
 |    | 
 |   while (!use_empty()) { | 
 |     Use &U = *UseList; | 
 |     // Must handle Constants specially, we cannot call replaceUsesOfWith on a | 
 |     // constant because they are uniqued. | 
 |     if (Constant *C = dyn_cast<Constant>(U.getUser())) { | 
 |       if (!isa<GlobalValue>(C)) { | 
 |         C->replaceUsesOfWithOnConstant(this, New, &U); | 
 |         continue; | 
 |       } | 
 |     } | 
 |      | 
 |     U.set(New); | 
 |   } | 
 |    | 
 |   if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) | 
 |     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); | 
 | } | 
 |  | 
 | Value *Value::stripPointerCasts() { | 
 |   if (!getType()->isPointerTy()) | 
 |     return this; | 
 |  | 
 |   // Even though we don't look through PHI nodes, we could be called on an | 
 |   // instruction in an unreachable block, which may be on a cycle. | 
 |   SmallPtrSet<Value *, 4> Visited; | 
 |  | 
 |   Value *V = this; | 
 |   Visited.insert(V); | 
 |   do { | 
 |     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
 |       if (!GEP->hasAllZeroIndices()) | 
 |         return V; | 
 |       V = GEP->getPointerOperand(); | 
 |     } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
 |       V = cast<Operator>(V)->getOperand(0); | 
 |     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
 |       if (GA->mayBeOverridden()) | 
 |         return V; | 
 |       V = GA->getAliasee(); | 
 |     } else { | 
 |       return V; | 
 |     } | 
 |     assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
 |   } while (Visited.insert(V)); | 
 |  | 
 |   return V; | 
 | } | 
 |  | 
 | /// isDereferenceablePointer - Test if this value is always a pointer to | 
 | /// allocated and suitably aligned memory for a simple load or store. | 
 | bool Value::isDereferenceablePointer() const { | 
 |   // Note that it is not safe to speculate into a malloc'd region because | 
 |   // malloc may return null. | 
 |   // It's also not always safe to follow a bitcast, for example: | 
 |   //   bitcast i8* (alloca i8) to i32* | 
 |   // would result in a 4-byte load from a 1-byte alloca. Some cases could | 
 |   // be handled using TargetData to check sizes and alignments though. | 
 |  | 
 |   // These are obviously ok. | 
 |   if (isa<AllocaInst>(this)) return true; | 
 |  | 
 |   // Global variables which can't collapse to null are ok. | 
 |   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) | 
 |     return !GV->hasExternalWeakLinkage(); | 
 |  | 
 |   // byval arguments are ok. | 
 |   if (const Argument *A = dyn_cast<Argument>(this)) | 
 |     return A->hasByValAttr(); | 
 |    | 
 |   // For GEPs, determine if the indexing lands within the allocated object. | 
 |   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(this)) { | 
 |     // Conservatively require that the base pointer be fully dereferenceable. | 
 |     if (!GEP->getOperand(0)->isDereferenceablePointer()) | 
 |       return false; | 
 |     // Check the indices. | 
 |     gep_type_iterator GTI = gep_type_begin(GEP); | 
 |     for (User::const_op_iterator I = GEP->op_begin()+1, | 
 |          E = GEP->op_end(); I != E; ++I) { | 
 |       Value *Index = *I; | 
 |       Type *Ty = *GTI++; | 
 |       // Struct indices can't be out of bounds. | 
 |       if (isa<StructType>(Ty)) | 
 |         continue; | 
 |       ConstantInt *CI = dyn_cast<ConstantInt>(Index); | 
 |       if (!CI) | 
 |         return false; | 
 |       // Zero is always ok. | 
 |       if (CI->isZero()) | 
 |         continue; | 
 |       // Check to see that it's within the bounds of an array. | 
 |       ArrayType *ATy = dyn_cast<ArrayType>(Ty); | 
 |       if (!ATy) | 
 |         return false; | 
 |       if (CI->getValue().getActiveBits() > 64) | 
 |         return false; | 
 |       if (CI->getZExtValue() >= ATy->getNumElements()) | 
 |         return false; | 
 |     } | 
 |     // Indices check out; this is dereferenceable. | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If we don't know, assume the worst. | 
 |   return false; | 
 | } | 
 |  | 
 | /// DoPHITranslation - If this value is a PHI node with CurBB as its parent, | 
 | /// return the value in the PHI node corresponding to PredBB.  If not, return | 
 | /// ourself.  This is useful if you want to know the value something has in a | 
 | /// predecessor block. | 
 | Value *Value::DoPHITranslation(const BasicBlock *CurBB, | 
 |                                const BasicBlock *PredBB) { | 
 |   PHINode *PN = dyn_cast<PHINode>(this); | 
 |   if (PN && PN->getParent() == CurBB) | 
 |     return PN->getIncomingValueForBlock(PredBB); | 
 |   return this; | 
 | } | 
 |  | 
 | LLVMContext &Value::getContext() const { return VTy->getContext(); } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             ValueHandleBase Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where | 
 | /// List is known to point into the existing use list. | 
 | void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { | 
 |   assert(List && "Handle list is null?"); | 
 |  | 
 |   // Splice ourselves into the list. | 
 |   Next = *List; | 
 |   *List = this; | 
 |   setPrevPtr(List); | 
 |   if (Next) { | 
 |     Next->setPrevPtr(&Next); | 
 |     assert(VP == Next->VP && "Added to wrong list?"); | 
 |   } | 
 | } | 
 |  | 
 | void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { | 
 |   assert(List && "Must insert after existing node"); | 
 |  | 
 |   Next = List->Next; | 
 |   setPrevPtr(&List->Next); | 
 |   List->Next = this; | 
 |   if (Next) | 
 |     Next->setPrevPtr(&Next); | 
 | } | 
 |  | 
 | /// AddToUseList - Add this ValueHandle to the use list for VP. | 
 | void ValueHandleBase::AddToUseList() { | 
 |   assert(VP && "Null pointer doesn't have a use list!"); | 
 |  | 
 |   LLVMContextImpl *pImpl = VP->getContext().pImpl; | 
 |  | 
 |   if (VP->HasValueHandle) { | 
 |     // If this value already has a ValueHandle, then it must be in the | 
 |     // ValueHandles map already. | 
 |     ValueHandleBase *&Entry = pImpl->ValueHandles[VP]; | 
 |     assert(Entry != 0 && "Value doesn't have any handles?"); | 
 |     AddToExistingUseList(&Entry); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Ok, it doesn't have any handles yet, so we must insert it into the | 
 |   // DenseMap.  However, doing this insertion could cause the DenseMap to | 
 |   // reallocate itself, which would invalidate all of the PrevP pointers that | 
 |   // point into the old table.  Handle this by checking for reallocation and | 
 |   // updating the stale pointers only if needed. | 
 |   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; | 
 |   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); | 
 |  | 
 |   ValueHandleBase *&Entry = Handles[VP]; | 
 |   assert(Entry == 0 && "Value really did already have handles?"); | 
 |   AddToExistingUseList(&Entry); | 
 |   VP->HasValueHandle = true; | 
 |  | 
 |   // If reallocation didn't happen or if this was the first insertion, don't | 
 |   // walk the table. | 
 |   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || | 
 |       Handles.size() == 1) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, reallocation did happen.  Fix the Prev Pointers. | 
 |   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), | 
 |        E = Handles.end(); I != E; ++I) { | 
 |     assert(I->second && I->first == I->second->VP && "List invariant broken!"); | 
 |     I->second->setPrevPtr(&I->second); | 
 |   } | 
 | } | 
 |  | 
 | /// RemoveFromUseList - Remove this ValueHandle from its current use list. | 
 | void ValueHandleBase::RemoveFromUseList() { | 
 |   assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!"); | 
 |  | 
 |   // Unlink this from its use list. | 
 |   ValueHandleBase **PrevPtr = getPrevPtr(); | 
 |   assert(*PrevPtr == this && "List invariant broken"); | 
 |  | 
 |   *PrevPtr = Next; | 
 |   if (Next) { | 
 |     assert(Next->getPrevPtr() == &Next && "List invariant broken"); | 
 |     Next->setPrevPtr(PrevPtr); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If the Next pointer was null, then it is possible that this was the last | 
 |   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles | 
 |   // map. | 
 |   LLVMContextImpl *pImpl = VP->getContext().pImpl; | 
 |   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; | 
 |   if (Handles.isPointerIntoBucketsArray(PrevPtr)) { | 
 |     Handles.erase(VP); | 
 |     VP->HasValueHandle = false; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void ValueHandleBase::ValueIsDeleted(Value *V) { | 
 |   assert(V->HasValueHandle && "Should only be called if ValueHandles present"); | 
 |  | 
 |   // Get the linked list base, which is guaranteed to exist since the | 
 |   // HasValueHandle flag is set. | 
 |   LLVMContextImpl *pImpl = V->getContext().pImpl; | 
 |   ValueHandleBase *Entry = pImpl->ValueHandles[V]; | 
 |   assert(Entry && "Value bit set but no entries exist"); | 
 |  | 
 |   // We use a local ValueHandleBase as an iterator so that ValueHandles can add | 
 |   // and remove themselves from the list without breaking our iteration.  This | 
 |   // is not really an AssertingVH; we just have to give ValueHandleBase a kind. | 
 |   // Note that we deliberately do not the support the case when dropping a value | 
 |   // handle results in a new value handle being permanently added to the list | 
 |   // (as might occur in theory for CallbackVH's): the new value handle will not | 
 |   // be processed and the checking code will mete out righteous punishment if | 
 |   // the handle is still present once we have finished processing all the other | 
 |   // value handles (it is fine to momentarily add then remove a value handle). | 
 |   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { | 
 |     Iterator.RemoveFromUseList(); | 
 |     Iterator.AddToExistingUseListAfter(Entry); | 
 |     assert(Entry->Next == &Iterator && "Loop invariant broken."); | 
 |  | 
 |     switch (Entry->getKind()) { | 
 |     case Assert: | 
 |       break; | 
 |     case Tracking: | 
 |       // Mark that this value has been deleted by setting it to an invalid Value | 
 |       // pointer. | 
 |       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey()); | 
 |       break; | 
 |     case Weak: | 
 |       // Weak just goes to null, which will unlink it from the list. | 
 |       Entry->operator=(0); | 
 |       break; | 
 |     case Callback: | 
 |       // Forward to the subclass's implementation. | 
 |       static_cast<CallbackVH*>(Entry)->deleted(); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // All callbacks, weak references, and assertingVHs should be dropped by now. | 
 |   if (V->HasValueHandle) { | 
 | #ifndef NDEBUG      // Only in +Asserts mode... | 
 |     dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr() | 
 |            << "\n"; | 
 |     if (pImpl->ValueHandles[V]->getKind() == Assert) | 
 |       llvm_unreachable("An asserting value handle still pointed to this" | 
 |                        " value!"); | 
 |  | 
 | #endif | 
 |     llvm_unreachable("All references to V were not removed?"); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { | 
 |   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); | 
 |   assert(Old != New && "Changing value into itself!"); | 
 |  | 
 |   // Get the linked list base, which is guaranteed to exist since the | 
 |   // HasValueHandle flag is set. | 
 |   LLVMContextImpl *pImpl = Old->getContext().pImpl; | 
 |   ValueHandleBase *Entry = pImpl->ValueHandles[Old]; | 
 |  | 
 |   assert(Entry && "Value bit set but no entries exist"); | 
 |  | 
 |   // We use a local ValueHandleBase as an iterator so that | 
 |   // ValueHandles can add and remove themselves from the list without | 
 |   // breaking our iteration.  This is not really an AssertingVH; we | 
 |   // just have to give ValueHandleBase some kind. | 
 |   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { | 
 |     Iterator.RemoveFromUseList(); | 
 |     Iterator.AddToExistingUseListAfter(Entry); | 
 |     assert(Entry->Next == &Iterator && "Loop invariant broken."); | 
 |  | 
 |     switch (Entry->getKind()) { | 
 |     case Assert: | 
 |       // Asserting handle does not follow RAUW implicitly. | 
 |       break; | 
 |     case Tracking: | 
 |       // Tracking goes to new value like a WeakVH. Note that this may make it | 
 |       // something incompatible with its templated type. We don't want to have a | 
 |       // virtual (or inline) interface to handle this though, so instead we make | 
 |       // the TrackingVH accessors guarantee that a client never sees this value. | 
 |  | 
 |       // FALLTHROUGH | 
 |     case Weak: | 
 |       // Weak goes to the new value, which will unlink it from Old's list. | 
 |       Entry->operator=(New); | 
 |       break; | 
 |     case Callback: | 
 |       // Forward to the subclass's implementation. | 
 |       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   // If any new tracking or weak value handles were added while processing the | 
 |   // list, then complain about it now. | 
 |   if (Old->HasValueHandle) | 
 |     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) | 
 |       switch (Entry->getKind()) { | 
 |       case Tracking: | 
 |       case Weak: | 
 |         dbgs() << "After RAUW from " << *Old->getType() << " %" | 
 |           << Old->getNameStr() << " to " << *New->getType() << " %" | 
 |           << New->getNameStr() << "\n"; | 
 |         llvm_unreachable("A tracking or weak value handle still pointed to the" | 
 |                          " old value!\n"); | 
 |       default: | 
 |         break; | 
 |       } | 
 | #endif | 
 | } | 
 |  | 
 | /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable | 
 | /// more than once. | 
 | CallbackVH::~CallbackVH() {} |