blob: bf6509497f5325e1e5f563e16b57c99a572c8d07 [file] [log] [blame]
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Basic tests for the ValidationState_t datastructure.
#include <string>
#include "gmock/gmock.h"
#include "source/spirv_validator_options.h"
#include "test/unit_spirv.h"
#include "test/val/val_fixtures.h"
namespace spvtools {
namespace val {
namespace {
using ::testing::HasSubstr;
using ValidationStateTest = spvtest::ValidateBase<bool>;
const char kHeader[] =
" OpCapability Shader"
" OpCapability Linkage"
" OpMemoryModel Logical GLSL450 ";
const char kVulkanMemoryHeader[] =
" OpCapability Shader"
" OpCapability VulkanMemoryModelKHR"
" OpExtension \"SPV_KHR_vulkan_memory_model\""
" OpMemoryModel Logical VulkanKHR ";
const char kVoidFVoid[] =
" %void = OpTypeVoid"
" %void_f = OpTypeFunction %void"
" %func = OpFunction %void None %void_f"
" %label = OpLabel"
" OpReturn"
" OpFunctionEnd ";
// k*RecursiveBody examples originally from test/opt/function_test.cpp
const char* kNonRecursiveBody = R"(
OpEntryPoint Fragment %1 "main"
OpExecutionMode %1 OriginUpperLeft
%void = OpTypeVoid
%4 = OpTypeFunction %void
%float = OpTypeFloat 32
%_struct_6 = OpTypeStruct %float %float
%7 = OpTypeFunction %_struct_6
%12 = OpFunction %_struct_6 None %7
%13 = OpLabel
OpUnreachable
OpFunctionEnd
%9 = OpFunction %_struct_6 None %7
%10 = OpLabel
%11 = OpFunctionCall %_struct_6 %12
OpUnreachable
OpFunctionEnd
%1 = OpFunction %void Pure|Const %4
%8 = OpLabel
%2 = OpFunctionCall %_struct_6 %9
OpKill
OpFunctionEnd
)";
const char* kDirectlyRecursiveBody = R"(
OpEntryPoint Fragment %1 "main"
OpExecutionMode %1 OriginUpperLeft
%void = OpTypeVoid
%4 = OpTypeFunction %void
%float = OpTypeFloat 32
%_struct_6 = OpTypeStruct %float %float
%7 = OpTypeFunction %_struct_6
%9 = OpFunction %_struct_6 None %7
%10 = OpLabel
%11 = OpFunctionCall %_struct_6 %9
OpKill
OpFunctionEnd
%1 = OpFunction %void Pure|Const %4
%8 = OpLabel
%2 = OpFunctionCall %_struct_6 %9
OpUnreachable
OpFunctionEnd
)";
const char* kIndirectlyRecursiveBody = R"(
OpEntryPoint Fragment %1 "main"
OpExecutionMode %1 OriginUpperLeft
%void = OpTypeVoid
%4 = OpTypeFunction %void
%float = OpTypeFloat 32
%_struct_6 = OpTypeStruct %float %float
%7 = OpTypeFunction %_struct_6
%9 = OpFunction %_struct_6 None %7
%10 = OpLabel
%11 = OpFunctionCall %_struct_6 %12
OpUnreachable
OpFunctionEnd
%12 = OpFunction %_struct_6 None %7
%13 = OpLabel
%14 = OpFunctionCall %_struct_6 %9
OpUnreachable
OpFunctionEnd
%1 = OpFunction %void Pure|Const %4
%8 = OpLabel
%2 = OpFunctionCall %_struct_6 %9
OpKill
OpFunctionEnd
)";
// Tests that the instruction count in ValidationState is correct.
TEST_F(ValidationStateTest, CheckNumInstructions) {
std::string spirv = std::string(kHeader) + "%int = OpTypeInt 32 0";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
EXPECT_EQ(size_t(4), vstate_->ordered_instructions().size());
}
// Tests that the number of global variables in ValidationState is correct.
TEST_F(ValidationStateTest, CheckNumGlobalVars) {
std::string spirv = std::string(kHeader) + R"(
%int = OpTypeInt 32 0
%_ptr_int = OpTypePointer Input %int
%var_1 = OpVariable %_ptr_int Input
%var_2 = OpVariable %_ptr_int Input
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
EXPECT_EQ(unsigned(2), vstate_->num_global_vars());
}
// Tests that the number of local variables in ValidationState is correct.
TEST_F(ValidationStateTest, CheckNumLocalVars) {
std::string spirv = std::string(kHeader) + R"(
%int = OpTypeInt 32 0
%_ptr_int = OpTypePointer Function %int
%voidt = OpTypeVoid
%funct = OpTypeFunction %voidt
%main = OpFunction %voidt None %funct
%entry = OpLabel
%var_1 = OpVariable %_ptr_int Function
%var_2 = OpVariable %_ptr_int Function
%var_3 = OpVariable %_ptr_int Function
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
EXPECT_EQ(unsigned(3), vstate_->num_local_vars());
}
// Tests that the "id bound" in ValidationState is correct.
TEST_F(ValidationStateTest, CheckIdBound) {
std::string spirv = std::string(kHeader) + R"(
%int = OpTypeInt 32 0
%voidt = OpTypeVoid
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
EXPECT_EQ(unsigned(3), vstate_->getIdBound());
}
// Tests that the entry_points in ValidationState is correct.
TEST_F(ValidationStateTest, CheckEntryPoints) {
std::string spirv = std::string(kHeader) +
" OpEntryPoint Vertex %func \"shader\"" +
std::string(kVoidFVoid);
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
EXPECT_EQ(size_t(1), vstate_->entry_points().size());
EXPECT_EQ(SpvOpFunction,
vstate_->FindDef(vstate_->entry_points()[0])->opcode());
}
TEST_F(ValidationStateTest, CheckStructMemberLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_struct_members, 32000u);
EXPECT_EQ(32000u, options_->universal_limits_.max_struct_members);
}
TEST_F(ValidationStateTest, CheckNumGlobalVarsLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_global_variables, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_global_variables);
}
TEST_F(ValidationStateTest, CheckNumLocalVarsLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_local_variables, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_local_variables);
}
TEST_F(ValidationStateTest, CheckStructDepthLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_struct_depth, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_struct_depth);
}
TEST_F(ValidationStateTest, CheckSwitchBranchesLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_switch_branches, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_switch_branches);
}
TEST_F(ValidationStateTest, CheckFunctionArgsLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_function_args, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_function_args);
}
TEST_F(ValidationStateTest, CheckCFGDepthLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_control_flow_nesting_depth, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_control_flow_nesting_depth);
}
TEST_F(ValidationStateTest, CheckAccessChainIndexesLimitOption) {
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_access_chain_indexes, 100u);
EXPECT_EQ(100u, options_->universal_limits_.max_access_chain_indexes);
}
TEST_F(ValidationStateTest, CheckNonRecursiveBodyGood) {
std::string spirv = std::string(kHeader) + kNonRecursiveBody;
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
}
TEST_F(ValidationStateTest, CheckVulkanNonRecursiveBodyGood) {
std::string spirv = std::string(kVulkanMemoryHeader) + kNonRecursiveBody;
CompileSuccessfully(spirv, SPV_ENV_VULKAN_1_1);
EXPECT_EQ(SPV_SUCCESS,
ValidateAndRetrieveValidationState(SPV_ENV_VULKAN_1_1));
}
TEST_F(ValidationStateTest, CheckWebGPUNonRecursiveBodyGood) {
std::string spirv = std::string(kVulkanMemoryHeader) + kNonRecursiveBody;
CompileSuccessfully(spirv, SPV_ENV_WEBGPU_0);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState(SPV_ENV_WEBGPU_0));
}
TEST_F(ValidationStateTest, CheckDirectlyRecursiveBodyGood) {
std::string spirv = std::string(kHeader) + kDirectlyRecursiveBody;
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
}
TEST_F(ValidationStateTest, CheckVulkanDirectlyRecursiveBodyBad) {
std::string spirv = std::string(kVulkanMemoryHeader) + kDirectlyRecursiveBody;
CompileSuccessfully(spirv, SPV_ENV_VULKAN_1_1);
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
ValidateAndRetrieveValidationState(SPV_ENV_VULKAN_1_1));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Entry points may not have a call graph with cycles.\n "
" %1 = OpFunction %void Pure|Const %3\n"));
}
TEST_F(ValidationStateTest, CheckWebGPUDirectlyRecursiveBodyBad) {
std::string spirv = std::string(kVulkanMemoryHeader) + kDirectlyRecursiveBody;
CompileSuccessfully(spirv, SPV_ENV_WEBGPU_0);
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
ValidateAndRetrieveValidationState(SPV_ENV_WEBGPU_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Entry points may not have a call graph with cycles.\n "
" %1 = OpFunction %void Pure|Const %3\n"));
}
TEST_F(ValidationStateTest, CheckIndirectlyRecursiveBodyGood) {
std::string spirv = std::string(kHeader) + kIndirectlyRecursiveBody;
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
}
TEST_F(ValidationStateTest, CheckVulkanIndirectlyRecursiveBodyBad) {
std::string spirv =
std::string(kVulkanMemoryHeader) + kIndirectlyRecursiveBody;
CompileSuccessfully(spirv, SPV_ENV_VULKAN_1_1);
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
ValidateAndRetrieveValidationState(SPV_ENV_VULKAN_1_1));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Entry points may not have a call graph with cycles.\n "
" %1 = OpFunction %void Pure|Const %3\n"));
}
// Indirectly recursive functions are caught by the function definition layout
// rules, because they cause a situation where there are 2 functions that have
// to be before each other, and layout is checked earlier.
TEST_F(ValidationStateTest, CheckWebGPUIndirectlyRecursiveBodyBad) {
std::string spirv =
std::string(kVulkanMemoryHeader) + kIndirectlyRecursiveBody;
CompileSuccessfully(spirv, SPV_ENV_WEBGPU_0);
EXPECT_EQ(SPV_ERROR_INVALID_LAYOUT,
ValidateAndRetrieveValidationState(SPV_ENV_WEBGPU_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("For WebGPU, functions need to be defined before being "
"called.\n %9 = OpFunctionCall %_struct_5 %10\n"));
}
TEST_F(ValidationStateTest,
CheckWebGPUDuplicateEntryNamesDifferentFunctionsBad) {
std::string spirv = std::string(kVulkanMemoryHeader) + R"(
OpEntryPoint Fragment %func_1 "main"
OpEntryPoint Vertex %func_2 "main"
OpExecutionMode %func_1 OriginUpperLeft
%void = OpTypeVoid
%void_f = OpTypeFunction %void
%func_1 = OpFunction %void None %void_f
%label_1 = OpLabel
OpReturn
OpFunctionEnd
%func_2 = OpFunction %void None %void_f
%label_2 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_WEBGPU_0);
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
ValidateAndRetrieveValidationState(SPV_ENV_WEBGPU_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Entry point name \"main\" is not unique, which is not allow "
"in WebGPU env.\n %1 = OpFunction %void None %4\n"));
}
TEST_F(ValidationStateTest, CheckWebGPUDuplicateEntryNamesSameFunctionBad) {
std::string spirv = std::string(kVulkanMemoryHeader) + R"(
OpEntryPoint GLCompute %func_1 "main"
OpEntryPoint Vertex %func_1 "main"
%void = OpTypeVoid
%void_f = OpTypeFunction %void
%func_1 = OpFunction %void None %void_f
%label_1 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv, SPV_ENV_WEBGPU_0);
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
ValidateAndRetrieveValidationState(SPV_ENV_WEBGPU_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Entry point name \"main\" is not unique, which is not allow "
"in WebGPU env.\n %1 = OpFunction %void None %3\n"));
}
} // namespace
} // namespace val
} // namespace spvtools