| //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the ARM addressing mode implementation stuff. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H |
| #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| |
| namespace llvm { |
| |
| /// ARM_AM - ARM Addressing Mode Stuff |
| namespace ARM_AM { |
| enum ShiftOpc { |
| no_shift = 0, |
| asr, |
| lsl, |
| lsr, |
| ror, |
| rrx |
| }; |
| |
| enum AddrOpc { |
| sub = 0, |
| add |
| }; |
| |
| static inline const char *getAddrOpcStr(AddrOpc Op) { |
| return Op == sub ? "-" : ""; |
| } |
| |
| static inline const char *getShiftOpcStr(ShiftOpc Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown shift opc!"); |
| case ARM_AM::asr: return "asr"; |
| case ARM_AM::lsl: return "lsl"; |
| case ARM_AM::lsr: return "lsr"; |
| case ARM_AM::ror: return "ror"; |
| case ARM_AM::rrx: return "rrx"; |
| } |
| } |
| |
| static inline unsigned getShiftOpcEncoding(ShiftOpc Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown shift opc!"); |
| case ARM_AM::asr: return 2; |
| case ARM_AM::lsl: return 0; |
| case ARM_AM::lsr: return 1; |
| case ARM_AM::ror: return 3; |
| } |
| } |
| |
| enum AMSubMode { |
| bad_am_submode = 0, |
| ia, |
| ib, |
| da, |
| db |
| }; |
| |
| static inline const char *getAMSubModeStr(AMSubMode Mode) { |
| switch (Mode) { |
| default: assert(0 && "Unknown addressing sub-mode!"); |
| case ARM_AM::ia: return "ia"; |
| case ARM_AM::ib: return "ib"; |
| case ARM_AM::da: return "da"; |
| case ARM_AM::db: return "db"; |
| } |
| } |
| |
| /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. |
| /// |
| static inline unsigned rotr32(unsigned Val, unsigned Amt) { |
| assert(Amt < 32 && "Invalid rotate amount"); |
| return (Val >> Amt) | (Val << ((32-Amt)&31)); |
| } |
| |
| /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. |
| /// |
| static inline unsigned rotl32(unsigned Val, unsigned Amt) { |
| assert(Amt < 32 && "Invalid rotate amount"); |
| return (Val << Amt) | (Val >> ((32-Amt)&31)); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #1: shift_operand with registers |
| //===--------------------------------------------------------------------===// |
| // |
| // This 'addressing mode' is used for arithmetic instructions. It can |
| // represent things like: |
| // reg |
| // reg [asr|lsl|lsr|ror|rrx] reg |
| // reg [asr|lsl|lsr|ror|rrx] imm |
| // |
| // This is stored three operands [rega, regb, opc]. The first is the base |
| // reg, the second is the shift amount (or reg0 if not present or imm). The |
| // third operand encodes the shift opcode and the imm if a reg isn't present. |
| // |
| static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { |
| return ShOp | (Imm << 3); |
| } |
| static inline unsigned getSORegOffset(unsigned Op) { |
| return Op >> 3; |
| } |
| static inline ShiftOpc getSORegShOp(unsigned Op) { |
| return (ShiftOpc)(Op & 7); |
| } |
| |
| /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return |
| /// the 8-bit imm value. |
| static inline unsigned getSOImmValImm(unsigned Imm) { |
| return Imm & 0xFF; |
| } |
| /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return |
| /// the rotate amount. |
| static inline unsigned getSOImmValRot(unsigned Imm) { |
| return (Imm >> 8) * 2; |
| } |
| |
| /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, |
| /// computing the rotate amount to use. If this immediate value cannot be |
| /// handled with a single shifter-op, determine a good rotate amount that will |
| /// take a maximal chunk of bits out of the immediate. |
| static inline unsigned getSOImmValRotate(unsigned Imm) { |
| // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
| // of zero. |
| if ((Imm & ~255U) == 0) return 0; |
| |
| // Use CTZ to compute the rotate amount. |
| unsigned TZ = CountTrailingZeros_32(Imm); |
| |
| // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, |
| // not 9. |
| unsigned RotAmt = TZ & ~1; |
| |
| // If we can handle this spread, return it. |
| if ((rotr32(Imm, RotAmt) & ~255U) == 0) |
| return (32-RotAmt)&31; // HW rotates right, not left. |
| |
| // For values like 0xF000000F, we should ignore the low 6 bits, then |
| // retry the hunt. |
| if (Imm & 63U) { |
| unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U); |
| unsigned RotAmt2 = TZ2 & ~1; |
| if ((rotr32(Imm, RotAmt2) & ~255U) == 0) |
| return (32-RotAmt2)&31; // HW rotates right, not left. |
| } |
| |
| // Otherwise, we have no way to cover this span of bits with a single |
| // shifter_op immediate. Return a chunk of bits that will be useful to |
| // handle. |
| return (32-RotAmt)&31; // HW rotates right, not left. |
| } |
| |
| /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit |
| /// into an shifter_operand immediate operand, return the 12-bit encoding for |
| /// it. If not, return -1. |
| static inline int getSOImmVal(unsigned Arg) { |
| // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
| // of zero. |
| if ((Arg & ~255U) == 0) return Arg; |
| |
| unsigned RotAmt = getSOImmValRotate(Arg); |
| |
| // If this cannot be handled with a single shifter_op, bail out. |
| if (rotr32(~255U, RotAmt) & Arg) |
| return -1; |
| |
| // Encode this correctly. |
| return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); |
| } |
| |
| /// isSOImmTwoPartVal - Return true if the specified value can be obtained by |
| /// or'ing together two SOImmVal's. |
| static inline bool isSOImmTwoPartVal(unsigned V) { |
| // If this can be handled with a single shifter_op, bail out. |
| V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| if (V == 0) |
| return false; |
| |
| // If this can be handled with two shifter_op's, accept. |
| V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| return V == 0; |
| } |
| |
| /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, |
| /// return the first chunk of it. |
| static inline unsigned getSOImmTwoPartFirst(unsigned V) { |
| return rotr32(255U, getSOImmValRotate(V)) & V; |
| } |
| |
| /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, |
| /// return the second chunk of it. |
| static inline unsigned getSOImmTwoPartSecond(unsigned V) { |
| // Mask out the first hunk. |
| V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| |
| // Take what's left. |
| assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); |
| return V; |
| } |
| |
| /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed |
| /// by a left shift. Returns the shift amount to use. |
| static inline unsigned getThumbImmValShift(unsigned Imm) { |
| // 8-bit (or less) immediates are trivially immediate operand with a shift |
| // of zero. |
| if ((Imm & ~255U) == 0) return 0; |
| |
| // Use CTZ to compute the shift amount. |
| return CountTrailingZeros_32(Imm); |
| } |
| |
| /// isThumbImmShiftedVal - Return true if the specified value can be obtained |
| /// by left shifting a 8-bit immediate. |
| static inline bool isThumbImmShiftedVal(unsigned V) { |
| // If this can be handled with |
| V = (~255U << getThumbImmValShift(V)) & V; |
| return V == 0; |
| } |
| |
| /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed |
| /// by a left shift. Returns the shift amount to use. |
| static inline unsigned getThumbImm16ValShift(unsigned Imm) { |
| // 16-bit (or less) immediates are trivially immediate operand with a shift |
| // of zero. |
| if ((Imm & ~65535U) == 0) return 0; |
| |
| // Use CTZ to compute the shift amount. |
| return CountTrailingZeros_32(Imm); |
| } |
| |
| /// isThumbImm16ShiftedVal - Return true if the specified value can be |
| /// obtained by left shifting a 16-bit immediate. |
| static inline bool isThumbImm16ShiftedVal(unsigned V) { |
| // If this can be handled with |
| V = (~65535U << getThumbImm16ValShift(V)) & V; |
| return V == 0; |
| } |
| |
| /// getThumbImmNonShiftedVal - If V is a value that satisfies |
| /// isThumbImmShiftedVal, return the non-shiftd value. |
| static inline unsigned getThumbImmNonShiftedVal(unsigned V) { |
| return V >> getThumbImmValShift(V); |
| } |
| |
| |
| /// getT2SOImmValSplat - Return the 12-bit encoded representation |
| /// if the specified value can be obtained by splatting the low 8 bits |
| /// into every other byte or every byte of a 32-bit value. i.e., |
| /// 00000000 00000000 00000000 abcdefgh control = 0 |
| /// 00000000 abcdefgh 00000000 abcdefgh control = 1 |
| /// abcdefgh 00000000 abcdefgh 00000000 control = 2 |
| /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 |
| /// Return -1 if none of the above apply. |
| /// See ARM Reference Manual A6.3.2. |
| static inline int getT2SOImmValSplatVal(unsigned V) { |
| unsigned u, Vs, Imm; |
| // control = 0 |
| if ((V & 0xffffff00) == 0) |
| return V; |
| |
| // If the value is zeroes in the first byte, just shift those off |
| Vs = ((V & 0xff) == 0) ? V >> 8 : V; |
| // Any passing value only has 8 bits of payload, splatted across the word |
| Imm = Vs & 0xff; |
| // Likewise, any passing values have the payload splatted into the 3rd byte |
| u = Imm | (Imm << 16); |
| |
| // control = 1 or 2 |
| if (Vs == u) |
| return (((Vs == V) ? 1 : 2) << 8) | Imm; |
| |
| // control = 3 |
| if (Vs == (u | (u << 8))) |
| return (3 << 8) | Imm; |
| |
| return -1; |
| } |
| |
| /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the |
| /// specified value is a rotated 8-bit value. Return -1 if no rotation |
| /// encoding is possible. |
| /// See ARM Reference Manual A6.3.2. |
| static inline int getT2SOImmValRotateVal(unsigned V) { |
| unsigned RotAmt = CountLeadingZeros_32(V); |
| if (RotAmt >= 24) |
| return -1; |
| |
| // If 'Arg' can be handled with a single shifter_op return the value. |
| if ((rotr32(0xff000000U, RotAmt) & V) == V) |
| return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); |
| |
| return -1; |
| } |
| |
| /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit |
| /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit |
| /// encoding for it. If not, return -1. |
| /// See ARM Reference Manual A6.3.2. |
| static inline int getT2SOImmVal(unsigned Arg) { |
| // If 'Arg' is an 8-bit splat, then get the encoded value. |
| int Splat = getT2SOImmValSplatVal(Arg); |
| if (Splat != -1) |
| return Splat; |
| |
| // If 'Arg' can be handled with a single shifter_op return the value. |
| int Rot = getT2SOImmValRotateVal(Arg); |
| if (Rot != -1) |
| return Rot; |
| |
| return -1; |
| } |
| |
| static inline unsigned getT2SOImmValRotate(unsigned V) { |
| if ((V & ~255U) == 0) return 0; |
| // Use CTZ to compute the rotate amount. |
| unsigned RotAmt = CountTrailingZeros_32(V); |
| return (32 - RotAmt) & 31; |
| } |
| |
| static inline bool isT2SOImmTwoPartVal (unsigned Imm) { |
| unsigned V = Imm; |
| // Passing values can be any combination of splat values and shifter |
| // values. If this can be handled with a single shifter or splat, bail |
| // out. Those should be handled directly, not with a two-part val. |
| if (getT2SOImmValSplatVal(V) != -1) |
| return false; |
| V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; |
| if (V == 0) |
| return false; |
| |
| // If this can be handled as an immediate, accept. |
| if (getT2SOImmVal(V) != -1) return true; |
| |
| // Likewise, try masking out a splat value first. |
| V = Imm; |
| if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) |
| V &= ~0xff00ff00U; |
| else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) |
| V &= ~0x00ff00ffU; |
| // If what's left can be handled as an immediate, accept. |
| if (getT2SOImmVal(V) != -1) return true; |
| |
| // Otherwise, do not accept. |
| return false; |
| } |
| |
| static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { |
| assert (isT2SOImmTwoPartVal(Imm) && |
| "Immedate cannot be encoded as two part immediate!"); |
| // Try a shifter operand as one part |
| unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; |
| // If the rest is encodable as an immediate, then return it. |
| if (getT2SOImmVal(V) != -1) return V; |
| |
| // Try masking out a splat value first. |
| if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) |
| return Imm & 0xff00ff00U; |
| |
| // The other splat is all that's left as an option. |
| assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); |
| return Imm & 0x00ff00ffU; |
| } |
| |
| static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { |
| // Mask out the first hunk |
| Imm ^= getT2SOImmTwoPartFirst(Imm); |
| // Return what's left |
| assert (getT2SOImmVal(Imm) != -1 && |
| "Unable to encode second part of T2 two part SO immediate"); |
| return Imm; |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #2 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for most simple load/store instructions. |
| // |
| // addrmode2 := reg +/- reg shop imm |
| // addrmode2 := reg +/- imm12 |
| // |
| // The first operand is always a Reg. The second operand is a reg if in |
| // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
| // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The |
| // fourth operand 16-17 encodes the index mode. |
| // |
| // If this addressing mode is a frame index (before prolog/epilog insertion |
| // and code rewriting), this operand will have the form: FI#, reg0, <offs> |
| // with no shift amount for the frame offset. |
| // |
| static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, |
| unsigned IdxMode = 0) { |
| assert(Imm12 < (1 << 12) && "Imm too large!"); |
| bool isSub = Opc == sub; |
| return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; |
| } |
| static inline unsigned getAM2Offset(unsigned AM2Opc) { |
| return AM2Opc & ((1 << 12)-1); |
| } |
| static inline AddrOpc getAM2Op(unsigned AM2Opc) { |
| return ((AM2Opc >> 12) & 1) ? sub : add; |
| } |
| static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { |
| return (ShiftOpc)((AM2Opc >> 13) & 7); |
| } |
| static inline unsigned getAM2IdxMode(unsigned AM2Opc) { |
| return (AM2Opc >> 16); |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #3 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for sign-extending loads, and load/store-pair instructions. |
| // |
| // addrmode3 := reg +/- reg |
| // addrmode3 := reg +/- imm8 |
| // |
| // The first operand is always a Reg. The second operand is a reg if in |
| // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
| // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the |
| // index mode. |
| |
| /// getAM3Opc - This function encodes the addrmode3 opc field. |
| static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, |
| unsigned IdxMode = 0) { |
| bool isSub = Opc == sub; |
| return ((int)isSub << 8) | Offset | (IdxMode << 9); |
| } |
| static inline unsigned char getAM3Offset(unsigned AM3Opc) { |
| return AM3Opc & 0xFF; |
| } |
| static inline AddrOpc getAM3Op(unsigned AM3Opc) { |
| return ((AM3Opc >> 8) & 1) ? sub : add; |
| } |
| static inline unsigned getAM3IdxMode(unsigned AM3Opc) { |
| return (AM3Opc >> 9); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #4 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for load / store multiple instructions. |
| // |
| // addrmode4 := reg, <mode> |
| // |
| // The four modes are: |
| // IA - Increment after |
| // IB - Increment before |
| // DA - Decrement after |
| // DB - Decrement before |
| // For VFP instructions, only the IA and DB modes are valid. |
| |
| static inline AMSubMode getAM4SubMode(unsigned Mode) { |
| return (AMSubMode)(Mode & 0x7); |
| } |
| |
| static inline unsigned getAM4ModeImm(AMSubMode SubMode) { |
| return (int)SubMode; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #5 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for coprocessor instructions, such as FP load/stores. |
| // |
| // addrmode5 := reg +/- imm8*4 |
| // |
| // The first operand is always a Reg. The second operand encodes the |
| // operation in bit 8 and the immediate in bits 0-7. |
| |
| /// getAM5Opc - This function encodes the addrmode5 opc field. |
| static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { |
| bool isSub = Opc == sub; |
| return ((int)isSub << 8) | Offset; |
| } |
| static inline unsigned char getAM5Offset(unsigned AM5Opc) { |
| return AM5Opc & 0xFF; |
| } |
| static inline AddrOpc getAM5Op(unsigned AM5Opc) { |
| return ((AM5Opc >> 8) & 1) ? sub : add; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing Mode #6 |
| //===--------------------------------------------------------------------===// |
| // |
| // This is used for NEON load / store instructions. |
| // |
| // addrmode6 := reg with optional alignment |
| // |
| // This is stored in two operands [regaddr, align]. The first is the |
| // address register. The second operand is the value of the alignment |
| // specifier in bytes or zero if no explicit alignment. |
| // Valid alignments depend on the specific instruction. |
| |
| //===--------------------------------------------------------------------===// |
| // NEON Modified Immediates |
| //===--------------------------------------------------------------------===// |
| // |
| // Several NEON instructions (e.g., VMOV) take a "modified immediate" |
| // vector operand, where a small immediate encoded in the instruction |
| // specifies a full NEON vector value. These modified immediates are |
| // represented here as encoded integers. The low 8 bits hold the immediate |
| // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold |
| // the "Cmode" field of the instruction. The interfaces below treat the |
| // Op and Cmode values as a single 5-bit value. |
| |
| static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { |
| return (OpCmode << 8) | Val; |
| } |
| static inline unsigned getNEONModImmOpCmode(unsigned ModImm) { |
| return (ModImm >> 8) & 0x1f; |
| } |
| static inline unsigned getNEONModImmVal(unsigned ModImm) { |
| return ModImm & 0xff; |
| } |
| |
| /// decodeNEONModImm - Decode a NEON modified immediate value into the |
| /// element value and the element size in bits. (If the element size is |
| /// smaller than the vector, it is splatted into all the elements.) |
| static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) { |
| unsigned OpCmode = getNEONModImmOpCmode(ModImm); |
| unsigned Imm8 = getNEONModImmVal(ModImm); |
| uint64_t Val = 0; |
| |
| if (OpCmode == 0xe) { |
| // 8-bit vector elements |
| Val = Imm8; |
| EltBits = 8; |
| } else if ((OpCmode & 0xc) == 0x8) { |
| // 16-bit vector elements |
| unsigned ByteNum = (OpCmode & 0x6) >> 1; |
| Val = Imm8 << (8 * ByteNum); |
| EltBits = 16; |
| } else if ((OpCmode & 0x8) == 0) { |
| // 32-bit vector elements, zero with one byte set |
| unsigned ByteNum = (OpCmode & 0x6) >> 1; |
| Val = Imm8 << (8 * ByteNum); |
| EltBits = 32; |
| } else if ((OpCmode & 0xe) == 0xc) { |
| // 32-bit vector elements, one byte with low bits set |
| unsigned ByteNum = 1 + (OpCmode & 0x1); |
| Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); |
| EltBits = 32; |
| } else if (OpCmode == 0x1e) { |
| // 64-bit vector elements |
| for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { |
| if ((ModImm >> ByteNum) & 1) |
| Val |= (uint64_t)0xff << (8 * ByteNum); |
| } |
| EltBits = 64; |
| } else { |
| assert(false && "Unsupported NEON immediate"); |
| } |
| return Val; |
| } |
| |
| AMSubMode getLoadStoreMultipleSubMode(int Opcode); |
| |
| //===--------------------------------------------------------------------===// |
| // Floating-point Immediates |
| // |
| static inline float getFPImmFloat(unsigned Imm) { |
| // We expect an 8-bit binary encoding of a floating-point number here. |
| union { |
| uint32_t I; |
| float F; |
| } FPUnion; |
| |
| uint8_t Sign = (Imm >> 7) & 0x1; |
| uint8_t Exp = (Imm >> 4) & 0x7; |
| uint8_t Mantissa = Imm & 0xf; |
| |
| // 8-bit FP iEEEE Float Encoding |
| // abcd efgh aBbbbbbc defgh000 00000000 00000000 |
| // |
| // where B = NOT(b); |
| |
| FPUnion.I = 0; |
| FPUnion.I |= Sign << 31; |
| FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; |
| FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; |
| FPUnion.I |= (Exp & 0x3) << 23; |
| FPUnion.I |= Mantissa << 19; |
| return FPUnion.F; |
| } |
| |
| /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit |
| /// floating-point value. If the value cannot be represented as an 8-bit |
| /// floating-point value, then return -1. |
| static inline int getFP32Imm(const APInt &Imm) { |
| uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; |
| int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 |
| int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0x7ffff) |
| return -1; |
| Mantissa >>= 19; |
| if ((Mantissa & 0xf) != Mantissa) |
| return -1; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| static inline int getFP32Imm(const APFloat &FPImm) { |
| return getFP32Imm(FPImm.bitcastToAPInt()); |
| } |
| |
| /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit |
| /// floating-point value. If the value cannot be represented as an 8-bit |
| /// floating-point value, then return -1. |
| static inline int getFP64Imm(const APInt &Imm) { |
| uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; |
| int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 |
| uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0xffffffffffffULL) |
| return -1; |
| Mantissa >>= 48; |
| if ((Mantissa & 0xf) != Mantissa) |
| return -1; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| static inline int getFP64Imm(const APFloat &FPImm) { |
| return getFP64Imm(FPImm.bitcastToAPInt()); |
| } |
| |
| } // end namespace ARM_AM |
| } // end namespace llvm |
| |
| #endif |
| |