| // Copyright 2018 The SwiftShader Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //    http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include "SpirvShader.hpp" | 
 |  | 
 | #include "SamplerCore.hpp" | 
 | #include "Reactor/Coroutine.hpp" | 
 | #include "System/Math.hpp" | 
 | #include "Vulkan/VkBuffer.hpp" | 
 | #include "Vulkan/VkBufferView.hpp" | 
 | #include "Vulkan/VkDebug.hpp" | 
 | #include "Vulkan/VkDescriptorSet.hpp" | 
 | #include "Vulkan/VkPipelineLayout.hpp" | 
 | #include "Vulkan/VkDescriptorSetLayout.hpp" | 
 | #include "Vulkan/VkRenderPass.hpp" | 
 | #include "Device/Config.hpp" | 
 |  | 
 | #include <spirv/unified1/spirv.hpp> | 
 | #include <spirv/unified1/GLSL.std.450.h> | 
 |  | 
 | #include <queue> | 
 |  | 
 | namespace | 
 | { | 
 | 	constexpr float PI = 3.141592653589793f; | 
 |  | 
 | 	rr::RValue<rr::Bool> AnyTrue(rr::RValue<sw::SIMD::Int> const &ints) | 
 | 	{ | 
 | 		return rr::SignMask(ints) != 0; | 
 | 	} | 
 |  | 
 | 	rr::RValue<rr::Bool> AnyFalse(rr::RValue<sw::SIMD::Int> const &ints) | 
 | 	{ | 
 | 		return rr::SignMask(~ints) != 0; | 
 | 	} | 
 |  | 
 | 	template <typename T> | 
 | 	rr::RValue<T> AndAll(rr::RValue<T> const &mask) | 
 | 	{ | 
 | 		T v1 = mask;              // [x]    [y]    [z]    [w] | 
 | 		T v2 = v1.xzxz & v1.ywyw; // [xy]   [zw]   [xy]   [zw] | 
 | 		return v2.xxxx & v2.yyyy; // [xyzw] [xyzw] [xyzw] [xyzw] | 
 | 	} | 
 |  | 
 | 	template <typename T> | 
 | 	rr::RValue<T> OrAll(rr::RValue<T> const &mask) | 
 | 	{ | 
 | 		T v1 = mask;              // [x]    [y]    [z]    [w] | 
 | 		T v2 = v1.xzxz | v1.ywyw; // [xy]   [zw]   [xy]   [zw] | 
 | 		return v2.xxxx | v2.yyyy; // [xyzw] [xyzw] [xyzw] [xyzw] | 
 | 	} | 
 |  | 
 | 	rr::RValue<sw::SIMD::Float> Sign(rr::RValue<sw::SIMD::Float> const &val) | 
 | 	{ | 
 | 		return rr::As<sw::SIMD::Float>((rr::As<sw::SIMD::UInt>(val) & sw::SIMD::UInt(0x80000000)) | sw::SIMD::UInt(0x3f800000)); | 
 | 	} | 
 |  | 
 | 	// Returns the <whole, frac> of val. | 
 | 	// Both whole and frac will have the same sign as val. | 
 | 	std::pair<rr::RValue<sw::SIMD::Float>, rr::RValue<sw::SIMD::Float>> | 
 | 	Modf(rr::RValue<sw::SIMD::Float> const &val) | 
 | 	{ | 
 | 		auto abs = Abs(val); | 
 | 		auto sign = Sign(val); | 
 | 		auto whole = Floor(abs) * sign; | 
 | 		auto frac = Frac(abs) * sign; | 
 | 		return std::make_pair(whole, frac); | 
 | 	} | 
 |  | 
 | 	// Returns the number of 1s in bits, per lane. | 
 | 	sw::SIMD::UInt CountBits(rr::RValue<sw::SIMD::UInt> const &bits) | 
 | 	{ | 
 | 		// TODO: Add an intrinsic to reactor. Even if there isn't a | 
 | 		// single vector instruction, there may be target-dependent | 
 | 		// ways to make this faster. | 
 | 		// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
 | 		sw::SIMD::UInt c = bits - ((bits >> 1) & sw::SIMD::UInt(0x55555555)); | 
 | 		c = ((c >> 2) & sw::SIMD::UInt(0x33333333)) + (c & sw::SIMD::UInt(0x33333333)); | 
 | 		c = ((c >> 4) + c) & sw::SIMD::UInt(0x0F0F0F0F); | 
 | 		c = ((c >> 8) + c) & sw::SIMD::UInt(0x00FF00FF); | 
 | 		c = ((c >> 16) + c) & sw::SIMD::UInt(0x0000FFFF); | 
 | 		return c; | 
 | 	} | 
 |  | 
 | 	// Returns 1 << bits. | 
 | 	// If the resulting bit overflows a 32 bit integer, 0 is returned. | 
 | 	rr::RValue<sw::SIMD::UInt> NthBit32(rr::RValue<sw::SIMD::UInt> const &bits) | 
 | 	{ | 
 | 		return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32))); | 
 | 	} | 
 |  | 
 | 	// Returns bitCount number of of 1's starting from the LSB. | 
 | 	rr::RValue<sw::SIMD::UInt> Bitmask32(rr::RValue<sw::SIMD::UInt> const &bitCount) | 
 | 	{ | 
 | 		return NthBit32(bitCount) - sw::SIMD::UInt(1); | 
 | 	} | 
 |  | 
 | 	// Performs a fused-multiply add, returning a * b + c. | 
 | 	rr::RValue<sw::SIMD::Float> FMA( | 
 | 			rr::RValue<sw::SIMD::Float> const &a, | 
 | 			rr::RValue<sw::SIMD::Float> const &b, | 
 | 			rr::RValue<sw::SIMD::Float> const &c) | 
 | 	{ | 
 | 		return a * b + c; | 
 | 	} | 
 |  | 
 | 	// Returns the exponent of the floating point number f. | 
 | 	// Assumes IEEE 754 | 
 | 	rr::RValue<sw::SIMD::Int> Exponent(rr::RValue<sw::SIMD::Float> f) | 
 | 	{ | 
 | 		auto v = rr::As<sw::SIMD::UInt>(f); | 
 | 		return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126)); | 
 | 	} | 
 |  | 
 | 	// Returns y if y < x; otherwise result is x. | 
 | 	// If one operand is a NaN, the other operand is the result. | 
 | 	// If both operands are NaN, the result is a NaN. | 
 | 	rr::RValue<sw::SIMD::Float> NMin(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y) | 
 | 	{ | 
 | 		using namespace rr; | 
 | 		auto xIsNan = IsNan(x); | 
 | 		auto yIsNan = IsNan(y); | 
 | 		return As<sw::SIMD::Float>( | 
 | 			// If neither are NaN, return min | 
 | 			((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Min(x, y))) | | 
 | 			// If one operand is a NaN, the other operand is the result | 
 | 			// If both operands are NaN, the result is a NaN. | 
 | 			((~xIsNan &  yIsNan) & As<sw::SIMD::Int>(x)) | | 
 | 			(( xIsNan          ) & As<sw::SIMD::Int>(y))); | 
 | 	} | 
 |  | 
 | 	// Returns y if y > x; otherwise result is x. | 
 | 	// If one operand is a NaN, the other operand is the result. | 
 | 	// If both operands are NaN, the result is a NaN. | 
 | 	rr::RValue<sw::SIMD::Float> NMax(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y) | 
 | 	{ | 
 | 		using namespace rr; | 
 | 		auto xIsNan = IsNan(x); | 
 | 		auto yIsNan = IsNan(y); | 
 | 		return As<sw::SIMD::Float>( | 
 | 			// If neither are NaN, return max | 
 | 			((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Max(x, y))) | | 
 | 			// If one operand is a NaN, the other operand is the result | 
 | 			// If both operands are NaN, the result is a NaN. | 
 | 			((~xIsNan &  yIsNan) & As<sw::SIMD::Int>(x)) | | 
 | 			(( xIsNan          ) & As<sw::SIMD::Int>(y))); | 
 | 	} | 
 |  | 
 | 	// Returns the determinant of a 2x2 matrix. | 
 | 	rr::RValue<sw::SIMD::Float> Determinant( | 
 | 		rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, | 
 | 		rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d) | 
 | 	{ | 
 | 		return a*d - b*c; | 
 | 	} | 
 |  | 
 | 	// Returns the determinant of a 3x3 matrix. | 
 | 	rr::RValue<sw::SIMD::Float> Determinant( | 
 | 		rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, | 
 | 		rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, | 
 | 		rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i) | 
 | 	{ | 
 | 		return a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h; | 
 | 	} | 
 |  | 
 | 	// Returns the determinant of a 4x4 matrix. | 
 | 	rr::RValue<sw::SIMD::Float> Determinant( | 
 | 		rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d, | 
 | 		rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, | 
 | 		rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l, | 
 | 		rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p) | 
 | 	{ | 
 | 		return a * Determinant(f, g, h, | 
 | 		                       j, k, l, | 
 | 		                       n, o, p) - | 
 | 		       b * Determinant(e, g, h, | 
 | 		                       i, k, l, | 
 | 		                       m, o, p) + | 
 | 		       c * Determinant(e, f, h, | 
 | 		                       i, j, l, | 
 | 		                       m, n, p) - | 
 | 		       d * Determinant(e, f, g, | 
 | 		                       i, j, k, | 
 | 		                       m, n, o); | 
 | 	} | 
 |  | 
 | 	// Returns the inverse of a 2x2 matrix. | 
 | 	std::array<rr::RValue<sw::SIMD::Float>, 4> MatrixInverse( | 
 | 		rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, | 
 | 		rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d) | 
 | 	{ | 
 | 		auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d); | 
 | 		return {{s*d, -s*b, -s*c, s*a}}; | 
 | 	} | 
 |  | 
 | 	// Returns the inverse of a 3x3 matrix. | 
 | 	std::array<rr::RValue<sw::SIMD::Float>, 9> MatrixInverse( | 
 | 		rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, | 
 | 		rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, | 
 | 		rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i) | 
 | 	{ | 
 | 		auto s = sw::SIMD::Float(1.0f) / Determinant( | 
 | 				a, b, c, | 
 | 				d, e, f, | 
 | 				g, h, i); // TODO: duplicate arithmetic calculating the det and below. | 
 |  | 
 | 		return {{ | 
 | 			s * (e*i - f*h), s * (c*h - b*i), s * (b*f - c*e), | 
 | 			s * (f*g - d*i), s * (a*i - c*g), s * (c*d - a*f), | 
 | 			s * (d*h - e*g), s * (b*g - a*h), s * (a*e - b*d), | 
 | 		}}; | 
 | 	} | 
 |  | 
 | 	// Returns the inverse of a 4x4 matrix. | 
 | 	std::array<rr::RValue<sw::SIMD::Float>, 16> MatrixInverse( | 
 | 		rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d, | 
 | 		rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, | 
 | 		rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l, | 
 | 		rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p) | 
 | 	{ | 
 | 		auto s = sw::SIMD::Float(1.0f) / Determinant( | 
 | 				a, b, c, d, | 
 | 				e, f, g, h, | 
 | 				i, j, k, l, | 
 | 				m, n, o, p); // TODO: duplicate arithmetic calculating the det and below. | 
 |  | 
 | 		auto kplo = k*p - l*o, jpln = j*p - l*n, jokn = j*o - k*n; | 
 | 		auto gpho = g*p - h*o, fphn = f*p - h*n, fogn = f*o - g*n; | 
 | 		auto glhk = g*l - h*k, flhj = f*l - h*j, fkgj = f*k - g*j; | 
 | 		auto iplm = i*p - l*m, iokm = i*o - k*m, ephm = e*p - h*m; | 
 | 		auto eogm = e*o - g*m, elhi = e*l - h*i, ekgi = e*k - g*i; | 
 | 		auto injm = i*n - j*m, enfm = e*n - f*m, ejfi = e*j - f*i; | 
 |  | 
 | 		return {{ | 
 | 			s * ( f * kplo - g * jpln + h * jokn), | 
 | 			s * (-b * kplo + c * jpln - d * jokn), | 
 | 			s * ( b * gpho - c * fphn + d * fogn), | 
 | 			s * (-b * glhk + c * flhj - d * fkgj), | 
 |  | 
 | 			s * (-e * kplo + g * iplm - h * iokm), | 
 | 			s * ( a * kplo - c * iplm + d * iokm), | 
 | 			s * (-a * gpho + c * ephm - d * eogm), | 
 | 			s * ( a * glhk - c * elhi + d * ekgi), | 
 |  | 
 | 			s * ( e * jpln - f * iplm + h * injm), | 
 | 			s * (-a * jpln + b * iplm - d * injm), | 
 | 			s * ( a * fphn - b * ephm + d * enfm), | 
 | 			s * (-a * flhj + b * elhi - d * ejfi), | 
 |  | 
 | 			s * (-e * jokn + f * iokm - g * injm), | 
 | 			s * ( a * jokn - b * iokm + c * injm), | 
 | 			s * (-a * fogn + b * eogm - c * enfm), | 
 | 			s * ( a * fkgj - b * ekgi + c * ejfi), | 
 | 		}}; | 
 | 	} | 
 |  | 
 |  | 
 | 	sw::SIMD::Pointer interleaveByLane(sw::SIMD::Pointer p) | 
 | 	{ | 
 | 		p *= sw::SIMD::Width; | 
 | 		p.staticOffsets[0] += 0 * sizeof(float); | 
 | 		p.staticOffsets[1] += 1 * sizeof(float); | 
 | 		p.staticOffsets[2] += 2 * sizeof(float); | 
 | 		p.staticOffsets[3] += 3 * sizeof(float); | 
 | 		return p; | 
 | 	} | 
 |  | 
 | 	VkFormat SpirvFormatToVulkanFormat(spv::ImageFormat format) | 
 | 	{ | 
 | 		switch (format) | 
 | 		{ | 
 | 		case spv::ImageFormatRgba32f: return VK_FORMAT_R32G32B32A32_SFLOAT; | 
 | 		case spv::ImageFormatRgba32i: return VK_FORMAT_R32G32B32A32_SINT; | 
 | 		case spv::ImageFormatRgba32ui: return VK_FORMAT_R32G32B32A32_UINT; | 
 | 		case spv::ImageFormatR32f: return VK_FORMAT_R32_SFLOAT; | 
 | 		case spv::ImageFormatR32i: return VK_FORMAT_R32_SINT; | 
 | 		case spv::ImageFormatR32ui: return VK_FORMAT_R32_UINT; | 
 | 		case spv::ImageFormatRgba8: return VK_FORMAT_R8G8B8A8_UNORM; | 
 | 		case spv::ImageFormatRgba8Snorm: return VK_FORMAT_R8G8B8A8_SNORM; | 
 | 		case spv::ImageFormatRgba8i: return VK_FORMAT_R8G8B8A8_SINT; | 
 | 		case spv::ImageFormatRgba8ui: return VK_FORMAT_R8G8B8A8_UINT; | 
 | 		case spv::ImageFormatRgba16f: return VK_FORMAT_R16G16B16A16_SFLOAT; | 
 | 		case spv::ImageFormatRgba16i: return VK_FORMAT_R16G16B16A16_SINT; | 
 | 		case spv::ImageFormatRgba16ui: return VK_FORMAT_R16G16B16A16_UINT; | 
 | 		case spv::ImageFormatRg32f: return VK_FORMAT_R32G32_SFLOAT; | 
 | 		case spv::ImageFormatRg32i: return VK_FORMAT_R32G32_SINT; | 
 | 		case spv::ImageFormatRg32ui: return VK_FORMAT_R32G32_UINT; | 
 |  | 
 | 		default: | 
 | 			UNIMPLEMENTED("SPIR-V ImageFormat %u", format); | 
 | 			return VK_FORMAT_UNDEFINED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sw::SIMD::Float sRGBtoLinear(sw::SIMD::Float c) | 
 | 	{ | 
 | 		sw::SIMD::Float lc = c * sw::SIMD::Float(1.0f / 12.92f); | 
 | 		sw::SIMD::Float ec = sw::power((c + sw::SIMD::Float(0.055f)) * sw::SIMD::Float(1.0f / 1.055f), sw::SIMD::Float(2.4f)); | 
 |  | 
 | 		sw::SIMD::Int linear = CmpLT(c, sw::SIMD::Float(0.04045f)); | 
 |  | 
 | 		return rr::As<sw::SIMD::Float>((linear & rr::As<sw::SIMD::Int>(lc)) | (~linear & rr::As<sw::SIMD::Int>(ec)));   // TODO: IfThenElse() | 
 | 	} | 
 |  | 
 | } // anonymous namespace | 
 |  | 
 | namespace sw | 
 | { | 
 | 	namespace SIMD | 
 | 	{ | 
 |  | 
 | 		template<typename T> | 
 | 		T Load(Pointer ptr, OutOfBoundsBehavior robustness, Int mask, bool atomic /* = false */, std::memory_order order /* = std::memory_order_relaxed */, int alignment /* = sizeof(float) */) | 
 | 		{ | 
 | 			using EL = typename Element<T>::type; | 
 |  | 
 | 			if (ptr.isStaticallyInBounds(sizeof(float), robustness)) | 
 | 			{ | 
 | 				// All elements are statically known to be in-bounds. | 
 | 				// We can avoid costly conditional on masks. | 
 |  | 
 | 				if (ptr.hasStaticSequentialOffsets(sizeof(float))) | 
 | 				{ | 
 | 					// Offsets are sequential. Perform regular load. | 
 | 					return rr::Load(rr::Pointer<T>(ptr.base + ptr.staticOffsets[0]), alignment, atomic, order); | 
 | 				} | 
 | 				if (ptr.hasStaticEqualOffsets()) | 
 | 				{ | 
 | 					// Load one, replicate. | 
 | 					return T(*rr::Pointer<EL>(ptr.base + ptr.staticOffsets[0], alignment)); | 
 | 				} | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				switch(robustness) | 
 | 				{ | 
 | 				case OutOfBoundsBehavior::Nullify: | 
 | 				case OutOfBoundsBehavior::RobustBufferAccess: | 
 | 				case OutOfBoundsBehavior::UndefinedValue: | 
 | 					mask &= ptr.isInBounds(sizeof(float), robustness);  // Disable out-of-bounds reads. | 
 | 					break; | 
 | 				case OutOfBoundsBehavior::UndefinedBehavior: | 
 | 					// Nothing to do. Application/compiler must guarantee no out-of-bounds accesses. | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			auto offsets = ptr.offsets(); | 
 |  | 
 | 			if (!atomic && order == std::memory_order_relaxed) | 
 | 			{ | 
 | 				if (ptr.hasStaticEqualOffsets()) | 
 | 				{ | 
 | 					// Load one, replicate. | 
 | 					// Be careful of the case where the post-bounds-check mask | 
 | 					// is 0, in which case we must not load. | 
 | 					T out = T(0); | 
 | 					If(AnyTrue(mask)) | 
 | 					{ | 
 | 						EL el = *rr::Pointer<EL>(ptr.base + ptr.staticOffsets[0], alignment); | 
 | 						out = T(el); | 
 | 					} | 
 | 					return out; | 
 | 				} | 
 |  | 
 | 				bool zeroMaskedLanes = true; | 
 | 				switch(robustness) | 
 | 				{ | 
 | 				case OutOfBoundsBehavior::Nullify: | 
 | 				case OutOfBoundsBehavior::RobustBufferAccess:  // Must either return an in-bounds value, or zero. | 
 | 					zeroMaskedLanes = true; | 
 | 					break; | 
 | 				case OutOfBoundsBehavior::UndefinedValue: | 
 | 				case OutOfBoundsBehavior::UndefinedBehavior: | 
 | 					zeroMaskedLanes = false; | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				if (ptr.hasStaticSequentialOffsets(sizeof(float))) | 
 | 				{ | 
 | 					return rr::MaskedLoad(rr::Pointer<T>(ptr.base + ptr.staticOffsets[0]), mask, alignment, zeroMaskedLanes); | 
 | 				} | 
 |  | 
 | 				return rr::Gather(rr::Pointer<EL>(ptr.base), offsets, mask, alignment, zeroMaskedLanes); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				T out; | 
 | 				auto anyLanesDisabled = AnyFalse(mask); | 
 | 				If(ptr.hasEqualOffsets() && !anyLanesDisabled) | 
 | 				{ | 
 | 					// Load one, replicate. | 
 | 					auto offset = Extract(offsets, 0); | 
 | 					out = T(rr::Load(rr::Pointer<EL>(&ptr.base[offset]), alignment, atomic, order)); | 
 | 				} | 
 | 				Else If(ptr.hasSequentialOffsets(sizeof(float)) && !anyLanesDisabled) | 
 | 				{ | 
 | 					// Load all elements in a single SIMD instruction. | 
 | 					auto offset = Extract(offsets, 0); | 
 | 					out = rr::Load(rr::Pointer<T>(&ptr.base[offset]), alignment, atomic, order); | 
 | 				} | 
 | 				Else | 
 | 				{ | 
 | 					// Divergent offsets or masked lanes. | 
 | 					out = T(0); | 
 | 					for (int i = 0; i < SIMD::Width; i++) | 
 | 					{ | 
 | 						If(Extract(mask, i) != 0) | 
 | 						{ | 
 | 							auto offset = Extract(offsets, i); | 
 | 							auto el = rr::Load(rr::Pointer<EL>(&ptr.base[offset]), alignment, atomic, order); | 
 | 							out = Insert(out, el, i); | 
 | 						} | 
 | 					} | 
 | 				} | 
 | 				return out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		template<typename T> | 
 | 		void Store(Pointer ptr, T val, OutOfBoundsBehavior robustness, Int mask, bool atomic /* = false */, std::memory_order order /* = std::memory_order_relaxed */) | 
 | 		{ | 
 | 			using EL = typename Element<T>::type; | 
 | 			constexpr size_t alignment = sizeof(float); | 
 | 			auto offsets = ptr.offsets(); | 
 |  | 
 | 			switch(robustness) | 
 | 			{ | 
 | 			case OutOfBoundsBehavior::Nullify: | 
 | 			case OutOfBoundsBehavior::RobustBufferAccess:  // TODO: Allows writing anywhere within bounds. Could be faster than masking. | 
 | 			case OutOfBoundsBehavior::UndefinedValue:  // Should not be used for store operations. Treat as robust buffer access. | 
 | 				mask &= ptr.isInBounds(sizeof(float), robustness);  // Disable out-of-bounds writes. | 
 | 				break; | 
 | 			case OutOfBoundsBehavior::UndefinedBehavior: | 
 | 				// Nothing to do. Application/compiler must guarantee no out-of-bounds accesses. | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (!atomic && order == std::memory_order_relaxed) | 
 | 			{ | 
 | 				if (ptr.hasStaticEqualOffsets()) | 
 | 				{ | 
 | 					If (AnyTrue(mask)) | 
 | 					{ | 
 | 						// All equal. One of these writes will win -- elect the winning lane. | 
 | 						auto v0111 = SIMD::Int(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); | 
 | 						auto elect = mask & ~(v0111 & (mask.xxyz | mask.xxxy | mask.xxxx)); | 
 | 						auto maskedVal = As<SIMD::Int>(val) & elect; | 
 | 						auto scalarVal = Extract(maskedVal, 0) | | 
 | 							Extract(maskedVal, 1) | | 
 | 							Extract(maskedVal, 2) | | 
 | 							Extract(maskedVal, 3); | 
 | 						*rr::Pointer<EL>(ptr.base + ptr.staticOffsets[0], alignment) = As<EL>(scalarVal); | 
 | 					} | 
 | 				} | 
 | 				else if (ptr.hasStaticSequentialOffsets(sizeof(float))) | 
 | 				{ | 
 | 					if (ptr.isStaticallyInBounds(sizeof(float), robustness)) | 
 | 					{ | 
 | 						// Pointer has no elements OOB, and the store is not atomic. | 
 | 						// Perform a RMW. | 
 | 						auto p = rr::Pointer<SIMD::Int>(ptr.base + ptr.staticOffsets[0], alignment); | 
 | 						auto prev = *p; | 
 | 						*p = (prev & ~mask) | (As<SIMD::Int>(val) & mask); | 
 | 					} | 
 | 					else | 
 | 					{ | 
 | 						rr::MaskedStore(rr::Pointer<T>(ptr.base + ptr.staticOffsets[0]), val, mask, alignment); | 
 | 					} | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					rr::Scatter(rr::Pointer<EL>(ptr.base), val, offsets, mask, alignment); | 
 | 				} | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				auto anyLanesDisabled = AnyFalse(mask); | 
 | 				If(ptr.hasSequentialOffsets(sizeof(float)) && !anyLanesDisabled) | 
 | 				{ | 
 | 					// Store all elements in a single SIMD instruction. | 
 | 					auto offset = Extract(offsets, 0); | 
 | 					Store(val, rr::Pointer<T>(&ptr.base[offset]), alignment, atomic, order); | 
 | 				} | 
 | 				Else | 
 | 				{ | 
 | 					// Divergent offsets or masked lanes. | 
 | 					for (int i = 0; i < SIMD::Width; i++) | 
 | 					{ | 
 | 						If(Extract(mask, i) != 0) | 
 | 						{ | 
 | 							auto offset = Extract(offsets, i); | 
 | 							rr::Store(Extract(val, i), rr::Pointer<EL>(&ptr.base[offset]), alignment, atomic, order); | 
 | 						} | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} // namespace SIMD | 
 |  | 
 | 	SpirvShader::SpirvShader( | 
 | 			uint32_t codeSerialID, | 
 | 			VkShaderStageFlagBits pipelineStage, | 
 | 			const char *entryPointName, | 
 | 			InsnStore const &insns, | 
 | 			const vk::RenderPass *renderPass, | 
 | 			uint32_t subpassIndex, | 
 | 			bool robustBufferAccess) | 
 | 				: insns{insns}, inputs{MAX_INTERFACE_COMPONENTS}, | 
 | 				  outputs{MAX_INTERFACE_COMPONENTS}, | 
 | 				  codeSerialID(codeSerialID), | 
 | 				  robustBufferAccess(robustBufferAccess) | 
 | 	{ | 
 | 		ASSERT(insns.size() > 0); | 
 |  | 
 | 		if (renderPass) | 
 | 		{ | 
 | 			// capture formats of any input attachments present | 
 | 			auto subpass = renderPass->getSubpass(subpassIndex); | 
 | 			inputAttachmentFormats.reserve(subpass.inputAttachmentCount); | 
 | 			for (auto i = 0u; i < subpass.inputAttachmentCount; i++) | 
 | 			{ | 
 | 				auto attachmentIndex = subpass.pInputAttachments[i].attachment; | 
 | 				inputAttachmentFormats.push_back(attachmentIndex != VK_ATTACHMENT_UNUSED | 
 | 												 ? renderPass->getAttachment(attachmentIndex).format : VK_FORMAT_UNDEFINED); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Simplifying assumptions (to be satisfied by earlier transformations) | 
 | 		// - The only input/output OpVariables present are those used by the entrypoint | 
 |  | 
 | 		Function::ID currentFunction; | 
 | 		Block::ID currentBlock; | 
 | 		InsnIterator blockStart; | 
 |  | 
 | 		for (auto insn : *this) | 
 | 		{ | 
 | 			spv::Op opcode = insn.opcode(); | 
 |  | 
 | 			switch (opcode) | 
 | 			{ | 
 | 			case spv::OpEntryPoint: | 
 | 			{ | 
 | 				executionModel = spv::ExecutionModel(insn.word(1)); | 
 | 				auto id = Function::ID(insn.word(2)); | 
 | 				auto name = insn.string(3); | 
 | 				auto stage = executionModelToStage(executionModel); | 
 | 				if (stage == pipelineStage && strcmp(name, entryPointName) == 0) | 
 | 				{ | 
 | 					ASSERT_MSG(entryPoint == 0, "Duplicate entry point with name '%s' and stage %d", name, int(stage)); | 
 | 					entryPoint = id; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpExecutionMode: | 
 | 				ProcessExecutionMode(insn); | 
 | 				break; | 
 |  | 
 | 			case spv::OpDecorate: | 
 | 			{ | 
 | 				TypeOrObjectID targetId = insn.word(1); | 
 | 				auto decoration = static_cast<spv::Decoration>(insn.word(2)); | 
 | 				uint32_t value = insn.wordCount() > 3 ? insn.word(3) : 0; | 
 |  | 
 | 				decorations[targetId].Apply(decoration, value); | 
 |  | 
 | 				switch(decoration) | 
 | 				{ | 
 | 				case spv::DecorationDescriptorSet: | 
 | 					descriptorDecorations[targetId].DescriptorSet = value; | 
 | 					break; | 
 | 				case spv::DecorationBinding: | 
 | 					descriptorDecorations[targetId].Binding = value; | 
 | 					break; | 
 | 				case spv::DecorationInputAttachmentIndex: | 
 | 					descriptorDecorations[targetId].InputAttachmentIndex = value; | 
 | 					break; | 
 | 				default: | 
 | 					// Only handling descriptor decorations here. | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				if (decoration == spv::DecorationCentroid) | 
 | 					modes.NeedsCentroid = true; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpMemberDecorate: | 
 | 			{ | 
 | 				Type::ID targetId = insn.word(1); | 
 | 				auto memberIndex = insn.word(2); | 
 | 				auto decoration = static_cast<spv::Decoration>(insn.word(3)); | 
 | 				uint32_t value = insn.wordCount() > 4 ? insn.word(4) : 0; | 
 |  | 
 | 				auto &d = memberDecorations[targetId]; | 
 | 				if (memberIndex >= d.size()) | 
 | 					d.resize(memberIndex + 1);    // on demand; exact size would require another pass... | 
 |  | 
 | 				d[memberIndex].Apply(decoration, value); | 
 |  | 
 | 				if (decoration == spv::DecorationCentroid) | 
 | 					modes.NeedsCentroid = true; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpDecorationGroup: | 
 | 				// Nothing to do here. We don't need to record the definition of the group; we'll just have | 
 | 				// the bundle of decorations float around. If we were to ever walk the decorations directly, | 
 | 				// we might think about introducing this as a real Object. | 
 | 				break; | 
 |  | 
 | 			case spv::OpGroupDecorate: | 
 | 			{ | 
 | 				uint32_t group = insn.word(1); | 
 | 				auto const &groupDecorations = decorations[group]; | 
 | 				auto const &descriptorGroupDecorations = descriptorDecorations[group]; | 
 | 				for (auto i = 2u; i < insn.wordCount(); i++) | 
 | 				{ | 
 | 					// Remaining operands are targets to apply the group to. | 
 | 					uint32_t target = insn.word(i); | 
 | 					decorations[target].Apply(groupDecorations); | 
 | 					descriptorDecorations[target].Apply(descriptorGroupDecorations); | 
 | 				} | 
 |  | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpGroupMemberDecorate: | 
 | 			{ | 
 | 				auto const &srcDecorations = decorations[insn.word(1)]; | 
 | 				for (auto i = 2u; i < insn.wordCount(); i += 2) | 
 | 				{ | 
 | 					// remaining operands are pairs of <id>, literal for members to apply to. | 
 | 					auto &d = memberDecorations[insn.word(i)]; | 
 | 					auto memberIndex = insn.word(i + 1); | 
 | 					if (memberIndex >= d.size()) | 
 | 						d.resize(memberIndex + 1);    // on demand resize, see above... | 
 | 					d[memberIndex].Apply(srcDecorations); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpLabel: | 
 | 			{ | 
 | 				ASSERT(currentBlock.value() == 0); | 
 | 				currentBlock = Block::ID(insn.word(1)); | 
 | 				blockStart = insn; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			// Branch Instructions (subset of Termination Instructions): | 
 | 			case spv::OpBranch: | 
 | 			case spv::OpBranchConditional: | 
 | 			case spv::OpSwitch: | 
 | 			case spv::OpReturn: | 
 | 			// fallthrough | 
 |  | 
 | 			// Termination instruction: | 
 | 			case spv::OpKill: | 
 | 			case spv::OpUnreachable: | 
 | 			{ | 
 | 				ASSERT(currentBlock.value() != 0); | 
 | 				ASSERT(currentFunction.value() != 0); | 
 |  | 
 | 				auto blockEnd = insn; blockEnd++; | 
 | 				functions[currentFunction].blocks[currentBlock] = Block(blockStart, blockEnd); | 
 | 				currentBlock = Block::ID(0); | 
 |  | 
 | 				if (opcode == spv::OpKill) | 
 | 				{ | 
 | 					modes.ContainsKill = true; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpLoopMerge: | 
 | 			case spv::OpSelectionMerge: | 
 | 				break; // Nothing to do in analysis pass. | 
 |  | 
 | 			case spv::OpTypeVoid: | 
 | 			case spv::OpTypeBool: | 
 | 			case spv::OpTypeInt: | 
 | 			case spv::OpTypeFloat: | 
 | 			case spv::OpTypeVector: | 
 | 			case spv::OpTypeMatrix: | 
 | 			case spv::OpTypeImage: | 
 | 			case spv::OpTypeSampler: | 
 | 			case spv::OpTypeSampledImage: | 
 | 			case spv::OpTypeArray: | 
 | 			case spv::OpTypeRuntimeArray: | 
 | 			case spv::OpTypeStruct: | 
 | 			case spv::OpTypePointer: | 
 | 			case spv::OpTypeFunction: | 
 | 				DeclareType(insn); | 
 | 				break; | 
 |  | 
 | 			case spv::OpVariable: | 
 | 			{ | 
 | 				Type::ID typeId = insn.word(1); | 
 | 				Object::ID resultId = insn.word(2); | 
 | 				auto storageClass = static_cast<spv::StorageClass>(insn.word(3)); | 
 |  | 
 | 				auto &object = defs[resultId]; | 
 | 				object.kind = Object::Kind::Pointer; | 
 | 				object.definition = insn; | 
 | 				object.type = typeId; | 
 |  | 
 | 				ASSERT(getType(typeId).definition.opcode() == spv::OpTypePointer); | 
 | 				ASSERT(getType(typeId).storageClass == storageClass); | 
 |  | 
 | 				switch (storageClass) | 
 | 				{ | 
 | 				case spv::StorageClassInput: | 
 | 				case spv::StorageClassOutput: | 
 | 					ProcessInterfaceVariable(object); | 
 | 					break; | 
 |  | 
 | 				case spv::StorageClassUniform: | 
 | 				case spv::StorageClassStorageBuffer: | 
 | 					object.kind = Object::Kind::DescriptorSet; | 
 | 					break; | 
 |  | 
 | 				case spv::StorageClassPushConstant: | 
 | 				case spv::StorageClassPrivate: | 
 | 				case spv::StorageClassFunction: | 
 | 				case spv::StorageClassUniformConstant: | 
 | 					break; // Correctly handled. | 
 |  | 
 | 				case spv::StorageClassWorkgroup: | 
 | 				{ | 
 | 					auto &elTy = getType(getType(typeId).element); | 
 | 					auto sizeInBytes = elTy.sizeInComponents * static_cast<uint32_t>(sizeof(float)); | 
 | 					workgroupMemory.allocate(resultId, sizeInBytes); | 
 | 					object.kind = Object::Kind::Pointer; | 
 | 					break; | 
 | 				} | 
 | 				case spv::StorageClassAtomicCounter: | 
 | 				case spv::StorageClassImage: | 
 | 					UNIMPLEMENTED("StorageClass %d not yet implemented", (int)storageClass); | 
 | 					break; | 
 |  | 
 | 				case spv::StorageClassCrossWorkgroup: | 
 | 					UNSUPPORTED("SPIR-V OpenCL Execution Model (StorageClassCrossWorkgroup)"); | 
 | 					break; | 
 |  | 
 | 				case spv::StorageClassGeneric: | 
 | 					UNSUPPORTED("SPIR-V GenericPointer Capability (StorageClassGeneric)"); | 
 | 					break; | 
 |  | 
 | 				default: | 
 | 					UNREACHABLE("Unexpected StorageClass %d", storageClass); // See Appendix A of the Vulkan spec. | 
 | 					break; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpConstant: | 
 | 			case spv::OpSpecConstant: | 
 | 				CreateConstant(insn).constantValue[0] = insn.word(3); | 
 | 				break; | 
 | 			case spv::OpConstantFalse: | 
 | 			case spv::OpSpecConstantFalse: | 
 | 				CreateConstant(insn).constantValue[0] = 0;    // Represent Boolean false as zero. | 
 | 				break; | 
 | 			case spv::OpConstantTrue: | 
 | 			case spv::OpSpecConstantTrue: | 
 | 				CreateConstant(insn).constantValue[0] = ~0u;  // Represent Boolean true as all bits set. | 
 | 				break; | 
 | 			case spv::OpConstantNull: | 
 | 			case spv::OpUndef: | 
 | 			{ | 
 | 				// TODO: consider a real LLVM-level undef. For now, zero is a perfectly good value. | 
 | 				// OpConstantNull forms a constant of arbitrary type, all zeros. | 
 | 				auto &object = CreateConstant(insn); | 
 | 				auto &objectTy = getType(object.type); | 
 | 				for (auto i = 0u; i < objectTy.sizeInComponents; i++) | 
 | 				{ | 
 | 					object.constantValue[i] = 0; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpConstantComposite: | 
 | 			case spv::OpSpecConstantComposite: | 
 | 			{ | 
 | 				auto &object = CreateConstant(insn); | 
 | 				auto offset = 0u; | 
 | 				for (auto i = 0u; i < insn.wordCount() - 3; i++) | 
 | 				{ | 
 | 					auto &constituent = getObject(insn.word(i + 3)); | 
 | 					auto &constituentTy = getType(constituent.type); | 
 | 					for (auto j = 0u; j < constituentTy.sizeInComponents; j++) | 
 | 					{ | 
 | 						object.constantValue[offset++] = constituent.constantValue[j]; | 
 | 					} | 
 | 				} | 
 |  | 
 | 				auto objectId = Object::ID(insn.word(2)); | 
 | 				auto decorationsIt = decorations.find(objectId); | 
 | 				if (decorationsIt != decorations.end() && | 
 | 					decorationsIt->second.BuiltIn == spv::BuiltInWorkgroupSize) | 
 | 				{ | 
 | 					// https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html#interfaces-builtin-variables : | 
 | 					// Decorating an object with the WorkgroupSize built-in | 
 | 					// decoration will make that object contain the dimensions | 
 | 					// of a local workgroup. If an object is decorated with the | 
 | 					// WorkgroupSize decoration, this must take precedence over | 
 | 					// any execution mode set for LocalSize. | 
 | 					// The object decorated with WorkgroupSize must be declared | 
 | 					// as a three-component vector of 32-bit integers. | 
 | 					ASSERT(getType(object.type).sizeInComponents == 3); | 
 | 					modes.WorkgroupSizeX = object.constantValue[0]; | 
 | 					modes.WorkgroupSizeY = object.constantValue[1]; | 
 | 					modes.WorkgroupSizeZ = object.constantValue[2]; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpSpecConstantOp: | 
 | 				EvalSpecConstantOp(insn); | 
 | 				break; | 
 |  | 
 | 			case spv::OpCapability: | 
 | 			{ | 
 | 				auto capability = static_cast<spv::Capability>(insn.word(1)); | 
 | 				switch (capability) | 
 | 				{ | 
 | 				case spv::CapabilityMatrix: capabilities.Matrix = true; break; | 
 | 				case spv::CapabilityShader: capabilities.Shader = true; break; | 
 | 				case spv::CapabilityInputAttachment: capabilities.InputAttachment = true; break; | 
 | 				case spv::CapabilitySampled1D: capabilities.Sampled1D = true; break; | 
 | 				case spv::CapabilityImage1D: capabilities.Image1D = true; break; | 
 | 				case spv::CapabilitySampledBuffer: capabilities.SampledBuffer = true; break; | 
 | 				case spv::CapabilityImageBuffer: capabilities.ImageBuffer = true; break; | 
 | 				case spv::CapabilityImageQuery: capabilities.ImageQuery = true; break; | 
 | 				case spv::CapabilityDerivativeControl: capabilities.DerivativeControl = true; break; | 
 | 				case spv::CapabilityGroupNonUniform: capabilities.GroupNonUniform = true; break; | 
 | 				case spv::CapabilityMultiView: capabilities.MultiView = true; break; | 
 | 				case spv::CapabilityDeviceGroup: capabilities.DeviceGroup = true; break; | 
 | 				case spv::CapabilityGroupNonUniformVote: capabilities.GroupNonUniformVote = true; break; | 
 | 				case spv::CapabilityGroupNonUniformBallot: capabilities.GroupNonUniformBallot = true; break; | 
 | 				case spv::CapabilityGroupNonUniformShuffle: capabilities.GroupNonUniformShuffle = true; break; | 
 | 				case spv::CapabilityGroupNonUniformShuffleRelative: capabilities.GroupNonUniformShuffleRelative = true; break; | 
 | 				case spv::CapabilityStorageImageExtendedFormats: capabilities.StorageImageExtendedFormats = true; break; | 
 | 				default: | 
 | 					UNSUPPORTED("Unsupported capability %u", insn.word(1)); | 
 | 				} | 
 | 				break; // Various capabilities will be declared, but none affect our code generation at this point. | 
 | 			} | 
 |  | 
 | 			case spv::OpMemoryModel: | 
 | 				break; // Memory model does not affect our code generation until we decide to do Vulkan Memory Model support. | 
 |  | 
 | 			case spv::OpFunction: | 
 | 			{ | 
 | 				auto functionId = Function::ID(insn.word(2)); | 
 | 				ASSERT_MSG(currentFunction == 0, "Functions %d and %d overlap", currentFunction.value(), functionId.value()); | 
 | 				currentFunction = functionId; | 
 | 				auto &function = functions[functionId]; | 
 | 				function.result = Type::ID(insn.word(1)); | 
 | 				function.type = Type::ID(insn.word(4)); | 
 | 				// Scan forward to find the function's label. | 
 | 				for (auto it = insn; it != end() && function.entry == 0; it++) | 
 | 				{ | 
 | 					switch (it.opcode()) | 
 | 					{ | 
 | 					case spv::OpFunction: | 
 | 					case spv::OpFunctionParameter: | 
 | 						break; | 
 | 					case spv::OpLabel: | 
 | 						function.entry = Block::ID(it.word(1)); | 
 | 						break; | 
 | 					default: | 
 | 						WARN("Unexpected opcode '%s' following OpFunction", OpcodeName(it.opcode()).c_str()); | 
 | 					} | 
 | 				} | 
 | 				ASSERT_MSG(function.entry != 0, "Function<%d> has no label", currentFunction.value()); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpFunctionEnd: | 
 | 				currentFunction = 0; | 
 | 				break; | 
 |  | 
 | 			case spv::OpExtInstImport: | 
 | 			{ | 
 | 				// We will only support the GLSL 450 extended instruction set, so no point in tracking the ID we assign it. | 
 | 				// Valid shaders will not attempt to import any other instruction sets. | 
 | 				auto ext = insn.string(2); | 
 | 				if (0 != strcmp("GLSL.std.450", ext)) | 
 | 				{ | 
 | 					UNSUPPORTED("SPIR-V Extension: %s", ext); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpName: | 
 | 			case spv::OpMemberName: | 
 | 			case spv::OpSource: | 
 | 			case spv::OpSourceContinued: | 
 | 			case spv::OpSourceExtension: | 
 | 			case spv::OpLine: | 
 | 			case spv::OpNoLine: | 
 | 			case spv::OpModuleProcessed: | 
 | 			case spv::OpString: | 
 | 				// No semantic impact | 
 | 				break; | 
 |  | 
 | 			case spv::OpFunctionParameter: | 
 | 			case spv::OpFunctionCall: | 
 | 				// These should have all been removed by preprocessing passes. If we see them here, | 
 | 				// our assumptions are wrong and we will probably generate wrong code. | 
 | 				UNREACHABLE("%s should have already been lowered.", OpcodeName(opcode).c_str()); | 
 | 				break; | 
 |  | 
 | 			case spv::OpFConvert: | 
 | 				UNSUPPORTED("SPIR-V Float16 or Float64 Capability (OpFConvert)"); | 
 | 				break; | 
 |  | 
 | 			case spv::OpSConvert: | 
 | 				UNSUPPORTED("SPIR-V Int16 or Int64 Capability (OpSConvert)"); | 
 | 				break; | 
 |  | 
 | 			case spv::OpUConvert: | 
 | 				UNSUPPORTED("SPIR-V Int16 or Int64 Capability (OpUConvert)"); | 
 | 				break; | 
 |  | 
 | 			case spv::OpLoad: | 
 | 			case spv::OpAccessChain: | 
 | 			case spv::OpInBoundsAccessChain: | 
 | 			case spv::OpSampledImage: | 
 | 			case spv::OpImage: | 
 | 				{ | 
 | 					// Propagate the descriptor decorations to the result. | 
 | 					Object::ID resultId = insn.word(2); | 
 | 					Object::ID pointerId = insn.word(3); | 
 | 					const auto &d = descriptorDecorations.find(pointerId); | 
 |  | 
 | 					if(d != descriptorDecorations.end()) | 
 | 					{ | 
 | 						descriptorDecorations[resultId] = d->second; | 
 | 					} | 
 |  | 
 | 					DefineResult(insn); | 
 |  | 
 | 					if (opcode == spv::OpAccessChain || opcode == spv::OpInBoundsAccessChain) | 
 | 					{ | 
 | 						Decorations dd{}; | 
 | 						ApplyDecorationsForAccessChain(&dd, &descriptorDecorations[resultId], pointerId, insn.wordCount() - 4, insn.wordPointer(4)); | 
 | 						// Note: offset is the one thing that does *not* propagate, as the access chain accounts for it. | 
 | 						dd.HasOffset = false; | 
 | 						decorations[resultId].Apply(dd); | 
 | 					} | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			case spv::OpCompositeConstruct: | 
 | 			case spv::OpCompositeInsert: | 
 | 			case spv::OpCompositeExtract: | 
 | 			case spv::OpVectorShuffle: | 
 | 			case spv::OpVectorTimesScalar: | 
 | 			case spv::OpMatrixTimesScalar: | 
 | 			case spv::OpMatrixTimesVector: | 
 | 			case spv::OpVectorTimesMatrix: | 
 | 			case spv::OpMatrixTimesMatrix: | 
 | 			case spv::OpOuterProduct: | 
 | 			case spv::OpTranspose: | 
 | 			case spv::OpVectorExtractDynamic: | 
 | 			case spv::OpVectorInsertDynamic: | 
 | 			// Unary ops | 
 | 			case spv::OpNot: | 
 | 			case spv::OpBitFieldInsert: | 
 | 			case spv::OpBitFieldSExtract: | 
 | 			case spv::OpBitFieldUExtract: | 
 | 			case spv::OpBitReverse: | 
 | 			case spv::OpBitCount: | 
 | 			case spv::OpSNegate: | 
 | 			case spv::OpFNegate: | 
 | 			case spv::OpLogicalNot: | 
 | 			case spv::OpQuantizeToF16: | 
 | 			// Binary ops | 
 | 			case spv::OpIAdd: | 
 | 			case spv::OpISub: | 
 | 			case spv::OpIMul: | 
 | 			case spv::OpSDiv: | 
 | 			case spv::OpUDiv: | 
 | 			case spv::OpFAdd: | 
 | 			case spv::OpFSub: | 
 | 			case spv::OpFMul: | 
 | 			case spv::OpFDiv: | 
 | 			case spv::OpFMod: | 
 | 			case spv::OpFRem: | 
 | 			case spv::OpFOrdEqual: | 
 | 			case spv::OpFUnordEqual: | 
 | 			case spv::OpFOrdNotEqual: | 
 | 			case spv::OpFUnordNotEqual: | 
 | 			case spv::OpFOrdLessThan: | 
 | 			case spv::OpFUnordLessThan: | 
 | 			case spv::OpFOrdGreaterThan: | 
 | 			case spv::OpFUnordGreaterThan: | 
 | 			case spv::OpFOrdLessThanEqual: | 
 | 			case spv::OpFUnordLessThanEqual: | 
 | 			case spv::OpFOrdGreaterThanEqual: | 
 | 			case spv::OpFUnordGreaterThanEqual: | 
 | 			case spv::OpSMod: | 
 | 			case spv::OpSRem: | 
 | 			case spv::OpUMod: | 
 | 			case spv::OpIEqual: | 
 | 			case spv::OpINotEqual: | 
 | 			case spv::OpUGreaterThan: | 
 | 			case spv::OpSGreaterThan: | 
 | 			case spv::OpUGreaterThanEqual: | 
 | 			case spv::OpSGreaterThanEqual: | 
 | 			case spv::OpULessThan: | 
 | 			case spv::OpSLessThan: | 
 | 			case spv::OpULessThanEqual: | 
 | 			case spv::OpSLessThanEqual: | 
 | 			case spv::OpShiftRightLogical: | 
 | 			case spv::OpShiftRightArithmetic: | 
 | 			case spv::OpShiftLeftLogical: | 
 | 			case spv::OpBitwiseOr: | 
 | 			case spv::OpBitwiseXor: | 
 | 			case spv::OpBitwiseAnd: | 
 | 			case spv::OpLogicalOr: | 
 | 			case spv::OpLogicalAnd: | 
 | 			case spv::OpLogicalEqual: | 
 | 			case spv::OpLogicalNotEqual: | 
 | 			case spv::OpUMulExtended: | 
 | 			case spv::OpSMulExtended: | 
 | 			case spv::OpIAddCarry: | 
 | 			case spv::OpISubBorrow: | 
 | 			case spv::OpDot: | 
 | 			case spv::OpConvertFToU: | 
 | 			case spv::OpConvertFToS: | 
 | 			case spv::OpConvertSToF: | 
 | 			case spv::OpConvertUToF: | 
 | 			case spv::OpBitcast: | 
 | 			case spv::OpSelect: | 
 | 			case spv::OpExtInst: | 
 | 			case spv::OpIsInf: | 
 | 			case spv::OpIsNan: | 
 | 			case spv::OpAny: | 
 | 			case spv::OpAll: | 
 | 			case spv::OpDPdx: | 
 | 			case spv::OpDPdxCoarse: | 
 | 			case spv::OpDPdy: | 
 | 			case spv::OpDPdyCoarse: | 
 | 			case spv::OpFwidth: | 
 | 			case spv::OpFwidthCoarse: | 
 | 			case spv::OpDPdxFine: | 
 | 			case spv::OpDPdyFine: | 
 | 			case spv::OpFwidthFine: | 
 | 			case spv::OpAtomicLoad: | 
 | 			case spv::OpAtomicIAdd: | 
 | 			case spv::OpAtomicISub: | 
 | 			case spv::OpAtomicSMin: | 
 | 			case spv::OpAtomicSMax: | 
 | 			case spv::OpAtomicUMin: | 
 | 			case spv::OpAtomicUMax: | 
 | 			case spv::OpAtomicAnd: | 
 | 			case spv::OpAtomicOr: | 
 | 			case spv::OpAtomicXor: | 
 | 			case spv::OpAtomicIIncrement: | 
 | 			case spv::OpAtomicIDecrement: | 
 | 			case spv::OpAtomicExchange: | 
 | 			case spv::OpAtomicCompareExchange: | 
 | 			case spv::OpPhi: | 
 | 			case spv::OpImageSampleImplicitLod: | 
 | 			case spv::OpImageSampleExplicitLod: | 
 | 			case spv::OpImageSampleDrefImplicitLod: | 
 | 			case spv::OpImageSampleDrefExplicitLod: | 
 | 			case spv::OpImageSampleProjImplicitLod: | 
 | 			case spv::OpImageSampleProjExplicitLod: | 
 | 			case spv::OpImageSampleProjDrefImplicitLod: | 
 | 			case spv::OpImageSampleProjDrefExplicitLod: | 
 | 			case spv::OpImageGather: | 
 | 			case spv::OpImageDrefGather: | 
 | 			case spv::OpImageFetch: | 
 | 			case spv::OpImageQuerySizeLod: | 
 | 			case spv::OpImageQuerySize: | 
 | 			case spv::OpImageQueryLod: | 
 | 			case spv::OpImageQueryLevels: | 
 | 			case spv::OpImageQuerySamples: | 
 | 			case spv::OpImageRead: | 
 | 			case spv::OpImageTexelPointer: | 
 | 			case spv::OpGroupNonUniformElect: | 
 | 			case spv::OpGroupNonUniformAll: | 
 | 			case spv::OpGroupNonUniformAny: | 
 | 			case spv::OpGroupNonUniformAllEqual: | 
 | 			case spv::OpGroupNonUniformBroadcast: | 
 | 			case spv::OpGroupNonUniformBroadcastFirst: | 
 | 			case spv::OpGroupNonUniformBallot: | 
 | 			case spv::OpGroupNonUniformInverseBallot: | 
 | 			case spv::OpGroupNonUniformBallotBitExtract: | 
 | 			case spv::OpGroupNonUniformBallotBitCount: | 
 | 			case spv::OpGroupNonUniformBallotFindLSB: | 
 | 			case spv::OpGroupNonUniformBallotFindMSB: | 
 | 			case spv::OpGroupNonUniformShuffle: | 
 | 			case spv::OpGroupNonUniformShuffleXor: | 
 | 			case spv::OpGroupNonUniformShuffleUp: | 
 | 			case spv::OpGroupNonUniformShuffleDown: | 
 | 			case spv::OpCopyObject: | 
 | 			case spv::OpArrayLength: | 
 | 				// Instructions that yield an intermediate value or divergent pointer | 
 | 				DefineResult(insn); | 
 | 				break; | 
 |  | 
 | 			case spv::OpStore: | 
 | 			case spv::OpAtomicStore: | 
 | 			case spv::OpImageWrite: | 
 | 			case spv::OpCopyMemory: | 
 | 			case spv::OpMemoryBarrier: | 
 | 				// Don't need to do anything during analysis pass | 
 | 				break; | 
 |  | 
 | 			case spv::OpControlBarrier: | 
 | 				modes.ContainsControlBarriers = true; | 
 | 				break; | 
 |  | 
 | 			case spv::OpExtension: | 
 | 			{ | 
 | 				auto ext = insn.string(1); | 
 | 				// Part of core SPIR-V 1.3. Vulkan 1.1 implementations must also accept the pre-1.3 | 
 | 				// extension per Appendix A, `Vulkan Environment for SPIR-V`. | 
 | 				if (!strcmp(ext, "SPV_KHR_storage_buffer_storage_class")) break; | 
 | 				if (!strcmp(ext, "SPV_KHR_shader_draw_parameters")) break; | 
 | 				if (!strcmp(ext, "SPV_KHR_16bit_storage")) break; | 
 | 				if (!strcmp(ext, "SPV_KHR_variable_pointers")) break; | 
 | 				if (!strcmp(ext, "SPV_KHR_device_group")) break; | 
 | 				if (!strcmp(ext, "SPV_KHR_multiview")) break; | 
 | 				UNSUPPORTED("SPIR-V Extension: %s", ext); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			default: | 
 | 				UNIMPLEMENTED("%s", OpcodeName(opcode).c_str()); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ASSERT_MSG(entryPoint != 0, "Entry point '%s' not found", entryPointName); | 
 | 		for (auto &it : functions) | 
 | 		{ | 
 | 			it.second.AssignBlockFields(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::DeclareType(InsnIterator insn) | 
 | 	{ | 
 | 		Type::ID resultId = insn.word(1); | 
 |  | 
 | 		auto &type = types[resultId]; | 
 | 		type.definition = insn; | 
 | 		type.sizeInComponents = ComputeTypeSize(insn); | 
 |  | 
 | 		// A structure is a builtin block if it has a builtin | 
 | 		// member. All members of such a structure are builtins. | 
 | 		switch (insn.opcode()) | 
 | 		{ | 
 | 		case spv::OpTypeStruct: | 
 | 		{ | 
 | 			auto d = memberDecorations.find(resultId); | 
 | 			if (d != memberDecorations.end()) | 
 | 			{ | 
 | 				for (auto &m : d->second) | 
 | 				{ | 
 | 					if (m.HasBuiltIn) | 
 | 					{ | 
 | 						type.isBuiltInBlock = true; | 
 | 						break; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case spv::OpTypePointer: | 
 | 		{ | 
 | 			Type::ID elementTypeId = insn.word(3); | 
 | 			type.element = elementTypeId; | 
 | 			type.isBuiltInBlock = getType(elementTypeId).isBuiltInBlock; | 
 | 			type.storageClass = static_cast<spv::StorageClass>(insn.word(2)); | 
 | 			break; | 
 | 		} | 
 | 		case spv::OpTypeVector: | 
 | 		case spv::OpTypeMatrix: | 
 | 		case spv::OpTypeArray: | 
 | 		case spv::OpTypeRuntimeArray: | 
 | 		{ | 
 | 			Type::ID elementTypeId = insn.word(2); | 
 | 			type.element = elementTypeId; | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SpirvShader::Object& SpirvShader::CreateConstant(InsnIterator insn) | 
 | 	{ | 
 | 		Type::ID typeId = insn.word(1); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		auto &object = defs[resultId]; | 
 | 		auto &objectTy = getType(typeId); | 
 | 		object.type = typeId; | 
 | 		object.kind = Object::Kind::Constant; | 
 | 		object.definition = insn; | 
 | 		object.constantValue = std::unique_ptr<uint32_t[]>(new uint32_t[objectTy.sizeInComponents]); | 
 | 		return object; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::ProcessInterfaceVariable(Object &object) | 
 | 	{ | 
 | 		auto &objectTy = getType(object.type); | 
 | 		ASSERT(objectTy.storageClass == spv::StorageClassInput || objectTy.storageClass == spv::StorageClassOutput); | 
 |  | 
 | 		ASSERT(objectTy.opcode() == spv::OpTypePointer); | 
 | 		auto pointeeTy = getType(objectTy.element); | 
 |  | 
 | 		auto &builtinInterface = (objectTy.storageClass == spv::StorageClassInput) ? inputBuiltins : outputBuiltins; | 
 | 		auto &userDefinedInterface = (objectTy.storageClass == spv::StorageClassInput) ? inputs : outputs; | 
 |  | 
 | 		ASSERT(object.opcode() == spv::OpVariable); | 
 | 		Object::ID resultId = object.definition.word(2); | 
 |  | 
 | 		if (objectTy.isBuiltInBlock) | 
 | 		{ | 
 | 			// walk the builtin block, registering each of its members separately. | 
 | 			auto m = memberDecorations.find(objectTy.element); | 
 | 			ASSERT(m != memberDecorations.end());        // otherwise we wouldn't have marked the type chain | 
 | 			auto &structType = pointeeTy.definition; | 
 | 			auto offset = 0u; | 
 | 			auto word = 2u; | 
 | 			for (auto &member : m->second) | 
 | 			{ | 
 | 				auto &memberType = getType(structType.word(word)); | 
 |  | 
 | 				if (member.HasBuiltIn) | 
 | 				{ | 
 | 					builtinInterface[member.BuiltIn] = {resultId, offset, memberType.sizeInComponents}; | 
 | 				} | 
 |  | 
 | 				offset += memberType.sizeInComponents; | 
 | 				++word; | 
 | 			} | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		auto d = decorations.find(resultId); | 
 | 		if (d != decorations.end() && d->second.HasBuiltIn) | 
 | 		{ | 
 | 			builtinInterface[d->second.BuiltIn] = {resultId, 0, pointeeTy.sizeInComponents}; | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			object.kind = Object::Kind::InterfaceVariable; | 
 | 			VisitInterface(resultId, | 
 | 						   [&userDefinedInterface](Decorations const &d, AttribType type) { | 
 | 							   // Populate a single scalar slot in the interface from a collection of decorations and the intended component type. | 
 | 							   auto scalarSlot = (d.Location << 2) | d.Component; | 
 | 							   ASSERT(scalarSlot >= 0 && | 
 | 									  scalarSlot < static_cast<int32_t>(userDefinedInterface.size())); | 
 |  | 
 | 							   auto &slot = userDefinedInterface[scalarSlot]; | 
 | 							   slot.Type = type; | 
 | 							   slot.Flat = d.Flat; | 
 | 							   slot.NoPerspective = d.NoPerspective; | 
 | 							   slot.Centroid = d.Centroid; | 
 | 						   }); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::ProcessExecutionMode(InsnIterator insn) | 
 | 	{ | 
 | 		auto mode = static_cast<spv::ExecutionMode>(insn.word(2)); | 
 | 		switch (mode) | 
 | 		{ | 
 | 		case spv::ExecutionModeEarlyFragmentTests: | 
 | 			modes.EarlyFragmentTests = true; | 
 | 			break; | 
 | 		case spv::ExecutionModeDepthReplacing: | 
 | 			modes.DepthReplacing = true; | 
 | 			break; | 
 | 		case spv::ExecutionModeDepthGreater: | 
 | 			modes.DepthGreater = true; | 
 | 			break; | 
 | 		case spv::ExecutionModeDepthLess: | 
 | 			modes.DepthLess = true; | 
 | 			break; | 
 | 		case spv::ExecutionModeDepthUnchanged: | 
 | 			modes.DepthUnchanged = true; | 
 | 			break; | 
 | 		case spv::ExecutionModeLocalSize: | 
 | 			modes.WorkgroupSizeX = insn.word(3); | 
 | 			modes.WorkgroupSizeY = insn.word(4); | 
 | 			modes.WorkgroupSizeZ = insn.word(5); | 
 | 			break; | 
 | 		case spv::ExecutionModeOriginUpperLeft: | 
 | 			// This is always the case for a Vulkan shader. Do nothing. | 
 | 			break; | 
 | 		default: | 
 | 			UNREACHABLE("Execution mode: %d", int(mode)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	uint32_t SpirvShader::ComputeTypeSize(InsnIterator insn) | 
 | 	{ | 
 | 		// Types are always built from the bottom up (with the exception of forward ptrs, which | 
 | 		// don't appear in Vulkan shaders. Therefore, we can always assume our component parts have | 
 | 		// already been described (and so their sizes determined) | 
 | 		switch (insn.opcode()) | 
 | 		{ | 
 | 		case spv::OpTypeVoid: | 
 | 		case spv::OpTypeSampler: | 
 | 		case spv::OpTypeImage: | 
 | 		case spv::OpTypeSampledImage: | 
 | 		case spv::OpTypeFunction: | 
 | 		case spv::OpTypeRuntimeArray: | 
 | 			// Objects that don't consume any space. | 
 | 			// Descriptor-backed objects currently only need exist at compile-time. | 
 | 			// Runtime arrays don't appear in places where their size would be interesting | 
 | 			return 0; | 
 |  | 
 | 		case spv::OpTypeBool: | 
 | 		case spv::OpTypeFloat: | 
 | 		case spv::OpTypeInt: | 
 | 			// All the fundamental types are 1 component. If we ever add support for 8/16/64-bit components, | 
 | 			// we might need to change this, but only 32 bit components are required for Vulkan 1.1. | 
 | 			return 1; | 
 |  | 
 | 		case spv::OpTypeVector: | 
 | 		case spv::OpTypeMatrix: | 
 | 			// Vectors and matrices both consume element count * element size. | 
 | 			return getType(insn.word(2)).sizeInComponents * insn.word(3); | 
 |  | 
 | 		case spv::OpTypeArray: | 
 | 		{ | 
 | 			// Element count * element size. Array sizes come from constant ids. | 
 | 			auto arraySize = GetConstScalarInt(insn.word(3)); | 
 | 			return getType(insn.word(2)).sizeInComponents * arraySize; | 
 | 		} | 
 |  | 
 | 		case spv::OpTypeStruct: | 
 | 		{ | 
 | 			uint32_t size = 0; | 
 | 			for (uint32_t i = 2u; i < insn.wordCount(); i++) | 
 | 			{ | 
 | 				size += getType(insn.word(i)).sizeInComponents; | 
 | 			} | 
 | 			return size; | 
 | 		} | 
 |  | 
 | 		case spv::OpTypePointer: | 
 | 			// Runtime representation of a pointer is a per-lane index. | 
 | 			// Note: clients are expected to look through the pointer if they want the pointee size instead. | 
 | 			return 1; | 
 |  | 
 | 		default: | 
 | 			UNREACHABLE("%s", OpcodeName(insn.opcode()).c_str()); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bool SpirvShader::StoresInHelperInvocation(spv::StorageClass storageClass) | 
 | 	{ | 
 | 		switch (storageClass) | 
 | 		{ | 
 | 		case spv::StorageClassUniform: | 
 | 		case spv::StorageClassStorageBuffer: | 
 | 		case spv::StorageClassImage: | 
 | 			return false; | 
 | 		default: | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bool SpirvShader::IsExplicitLayout(spv::StorageClass storageClass) | 
 | 	{ | 
 | 		switch (storageClass) | 
 | 		{ | 
 | 		case spv::StorageClassUniform: | 
 | 		case spv::StorageClassStorageBuffer: | 
 | 		case spv::StorageClassPushConstant: | 
 | 			return true; | 
 | 		default: | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bool SpirvShader::IsStorageInterleavedByLane(spv::StorageClass storageClass) | 
 | 	{ | 
 | 		switch (storageClass) | 
 | 		{ | 
 | 		case spv::StorageClassUniform: | 
 | 		case spv::StorageClassStorageBuffer: | 
 | 		case spv::StorageClassPushConstant: | 
 | 		case spv::StorageClassWorkgroup: | 
 | 		case spv::StorageClassImage: | 
 | 			return false; | 
 | 		default: | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	template<typename F> | 
 | 	int SpirvShader::VisitInterfaceInner(Type::ID id, Decorations d, F f) const | 
 | 	{ | 
 | 		// Recursively walks variable definition and its type tree, taking into account | 
 | 		// any explicit Location or Component decorations encountered; where explicit | 
 | 		// Locations or Components are not specified, assigns them sequentially. | 
 | 		// Collected decorations are carried down toward the leaves and across | 
 | 		// siblings; Effect of decorations intentionally does not flow back up the tree. | 
 | 		// | 
 | 		// F is a functor to be called with the effective decoration set for every component. | 
 | 		// | 
 | 		// Returns the next available location, and calls f(). | 
 |  | 
 | 		// This covers the rules in Vulkan 1.1 spec, 14.1.4 Location Assignment. | 
 |  | 
 | 		ApplyDecorationsForId(&d, id); | 
 |  | 
 | 		auto const &obj = getType(id); | 
 | 		switch(obj.opcode()) | 
 | 		{ | 
 | 		case spv::OpTypePointer: | 
 | 			return VisitInterfaceInner<F>(obj.definition.word(3), d, f); | 
 | 		case spv::OpTypeMatrix: | 
 | 			for (auto i = 0u; i < obj.definition.word(3); i++, d.Location++) | 
 | 			{ | 
 | 				// consumes same components of N consecutive locations | 
 | 				VisitInterfaceInner<F>(obj.definition.word(2), d, f); | 
 | 			} | 
 | 			return d.Location; | 
 | 		case spv::OpTypeVector: | 
 | 			for (auto i = 0u; i < obj.definition.word(3); i++, d.Component++) | 
 | 			{ | 
 | 				// consumes N consecutive components in the same location | 
 | 				VisitInterfaceInner<F>(obj.definition.word(2), d, f); | 
 | 			} | 
 | 			return d.Location + 1; | 
 | 		case spv::OpTypeFloat: | 
 | 			f(d, ATTRIBTYPE_FLOAT); | 
 | 			return d.Location + 1; | 
 | 		case spv::OpTypeInt: | 
 | 			f(d, obj.definition.word(3) ? ATTRIBTYPE_INT : ATTRIBTYPE_UINT); | 
 | 			return d.Location + 1; | 
 | 		case spv::OpTypeBool: | 
 | 			f(d, ATTRIBTYPE_UINT); | 
 | 			return d.Location + 1; | 
 | 		case spv::OpTypeStruct: | 
 | 		{ | 
 | 			// iterate over members, which may themselves have Location/Component decorations | 
 | 			for (auto i = 0u; i < obj.definition.wordCount() - 2; i++) | 
 | 			{ | 
 | 				ApplyDecorationsForIdMember(&d, id, i); | 
 | 				d.Location = VisitInterfaceInner<F>(obj.definition.word(i + 2), d, f); | 
 | 				d.Component = 0;    // Implicit locations always have component=0 | 
 | 			} | 
 | 			return d.Location; | 
 | 		} | 
 | 		case spv::OpTypeArray: | 
 | 		{ | 
 | 			auto arraySize = GetConstScalarInt(obj.definition.word(3)); | 
 | 			for (auto i = 0u; i < arraySize; i++) | 
 | 			{ | 
 | 				d.Location = VisitInterfaceInner<F>(obj.definition.word(2), d, f); | 
 | 			} | 
 | 			return d.Location; | 
 | 		} | 
 | 		default: | 
 | 			// Intentionally partial; most opcodes do not participate in type hierarchies | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	template<typename F> | 
 | 	void SpirvShader::VisitInterface(Object::ID id, F f) const | 
 | 	{ | 
 | 		// Walk a variable definition and call f for each component in it. | 
 | 		Decorations d{}; | 
 | 		ApplyDecorationsForId(&d, id); | 
 |  | 
 | 		auto def = getObject(id).definition; | 
 | 		ASSERT(def.opcode() == spv::OpVariable); | 
 | 		VisitInterfaceInner<F>(def.word(1), d, f); | 
 | 	} | 
 |  | 
 | 	template<typename F> | 
 | 	void SpirvShader::VisitMemoryObjectInner(sw::SpirvShader::Type::ID id, sw::SpirvShader::Decorations d, uint32_t& index, uint32_t offset, F f) const | 
 | 	{ | 
 | 		// Walk a type tree in an explicitly laid out storage class, calling | 
 | 		// a functor for each scalar element within the object. | 
 |  | 
 | 		// The functor's first parameter is the index of the scalar element; | 
 | 		// the second parameter is the offset (in bytes) from the base of the | 
 | 		// object. | 
 |  | 
 | 		ApplyDecorationsForId(&d, id); | 
 | 		auto const &type = getType(id); | 
 |  | 
 | 		if (d.HasOffset) | 
 | 		{ | 
 | 			offset += d.Offset; | 
 | 			d.HasOffset = false; | 
 | 		} | 
 |  | 
 | 		switch (type.opcode()) | 
 | 		{ | 
 | 		case spv::OpTypePointer: | 
 | 			VisitMemoryObjectInner<F>(type.definition.word(3), d, index, offset, f); | 
 | 			break; | 
 | 		case spv::OpTypeInt: | 
 | 		case spv::OpTypeFloat: | 
 | 			f(index++, offset); | 
 | 			break; | 
 | 		case spv::OpTypeVector: | 
 | 		{ | 
 | 			auto elemStride = (d.InsideMatrix && d.HasRowMajor && d.RowMajor) ? d.MatrixStride : static_cast<int32_t>(sizeof(float)); | 
 | 			for (auto i = 0u; i < type.definition.word(3); i++) | 
 | 			{ | 
 | 				VisitMemoryObjectInner(type.definition.word(2), d, index, offset + elemStride * i, f); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case spv::OpTypeMatrix: | 
 | 		{ | 
 | 			auto columnStride = (d.HasRowMajor && d.RowMajor) ? static_cast<int32_t>(sizeof(float)) : d.MatrixStride; | 
 | 			d.InsideMatrix = true; | 
 | 			for (auto i = 0u; i < type.definition.word(3); i++) | 
 | 			{ | 
 | 				ASSERT(d.HasMatrixStride); | 
 | 				VisitMemoryObjectInner(type.definition.word(2), d, index, offset + columnStride * i, f); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case spv::OpTypeStruct: | 
 | 			for (auto i = 0u; i < type.definition.wordCount() - 2; i++) | 
 | 			{ | 
 | 				ApplyDecorationsForIdMember(&d, id, i); | 
 | 				VisitMemoryObjectInner<F>(type.definition.word(i + 2), d, index, offset, f); | 
 | 			} | 
 | 			break; | 
 | 		case spv::OpTypeArray: | 
 | 		{ | 
 | 			auto arraySize = GetConstScalarInt(type.definition.word(3)); | 
 | 			for (auto i = 0u; i < arraySize; i++) | 
 | 			{ | 
 | 				ASSERT(d.HasArrayStride); | 
 | 				VisitMemoryObjectInner<F>(type.definition.word(2), d, index, offset + i * d.ArrayStride, f); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			UNREACHABLE("%s", OpcodeName(type.opcode()).c_str()); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	template<typename F> | 
 | 	void SpirvShader::VisitMemoryObject(sw::SpirvShader::Object::ID id, F f) const | 
 | 	{ | 
 | 		auto typeId = getObject(id).type; | 
 | 		auto const & type = getType(typeId); | 
 | 		if (IsExplicitLayout(type.storageClass)) | 
 | 		{ | 
 | 			Decorations d{}; | 
 | 			ApplyDecorationsForId(&d, id); | 
 | 			uint32_t index = 0; | 
 | 			VisitMemoryObjectInner<F>(typeId, d, index, 0, f); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			// Objects without explicit layout are tightly packed. | 
 | 			for (auto i = 0u; i < getType(type.element).sizeInComponents; i++) | 
 | 			{ | 
 | 				f(i, i * sizeof(float)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SIMD::Pointer SpirvShader::GetPointerToData(Object::ID id, int arrayIndex, EmitState const *state) const | 
 | 	{ | 
 | 		auto routine = state->routine; | 
 | 		auto &object = getObject(id); | 
 | 		switch (object.kind) | 
 | 		{ | 
 | 			case Object::Kind::Pointer: | 
 | 			case Object::Kind::InterfaceVariable: | 
 | 				return state->getPointer(id); | 
 |  | 
 | 			case Object::Kind::DescriptorSet: | 
 | 			{ | 
 | 				const auto &d = descriptorDecorations.at(id); | 
 | 				ASSERT(d.DescriptorSet >= 0 && d.DescriptorSet < vk::MAX_BOUND_DESCRIPTOR_SETS); | 
 | 				ASSERT(d.Binding >= 0); | 
 |  | 
 | 				auto set = state->getPointer(id); | 
 |  | 
 | 				auto setLayout = routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet); | 
 | 				ASSERT_MSG(setLayout->hasBinding(d.Binding), "Descriptor set %d does not contain binding %d", int(d.DescriptorSet), int(d.Binding)); | 
 | 				int bindingOffset = static_cast<int>(setLayout->getBindingOffset(d.Binding, arrayIndex)); | 
 |  | 
 | 				Pointer<Byte> descriptor = set.base + bindingOffset; // BufferDescriptor* | 
 | 				Pointer<Byte> data = *Pointer<Pointer<Byte>>(descriptor + OFFSET(vk::BufferDescriptor, ptr)); // void* | 
 | 				Int size = *Pointer<Int>(descriptor + OFFSET(vk::BufferDescriptor, sizeInBytes)); | 
 | 				if (setLayout->isBindingDynamic(d.Binding)) | 
 | 				{ | 
 | 					uint32_t dynamicBindingIndex = | 
 | 						routine->pipelineLayout->getDynamicOffsetBase(d.DescriptorSet) + | 
 | 						setLayout->getDynamicDescriptorOffset(d.Binding) + | 
 | 						arrayIndex; | 
 | 					Int offset = routine->descriptorDynamicOffsets[dynamicBindingIndex]; | 
 | 					Int robustnessSize = *Pointer<Int>(descriptor + OFFSET(vk::BufferDescriptor, robustnessSize)); | 
 | 					return SIMD::Pointer(data + offset, Min(size, robustnessSize - offset)); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					return SIMD::Pointer(data, size); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			default: | 
 | 				UNREACHABLE("Invalid pointer kind %d", int(object.kind)); | 
 | 				return SIMD::Pointer(Pointer<Byte>(), 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::ApplyDecorationsForAccessChain(Decorations *d, DescriptorDecorations *dd, Object::ID baseId, uint32_t numIndexes, uint32_t const *indexIds) const | 
 | 	{ | 
 | 		ApplyDecorationsForId(d, baseId); | 
 | 		auto &baseObject = getObject(baseId); | 
 | 		ApplyDecorationsForId(d, baseObject.type); | 
 | 		auto typeId = getType(baseObject.type).element; | 
 |  | 
 | 		for (auto i = 0u; i < numIndexes; i++) | 
 | 		{ | 
 | 			ApplyDecorationsForId(d, typeId); | 
 | 			auto & type = getType(typeId); | 
 | 			switch (type.opcode()) | 
 | 			{ | 
 | 			case spv::OpTypeStruct: | 
 | 			{ | 
 | 				int memberIndex = GetConstScalarInt(indexIds[i]); | 
 | 				ApplyDecorationsForIdMember(d, typeId, memberIndex); | 
 | 				typeId = type.definition.word(2u + memberIndex); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpTypeArray: | 
 | 			case spv::OpTypeRuntimeArray: | 
 | 				if (dd->InputAttachmentIndex >= 0) | 
 | 				{ | 
 | 					dd->InputAttachmentIndex += GetConstScalarInt(indexIds[i]); | 
 | 				} | 
 | 				typeId = type.element; | 
 | 				break; | 
 | 			case spv::OpTypeVector: | 
 | 				typeId = type.element; | 
 | 				break; | 
 | 			case spv::OpTypeMatrix: | 
 | 				typeId = type.element; | 
 | 				d->InsideMatrix = true; | 
 | 				break; | 
 | 			default: | 
 | 				UNREACHABLE("%s", OpcodeName(type.definition.opcode()).c_str()); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SIMD::Pointer SpirvShader::WalkExplicitLayoutAccessChain(Object::ID baseId, uint32_t numIndexes, uint32_t const *indexIds, EmitState const *state) const | 
 | 	{ | 
 | 		// Produce a offset into external memory in sizeof(float) units | 
 |  | 
 | 		auto &baseObject = getObject(baseId); | 
 | 		Type::ID typeId = getType(baseObject.type).element; | 
 | 		Decorations d = {}; | 
 | 		ApplyDecorationsForId(&d, baseObject.type); | 
 |  | 
 | 		uint32_t arrayIndex = 0; | 
 | 		if (baseObject.kind == Object::Kind::DescriptorSet) | 
 | 		{ | 
 | 			auto type = getType(typeId).definition.opcode(); | 
 | 			if (type == spv::OpTypeArray || type == spv::OpTypeRuntimeArray) | 
 | 			{ | 
 | 				ASSERT(getObject(indexIds[0]).kind == Object::Kind::Constant); | 
 | 				arrayIndex = GetConstScalarInt(indexIds[0]); | 
 |  | 
 | 				numIndexes--; | 
 | 				indexIds++; | 
 | 				typeId = getType(typeId).element; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		auto ptr = GetPointerToData(baseId, arrayIndex, state); | 
 |  | 
 | 		int constantOffset = 0; | 
 |  | 
 | 		for (auto i = 0u; i < numIndexes; i++) | 
 | 		{ | 
 | 			auto & type = getType(typeId); | 
 | 			ApplyDecorationsForId(&d, typeId); | 
 |  | 
 | 			switch (type.definition.opcode()) | 
 | 			{ | 
 | 			case spv::OpTypeStruct: | 
 | 			{ | 
 | 				int memberIndex = GetConstScalarInt(indexIds[i]); | 
 | 				ApplyDecorationsForIdMember(&d, typeId, memberIndex); | 
 | 				ASSERT(d.HasOffset); | 
 | 				constantOffset += d.Offset; | 
 | 				typeId = type.definition.word(2u + memberIndex); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpTypeArray: | 
 | 			case spv::OpTypeRuntimeArray: | 
 | 			{ | 
 | 				// TODO: b/127950082: Check bounds. | 
 | 				ASSERT(d.HasArrayStride); | 
 | 				auto & obj = getObject(indexIds[i]); | 
 | 				if (obj.kind == Object::Kind::Constant) | 
 | 				{ | 
 | 					constantOffset += d.ArrayStride * GetConstScalarInt(indexIds[i]); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					ptr += SIMD::Int(d.ArrayStride) * state->getIntermediate(indexIds[i]).Int(0); | 
 | 				} | 
 | 				typeId = type.element; | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpTypeMatrix: | 
 | 			{ | 
 | 				// TODO: b/127950082: Check bounds. | 
 | 				ASSERT(d.HasMatrixStride); | 
 | 				d.InsideMatrix = true; | 
 | 				auto columnStride = (d.HasRowMajor && d.RowMajor) ? static_cast<int32_t>(sizeof(float)) : d.MatrixStride; | 
 | 				auto & obj = getObject(indexIds[i]); | 
 | 				if (obj.kind == Object::Kind::Constant) | 
 | 				{ | 
 | 					constantOffset += columnStride * GetConstScalarInt(indexIds[i]); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					ptr += SIMD::Int(columnStride) * state->getIntermediate(indexIds[i]).Int(0); | 
 | 				} | 
 | 				typeId = type.element; | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpTypeVector: | 
 | 			{ | 
 | 				auto elemStride = (d.InsideMatrix && d.HasRowMajor && d.RowMajor) ? d.MatrixStride : static_cast<int32_t>(sizeof(float)); | 
 | 				auto & obj = getObject(indexIds[i]); | 
 | 				if (obj.kind == Object::Kind::Constant) | 
 | 				{ | 
 | 					constantOffset += elemStride * GetConstScalarInt(indexIds[i]); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					ptr += SIMD::Int(elemStride) * state->getIntermediate(indexIds[i]).Int(0); | 
 | 				} | 
 | 				typeId = type.element; | 
 | 				break; | 
 | 			} | 
 | 			default: | 
 | 				UNREACHABLE("%s", OpcodeName(type.definition.opcode()).c_str()); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ptr += constantOffset; | 
 | 		return ptr; | 
 | 	} | 
 |  | 
 | 	SIMD::Pointer SpirvShader::WalkAccessChain(Object::ID baseId, uint32_t numIndexes, uint32_t const *indexIds, EmitState const *state) const | 
 | 	{ | 
 | 		// TODO: avoid doing per-lane work in some cases if we can? | 
 | 		auto routine = state->routine; | 
 | 		auto &baseObject = getObject(baseId); | 
 | 		Type::ID typeId = getType(baseObject.type).element; | 
 |  | 
 | 		auto ptr = state->getPointer(baseId); | 
 |  | 
 | 		int constantOffset = 0; | 
 |  | 
 | 		for (auto i = 0u; i < numIndexes; i++) | 
 | 		{ | 
 | 			auto & type = getType(typeId); | 
 | 			switch(type.opcode()) | 
 | 			{ | 
 | 			case spv::OpTypeStruct: | 
 | 			{ | 
 | 				int memberIndex = GetConstScalarInt(indexIds[i]); | 
 | 				int offsetIntoStruct = 0; | 
 | 				for (auto j = 0; j < memberIndex; j++) { | 
 | 					auto memberType = type.definition.word(2u + j); | 
 | 					offsetIntoStruct += getType(memberType).sizeInComponents * sizeof(float); | 
 | 				} | 
 | 				constantOffset += offsetIntoStruct; | 
 | 				typeId = type.definition.word(2u + memberIndex); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpTypeVector: | 
 | 			case spv::OpTypeMatrix: | 
 | 			case spv::OpTypeArray: | 
 | 			case spv::OpTypeRuntimeArray: | 
 | 			{ | 
 | 				// TODO: b/127950082: Check bounds. | 
 | 				if (getType(baseObject.type).storageClass == spv::StorageClassUniformConstant) | 
 | 				{ | 
 | 					// indexing into an array of descriptors. | 
 | 					auto &obj = getObject(indexIds[i]); | 
 | 					if (obj.kind != Object::Kind::Constant) | 
 | 					{ | 
 | 						UNSUPPORTED("SPIR-V SampledImageArrayDynamicIndexing Capability"); | 
 | 					} | 
 |  | 
 | 					auto d = descriptorDecorations.at(baseId); | 
 | 					ASSERT(d.DescriptorSet >= 0); | 
 | 					ASSERT(d.Binding >= 0); | 
 | 					auto setLayout = routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet); | 
 | 					auto stride = static_cast<uint32_t>(setLayout->getBindingStride(d.Binding)); | 
 | 					ptr.base += stride * GetConstScalarInt(indexIds[i]); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					auto stride = getType(type.element).sizeInComponents * static_cast<uint32_t>(sizeof(float)); | 
 | 					auto & obj = getObject(indexIds[i]); | 
 | 					if (obj.kind == Object::Kind::Constant) | 
 | 					{ | 
 | 						ptr += stride * GetConstScalarInt(indexIds[i]); | 
 | 					} | 
 | 					else | 
 | 					{ | 
 | 						ptr += SIMD::Int(stride) * state->getIntermediate(indexIds[i]).Int(0); | 
 | 					} | 
 | 				} | 
 | 				typeId = type.element; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			default: | 
 | 				UNREACHABLE("%s", OpcodeName(type.opcode()).c_str()); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (constantOffset != 0) | 
 | 		{ | 
 | 			ptr += constantOffset; | 
 | 		} | 
 | 		return ptr; | 
 | 	} | 
 |  | 
 | 	uint32_t SpirvShader::WalkLiteralAccessChain(Type::ID typeId, uint32_t numIndexes, uint32_t const *indexes) const | 
 | 	{ | 
 | 		uint32_t componentOffset = 0; | 
 |  | 
 | 		for (auto i = 0u; i < numIndexes; i++) | 
 | 		{ | 
 | 			auto & type = getType(typeId); | 
 | 			switch(type.opcode()) | 
 | 			{ | 
 | 			case spv::OpTypeStruct: | 
 | 			{ | 
 | 				int memberIndex = indexes[i]; | 
 | 				int offsetIntoStruct = 0; | 
 | 				for (auto j = 0; j < memberIndex; j++) { | 
 | 					auto memberType = type.definition.word(2u + j); | 
 | 					offsetIntoStruct += getType(memberType).sizeInComponents; | 
 | 				} | 
 | 				componentOffset += offsetIntoStruct; | 
 | 				typeId = type.definition.word(2u + memberIndex); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpTypeVector: | 
 | 			case spv::OpTypeMatrix: | 
 | 			case spv::OpTypeArray: | 
 | 			{ | 
 | 				auto elementType = type.definition.word(2); | 
 | 				auto stride = getType(elementType).sizeInComponents; | 
 | 				componentOffset += stride * indexes[i]; | 
 | 				typeId = elementType; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			default: | 
 | 				UNREACHABLE("%s", OpcodeName(type.opcode()).c_str()); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return componentOffset; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Decorations::Apply(spv::Decoration decoration, uint32_t arg) | 
 | 	{ | 
 | 		switch (decoration) | 
 | 		{ | 
 | 		case spv::DecorationLocation: | 
 | 			HasLocation = true; | 
 | 			Location = static_cast<int32_t>(arg); | 
 | 			break; | 
 | 		case spv::DecorationComponent: | 
 | 			HasComponent = true; | 
 | 			Component = arg; | 
 | 			break; | 
 | 		case spv::DecorationBuiltIn: | 
 | 			HasBuiltIn = true; | 
 | 			BuiltIn = static_cast<spv::BuiltIn>(arg); | 
 | 			break; | 
 | 		case spv::DecorationFlat: | 
 | 			Flat = true; | 
 | 			break; | 
 | 		case spv::DecorationNoPerspective: | 
 | 			NoPerspective = true; | 
 | 			break; | 
 | 		case spv::DecorationCentroid: | 
 | 			Centroid = true; | 
 | 			break; | 
 | 		case spv::DecorationBlock: | 
 | 			Block = true; | 
 | 			break; | 
 | 		case spv::DecorationBufferBlock: | 
 | 			BufferBlock = true; | 
 | 			break; | 
 | 		case spv::DecorationOffset: | 
 | 			HasOffset = true; | 
 | 			Offset = static_cast<int32_t>(arg); | 
 | 			break; | 
 | 		case spv::DecorationArrayStride: | 
 | 			HasArrayStride = true; | 
 | 			ArrayStride = static_cast<int32_t>(arg); | 
 | 			break; | 
 | 		case spv::DecorationMatrixStride: | 
 | 			HasMatrixStride = true; | 
 | 			MatrixStride = static_cast<int32_t>(arg); | 
 | 			break; | 
 | 		case spv::DecorationRelaxedPrecision: | 
 | 			RelaxedPrecision = true; | 
 | 			break; | 
 | 		case spv::DecorationRowMajor: | 
 | 			HasRowMajor = true; | 
 | 			RowMajor = true; | 
 | 			break; | 
 | 		case spv::DecorationColMajor: | 
 | 			HasRowMajor = true; | 
 | 			RowMajor = false; | 
 | 		default: | 
 | 			// Intentionally partial, there are many decorations we just don't care about. | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Decorations::Apply(const sw::SpirvShader::Decorations &src) | 
 | 	{ | 
 | 		// Apply a decoration group to this set of decorations | 
 | 		if (src.HasBuiltIn) | 
 | 		{ | 
 | 			HasBuiltIn = true; | 
 | 			BuiltIn = src.BuiltIn; | 
 | 		} | 
 |  | 
 | 		if (src.HasLocation) | 
 | 		{ | 
 | 			HasLocation = true; | 
 | 			Location = src.Location; | 
 | 		} | 
 |  | 
 | 		if (src.HasComponent) | 
 | 		{ | 
 | 			HasComponent = true; | 
 | 			Component = src.Component; | 
 | 		} | 
 |  | 
 | 		if (src.HasOffset) | 
 | 		{ | 
 | 			HasOffset = true; | 
 | 			Offset = src.Offset; | 
 | 		} | 
 |  | 
 | 		if (src.HasArrayStride) | 
 | 		{ | 
 | 			HasArrayStride = true; | 
 | 			ArrayStride = src.ArrayStride; | 
 | 		} | 
 |  | 
 | 		if (src.HasMatrixStride) | 
 | 		{ | 
 | 			HasMatrixStride = true; | 
 | 			MatrixStride = src.MatrixStride; | 
 | 		} | 
 |  | 
 | 		if (src.HasRowMajor) | 
 | 		{ | 
 | 			HasRowMajor = true; | 
 | 			RowMajor = src.RowMajor; | 
 | 		} | 
 |  | 
 | 		Flat |= src.Flat; | 
 | 		NoPerspective |= src.NoPerspective; | 
 | 		Centroid |= src.Centroid; | 
 | 		Block |= src.Block; | 
 | 		BufferBlock |= src.BufferBlock; | 
 | 		RelaxedPrecision |= src.RelaxedPrecision; | 
 | 		InsideMatrix |= src.InsideMatrix; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::DescriptorDecorations::Apply(const sw::SpirvShader::DescriptorDecorations &src) | 
 | 	{ | 
 | 		if(src.DescriptorSet >= 0) | 
 | 		{ | 
 | 			DescriptorSet = src.DescriptorSet; | 
 | 		} | 
 |  | 
 | 		if(src.Binding >= 0) | 
 | 		{ | 
 | 			Binding = src.Binding; | 
 | 		} | 
 |  | 
 | 		if (src.InputAttachmentIndex >= 0) | 
 | 		{ | 
 | 			InputAttachmentIndex = src.InputAttachmentIndex; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::ApplyDecorationsForId(Decorations *d, TypeOrObjectID id) const | 
 | 	{ | 
 | 		auto it = decorations.find(id); | 
 | 		if (it != decorations.end()) | 
 | 			d->Apply(it->second); | 
 | 	} | 
 |  | 
 | 	void SpirvShader::ApplyDecorationsForIdMember(Decorations *d, Type::ID id, uint32_t member) const | 
 | 	{ | 
 | 		auto it = memberDecorations.find(id); | 
 | 		if (it != memberDecorations.end() && member < it->second.size()) | 
 | 		{ | 
 | 			d->Apply(it->second[member]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::DefineResult(const InsnIterator &insn) | 
 | 	{ | 
 | 		Type::ID typeId = insn.word(1); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		auto &object = defs[resultId]; | 
 | 		object.type = typeId; | 
 |  | 
 | 		switch (getType(typeId).opcode()) | 
 | 		{ | 
 | 		case spv::OpTypePointer: | 
 | 		case spv::OpTypeImage: | 
 | 		case spv::OpTypeSampledImage: | 
 | 		case spv::OpTypeSampler: | 
 | 			object.kind = Object::Kind::Pointer; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			object.kind = Object::Kind::Intermediate; | 
 | 		} | 
 |  | 
 | 		object.definition = insn; | 
 | 	} | 
 |  | 
 | 	OutOfBoundsBehavior SpirvShader::EmitState::getOutOfBoundsBehavior(spv::StorageClass storageClass) const | 
 | 	{ | 
 | 		switch(storageClass) | 
 | 		{ | 
 | 		case spv::StorageClassUniform: | 
 | 		case spv::StorageClassStorageBuffer: | 
 | 			// Buffer resource access. robustBufferAccess feature applies. | 
 | 			return robustBufferAccess ? OutOfBoundsBehavior::RobustBufferAccess | 
 | 			                          : OutOfBoundsBehavior::UndefinedBehavior; | 
 |  | 
 | 		case spv::StorageClassImage: | 
 | 			return OutOfBoundsBehavior::UndefinedValue;  // "The value returned by a read of an invalid texel is undefined" | 
 |  | 
 | 		case spv::StorageClassInput: | 
 | 			if(executionModel == spv::ExecutionModelVertex) | 
 | 			{ | 
 | 				// Vertex attributes follow robustBufferAccess rules. | 
 | 				return robustBufferAccess ? OutOfBoundsBehavior::RobustBufferAccess | 
 | 				                          : OutOfBoundsBehavior::UndefinedBehavior; | 
 | 			} | 
 | 			// Fall through to default case. | 
 | 		default: | 
 | 			// TODO(b/137183137): Optimize if the pointer resulted from OpInBoundsAccessChain. | 
 | 			// TODO(b/131224163): Optimize cases statically known to be within bounds. | 
 | 			return OutOfBoundsBehavior::UndefinedValue; | 
 | 		} | 
 |  | 
 | 		return OutOfBoundsBehavior::Nullify; | 
 | 	} | 
 |  | 
 | 	// emit-time | 
 |  | 
 | 	void SpirvShader::emitProlog(SpirvRoutine *routine) const | 
 | 	{ | 
 | 		for (auto insn : *this) | 
 | 		{ | 
 | 			switch (insn.opcode()) | 
 | 			{ | 
 | 			case spv::OpVariable: | 
 | 			{ | 
 | 				Type::ID resultPointerTypeId = insn.word(1); | 
 | 				auto resultPointerType = getType(resultPointerTypeId); | 
 | 				auto pointeeType = getType(resultPointerType.element); | 
 |  | 
 | 				if(pointeeType.sizeInComponents > 0)  // TODO: what to do about zero-slot objects? | 
 | 				{ | 
 | 					Object::ID resultId = insn.word(2); | 
 | 					routine->createVariable(resultId, pointeeType.sizeInComponents); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpPhi: | 
 | 			{ | 
 | 				auto type = getType(insn.word(1)); | 
 | 				Object::ID resultId = insn.word(2); | 
 | 				routine->phis.emplace(resultId, SpirvRoutine::Variable(type.sizeInComponents)); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			case spv::OpImageDrefGather: | 
 | 			case spv::OpImageFetch: | 
 | 			case spv::OpImageGather: | 
 | 			case spv::OpImageQueryLod: | 
 | 			case spv::OpImageSampleDrefExplicitLod: | 
 | 			case spv::OpImageSampleDrefImplicitLod: | 
 | 			case spv::OpImageSampleExplicitLod: | 
 | 			case spv::OpImageSampleImplicitLod: | 
 | 			case spv::OpImageSampleProjDrefExplicitLod: | 
 | 			case spv::OpImageSampleProjDrefImplicitLod: | 
 | 			case spv::OpImageSampleProjExplicitLod: | 
 | 			case spv::OpImageSampleProjImplicitLod: | 
 | 			{ | 
 | 				Object::ID resultId = insn.word(2); | 
 | 				routine->samplerCache.emplace(resultId, SpirvRoutine::SamplerCache{}); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			default: | 
 | 				// Nothing else produces interface variables, so can all be safely ignored. | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::emit(SpirvRoutine *routine, RValue<SIMD::Int> const &activeLaneMask, RValue<SIMD::Int> const &storesAndAtomicsMask, const vk::DescriptorSet::Bindings &descriptorSets) const | 
 | 	{ | 
 | 		EmitState state(routine, entryPoint, activeLaneMask, storesAndAtomicsMask, descriptorSets, robustBufferAccess, executionModel); | 
 |  | 
 | 		// Emit everything up to the first label | 
 | 		// TODO: Separate out dispatch of block from non-block instructions? | 
 | 		for (auto insn : *this) | 
 | 		{ | 
 | 			if (insn.opcode() == spv::OpLabel) | 
 | 			{ | 
 | 				break; | 
 | 			} | 
 | 			EmitInstruction(insn, &state); | 
 | 		} | 
 |  | 
 | 		// Emit all the blocks starting from entryPoint. | 
 | 		EmitBlocks(getFunction(entryPoint).entry, &state); | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EmitBlocks(Block::ID id, EmitState *state, Block::ID ignore /* = 0 */) const | 
 | 	{ | 
 | 		auto oldPending = state->pending; | 
 | 		auto &function = getFunction(state->function); | 
 |  | 
 | 		std::deque<Block::ID> pending; | 
 | 		state->pending = &pending; | 
 | 		pending.push_front(id); | 
 | 		while (pending.size() > 0) | 
 | 		{ | 
 | 			auto id = pending.front(); | 
 |  | 
 | 			auto const &block = function.getBlock(id); | 
 | 			if (id == ignore) | 
 | 			{ | 
 | 				pending.pop_front(); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			// Ensure all dependency blocks have been generated. | 
 | 			auto depsDone = true; | 
 | 			function.ForeachBlockDependency(id, [&](Block::ID dep) | 
 | 			{ | 
 | 				if (state->visited.count(dep) == 0) | 
 | 				{ | 
 | 					state->pending->push_front(dep); | 
 | 					depsDone = false; | 
 | 				} | 
 | 			}); | 
 |  | 
 | 			if (!depsDone) | 
 | 			{ | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			pending.pop_front(); | 
 |  | 
 | 			state->block = id; | 
 |  | 
 | 			switch (block.kind) | 
 | 			{ | 
 | 				case Block::Simple: | 
 | 				case Block::StructuredBranchConditional: | 
 | 				case Block::UnstructuredBranchConditional: | 
 | 				case Block::StructuredSwitch: | 
 | 				case Block::UnstructuredSwitch: | 
 | 					EmitNonLoop(state); | 
 | 					break; | 
 |  | 
 | 				case Block::Loop: | 
 | 					EmitLoop(state); | 
 | 					break; | 
 |  | 
 | 				default: | 
 | 					UNREACHABLE("Unexpected Block Kind: %d", int(block.kind)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		state->pending = oldPending; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EmitInstructions(InsnIterator begin, InsnIterator end, EmitState *state) const | 
 | 	{ | 
 | 		for (auto insn = begin; insn != end; insn++) | 
 | 		{ | 
 | 			auto res = EmitInstruction(insn, state); | 
 | 			switch (res) | 
 | 			{ | 
 | 			case EmitResult::Continue: | 
 | 				continue; | 
 | 			case EmitResult::Terminator: | 
 | 				break; | 
 | 			default: | 
 | 				UNREACHABLE("Unexpected EmitResult %d", int(res)); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EmitNonLoop(EmitState *state) const | 
 | 	{ | 
 | 		auto &function = getFunction(state->function); | 
 | 		auto blockId = state->block; | 
 | 		auto block = function.getBlock(blockId); | 
 |  | 
 | 		if (!state->visited.emplace(blockId).second) | 
 | 		{ | 
 | 			return; // Already generated this block. | 
 | 		} | 
 |  | 
 | 		if (blockId != function.entry) | 
 | 		{ | 
 | 			// Set the activeLaneMask. | 
 | 			SIMD::Int activeLaneMask(0); | 
 | 			for (auto in : block.ins) | 
 | 			{ | 
 | 				auto inMask = GetActiveLaneMaskEdge(state, in, blockId); | 
 | 				activeLaneMask |= inMask; | 
 | 			} | 
 | 			state->setActiveLaneMask(activeLaneMask); | 
 | 		} | 
 |  | 
 | 		EmitInstructions(block.begin(), block.end(), state); | 
 |  | 
 | 		for (auto out : block.outs) | 
 | 		{ | 
 | 			if (state->visited.count(out) == 0) | 
 | 			{ | 
 | 				state->pending->push_back(out); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EmitLoop(EmitState *state) const | 
 | 	{ | 
 | 		auto &function = getFunction(state->function); | 
 | 		auto blockId = state->block; | 
 | 		auto &block = function.getBlock(blockId); | 
 | 		auto mergeBlockId = block.mergeBlock; | 
 | 		auto &mergeBlock = function.getBlock(mergeBlockId); | 
 |  | 
 | 		if (!state->visited.emplace(blockId).second) | 
 | 		{ | 
 | 			return; // Already emitted this loop. | 
 | 		} | 
 |  | 
 | 		// Gather all the blocks that make up the loop. | 
 | 		std::unordered_set<Block::ID> loopBlocks; | 
 | 		loopBlocks.emplace(block.mergeBlock); | 
 | 		function.TraverseReachableBlocks(blockId, loopBlocks); | 
 |  | 
 | 		// incomingBlocks are block ins that are not back-edges. | 
 | 		std::unordered_set<Block::ID> incomingBlocks; | 
 | 		for (auto in : block.ins) | 
 | 		{ | 
 | 			if (loopBlocks.count(in) == 0) | 
 | 			{ | 
 | 				incomingBlocks.emplace(in); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Emit the loop phi instructions, and initialize them with a value from | 
 | 		// the incoming blocks. | 
 | 		for (auto insn = block.begin(); insn != block.mergeInstruction; insn++) | 
 | 		{ | 
 | 			if (insn.opcode() == spv::OpPhi) | 
 | 			{ | 
 | 				StorePhi(blockId, insn, state, incomingBlocks); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// loopActiveLaneMask is the mask of lanes that are continuing to loop. | 
 | 		// This is initialized with the incoming active lane masks. | 
 | 		SIMD::Int loopActiveLaneMask = SIMD::Int(0); | 
 | 		for (auto in : incomingBlocks) | 
 | 		{ | 
 | 			loopActiveLaneMask |= GetActiveLaneMaskEdge(state, in, blockId); | 
 | 		} | 
 |  | 
 | 		// mergeActiveLaneMasks contains edge lane masks for the merge block. | 
 | 		// This is the union of all edge masks across all iterations of the loop. | 
 | 		std::unordered_map<Block::ID, SIMD::Int> mergeActiveLaneMasks; | 
 | 		for (auto in : function.getBlock(mergeBlockId).ins) | 
 | 		{ | 
 | 			mergeActiveLaneMasks.emplace(in, SIMD::Int(0)); | 
 | 		} | 
 |  | 
 | 		// Create the loop basic blocks | 
 | 		auto headerBasicBlock = Nucleus::createBasicBlock(); | 
 | 		auto mergeBasicBlock = Nucleus::createBasicBlock(); | 
 |  | 
 | 		// Start emitting code inside the loop. | 
 | 		Nucleus::createBr(headerBasicBlock); | 
 | 		Nucleus::setInsertBlock(headerBasicBlock); | 
 |  | 
 | 		// Load the active lane mask. | 
 | 		state->setActiveLaneMask(loopActiveLaneMask); | 
 |  | 
 | 		// Emit the non-phi loop header block's instructions. | 
 | 		for (auto insn = block.begin(); insn != block.end(); insn++) | 
 | 		{ | 
 | 			if (insn.opcode() == spv::OpPhi) | 
 | 			{ | 
 | 				LoadPhi(insn, state); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				EmitInstruction(insn, state); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Emit all blocks between the loop header and the merge block, but | 
 | 		// don't emit the merge block yet. | 
 | 		for (auto out : block.outs) | 
 | 		{ | 
 | 			EmitBlocks(out, state, mergeBlockId); | 
 | 		} | 
 |  | 
 | 		// Restore current block id after emitting loop blocks. | 
 | 		state->block = blockId; | 
 |  | 
 | 		// Rebuild the loopActiveLaneMask from the loop back edges. | 
 | 		loopActiveLaneMask = SIMD::Int(0); | 
 | 		for (auto in : block.ins) | 
 | 		{ | 
 | 			if (function.ExistsPath(blockId, in, mergeBlockId)) | 
 | 			{ | 
 | 				loopActiveLaneMask |= GetActiveLaneMaskEdge(state, in, blockId); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Add active lanes to the merge lane mask. | 
 | 		for (auto in : function.getBlock(mergeBlockId).ins) | 
 | 		{ | 
 | 			auto edge = Block::Edge{in, mergeBlockId}; | 
 | 			auto it = state->edgeActiveLaneMasks.find(edge); | 
 | 			if (it != state->edgeActiveLaneMasks.end()) | 
 | 			{ | 
 | 				mergeActiveLaneMasks[in] |= it->second; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Update loop phi values. | 
 | 		for (auto insn = block.begin(); insn != block.mergeInstruction; insn++) | 
 | 		{ | 
 | 			if (insn.opcode() == spv::OpPhi) | 
 | 			{ | 
 | 				StorePhi(blockId, insn, state, loopBlocks); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Use the [loop -> merge] active lane masks to update the phi values in | 
 | 		// the merge block. We need to do this to handle divergent control flow | 
 | 		// in the loop. | 
 | 		// | 
 | 		// Consider the following: | 
 | 		// | 
 | 		//     int phi_source = 0; | 
 | 		//     for (uint i = 0; i < 4; i++) | 
 | 		//     { | 
 | 		//         phi_source = 0; | 
 | 		//         if (gl_GlobalInvocationID.x % 4 == i) // divergent control flow | 
 | 		//         { | 
 | 		//             phi_source = 42; // single lane assignment. | 
 | 		//             break; // activeLaneMask for [loop->merge] is active for a single lane. | 
 | 		//         } | 
 | 		//         // -- we are here -- | 
 | 		//     } | 
 | 		//     // merge block | 
 | 		//     int phi = phi_source; // OpPhi | 
 | 		// | 
 | 		// In this example, with each iteration of the loop, phi_source will | 
 | 		// only have a single lane assigned. However by 'phi' value in the merge | 
 | 		// block needs to be assigned the union of all the per-lane assignments | 
 | 		// of phi_source when that lane exited the loop. | 
 | 		for (auto insn = mergeBlock.begin(); insn != mergeBlock.end(); insn++) | 
 | 		{ | 
 | 			if (insn.opcode() == spv::OpPhi) | 
 | 			{ | 
 | 				StorePhi(mergeBlockId, insn, state, loopBlocks); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Loop body now done. | 
 | 		// If any lanes are still active, jump back to the loop header, | 
 | 		// otherwise jump to the merge block. | 
 | 		Nucleus::createCondBr(AnyTrue(loopActiveLaneMask).value, headerBasicBlock, mergeBasicBlock); | 
 |  | 
 | 		// Continue emitting from the merge block. | 
 | 		Nucleus::setInsertBlock(mergeBasicBlock); | 
 | 		state->pending->push_back(mergeBlockId); | 
 | 		for (auto it : mergeActiveLaneMasks) | 
 | 		{ | 
 | 			state->addActiveLaneMaskEdge(it.first, mergeBlockId, it.second); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitInstruction(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto opcode = insn.opcode(); | 
 |  | 
 | 		switch (opcode) | 
 | 		{ | 
 | 		case spv::OpTypeVoid: | 
 | 		case spv::OpTypeInt: | 
 | 		case spv::OpTypeFloat: | 
 | 		case spv::OpTypeBool: | 
 | 		case spv::OpTypeVector: | 
 | 		case spv::OpTypeArray: | 
 | 		case spv::OpTypeRuntimeArray: | 
 | 		case spv::OpTypeMatrix: | 
 | 		case spv::OpTypeStruct: | 
 | 		case spv::OpTypePointer: | 
 | 		case spv::OpTypeFunction: | 
 | 		case spv::OpTypeImage: | 
 | 		case spv::OpTypeSampledImage: | 
 | 		case spv::OpTypeSampler: | 
 | 		case spv::OpExecutionMode: | 
 | 		case spv::OpMemoryModel: | 
 | 		case spv::OpFunction: | 
 | 		case spv::OpFunctionEnd: | 
 | 		case spv::OpConstant: | 
 | 		case spv::OpConstantNull: | 
 | 		case spv::OpConstantTrue: | 
 | 		case spv::OpConstantFalse: | 
 | 		case spv::OpConstantComposite: | 
 | 		case spv::OpSpecConstant: | 
 | 		case spv::OpSpecConstantTrue: | 
 | 		case spv::OpSpecConstantFalse: | 
 | 		case spv::OpSpecConstantComposite: | 
 | 		case spv::OpSpecConstantOp: | 
 | 		case spv::OpUndef: | 
 | 		case spv::OpExtension: | 
 | 		case spv::OpCapability: | 
 | 		case spv::OpEntryPoint: | 
 | 		case spv::OpExtInstImport: | 
 | 		case spv::OpDecorate: | 
 | 		case spv::OpMemberDecorate: | 
 | 		case spv::OpGroupDecorate: | 
 | 		case spv::OpGroupMemberDecorate: | 
 | 		case spv::OpDecorationGroup: | 
 | 		case spv::OpName: | 
 | 		case spv::OpMemberName: | 
 | 		case spv::OpSource: | 
 | 		case spv::OpSourceContinued: | 
 | 		case spv::OpSourceExtension: | 
 | 		case spv::OpLine: | 
 | 		case spv::OpNoLine: | 
 | 		case spv::OpModuleProcessed: | 
 | 		case spv::OpString: | 
 | 			// Nothing to do at emit time. These are either fully handled at analysis time, | 
 | 			// or don't require any work at all. | 
 | 			return EmitResult::Continue; | 
 |  | 
 | 		case spv::OpLabel: | 
 | 			return EmitResult::Continue; | 
 |  | 
 | 		case spv::OpVariable: | 
 | 			return EmitVariable(insn, state); | 
 |  | 
 | 		case spv::OpLoad: | 
 | 		case spv::OpAtomicLoad: | 
 | 			return EmitLoad(insn, state); | 
 |  | 
 | 		case spv::OpStore: | 
 | 		case spv::OpAtomicStore: | 
 | 			return EmitStore(insn, state); | 
 |  | 
 | 		case spv::OpAtomicIAdd: | 
 | 		case spv::OpAtomicISub: | 
 | 		case spv::OpAtomicSMin: | 
 | 		case spv::OpAtomicSMax: | 
 | 		case spv::OpAtomicUMin: | 
 | 		case spv::OpAtomicUMax: | 
 | 		case spv::OpAtomicAnd: | 
 | 		case spv::OpAtomicOr: | 
 | 		case spv::OpAtomicXor: | 
 | 		case spv::OpAtomicIIncrement: | 
 | 		case spv::OpAtomicIDecrement: | 
 | 		case spv::OpAtomicExchange: | 
 | 			return EmitAtomicOp(insn, state); | 
 |  | 
 | 		case spv::OpAtomicCompareExchange: | 
 | 			return EmitAtomicCompareExchange(insn, state); | 
 |  | 
 | 		case spv::OpAccessChain: | 
 | 		case spv::OpInBoundsAccessChain: | 
 | 			return EmitAccessChain(insn, state); | 
 |  | 
 | 		case spv::OpCompositeConstruct: | 
 | 			return EmitCompositeConstruct(insn, state); | 
 |  | 
 | 		case spv::OpCompositeInsert: | 
 | 			return EmitCompositeInsert(insn, state); | 
 |  | 
 | 		case spv::OpCompositeExtract: | 
 | 			return EmitCompositeExtract(insn, state); | 
 |  | 
 | 		case spv::OpVectorShuffle: | 
 | 			return EmitVectorShuffle(insn, state); | 
 |  | 
 | 		case spv::OpVectorExtractDynamic: | 
 | 			return EmitVectorExtractDynamic(insn, state); | 
 |  | 
 | 		case spv::OpVectorInsertDynamic: | 
 | 			return EmitVectorInsertDynamic(insn, state); | 
 |  | 
 | 		case spv::OpVectorTimesScalar: | 
 | 		case spv::OpMatrixTimesScalar: | 
 | 			return EmitVectorTimesScalar(insn, state); | 
 |  | 
 | 		case spv::OpMatrixTimesVector: | 
 | 			return EmitMatrixTimesVector(insn, state); | 
 |  | 
 | 		case spv::OpVectorTimesMatrix: | 
 | 			return EmitVectorTimesMatrix(insn, state); | 
 |  | 
 | 		case spv::OpMatrixTimesMatrix: | 
 | 			return EmitMatrixTimesMatrix(insn, state); | 
 |  | 
 | 		case spv::OpOuterProduct: | 
 | 			return EmitOuterProduct(insn, state); | 
 |  | 
 | 		case spv::OpTranspose: | 
 | 			return EmitTranspose(insn, state); | 
 |  | 
 | 		case spv::OpNot: | 
 |     	case spv::OpBitFieldInsert: | 
 |     	case spv::OpBitFieldSExtract: | 
 |     	case spv::OpBitFieldUExtract: | 
 |     	case spv::OpBitReverse: | 
 |     	case spv::OpBitCount: | 
 | 		case spv::OpSNegate: | 
 | 		case spv::OpFNegate: | 
 | 		case spv::OpLogicalNot: | 
 | 		case spv::OpConvertFToU: | 
 | 		case spv::OpConvertFToS: | 
 | 		case spv::OpConvertSToF: | 
 | 		case spv::OpConvertUToF: | 
 | 		case spv::OpBitcast: | 
 | 		case spv::OpIsInf: | 
 | 		case spv::OpIsNan: | 
 | 		case spv::OpDPdx: | 
 | 		case spv::OpDPdxCoarse: | 
 | 		case spv::OpDPdy: | 
 | 		case spv::OpDPdyCoarse: | 
 | 		case spv::OpFwidth: | 
 | 		case spv::OpFwidthCoarse: | 
 | 		case spv::OpDPdxFine: | 
 | 		case spv::OpDPdyFine: | 
 | 		case spv::OpFwidthFine: | 
 | 		case spv::OpQuantizeToF16: | 
 | 			return EmitUnaryOp(insn, state); | 
 |  | 
 | 		case spv::OpIAdd: | 
 | 		case spv::OpISub: | 
 | 		case spv::OpIMul: | 
 | 		case spv::OpSDiv: | 
 | 		case spv::OpUDiv: | 
 | 		case spv::OpFAdd: | 
 | 		case spv::OpFSub: | 
 | 		case spv::OpFMul: | 
 | 		case spv::OpFDiv: | 
 | 		case spv::OpFMod: | 
 | 		case spv::OpFRem: | 
 | 		case spv::OpFOrdEqual: | 
 | 		case spv::OpFUnordEqual: | 
 | 		case spv::OpFOrdNotEqual: | 
 | 		case spv::OpFUnordNotEqual: | 
 | 		case spv::OpFOrdLessThan: | 
 | 		case spv::OpFUnordLessThan: | 
 | 		case spv::OpFOrdGreaterThan: | 
 | 		case spv::OpFUnordGreaterThan: | 
 | 		case spv::OpFOrdLessThanEqual: | 
 | 		case spv::OpFUnordLessThanEqual: | 
 | 		case spv::OpFOrdGreaterThanEqual: | 
 | 		case spv::OpFUnordGreaterThanEqual: | 
 | 		case spv::OpSMod: | 
 | 		case spv::OpSRem: | 
 | 		case spv::OpUMod: | 
 | 		case spv::OpIEqual: | 
 | 		case spv::OpINotEqual: | 
 | 		case spv::OpUGreaterThan: | 
 | 		case spv::OpSGreaterThan: | 
 | 		case spv::OpUGreaterThanEqual: | 
 | 		case spv::OpSGreaterThanEqual: | 
 | 		case spv::OpULessThan: | 
 | 		case spv::OpSLessThan: | 
 | 		case spv::OpULessThanEqual: | 
 | 		case spv::OpSLessThanEqual: | 
 | 		case spv::OpShiftRightLogical: | 
 | 		case spv::OpShiftRightArithmetic: | 
 | 		case spv::OpShiftLeftLogical: | 
 | 		case spv::OpBitwiseOr: | 
 | 		case spv::OpBitwiseXor: | 
 | 		case spv::OpBitwiseAnd: | 
 | 		case spv::OpLogicalOr: | 
 | 		case spv::OpLogicalAnd: | 
 | 		case spv::OpLogicalEqual: | 
 | 		case spv::OpLogicalNotEqual: | 
 | 		case spv::OpUMulExtended: | 
 | 		case spv::OpSMulExtended: | 
 | 		case spv::OpIAddCarry: | 
 | 		case spv::OpISubBorrow: | 
 | 			return EmitBinaryOp(insn, state); | 
 |  | 
 | 		case spv::OpDot: | 
 | 			return EmitDot(insn, state); | 
 |  | 
 | 		case spv::OpSelect: | 
 | 			return EmitSelect(insn, state); | 
 |  | 
 | 		case spv::OpExtInst: | 
 | 			return EmitExtendedInstruction(insn, state); | 
 |  | 
 | 		case spv::OpAny: | 
 | 			return EmitAny(insn, state); | 
 |  | 
 | 		case spv::OpAll: | 
 | 			return EmitAll(insn, state); | 
 |  | 
 | 		case spv::OpBranch: | 
 | 			return EmitBranch(insn, state); | 
 |  | 
 | 		case spv::OpPhi: | 
 | 			return EmitPhi(insn, state); | 
 |  | 
 | 		case spv::OpSelectionMerge: | 
 | 		case spv::OpLoopMerge: | 
 | 			return EmitResult::Continue; | 
 |  | 
 | 		case spv::OpBranchConditional: | 
 | 			return EmitBranchConditional(insn, state); | 
 |  | 
 | 		case spv::OpSwitch: | 
 | 			return EmitSwitch(insn, state); | 
 |  | 
 | 		case spv::OpUnreachable: | 
 | 			return EmitUnreachable(insn, state); | 
 |  | 
 | 		case spv::OpReturn: | 
 | 			return EmitReturn(insn, state); | 
 |  | 
 | 		case spv::OpKill: | 
 | 			return EmitKill(insn, state); | 
 |  | 
 | 		case spv::OpImageSampleImplicitLod: | 
 | 			return EmitImageSampleImplicitLod(None, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleExplicitLod: | 
 | 			return EmitImageSampleExplicitLod(None, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleDrefImplicitLod: | 
 | 			return EmitImageSampleImplicitLod(Dref, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleDrefExplicitLod: | 
 | 			return EmitImageSampleExplicitLod(Dref, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleProjImplicitLod: | 
 | 			return EmitImageSampleImplicitLod(Proj, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleProjExplicitLod: | 
 | 			return EmitImageSampleExplicitLod(Proj, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleProjDrefImplicitLod: | 
 | 			return EmitImageSampleImplicitLod(ProjDref, insn, state); | 
 |  | 
 | 		case spv::OpImageSampleProjDrefExplicitLod: | 
 | 			return EmitImageSampleExplicitLod(ProjDref, insn, state); | 
 |  | 
 | 		case spv::OpImageGather: | 
 | 			return EmitImageGather(None, insn, state); | 
 |  | 
 | 		case spv::OpImageDrefGather: | 
 | 			return EmitImageGather(Dref, insn, state); | 
 |  | 
 | 		case spv::OpImageFetch: | 
 | 			return EmitImageFetch(insn, state); | 
 |  | 
 | 		case spv::OpImageQuerySizeLod: | 
 | 			return EmitImageQuerySizeLod(insn, state); | 
 |  | 
 | 		case spv::OpImageQuerySize: | 
 | 			return EmitImageQuerySize(insn, state); | 
 |  | 
 | 		case spv::OpImageQueryLod: | 
 | 			return EmitImageQueryLod(insn, state); | 
 |  | 
 | 		case spv::OpImageQueryLevels: | 
 | 			return EmitImageQueryLevels(insn, state); | 
 |  | 
 | 		case spv::OpImageQuerySamples: | 
 | 			return EmitImageQuerySamples(insn, state); | 
 |  | 
 | 		case spv::OpImageRead: | 
 | 			return EmitImageRead(insn, state); | 
 |  | 
 | 		case spv::OpImageWrite: | 
 | 			return EmitImageWrite(insn, state); | 
 |  | 
 | 		case spv::OpImageTexelPointer: | 
 | 			return EmitImageTexelPointer(insn, state); | 
 |  | 
 | 		case spv::OpSampledImage: | 
 | 		case spv::OpImage: | 
 | 			return EmitSampledImageCombineOrSplit(insn, state); | 
 |  | 
 | 		case spv::OpCopyObject: | 
 | 			return EmitCopyObject(insn, state); | 
 |  | 
 | 		case spv::OpCopyMemory: | 
 | 			return EmitCopyMemory(insn, state); | 
 |  | 
 | 		case spv::OpControlBarrier: | 
 | 			return EmitControlBarrier(insn, state); | 
 |  | 
 | 		case spv::OpMemoryBarrier: | 
 | 			return EmitMemoryBarrier(insn, state); | 
 |  | 
 | 		case spv::OpGroupNonUniformElect: | 
 | 		case spv::OpGroupNonUniformAll: | 
 | 		case spv::OpGroupNonUniformAny: | 
 | 		case spv::OpGroupNonUniformAllEqual: | 
 | 		case spv::OpGroupNonUniformBroadcast: | 
 | 		case spv::OpGroupNonUniformBroadcastFirst: | 
 | 		case spv::OpGroupNonUniformBallot: | 
 | 		case spv::OpGroupNonUniformInverseBallot: | 
 | 		case spv::OpGroupNonUniformBallotBitExtract: | 
 | 		case spv::OpGroupNonUniformBallotBitCount: | 
 | 		case spv::OpGroupNonUniformBallotFindLSB: | 
 | 		case spv::OpGroupNonUniformBallotFindMSB: | 
 | 		case spv::OpGroupNonUniformShuffle: | 
 | 		case spv::OpGroupNonUniformShuffleXor: | 
 | 		case spv::OpGroupNonUniformShuffleUp: | 
 | 		case spv::OpGroupNonUniformShuffleDown: | 
 | 			return EmitGroupNonUniform(insn, state); | 
 |  | 
 | 		case spv::OpArrayLength: | 
 | 			return EmitArrayLength(insn, state); | 
 |  | 
 | 		default: | 
 | 			UNREACHABLE("%s", OpcodeName(opcode).c_str()); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitVariable(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto routine = state->routine; | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		auto &object = getObject(resultId); | 
 | 		auto &objectTy = getType(object.type); | 
 |  | 
 | 		switch (objectTy.storageClass) | 
 | 		{ | 
 | 		case spv::StorageClassOutput: | 
 | 		case spv::StorageClassPrivate: | 
 | 		case spv::StorageClassFunction: | 
 | 		{ | 
 | 			ASSERT(objectTy.opcode() == spv::OpTypePointer); | 
 | 			auto base = &routine->getVariable(resultId)[0]; | 
 | 			auto elementTy = getType(objectTy.element); | 
 | 			auto size = elementTy.sizeInComponents * static_cast<uint32_t>(sizeof(float)) * SIMD::Width; | 
 | 			state->createPointer(resultId, SIMD::Pointer(base, size)); | 
 | 			break; | 
 | 		} | 
 | 		case spv::StorageClassWorkgroup: | 
 | 		{ | 
 | 			ASSERT(objectTy.opcode() == spv::OpTypePointer); | 
 | 			auto base = &routine->workgroupMemory[0]; | 
 | 			auto size = workgroupMemory.size(); | 
 | 			state->createPointer(resultId, SIMD::Pointer(base, size, workgroupMemory.offsetOf(resultId))); | 
 | 			break; | 
 | 		} | 
 | 		case spv::StorageClassInput: | 
 | 		{ | 
 | 			if (object.kind == Object::Kind::InterfaceVariable) | 
 | 			{ | 
 | 				auto &dst = routine->getVariable(resultId); | 
 | 				int offset = 0; | 
 | 				VisitInterface(resultId, | 
 | 								[&](Decorations const &d, AttribType type) { | 
 | 									auto scalarSlot = d.Location << 2 | d.Component; | 
 | 									dst[offset++] = routine->inputs[scalarSlot]; | 
 | 								}); | 
 | 			} | 
 | 			ASSERT(objectTy.opcode() == spv::OpTypePointer); | 
 | 			auto base = &routine->getVariable(resultId)[0]; | 
 | 			auto elementTy = getType(objectTy.element); | 
 | 			auto size = elementTy.sizeInComponents * static_cast<uint32_t>(sizeof(float)) * SIMD::Width; | 
 | 			state->createPointer(resultId, SIMD::Pointer(base, size)); | 
 | 			break; | 
 | 		} | 
 | 		case spv::StorageClassUniformConstant: | 
 | 		{ | 
 | 			const auto &d = descriptorDecorations.at(resultId); | 
 | 			ASSERT(d.DescriptorSet >= 0); | 
 | 			ASSERT(d.Binding >= 0); | 
 |  | 
 | 			uint32_t arrayIndex = 0;  // TODO(b/129523279) | 
 | 			auto setLayout = routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet); | 
 | 			if (setLayout->hasBinding(d.Binding)) | 
 | 			{ | 
 | 				uint32_t bindingOffset = static_cast<uint32_t>(setLayout->getBindingOffset(d.Binding, arrayIndex)); | 
 | 				Pointer<Byte> set = routine->descriptorSets[d.DescriptorSet];  // DescriptorSet* | 
 | 				Pointer<Byte> binding = Pointer<Byte>(set + bindingOffset);    // vk::SampledImageDescriptor* | 
 | 				auto size = 0; // Not required as this pointer is not directly used by SIMD::Read or SIMD::Write. | 
 | 				state->createPointer(resultId, SIMD::Pointer(binding, size)); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				// TODO: Error if the variable with the non-existant binding is | 
 | 				// used? Or perhaps strip these unused variable declarations as | 
 | 				// a preprocess on the SPIR-V? | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case spv::StorageClassUniform: | 
 | 		case spv::StorageClassStorageBuffer: | 
 | 		{ | 
 | 			const auto &d = descriptorDecorations.at(resultId); | 
 | 			ASSERT(d.DescriptorSet >= 0 && d.DescriptorSet < vk::MAX_BOUND_DESCRIPTOR_SETS); | 
 | 			auto size = 0; // Not required as this pointer is not directly used by SIMD::Read or SIMD::Write. | 
 | 			state->createPointer(resultId, SIMD::Pointer(routine->descriptorSets[d.DescriptorSet], size)); | 
 | 			break; | 
 | 		} | 
 | 		case spv::StorageClassPushConstant: | 
 | 		{ | 
 | 			state->createPointer(resultId, SIMD::Pointer(routine->pushConstants, vk::MAX_PUSH_CONSTANT_SIZE)); | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			UNREACHABLE("Storage class %d", objectTy.storageClass); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (insn.wordCount() > 4) | 
 | 		{ | 
 | 			Object::ID initializerId = insn.word(4); | 
 | 			if (getObject(initializerId).kind != Object::Kind::Constant) | 
 | 			{ | 
 | 				UNIMPLEMENTED("Non-constant initializers not yet implemented"); | 
 | 			} | 
 | 			switch (objectTy.storageClass) | 
 | 			{ | 
 | 			case spv::StorageClassOutput: | 
 | 			case spv::StorageClassPrivate: | 
 | 			case spv::StorageClassFunction: | 
 | 			{ | 
 | 				bool interleavedByLane = IsStorageInterleavedByLane(objectTy.storageClass); | 
 | 				auto ptr = GetPointerToData(resultId, 0, state); | 
 | 				GenericValue initialValue(this, state, initializerId); | 
 | 				VisitMemoryObject(resultId, [&](uint32_t i, uint32_t offset) | 
 | 				{ | 
 | 					auto p = ptr + offset; | 
 | 					if (interleavedByLane) { p = interleaveByLane(p); } | 
 | 					auto robustness = OutOfBoundsBehavior::UndefinedBehavior;  // Local variables are always within bounds. | 
 | 					SIMD::Store(p, initialValue.Float(i), robustness, state->activeLaneMask()); | 
 | 				}); | 
 | 				break; | 
 | 			} | 
 | 			default: | 
 | 				ASSERT_MSG(initializerId == 0, "Vulkan does not permit variables of storage class %d to have initializers", int(objectTy.storageClass)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitLoad(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		bool atomic = (insn.opcode() == spv::OpAtomicLoad); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		Object::ID pointerId = insn.word(3); | 
 | 		auto &result = getObject(resultId); | 
 | 		auto &resultTy = getType(result.type); | 
 | 		auto &pointer = getObject(pointerId); | 
 | 		auto &pointerTy = getType(pointer.type); | 
 | 		std::memory_order memoryOrder = std::memory_order_relaxed; | 
 |  | 
 | 		ASSERT(getType(pointer.type).element == result.type); | 
 | 		ASSERT(Type::ID(insn.word(1)) == result.type); | 
 | 		ASSERT(!atomic || getType(getType(pointer.type).element).opcode() == spv::OpTypeInt);  // Vulkan 1.1: "Atomic instructions must declare a scalar 32-bit integer type, for the value pointed to by Pointer." | 
 |  | 
 | 		if(pointerTy.storageClass == spv::StorageClassUniformConstant) | 
 | 		{ | 
 | 			// Just propagate the pointer. | 
 | 			auto &ptr = state->getPointer(pointerId); | 
 | 			state->createPointer(resultId, ptr); | 
 | 			return EmitResult::Continue; | 
 | 		} | 
 |  | 
 | 		if(atomic) | 
 | 		{ | 
 | 			Object::ID semanticsId = insn.word(5); | 
 | 			auto memorySemantics = static_cast<spv::MemorySemanticsMask>(getObject(semanticsId).constantValue[0]); | 
 | 			memoryOrder = MemoryOrder(memorySemantics); | 
 | 		} | 
 |  | 
 | 		auto ptr = GetPointerToData(pointerId, 0, state); | 
 | 		bool interleavedByLane = IsStorageInterleavedByLane(pointerTy.storageClass); | 
 | 		auto &dst = state->createIntermediate(resultId, resultTy.sizeInComponents); | 
 | 		auto robustness = state->getOutOfBoundsBehavior(pointerTy.storageClass); | 
 |  | 
 | 		VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t offset) | 
 | 		{ | 
 | 			auto p = ptr + offset; | 
 | 			if (interleavedByLane) { p = interleaveByLane(p); }  // TODO: Interleave once, then add offset? | 
 | 			dst.move(i, SIMD::Load<SIMD::Float>(p, robustness, state->activeLaneMask(), atomic, memoryOrder)); | 
 | 		}); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitStore(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		bool atomic = (insn.opcode() == spv::OpAtomicStore); | 
 | 		Object::ID pointerId = insn.word(1); | 
 | 		Object::ID objectId = insn.word(atomic ? 4 : 2); | 
 | 		auto &object = getObject(objectId); | 
 | 		auto &pointer = getObject(pointerId); | 
 | 		auto &pointerTy = getType(pointer.type); | 
 | 		auto &elementTy = getType(pointerTy.element); | 
 | 		std::memory_order memoryOrder = std::memory_order_relaxed; | 
 |  | 
 | 		if(atomic) | 
 | 		{ | 
 | 			Object::ID semanticsId = insn.word(3); | 
 | 			auto memorySemantics = static_cast<spv::MemorySemanticsMask>(getObject(semanticsId).constantValue[0]); | 
 | 			memoryOrder = MemoryOrder(memorySemantics); | 
 | 		} | 
 |  | 
 | 		ASSERT(!atomic || elementTy.opcode() == spv::OpTypeInt);  // Vulkan 1.1: "Atomic instructions must declare a scalar 32-bit integer type, for the value pointed to by Pointer." | 
 |  | 
 | 		auto ptr = GetPointerToData(pointerId, 0, state); | 
 | 		bool interleavedByLane = IsStorageInterleavedByLane(pointerTy.storageClass); | 
 | 		auto robustness = state->getOutOfBoundsBehavior(pointerTy.storageClass); | 
 |  | 
 | 		SIMD::Int mask = state->activeLaneMask(); | 
 | 		if (!StoresInHelperInvocation(pointerTy.storageClass)) | 
 | 		{ | 
 | 			mask = mask & state->storesAndAtomicsMask(); | 
 | 		} | 
 |  | 
 | 		if (object.kind == Object::Kind::Constant) | 
 | 		{ | 
 | 			// Constant source data. | 
 | 			const uint32_t *src = object.constantValue.get(); | 
 | 			VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t offset) | 
 | 			{ | 
 | 				auto p = ptr + offset; | 
 | 				if (interleavedByLane) { p = interleaveByLane(p); } | 
 | 				SIMD::Store(p, SIMD::Int(src[i]), robustness, mask, atomic, memoryOrder); | 
 | 			}); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			// Intermediate source data. | 
 | 			auto &src = state->getIntermediate(objectId); | 
 | 			VisitMemoryObject(pointerId, [&](uint32_t i, uint32_t offset) | 
 | 			{ | 
 | 				auto p = ptr + offset; | 
 | 				if (interleavedByLane) { p = interleaveByLane(p); } | 
 | 				SIMD::Store(p, src.Float(i), robustness, mask, atomic, memoryOrder); | 
 | 			}); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitAccessChain(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		Type::ID typeId = insn.word(1); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		Object::ID baseId = insn.word(3); | 
 | 		uint32_t numIndexes = insn.wordCount() - 4; | 
 | 		const uint32_t *indexes = insn.wordPointer(4); | 
 | 		auto &type = getType(typeId); | 
 | 		ASSERT(type.sizeInComponents == 1); | 
 | 		ASSERT(getObject(resultId).kind == Object::Kind::Pointer); | 
 |  | 
 | 		if(type.storageClass == spv::StorageClassPushConstant || | 
 | 		   type.storageClass == spv::StorageClassUniform || | 
 | 		   type.storageClass == spv::StorageClassStorageBuffer) | 
 | 		{ | 
 | 			auto ptr = WalkExplicitLayoutAccessChain(baseId, numIndexes, indexes, state); | 
 | 			state->createPointer(resultId, ptr); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			auto ptr = WalkAccessChain(baseId, numIndexes, indexes, state); | 
 | 			state->createPointer(resultId, ptr); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitCompositeConstruct(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto offset = 0u; | 
 |  | 
 | 		for (auto i = 0u; i < insn.wordCount() - 3; i++) | 
 | 		{ | 
 | 			Object::ID srcObjectId = insn.word(3u + i); | 
 | 			auto & srcObject = getObject(srcObjectId); | 
 | 			auto & srcObjectTy = getType(srcObject.type); | 
 | 			GenericValue srcObjectAccess(this, state, srcObjectId); | 
 |  | 
 | 			for (auto j = 0u; j < srcObjectTy.sizeInComponents; j++) | 
 | 			{ | 
 | 				dst.move(offset++, srcObjectAccess.Float(j)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitCompositeInsert(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		Type::ID resultTypeId = insn.word(1); | 
 | 		auto &type = getType(resultTypeId); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &newPartObject = getObject(insn.word(3)); | 
 | 		auto &newPartObjectTy = getType(newPartObject.type); | 
 | 		auto firstNewComponent = WalkLiteralAccessChain(resultTypeId, insn.wordCount() - 5, insn.wordPointer(5)); | 
 |  | 
 | 		GenericValue srcObjectAccess(this, state, insn.word(4)); | 
 | 		GenericValue newPartObjectAccess(this, state, insn.word(3)); | 
 |  | 
 | 		// old components before | 
 | 		for (auto i = 0u; i < firstNewComponent; i++) | 
 | 		{ | 
 | 			dst.move(i, srcObjectAccess.Float(i)); | 
 | 		} | 
 | 		// new part | 
 | 		for (auto i = 0u; i < newPartObjectTy.sizeInComponents; i++) | 
 | 		{ | 
 | 			dst.move(firstNewComponent + i, newPartObjectAccess.Float(i)); | 
 | 		} | 
 | 		// old components after | 
 | 		for (auto i = firstNewComponent + newPartObjectTy.sizeInComponents; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			dst.move(i, srcObjectAccess.Float(i)); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitCompositeExtract(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &compositeObject = getObject(insn.word(3)); | 
 | 		Type::ID compositeTypeId = compositeObject.definition.word(1); | 
 | 		auto firstComponent = WalkLiteralAccessChain(compositeTypeId, insn.wordCount() - 4, insn.wordPointer(4)); | 
 |  | 
 | 		GenericValue compositeObjectAccess(this, state, insn.word(3)); | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			dst.move(i, compositeObjectAccess.Float(firstComponent + i)); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitVectorShuffle(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 |  | 
 | 		// Note: number of components in result type, first half type, and second | 
 | 		// half type are all independent. | 
 | 		auto &firstHalfType = getType(getObject(insn.word(3)).type); | 
 |  | 
 | 		GenericValue firstHalfAccess(this, state, insn.word(3)); | 
 | 		GenericValue secondHalfAccess(this, state, insn.word(4)); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			auto selector = insn.word(5 + i); | 
 | 			if (selector == static_cast<uint32_t>(-1)) | 
 | 			{ | 
 | 				// Undefined value. Until we decide to do real undef values, zero is as good | 
 | 				// a value as any | 
 | 				dst.move(i, RValue<SIMD::Float>(0.0f)); | 
 | 			} | 
 | 			else if (selector < firstHalfType.sizeInComponents) | 
 | 			{ | 
 | 				dst.move(i, firstHalfAccess.Float(selector)); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				dst.move(i, secondHalfAccess.Float(selector - firstHalfType.sizeInComponents)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitVectorExtractDynamic(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &srcType = getType(getObject(insn.word(3)).type); | 
 |  | 
 | 		GenericValue src(this, state, insn.word(3)); | 
 | 		GenericValue index(this, state, insn.word(4)); | 
 |  | 
 | 		SIMD::UInt v = SIMD::UInt(0); | 
 |  | 
 | 		for (auto i = 0u; i < srcType.sizeInComponents; i++) | 
 | 		{ | 
 | 			v |= CmpEQ(index.UInt(0), SIMD::UInt(i)) & src.UInt(i); | 
 | 		} | 
 |  | 
 | 		dst.move(0, v); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitVectorInsertDynamic(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 |  | 
 | 		GenericValue src(this, state, insn.word(3)); | 
 | 		GenericValue component(this, state, insn.word(4)); | 
 | 		GenericValue index(this, state, insn.word(5)); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			SIMD::UInt mask = CmpEQ(SIMD::UInt(i), index.UInt(0)); | 
 | 			dst.move(i, (src.UInt(i) & ~mask) | (component.UInt(0) & mask)); | 
 | 		} | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitVectorTimesScalar(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			dst.move(i, lhs.Float(i) * rhs.Float(0)); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitMatrixTimesVector(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 | 		auto rhsType = getType(rhs.type); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			SIMD::Float v = lhs.Float(i) * rhs.Float(0); | 
 | 			for (auto j = 1u; j < rhsType.sizeInComponents; j++) | 
 | 			{ | 
 | 				v += lhs.Float(i + type.sizeInComponents * j) * rhs.Float(j); | 
 | 			} | 
 | 			dst.move(i, v); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitVectorTimesMatrix(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 | 		auto lhsType = getType(lhs.type); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			SIMD::Float v = lhs.Float(0) * rhs.Float(i * lhsType.sizeInComponents); | 
 | 			for (auto j = 1u; j < lhsType.sizeInComponents; j++) | 
 | 			{ | 
 | 				v += lhs.Float(j) * rhs.Float(i * lhsType.sizeInComponents + j); | 
 | 			} | 
 | 			dst.move(i, v); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitMatrixTimesMatrix(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 |  | 
 | 		auto numColumns = type.definition.word(3); | 
 | 		auto numRows = getType(type.definition.word(2)).definition.word(3); | 
 | 		auto numAdds = getType(getObject(insn.word(3)).type).definition.word(3); | 
 |  | 
 | 		for (auto row = 0u; row < numRows; row++) | 
 | 		{ | 
 | 			for (auto col = 0u; col < numColumns; col++) | 
 | 			{ | 
 | 				SIMD::Float v = SIMD::Float(0); | 
 | 				for (auto i = 0u; i < numAdds; i++) | 
 | 				{ | 
 | 					v += lhs.Float(i * numRows + row) * rhs.Float(col * numAdds + i); | 
 | 				} | 
 | 				dst.move(numRows * col + row, v); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitOuterProduct(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 | 		auto &lhsType = getType(lhs.type); | 
 | 		auto &rhsType = getType(rhs.type); | 
 |  | 
 | 		ASSERT(type.definition.opcode() == spv::OpTypeMatrix); | 
 | 		ASSERT(lhsType.definition.opcode() == spv::OpTypeVector); | 
 | 		ASSERT(rhsType.definition.opcode() == spv::OpTypeVector); | 
 | 		ASSERT(getType(lhsType.element).opcode() == spv::OpTypeFloat); | 
 | 		ASSERT(getType(rhsType.element).opcode() == spv::OpTypeFloat); | 
 |  | 
 | 		auto numRows = lhsType.definition.word(3); | 
 | 		auto numCols = rhsType.definition.word(3); | 
 |  | 
 | 		for (auto col = 0u; col < numCols; col++) | 
 | 		{ | 
 | 			for (auto row = 0u; row < numRows; row++) | 
 | 			{ | 
 | 				dst.move(col * numRows + row, lhs.Float(row) * rhs.Float(col)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitTranspose(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto mat = GenericValue(this, state, insn.word(3)); | 
 |  | 
 | 		auto numCols = type.definition.word(3); | 
 | 		auto numRows = getType(type.definition.word(2)).sizeInComponents; | 
 |  | 
 | 		for (auto col = 0u; col < numCols; col++) | 
 | 		{ | 
 | 			for (auto row = 0u; row < numRows; row++) | 
 | 			{ | 
 | 				dst.move(col * numRows + row, mat.Float(row * numCols + col)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitUnaryOp(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto src = GenericValue(this, state, insn.word(3)); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			switch (insn.opcode()) | 
 | 			{ | 
 | 			case spv::OpNot: | 
 | 			case spv::OpLogicalNot:		// logical not == bitwise not due to all-bits boolean representation | 
 | 				dst.move(i, ~src.UInt(i)); | 
 | 				break; | 
 | 			case spv::OpBitFieldInsert: | 
 | 			{ | 
 | 				auto insert = GenericValue(this, state, insn.word(4)).UInt(i); | 
 | 				auto offset = GenericValue(this, state, insn.word(5)).UInt(0); | 
 | 				auto count = GenericValue(this, state, insn.word(6)).UInt(0); | 
 | 				auto one = SIMD::UInt(1); | 
 | 				auto v = src.UInt(i); | 
 | 				auto mask = Bitmask32(offset + count) ^ Bitmask32(offset); | 
 | 				dst.move(i, (v & ~mask) | ((insert << offset) & mask)); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpBitFieldSExtract: | 
 | 			case spv::OpBitFieldUExtract: | 
 | 			{ | 
 | 				auto offset = GenericValue(this, state, insn.word(4)).UInt(0); | 
 | 				auto count = GenericValue(this, state, insn.word(5)).UInt(0); | 
 | 				auto one = SIMD::UInt(1); | 
 | 				auto v = src.UInt(i); | 
 | 				SIMD::UInt out = (v >> offset) & Bitmask32(count); | 
 | 				if (insn.opcode() == spv::OpBitFieldSExtract) | 
 | 				{ | 
 | 					auto sign = out & NthBit32(count - one); | 
 | 					auto sext = ~(sign - one); | 
 | 					out |= sext; | 
 | 				} | 
 | 				dst.move(i, out); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpBitReverse: | 
 | 			{ | 
 | 				// TODO: Add an intrinsic to reactor. Even if there isn't a | 
 | 				// single vector instruction, there may be target-dependent | 
 | 				// ways to make this faster. | 
 | 				// https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel | 
 | 				SIMD::UInt v = src.UInt(i); | 
 | 				v = ((v >> 1) & SIMD::UInt(0x55555555)) | ((v & SIMD::UInt(0x55555555)) << 1); | 
 | 				v = ((v >> 2) & SIMD::UInt(0x33333333)) | ((v & SIMD::UInt(0x33333333)) << 2); | 
 | 				v = ((v >> 4) & SIMD::UInt(0x0F0F0F0F)) | ((v & SIMD::UInt(0x0F0F0F0F)) << 4); | 
 | 				v = ((v >> 8) & SIMD::UInt(0x00FF00FF)) | ((v & SIMD::UInt(0x00FF00FF)) << 8); | 
 | 				v = (v >> 16) | (v << 16); | 
 | 				dst.move(i, v); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpBitCount: | 
 | 				dst.move(i, CountBits(src.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpSNegate: | 
 | 				dst.move(i, -src.Int(i)); | 
 | 				break; | 
 | 			case spv::OpFNegate: | 
 | 				dst.move(i, -src.Float(i)); | 
 | 				break; | 
 | 			case spv::OpConvertFToU: | 
 | 				dst.move(i, SIMD::UInt(src.Float(i))); | 
 | 				break; | 
 | 			case spv::OpConvertFToS: | 
 | 				dst.move(i, SIMD::Int(src.Float(i))); | 
 | 				break; | 
 | 			case spv::OpConvertSToF: | 
 | 				dst.move(i, SIMD::Float(src.Int(i))); | 
 | 				break; | 
 | 			case spv::OpConvertUToF: | 
 | 				dst.move(i, SIMD::Float(src.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpBitcast: | 
 | 				dst.move(i, src.Float(i)); | 
 | 				break; | 
 | 			case spv::OpIsInf: | 
 | 				dst.move(i, IsInf(src.Float(i))); | 
 | 				break; | 
 | 			case spv::OpIsNan: | 
 | 				dst.move(i, IsNan(src.Float(i))); | 
 | 				break; | 
 | 			case spv::OpDPdx: | 
 | 			case spv::OpDPdxCoarse: | 
 | 				// Derivative instructions: FS invocations are laid out like so: | 
 | 				//    0 1 | 
 | 				//    2 3 | 
 | 				static_assert(SIMD::Width == 4, "All cross-lane instructions will need care when using a different width"); | 
 | 				dst.move(i, SIMD::Float(Extract(src.Float(i), 1) - Extract(src.Float(i), 0))); | 
 | 				break; | 
 | 			case spv::OpDPdy: | 
 | 			case spv::OpDPdyCoarse: | 
 | 				dst.move(i, SIMD::Float(Extract(src.Float(i), 2) - Extract(src.Float(i), 0))); | 
 | 				break; | 
 | 			case spv::OpFwidth: | 
 | 			case spv::OpFwidthCoarse: | 
 | 				dst.move(i, SIMD::Float(Abs(Extract(src.Float(i), 1) - Extract(src.Float(i), 0)) | 
 | 							+ Abs(Extract(src.Float(i), 2) - Extract(src.Float(i), 0)))); | 
 | 				break; | 
 | 			case spv::OpDPdxFine: | 
 | 			{ | 
 | 				auto firstRow = Extract(src.Float(i), 1) - Extract(src.Float(i), 0); | 
 | 				auto secondRow = Extract(src.Float(i), 3) - Extract(src.Float(i), 2); | 
 | 				SIMD::Float v = SIMD::Float(firstRow); | 
 | 				v = Insert(v, secondRow, 2); | 
 | 				v = Insert(v, secondRow, 3); | 
 | 				dst.move(i, v); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpDPdyFine: | 
 | 			{ | 
 | 				auto firstColumn = Extract(src.Float(i), 2) - Extract(src.Float(i), 0); | 
 | 				auto secondColumn = Extract(src.Float(i), 3) - Extract(src.Float(i), 1); | 
 | 				SIMD::Float v = SIMD::Float(firstColumn); | 
 | 				v = Insert(v, secondColumn, 1); | 
 | 				v = Insert(v, secondColumn, 3); | 
 | 				dst.move(i, v); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpFwidthFine: | 
 | 			{ | 
 | 				auto firstRow = Extract(src.Float(i), 1) - Extract(src.Float(i), 0); | 
 | 				auto secondRow = Extract(src.Float(i), 3) - Extract(src.Float(i), 2); | 
 | 				SIMD::Float dpdx = SIMD::Float(firstRow); | 
 | 				dpdx = Insert(dpdx, secondRow, 2); | 
 | 				dpdx = Insert(dpdx, secondRow, 3); | 
 | 				auto firstColumn = Extract(src.Float(i), 2) - Extract(src.Float(i), 0); | 
 | 				auto secondColumn = Extract(src.Float(i), 3) - Extract(src.Float(i), 1); | 
 | 				SIMD::Float dpdy = SIMD::Float(firstColumn); | 
 | 				dpdy = Insert(dpdy, secondColumn, 1); | 
 | 				dpdy = Insert(dpdy, secondColumn, 3); | 
 | 				dst.move(i, Abs(dpdx) + Abs(dpdy)); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpQuantizeToF16: | 
 | 			{ | 
 | 				// Note: keep in sync with the specialization constant version in EvalSpecConstantUnaryOp | 
 | 				auto abs = Abs(src.Float(i)); | 
 | 				auto sign = src.Int(i) & SIMD::Int(0x80000000); | 
 | 				auto isZero = CmpLT(abs, SIMD::Float(0.000061035f)); | 
 | 				auto isInf  = CmpGT(abs, SIMD::Float(65504.0f)); | 
 | 				auto isNaN  = IsNan(abs); | 
 | 				auto isInfOrNan = isInf | isNaN; | 
 | 				SIMD::Int v = src.Int(i) & SIMD::Int(0xFFFFE000); | 
 | 				v &= ~isZero | SIMD::Int(0x80000000); | 
 | 				v = sign | (isInfOrNan & SIMD::Int(0x7F800000)) | (~isInfOrNan & v); | 
 | 				v |= isNaN & SIMD::Int(0x400000); | 
 | 				dst.move(i, v); | 
 | 				break; | 
 | 			} | 
 | 			default: | 
 | 				UNREACHABLE("%s", OpcodeName(insn.opcode()).c_str()); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitBinaryOp(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &lhsType = getType(getObject(insn.word(3)).type); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 |  | 
 | 		for (auto i = 0u; i < lhsType.sizeInComponents; i++) | 
 | 		{ | 
 | 			switch (insn.opcode()) | 
 | 			{ | 
 | 			case spv::OpIAdd: | 
 | 				dst.move(i, lhs.Int(i) + rhs.Int(i)); | 
 | 				break; | 
 | 			case spv::OpISub: | 
 | 				dst.move(i, lhs.Int(i) - rhs.Int(i)); | 
 | 				break; | 
 | 			case spv::OpIMul: | 
 | 				dst.move(i, lhs.Int(i) * rhs.Int(i)); | 
 | 				break; | 
 | 			case spv::OpSDiv: | 
 | 			{ | 
 | 				SIMD::Int a = lhs.Int(i); | 
 | 				SIMD::Int b = rhs.Int(i); | 
 | 				b = b | CmpEQ(b, SIMD::Int(0)); // prevent divide-by-zero | 
 | 				a = a | (CmpEQ(a, SIMD::Int(0x80000000)) & CmpEQ(b, SIMD::Int(-1))); // prevent integer overflow | 
 | 				dst.move(i, a / b); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpUDiv: | 
 | 			{ | 
 | 				auto zeroMask = As<SIMD::UInt>(CmpEQ(rhs.Int(i), SIMD::Int(0))); | 
 | 				dst.move(i, lhs.UInt(i) / (rhs.UInt(i) | zeroMask)); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpSRem: | 
 | 			{ | 
 | 				SIMD::Int a = lhs.Int(i); | 
 | 				SIMD::Int b = rhs.Int(i); | 
 | 				b = b | CmpEQ(b, SIMD::Int(0)); // prevent divide-by-zero | 
 | 				a = a | (CmpEQ(a, SIMD::Int(0x80000000)) & CmpEQ(b, SIMD::Int(-1))); // prevent integer overflow | 
 | 				dst.move(i, a % b); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpSMod: | 
 | 			{ | 
 | 				SIMD::Int a = lhs.Int(i); | 
 | 				SIMD::Int b = rhs.Int(i); | 
 | 				b = b | CmpEQ(b, SIMD::Int(0)); // prevent divide-by-zero | 
 | 				a = a | (CmpEQ(a, SIMD::Int(0x80000000)) & CmpEQ(b, SIMD::Int(-1))); // prevent integer overflow | 
 | 				auto mod = a % b; | 
 | 				// If a and b have opposite signs, the remainder operation takes | 
 | 				// the sign from a but OpSMod is supposed to take the sign of b. | 
 | 				// Adding b will ensure that the result has the correct sign and | 
 | 				// that it is still congruent to a modulo b. | 
 | 				// | 
 | 				// See also http://mathforum.org/library/drmath/view/52343.html | 
 | 				auto signDiff = CmpNEQ(CmpGE(a, SIMD::Int(0)), CmpGE(b, SIMD::Int(0))); | 
 | 				auto fixedMod = mod + (b & CmpNEQ(mod, SIMD::Int(0)) & signDiff); | 
 | 				dst.move(i, As<SIMD::Float>(fixedMod)); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpUMod: | 
 | 			{ | 
 | 				auto zeroMask = As<SIMD::UInt>(CmpEQ(rhs.Int(i), SIMD::Int(0))); | 
 | 				dst.move(i, lhs.UInt(i) % (rhs.UInt(i) | zeroMask)); | 
 | 				break; | 
 | 			} | 
 | 			case spv::OpIEqual: | 
 | 			case spv::OpLogicalEqual: | 
 | 				dst.move(i, CmpEQ(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpINotEqual: | 
 | 			case spv::OpLogicalNotEqual: | 
 | 				dst.move(i, CmpNEQ(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpUGreaterThan: | 
 | 				dst.move(i, CmpGT(lhs.UInt(i), rhs.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpSGreaterThan: | 
 | 				dst.move(i, CmpGT(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpUGreaterThanEqual: | 
 | 				dst.move(i, CmpGE(lhs.UInt(i), rhs.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpSGreaterThanEqual: | 
 | 				dst.move(i, CmpGE(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpULessThan: | 
 | 				dst.move(i, CmpLT(lhs.UInt(i), rhs.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpSLessThan: | 
 | 				dst.move(i, CmpLT(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpULessThanEqual: | 
 | 				dst.move(i, CmpLE(lhs.UInt(i), rhs.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpSLessThanEqual: | 
 | 				dst.move(i, CmpLE(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpFAdd: | 
 | 				dst.move(i, lhs.Float(i) + rhs.Float(i)); | 
 | 				break; | 
 | 			case spv::OpFSub: | 
 | 				dst.move(i, lhs.Float(i) - rhs.Float(i)); | 
 | 				break; | 
 | 			case spv::OpFMul: | 
 | 				dst.move(i, lhs.Float(i) * rhs.Float(i)); | 
 | 				break; | 
 | 			case spv::OpFDiv: | 
 | 				dst.move(i, lhs.Float(i) / rhs.Float(i)); | 
 | 				break; | 
 | 			case spv::OpFMod: | 
 | 				// TODO(b/126873455): inaccurate for values greater than 2^24 | 
 | 				dst.move(i, lhs.Float(i) - rhs.Float(i) * Floor(lhs.Float(i) / rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFRem: | 
 | 				dst.move(i, lhs.Float(i) % rhs.Float(i)); | 
 | 				break; | 
 | 			case spv::OpFOrdEqual: | 
 | 				dst.move(i, CmpEQ(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFUnordEqual: | 
 | 				dst.move(i, CmpUEQ(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFOrdNotEqual: | 
 | 				dst.move(i, CmpNEQ(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFUnordNotEqual: | 
 | 				dst.move(i, CmpUNEQ(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFOrdLessThan: | 
 | 				dst.move(i, CmpLT(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFUnordLessThan: | 
 | 				dst.move(i, CmpULT(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFOrdGreaterThan: | 
 | 				dst.move(i, CmpGT(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFUnordGreaterThan: | 
 | 				dst.move(i, CmpUGT(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFOrdLessThanEqual: | 
 | 				dst.move(i, CmpLE(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFUnordLessThanEqual: | 
 | 				dst.move(i, CmpULE(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFOrdGreaterThanEqual: | 
 | 				dst.move(i, CmpGE(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpFUnordGreaterThanEqual: | 
 | 				dst.move(i, CmpUGE(lhs.Float(i), rhs.Float(i))); | 
 | 				break; | 
 | 			case spv::OpShiftRightLogical: | 
 | 				dst.move(i, lhs.UInt(i) >> rhs.UInt(i)); | 
 | 				break; | 
 | 			case spv::OpShiftRightArithmetic: | 
 | 				dst.move(i, lhs.Int(i) >> rhs.Int(i)); | 
 | 				break; | 
 | 			case spv::OpShiftLeftLogical: | 
 | 				dst.move(i, lhs.UInt(i) << rhs.UInt(i)); | 
 | 				break; | 
 | 			case spv::OpBitwiseOr: | 
 | 			case spv::OpLogicalOr: | 
 | 				dst.move(i, lhs.UInt(i) | rhs.UInt(i)); | 
 | 				break; | 
 | 			case spv::OpBitwiseXor: | 
 | 				dst.move(i, lhs.UInt(i) ^ rhs.UInt(i)); | 
 | 				break; | 
 | 			case spv::OpBitwiseAnd: | 
 | 			case spv::OpLogicalAnd: | 
 | 				dst.move(i, lhs.UInt(i) & rhs.UInt(i)); | 
 | 				break; | 
 | 			case spv::OpSMulExtended: | 
 | 				// Extended ops: result is a structure containing two members of the same type as lhs & rhs. | 
 | 				// In our flat view then, component i is the i'th component of the first member; | 
 | 				// component i + N is the i'th component of the second member. | 
 | 				dst.move(i, lhs.Int(i) * rhs.Int(i)); | 
 | 				dst.move(i + lhsType.sizeInComponents, MulHigh(lhs.Int(i), rhs.Int(i))); | 
 | 				break; | 
 | 			case spv::OpUMulExtended: | 
 | 				dst.move(i, lhs.UInt(i) * rhs.UInt(i)); | 
 | 				dst.move(i + lhsType.sizeInComponents, MulHigh(lhs.UInt(i), rhs.UInt(i))); | 
 | 				break; | 
 | 			case spv::OpIAddCarry: | 
 | 				dst.move(i, lhs.UInt(i) + rhs.UInt(i)); | 
 | 				dst.move(i + lhsType.sizeInComponents, CmpLT(dst.UInt(i), lhs.UInt(i)) >> 31); | 
 | 				break; | 
 | 			case spv::OpISubBorrow: | 
 | 				dst.move(i, lhs.UInt(i) - rhs.UInt(i)); | 
 | 				dst.move(i + lhsType.sizeInComponents, CmpLT(lhs.UInt(i), rhs.UInt(i)) >> 31); | 
 | 				break; | 
 | 			default: | 
 | 				UNREACHABLE("%s", OpcodeName(insn.opcode()).c_str()); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitDot(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		ASSERT(type.sizeInComponents == 1); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &lhsType = getType(getObject(insn.word(3)).type); | 
 | 		auto lhs = GenericValue(this, state, insn.word(3)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(4)); | 
 |  | 
 | 		dst.move(0, Dot(lhsType.sizeInComponents, lhs, rhs)); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitSelect(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto cond = GenericValue(this, state, insn.word(3)); | 
 | 		auto condIsScalar = (getType(cond.type).sizeInComponents == 1); | 
 | 		auto lhs = GenericValue(this, state, insn.word(4)); | 
 | 		auto rhs = GenericValue(this, state, insn.word(5)); | 
 |  | 
 | 		for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			auto sel = cond.Int(condIsScalar ? 0 : i); | 
 | 			dst.move(i, (sel & lhs.Int(i)) | (~sel & rhs.Int(i)));   // TODO: IfThenElse() | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitExtendedInstruction(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto extInstIndex = static_cast<GLSLstd450>(insn.word(4)); | 
 |  | 
 | 		switch (extInstIndex) | 
 | 		{ | 
 | 		case GLSLstd450FAbs: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Abs(src.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450SAbs: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Abs(src.Int(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Cross: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			dst.move(0, lhs.Float(1) * rhs.Float(2) - rhs.Float(1) * lhs.Float(2)); | 
 | 			dst.move(1, lhs.Float(2) * rhs.Float(0) - rhs.Float(2) * lhs.Float(0)); | 
 | 			dst.move(2, lhs.Float(0) * rhs.Float(1) - rhs.Float(0) * lhs.Float(1)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Floor: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Floor(src.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Trunc: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Trunc(src.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Ceil: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Ceil(src.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Fract: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Frac(src.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Round: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Round(src.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450RoundEven: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto x = Round(src.Float(i)); | 
 | 				// dst = round(src) + ((round(src) < src) * 2 - 1) * (fract(src) == 0.5) * isOdd(round(src)); | 
 | 				dst.move(i, x + ((SIMD::Float(CmpLT(x, src.Float(i)) & SIMD::Int(1)) * SIMD::Float(2.0f)) - SIMD::Float(1.0f)) * | 
 | 						SIMD::Float(CmpEQ(Frac(src.Float(i)), SIMD::Float(0.5f)) & SIMD::Int(1)) * SIMD::Float(Int4(x) & SIMD::Int(1))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FMin: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Min(lhs.Float(i), rhs.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FMax: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Max(lhs.Float(i), rhs.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450SMin: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Min(lhs.Int(i), rhs.Int(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450SMax: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Max(lhs.Int(i), rhs.Int(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UMin: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Min(lhs.UInt(i), rhs.UInt(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UMax: | 
 | 		{ | 
 | 			auto lhs = GenericValue(this, state, insn.word(5)); | 
 | 			auto rhs = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Max(lhs.UInt(i), rhs.UInt(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Step: | 
 | 		{ | 
 | 			auto edge = GenericValue(this, state, insn.word(5)); | 
 | 			auto x = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, CmpNLT(x.Float(i), edge.Float(i)) & As<SIMD::Int>(SIMD::Float(1.0f))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450SmoothStep: | 
 | 		{ | 
 | 			auto edge0 = GenericValue(this, state, insn.word(5)); | 
 | 			auto edge1 = GenericValue(this, state, insn.word(6)); | 
 | 			auto x = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto tx = Min(Max((x.Float(i) - edge0.Float(i)) / | 
 | 						(edge1.Float(i) - edge0.Float(i)), SIMD::Float(0.0f)), SIMD::Float(1.0f)); | 
 | 				dst.move(i, tx * tx * (Float4(3.0f) - Float4(2.0f) * tx)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FMix: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto y = GenericValue(this, state, insn.word(6)); | 
 | 			auto a = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, a.Float(i) * (y.Float(i) - x.Float(i)) + x.Float(i)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FClamp: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto minVal = GenericValue(this, state, insn.word(6)); | 
 | 			auto maxVal = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Min(Max(x.Float(i), minVal.Float(i)), maxVal.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450SClamp: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto minVal = GenericValue(this, state, insn.word(6)); | 
 | 			auto maxVal = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Min(Max(x.Int(i), minVal.Int(i)), maxVal.Int(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UClamp: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto minVal = GenericValue(this, state, insn.word(6)); | 
 | 			auto maxVal = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Min(Max(x.UInt(i), minVal.UInt(i)), maxVal.UInt(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FSign: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto neg = As<SIMD::Int>(CmpLT(src.Float(i), SIMD::Float(-0.0f))) & As<SIMD::Int>(SIMD::Float(-1.0f)); | 
 | 				auto pos = As<SIMD::Int>(CmpNLE(src.Float(i), SIMD::Float(+0.0f))) & As<SIMD::Int>(SIMD::Float(1.0f)); | 
 | 				dst.move(i, neg | pos); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450SSign: | 
 | 		{ | 
 | 			auto src = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto neg = CmpLT(src.Int(i), SIMD::Int(0)) & SIMD::Int(-1); | 
 | 				auto pos = CmpNLE(src.Int(i), SIMD::Int(0)) & SIMD::Int(1); | 
 | 				dst.move(i, neg | pos); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Reflect: | 
 | 		{ | 
 | 			auto I = GenericValue(this, state, insn.word(5)); | 
 | 			auto N = GenericValue(this, state, insn.word(6)); | 
 |  | 
 | 			SIMD::Float d = Dot(type.sizeInComponents, I, N); | 
 |  | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, I.Float(i) - SIMD::Float(2.0f) * d * N.Float(i)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Refract: | 
 | 		{ | 
 | 			auto I = GenericValue(this, state, insn.word(5)); | 
 | 			auto N = GenericValue(this, state, insn.word(6)); | 
 | 			auto eta = GenericValue(this, state, insn.word(7)); | 
 |  | 
 | 			SIMD::Float d = Dot(type.sizeInComponents, I, N); | 
 | 			SIMD::Float k = SIMD::Float(1.0f) - eta.Float(0) * eta.Float(0) * (SIMD::Float(1.0f) - d * d); | 
 | 			SIMD::Int pos = CmpNLT(k, SIMD::Float(0.0f)); | 
 | 			SIMD::Float t = (eta.Float(0) * d + Sqrt(k)); | 
 |  | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, pos & As<SIMD::Int>(eta.Float(0) * I.Float(i) - t * N.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FaceForward: | 
 | 		{ | 
 | 			auto N = GenericValue(this, state, insn.word(5)); | 
 | 			auto I = GenericValue(this, state, insn.word(6)); | 
 | 			auto Nref = GenericValue(this, state, insn.word(7)); | 
 |  | 
 | 			SIMD::Float d = Dot(type.sizeInComponents, I, Nref); | 
 | 			SIMD::Int neg = CmpLT(d, SIMD::Float(0.0f)); | 
 |  | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto n = N.Float(i); | 
 | 				dst.move(i, (neg & As<SIMD::Int>(n)) | (~neg & As<SIMD::Int>(-n))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Length: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			SIMD::Float d = Dot(getType(getObject(insn.word(5)).type).sizeInComponents, x, x); | 
 |  | 
 | 			dst.move(0, Sqrt(d)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Normalize: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			SIMD::Float d = Dot(getType(getObject(insn.word(5)).type).sizeInComponents, x, x); | 
 | 			SIMD::Float invLength = SIMD::Float(1.0f) / Sqrt(d); | 
 |  | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, invLength * x.Float(i)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Distance: | 
 | 		{ | 
 | 			auto p0 = GenericValue(this, state, insn.word(5)); | 
 | 			auto p1 = GenericValue(this, state, insn.word(6)); | 
 | 			auto p0Type = getType(p0.type); | 
 |  | 
 | 			// sqrt(dot(p0-p1, p0-p1)) | 
 | 			SIMD::Float d = (p0.Float(0) - p1.Float(0)) * (p0.Float(0) - p1.Float(0)); | 
 |  | 
 | 			for (auto i = 1u; i < p0Type.sizeInComponents; i++) | 
 | 			{ | 
 | 				d += (p0.Float(i) - p1.Float(i)) * (p0.Float(i) - p1.Float(i)); | 
 | 			} | 
 |  | 
 | 			dst.move(0, Sqrt(d)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Modf: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			auto ptrId = Object::ID(insn.word(6)); | 
 | 			auto ptrTy = getType(getObject(ptrId).type); | 
 | 			auto ptr = GetPointerToData(ptrId, 0, state); | 
 | 			bool interleavedByLane = IsStorageInterleavedByLane(ptrTy.storageClass); | 
 | 			// TODO: GLSL modf() takes an output parameter and thus the pointer is assumed | 
 | 			// to be in bounds even for inactive lanes. | 
 | 			// - Clarify the SPIR-V spec. | 
 | 			// - Eliminate lane masking and assume interleaving. | 
 | 			auto robustness = OutOfBoundsBehavior::UndefinedBehavior; | 
 |  | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Float whole, frac; | 
 | 				std::tie(whole, frac) = Modf(val.Float(i)); | 
 | 				dst.move(i, frac); | 
 | 				auto p = ptr + (i * sizeof(float)); | 
 | 				if (interleavedByLane) { p = interleaveByLane(p); } | 
 | 				SIMD::Store(p, whole, robustness, state->activeLaneMask()); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450ModfStruct: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			auto valTy = getType(val.type); | 
 |  | 
 | 			for (auto i = 0u; i < valTy.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Float whole, frac; | 
 | 				std::tie(whole, frac) = Modf(val.Float(i)); | 
 | 				dst.move(i, frac); | 
 | 				dst.move(i + valTy.sizeInComponents, whole); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450PackSnorm4x8: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, (SIMD::Int(Round(Min(Max(val.Float(0), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						 SIMD::Int(0xFF)) | | 
 | 						((SIMD::Int(Round(Min(Max(val.Float(1), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						  SIMD::Int(0xFF)) << 8) | | 
 | 						((SIMD::Int(Round(Min(Max(val.Float(2), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						  SIMD::Int(0xFF)) << 16) | | 
 | 						((SIMD::Int(Round(Min(Max(val.Float(3), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						  SIMD::Int(0xFF)) << 24)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450PackUnorm4x8: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, (SIMD::UInt(Round(Min(Max(val.Float(0), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) | | 
 | 						((SIMD::UInt(Round(Min(Max(val.Float(1), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 8) | | 
 | 						((SIMD::UInt(Round(Min(Max(val.Float(2), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 16) | | 
 | 						((SIMD::UInt(Round(Min(Max(val.Float(3), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 24)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450PackSnorm2x16: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, (SIMD::Int(Round(Min(Max(val.Float(0), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(32767.0f))) & | 
 | 						 SIMD::Int(0xFFFF)) | | 
 | 						((SIMD::Int(Round(Min(Max(val.Float(1), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(32767.0f))) & | 
 | 						  SIMD::Int(0xFFFF)) << 16)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450PackUnorm2x16: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, (SIMD::UInt(Round(Min(Max(val.Float(0), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(65535.0f))) & | 
 | 						 SIMD::UInt(0xFFFF)) | | 
 | 						((SIMD::UInt(Round(Min(Max(val.Float(1), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(65535.0f))) & | 
 | 						  SIMD::UInt(0xFFFF)) << 16)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450PackHalf2x16: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, FloatToHalfBits(val.UInt(0), false) | FloatToHalfBits(val.UInt(1), true)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UnpackSnorm4x8: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, Min(Max(SIMD::Float(((val.Int(0)<<24) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(1, Min(Max(SIMD::Float(((val.Int(0)<<16) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(2, Min(Max(SIMD::Float(((val.Int(0)<<8) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(3, Min(Max(SIMD::Float(((val.Int(0)) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UnpackUnorm4x8: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, SIMD::Float((val.UInt(0) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(1, SIMD::Float(((val.UInt(0)>>8) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(2, SIMD::Float(((val.UInt(0)>>16) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(3, SIMD::Float(((val.UInt(0)>>24) & SIMD::UInt(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UnpackSnorm2x16: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			// clamp(f / 32767.0, -1.0, 1.0) | 
 | 			dst.move(0, Min(Max(SIMD::Float(As<SIMD::Int>((val.UInt(0) & SIMD::UInt(0x0000FFFF)) << 16)) * | 
 | 								SIMD::Float(1.0f / float(0x7FFF0000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(1, Min(Max(SIMD::Float(As<SIMD::Int>(val.UInt(0) & SIMD::UInt(0xFFFF0000))) * SIMD::Float(1.0f / float(0x7FFF0000)), | 
 | 								SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UnpackUnorm2x16: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			// f / 65535.0 | 
 | 			dst.move(0, SIMD::Float((val.UInt(0) & SIMD::UInt(0x0000FFFF)) << 16) * SIMD::Float(1.0f / float(0xFFFF0000))); | 
 | 			dst.move(1, SIMD::Float(val.UInt(0) & SIMD::UInt(0xFFFF0000)) * SIMD::Float(1.0f / float(0xFFFF0000))); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UnpackHalf2x16: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			dst.move(0, halfToFloatBits(val.UInt(0) & SIMD::UInt(0x0000FFFF))); | 
 | 			dst.move(1, halfToFloatBits((val.UInt(0) & SIMD::UInt(0xFFFF0000)) >> 16)); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Fma: | 
 | 		{ | 
 | 			auto a = GenericValue(this, state, insn.word(5)); | 
 | 			auto b = GenericValue(this, state, insn.word(6)); | 
 | 			auto c = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, FMA(a.Float(i), b.Float(i), c.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Frexp: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			auto ptrId = Object::ID(insn.word(6)); | 
 | 			auto ptrTy = getType(getObject(ptrId).type); | 
 | 			auto ptr = GetPointerToData(ptrId, 0, state); | 
 | 			bool interleavedByLane = IsStorageInterleavedByLane(ptrTy.storageClass); | 
 | 			// TODO: GLSL frexp() takes an output parameter and thus the pointer is assumed | 
 | 			// to be in bounds even for inactive lanes. | 
 | 			// - Clarify the SPIR-V spec. | 
 | 			// - Eliminate lane masking and assume interleaving. | 
 | 			auto robustness = OutOfBoundsBehavior::UndefinedBehavior; | 
 |  | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Float significand; | 
 | 				SIMD::Int exponent; | 
 | 				std::tie(significand, exponent) = Frexp(val.Float(i)); | 
 |  | 
 | 				dst.move(i, significand); | 
 |  | 
 | 				auto p = ptr + (i * sizeof(float)); | 
 | 				if (interleavedByLane) { p = interleaveByLane(p); } | 
 | 				SIMD::Store(p, exponent, robustness, state->activeLaneMask()); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FrexpStruct: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			auto numComponents = getType(val.type).sizeInComponents; | 
 | 			for (auto i = 0u; i < numComponents; i++) | 
 | 			{ | 
 | 				auto significandAndExponent = Frexp(val.Float(i)); | 
 | 				dst.move(i, significandAndExponent.first); | 
 | 				dst.move(i + numComponents, significandAndExponent.second); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Ldexp: | 
 | 		{ | 
 | 			auto significand = GenericValue(this, state, insn.word(5)); | 
 | 			auto exponent = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				// Assumes IEEE 754 | 
 | 				auto in = significand.Float(i); | 
 | 				auto significandExponent = Exponent(in); | 
 | 				auto combinedExponent = exponent.Int(i) + significandExponent; | 
 | 				auto isSignificandZero     = SIMD::UInt(CmpEQ(significand.Int(i), SIMD::Int(0))); | 
 | 				auto isSignificandInf      = SIMD::UInt(IsInf(in)); | 
 | 				auto isSignificandNaN      = SIMD::UInt(IsNan(in)); | 
 | 				auto isExponentNotTooSmall = SIMD::UInt(CmpGE(combinedExponent, SIMD::Int(-126))); | 
 | 				auto isExponentNotTooLarge = SIMD::UInt(CmpLE(combinedExponent, SIMD::Int(128))); | 
 | 				auto isExponentInBounds    = isExponentNotTooSmall & isExponentNotTooLarge; | 
 |  | 
 | 				SIMD::UInt v; | 
 | 				v  = significand.UInt(i) & SIMD::UInt(0x7FFFFF); // Add significand. | 
 | 				v |= (SIMD::UInt(combinedExponent + SIMD::Int(126)) << SIMD::UInt(23)); // Add exponent. | 
 | 				v &= isExponentInBounds; // Clear v if the exponent is OOB. | 
 |  | 
 | 				v |= significand.UInt(i) & SIMD::UInt(0x80000000); // Add sign bit. | 
 | 				v |= ~isExponentNotTooLarge & SIMD::UInt(0x7F800000); // Mark as inf if the exponent is too great. | 
 |  | 
 | 				// If the input significand is zero, inf or nan, just return the | 
 | 				// input significand. | 
 | 				auto passthrough = isSignificandZero | isSignificandInf | isSignificandNaN; | 
 | 				v = (v & ~passthrough) | (significand.UInt(i) & passthrough); | 
 |  | 
 | 				dst.move(i, As<SIMD::Float>(v)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Radians: | 
 | 		{ | 
 | 			auto degrees = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, degrees.Float(i) * SIMD::Float(PI / 180.0f)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Degrees: | 
 | 		{ | 
 | 			auto radians = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, radians.Float(i) * SIMD::Float(180.0f / PI)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Sin: | 
 | 		{ | 
 | 			auto radians = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Sin(radians.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Cos: | 
 | 		{ | 
 | 			auto radians = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Cos(radians.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Tan: | 
 | 		{ | 
 | 			auto radians = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Tan(radians.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Asin: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Asin(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Acos: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Acos(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Atan: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Atan(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Sinh: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Sinh(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Cosh: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Cosh(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Tanh: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Tanh(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Asinh: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Asinh(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Acosh: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Acosh(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Atanh: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Atanh(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Atan2: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto y = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Atan2(x.Float(i), y.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Pow: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto y = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Pow(x.Float(i), y.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Exp: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Exp(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Log: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Log(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Exp2: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Exp2(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Log2: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Log2(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Sqrt: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, Sqrt(val.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450InverseSqrt: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			Decorations d; | 
 | 			ApplyDecorationsForId(&d, insn.word(5)); | 
 | 			if (d.RelaxedPrecision) | 
 | 			{ | 
 | 				for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 				{ | 
 | 					dst.move(i, RcpSqrt_pp(val.Float(i))); | 
 | 				} | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 				{ | 
 | 					dst.move(i, SIMD::Float(1.0f) / Sqrt(val.Float(i))); | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450Determinant: | 
 | 		{ | 
 | 			auto mat = GenericValue(this, state, insn.word(5)); | 
 | 			auto numComponents = getType(mat.type).sizeInComponents; | 
 | 			switch (numComponents) | 
 | 			{ | 
 | 			case 4: // 2x2 | 
 | 				dst.move(0, Determinant( | 
 | 					mat.Float(0), mat.Float(1), | 
 | 					mat.Float(2), mat.Float(3))); | 
 | 				break; | 
 | 			case 9: // 3x3 | 
 | 				dst.move(0, Determinant( | 
 | 					mat.Float(0), mat.Float(1), mat.Float(2), | 
 | 					mat.Float(3), mat.Float(4), mat.Float(5), | 
 | 					mat.Float(6), mat.Float(7), mat.Float(8))); | 
 | 				break; | 
 | 			case 16: // 4x4 | 
 | 				dst.move(0, Determinant( | 
 | 					mat.Float(0),  mat.Float(1),  mat.Float(2),  mat.Float(3), | 
 | 					mat.Float(4),  mat.Float(5),  mat.Float(6),  mat.Float(7), | 
 | 					mat.Float(8),  mat.Float(9),  mat.Float(10), mat.Float(11), | 
 | 					mat.Float(12), mat.Float(13), mat.Float(14), mat.Float(15))); | 
 | 				break; | 
 | 			default: | 
 | 				UNREACHABLE("GLSLstd450Determinant can only operate with square matrices. Got %d elements", int(numComponents)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450MatrixInverse: | 
 | 		{ | 
 | 			auto mat = GenericValue(this, state, insn.word(5)); | 
 | 			auto numComponents = getType(mat.type).sizeInComponents; | 
 | 			switch (numComponents) | 
 | 			{ | 
 | 			case 4: // 2x2 | 
 | 			{ | 
 | 				auto inv = MatrixInverse( | 
 | 					mat.Float(0), mat.Float(1), | 
 | 					mat.Float(2), mat.Float(3)); | 
 | 				for (uint32_t i = 0; i < inv.size(); i++) | 
 | 				{ | 
 | 					dst.move(i, inv[i]); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			case 9: // 3x3 | 
 | 			{ | 
 | 				auto inv = MatrixInverse( | 
 | 					mat.Float(0), mat.Float(1), mat.Float(2), | 
 | 					mat.Float(3), mat.Float(4), mat.Float(5), | 
 | 					mat.Float(6), mat.Float(7), mat.Float(8)); | 
 | 				for (uint32_t i = 0; i < inv.size(); i++) | 
 | 				{ | 
 | 					dst.move(i, inv[i]); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			case 16: // 4x4 | 
 | 			{ | 
 | 				auto inv = MatrixInverse( | 
 | 					mat.Float(0),  mat.Float(1),  mat.Float(2),  mat.Float(3), | 
 | 					mat.Float(4),  mat.Float(5),  mat.Float(6),  mat.Float(7), | 
 | 					mat.Float(8),  mat.Float(9),  mat.Float(10), mat.Float(11), | 
 | 					mat.Float(12), mat.Float(13), mat.Float(14), mat.Float(15)); | 
 | 				for (uint32_t i = 0; i < inv.size(); i++) | 
 | 				{ | 
 | 					dst.move(i, inv[i]); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			default: | 
 | 				UNREACHABLE("GLSLstd450MatrixInverse can only operate with square matrices. Got %d elements", int(numComponents)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450IMix: | 
 | 		{ | 
 | 			UNREACHABLE("GLSLstd450IMix has been removed from the specification"); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450PackDouble2x32: | 
 | 		{ | 
 | 			UNSUPPORTED("SPIR-V Float64 Capability (GLSLstd450PackDouble2x32)"); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450UnpackDouble2x32: | 
 | 		{ | 
 | 			UNSUPPORTED("SPIR-V Float64 Capability (GLSLstd450UnpackDouble2x32)"); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FindILsb: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto v = val.UInt(i); | 
 | 				dst.move(i, Cttz(v, true) | CmpEQ(v, SIMD::UInt(0))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FindSMsb: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto v = val.UInt(i) ^ As<SIMD::UInt>(CmpLT(val.Int(i), SIMD::Int(0))); | 
 | 				dst.move(i, SIMD::UInt(31) - Ctlz(v, false)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450FindUMsb: | 
 | 		{ | 
 | 			auto val = GenericValue(this, state, insn.word(5)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, SIMD::UInt(31) - Ctlz(val.UInt(i), false)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450InterpolateAtCentroid: | 
 | 		{ | 
 | 			UNSUPPORTED("SPIR-V SampleRateShading Capability (GLSLstd450InterpolateAtCentroid)"); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450InterpolateAtSample: | 
 | 		{ | 
 | 			UNSUPPORTED("SPIR-V SampleRateShading Capability (GLSLstd450InterpolateAtCentroid)"); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450InterpolateAtOffset: | 
 | 		{ | 
 | 			UNSUPPORTED("SPIR-V SampleRateShading Capability (GLSLstd450InterpolateAtCentroid)"); | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450NMin: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto y = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, NMin(x.Float(i), y.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450NMax: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto y = GenericValue(this, state, insn.word(6)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, NMax(x.Float(i), y.Float(i))); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case GLSLstd450NClamp: | 
 | 		{ | 
 | 			auto x = GenericValue(this, state, insn.word(5)); | 
 | 			auto minVal = GenericValue(this, state, insn.word(6)); | 
 | 			auto maxVal = GenericValue(this, state, insn.word(7)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				auto clamp = NMin(NMax(x.Float(i), minVal.Float(i)), maxVal.Float(i)); | 
 | 				dst.move(i, clamp); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			UNREACHABLE("ExtInst %d", int(extInstIndex)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	std::memory_order SpirvShader::MemoryOrder(spv::MemorySemanticsMask memorySemantics) | 
 | 	{ | 
 | 		auto control = static_cast<uint32_t>(memorySemantics) & static_cast<uint32_t>( | 
 | 			spv::MemorySemanticsAcquireMask | | 
 | 			spv::MemorySemanticsReleaseMask | | 
 | 			spv::MemorySemanticsAcquireReleaseMask | | 
 | 			spv::MemorySemanticsSequentiallyConsistentMask | 
 | 		); | 
 | 		switch (control) | 
 | 		{ | 
 | 		case spv::MemorySemanticsMaskNone:                   return std::memory_order_relaxed; | 
 | 		case spv::MemorySemanticsAcquireMask:                return std::memory_order_acquire; | 
 | 		case spv::MemorySemanticsReleaseMask:                return std::memory_order_release; | 
 | 		case spv::MemorySemanticsAcquireReleaseMask:         return std::memory_order_acq_rel; | 
 | 		case spv::MemorySemanticsSequentiallyConsistentMask: return std::memory_order_acq_rel;  // Vulkan 1.1: "SequentiallyConsistent is treated as AcquireRelease" | 
 | 		default: | 
 | 			// "it is invalid for more than one of these four bits to be set: | 
 | 			// Acquire, Release, AcquireRelease, or SequentiallyConsistent." | 
 | 			UNREACHABLE("MemorySemanticsMask: %x", int(control)); | 
 | 			return std::memory_order_acq_rel; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SIMD::Float SpirvShader::Dot(unsigned numComponents, GenericValue const & x, GenericValue const & y) const | 
 | 	{ | 
 | 		SIMD::Float d = x.Float(0) * y.Float(0); | 
 |  | 
 | 		for (auto i = 1u; i < numComponents; i++) | 
 | 		{ | 
 | 			d += x.Float(i) * y.Float(i); | 
 | 		} | 
 |  | 
 | 		return d; | 
 | 	} | 
 |  | 
 | 	SIMD::UInt SpirvShader::FloatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) const | 
 | 	{ | 
 | 		static const uint32_t mask_sign = 0x80000000u; | 
 | 		static const uint32_t mask_round = ~0xfffu; | 
 | 		static const uint32_t c_f32infty = 255 << 23; | 
 | 		static const uint32_t c_magic = 15 << 23; | 
 | 		static const uint32_t c_nanbit = 0x200; | 
 | 		static const uint32_t c_infty_as_fp16 = 0x7c00; | 
 | 		static const uint32_t c_clamp = (31 << 23) - 0x1000; | 
 |  | 
 | 		SIMD::UInt justsign = SIMD::UInt(mask_sign) & floatBits; | 
 | 		SIMD::UInt absf = floatBits ^ justsign; | 
 | 		SIMD::UInt b_isnormal = CmpNLE(SIMD::UInt(c_f32infty), absf); | 
 |  | 
 | 		// Note: this version doesn't round to the nearest even in case of a tie as defined by IEEE 754-2008, it rounds to +inf | 
 | 		//       instead of nearest even, since that's fine for GLSL ES 3.0's needs (see section 2.1.1 Floating-Point Computation) | 
 | 		SIMD::UInt joined = ((((As<SIMD::UInt>(Min(As<SIMD::Float>(absf & SIMD::UInt(mask_round)) * As<SIMD::Float>(SIMD::UInt(c_magic)), | 
 | 										 As<SIMD::Float>(SIMD::UInt(c_clamp))))) - SIMD::UInt(mask_round)) >> 13) & b_isnormal) | | 
 | 					   ((b_isnormal ^ SIMD::UInt(0xFFFFFFFF)) & ((CmpNLE(absf, SIMD::UInt(c_f32infty)) & SIMD::UInt(c_nanbit)) | | 
 | 															SIMD::UInt(c_infty_as_fp16))); | 
 |  | 
 | 		return storeInUpperBits ? ((joined << 16) | justsign) : joined | (justsign >> 16); | 
 | 	} | 
 |  | 
 | 	std::pair<SIMD::Float, SIMD::Int> SpirvShader::Frexp(RValue<SIMD::Float> val) const | 
 | 	{ | 
 | 		// Assumes IEEE 754 | 
 | 		auto v = As<SIMD::UInt>(val); | 
 | 		auto isNotZero = CmpNEQ(v & SIMD::UInt(0x7FFFFFFF), SIMD::UInt(0)); | 
 | 		auto zeroSign = v & SIMD::UInt(0x80000000) & ~isNotZero; | 
 | 		auto significand = As<SIMD::Float>((((v & SIMD::UInt(0x807FFFFF)) | SIMD::UInt(0x3F000000)) & isNotZero) | zeroSign); | 
 | 		auto exponent = Exponent(val) & SIMD::Int(isNotZero); | 
 | 		return std::make_pair(significand, exponent); | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitAny(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		ASSERT(type.sizeInComponents == 1); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &srcType = getType(getObject(insn.word(3)).type); | 
 | 		auto src = GenericValue(this, state, insn.word(3)); | 
 |  | 
 | 		SIMD::UInt result = src.UInt(0); | 
 |  | 
 | 		for (auto i = 1u; i < srcType.sizeInComponents; i++) | 
 | 		{ | 
 | 			result |= src.UInt(i); | 
 | 		} | 
 |  | 
 | 		dst.move(0, result); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitAll(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &type = getType(insn.word(1)); | 
 | 		ASSERT(type.sizeInComponents == 1); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), type.sizeInComponents); | 
 | 		auto &srcType = getType(getObject(insn.word(3)).type); | 
 | 		auto src = GenericValue(this, state, insn.word(3)); | 
 |  | 
 | 		SIMD::UInt result = src.UInt(0); | 
 |  | 
 | 		for (auto i = 1u; i < srcType.sizeInComponents; i++) | 
 | 		{ | 
 | 			result &= src.UInt(i); | 
 | 		} | 
 |  | 
 | 		dst.move(0, result); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitBranch(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto target = Block::ID(insn.word(1)); | 
 | 		state->addActiveLaneMaskEdge(state->block, target, state->activeLaneMask()); | 
 | 		return EmitResult::Terminator; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitBranchConditional(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &function = getFunction(state->function); | 
 | 		auto block = function.getBlock(state->block); | 
 | 		ASSERT(block.branchInstruction == insn); | 
 |  | 
 | 		auto condId = Object::ID(block.branchInstruction.word(1)); | 
 | 		auto trueBlockId = Block::ID(block.branchInstruction.word(2)); | 
 | 		auto falseBlockId = Block::ID(block.branchInstruction.word(3)); | 
 |  | 
 | 		auto cond = GenericValue(this, state, condId); | 
 | 		ASSERT_MSG(getType(cond.type).sizeInComponents == 1, "Condition must be a Boolean type scalar"); | 
 |  | 
 | 		// TODO: Optimize for case where all lanes take same path. | 
 |  | 
 | 		state->addOutputActiveLaneMaskEdge(trueBlockId, cond.Int(0)); | 
 | 		state->addOutputActiveLaneMaskEdge(falseBlockId, ~cond.Int(0)); | 
 |  | 
 | 		return EmitResult::Terminator; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitSwitch(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &function = getFunction(state->function); | 
 | 		auto block = function.getBlock(state->block); | 
 | 		ASSERT(block.branchInstruction == insn); | 
 |  | 
 | 		auto selId = Object::ID(block.branchInstruction.word(1)); | 
 |  | 
 | 		auto sel = GenericValue(this, state, selId); | 
 | 		ASSERT_MSG(getType(sel.type).sizeInComponents == 1, "Selector must be a scalar"); | 
 |  | 
 | 		auto numCases = (block.branchInstruction.wordCount() - 3) / 2; | 
 |  | 
 | 		// TODO: Optimize for case where all lanes take same path. | 
 |  | 
 | 		SIMD::Int defaultLaneMask = state->activeLaneMask(); | 
 |  | 
 | 		// Gather up the case label matches and calculate defaultLaneMask. | 
 | 		std::vector<RValue<SIMD::Int>> caseLabelMatches; | 
 | 		caseLabelMatches.reserve(numCases); | 
 | 		for (uint32_t i = 0; i < numCases; i++) | 
 | 		{ | 
 | 			auto label = block.branchInstruction.word(i * 2 + 3); | 
 | 			auto caseBlockId = Block::ID(block.branchInstruction.word(i * 2 + 4)); | 
 | 			auto caseLabelMatch = CmpEQ(sel.Int(0), SIMD::Int(label)); | 
 | 			state->addOutputActiveLaneMaskEdge(caseBlockId, caseLabelMatch); | 
 | 			defaultLaneMask &= ~caseLabelMatch; | 
 | 		} | 
 |  | 
 | 		auto defaultBlockId = Block::ID(block.branchInstruction.word(2)); | 
 | 		state->addOutputActiveLaneMaskEdge(defaultBlockId, defaultLaneMask); | 
 |  | 
 | 		return EmitResult::Terminator; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitUnreachable(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		// TODO: Log something in this case? | 
 | 		state->setActiveLaneMask(SIMD::Int(0)); | 
 | 		return EmitResult::Terminator; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitReturn(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		state->setActiveLaneMask(SIMD::Int(0)); | 
 | 		return EmitResult::Terminator; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitKill(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		state->routine->killMask |= SignMask(state->activeLaneMask()); | 
 | 		state->setActiveLaneMask(SIMD::Int(0)); | 
 | 		return EmitResult::Terminator; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitPhi(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &function = getFunction(state->function); | 
 | 		auto currentBlock = function.getBlock(state->block); | 
 | 		if (!currentBlock.isLoopMerge) | 
 | 		{ | 
 | 			// If this is a loop merge block, then don't attempt to update the | 
 | 			// phi values from the ins. EmitLoop() has had to take special care | 
 | 			// of this phi in order to correctly deal with divergent lanes. | 
 | 			StorePhi(state->block, insn, state, currentBlock.ins); | 
 | 		} | 
 | 		LoadPhi(insn, state); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::LoadPhi(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto typeId = Type::ID(insn.word(1)); | 
 | 		auto type = getType(typeId); | 
 | 		auto objectId = Object::ID(insn.word(2)); | 
 |  | 
 | 		auto storageIt = state->routine->phis.find(objectId); | 
 | 		ASSERT(storageIt != state->routine->phis.end()); | 
 | 		auto &storage = storageIt->second; | 
 |  | 
 | 		auto &dst = state->createIntermediate(objectId, type.sizeInComponents); | 
 | 		for(uint32_t i = 0; i < type.sizeInComponents; i++) | 
 | 		{ | 
 | 			dst.move(i, storage[i]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::StorePhi(Block::ID currentBlock, InsnIterator insn, EmitState *state, std::unordered_set<SpirvShader::Block::ID> const& filter) const | 
 | 	{ | 
 | 		auto typeId = Type::ID(insn.word(1)); | 
 | 		auto type = getType(typeId); | 
 | 		auto objectId = Object::ID(insn.word(2)); | 
 |  | 
 | 		auto storageIt = state->routine->phis.find(objectId); | 
 | 		ASSERT(storageIt != state->routine->phis.end()); | 
 | 		auto &storage = storageIt->second; | 
 |  | 
 | 		for (uint32_t w = 3; w < insn.wordCount(); w += 2) | 
 | 		{ | 
 | 			auto varId = Object::ID(insn.word(w + 0)); | 
 | 			auto blockId = Block::ID(insn.word(w + 1)); | 
 |  | 
 | 			if (filter.count(blockId) == 0) | 
 | 			{ | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			auto mask = GetActiveLaneMaskEdge(state, blockId, currentBlock); | 
 | 			auto in = GenericValue(this, state, varId); | 
 |  | 
 | 			for (uint32_t i = 0; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				storage[i] = As<SIMD::Float>((As<SIMD::Int>(storage[i]) & ~mask) | (in.Int(i) & mask)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageSampleImplicitLod(Variant variant, InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		return EmitImageSample({variant, Implicit}, insn, state); | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageGather(Variant variant, InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		ImageInstruction instruction = {variant, Gather}; | 
 | 		instruction.gatherComponent = !instruction.isDref() ? getObject(insn.word(5)).constantValue[0] : 0; | 
 |  | 
 | 		return EmitImageSample(instruction, insn, state); | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageSampleExplicitLod(Variant variant, InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto isDref = (variant == Dref) || (variant == ProjDref); | 
 | 		uint32_t imageOperands = static_cast<spv::ImageOperandsMask>(insn.word(isDref ? 6 : 5)); | 
 | 		imageOperands &= ~spv::ImageOperandsConstOffsetMask;  // Dealt with later. | 
 |  | 
 | 		if((imageOperands & spv::ImageOperandsLodMask) == imageOperands) | 
 | 		{ | 
 | 			return EmitImageSample({variant, Lod}, insn, state); | 
 | 		} | 
 | 		else if((imageOperands & spv::ImageOperandsGradMask) == imageOperands) | 
 | 		{ | 
 | 			return EmitImageSample({variant, Grad}, insn, state); | 
 | 		} | 
 | 		else UNIMPLEMENTED("Image Operands %x", imageOperands); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageFetch(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		return EmitImageSample({None, Fetch}, insn, state); | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageSample(ImageInstruction instruction, InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		Type::ID resultTypeId = insn.word(1); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		Object::ID sampledImageId = insn.word(3);  // For OpImageFetch this is just an Image, not a SampledImage. | 
 | 		Object::ID coordinateId = insn.word(4); | 
 | 		auto &resultType = getType(resultTypeId); | 
 |  | 
 | 		auto &result = state->createIntermediate(resultId, resultType.sizeInComponents); | 
 | 		auto imageDescriptor = state->getPointer(sampledImageId).base; // vk::SampledImageDescriptor* | 
 |  | 
 | 		// If using a separate sampler, look through the OpSampledImage instruction to find the sampler descriptor | 
 | 		auto &sampledImage = getObject(sampledImageId); | 
 | 		auto samplerDescriptor = (sampledImage.opcode() == spv::OpSampledImage) ? | 
 | 				state->getPointer(sampledImage.definition.word(4)).base : imageDescriptor; | 
 |  | 
 | 		auto coordinate = GenericValue(this, state, coordinateId); | 
 | 		auto &coordinateType = getType(coordinate.type); | 
 |  | 
 | 		Pointer<Byte> sampler = samplerDescriptor + OFFSET(vk::SampledImageDescriptor, sampler); // vk::Sampler* | 
 | 		Pointer<Byte> texture = imageDescriptor + OFFSET(vk::SampledImageDescriptor, texture);  // sw::Texture* | 
 |  | 
 | 		// Above we assumed that if the SampledImage operand is not the result of an OpSampledImage, | 
 | 		// it must be a combined image sampler loaded straight from the descriptor set. For OpImageFetch | 
 | 		// it's just an Image operand, so there's no sampler descriptor data. | 
 | 		if(getType(sampledImage.type).opcode() != spv::OpTypeSampledImage) | 
 | 		{ | 
 | 			sampler = Pointer<Byte>(nullptr); | 
 | 		} | 
 |  | 
 | 		uint32_t imageOperands = spv::ImageOperandsMaskNone; | 
 | 		bool lodOrBias = false; | 
 | 		Object::ID lodOrBiasId = 0; | 
 | 		bool grad = false; | 
 | 		Object::ID gradDxId = 0; | 
 | 		Object::ID gradDyId = 0; | 
 | 		bool constOffset = false; | 
 | 		Object::ID offsetId = 0; | 
 | 		bool sample = false; | 
 | 		Object::ID sampleId = 0; | 
 |  | 
 | 		uint32_t operand = (instruction.isDref() || instruction.samplerMethod == Gather) ? 6 : 5; | 
 |  | 
 | 		if(insn.wordCount() > operand) | 
 | 		{ | 
 | 			imageOperands = static_cast<spv::ImageOperandsMask>(insn.word(operand++)); | 
 |  | 
 | 			if(imageOperands & spv::ImageOperandsBiasMask) | 
 | 			{ | 
 | 				lodOrBias = true; | 
 | 				lodOrBiasId = insn.word(operand); | 
 | 				operand++; | 
 | 				imageOperands &= ~spv::ImageOperandsBiasMask; | 
 |  | 
 | 				ASSERT(instruction.samplerMethod == Implicit); | 
 | 				instruction.samplerMethod = Bias; | 
 | 			} | 
 |  | 
 | 			if(imageOperands & spv::ImageOperandsLodMask) | 
 | 			{ | 
 | 				lodOrBias = true; | 
 | 				lodOrBiasId = insn.word(operand); | 
 | 				operand++; | 
 | 				imageOperands &= ~spv::ImageOperandsLodMask; | 
 | 			} | 
 |  | 
 | 			if(imageOperands & spv::ImageOperandsGradMask) | 
 | 			{ | 
 | 				ASSERT(!lodOrBias);  // SPIR-V 1.3: "It is invalid to set both the Lod and Grad bits." Bias is for ImplicitLod, Grad for ExplicitLod. | 
 | 				grad = true; | 
 | 				gradDxId = insn.word(operand + 0); | 
 | 				gradDyId = insn.word(operand + 1); | 
 | 				operand += 2; | 
 | 				imageOperands &= ~spv::ImageOperandsGradMask; | 
 | 			} | 
 |  | 
 | 			if(imageOperands & spv::ImageOperandsConstOffsetMask) | 
 | 			{ | 
 | 				constOffset = true; | 
 | 				offsetId = insn.word(operand); | 
 | 				operand++; | 
 | 				imageOperands &= ~spv::ImageOperandsConstOffsetMask; | 
 | 			} | 
 |  | 
 | 			if(imageOperands & spv::ImageOperandsSampleMask) | 
 | 			{ | 
 | 				sample = true; | 
 | 				sampleId = insn.word(operand); | 
 | 				imageOperands &= ~spv::ImageOperandsSampleMask; | 
 |  | 
 | 				ASSERT(instruction.samplerMethod == Fetch); | 
 | 				instruction.sample = true; | 
 | 			} | 
 |  | 
 | 			if(imageOperands != 0) | 
 | 			{ | 
 | 				UNSUPPORTED("Image operand %x", imageOperands); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		Array<SIMD::Float> in(16);  // Maximum 16 input parameter components. | 
 |  | 
 | 		uint32_t coordinates = coordinateType.sizeInComponents - instruction.isProj(); | 
 | 		instruction.coordinates = coordinates; | 
 |  | 
 | 		uint32_t i = 0; | 
 | 		for( ; i < coordinates; i++) | 
 | 		{ | 
 | 			if(instruction.isProj()) | 
 | 			{ | 
 | 				in[i] = coordinate.Float(i) / coordinate.Float(coordinates);  // TODO(b/129523279): Optimize using reciprocal. | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				in[i] = coordinate.Float(i); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if(instruction.isDref()) | 
 | 		{ | 
 | 			auto drefValue = GenericValue(this, state, insn.word(5)); | 
 |  | 
 | 			if(instruction.isProj()) | 
 | 			{ | 
 | 				in[i] = drefValue.Float(0) / coordinate.Float(coordinates);  // TODO(b/129523279): Optimize using reciprocal. | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				in[i] = drefValue.Float(0); | 
 | 			} | 
 |  | 
 | 			i++; | 
 | 		} | 
 |  | 
 | 		if(lodOrBias) | 
 | 		{ | 
 | 			auto lodValue = GenericValue(this, state, lodOrBiasId); | 
 | 			in[i] = lodValue.Float(0); | 
 | 			i++; | 
 | 		} | 
 | 		else if(grad) | 
 | 		{ | 
 | 			auto dxValue = GenericValue(this, state, gradDxId); | 
 | 			auto dyValue = GenericValue(this, state, gradDyId); | 
 | 			auto &dxyType = getType(dxValue.type); | 
 | 			ASSERT(dxyType.sizeInComponents == getType(dyValue.type).sizeInComponents); | 
 |  | 
 | 			instruction.grad = dxyType.sizeInComponents; | 
 |  | 
 | 			for(uint32_t j = 0; j < dxyType.sizeInComponents; j++, i++) | 
 | 			{ | 
 | 				in[i] = dxValue.Float(j); | 
 | 			} | 
 |  | 
 | 			for(uint32_t j = 0; j < dxyType.sizeInComponents; j++, i++) | 
 | 			{ | 
 | 				in[i] = dyValue.Float(j); | 
 | 			} | 
 | 		} | 
 | 		else if (instruction.samplerMethod == Fetch) | 
 | 		{ | 
 | 			// The instruction didn't provide a lod operand, but the sampler's Fetch | 
 | 			// function requires one to be present. If no lod is supplied, the default | 
 | 			// is zero. | 
 | 			in[i] = As<SIMD::Float>(SIMD::Int(0)); | 
 | 			i++; | 
 | 		} | 
 |  | 
 | 		if(constOffset) | 
 | 		{ | 
 | 			auto offsetValue = GenericValue(this, state, offsetId); | 
 | 			auto &offsetType = getType(offsetValue.type); | 
 |  | 
 | 			instruction.offset = offsetType.sizeInComponents; | 
 |  | 
 | 			for(uint32_t j = 0; j < offsetType.sizeInComponents; j++, i++) | 
 | 			{ | 
 | 				in[i] = As<SIMD::Float>(offsetValue.Int(j));  // Integer values, but transfered as float. | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if(sample) | 
 | 		{ | 
 | 			auto sampleValue = GenericValue(this, state, sampleId); | 
 | 			in[i] = sampleValue.Float(0); | 
 | 		} | 
 |  | 
 | 		auto cacheIt = state->routine->samplerCache.find(resultId); | 
 | 		ASSERT(cacheIt != state->routine->samplerCache.end()); | 
 | 		auto &cache = cacheIt->second; | 
 | 		auto cacheHit = cache.imageDescriptor == imageDescriptor && cache.sampler == sampler; | 
 |  | 
 | 		If(!cacheHit) | 
 | 		{ | 
 | 			cache.function = Call(getImageSampler, instruction.parameters, imageDescriptor, sampler); | 
 | 			cache.imageDescriptor = imageDescriptor; | 
 | 			cache.sampler = sampler; | 
 | 		} | 
 |  | 
 | 		Array<SIMD::Float> out(4); | 
 | 		Call<ImageSampler>(cache.function, texture, sampler, &in[0], &out[0], state->routine->constants); | 
 |  | 
 | 		for (auto i = 0u; i < resultType.sizeInComponents; i++) { result.move(i, out[i]); } | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageQuerySizeLod(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultTy = getType(Type::ID(insn.word(1))); | 
 | 		auto resultId = Object::ID(insn.word(2)); | 
 | 		auto imageId = Object::ID(insn.word(3)); | 
 | 		auto lodId = Object::ID(insn.word(4)); | 
 |  | 
 | 		auto &dst = state->createIntermediate(resultId, resultTy.sizeInComponents); | 
 | 		GetImageDimensions(state, resultTy, imageId, lodId, dst); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageQuerySize(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultTy = getType(Type::ID(insn.word(1))); | 
 | 		auto resultId = Object::ID(insn.word(2)); | 
 | 		auto imageId = Object::ID(insn.word(3)); | 
 | 		auto lodId = Object::ID(0); | 
 |  | 
 | 		auto &dst = state->createIntermediate(resultId, resultTy.sizeInComponents); | 
 | 		GetImageDimensions(state, resultTy, imageId, lodId, dst); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageQueryLod(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		return EmitImageSample({None, Query}, insn, state); | 
 | 	} | 
 |  | 
 | 	void SpirvShader::GetImageDimensions(EmitState const *state, Type const &resultTy, Object::ID imageId, Object::ID lodId, Intermediate &dst) const | 
 | 	{ | 
 | 		auto routine = state->routine; | 
 | 		auto &image = getObject(imageId); | 
 | 		auto &imageType = getType(image.type); | 
 |  | 
 | 		ASSERT(imageType.definition.opcode() == spv::OpTypeImage); | 
 | 		bool isArrayed = imageType.definition.word(5) != 0; | 
 | 		bool isCubeMap = imageType.definition.word(3) == spv::DimCube; | 
 |  | 
 | 		const DescriptorDecorations &d = descriptorDecorations.at(imageId); | 
 | 		auto setLayout = routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet); | 
 | 		auto &bindingLayout = setLayout->getBindingLayout(d.Binding); | 
 |  | 
 | 		Pointer<Byte> descriptor = state->getPointer(imageId).base; | 
 |  | 
 | 		Pointer<Int> extent; | 
 | 		Int arrayLayers; | 
 |  | 
 | 		switch (bindingLayout.descriptorType) | 
 | 		{ | 
 | 		case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: | 
 | 		case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: | 
 | 		{ | 
 | 			extent = descriptor + OFFSET(vk::StorageImageDescriptor, extent); // int[3]* | 
 | 			arrayLayers = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, arrayLayers)); // uint32_t | 
 | 			break; | 
 | 		} | 
 | 		case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: | 
 | 		case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: | 
 | 		case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: | 
 | 		{ | 
 | 			extent = descriptor + OFFSET(vk::SampledImageDescriptor, extent); // int[3]* | 
 | 			arrayLayers = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, arrayLayers)); // uint32_t | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			UNREACHABLE("Image descriptorType: %d", int(bindingLayout.descriptorType)); | 
 | 		} | 
 |  | 
 | 		auto dimensions = resultTy.sizeInComponents - (isArrayed ? 1 : 0); | 
 | 		std::vector<Int> out; | 
 | 		if (lodId != 0) | 
 | 		{ | 
 | 			auto lodVal = GenericValue(this, state, lodId); | 
 | 			ASSERT(getType(lodVal.type).sizeInComponents == 1); | 
 | 			auto lod = lodVal.Int(0); | 
 | 			auto one = SIMD::Int(1); | 
 | 			for (uint32_t i = 0; i < dimensions; i++) | 
 | 			{ | 
 | 				dst.move(i, Max(SIMD::Int(extent[i]) >> lod, one)); | 
 | 			} | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			for (uint32_t i = 0; i < dimensions; i++) | 
 | 			{ | 
 | 				dst.move(i, SIMD::Int(extent[i])); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (isArrayed) | 
 | 		{ | 
 | 			auto numElements = isCubeMap ? (arrayLayers / 6) : RValue<Int>(arrayLayers); | 
 | 			dst.move(dimensions, SIMD::Int(numElements)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageQueryLevels(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultTy = getType(Type::ID(insn.word(1))); | 
 | 		ASSERT(resultTy.sizeInComponents == 1); | 
 | 		auto resultId = Object::ID(insn.word(2)); | 
 | 		auto imageId = Object::ID(insn.word(3)); | 
 |  | 
 | 		const DescriptorDecorations &d = descriptorDecorations.at(imageId); | 
 | 		auto setLayout = state->routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet); | 
 | 		auto &bindingLayout = setLayout->getBindingLayout(d.Binding); | 
 |  | 
 | 		Pointer<Byte> descriptor = state->getPointer(imageId).base; | 
 | 		Int mipLevels = 0; | 
 | 		switch (bindingLayout.descriptorType) | 
 | 		{ | 
 | 		case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: | 
 | 		case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: | 
 | 		case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: | 
 | 			mipLevels = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, mipLevels)); // uint32_t | 
 | 			break; | 
 | 		default: | 
 | 			UNREACHABLE("Image descriptorType: %d", int(bindingLayout.descriptorType)); | 
 | 		} | 
 |  | 
 | 		auto &dst = state->createIntermediate(resultId, 1); | 
 | 		dst.move(0, SIMD::Int(mipLevels)); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageQuerySamples(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultTy = getType(Type::ID(insn.word(1))); | 
 | 		ASSERT(resultTy.sizeInComponents == 1); | 
 | 		auto resultId = Object::ID(insn.word(2)); | 
 | 		auto imageId = Object::ID(insn.word(3)); | 
 | 		auto imageTy = getType(getObject(imageId).type); | 
 | 		ASSERT(imageTy.definition.opcode() == spv::OpTypeImage); | 
 | 		ASSERT(imageTy.definition.word(3) == spv::Dim2D); | 
 | 		ASSERT(imageTy.definition.word(6 /* MS */) == 1); | 
 |  | 
 | 		const DescriptorDecorations &d = descriptorDecorations.at(imageId); | 
 | 		auto setLayout = state->routine->pipelineLayout->getDescriptorSetLayout(d.DescriptorSet); | 
 | 		auto &bindingLayout = setLayout->getBindingLayout(d.Binding); | 
 |  | 
 | 		Pointer<Byte> descriptor = state->getPointer(imageId).base; | 
 | 		Int sampleCount = 0; | 
 | 		switch (bindingLayout.descriptorType) | 
 | 		{ | 
 | 		case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: | 
 | 			sampleCount = *Pointer<Int>(descriptor + OFFSET(vk::StorageImageDescriptor, sampleCount)); // uint32_t | 
 | 			break; | 
 | 		case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: | 
 | 		case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: | 
 | 		case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: | 
 | 			sampleCount = *Pointer<Int>(descriptor + OFFSET(vk::SampledImageDescriptor, sampleCount)); // uint32_t | 
 | 			break; | 
 | 		default: | 
 | 			UNREACHABLE("Image descriptorType: %d", int(bindingLayout.descriptorType)); | 
 | 		} | 
 |  | 
 | 		auto &dst = state->createIntermediate(resultId, 1); | 
 | 		dst.move(0, SIMD::Int(sampleCount)); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SIMD::Pointer SpirvShader::GetTexelAddress(EmitState const *state, SIMD::Pointer ptr, GenericValue const & coordinate, Type const & imageType, Pointer<Byte> descriptor, int texelSize, Object::ID sampleId, bool useStencilAspect) const | 
 | 	{ | 
 | 		auto routine = state->routine; | 
 | 		bool isArrayed = imageType.definition.word(5) != 0; | 
 | 		auto dim = static_cast<spv::Dim>(imageType.definition.word(3)); | 
 | 		int dims = getType(coordinate.type).sizeInComponents - (isArrayed ? 1 : 0); | 
 |  | 
 | 		SIMD::Int u = coordinate.Int(0); | 
 | 		SIMD::Int v = SIMD::Int(0); | 
 |  | 
 | 		if (getType(coordinate.type).sizeInComponents > 1) | 
 | 		{ | 
 | 			v = coordinate.Int(1); | 
 | 		} | 
 |  | 
 | 		if (dim == spv::DimSubpassData) | 
 | 		{ | 
 | 			u += routine->windowSpacePosition[0]; | 
 | 			v += routine->windowSpacePosition[1]; | 
 | 		} | 
 |  | 
 | 		if (useStencilAspect) | 
 | 		{ | 
 | 			// Adjust addressing for quad layout. Pitches are already correct for the stencil aspect. | 
 | 			// In the quad-layout block, pixel order is [x0,y0   x1,y0   x0,y1   x1,y1] | 
 | 			u = ((v & SIMD::Int(1)) << 1) | ((u << 1) - (u & SIMD::Int(1))); | 
 | 			v &= SIMD::Int(~1); | 
 | 		} | 
 |  | 
 | 		auto rowPitch = SIMD::Int(*Pointer<Int>(descriptor + (useStencilAspect | 
 | 															  ? OFFSET(vk::StorageImageDescriptor, stencilRowPitchBytes) | 
 | 															  : OFFSET(vk::StorageImageDescriptor, rowPitchBytes)))); | 
 | 		auto slicePitch = SIMD::Int( | 
 | 				*Pointer<Int>(descriptor + (useStencilAspect | 
 | 											? OFFSET(vk::StorageImageDescriptor, stencilSlicePitchBytes) | 
 | 											: OFFSET(vk::StorageImageDescriptor, slicePitchBytes)))); | 
 | 		auto samplePitch = SIMD::Int( | 
 | 				*Pointer<Int>(descriptor + (useStencilAspect | 
 | 											? OFFSET(vk::StorageImageDescriptor, stencilSamplePitchBytes) | 
 | 											: OFFSET(vk::StorageImageDescriptor, samplePitchBytes)))); | 
 |  | 
 | 		ptr += u * SIMD::Int(texelSize); | 
 | 		if (dims > 1) | 
 | 		{ | 
 | 			ptr += v * rowPitch; | 
 | 		} | 
 | 		if (dims > 2) | 
 | 		{ | 
 | 			ptr += coordinate.Int(2) * slicePitch; | 
 | 		} | 
 | 		if (isArrayed) | 
 | 		{ | 
 | 			ptr += coordinate.Int(dims) * slicePitch; | 
 | 		} | 
 |  | 
 | 		if (dim == spv::DimSubpassData) | 
 | 		{ | 
 | 			// Multiview input attachment access is to the layer corresponding to the current view | 
 | 			ptr += SIMD::Int(routine->viewID) * slicePitch; | 
 | 		} | 
 |  | 
 | 		if (sampleId.value()) | 
 | 		{ | 
 | 			GenericValue sample(this, state, sampleId); | 
 | 			ptr += sample.Int(0) * samplePitch; | 
 | 		} | 
 |  | 
 | 		return ptr; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Yield(YieldResult res) const | 
 | 	{ | 
 | 		rr::Yield(RValue<Int>(int(res))); | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageRead(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultType = getType(Type::ID(insn.word(1))); | 
 | 		auto imageId = Object::ID(insn.word(3)); | 
 | 		auto &image = getObject(imageId); | 
 | 		auto &imageType = getType(image.type); | 
 | 		Object::ID resultId = insn.word(2); | 
 |  | 
 | 		Object::ID sampleId = 0; | 
 |  | 
 | 		if (insn.wordCount() > 5) | 
 | 		{ | 
 | 			int operand = 6; | 
 | 			auto imageOperands = insn.word(5); | 
 | 			if (imageOperands & spv::ImageOperandsSampleMask) | 
 | 			{ | 
 | 				sampleId = insn.word(operand++); | 
 | 				imageOperands &= ~spv::ImageOperandsSampleMask; | 
 | 			} | 
 |  | 
 | 			// Should be no remaining image operands. | 
 | 			ASSERT(!imageOperands); | 
 | 		} | 
 |  | 
 | 		ASSERT(imageType.definition.opcode() == spv::OpTypeImage); | 
 | 		auto dim = static_cast<spv::Dim>(imageType.definition.word(3)); | 
 |  | 
 | 		auto coordinate = GenericValue(this, state, insn.word(4)); | 
 | 		const DescriptorDecorations &d = descriptorDecorations.at(imageId); | 
 |  | 
 | 		// For subpass data, format in the instruction is spv::ImageFormatUnknown. Get it from | 
 | 		// the renderpass data instead. In all other cases, we can use the format in the instruction. | 
 | 		auto vkFormat = (dim == spv::DimSubpassData) | 
 | 						? inputAttachmentFormats[d.InputAttachmentIndex] | 
 | 						: SpirvFormatToVulkanFormat(static_cast<spv::ImageFormat>(imageType.definition.word(8))); | 
 |  | 
 | 		// Depth+Stencil image attachments select aspect based on the Sampled Type of the | 
 | 		// OpTypeImage. If float, then we want the depth aspect. If int, we want the stencil aspect. | 
 | 		auto useStencilAspect = (vkFormat == VK_FORMAT_D32_SFLOAT_S8_UINT && | 
 | 				getType(imageType.definition.word(2)).opcode() == spv::OpTypeInt); | 
 |  | 
 | 		if (useStencilAspect) | 
 | 		{ | 
 | 			vkFormat = VK_FORMAT_S8_UINT; | 
 | 		} | 
 |  | 
 | 		auto pointer = state->getPointer(imageId); | 
 | 		Pointer<Byte> binding = pointer.base; | 
 | 		Pointer<Byte> imageBase = *Pointer<Pointer<Byte>>(binding + (useStencilAspect | 
 | 				? OFFSET(vk::StorageImageDescriptor, stencilPtr) | 
 | 				: OFFSET(vk::StorageImageDescriptor, ptr))); | 
 |  | 
 | 		auto imageSizeInBytes = *Pointer<Int>(binding + OFFSET(vk::StorageImageDescriptor, sizeInBytes)); | 
 |  | 
 | 		auto &dst = state->createIntermediate(resultId, resultType.sizeInComponents); | 
 |  | 
 | 		auto texelSize = vk::Format(vkFormat).bytes(); | 
 | 		auto basePtr = SIMD::Pointer(imageBase, imageSizeInBytes); | 
 | 		auto texelPtr = GetTexelAddress(state, basePtr, coordinate, imageType, binding, texelSize, sampleId, useStencilAspect); | 
 |  | 
 | 		// "The value returned by a read of an invalid texel is undefined, | 
 | 		//  unless that read operation is from a buffer resource and the robustBufferAccess feature is enabled." | 
 | 		// TODO: Don't always assume a buffer resource. | 
 | 		auto robustness = OutOfBoundsBehavior::RobustBufferAccess; | 
 |  | 
 | 		SIMD::Int packed[4]; | 
 | 		// Round up texel size: for formats smaller than 32 bits per texel, we will emit a bunch | 
 | 		// of (overlapping) 32b loads here, and each lane will pick out what it needs from the low bits. | 
 | 		// TODO: specialize for small formats? | 
 | 		for (auto i = 0; i < (texelSize + 3)/4; i++) | 
 | 		{ | 
 | 			packed[i] = SIMD::Load<SIMD::Int>(texelPtr, robustness, state->activeLaneMask(), false, std::memory_order_relaxed, std::min(texelSize, 4)); | 
 | 			texelPtr += sizeof(float); | 
 | 		} | 
 |  | 
 | 		// Format support requirements here come from two sources: | 
 | 		// - Minimum required set of formats for loads from storage images | 
 | 		// - Any format supported as a color or depth/stencil attachment, for input attachments | 
 | 		switch(vkFormat) | 
 | 		{ | 
 | 		case VK_FORMAT_R32G32B32A32_SFLOAT: | 
 | 		case VK_FORMAT_R32G32B32A32_SINT: | 
 | 		case VK_FORMAT_R32G32B32A32_UINT: | 
 | 			dst.move(0, packed[0]); | 
 | 			dst.move(1, packed[1]); | 
 | 			dst.move(2, packed[2]); | 
 | 			dst.move(3, packed[3]); | 
 | 			break; | 
 | 		case VK_FORMAT_R32_SINT: | 
 | 		case VK_FORMAT_R32_UINT: | 
 | 			dst.move(0, packed[0]); | 
 | 			// Fill remaining channels with 0,0,1 (of the correct type) | 
 | 			dst.move(1, SIMD::Int(0)); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R32_SFLOAT: | 
 | 		case VK_FORMAT_D32_SFLOAT: | 
 | 		case VK_FORMAT_D32_SFLOAT_S8_UINT: | 
 | 			dst.move(0, packed[0]); | 
 | 			// Fill remaining channels with 0,0,1 (of the correct type) | 
 | 			dst.move(1, SIMD::Float(0)); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_D16_UNORM: | 
 | 			dst.move(0, SIMD::Float(packed[0] & SIMD::Int(0xffff)) * SIMD::Float(1.0f / 65535.0f)); | 
 | 			dst.move(1, SIMD::Float(0)); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16G16B16A16_SINT: | 
 | 			dst.move(0, (packed[0] << 16) >> 16); | 
 | 			dst.move(1, (packed[0]) >> 16); | 
 | 			dst.move(2, (packed[1] << 16) >> 16); | 
 | 			dst.move(3, (packed[1]) >> 16); | 
 | 			break; | 
 | 		case VK_FORMAT_R16G16B16A16_UINT: | 
 | 			dst.move(0, packed[0] & SIMD::Int(0xffff)); | 
 | 			dst.move(1, (packed[0] >> 16) & SIMD::Int(0xffff)); | 
 | 			dst.move(2, packed[1] & SIMD::Int(0xffff)); | 
 | 			dst.move(3, (packed[1] >> 16) & SIMD::Int(0xffff)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16G16B16A16_SFLOAT: | 
 | 			dst.move(0, halfToFloatBits(As<SIMD::UInt>(packed[0]) & SIMD::UInt(0x0000FFFF))); | 
 | 			dst.move(1, halfToFloatBits((As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFFFF0000)) >> 16)); | 
 | 			dst.move(2, halfToFloatBits(As<SIMD::UInt>(packed[1]) & SIMD::UInt(0x0000FFFF))); | 
 | 			dst.move(3, halfToFloatBits((As<SIMD::UInt>(packed[1]) & SIMD::UInt(0xFFFF0000)) >> 16)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8B8A8_SNORM: | 
 | 			dst.move(0, Min(Max(SIMD::Float(((packed[0]<<24) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(1, Min(Max(SIMD::Float(((packed[0]<<16) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(2, Min(Max(SIMD::Float(((packed[0]<<8) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			dst.move(3, Min(Max(SIMD::Float(((packed[0]) & SIMD::Int(0xFF000000))) * SIMD::Float(1.0f / float(0x7f000000)), SIMD::Float(-1.0f)), SIMD::Float(1.0f))); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8B8A8_UNORM: | 
 | 		case VK_FORMAT_A8B8G8R8_UNORM_PACK32: | 
 | 			dst.move(0, SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(1, SIMD::Float(((packed[0]>>8) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(2, SIMD::Float(((packed[0]>>16) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(3, SIMD::Float(((packed[0]>>24) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8B8A8_SRGB: | 
 | 		case VK_FORMAT_A8B8G8R8_SRGB_PACK32: | 
 | 			dst.move(0, ::sRGBtoLinear(SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f))); | 
 | 			dst.move(1, ::sRGBtoLinear(SIMD::Float(((packed[0]>>8) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f))); | 
 | 			dst.move(2, ::sRGBtoLinear(SIMD::Float(((packed[0]>>16) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f))); | 
 | 			dst.move(3, SIMD::Float(((packed[0]>>24) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			break; | 
 | 		case VK_FORMAT_B8G8R8A8_UNORM: | 
 | 			dst.move(0, SIMD::Float(((packed[0]>>16) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(1, SIMD::Float(((packed[0]>>8) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(2, SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(3, SIMD::Float(((packed[0]>>24) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			break; | 
 | 		case VK_FORMAT_B8G8R8A8_SRGB: | 
 | 			dst.move(0, ::sRGBtoLinear(SIMD::Float(((packed[0]>>16) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f))); | 
 | 			dst.move(1, ::sRGBtoLinear(SIMD::Float(((packed[0]>>8) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f))); | 
 | 			dst.move(2, ::sRGBtoLinear(SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f))); | 
 | 			dst.move(3, SIMD::Float(((packed[0]>>24) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8B8A8_UINT: | 
 | 		case VK_FORMAT_A8B8G8R8_UINT_PACK32: | 
 | 			dst.move(0, (As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFF))); | 
 | 			dst.move(1, ((As<SIMD::UInt>(packed[0])>>8) & SIMD::UInt(0xFF))); | 
 | 			dst.move(2, ((As<SIMD::UInt>(packed[0])>>16) & SIMD::UInt(0xFF))); | 
 | 			dst.move(3, ((As<SIMD::UInt>(packed[0])>>24) & SIMD::UInt(0xFF))); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8B8A8_SINT: | 
 | 		case VK_FORMAT_A8B8G8R8_SINT_PACK32: | 
 | 			dst.move(0, (packed[0] << 24) >> 24); | 
 | 			dst.move(1, (packed[0] << 16) >> 24); | 
 | 			dst.move(2, (packed[0] << 8) >> 24); | 
 | 			dst.move(3, (packed[0]) >> 24); | 
 | 			break; | 
 | 		case VK_FORMAT_R8_UNORM: | 
 | 			dst.move(0, SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(1, SIMD::Float(0)); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8_UINT: | 
 | 		case VK_FORMAT_S8_UINT: | 
 | 			dst.move(0, (As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFF))); | 
 | 			dst.move(1, SIMD::UInt(0)); | 
 | 			dst.move(2, SIMD::UInt(0)); | 
 | 			dst.move(3, SIMD::UInt(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8_SINT: | 
 | 			dst.move(0, (packed[0] << 24) >> 24); | 
 | 			dst.move(1, SIMD::Int(0)); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8_UNORM: | 
 | 			dst.move(0, SIMD::Float((packed[0] & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(1, SIMD::Float(((packed[0]>>8) & SIMD::Int(0xFF))) * SIMD::Float(1.0f / 255.f)); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8_UINT: | 
 | 			dst.move(0, (As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFF))); | 
 | 			dst.move(1, ((As<SIMD::UInt>(packed[0])>>8) & SIMD::UInt(0xFF))); | 
 | 			dst.move(2, SIMD::UInt(0)); | 
 | 			dst.move(3, SIMD::UInt(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R8G8_SINT: | 
 | 			dst.move(0, (packed[0] << 24) >> 24); | 
 | 			dst.move(1, (packed[0] << 16) >> 24); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16_SFLOAT: | 
 | 			dst.move(0, halfToFloatBits(As<SIMD::UInt>(packed[0]) & SIMD::UInt(0x0000FFFF))); | 
 | 			dst.move(1, SIMD::Float(0)); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16_UINT: | 
 | 			dst.move(0, packed[0] & SIMD::Int(0xffff)); | 
 | 			dst.move(1, SIMD::UInt(0)); | 
 | 			dst.move(2, SIMD::UInt(0)); | 
 | 			dst.move(3, SIMD::UInt(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16_SINT: | 
 | 			dst.move(0, (packed[0] << 16) >> 16); | 
 | 			dst.move(1, SIMD::Int(0)); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16G16_SFLOAT: | 
 | 			dst.move(0, halfToFloatBits(As<SIMD::UInt>(packed[0]) & SIMD::UInt(0x0000FFFF))); | 
 | 			dst.move(1, halfToFloatBits((As<SIMD::UInt>(packed[0]) & SIMD::UInt(0xFFFF0000)) >> 16)); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16G16_UINT: | 
 | 			dst.move(0, packed[0] & SIMD::Int(0xffff)); | 
 | 			dst.move(1, (packed[0] >> 16) & SIMD::Int(0xffff)); | 
 | 			dst.move(2, SIMD::UInt(0)); | 
 | 			dst.move(3, SIMD::UInt(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R16G16_SINT: | 
 | 			dst.move(0, (packed[0] << 16) >> 16); | 
 | 			dst.move(1, (packed[0]) >> 16); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R32G32_SINT: | 
 | 		case VK_FORMAT_R32G32_UINT: | 
 | 			dst.move(0, packed[0]); | 
 | 			dst.move(1, packed[1]); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_R32G32_SFLOAT: | 
 | 			dst.move(0, packed[0]); | 
 | 			dst.move(1, packed[1]); | 
 | 			dst.move(2, SIMD::Float(0)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_A2B10G10R10_UINT_PACK32: | 
 | 			dst.move(0, (packed[0]) & SIMD::Int(0x3FF)); | 
 | 			dst.move(1, (packed[0] >> 10) & SIMD::Int(0x3FF)); | 
 | 			dst.move(2, (packed[0] >> 20) & SIMD::Int(0x3FF)); | 
 | 			dst.move(3, (packed[0] >> 30) & SIMD::Int(0x3)); | 
 | 			break; | 
 | 		case VK_FORMAT_A2B10G10R10_UNORM_PACK32: | 
 | 			dst.move(0, SIMD::Float((packed[0]) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); | 
 | 			dst.move(1, SIMD::Float((packed[0] >> 10) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); | 
 | 			dst.move(2, SIMD::Float((packed[0] >> 20) & SIMD::Int(0x3FF)) * SIMD::Float(1.0f / 0x3FF)); | 
 | 			dst.move(3, SIMD::Float((packed[0] >> 30) & SIMD::Int(0x3)) * SIMD::Float(1.0f / 0x3)); | 
 | 			break; | 
 | 		case VK_FORMAT_R5G6B5_UNORM_PACK16: | 
 | 			dst.move(0, SIMD::Float((packed[0] >> 11) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); | 
 | 			dst.move(1, SIMD::Float((packed[0] >> 5) & SIMD::Int(0x3F)) * SIMD::Float(1.0f / 0x3F)); | 
 | 			dst.move(2, SIMD::Float((packed[0]) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); | 
 | 			dst.move(3, SIMD::Float(1)); | 
 | 			break; | 
 | 		case VK_FORMAT_A1R5G5B5_UNORM_PACK16: | 
 | 			dst.move(0, SIMD::Float((packed[0] >> 10) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); | 
 | 			dst.move(1, SIMD::Float((packed[0] >> 5) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); | 
 | 			dst.move(2, SIMD::Float((packed[0]) & SIMD::Int(0x1F)) * SIMD::Float(1.0f / 0x1F)); | 
 | 			dst.move(3, SIMD::Float((packed[0] >> 15) & SIMD::Int(0x1))); | 
 | 			break; | 
 | 		default: | 
 | 			UNIMPLEMENTED("VkFormat %d", int(vkFormat)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageWrite(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto imageId = Object::ID(insn.word(1)); | 
 | 		auto &image = getObject(imageId); | 
 | 		auto &imageType = getType(image.type); | 
 |  | 
 | 		ASSERT(imageType.definition.opcode() == spv::OpTypeImage); | 
 |  | 
 | 		// TODO(b/131171141): Not handling any image operands yet. | 
 | 		ASSERT(insn.wordCount() == 4); | 
 |  | 
 | 		auto coordinate = GenericValue(this, state, insn.word(2)); | 
 | 		auto texel = GenericValue(this, state, insn.word(3)); | 
 |  | 
 | 		Pointer<Byte> binding = state->getPointer(imageId).base; | 
 | 		Pointer<Byte> imageBase = *Pointer<Pointer<Byte>>(binding + OFFSET(vk::StorageImageDescriptor, ptr)); | 
 | 		auto imageSizeInBytes = *Pointer<Int>(binding + OFFSET(vk::StorageImageDescriptor, sizeInBytes)); | 
 |  | 
 | 		SIMD::Int packed[4]; | 
 | 		auto numPackedElements = 0u; | 
 | 		int texelSize = 0; | 
 | 		auto format = static_cast<spv::ImageFormat>(imageType.definition.word(8)); | 
 | 		switch (format) | 
 | 		{ | 
 | 		case spv::ImageFormatRgba32f: | 
 | 		case spv::ImageFormatRgba32i: | 
 | 		case spv::ImageFormatRgba32ui: | 
 | 			texelSize = 16; | 
 | 			packed[0] = texel.Int(0); | 
 | 			packed[1] = texel.Int(1); | 
 | 			packed[2] = texel.Int(2); | 
 | 			packed[3] = texel.Int(3); | 
 | 			numPackedElements = 4; | 
 | 			break; | 
 | 		case spv::ImageFormatR32f: | 
 | 		case spv::ImageFormatR32i: | 
 | 		case spv::ImageFormatR32ui: | 
 | 			texelSize = 4; | 
 | 			packed[0] = texel.Int(0); | 
 | 			numPackedElements = 1; | 
 | 			break; | 
 | 		case spv::ImageFormatRgba8: | 
 | 			texelSize = 4; | 
 | 			packed[0] = (SIMD::UInt(Round(Min(Max(texel.Float(0), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) | | 
 | 				((SIMD::UInt(Round(Min(Max(texel.Float(1), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 8) | | 
 | 				((SIMD::UInt(Round(Min(Max(texel.Float(2), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 16) | | 
 | 				((SIMD::UInt(Round(Min(Max(texel.Float(3), SIMD::Float(0.0f)), SIMD::Float(1.0f)) * SIMD::Float(255.0f)))) << 24); | 
 | 			numPackedElements = 1; | 
 | 			break; | 
 | 		case spv::ImageFormatRgba8Snorm: | 
 | 			texelSize = 4; | 
 | 			packed[0] = (SIMD::Int(Round(Min(Max(texel.Float(0), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						 SIMD::Int(0xFF)) | | 
 | 						((SIMD::Int(Round(Min(Max(texel.Float(1), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						  SIMD::Int(0xFF)) << 8) | | 
 | 						((SIMD::Int(Round(Min(Max(texel.Float(2), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						  SIMD::Int(0xFF)) << 16) | | 
 | 						((SIMD::Int(Round(Min(Max(texel.Float(3), SIMD::Float(-1.0f)), SIMD::Float(1.0f)) * SIMD::Float(127.0f))) & | 
 | 						  SIMD::Int(0xFF)) << 24); | 
 | 			numPackedElements = 1; | 
 | 			break; | 
 | 		case spv::ImageFormatRgba8i: | 
 | 		case spv::ImageFormatRgba8ui: | 
 | 			texelSize = 4; | 
 | 			packed[0] = (SIMD::UInt(texel.UInt(0) & SIMD::UInt(0xff))) | | 
 | 						(SIMD::UInt(texel.UInt(1) & SIMD::UInt(0xff)) << 8) | | 
 | 						(SIMD::UInt(texel.UInt(2) & SIMD::UInt(0xff)) << 16) | | 
 | 						(SIMD::UInt(texel.UInt(3) & SIMD::UInt(0xff)) << 24); | 
 | 			numPackedElements = 1; | 
 | 			break; | 
 | 		case spv::ImageFormatRgba16f: | 
 | 			texelSize = 8; | 
 | 			packed[0] = FloatToHalfBits(texel.UInt(0), false) | FloatToHalfBits(texel.UInt(1), true); | 
 | 			packed[1] = FloatToHalfBits(texel.UInt(2), false) | FloatToHalfBits(texel.UInt(3), true); | 
 | 			numPackedElements = 2; | 
 | 			break; | 
 | 		case spv::ImageFormatRgba16i: | 
 | 		case spv::ImageFormatRgba16ui: | 
 | 			texelSize = 8; | 
 | 			packed[0] = SIMD::UInt(texel.UInt(0) & SIMD::UInt(0xffff)) | (SIMD::UInt(texel.UInt(1) & SIMD::UInt(0xffff)) << 16); | 
 | 			packed[1] = SIMD::UInt(texel.UInt(2) & SIMD::UInt(0xffff)) | (SIMD::UInt(texel.UInt(3) & SIMD::UInt(0xffff)) << 16); | 
 | 			numPackedElements = 2; | 
 | 			break; | 
 | 		case spv::ImageFormatRg32f: | 
 | 		case spv::ImageFormatRg32i: | 
 | 		case spv::ImageFormatRg32ui: | 
 | 			texelSize = 8; | 
 | 			packed[0] = texel.Int(0); | 
 | 			packed[1] = texel.Int(1); | 
 | 			numPackedElements = 2; | 
 | 			break; | 
 |  | 
 | 		case spv::ImageFormatRg16f: | 
 | 		case spv::ImageFormatR11fG11fB10f: | 
 | 		case spv::ImageFormatR16f: | 
 | 		case spv::ImageFormatRgba16: | 
 | 		case spv::ImageFormatRgb10A2: | 
 | 		case spv::ImageFormatRg16: | 
 | 		case spv::ImageFormatRg8: | 
 | 		case spv::ImageFormatR16: | 
 | 		case spv::ImageFormatR8: | 
 | 		case spv::ImageFormatRgba16Snorm: | 
 | 		case spv::ImageFormatRg16Snorm: | 
 | 		case spv::ImageFormatRg8Snorm: | 
 | 		case spv::ImageFormatR16Snorm: | 
 | 		case spv::ImageFormatR8Snorm: | 
 | 		case spv::ImageFormatRg16i: | 
 | 		case spv::ImageFormatRg8i: | 
 | 		case spv::ImageFormatR16i: | 
 | 		case spv::ImageFormatR8i: | 
 | 		case spv::ImageFormatRgb10a2ui: | 
 | 		case spv::ImageFormatRg16ui: | 
 | 		case spv::ImageFormatRg8ui: | 
 | 		case spv::ImageFormatR16ui: | 
 | 		case spv::ImageFormatR8ui: | 
 | 			UNIMPLEMENTED("spv::ImageFormat %d", int(format)); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			UNREACHABLE("spv::ImageFormat %d", int(format)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		auto basePtr = SIMD::Pointer(imageBase, imageSizeInBytes); | 
 | 		auto texelPtr = GetTexelAddress(state, basePtr, coordinate, imageType, binding, texelSize, 0, false); | 
 |  | 
 | 		// SPIR-V 1.4: "If the coordinates are outside the image, the memory location that is accessed is undefined." | 
 | 		auto robustness = OutOfBoundsBehavior::UndefinedValue; | 
 |  | 
 | 		for (auto i = 0u; i < numPackedElements; i++) | 
 | 		{ | 
 | 			SIMD::Store(texelPtr, packed[i], robustness, state->activeLaneMask()); | 
 | 			texelPtr += sizeof(float); | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitImageTexelPointer(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultType = getType(Type::ID(insn.word(1))); | 
 | 		auto imageId = Object::ID(insn.word(3)); | 
 | 		auto &image = getObject(imageId); | 
 | 		// Note: OpImageTexelPointer is unusual in that the image is passed by pointer. | 
 | 		// Look through to get the actual image type. | 
 | 		auto &imageType = getType(getType(image.type).element); | 
 | 		Object::ID resultId = insn.word(2); | 
 |  | 
 | 		ASSERT(imageType.opcode() == spv::OpTypeImage); | 
 | 		ASSERT(resultType.storageClass == spv::StorageClassImage); | 
 | 		ASSERT(getType(resultType.element).opcode() == spv::OpTypeInt); | 
 |  | 
 | 		auto coordinate = GenericValue(this, state, insn.word(4)); | 
 |  | 
 | 		Pointer<Byte> binding = state->getPointer(imageId).base; | 
 | 		Pointer<Byte> imageBase = *Pointer<Pointer<Byte>>(binding + OFFSET(vk::StorageImageDescriptor, ptr)); | 
 | 		auto imageSizeInBytes = *Pointer<Int>(binding + OFFSET(vk::StorageImageDescriptor, sizeInBytes)); | 
 |  | 
 | 		auto basePtr = SIMD::Pointer(imageBase, imageSizeInBytes); | 
 | 		auto ptr = GetTexelAddress(state, basePtr, coordinate, imageType, binding, sizeof(uint32_t), 0, false); | 
 |  | 
 | 		state->createPointer(resultId, ptr); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitSampledImageCombineOrSplit(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		// Propagate the image pointer in both cases. | 
 | 		// Consumers of OpSampledImage will look through to find the sampler pointer. | 
 |  | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		Object::ID imageId = insn.word(3); | 
 |  | 
 | 		state->createPointer(resultId, state->getPointer(imageId)); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitAtomicOp(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto &resultType = getType(Type::ID(insn.word(1))); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		Object::ID semanticsId = insn.word(5); | 
 | 		auto memorySemantics = static_cast<spv::MemorySemanticsMask>(getObject(semanticsId).constantValue[0]); | 
 | 		auto memoryOrder = MemoryOrder(memorySemantics); | 
 | 		// Where no value is provided (increment/decrement) use an implicit value of 1. | 
 | 		auto value = (insn.wordCount() == 7) ? GenericValue(this, state, insn.word(6)).UInt(0) : RValue<SIMD::UInt>(1); | 
 | 		auto &dst = state->createIntermediate(resultId, resultType.sizeInComponents); | 
 | 		auto ptr = state->getPointer(insn.word(3)); | 
 | 		auto ptrOffsets = ptr.offsets(); | 
 |  | 
 | 		SIMD::UInt x(0); | 
 | 		auto mask = state->activeLaneMask() & state->storesAndAtomicsMask(); | 
 | 		for (int j = 0; j < SIMD::Width; j++) | 
 | 		{ | 
 | 			If(Extract(mask, j) != 0) | 
 | 			{ | 
 | 				auto offset = Extract(ptrOffsets, j); | 
 | 				auto laneValue = Extract(value, j); | 
 | 				UInt v; | 
 | 				switch (insn.opcode()) | 
 | 				{ | 
 | 				case spv::OpAtomicIAdd: | 
 | 				case spv::OpAtomicIIncrement: | 
 | 					v = AddAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicISub: | 
 | 				case spv::OpAtomicIDecrement: | 
 | 					v = SubAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicAnd: | 
 | 					v = AndAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicOr: | 
 | 					v = OrAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicXor: | 
 | 					v = XorAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicSMin: | 
 | 					v = As<UInt>(MinAtomic(Pointer<Int>(&ptr.base[offset]), As<Int>(laneValue), memoryOrder)); | 
 | 					break; | 
 | 				case spv::OpAtomicSMax: | 
 | 					v = As<UInt>(MaxAtomic(Pointer<Int>(&ptr.base[offset]), As<Int>(laneValue), memoryOrder)); | 
 | 					break; | 
 | 				case spv::OpAtomicUMin: | 
 | 					v = MinAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicUMax: | 
 | 					v = MaxAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				case spv::OpAtomicExchange: | 
 | 					v = ExchangeAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, memoryOrder); | 
 | 					break; | 
 | 				default: | 
 | 					UNREACHABLE("%s", OpcodeName(insn.opcode()).c_str()); | 
 | 					break; | 
 | 				} | 
 | 				x = Insert(x, v, j); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		dst.move(0, x); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitAtomicCompareExchange(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		// Separate from EmitAtomicOp due to different instruction encoding | 
 | 		auto &resultType = getType(Type::ID(insn.word(1))); | 
 | 		Object::ID resultId = insn.word(2); | 
 |  | 
 | 		auto memorySemanticsEqual = static_cast<spv::MemorySemanticsMask>(getObject(insn.word(5)).constantValue[0]); | 
 | 		auto memoryOrderEqual = MemoryOrder(memorySemanticsEqual); | 
 | 		auto memorySemanticsUnequal = static_cast<spv::MemorySemanticsMask>(getObject(insn.word(6)).constantValue[0]); | 
 | 		auto memoryOrderUnequal = MemoryOrder(memorySemanticsUnequal); | 
 |  | 
 | 		auto value = GenericValue(this, state, insn.word(7)); | 
 | 		auto comparator = GenericValue(this, state, insn.word(8)); | 
 | 		auto &dst = state->createIntermediate(resultId, resultType.sizeInComponents); | 
 | 		auto ptr = state->getPointer(insn.word(3)); | 
 | 		auto ptrOffsets = ptr.offsets(); | 
 |  | 
 | 		SIMD::UInt x(0); | 
 | 		auto mask = state->activeLaneMask() & state->storesAndAtomicsMask(); | 
 | 		for (int j = 0; j < SIMD::Width; j++) | 
 | 		{ | 
 | 			If(Extract(mask, j) != 0) | 
 | 			{ | 
 | 				auto offset = Extract(ptrOffsets, j); | 
 | 				auto laneValue = Extract(value.UInt(0), j); | 
 | 				auto laneComparator = Extract(comparator.UInt(0), j); | 
 | 				UInt v = CompareExchangeAtomic(Pointer<UInt>(&ptr.base[offset]), laneValue, laneComparator, memoryOrderEqual, memoryOrderUnequal); | 
 | 				x = Insert(x, v, j); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		dst.move(0, x); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitCopyObject(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto ty = getType(insn.word(1)); | 
 | 		auto &dst = state->createIntermediate(insn.word(2), ty.sizeInComponents); | 
 | 		auto src = GenericValue(this, state, insn.word(3)); | 
 | 		for (uint32_t i = 0; i < ty.sizeInComponents; i++) | 
 | 		{ | 
 | 			dst.move(i, src.Int(i)); | 
 | 		} | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitCopyMemory(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		Object::ID dstPtrId = insn.word(1); | 
 | 		Object::ID srcPtrId = insn.word(2); | 
 | 		auto &dstPtrTy = getType(getObject(dstPtrId).type); | 
 | 		auto &srcPtrTy = getType(getObject(srcPtrId).type); | 
 | 		ASSERT(dstPtrTy.element == srcPtrTy.element); | 
 |  | 
 | 		bool dstInterleavedByLane = IsStorageInterleavedByLane(dstPtrTy.storageClass); | 
 | 		bool srcInterleavedByLane = IsStorageInterleavedByLane(srcPtrTy.storageClass); | 
 | 		auto dstPtr = GetPointerToData(dstPtrId, 0, state); | 
 | 		auto srcPtr = GetPointerToData(srcPtrId, 0, state); | 
 |  | 
 | 		std::unordered_map<uint32_t, uint32_t> srcOffsets; | 
 |  | 
 | 		VisitMemoryObject(srcPtrId, [&](uint32_t i, uint32_t srcOffset) { srcOffsets[i] = srcOffset; }); | 
 |  | 
 | 		VisitMemoryObject(dstPtrId, [&](uint32_t i, uint32_t dstOffset) | 
 | 		{ | 
 | 			auto it = srcOffsets.find(i); | 
 | 			ASSERT(it != srcOffsets.end()); | 
 | 			auto srcOffset = it->second; | 
 |  | 
 | 			auto dst = dstPtr + dstOffset; | 
 | 			auto src = srcPtr + srcOffset; | 
 | 			if (dstInterleavedByLane) { dst = interleaveByLane(dst); } | 
 | 			if (srcInterleavedByLane) { src = interleaveByLane(src); } | 
 |  | 
 | 			// TODO(b/131224163): Optimize based on src/dst storage classes. | 
 | 			auto robustness = OutOfBoundsBehavior::RobustBufferAccess; | 
 |  | 
 | 			auto value = SIMD::Load<SIMD::Float>(src, robustness, state->activeLaneMask()); | 
 | 			SIMD::Store(dst, value, robustness, state->activeLaneMask()); | 
 | 		}); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitControlBarrier(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto executionScope = spv::Scope(GetConstScalarInt(insn.word(1))); | 
 | 		auto semantics = spv::MemorySemanticsMask(GetConstScalarInt(insn.word(3))); | 
 | 		// TODO: We probably want to consider the memory scope here. For now, | 
 | 		// just always emit the full fence. | 
 | 		Fence(semantics); | 
 |  | 
 | 		switch (executionScope) | 
 | 		{ | 
 | 		case spv::ScopeWorkgroup: | 
 | 			Yield(YieldResult::ControlBarrier); | 
 | 			break; | 
 | 		case spv::ScopeSubgroup: | 
 | 			break; | 
 | 		default: | 
 | 			// See Vulkan 1.1 spec, Appendix A, Validation Rules within a Module. | 
 | 			UNREACHABLE("Scope for execution must be limited to Workgroup or Subgroup"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitMemoryBarrier(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto semantics = spv::MemorySemanticsMask(GetConstScalarInt(insn.word(2))); | 
 | 		// TODO: We probably want to consider the memory scope here. For now, | 
 | 		// just always emit the full fence. | 
 | 		Fence(semantics); | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Fence(spv::MemorySemanticsMask semantics) const | 
 | 	{ | 
 | 		if (semantics == spv::MemorySemanticsMaskNone) | 
 | 		{ | 
 | 			return; //no-op | 
 | 		} | 
 | 		rr::Fence(MemoryOrder(semantics)); | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitGroupNonUniform(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		static_assert(SIMD::Width == 4, "EmitGroupNonUniform makes many assumptions that the SIMD vector width is 4"); | 
 |  | 
 | 		auto &type = getType(Type::ID(insn.word(1))); | 
 | 		Object::ID resultId = insn.word(2); | 
 | 		auto scope = spv::Scope(GetConstScalarInt(insn.word(3))); | 
 | 		ASSERT_MSG(scope == spv::ScopeSubgroup, "Scope for Non Uniform Group Operations must be Subgroup for Vulkan 1.1"); | 
 |  | 
 | 		auto &dst = state->createIntermediate(resultId, type.sizeInComponents); | 
 |  | 
 | 		switch (insn.opcode()) | 
 | 		{ | 
 | 		case spv::OpGroupNonUniformElect: | 
 | 		{ | 
 | 			// Result is true only in the active invocation with the lowest id | 
 | 			// in the group, otherwise result is false. | 
 | 			SIMD::Int active = state->activeLaneMask(); | 
 | 			// TODO: Would be nice if we could write this as: | 
 | 			//   elect = active & ~(active.Oxyz | active.OOxy | active.OOOx) | 
 | 			auto v0111 = SIMD::Int(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); | 
 | 			auto elect = active & ~(v0111 & (active.xxyz | active.xxxy | active.xxxx)); | 
 | 			dst.move(0, elect); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformAll: | 
 | 		{ | 
 | 			GenericValue predicate(this, state, insn.word(4)); | 
 | 			dst.move(0, AndAll(predicate.UInt(0) | ~As<SIMD::UInt>(state->activeLaneMask()))); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformAny: | 
 | 		{ | 
 | 			GenericValue predicate(this, state, insn.word(4)); | 
 | 			dst.move(0, OrAll(predicate.UInt(0) & As<SIMD::UInt>(state->activeLaneMask()))); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformAllEqual: | 
 | 		{ | 
 | 			GenericValue value(this, state, insn.word(4)); | 
 | 			auto res = SIMD::UInt(0xffffffff); | 
 | 			SIMD::UInt active = As<SIMD::UInt>(state->activeLaneMask()); | 
 | 			SIMD::UInt inactive = ~active; | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::UInt v = value.UInt(i) & active; | 
 | 				SIMD::UInt filled = v; | 
 | 				for (int j = 0; j < SIMD::Width - 1; j++) | 
 | 				{ | 
 | 					filled |= filled.yzwx & inactive; // Populate inactive 'holes' with a live value | 
 | 				} | 
 | 				res &= AndAll(CmpEQ(filled.xyzw, filled.yzwx)); | 
 | 			} | 
 | 			dst.move(0, res); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBroadcast: | 
 | 		{ | 
 | 			auto valueId = Object::ID(insn.word(4)); | 
 | 			auto id = SIMD::Int(GetConstScalarInt(insn.word(5))); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			auto mask = CmpEQ(id, SIMD::Int(0, 1, 2, 3)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, OrAll(value.Int(i) & mask)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBroadcastFirst: | 
 | 		{ | 
 | 			auto valueId = Object::ID(insn.word(4)); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			// Result is true only in the active invocation with the lowest id | 
 | 			// in the group, otherwise result is false. | 
 | 			SIMD::Int active = state->activeLaneMask(); | 
 | 			// TODO: Would be nice if we could write this as: | 
 | 			//   elect = active & ~(active.Oxyz | active.OOxy | active.OOOx) | 
 | 			auto v0111 = SIMD::Int(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); | 
 | 			auto elect = active & ~(v0111 & (active.xxyz | active.xxxy | active.xxxx)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				dst.move(i, OrAll(value.Int(i) & elect)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBallot: | 
 | 		{ | 
 | 			ASSERT(type.sizeInComponents == 4); | 
 | 			GenericValue predicate(this, state, insn.word(4)); | 
 | 			dst.move(0, SIMD::Int(SignMask(state->activeLaneMask() & predicate.Int(0)))); | 
 | 			dst.move(1, SIMD::Int(0)); | 
 | 			dst.move(2, SIMD::Int(0)); | 
 | 			dst.move(3, SIMD::Int(0)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformInverseBallot: | 
 | 		{ | 
 | 			auto valueId = Object::ID(insn.word(4)); | 
 | 			ASSERT(type.sizeInComponents == 1); | 
 | 			ASSERT(getType(getObject(valueId).type).sizeInComponents == 4); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			auto bit = (value.Int(0) >> SIMD::Int(0, 1, 2, 3)) & SIMD::Int(1); | 
 | 			dst.move(0, -bit); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBallotBitExtract: | 
 | 		{ | 
 | 			auto valueId = Object::ID(insn.word(4)); | 
 | 			auto indexId = Object::ID(insn.word(5)); | 
 | 			ASSERT(type.sizeInComponents == 1); | 
 | 			ASSERT(getType(getObject(valueId).type).sizeInComponents == 4); | 
 | 			ASSERT(getType(getObject(indexId).type).sizeInComponents == 1); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			GenericValue index(this, state, indexId); | 
 | 			auto vecIdx = index.Int(0) / SIMD::Int(32); | 
 | 			auto bitIdx = index.Int(0) & SIMD::Int(31); | 
 | 			auto bits =	(value.Int(0) & CmpEQ(vecIdx, SIMD::Int(0))) | | 
 | 			            (value.Int(1) & CmpEQ(vecIdx, SIMD::Int(1))) | | 
 | 			            (value.Int(2) & CmpEQ(vecIdx, SIMD::Int(2))) | | 
 | 			            (value.Int(3) & CmpEQ(vecIdx, SIMD::Int(3))); | 
 | 			dst.move(0, -((bits >> bitIdx) & SIMD::Int(1))); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBallotBitCount: | 
 | 		{ | 
 | 			auto operation = spv::GroupOperation(insn.word(4)); | 
 | 			auto valueId = Object::ID(insn.word(5)); | 
 | 			ASSERT(type.sizeInComponents == 1); | 
 | 			ASSERT(getType(getObject(valueId).type).sizeInComponents == 4); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			switch (operation) | 
 | 			{ | 
 | 			case spv::GroupOperationReduce: | 
 | 				dst.move(0, CountBits(value.UInt(0) & SIMD::UInt(15))); | 
 | 				break; | 
 | 			case spv::GroupOperationInclusiveScan: | 
 | 				dst.move(0, CountBits(value.UInt(0) & SIMD::UInt(1, 3, 7, 15))); | 
 | 				break; | 
 | 			case spv::GroupOperationExclusiveScan: | 
 | 				dst.move(0, CountBits(value.UInt(0) & SIMD::UInt(0, 1, 3, 7))); | 
 | 				break; | 
 | 			default: | 
 | 				UNSUPPORTED("GroupOperation %d", int(operation)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBallotFindLSB: | 
 | 		{ | 
 | 			auto valueId = Object::ID(insn.word(4)); | 
 | 			ASSERT(type.sizeInComponents == 1); | 
 | 			ASSERT(getType(getObject(valueId).type).sizeInComponents == 4); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			dst.move(0, Cttz(value.UInt(0) & SIMD::UInt(15), true)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformBallotFindMSB: | 
 | 		{ | 
 | 			auto valueId = Object::ID(insn.word(4)); | 
 | 			ASSERT(type.sizeInComponents == 1); | 
 | 			ASSERT(getType(getObject(valueId).type).sizeInComponents == 4); | 
 | 			GenericValue value(this, state, valueId); | 
 | 			dst.move(0, SIMD::UInt(31) - Ctlz(value.UInt(0) & SIMD::UInt(15), false)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformShuffle: | 
 | 		{ | 
 | 			GenericValue value(this, state, insn.word(4)); | 
 | 			GenericValue id(this, state, insn.word(5)); | 
 | 			auto x = CmpEQ(SIMD::Int(0), id.Int(0)); | 
 | 			auto y = CmpEQ(SIMD::Int(1), id.Int(0)); | 
 | 			auto z = CmpEQ(SIMD::Int(2), id.Int(0)); | 
 | 			auto w = CmpEQ(SIMD::Int(3), id.Int(0)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Int v = value.Int(i); | 
 | 				dst.move(i, (x & v.xxxx) | (y & v.yyyy) | (z & v.zzzz) | (w & v.wwww)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformShuffleXor: | 
 | 		{ | 
 | 			GenericValue value(this, state, insn.word(4)); | 
 | 			GenericValue mask(this, state, insn.word(5)); | 
 | 			auto x = CmpEQ(SIMD::Int(0), SIMD::Int(0, 1, 2, 3) ^ mask.Int(0)); | 
 | 			auto y = CmpEQ(SIMD::Int(1), SIMD::Int(0, 1, 2, 3) ^ mask.Int(0)); | 
 | 			auto z = CmpEQ(SIMD::Int(2), SIMD::Int(0, 1, 2, 3) ^ mask.Int(0)); | 
 | 			auto w = CmpEQ(SIMD::Int(3), SIMD::Int(0, 1, 2, 3) ^ mask.Int(0)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Int v = value.Int(i); | 
 | 				dst.move(i, (x & v.xxxx) | (y & v.yyyy) | (z & v.zzzz) | (w & v.wwww)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformShuffleUp: | 
 | 		{ | 
 | 			GenericValue value(this, state, insn.word(4)); | 
 | 			GenericValue delta(this, state, insn.word(5)); | 
 | 			auto d0 = CmpEQ(SIMD::Int(0), delta.Int(0)); | 
 | 			auto d1 = CmpEQ(SIMD::Int(1), delta.Int(0)); | 
 | 			auto d2 = CmpEQ(SIMD::Int(2), delta.Int(0)); | 
 | 			auto d3 = CmpEQ(SIMD::Int(3), delta.Int(0)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Int v = value.Int(i); | 
 | 				dst.move(i, (d0 & v.xyzw) | (d1 & v.xxyz) | (d2 & v.xxxy) | (d3 & v.xxxx)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpGroupNonUniformShuffleDown: | 
 | 		{ | 
 | 			GenericValue value(this, state, insn.word(4)); | 
 | 			GenericValue delta(this, state, insn.word(5)); | 
 | 			auto d0 = CmpEQ(SIMD::Int(0), delta.Int(0)); | 
 | 			auto d1 = CmpEQ(SIMD::Int(1), delta.Int(0)); | 
 | 			auto d2 = CmpEQ(SIMD::Int(2), delta.Int(0)); | 
 | 			auto d3 = CmpEQ(SIMD::Int(3), delta.Int(0)); | 
 | 			for (auto i = 0u; i < type.sizeInComponents; i++) | 
 | 			{ | 
 | 				SIMD::Int v = value.Int(i); | 
 | 				dst.move(i, (d0 & v.xyzw) | (d1 & v.yzww) | (d2 & v.zwww) | (d3 & v.wwww)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		default: | 
 | 			UNIMPLEMENTED("EmitGroupNonUniform op: %s", OpcodeName(type.opcode()).c_str()); | 
 | 		} | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	SpirvShader::EmitResult SpirvShader::EmitArrayLength(InsnIterator insn, EmitState *state) const | 
 | 	{ | 
 | 		auto resultTyId = Type::ID(insn.word(1)); | 
 | 		auto resultId = Object::ID(insn.word(2)); | 
 | 		auto structPtrId = Object::ID(insn.word(3)); | 
 | 		auto arrayFieldIdx = insn.word(4); | 
 |  | 
 | 		auto &resultType = getType(resultTyId); | 
 | 		ASSERT(resultType.sizeInComponents == 1); | 
 | 		ASSERT(resultType.definition.opcode() == spv::OpTypeInt); | 
 |  | 
 | 		auto &structPtrTy = getType(getObject(structPtrId).type); | 
 | 		auto &structTy = getType(structPtrTy.element); | 
 | 		auto &arrayTy = getType(structTy.definition.word(2 + arrayFieldIdx)); | 
 | 		ASSERT(arrayTy.definition.opcode() == spv::OpTypeRuntimeArray); | 
 | 		auto &arrayElTy = getType(arrayTy.element); | 
 |  | 
 | 		auto &result = state->createIntermediate(resultId, 1); | 
 | 		auto structBase = GetPointerToData(structPtrId, 0, state); | 
 |  | 
 | 		Decorations d = {}; | 
 | 		ApplyDecorationsForIdMember(&d, structPtrTy.element, arrayFieldIdx); | 
 | 		ASSERT(d.HasOffset); | 
 |  | 
 | 		auto arrayBase = structBase + d.Offset; | 
 | 		auto arraySizeInBytes = SIMD::Int(arrayBase.limit()) - arrayBase.offsets(); | 
 | 		auto arrayLength = arraySizeInBytes / SIMD::Int(arrayElTy.sizeInComponents * sizeof(float)); | 
 |  | 
 | 		result.move(0, SIMD::Int(arrayLength)); | 
 |  | 
 | 		return EmitResult::Continue; | 
 | 	} | 
 |  | 
 | 	uint32_t SpirvShader::GetConstScalarInt(Object::ID id) const | 
 | 	{ | 
 | 		auto &scopeObj = getObject(id); | 
 | 		ASSERT(scopeObj.kind == Object::Kind::Constant); | 
 | 		ASSERT(getType(scopeObj.type).sizeInComponents == 1); | 
 | 		return scopeObj.constantValue[0]; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EvalSpecConstantOp(InsnIterator insn) | 
 | 	{ | 
 | 		auto opcode = static_cast<spv::Op>(insn.word(3)); | 
 |  | 
 | 		switch (opcode) | 
 | 		{ | 
 | 		case spv::OpIAdd: | 
 | 		case spv::OpISub: | 
 | 		case spv::OpIMul: | 
 | 		case spv::OpUDiv: | 
 | 		case spv::OpSDiv: | 
 | 		case spv::OpUMod: | 
 | 		case spv::OpSMod: | 
 | 		case spv::OpSRem: | 
 | 		case spv::OpShiftRightLogical: | 
 | 		case spv::OpShiftRightArithmetic: | 
 | 		case spv::OpShiftLeftLogical: | 
 | 		case spv::OpBitwiseOr: | 
 | 		case spv::OpLogicalOr: | 
 | 		case spv::OpBitwiseAnd: | 
 | 		case spv::OpLogicalAnd: | 
 | 		case spv::OpBitwiseXor: | 
 | 		case spv::OpLogicalEqual: | 
 | 		case spv::OpIEqual: | 
 | 		case spv::OpLogicalNotEqual: | 
 | 		case spv::OpINotEqual: | 
 | 		case spv::OpULessThan: | 
 | 		case spv::OpSLessThan: | 
 | 		case spv::OpUGreaterThan: | 
 | 		case spv::OpSGreaterThan: | 
 | 		case spv::OpULessThanEqual: | 
 | 		case spv::OpSLessThanEqual: | 
 | 		case spv::OpUGreaterThanEqual: | 
 | 		case spv::OpSGreaterThanEqual: | 
 | 			EvalSpecConstantBinaryOp(insn); | 
 | 			break; | 
 |  | 
 | 		case spv::OpSConvert: | 
 | 		case spv::OpFConvert: | 
 | 		case spv::OpUConvert: | 
 | 		case spv::OpSNegate: | 
 | 		case spv::OpNot: | 
 | 		case spv::OpLogicalNot: | 
 | 		case spv::OpQuantizeToF16: | 
 | 			EvalSpecConstantUnaryOp(insn); | 
 | 			break; | 
 |  | 
 | 		case spv::OpSelect: | 
 | 		{ | 
 | 			auto &result = CreateConstant(insn); | 
 | 			auto const &cond = getObject(insn.word(4)); | 
 | 			auto condIsScalar = (getType(cond.type).sizeInComponents == 1); | 
 | 			auto const &left = getObject(insn.word(5)); | 
 | 			auto const &right = getObject(insn.word(6)); | 
 |  | 
 | 			for (auto i = 0u; i < getType(result.type).sizeInComponents; i++) | 
 | 			{ | 
 | 				auto sel = cond.constantValue[condIsScalar ? 0 : i]; | 
 | 				result.constantValue[i] = sel ? left.constantValue[i] : right.constantValue[i]; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpCompositeExtract: | 
 | 		{ | 
 | 			auto &result = CreateConstant(insn); | 
 | 			auto const &compositeObject = getObject(insn.word(4)); | 
 | 			auto firstComponent = WalkLiteralAccessChain(compositeObject.type, insn.wordCount() - 5, insn.wordPointer(5)); | 
 |  | 
 | 			for (auto i = 0u; i < getType(result.type).sizeInComponents; i++) | 
 | 			{ | 
 | 				result.constantValue[i] = compositeObject.constantValue[firstComponent + i]; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpCompositeInsert: | 
 | 		{ | 
 | 			auto &result = CreateConstant(insn); | 
 | 			auto const &newPart = getObject(insn.word(4)); | 
 | 			auto const &oldObject = getObject(insn.word(5)); | 
 | 			auto firstNewComponent = WalkLiteralAccessChain(result.type, insn.wordCount() - 6, insn.wordPointer(6)); | 
 |  | 
 | 			// old components before | 
 | 			for (auto i = 0u; i < firstNewComponent; i++) | 
 | 			{ | 
 | 				result.constantValue[i] = oldObject.constantValue[i]; | 
 | 			} | 
 | 			// new part | 
 | 			for (auto i = 0u; i < getType(newPart.type).sizeInComponents; i++) | 
 | 			{ | 
 | 				result.constantValue[firstNewComponent + i] = newPart.constantValue[i]; | 
 | 			} | 
 | 			// old components after | 
 | 			for (auto i = firstNewComponent + getType(newPart.type).sizeInComponents; i < getType(result.type).sizeInComponents; i++) | 
 | 			{ | 
 | 				result.constantValue[i] = oldObject.constantValue[i]; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case spv::OpVectorShuffle: | 
 | 		{ | 
 | 			auto &result = CreateConstant(insn); | 
 | 			auto const &firstHalf = getObject(insn.word(4)); | 
 | 			auto const &secondHalf = getObject(insn.word(5)); | 
 |  | 
 | 			for (auto i = 0u; i < getType(result.type).sizeInComponents; i++) | 
 | 			{ | 
 | 				auto selector = insn.word(6 + i); | 
 | 				if (selector == static_cast<uint32_t>(-1)) | 
 | 				{ | 
 | 					// Undefined value, we'll use zero | 
 | 					result.constantValue[i] = 0; | 
 | 				} | 
 | 				else if (selector < getType(firstHalf.type).sizeInComponents) | 
 | 				{ | 
 | 					result.constantValue[i] = firstHalf.constantValue[selector]; | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					result.constantValue[i] = secondHalf.constantValue[selector - getType(firstHalf.type).sizeInComponents]; | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		default: | 
 | 			// Other spec constant ops are possible, but require capabilities that are | 
 | 			// not exposed in our Vulkan implementation (eg Kernel), so we should never | 
 | 			// get here for correct shaders. | 
 | 			UNSUPPORTED("EvalSpecConstantOp op: %s", OpcodeName(opcode).c_str()); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EvalSpecConstantUnaryOp(InsnIterator insn) | 
 | 	{ | 
 | 		auto &result = CreateConstant(insn); | 
 |  | 
 | 		auto opcode = static_cast<spv::Op>(insn.word(3)); | 
 | 		auto const &lhs = getObject(insn.word(4)); | 
 | 		auto size = getType(lhs.type).sizeInComponents; | 
 |  | 
 | 		for (auto i = 0u; i < size; i++) | 
 | 		{ | 
 | 			auto &v = result.constantValue[i]; | 
 | 			auto l = lhs.constantValue[i]; | 
 |  | 
 | 			switch (opcode) | 
 | 			{ | 
 | 			case spv::OpSConvert: | 
 | 			case spv::OpFConvert: | 
 | 			case spv::OpUConvert: | 
 | 				UNREACHABLE("Not possible until we have multiple bit widths"); | 
 | 				break; | 
 |  | 
 | 			case spv::OpSNegate: | 
 | 				v = -(int)l; | 
 | 				break; | 
 | 			case spv::OpNot: | 
 | 			case spv::OpLogicalNot: | 
 | 				v = ~l; | 
 | 				break; | 
 |  | 
 | 			case spv::OpQuantizeToF16: | 
 | 			{ | 
 | 				// Can do this nicer with host code, but want to perfectly mirror the reactor code we emit. | 
 | 				auto abs = bit_cast<float>(l & 0x7FFFFFFF); | 
 | 				auto sign = l & 0x80000000; | 
 | 				auto isZero = abs < 0.000061035f ? ~0u : 0u; | 
 | 				auto isInf = abs > 65504.0f ? ~0u : 0u; | 
 | 				auto isNaN = (abs != abs) ? ~0u : 0u; | 
 | 				auto isInfOrNan = isInf | isNaN; | 
 | 				v = l & 0xFFFFE000; | 
 | 				v &= ~isZero | 0x80000000; | 
 | 				v = sign | (isInfOrNan & 0x7F800000) | (~isInfOrNan & v); | 
 | 				v |= isNaN & 0x400000; | 
 | 				break; | 
 | 			} | 
 | 			default: | 
 | 				UNREACHABLE("EvalSpecConstantUnaryOp op: %s", OpcodeName(opcode).c_str()); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EvalSpecConstantBinaryOp(InsnIterator insn) | 
 | 	{ | 
 | 		auto &result = CreateConstant(insn); | 
 |  | 
 | 		auto opcode = static_cast<spv::Op>(insn.word(3)); | 
 | 		auto const &lhs = getObject(insn.word(4)); | 
 | 		auto const &rhs = getObject(insn.word(5)); | 
 | 		auto size = getType(lhs.type).sizeInComponents; | 
 |  | 
 | 		for (auto i = 0u; i < size; i++) | 
 | 		{ | 
 | 			auto &v = result.constantValue[i]; | 
 | 			auto l = lhs.constantValue[i]; | 
 | 			auto r = rhs.constantValue[i]; | 
 |  | 
 | 			switch (opcode) | 
 | 			{ | 
 | 			case spv::OpIAdd: | 
 | 				v = l + r; | 
 | 				break; | 
 | 			case spv::OpISub: | 
 | 				v = l - r; | 
 | 				break; | 
 | 			case spv::OpIMul: | 
 | 				v = l * r; | 
 | 				break; | 
 | 			case spv::OpUDiv: | 
 | 				v = (r == 0) ? 0 : l / r; | 
 | 				break; | 
 | 			case spv::OpUMod: | 
 | 				v = (r == 0) ? 0 : l % r; | 
 | 				break; | 
 | 			case spv::OpSDiv: | 
 | 				if (r == 0) r = UINT32_MAX; | 
 | 				if (l == static_cast<uint32_t>(INT32_MIN)) l = UINT32_MAX; | 
 | 				v = static_cast<int32_t>(l) / static_cast<int32_t>(r); | 
 | 				break; | 
 | 			case spv::OpSRem: | 
 | 				if (r == 0) r = UINT32_MAX; | 
 | 				if (l == static_cast<uint32_t>(INT32_MIN)) l = UINT32_MAX; | 
 | 				v = static_cast<int32_t>(l) % static_cast<int32_t>(r); | 
 | 				break; | 
 | 			case spv::OpSMod: | 
 | 				if (r == 0) r = UINT32_MAX; | 
 | 				if (l == static_cast<uint32_t>(INT32_MIN)) l = UINT32_MAX; | 
 | 				// Test if a signed-multiply would be negative. | 
 | 				v = static_cast<int32_t>(l) % static_cast<int32_t>(r); | 
 | 				if ((v & 0x80000000) != (r & 0x80000000)) | 
 | 					v += r; | 
 | 				break; | 
 | 			case spv::OpShiftRightLogical: | 
 | 				v = l >> r; | 
 | 				break; | 
 | 			case spv::OpShiftRightArithmetic: | 
 | 				v = static_cast<int32_t>(l) >> r; | 
 | 				break; | 
 | 			case spv::OpShiftLeftLogical: | 
 | 				v = l << r; | 
 | 				break; | 
 | 			case spv::OpBitwiseOr: | 
 | 			case spv::OpLogicalOr: | 
 | 				v = l | r; | 
 | 				break; | 
 | 			case spv::OpBitwiseAnd: | 
 | 			case spv::OpLogicalAnd: | 
 | 				v = l & r; | 
 | 				break; | 
 | 			case spv::OpBitwiseXor: | 
 | 				v = l ^ r; | 
 | 				break; | 
 | 			case spv::OpLogicalEqual: | 
 | 			case spv::OpIEqual: | 
 | 				v = (l == r) ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpLogicalNotEqual: | 
 | 			case spv::OpINotEqual: | 
 | 				v = (l != r) ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpULessThan: | 
 | 				v = l < r ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpSLessThan: | 
 | 				v = static_cast<int32_t>(l) < static_cast<int32_t>(r) ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpUGreaterThan: | 
 | 				v = l > r ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpSGreaterThan: | 
 | 				v = static_cast<int32_t>(l) > static_cast<int32_t>(r) ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpULessThanEqual: | 
 | 				v = l <= r ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpSLessThanEqual: | 
 | 				v = static_cast<int32_t>(l) <= static_cast<int32_t>(r) ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpUGreaterThanEqual: | 
 | 				v = l >= r ? ~0u : 0u; | 
 | 				break; | 
 | 			case spv::OpSGreaterThanEqual: | 
 | 				v = static_cast<int32_t>(l) >= static_cast<int32_t>(r) ? ~0u : 0u; | 
 | 				break; | 
 | 			default: | 
 | 				UNREACHABLE("EvalSpecConstantBinaryOp op: %s", OpcodeName(opcode).c_str()); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::emitEpilog(SpirvRoutine *routine) const | 
 | 	{ | 
 | 		for (auto insn : *this) | 
 | 		{ | 
 | 			switch (insn.opcode()) | 
 | 			{ | 
 | 			case spv::OpVariable: | 
 | 			{ | 
 | 				Object::ID resultId = insn.word(2); | 
 | 				auto &object = getObject(resultId); | 
 | 				auto &objectTy = getType(object.type); | 
 | 				if (object.kind == Object::Kind::InterfaceVariable && objectTy.storageClass == spv::StorageClassOutput) | 
 | 				{ | 
 | 					auto &dst = routine->getVariable(resultId); | 
 | 					int offset = 0; | 
 | 					VisitInterface(resultId, | 
 | 								   [&](Decorations const &d, AttribType type) { | 
 | 									   auto scalarSlot = d.Location << 2 | d.Component; | 
 | 									   routine->outputs[scalarSlot] = dst[offset++]; | 
 | 								   }); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// Clear phis that are no longer used. This serves two purposes: | 
 | 		// (1) The phi rr::Variables are destructed, preventing pointless | 
 | 		//     materialization. | 
 | 		// (2) Frees memory that will never be used again. | 
 | 		routine->phis.clear(); | 
 | 	} | 
 |  | 
 | 	SpirvShader::Block::Block(InsnIterator begin, InsnIterator end) : begin_(begin), end_(end) | 
 | 	{ | 
 | 		// Default to a Simple, this may change later. | 
 | 		kind = Block::Simple; | 
 |  | 
 | 		// Walk the instructions to find the last two of the block. | 
 | 		InsnIterator insns[2]; | 
 | 		for (auto insn : *this) | 
 | 		{ | 
 | 			insns[0] = insns[1]; | 
 | 			insns[1] = insn; | 
 | 		} | 
 |  | 
 | 		switch (insns[1].opcode()) | 
 | 		{ | 
 | 			case spv::OpBranch: | 
 | 				branchInstruction = insns[1]; | 
 | 				outs.emplace(Block::ID(branchInstruction.word(1))); | 
 |  | 
 | 				switch (insns[0].opcode()) | 
 | 				{ | 
 | 					case spv::OpLoopMerge: | 
 | 						kind = Loop; | 
 | 						mergeInstruction = insns[0]; | 
 | 						mergeBlock = Block::ID(mergeInstruction.word(1)); | 
 | 						continueTarget = Block::ID(mergeInstruction.word(2)); | 
 | 						break; | 
 |  | 
 | 					default: | 
 | 						kind = Block::Simple; | 
 | 						break; | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			case spv::OpBranchConditional: | 
 | 				branchInstruction = insns[1]; | 
 | 				outs.emplace(Block::ID(branchInstruction.word(2))); | 
 | 				outs.emplace(Block::ID(branchInstruction.word(3))); | 
 |  | 
 | 				switch (insns[0].opcode()) | 
 | 				{ | 
 | 					case spv::OpSelectionMerge: | 
 | 						kind = StructuredBranchConditional; | 
 | 						mergeInstruction = insns[0]; | 
 | 						mergeBlock = Block::ID(mergeInstruction.word(1)); | 
 | 						break; | 
 |  | 
 | 					case spv::OpLoopMerge: | 
 | 						kind = Loop; | 
 | 						mergeInstruction = insns[0]; | 
 | 						mergeBlock = Block::ID(mergeInstruction.word(1)); | 
 | 						continueTarget = Block::ID(mergeInstruction.word(2)); | 
 | 						break; | 
 |  | 
 | 					default: | 
 | 						kind = UnstructuredBranchConditional; | 
 | 						break; | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			case spv::OpSwitch: | 
 | 				branchInstruction = insns[1]; | 
 | 				outs.emplace(Block::ID(branchInstruction.word(2))); | 
 | 				for (uint32_t w = 4; w < branchInstruction.wordCount(); w += 2) | 
 | 				{ | 
 | 					outs.emplace(Block::ID(branchInstruction.word(w))); | 
 | 				} | 
 |  | 
 | 				switch (insns[0].opcode()) | 
 | 				{ | 
 | 					case spv::OpSelectionMerge: | 
 | 						kind = StructuredSwitch; | 
 | 						mergeInstruction = insns[0]; | 
 | 						mergeBlock = Block::ID(mergeInstruction.word(1)); | 
 | 						break; | 
 |  | 
 | 					default: | 
 | 						kind = UnstructuredSwitch; | 
 | 						break; | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			default: | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Function::TraverseReachableBlocks(Block::ID id, SpirvShader::Block::Set& reachable) const | 
 | 	{ | 
 | 		if (reachable.count(id) == 0) | 
 | 		{ | 
 | 			reachable.emplace(id); | 
 | 			for (auto out : getBlock(id).outs) | 
 | 			{ | 
 | 				TraverseReachableBlocks(out, reachable); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Function::AssignBlockFields() | 
 | 	{ | 
 | 		Block::Set reachable; | 
 | 		TraverseReachableBlocks(entry, reachable); | 
 |  | 
 | 		for (auto &it : blocks) | 
 | 		{ | 
 | 			auto &blockId = it.first; | 
 | 			auto &block = it.second; | 
 | 			if (reachable.count(blockId) > 0) | 
 | 			{ | 
 | 				for (auto &outId : it.second.outs) | 
 | 				{ | 
 | 					auto outIt = blocks.find(outId); | 
 | 					ASSERT_MSG(outIt != blocks.end(), "Block %d has a non-existent out %d", blockId.value(), outId.value()); | 
 | 					auto &out = outIt->second; | 
 | 					out.ins.emplace(blockId); | 
 | 				} | 
 | 				if (block.kind == Block::Loop) | 
 | 				{ | 
 | 					auto mergeIt = blocks.find(block.mergeBlock); | 
 | 					ASSERT_MSG(mergeIt != blocks.end(), "Loop block %d has a non-existent merge block %d", blockId.value(), block.mergeBlock.value()); | 
 | 					mergeIt->second.isLoopMerge = true; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void SpirvShader::Function::ForeachBlockDependency(Block::ID blockId, std::function<void(Block::ID)> f) const | 
 | 	{ | 
 | 		auto block = getBlock(blockId); | 
 | 		for (auto dep : block.ins) | 
 | 		{ | 
 | 			if (block.kind != Block::Loop ||                 // if not a loop... | 
 | 				!ExistsPath(blockId, dep, block.mergeBlock)) // or a loop and not a loop back edge | 
 | 			{ | 
 | 				f(dep); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bool SpirvShader::Function::ExistsPath(Block::ID from, Block::ID to, Block::ID notPassingThrough) const | 
 | 	{ | 
 | 		// TODO: Optimize: This can be cached on the block. | 
 | 		Block::Set seen; | 
 | 		seen.emplace(notPassingThrough); | 
 |  | 
 | 		std::queue<Block::ID> pending; | 
 | 		pending.emplace(from); | 
 |  | 
 | 		while (pending.size() > 0) | 
 | 		{ | 
 | 			auto id = pending.front(); | 
 | 			pending.pop(); | 
 | 			for (auto out : getBlock(id).outs) | 
 | 			{ | 
 | 				if (seen.count(out) != 0) { continue; } | 
 | 				if (out == to) { return true; } | 
 | 				pending.emplace(out); | 
 | 			} | 
 | 			seen.emplace(id); | 
 | 		} | 
 |  | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EmitState::addOutputActiveLaneMaskEdge(Block::ID to, RValue<SIMD::Int> mask) | 
 | 	{ | 
 | 		addActiveLaneMaskEdge(block, to, mask & activeLaneMask()); | 
 | 	} | 
 |  | 
 | 	void SpirvShader::EmitState::addActiveLaneMaskEdge(Block::ID from, Block::ID to, RValue<SIMD::Int> mask) | 
 | 	{ | 
 | 		auto edge = Block::Edge{from, to}; | 
 | 		auto it = edgeActiveLaneMasks.find(edge); | 
 | 		if (it == edgeActiveLaneMasks.end()) | 
 | 		{ | 
 | 			edgeActiveLaneMasks.emplace(edge, mask); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			auto combined = it->second | mask; | 
 | 			edgeActiveLaneMasks.erase(edge); | 
 | 			edgeActiveLaneMasks.emplace(edge, combined); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	RValue<SIMD::Int> SpirvShader::GetActiveLaneMaskEdge(EmitState *state, Block::ID from, Block::ID to) const | 
 | 	{ | 
 | 		auto edge = Block::Edge{from, to}; | 
 | 		auto it = state->edgeActiveLaneMasks.find(edge); | 
 | 		ASSERT_MSG(it != state->edgeActiveLaneMasks.end(), "Could not find edge %d -> %d", from.value(), to.value()); | 
 | 		return it->second; | 
 | 	} | 
 |  | 
 | 	VkShaderStageFlagBits SpirvShader::executionModelToStage(spv::ExecutionModel model) | 
 | 	{ | 
 | 		switch (model) | 
 | 		{ | 
 | 		case spv::ExecutionModelVertex:                 return VK_SHADER_STAGE_VERTEX_BIT; | 
 | 		// case spv::ExecutionModelTessellationControl:    return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; | 
 | 		// case spv::ExecutionModelTessellationEvaluation: return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; | 
 | 		// case spv::ExecutionModelGeometry:               return VK_SHADER_STAGE_GEOMETRY_BIT; | 
 | 		case spv::ExecutionModelFragment:               return VK_SHADER_STAGE_FRAGMENT_BIT; | 
 | 		case spv::ExecutionModelGLCompute:              return VK_SHADER_STAGE_COMPUTE_BIT; | 
 | 		// case spv::ExecutionModelKernel:                 return VkShaderStageFlagBits(0); // Not supported by vulkan. | 
 | 		// case spv::ExecutionModelTaskNV:                 return VK_SHADER_STAGE_TASK_BIT_NV; | 
 | 		// case spv::ExecutionModelMeshNV:                 return VK_SHADER_STAGE_MESH_BIT_NV; | 
 | 		// case spv::ExecutionModelRayGenerationNV:        return VK_SHADER_STAGE_RAYGEN_BIT_NV; | 
 | 		// case spv::ExecutionModelIntersectionNV:         return VK_SHADER_STAGE_INTERSECTION_BIT_NV; | 
 | 		// case spv::ExecutionModelAnyHitNV:               return VK_SHADER_STAGE_ANY_HIT_BIT_NV; | 
 | 		// case spv::ExecutionModelClosestHitNV:           return VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV; | 
 | 		// case spv::ExecutionModelMissNV:                 return VK_SHADER_STAGE_MISS_BIT_NV; | 
 | 		// case spv::ExecutionModelCallableNV:             return VK_SHADER_STAGE_CALLABLE_BIT_NV; | 
 | 		default: | 
 | 			UNSUPPORTED("ExecutionModel: %d", int(model)); | 
 | 			return VkShaderStageFlagBits(0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SpirvShader::GenericValue::GenericValue(SpirvShader const *shader, EmitState const *state, SpirvShader::Object::ID objId) : | 
 | 			obj(shader->getObject(objId)), | 
 | 			intermediate(obj.kind == SpirvShader::Object::Kind::Intermediate ? &state->getIntermediate(objId) : nullptr), | 
 | 			type(obj.type) {} | 
 |  | 
 | 	SpirvRoutine::SpirvRoutine(vk::PipelineLayout const *pipelineLayout) : | 
 | 		pipelineLayout(pipelineLayout) | 
 | 	{ | 
 | 	} | 
 |  | 
 | 	void SpirvRoutine::setImmutableInputBuiltins(SpirvShader const *shader) | 
 | 	{ | 
 | 		setInputBuiltin(shader, spv::BuiltInSubgroupLocalInvocationId, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 1); | 
 | 			value[builtin.FirstComponent] = As<SIMD::Float>(SIMD::Int(0, 1, 2, 3)); | 
 | 		}); | 
 |  | 
 | 		setInputBuiltin(shader, spv::BuiltInSubgroupEqMask, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 4); | 
 | 			value[builtin.FirstComponent + 0] = As<SIMD::Float>(SIMD::Int(1, 2, 4, 8)); | 
 | 			value[builtin.FirstComponent + 1] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 2] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 3] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 		}); | 
 |  | 
 | 		setInputBuiltin(shader, spv::BuiltInSubgroupGeMask, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 4); | 
 | 			value[builtin.FirstComponent + 0] = As<SIMD::Float>(SIMD::Int(15, 14, 12, 8)); | 
 | 			value[builtin.FirstComponent + 1] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 2] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 3] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 		}); | 
 |  | 
 | 		setInputBuiltin(shader, spv::BuiltInSubgroupGtMask, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 4); | 
 | 			value[builtin.FirstComponent + 0] = As<SIMD::Float>(SIMD::Int(14, 12, 8, 0)); | 
 | 			value[builtin.FirstComponent + 1] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 2] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 3] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 		}); | 
 |  | 
 | 		setInputBuiltin(shader, spv::BuiltInSubgroupLeMask, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 4); | 
 | 			value[builtin.FirstComponent + 0] = As<SIMD::Float>(SIMD::Int(1, 3, 7, 15)); | 
 | 			value[builtin.FirstComponent + 1] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 2] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 3] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 		}); | 
 |  | 
 | 		setInputBuiltin(shader, spv::BuiltInSubgroupLtMask, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 4); | 
 | 			value[builtin.FirstComponent + 0] = As<SIMD::Float>(SIMD::Int(0, 1, 3, 7)); | 
 | 			value[builtin.FirstComponent + 1] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 2] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 			value[builtin.FirstComponent + 3] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 		}); | 
 |  | 
 | 		setInputBuiltin(shader, spv::BuiltInDeviceIndex, [&](const SpirvShader::BuiltinMapping& builtin, Array<SIMD::Float>& value) | 
 | 		{ | 
 | 			ASSERT(builtin.SizeInComponents == 1); | 
 | 			// Only a single physical device is supported. | 
 | 			value[builtin.FirstComponent] = As<SIMD::Float>(SIMD::Int(0, 0, 0, 0)); | 
 | 		}); | 
 | 	} | 
 | } |