| //===-- Module.cpp - Implement the Module class ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Module class for the VMCore library. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Module.h" |
| #include "llvm/InstrTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GVMaterializer.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/LeakDetector.h" |
| #include "SymbolTableListTraitsImpl.h" |
| #include <algorithm> |
| #include <cstdarg> |
| #include <cstdlib> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Methods to implement the globals and functions lists. |
| // |
| |
| // Explicit instantiations of SymbolTableListTraits since some of the methods |
| // are not in the public header file. |
| template class llvm::SymbolTableListTraits<Function, Module>; |
| template class llvm::SymbolTableListTraits<GlobalVariable, Module>; |
| template class llvm::SymbolTableListTraits<GlobalAlias, Module>; |
| |
| //===----------------------------------------------------------------------===// |
| // Primitive Module methods. |
| // |
| |
| Module::Module(StringRef MID, LLVMContext& C) |
| : Context(C), Materializer(NULL), ModuleID(MID) { |
| ValSymTab = new ValueSymbolTable(); |
| NamedMDSymTab = new StringMap<NamedMDNode *>(); |
| Context.addModule(this); |
| } |
| |
| Module::~Module() { |
| Context.removeModule(this); |
| dropAllReferences(); |
| GlobalList.clear(); |
| FunctionList.clear(); |
| AliasList.clear(); |
| LibraryList.clear(); |
| NamedMDList.clear(); |
| delete ValSymTab; |
| delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); |
| } |
| |
| /// Target endian information. |
| Module::Endianness Module::getEndianness() const { |
| StringRef temp = DataLayout; |
| Module::Endianness ret = AnyEndianness; |
| |
| while (!temp.empty()) { |
| std::pair<StringRef, StringRef> P = getToken(temp, "-"); |
| |
| StringRef token = P.first; |
| temp = P.second; |
| |
| if (token[0] == 'e') { |
| ret = LittleEndian; |
| } else if (token[0] == 'E') { |
| ret = BigEndian; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /// Target Pointer Size information. |
| Module::PointerSize Module::getPointerSize() const { |
| StringRef temp = DataLayout; |
| Module::PointerSize ret = AnyPointerSize; |
| |
| while (!temp.empty()) { |
| std::pair<StringRef, StringRef> TmpP = getToken(temp, "-"); |
| temp = TmpP.second; |
| TmpP = getToken(TmpP.first, ":"); |
| StringRef token = TmpP.second, signalToken = TmpP.first; |
| |
| if (signalToken[0] == 'p') { |
| int size = 0; |
| getToken(token, ":").first.getAsInteger(10, size); |
| if (size == 32) |
| ret = Pointer32; |
| else if (size == 64) |
| ret = Pointer64; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /// getNamedValue - Return the first global value in the module with |
| /// the specified name, of arbitrary type. This method returns null |
| /// if a global with the specified name is not found. |
| GlobalValue *Module::getNamedValue(StringRef Name) const { |
| return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); |
| } |
| |
| /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. |
| /// This ID is uniqued across modules in the current LLVMContext. |
| unsigned Module::getMDKindID(StringRef Name) const { |
| return Context.getMDKindID(Name); |
| } |
| |
| /// getMDKindNames - Populate client supplied SmallVector with the name for |
| /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, |
| /// so it is filled in as an empty string. |
| void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { |
| return Context.getMDKindNames(Result); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for easy access to the functions in the module. |
| // |
| |
| // getOrInsertFunction - Look up the specified function in the module symbol |
| // table. If it does not exist, add a prototype for the function and return |
| // it. This is nice because it allows most passes to get away with not handling |
| // the symbol table directly for this common task. |
| // |
| Constant *Module::getOrInsertFunction(StringRef Name, |
| FunctionType *Ty, |
| AttrListPtr AttributeList) { |
| // See if we have a definition for the specified function already. |
| GlobalValue *F = getNamedValue(Name); |
| if (F == 0) { |
| // Nope, add it |
| Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); |
| if (!New->isIntrinsic()) // Intrinsics get attrs set on construction |
| New->setAttributes(AttributeList); |
| FunctionList.push_back(New); |
| return New; // Return the new prototype. |
| } |
| |
| // Okay, the function exists. Does it have externally visible linkage? |
| if (F->hasLocalLinkage()) { |
| // Clear the function's name. |
| F->setName(""); |
| // Retry, now there won't be a conflict. |
| Constant *NewF = getOrInsertFunction(Name, Ty); |
| F->setName(Name); |
| return NewF; |
| } |
| |
| // If the function exists but has the wrong type, return a bitcast to the |
| // right type. |
| if (F->getType() != PointerType::getUnqual(Ty)) |
| return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty)); |
| |
| // Otherwise, we just found the existing function or a prototype. |
| return F; |
| } |
| |
| Constant *Module::getOrInsertTargetIntrinsic(StringRef Name, |
| FunctionType *Ty, |
| AttrListPtr AttributeList) { |
| // See if we have a definition for the specified function already. |
| GlobalValue *F = getNamedValue(Name); |
| if (F == 0) { |
| // Nope, add it |
| Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); |
| New->setAttributes(AttributeList); |
| FunctionList.push_back(New); |
| return New; // Return the new prototype. |
| } |
| |
| // Otherwise, we just found the existing function or a prototype. |
| return F; |
| } |
| |
| Constant *Module::getOrInsertFunction(StringRef Name, |
| FunctionType *Ty) { |
| AttrListPtr AttributeList = AttrListPtr::get((AttributeWithIndex *)0, 0); |
| return getOrInsertFunction(Name, Ty, AttributeList); |
| } |
| |
| // getOrInsertFunction - Look up the specified function in the module symbol |
| // table. If it does not exist, add a prototype for the function and return it. |
| // This version of the method takes a null terminated list of function |
| // arguments, which makes it easier for clients to use. |
| // |
| Constant *Module::getOrInsertFunction(StringRef Name, |
| AttrListPtr AttributeList, |
| Type *RetTy, ...) { |
| va_list Args; |
| va_start(Args, RetTy); |
| |
| // Build the list of argument types... |
| std::vector<Type*> ArgTys; |
| while (Type *ArgTy = va_arg(Args, Type*)) |
| ArgTys.push_back(ArgTy); |
| |
| va_end(Args); |
| |
| // Build the function type and chain to the other getOrInsertFunction... |
| return getOrInsertFunction(Name, |
| FunctionType::get(RetTy, ArgTys, false), |
| AttributeList); |
| } |
| |
| Constant *Module::getOrInsertFunction(StringRef Name, |
| Type *RetTy, ...) { |
| va_list Args; |
| va_start(Args, RetTy); |
| |
| // Build the list of argument types... |
| std::vector<Type*> ArgTys; |
| while (Type *ArgTy = va_arg(Args, Type*)) |
| ArgTys.push_back(ArgTy); |
| |
| va_end(Args); |
| |
| // Build the function type and chain to the other getOrInsertFunction... |
| return getOrInsertFunction(Name, |
| FunctionType::get(RetTy, ArgTys, false), |
| AttrListPtr::get((AttributeWithIndex *)0, 0)); |
| } |
| |
| // getFunction - Look up the specified function in the module symbol table. |
| // If it does not exist, return null. |
| // |
| Function *Module::getFunction(StringRef Name) const { |
| return dyn_cast_or_null<Function>(getNamedValue(Name)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for easy access to the global variables in the module. |
| // |
| |
| /// getGlobalVariable - Look up the specified global variable in the module |
| /// symbol table. If it does not exist, return null. The type argument |
| /// should be the underlying type of the global, i.e., it should not have |
| /// the top-level PointerType, which represents the address of the global. |
| /// If AllowLocal is set to true, this function will return types that |
| /// have an local. By default, these types are not returned. |
| /// |
| GlobalVariable *Module::getGlobalVariable(StringRef Name, |
| bool AllowLocal) const { |
| if (GlobalVariable *Result = |
| dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) |
| if (AllowLocal || !Result->hasLocalLinkage()) |
| return Result; |
| return 0; |
| } |
| |
| /// getOrInsertGlobal - Look up the specified global in the module symbol table. |
| /// 1. If it does not exist, add a declaration of the global and return it. |
| /// 2. Else, the global exists but has the wrong type: return the function |
| /// with a constantexpr cast to the right type. |
| /// 3. Finally, if the existing global is the correct delclaration, return the |
| /// existing global. |
| Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { |
| // See if we have a definition for the specified global already. |
| GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); |
| if (GV == 0) { |
| // Nope, add it |
| GlobalVariable *New = |
| new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, |
| 0, Name); |
| return New; // Return the new declaration. |
| } |
| |
| // If the variable exists but has the wrong type, return a bitcast to the |
| // right type. |
| if (GV->getType() != PointerType::getUnqual(Ty)) |
| return ConstantExpr::getBitCast(GV, PointerType::getUnqual(Ty)); |
| |
| // Otherwise, we just found the existing function or a prototype. |
| return GV; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for easy access to the global variables in the module. |
| // |
| |
| // getNamedAlias - Look up the specified global in the module symbol table. |
| // If it does not exist, return null. |
| // |
| GlobalAlias *Module::getNamedAlias(StringRef Name) const { |
| return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); |
| } |
| |
| /// getNamedMetadata - Return the first NamedMDNode in the module with the |
| /// specified name. This method returns null if a NamedMDNode with the |
| /// specified name is not found. |
| NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { |
| SmallString<256> NameData; |
| StringRef NameRef = Name.toStringRef(NameData); |
| return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); |
| } |
| |
| /// getOrInsertNamedMetadata - Return the first named MDNode in the module |
| /// with the specified name. This method returns a new NamedMDNode if a |
| /// NamedMDNode with the specified name is not found. |
| NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { |
| NamedMDNode *&NMD = |
| (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; |
| if (!NMD) { |
| NMD = new NamedMDNode(Name); |
| NMD->setParent(this); |
| NamedMDList.push_back(NMD); |
| } |
| return NMD; |
| } |
| |
| void Module::eraseNamedMetadata(NamedMDNode *NMD) { |
| static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); |
| NamedMDList.erase(NMD); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Methods to control the materialization of GlobalValues in the Module. |
| // |
| void Module::setMaterializer(GVMaterializer *GVM) { |
| assert(!Materializer && |
| "Module already has a GVMaterializer. Call MaterializeAllPermanently" |
| " to clear it out before setting another one."); |
| Materializer.reset(GVM); |
| } |
| |
| bool Module::isMaterializable(const GlobalValue *GV) const { |
| if (Materializer) |
| return Materializer->isMaterializable(GV); |
| return false; |
| } |
| |
| bool Module::isDematerializable(const GlobalValue *GV) const { |
| if (Materializer) |
| return Materializer->isDematerializable(GV); |
| return false; |
| } |
| |
| bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) { |
| if (Materializer) |
| return Materializer->Materialize(GV, ErrInfo); |
| return false; |
| } |
| |
| void Module::Dematerialize(GlobalValue *GV) { |
| if (Materializer) |
| return Materializer->Dematerialize(GV); |
| } |
| |
| bool Module::MaterializeAll(std::string *ErrInfo) { |
| if (!Materializer) |
| return false; |
| return Materializer->MaterializeModule(this, ErrInfo); |
| } |
| |
| bool Module::MaterializeAllPermanently(std::string *ErrInfo) { |
| if (MaterializeAll(ErrInfo)) |
| return true; |
| Materializer.reset(); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other module related stuff. |
| // |
| |
| |
| // dropAllReferences() - This function causes all the subelementss to "let go" |
| // of all references that they are maintaining. This allows one to 'delete' a |
| // whole module at a time, even though there may be circular references... first |
| // all references are dropped, and all use counts go to zero. Then everything |
| // is deleted for real. Note that no operations are valid on an object that |
| // has "dropped all references", except operator delete. |
| // |
| void Module::dropAllReferences() { |
| for(Module::iterator I = begin(), E = end(); I != E; ++I) |
| I->dropAllReferences(); |
| |
| for(Module::global_iterator I = global_begin(), E = global_end(); I != E; ++I) |
| I->dropAllReferences(); |
| |
| for(Module::alias_iterator I = alias_begin(), E = alias_end(); I != E; ++I) |
| I->dropAllReferences(); |
| } |
| |
| void Module::addLibrary(StringRef Lib) { |
| for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I) |
| if (*I == Lib) |
| return; |
| LibraryList.push_back(Lib); |
| } |
| |
| void Module::removeLibrary(StringRef Lib) { |
| LibraryListType::iterator I = LibraryList.begin(); |
| LibraryListType::iterator E = LibraryList.end(); |
| for (;I != E; ++I) |
| if (*I == Lib) { |
| LibraryList.erase(I); |
| return; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type finding functionality. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// TypeFinder - Walk over a module, identifying all of the types that are |
| /// used by the module. |
| class TypeFinder { |
| // To avoid walking constant expressions multiple times and other IR |
| // objects, we keep several helper maps. |
| DenseSet<const Value*> VisitedConstants; |
| DenseSet<Type*> VisitedTypes; |
| |
| std::vector<StructType*> &StructTypes; |
| public: |
| TypeFinder(std::vector<StructType*> &structTypes) |
| : StructTypes(structTypes) {} |
| |
| void run(const Module &M) { |
| // Get types from global variables. |
| for (Module::const_global_iterator I = M.global_begin(), |
| E = M.global_end(); I != E; ++I) { |
| incorporateType(I->getType()); |
| if (I->hasInitializer()) |
| incorporateValue(I->getInitializer()); |
| } |
| |
| // Get types from aliases. |
| for (Module::const_alias_iterator I = M.alias_begin(), |
| E = M.alias_end(); I != E; ++I) { |
| incorporateType(I->getType()); |
| if (const Value *Aliasee = I->getAliasee()) |
| incorporateValue(Aliasee); |
| } |
| |
| SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; |
| |
| // Get types from functions. |
| for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { |
| incorporateType(FI->getType()); |
| |
| for (Function::const_iterator BB = FI->begin(), E = FI->end(); |
| BB != E;++BB) |
| for (BasicBlock::const_iterator II = BB->begin(), |
| E = BB->end(); II != E; ++II) { |
| const Instruction &I = *II; |
| // Incorporate the type of the instruction and all its operands. |
| incorporateType(I.getType()); |
| for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); |
| OI != OE; ++OI) |
| incorporateValue(*OI); |
| |
| // Incorporate types hiding in metadata. |
| I.getAllMetadataOtherThanDebugLoc(MDForInst); |
| for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) |
| incorporateMDNode(MDForInst[i].second); |
| MDForInst.clear(); |
| } |
| } |
| |
| for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), |
| E = M.named_metadata_end(); I != E; ++I) { |
| const NamedMDNode *NMD = I; |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) |
| incorporateMDNode(NMD->getOperand(i)); |
| } |
| } |
| |
| private: |
| void incorporateType(Type *Ty) { |
| // Check to see if we're already visited this type. |
| if (!VisitedTypes.insert(Ty).second) |
| return; |
| |
| // If this is a structure or opaque type, add a name for the type. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) |
| StructTypes.push_back(STy); |
| |
| // Recursively walk all contained types. |
| for (Type::subtype_iterator I = Ty->subtype_begin(), |
| E = Ty->subtype_end(); I != E; ++I) |
| incorporateType(*I); |
| } |
| |
| /// incorporateValue - This method is used to walk operand lists finding |
| /// types hiding in constant expressions and other operands that won't be |
| /// walked in other ways. GlobalValues, basic blocks, instructions, and |
| /// inst operands are all explicitly enumerated. |
| void incorporateValue(const Value *V) { |
| if (const MDNode *M = dyn_cast<MDNode>(V)) |
| return incorporateMDNode(M); |
| if (!isa<Constant>(V) || isa<GlobalValue>(V)) return; |
| |
| // Already visited? |
| if (!VisitedConstants.insert(V).second) |
| return; |
| |
| // Check this type. |
| incorporateType(V->getType()); |
| |
| // Look in operands for types. |
| const User *U = cast<User>(V); |
| for (Constant::const_op_iterator I = U->op_begin(), |
| E = U->op_end(); I != E;++I) |
| incorporateValue(*I); |
| } |
| |
| void incorporateMDNode(const MDNode *V) { |
| |
| // Already visited? |
| if (!VisitedConstants.insert(V).second) |
| return; |
| |
| // Look in operands for types. |
| for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i) |
| if (Value *Op = V->getOperand(i)) |
| incorporateValue(Op); |
| } |
| }; |
| } // end anonymous namespace |
| |
| void Module::findUsedStructTypes(std::vector<StructType*> &StructTypes) const { |
| TypeFinder(StructTypes).run(*this); |
| } |