| //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements an abstract sparse conditional propagation algorithm, |
| // modeled after SCCP, but with a customizable lattice function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_SPARSE_PROPAGATION_H |
| #define LLVM_ANALYSIS_SPARSE_PROPAGATION_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <vector> |
| #include <set> |
| |
| namespace llvm { |
| class Value; |
| class Constant; |
| class Argument; |
| class Instruction; |
| class PHINode; |
| class TerminatorInst; |
| class BasicBlock; |
| class Function; |
| class SparseSolver; |
| class raw_ostream; |
| |
| template<typename T> class SmallVectorImpl; |
| |
| /// AbstractLatticeFunction - This class is implemented by the dataflow instance |
| /// to specify what the lattice values are and how they handle merges etc. |
| /// This gives the client the power to compute lattice values from instructions, |
| /// constants, etc. The requirement is that lattice values must all fit into |
| /// a void*. If a void* is not sufficient, the implementation should use this |
| /// pointer to be a pointer into a uniquing set or something. |
| /// |
| class AbstractLatticeFunction { |
| public: |
| typedef void *LatticeVal; |
| private: |
| LatticeVal UndefVal, OverdefinedVal, UntrackedVal; |
| public: |
| AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, |
| LatticeVal untrackedVal) { |
| UndefVal = undefVal; |
| OverdefinedVal = overdefinedVal; |
| UntrackedVal = untrackedVal; |
| } |
| virtual ~AbstractLatticeFunction(); |
| |
| LatticeVal getUndefVal() const { return UndefVal; } |
| LatticeVal getOverdefinedVal() const { return OverdefinedVal; } |
| LatticeVal getUntrackedVal() const { return UntrackedVal; } |
| |
| /// IsUntrackedValue - If the specified Value is something that is obviously |
| /// uninteresting to the analysis (and would always return UntrackedVal), |
| /// this function can return true to avoid pointless work. |
| virtual bool IsUntrackedValue(Value *V) { |
| return false; |
| } |
| |
| /// ComputeConstant - Given a constant value, compute and return a lattice |
| /// value corresponding to the specified constant. |
| virtual LatticeVal ComputeConstant(Constant *C) { |
| return getOverdefinedVal(); // always safe |
| } |
| |
| /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is |
| /// one that the we want to handle through ComputeInstructionState. |
| virtual bool IsSpecialCasedPHI(PHINode *PN) { |
| return false; |
| } |
| |
| /// GetConstant - If the specified lattice value is representable as an LLVM |
| /// constant value, return it. Otherwise return null. The returned value |
| /// must be in the same LLVM type as Val. |
| virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) { |
| return 0; |
| } |
| |
| /// ComputeArgument - Given a formal argument value, compute and return a |
| /// lattice value corresponding to the specified argument. |
| virtual LatticeVal ComputeArgument(Argument *I) { |
| return getOverdefinedVal(); // always safe |
| } |
| |
| /// MergeValues - Compute and return the merge of the two specified lattice |
| /// values. Merging should only move one direction down the lattice to |
| /// guarantee convergence (toward overdefined). |
| virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { |
| return getOverdefinedVal(); // always safe, never useful. |
| } |
| |
| /// ComputeInstructionState - Given an instruction and a vector of its operand |
| /// values, compute the result value of the instruction. |
| virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) { |
| return getOverdefinedVal(); // always safe, never useful. |
| } |
| |
| /// PrintValue - Render the specified lattice value to the specified stream. |
| virtual void PrintValue(LatticeVal V, raw_ostream &OS); |
| }; |
| |
| |
| /// SparseSolver - This class is a general purpose solver for Sparse Conditional |
| /// Propagation with a programmable lattice function. |
| /// |
| class SparseSolver { |
| typedef AbstractLatticeFunction::LatticeVal LatticeVal; |
| |
| /// LatticeFunc - This is the object that knows the lattice and how to do |
| /// compute transfer functions. |
| AbstractLatticeFunction *LatticeFunc; |
| |
| DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. |
| SmallPtrSet<BasicBlock*, 16> BBExecutable; // The bbs that are executable. |
| |
| std::vector<Instruction*> InstWorkList; // Worklist of insts to process. |
| |
| std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list |
| |
| /// KnownFeasibleEdges - Entries in this set are edges which have already had |
| /// PHI nodes retriggered. |
| typedef std::pair<BasicBlock*,BasicBlock*> Edge; |
| std::set<Edge> KnownFeasibleEdges; |
| |
| SparseSolver(const SparseSolver&); // DO NOT IMPLEMENT |
| void operator=(const SparseSolver&); // DO NOT IMPLEMENT |
| public: |
| explicit SparseSolver(AbstractLatticeFunction *Lattice) |
| : LatticeFunc(Lattice) {} |
| ~SparseSolver() { |
| delete LatticeFunc; |
| } |
| |
| /// Solve - Solve for constants and executable blocks. |
| /// |
| void Solve(Function &F); |
| |
| void Print(Function &F, raw_ostream &OS) const; |
| |
| /// getLatticeState - Return the LatticeVal object that corresponds to the |
| /// value. If an value is not in the map, it is returned as untracked, |
| /// unlike the getOrInitValueState method. |
| LatticeVal getLatticeState(Value *V) const { |
| DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); |
| return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); |
| } |
| |
| /// getOrInitValueState - Return the LatticeVal object that corresponds to the |
| /// value, initializing the value's state if it hasn't been entered into the |
| /// map yet. This function is necessary because not all values should start |
| /// out in the underdefined state... Arguments should be overdefined, and |
| /// constants should be marked as constants. |
| /// |
| LatticeVal getOrInitValueState(Value *V); |
| |
| /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
| /// basic block to the 'To' basic block is currently feasible. If |
| /// AggressiveUndef is true, then this treats values with unknown lattice |
| /// values as undefined. This is generally only useful when solving the |
| /// lattice, not when querying it. |
| bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
| bool AggressiveUndef = false); |
| |
| /// isBlockExecutable - Return true if there are any known feasible |
| /// edges into the basic block. This is generally only useful when |
| /// querying the lattice. |
| bool isBlockExecutable(BasicBlock *BB) const { |
| return BBExecutable.count(BB); |
| } |
| |
| private: |
| /// UpdateState - When the state for some instruction is potentially updated, |
| /// this function notices and adds I to the worklist if needed. |
| void UpdateState(Instruction &Inst, LatticeVal V); |
| |
| /// MarkBlockExecutable - This method can be used by clients to mark all of |
| /// the blocks that are known to be intrinsically live in the processed unit. |
| void MarkBlockExecutable(BasicBlock *BB); |
| |
| /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| /// work list if it is not already executable. |
| void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); |
| |
| /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
| /// successors are reachable from a given terminator instruction. |
| void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs, |
| bool AggressiveUndef); |
| |
| void visitInst(Instruction &I); |
| void visitPHINode(PHINode &I); |
| void visitTerminatorInst(TerminatorInst &TI); |
| |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ANALYSIS_SPARSE_PROPAGATION_H |