blob: 8342b445d8882b624af76b8a0466544eaa83dee0 [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkDescriptorSetLayout.hpp"
#include "VkDescriptorSet.hpp"
#include "VkSampler.hpp"
#include "VkImageView.hpp"
#include "VkBuffer.hpp"
#include "VkBufferView.hpp"
#include "System/Types.hpp"
#include <algorithm>
#include <cstring>
namespace {
static bool UsesImmutableSamplers(const VkDescriptorSetLayoutBinding& binding)
{
return (((binding.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) ||
(binding.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)) &&
(binding.pImmutableSamplers != nullptr));
}
} // anonymous namespace
namespace vk {
DescriptorSetLayout::DescriptorSetLayout(const VkDescriptorSetLayoutCreateInfo* pCreateInfo, void* mem) :
flags(pCreateInfo->flags), bindingCount(pCreateInfo->bindingCount), bindings(reinterpret_cast<VkDescriptorSetLayoutBinding*>(mem))
{
uint8_t* hostMemory = static_cast<uint8_t*>(mem) + bindingCount * sizeof(VkDescriptorSetLayoutBinding);
bindingOffsets = reinterpret_cast<size_t*>(hostMemory);
hostMemory += bindingCount * sizeof(size_t);
size_t offset = 0;
for(uint32_t i = 0; i < bindingCount; i++)
{
bindings[i] = pCreateInfo->pBindings[i];
if(UsesImmutableSamplers(bindings[i]))
{
size_t immutableSamplersSize = bindings[i].descriptorCount * sizeof(VkSampler);
bindings[i].pImmutableSamplers = reinterpret_cast<const VkSampler*>(hostMemory);
hostMemory += immutableSamplersSize;
memcpy(const_cast<VkSampler*>(bindings[i].pImmutableSamplers),
pCreateInfo->pBindings[i].pImmutableSamplers,
immutableSamplersSize);
}
else
{
bindings[i].pImmutableSamplers = nullptr;
}
bindingOffsets[i] = offset;
offset += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType);
}
ASSERT_MSG(offset == getDescriptorSetDataSize(), "offset: %d, size: %d", int(offset), int(getDescriptorSetDataSize()));
}
void DescriptorSetLayout::destroy(const VkAllocationCallbacks* pAllocator)
{
vk::deallocate(bindings, pAllocator); // This allocation also contains pImmutableSamplers
}
size_t DescriptorSetLayout::ComputeRequiredAllocationSize(const VkDescriptorSetLayoutCreateInfo* pCreateInfo)
{
size_t allocationSize = pCreateInfo->bindingCount * (sizeof(VkDescriptorSetLayoutBinding) + sizeof(size_t));
for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++)
{
if(UsesImmutableSamplers(pCreateInfo->pBindings[i]))
{
allocationSize += pCreateInfo->pBindings[i].descriptorCount * sizeof(VkSampler);
}
}
return allocationSize;
}
size_t DescriptorSetLayout::GetDescriptorSize(VkDescriptorType type)
{
switch(type)
{
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
return sizeof(SampledImageDescriptor);
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
return sizeof(StorageImageDescriptor);
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return sizeof(BufferDescriptor);
default:
UNIMPLEMENTED("Unsupported Descriptor Type");
return 0;
}
}
size_t DescriptorSetLayout::getDescriptorSetAllocationSize() const
{
// vk::DescriptorSet has a layout member field.
return sw::align<alignof(DescriptorSet)>(OFFSET(DescriptorSet, data) + getDescriptorSetDataSize());
}
size_t DescriptorSetLayout::getDescriptorSetDataSize() const
{
size_t size = 0;
for(uint32_t i = 0; i < bindingCount; i++)
{
size += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType);
}
return size;
}
uint32_t DescriptorSetLayout::getBindingIndex(uint32_t binding) const
{
for(uint32_t i = 0; i < bindingCount; i++)
{
if(binding == bindings[i].binding)
{
return i;
}
}
DABORT("Invalid DescriptorSetLayout binding: %d", int(binding));
return 0;
}
void DescriptorSetLayout::initialize(DescriptorSet* descriptorSet)
{
// Use a pointer to this descriptor set layout as the descriptor set's header
descriptorSet->header.layout = this;
uint8_t* mem = descriptorSet->data;
for(uint32_t i = 0; i < bindingCount; i++)
{
size_t typeSize = GetDescriptorSize(bindings[i].descriptorType);
if(UsesImmutableSamplers(bindings[i]))
{
for(uint32_t j = 0; j < bindings[i].descriptorCount; j++)
{
SampledImageDescriptor* imageSamplerDescriptor = reinterpret_cast<SampledImageDescriptor*>(mem);
imageSamplerDescriptor->updateSampler(bindings[i].pImmutableSamplers[j]);
mem += typeSize;
}
}
else
{
mem += bindings[i].descriptorCount * typeSize;
}
}
}
size_t DescriptorSetLayout::getBindingCount() const
{
return bindingCount;
}
bool DescriptorSetLayout::hasBinding(uint32_t binding) const
{
for(uint32_t i = 0; i < bindingCount; i++)
{
if(binding == bindings[i].binding)
{
return true;
}
}
return false;
}
size_t DescriptorSetLayout::getBindingStride(uint32_t binding) const
{
uint32_t index = getBindingIndex(binding);
return GetDescriptorSize(bindings[index].descriptorType);
}
size_t DescriptorSetLayout::getBindingOffset(uint32_t binding, size_t arrayElement) const
{
uint32_t index = getBindingIndex(binding);
auto typeSize = GetDescriptorSize(bindings[index].descriptorType);
return bindingOffsets[index] + OFFSET(DescriptorSet, data[0]) + (typeSize * arrayElement);
}
bool DescriptorSetLayout::isDynamic(VkDescriptorType type)
{
return type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
}
bool DescriptorSetLayout::isBindingDynamic(uint32_t binding) const
{
uint32_t index = getBindingIndex(binding);
return isDynamic(bindings[index].descriptorType);
}
uint32_t DescriptorSetLayout::getDynamicDescriptorCount() const
{
uint32_t count = 0;
for(size_t i = 0; i < bindingCount; i++)
{
if(isDynamic(bindings[i].descriptorType))
{
count += bindings[i].descriptorCount;
}
}
return count;
}
uint32_t DescriptorSetLayout::getDynamicDescriptorOffset(uint32_t binding) const
{
uint32_t n = getBindingIndex(binding);
ASSERT(isDynamic(bindings[n].descriptorType));
uint32_t index = 0;
for(uint32_t i = 0; i < n; i++)
{
if(isDynamic(bindings[i].descriptorType))
{
index += bindings[i].descriptorCount;
}
}
return index;
}
VkDescriptorSetLayoutBinding const & DescriptorSetLayout::getBindingLayout(uint32_t binding) const
{
uint32_t index = getBindingIndex(binding);
return bindings[index];
}
uint8_t* DescriptorSetLayout::getOffsetPointer(DescriptorSet *descriptorSet, uint32_t binding, uint32_t arrayElement, uint32_t count, size_t* typeSize) const
{
uint32_t index = getBindingIndex(binding);
*typeSize = GetDescriptorSize(bindings[index].descriptorType);
size_t byteOffset = bindingOffsets[index] + (*typeSize * arrayElement);
ASSERT(((*typeSize * count) + byteOffset) <= getDescriptorSetDataSize()); // Make sure the operation will not go out of bounds
return &descriptorSet->data[byteOffset];
}
void SampledImageDescriptor::updateSampler(const VkSampler newSampler)
{
memcpy(reinterpret_cast<void*>(&sampler), vk::Cast(newSampler), sizeof(sampler));
}
void DescriptorSetLayout::WriteDescriptorSet(Device* device, DescriptorSet *dstSet, VkDescriptorUpdateTemplateEntry const &entry, char const *src)
{
DescriptorSetLayout* dstLayout = dstSet->header.layout;
auto &binding = dstLayout->bindings[dstLayout->getBindingIndex(entry.dstBinding)];
ASSERT(dstLayout);
ASSERT(binding.descriptorType == entry.descriptorType);
size_t typeSize = 0;
uint8_t* memToWrite = dstLayout->getOffsetPointer(dstSet, entry.dstBinding, entry.dstArrayElement, entry.descriptorCount, &typeSize);
ASSERT(reinterpret_cast<intptr_t>(memToWrite) % 16 == 0); // Each descriptor must be 16-byte aligned.
if(entry.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER)
{
SampledImageDescriptor *imageSampler = reinterpret_cast<SampledImageDescriptor*>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
// "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a
// descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers."
if(!binding.pImmutableSamplers)
{
imageSampler[i].updateSampler(update->sampler);
}
imageSampler[i].device = device;
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER)
{
SampledImageDescriptor *imageSampler = reinterpret_cast<SampledImageDescriptor*>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkBufferView const *>(src + entry.offset + entry.stride * i);
auto bufferView = vk::Cast(*update);
imageSampler[i].type = VK_IMAGE_VIEW_TYPE_1D;
imageSampler[i].imageViewId = bufferView->id;
imageSampler[i].swizzle = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
imageSampler[i].format = bufferView->getFormat();
auto numElements = bufferView->getElementCount();
imageSampler[i].extent = { numElements, 1, 1 };
imageSampler[i].arrayLayers = 1;
imageSampler[i].mipLevels = 1;
imageSampler[i].sampleCount = 1;
imageSampler[i].texture.widthWidthHeightHeight = sw::float4(static_cast<float>(numElements), static_cast<float>(numElements), 1, 1);
imageSampler[i].texture.width = sw::float4(static_cast<float>(numElements));
imageSampler[i].texture.height = sw::float4(1);
imageSampler[i].texture.depth = sw::float4(1);
imageSampler[i].device = device;
sw::Mipmap &mipmap = imageSampler[i].texture.mipmap[0];
mipmap.buffer = bufferView->getPointer();
mipmap.width[0] = mipmap.width[1] = mipmap.width[2] = mipmap.width[3] = numElements;
mipmap.height[0] = mipmap.height[1] = mipmap.height[2] = mipmap.height[3] = 1;
mipmap.depth[0] = mipmap.depth[1] = mipmap.depth[2] = mipmap.depth[3] = 1;
mipmap.pitchP.x = mipmap.pitchP.y = mipmap.pitchP.z = mipmap.pitchP.w = numElements;
mipmap.sliceP.x = mipmap.sliceP.y = mipmap.sliceP.z = mipmap.sliceP.w = 0;
mipmap.onePitchP[0] = mipmap.onePitchP[2] = 1;
mipmap.onePitchP[1] = mipmap.onePitchP[3] = static_cast<short>(numElements);
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE)
{
SampledImageDescriptor *imageSampler = reinterpret_cast<SampledImageDescriptor*>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
vk::ImageView *imageView = vk::Cast(update->imageView);
Format format = imageView->getFormat(ImageView::SAMPLING);
sw::Texture *texture = &imageSampler[i].texture;
if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
{
// "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a
// descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers."
if(!binding.pImmutableSamplers)
{
imageSampler[i].updateSampler(update->sampler);
}
}
imageSampler[i].imageViewId = imageView->id;
imageSampler[i].extent = imageView->getMipLevelExtent(0);
imageSampler[i].arrayLayers = imageView->getSubresourceRange().layerCount;
imageSampler[i].mipLevels = imageView->getSubresourceRange().levelCount;
imageSampler[i].sampleCount = imageView->getSampleCount();
imageSampler[i].type = imageView->getType();
imageSampler[i].swizzle = imageView->getComponentMapping();
imageSampler[i].format = format;
imageSampler[i].device = device;
auto &subresourceRange = imageView->getSubresourceRange();
if(format.isYcbcrFormat())
{
ASSERT(subresourceRange.levelCount == 1);
// YCbCr images can only have one level, so we can store parameters for the
// different planes in the descriptor's mipmap levels instead.
const int level = 0;
VkOffset3D offset = {0, 0, 0};
texture->mipmap[0].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_0_BIT, level, 0, ImageView::SAMPLING);
texture->mipmap[1].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_1_BIT, level, 0, ImageView::SAMPLING);
if(format.getAspects() & VK_IMAGE_ASPECT_PLANE_2_BIT)
{
texture->mipmap[2].buffer = imageView->getOffsetPointer(offset, VK_IMAGE_ASPECT_PLANE_2_BIT, level, 0, ImageView::SAMPLING);
}
VkExtent3D extent = imageView->getMipLevelExtent(0);
int width = extent.width;
int height = extent.height;
int pitchP0 = imageView->rowPitchBytes(VK_IMAGE_ASPECT_PLANE_0_BIT, level, ImageView::SAMPLING) /
imageView->getFormat(VK_IMAGE_ASPECT_PLANE_0_BIT).bytes();
// Write plane 0 parameters to mipmap level 0.
WriteTextureLevelInfo(texture, 0, width, height, 1, pitchP0, 0, 0, 0);
// Plane 2, if present, has equal parameters to plane 1, so we use mipmap level 1 for both.
int pitchP1 = imageView->rowPitchBytes(VK_IMAGE_ASPECT_PLANE_1_BIT, level, ImageView::SAMPLING) /
imageView->getFormat(VK_IMAGE_ASPECT_PLANE_1_BIT).bytes();
WriteTextureLevelInfo(texture, 1, width / 2, height / 2, 1, pitchP1, 0, 0, 0);
}
else
{
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int level = sw::clamp(mipmapLevel, 0, (int)subresourceRange.levelCount - 1); // Level within the image view
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(imageView->getSubresourceRange().aspectMask);
sw::Mipmap &mipmap = texture->mipmap[mipmapLevel];
if((imageView->getType() == VK_IMAGE_VIEW_TYPE_CUBE) ||
(imageView->getType() == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY))
{
// Obtain the pointer to the corner of the level including the border, for seamless sampling.
// This is taken into account in the sampling routine, which can't handle negative texel coordinates.
VkOffset3D offset = {-1, -1, 0};
mipmap.buffer = imageView->getOffsetPointer(offset, aspect, level, 0, ImageView::SAMPLING);
}
else
{
VkOffset3D offset = {0, 0, 0};
mipmap.buffer = imageView->getOffsetPointer(offset, aspect, level, 0, ImageView::SAMPLING);
}
VkExtent3D extent = imageView->getMipLevelExtent(level);
int width = extent.width;
int height = extent.height;
int bytes = format.bytes();
int layers = imageView->getSubresourceRange().layerCount; // TODO(b/129523279): Untangle depth vs layers throughout the sampler
int depth = layers > 1 ? layers : extent.depth;
int pitchP = imageView->rowPitchBytes(aspect, level, ImageView::SAMPLING) / bytes;
int sliceP = (layers > 1 ? imageView->layerPitchBytes(aspect, ImageView::SAMPLING) : imageView->slicePitchBytes(aspect, level, ImageView::SAMPLING)) / bytes;
int samplePitchP = imageView->getMipLevelSize(aspect, level, ImageView::SAMPLING) / bytes;
int sampleMax = imageView->getSampleCount() - 1;
WriteTextureLevelInfo(texture, mipmapLevel, width, height, depth, pitchP, sliceP, samplePitchP, sampleMax);
}
}
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT)
{
auto descriptor = reinterpret_cast<StorageImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
auto imageView = vk::Cast(update->imageView);
descriptor[i].ptr = imageView->getOffsetPointer({0, 0, 0}, VK_IMAGE_ASPECT_COLOR_BIT, 0, 0);
descriptor[i].extent = imageView->getMipLevelExtent(0);
descriptor[i].rowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
descriptor[i].samplePitchBytes = imageView->getSubresourceRange().layerCount > 1
? imageView->layerPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT)
: imageView->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
descriptor[i].slicePitchBytes = descriptor[i].samplePitchBytes * imageView->getSampleCount();
descriptor[i].arrayLayers = imageView->getSubresourceRange().layerCount;
descriptor[i].sampleCount = imageView->getSampleCount();
descriptor[i].sizeInBytes = static_cast<int>(imageView->getImageSizeInBytes());
if(imageView->getFormat().isStencil())
{
descriptor[i].stencilPtr = imageView->getOffsetPointer({0, 0, 0}, VK_IMAGE_ASPECT_STENCIL_BIT, 0, 0);
descriptor[i].stencilRowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
descriptor[i].stencilSamplePitchBytes = (imageView->getSubresourceRange().layerCount > 1)
? imageView->layerPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT)
: imageView->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
descriptor[i].stencilSlicePitchBytes = descriptor[i].stencilSamplePitchBytes * imageView->getSampleCount();
}
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)
{
auto descriptor = reinterpret_cast<StorageImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkBufferView const *>(src + entry.offset + entry.stride * i);
auto bufferView = vk::Cast(*update);
descriptor[i].ptr = bufferView->getPointer();
descriptor[i].extent = {bufferView->getElementCount(), 1, 1};
descriptor[i].rowPitchBytes = 0;
descriptor[i].slicePitchBytes = 0;
descriptor[i].samplePitchBytes = 0;
descriptor[i].arrayLayers = 1;
descriptor[i].sampleCount = 1;
descriptor[i].sizeInBytes = bufferView->getRangeInBytes();
}
}
else if(entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC)
{
auto descriptor = reinterpret_cast<BufferDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorBufferInfo const *>(src + entry.offset + entry.stride * i);
auto buffer = vk::Cast(update->buffer);
descriptor[i].ptr = buffer->getOffsetPointer(update->offset);
descriptor[i].sizeInBytes = static_cast<int>((update->range == VK_WHOLE_SIZE) ? buffer->getSize() - update->offset : update->range);
descriptor[i].robustnessSize = static_cast<int>(buffer->getSize() - update->offset);
}
}
}
void DescriptorSetLayout::WriteTextureLevelInfo(sw::Texture *texture, int level, int width, int height, int depth, int pitchP, int sliceP, int samplePitchP, int sampleMax)
{
if(level == 0)
{
texture->widthWidthHeightHeight[0] =
texture->widthWidthHeightHeight[1] = static_cast<float>(width);
texture->widthWidthHeightHeight[2] =
texture->widthWidthHeightHeight[3] = static_cast<float>(height);
texture->width[0] =
texture->width[1] =
texture->width[2] =
texture->width[3] = static_cast<float>(width);
texture->height[0] =
texture->height[1] =
texture->height[2] =
texture->height[3] = static_cast<float>(height);
texture->depth[0] =
texture->depth[1] =
texture->depth[2] =
texture->depth[3] = static_cast<float>(depth);
}
sw::Mipmap &mipmap = texture->mipmap[level];
short halfTexelU = 0x8000 / width;
short halfTexelV = 0x8000 / height;
short halfTexelW = 0x8000 / depth;
mipmap.uHalf[0] =
mipmap.uHalf[1] =
mipmap.uHalf[2] =
mipmap.uHalf[3] = halfTexelU;
mipmap.vHalf[0] =
mipmap.vHalf[1] =
mipmap.vHalf[2] =
mipmap.vHalf[3] = halfTexelV;
mipmap.wHalf[0] =
mipmap.wHalf[1] =
mipmap.wHalf[2] =
mipmap.wHalf[3] = halfTexelW;
mipmap.width[0] =
mipmap.width[1] =
mipmap.width[2] =
mipmap.width[3] = width;
mipmap.height[0] =
mipmap.height[1] =
mipmap.height[2] =
mipmap.height[3] = height;
mipmap.depth[0] =
mipmap.depth[1] =
mipmap.depth[2] =
mipmap.depth[3] = depth;
mipmap.onePitchP[0] = 1;
mipmap.onePitchP[1] = static_cast<short>(pitchP);
mipmap.onePitchP[2] = 1;
mipmap.onePitchP[3] = static_cast<short>(pitchP);
mipmap.pitchP[0] = pitchP;
mipmap.pitchP[1] = pitchP;
mipmap.pitchP[2] = pitchP;
mipmap.pitchP[3] = pitchP;
mipmap.sliceP[0] = sliceP;
mipmap.sliceP[1] = sliceP;
mipmap.sliceP[2] = sliceP;
mipmap.sliceP[3] = sliceP;
mipmap.samplePitchP[0] = samplePitchP;
mipmap.samplePitchP[1] = samplePitchP;
mipmap.samplePitchP[2] = samplePitchP;
mipmap.samplePitchP[3] = samplePitchP;
mipmap.sampleMax[0] = sampleMax;
mipmap.sampleMax[1] = sampleMax;
mipmap.sampleMax[2] = sampleMax;
mipmap.sampleMax[3] = sampleMax;
}
void DescriptorSetLayout::WriteDescriptorSet(Device* device, const VkWriteDescriptorSet& writeDescriptorSet)
{
DescriptorSet* dstSet = vk::Cast(writeDescriptorSet.dstSet);
VkDescriptorUpdateTemplateEntry e;
e.descriptorType = writeDescriptorSet.descriptorType;
e.dstBinding = writeDescriptorSet.dstBinding;
e.dstArrayElement = writeDescriptorSet.dstArrayElement;
e.descriptorCount = writeDescriptorSet.descriptorCount;
e.offset = 0;
void const *ptr = nullptr;
switch(writeDescriptorSet.descriptorType)
{
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
ptr = writeDescriptorSet.pTexelBufferView;
e.stride = sizeof(VkBufferView);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
ptr = writeDescriptorSet.pImageInfo;
e.stride = sizeof(VkDescriptorImageInfo);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
ptr = writeDescriptorSet.pBufferInfo;
e.stride = sizeof(VkDescriptorBufferInfo);
break;
default:
UNIMPLEMENTED("descriptor type %u", writeDescriptorSet.descriptorType);
}
WriteDescriptorSet(device, dstSet, e, reinterpret_cast<char const *>(ptr));
}
void DescriptorSetLayout::CopyDescriptorSet(const VkCopyDescriptorSet& descriptorCopies)
{
DescriptorSet* srcSet = vk::Cast(descriptorCopies.srcSet);
DescriptorSetLayout* srcLayout = srcSet->header.layout;
ASSERT(srcLayout);
DescriptorSet* dstSet = vk::Cast(descriptorCopies.dstSet);
DescriptorSetLayout* dstLayout = dstSet->header.layout;
ASSERT(dstLayout);
size_t srcTypeSize = 0;
uint8_t* memToRead = srcLayout->getOffsetPointer(srcSet, descriptorCopies.srcBinding, descriptorCopies.srcArrayElement, descriptorCopies.descriptorCount, &srcTypeSize);
size_t dstTypeSize = 0;
uint8_t* memToWrite = dstLayout->getOffsetPointer(dstSet, descriptorCopies.dstBinding, descriptorCopies.dstArrayElement, descriptorCopies.descriptorCount, &dstTypeSize);
ASSERT(srcTypeSize == dstTypeSize);
size_t writeSize = dstTypeSize * descriptorCopies.descriptorCount;
memcpy(memToWrite, memToRead, writeSize);
}
} // namespace vk