| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86ISelLowering.h" |
| #include "Utils/X86ShuffleDecode.h" |
| #include "X86CallingConv.h" |
| #include "X86FrameLowering.h" |
| #include "X86InstrBuilder.h" |
| #include "X86IntrinsicsInfo.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86ShuffleDecodeConstantPool.h" |
| #include "X86TargetMachine.h" |
| #include "X86TargetObjectFile.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/WinEHFuncInfo.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <bitset> |
| #include <cctype> |
| #include <numeric> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-isel" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| static cl::opt<bool> ExperimentalVectorWideningLegalization( |
| "x86-experimental-vector-widening-legalization", cl::init(false), |
| cl::desc("Enable an experimental vector type legalization through widening " |
| "rather than promotion."), |
| cl::Hidden); |
| |
| static cl::opt<int> ExperimentalPrefLoopAlignment( |
| "x86-experimental-pref-loop-alignment", cl::init(4), |
| cl::desc("Sets the preferable loop alignment for experiments " |
| "(the last x86-experimental-pref-loop-alignment bits" |
| " of the loop header PC will be 0)."), |
| cl::Hidden); |
| |
| static cl::opt<bool> MulConstantOptimization( |
| "mul-constant-optimization", cl::init(true), |
| cl::desc("Replace 'mul x, Const' with more effective instructions like " |
| "SHIFT, LEA, etc."), |
| cl::Hidden); |
| |
| /// Call this when the user attempts to do something unsupported, like |
| /// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike |
| /// report_fatal_error, so calling code should attempt to recover without |
| /// crashing. |
| static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl, |
| const char *Msg) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| DAG.getContext()->diagnose( |
| DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc())); |
| } |
| |
| X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM, |
| const X86Subtarget &STI) |
| : TargetLowering(TM), Subtarget(STI) { |
| bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87(); |
| X86ScalarSSEf64 = Subtarget.hasSSE2(); |
| X86ScalarSSEf32 = Subtarget.hasSSE1(); |
| MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); |
| |
| // Set up the TargetLowering object. |
| |
| // X86 is weird. It always uses i8 for shift amounts and setcc results. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| // X86-SSE is even stranger. It uses -1 or 0 for vector masks. |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // For 64-bit, since we have so many registers, use the ILP scheduler. |
| // For 32-bit, use the register pressure specific scheduling. |
| // For Atom, always use ILP scheduling. |
| if (Subtarget.isAtom()) |
| setSchedulingPreference(Sched::ILP); |
| else if (Subtarget.is64Bit()) |
| setSchedulingPreference(Sched::ILP); |
| else |
| setSchedulingPreference(Sched::RegPressure); |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); |
| |
| // Bypass expensive divides and use cheaper ones. |
| if (TM.getOptLevel() >= CodeGenOpt::Default) { |
| if (Subtarget.hasSlowDivide32()) |
| addBypassSlowDiv(32, 8); |
| if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit()) |
| addBypassSlowDiv(64, 32); |
| } |
| |
| if (Subtarget.isTargetKnownWindowsMSVC() || |
| Subtarget.isTargetWindowsItanium()) { |
| // Setup Windows compiler runtime calls. |
| setLibcallName(RTLIB::SDIV_I64, "_alldiv"); |
| setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); |
| setLibcallName(RTLIB::SREM_I64, "_allrem"); |
| setLibcallName(RTLIB::UREM_I64, "_aullrem"); |
| setLibcallName(RTLIB::MUL_I64, "_allmul"); |
| setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); |
| } |
| |
| if (Subtarget.isTargetDarwin()) { |
| // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(false); |
| setUseUnderscoreLongJmp(false); |
| } else if (Subtarget.isTargetWindowsGNU()) { |
| // MS runtime is weird: it exports _setjmp, but longjmp! |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(false); |
| } else { |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| } |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, &X86::GR8RegClass); |
| addRegisterClass(MVT::i16, &X86::GR16RegClass); |
| addRegisterClass(MVT::i32, &X86::GR32RegClass); |
| if (Subtarget.is64Bit()) |
| addRegisterClass(MVT::i64, &X86::GR64RegClass); |
| |
| for (MVT VT : MVT::integer_valuetypes()) |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| |
| // We don't accept any truncstore of integer registers. |
| setTruncStoreAction(MVT::i64, MVT::i32, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i32, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i32, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // SETOEQ and SETUNE require checking two conditions. |
| setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); |
| |
| // Integer absolute. |
| if (Subtarget.hasCMov()) { |
| setOperationAction(ISD::ABS , MVT::i16 , Custom); |
| setOperationAction(ISD::ABS , MVT::i32 , Custom); |
| if (Subtarget.is64Bit()) |
| setOperationAction(ISD::ABS , MVT::i64 , Custom); |
| } |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (Subtarget.is64Bit()) { |
| if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) |
| // f32/f64 are legal, f80 is custom. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); |
| else |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); |
| } else if (!Subtarget.useSoftFloat()) { |
| // We have an algorithm for SSE2->double, and we turn this into a |
| // 64-bit FILD followed by conditional FADD for other targets. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); |
| // We have an algorithm for SSE2, and we turn this into a 64-bit |
| // FILD or VCVTUSI2SS/SD for other targets. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); |
| } |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| |
| if (!Subtarget.useSoftFloat()) { |
| // SSE has no i16 to fp conversion, only i32. |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Expand); |
| } |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (!Subtarget.useSoftFloat()) { |
| // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 |
| // are Legal, f80 is custom lowered. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (Subtarget.is64Bit()) { |
| if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) { |
| // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); |
| } else { |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); |
| } |
| } else if (!Subtarget.useSoftFloat()) { |
| // Since AVX is a superset of SSE3, only check for SSE here. |
| if (Subtarget.hasSSE1() && !Subtarget.hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom. |
| // With SSE3 we can use fisttpll to convert to a signed i64; without |
| // SSE, we're stuck with a fistpll. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); |
| |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); |
| } |
| |
| // TODO: when we have SSE, these could be more efficient, by using movd/movq. |
| if (!X86ScalarSSEf64) { |
| setOperationAction(ISD::BITCAST , MVT::f32 , Expand); |
| setOperationAction(ISD::BITCAST , MVT::i32 , Expand); |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::BITCAST , MVT::f64 , Expand); |
| // Without SSE, i64->f64 goes through memory. |
| setOperationAction(ISD::BITCAST , MVT::i64 , Expand); |
| } |
| } else if (!Subtarget.is64Bit()) |
| setOperationAction(ISD::BITCAST , MVT::i64 , Custom); |
| |
| // Scalar integer divide and remainder are lowered to use operations that |
| // produce two results, to match the available instructions. This exposes |
| // the two-result form to trivial CSE, which is able to combine x/y and x%y |
| // into a single instruction. |
| // |
| // Scalar integer multiply-high is also lowered to use two-result |
| // operations, to match the available instructions. However, plain multiply |
| // (low) operations are left as Legal, as there are single-result |
| // instructions for this in x86. Using the two-result multiply instructions |
| // when both high and low results are needed must be arranged by dagcombine. |
| for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| } |
| |
| setOperationAction(ISD::BR_JT , MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128, |
| MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { |
| setOperationAction(ISD::BR_CC, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| } |
| if (Subtarget.is64Bit()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| |
| setOperationAction(ISD::FREM , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| setOperationAction(ISD::FREM , MVT::f80 , Expand); |
| setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); |
| |
| // Promote the i8 variants and force them on up to i32 which has a shorter |
| // encoding. |
| setOperationPromotedToType(ISD::CTTZ , MVT::i8 , MVT::i32); |
| setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8 , MVT::i32); |
| if (!Subtarget.hasBMI()) { |
| setOperationAction(ISD::CTTZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Legal); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Legal); |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::CTTZ , MVT::i64 , Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal); |
| } |
| } |
| |
| if (Subtarget.hasLZCNT()) { |
| // When promoting the i8 variants, force them to i32 for a shorter |
| // encoding. |
| setOperationPromotedToType(ISD::CTLZ , MVT::i8 , MVT::i32); |
| setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); |
| } else { |
| setOperationAction(ISD::CTLZ , MVT::i8 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::CTLZ , MVT::i64 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); |
| } |
| } |
| |
| // Special handling for half-precision floating point conversions. |
| // If we don't have F16C support, then lower half float conversions |
| // into library calls. |
| if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) { |
| setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); |
| } |
| |
| // There's never any support for operations beyond MVT::f32. |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f80, MVT::f16, Expand); |
| |
| if (Subtarget.hasPOPCNT()) { |
| setOperationPromotedToType(ISD::CTPOP, MVT::i8, MVT::i32); |
| } else { |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| if (Subtarget.is64Bit()) |
| setOperationAction(ISD::CTPOP , MVT::i64 , Expand); |
| } |
| |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| |
| if (!Subtarget.hasMOVBE()) |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| // X86 wants to expand cmov itself. |
| for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) { |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| } |
| for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { |
| if (VT == MVT::i64 && !Subtarget.is64Bit()) |
| continue; |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| } |
| |
| // Custom action for SELECT MMX and expand action for SELECT_CC MMX |
| setOperationAction(ISD::SELECT, MVT::x86mmx, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::x86mmx, Expand); |
| |
| setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); |
| // NOTE: EH_SJLJ_SETJMP/_LONGJMP are not recommended, since |
| // LLVM/Clang supports zero-cost DWARF and SEH exception handling. |
| setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); |
| setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); |
| setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); |
| if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) |
| setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); |
| |
| // Darwin ABI issue. |
| for (auto VT : { MVT::i32, MVT::i64 }) { |
| if (VT == MVT::i64 && !Subtarget.is64Bit()) |
| continue; |
| setOperationAction(ISD::ConstantPool , VT, Custom); |
| setOperationAction(ISD::JumpTable , VT, Custom); |
| setOperationAction(ISD::GlobalAddress , VT, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, VT, Custom); |
| setOperationAction(ISD::ExternalSymbol , VT, Custom); |
| setOperationAction(ISD::BlockAddress , VT, Custom); |
| } |
| |
| // 64-bit shl, sra, srl (iff 32-bit x86) |
| for (auto VT : { MVT::i32, MVT::i64 }) { |
| if (VT == MVT::i64 && !Subtarget.is64Bit()) |
| continue; |
| setOperationAction(ISD::SHL_PARTS, VT, Custom); |
| setOperationAction(ISD::SRA_PARTS, VT, Custom); |
| setOperationAction(ISD::SRL_PARTS, VT, Custom); |
| } |
| |
| if (Subtarget.hasSSEPrefetch() || Subtarget.has3DNow()) |
| setOperationAction(ISD::PREFETCH , MVT::Other, Legal); |
| |
| setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); |
| |
| // Expand certain atomics |
| for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, VT, Custom); |
| } |
| |
| if (Subtarget.hasCmpxchg16b()) { |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); |
| } |
| |
| // FIXME - use subtarget debug flags |
| if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() && |
| !Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() && |
| TM.Options.ExceptionModel != ExceptionHandling::SjLj) { |
| setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); |
| } |
| |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); |
| |
| setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); |
| setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| bool Is64Bit = Subtarget.is64Bit(); |
| setOperationAction(ISD::VAARG, MVT::Other, Is64Bit ? Custom : Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); |
| |
| // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering. |
| setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom); |
| setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom); |
| |
| if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) { |
| // f32 and f64 use SSE. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass |
| : &X86::FR32RegClass); |
| addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass |
| : &X86::FR64RegClass); |
| |
| for (auto VT : { MVT::f32, MVT::f64 }) { |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS, VT, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG, VT, Custom); |
| |
| // Use ANDPD and ORPD to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, VT, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , VT, Expand); |
| setOperationAction(ISD::FCOS , VT, Expand); |
| setOperationAction(ISD::FSINCOS, VT, Expand); |
| } |
| |
| // Lower this to MOVMSK plus an AND. |
| setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); |
| setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| addLegalFPImmediate(APFloat(+0.0)); // xorpd |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| } else if (UseX87 && X86ScalarSSEf32) { |
| // Use SSE for f32, x87 for f64. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, &X86::FR32RegClass); |
| addRegisterClass(MVT::f64, &X86::RFP64RegClass); |
| |
| // Use ANDPS to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| // Use ANDPS and ORPS to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| |
| // Special cases we handle for FP constants. |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| |
| // Always expand sin/cos functions even though x87 has an instruction. |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| } else if (UseX87) { |
| // f32 and f64 in x87. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, &X86::RFP64RegClass); |
| addRegisterClass(MVT::f32, &X86::RFP32RegClass); |
| |
| for (auto VT : { MVT::f32, MVT::f64 }) { |
| setOperationAction(ISD::UNDEF, VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| |
| // Always expand sin/cos functions even though x87 has an instruction. |
| setOperationAction(ISD::FSIN , VT, Expand); |
| setOperationAction(ISD::FCOS , VT, Expand); |
| setOperationAction(ISD::FSINCOS, VT, Expand); |
| } |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| addLegalFPImmediate(APFloat(+0.0f)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0f)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS |
| } |
| |
| // We don't support FMA. |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| |
| // Long double always uses X87, except f128 in MMX. |
| if (UseX87) { |
| if (Subtarget.is64Bit() && Subtarget.hasMMX()) { |
| addRegisterClass(MVT::f128, &X86::VR128RegClass); |
| ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); |
| setOperationAction(ISD::FABS , MVT::f128, Custom); |
| setOperationAction(ISD::FNEG , MVT::f128, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom); |
| } |
| |
| addRegisterClass(MVT::f80, &X86::RFP80RegClass); |
| setOperationAction(ISD::UNDEF, MVT::f80, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); |
| { |
| APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended()); |
| addLegalFPImmediate(TmpFlt); // FLD0 |
| TmpFlt.changeSign(); |
| addLegalFPImmediate(TmpFlt); // FLD0/FCHS |
| |
| bool ignored; |
| APFloat TmpFlt2(+1.0); |
| TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven, |
| &ignored); |
| addLegalFPImmediate(TmpFlt2); // FLD1 |
| TmpFlt2.changeSign(); |
| addLegalFPImmediate(TmpFlt2); // FLD1/FCHS |
| } |
| |
| // Always expand sin/cos functions even though x87 has an instruction. |
| setOperationAction(ISD::FSIN , MVT::f80, Expand); |
| setOperationAction(ISD::FCOS , MVT::f80, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f80, Expand); |
| |
| setOperationAction(ISD::FFLOOR, MVT::f80, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f80, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f80, Expand); |
| setOperationAction(ISD::FRINT, MVT::f80, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); |
| setOperationAction(ISD::FMA, MVT::f80, Expand); |
| } |
| |
| // Always use a library call for pow. |
| setOperationAction(ISD::FPOW , MVT::f32 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f64 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f80 , Expand); |
| |
| setOperationAction(ISD::FLOG, MVT::f80, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f80, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f80, Expand); |
| setOperationAction(ISD::FEXP, MVT::f80, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f80, Expand); |
| setOperationAction(ISD::FMINNUM, MVT::f80, Expand); |
| setOperationAction(ISD::FMAXNUM, MVT::f80, Expand); |
| |
| // Some FP actions are always expanded for vector types. |
| for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, |
| MVT::v2f64, MVT::v4f64, MVT::v8f64 }) { |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FSINCOS, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| } |
| |
| // First set operation action for all vector types to either promote |
| // (for widening) or expand (for scalarization). Then we will selectively |
| // turn on ones that can be effectively codegen'd. |
| for (MVT VT : MVT::vector_valuetypes()) { |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); |
| setOperationAction(ISD::FMA, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::SETCC, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::SINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); |
| setOperationAction(ISD::TRUNCATE, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND, VT, Expand); |
| setOperationAction(ISD::ZERO_EXTEND, VT, Expand); |
| setOperationAction(ISD::ANY_EXTEND, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| for (MVT InnerVT : MVT::vector_valuetypes()) { |
| setTruncStoreAction(InnerVT, VT, Expand); |
| |
| setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand); |
| |
| // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like |
| // types, we have to deal with them whether we ask for Expansion or not. |
| // Setting Expand causes its own optimisation problems though, so leave |
| // them legal. |
| if (VT.getVectorElementType() == MVT::i1) |
| setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); |
| |
| // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are |
| // split/scalarized right now. |
| if (VT.getVectorElementType() == MVT::f16) |
| setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); |
| } |
| } |
| |
| // FIXME: In order to prevent SSE instructions being expanded to MMX ones |
| // with -msoft-float, disable use of MMX as well. |
| if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) { |
| addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); |
| // No operations on x86mmx supported, everything uses intrinsics. |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) { |
| addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass |
| : &X86::VR128RegClass); |
| |
| setOperationAction(ISD::FNEG, MVT::v4f32, Custom); |
| setOperationAction(ISD::FABS, MVT::v4f32, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| setOperationAction(ISD::VSELECT, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) { |
| addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass |
| : &X86::VR128RegClass); |
| |
| // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM |
| // registers cannot be used even for integer operations. |
| addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass |
| : &X86::VR128RegClass); |
| addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass |
| : &X86::VR128RegClass); |
| addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass |
| : &X86::VR128RegClass); |
| addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass |
| : &X86::VR128RegClass); |
| |
| setOperationAction(ISD::MUL, MVT::v16i8, Custom); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v2i64, Custom); |
| setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom); |
| setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom); |
| setOperationAction(ISD::MULHU, MVT::v16i8, Custom); |
| setOperationAction(ISD::MULHS, MVT::v16i8, Custom); |
| setOperationAction(ISD::MULHU, MVT::v8i16, Legal); |
| setOperationAction(ISD::MULHS, MVT::v8i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Custom); |
| setOperationAction(ISD::FABS, MVT::v2f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Custom); |
| |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { |
| setOperationAction(ISD::SMAX, VT, VT == MVT::v8i16 ? Legal : Custom); |
| setOperationAction(ISD::SMIN, VT, VT == MVT::v8i16 ? Legal : Custom); |
| setOperationAction(ISD::UMAX, VT, VT == MVT::v16i8 ? Legal : Custom); |
| setOperationAction(ISD::UMIN, VT, VT == MVT::v16i8 ? Legal : Custom); |
| } |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // Provide custom widening for v2f32 setcc. This is really for VLX when |
| // setcc result type returns v2i1/v4i1 vector for v2f32/v4f32 leading to |
| // type legalization changing the result type to v4i1 during widening. |
| // It works fine for SSE2 and is probably faster so no need to qualify with |
| // VLX support. |
| setOperationAction(ISD::SETCC, MVT::v2i32, Custom); |
| |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::CTPOP, VT, Custom); |
| setOperationAction(ISD::CTTZ, VT, Custom); |
| |
| // The condition codes aren't legal in SSE/AVX and under AVX512 we use |
| // setcc all the way to isel and prefer SETGT in some isel patterns. |
| setCondCodeAction(ISD::SETLT, VT, Custom); |
| setCondCodeAction(ISD::SETLE, VT, Custom); |
| } |
| |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| } |
| |
| // We support custom legalizing of sext and anyext loads for specific |
| // memory vector types which we can load as a scalar (or sequence of |
| // scalars) and extend in-register to a legal 128-bit vector type. For sext |
| // loads these must work with a single scalar load. |
| for (MVT VT : MVT::integer_vector_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom); |
| } |
| |
| for (auto VT : { MVT::v2f64, MVT::v2i64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| |
| if (VT == MVT::v2i64 && !Subtarget.is64Bit()) |
| continue; |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| } |
| |
| // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { |
| setOperationPromotedToType(ISD::AND, VT, MVT::v2i64); |
| setOperationPromotedToType(ISD::OR, VT, MVT::v2i64); |
| setOperationPromotedToType(ISD::XOR, VT, MVT::v2i64); |
| setOperationPromotedToType(ISD::LOAD, VT, MVT::v2i64); |
| setOperationPromotedToType(ISD::SELECT, VT, MVT::v2i64); |
| } |
| |
| // Custom lower v2i64 and v2f64 selects. |
| setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom); |
| |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); |
| |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); |
| |
| // Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion. |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); |
| |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); |
| |
| for (MVT VT : MVT::fp_vector_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal); |
| |
| setOperationAction(ISD::BITCAST, MVT::v2i32, Custom); |
| setOperationAction(ISD::BITCAST, MVT::v4i16, Custom); |
| setOperationAction(ISD::BITCAST, MVT::v8i8, Custom); |
| if (!Subtarget.hasAVX512()) |
| setOperationAction(ISD::BITCAST, MVT::v16i1, Custom); |
| |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom); |
| |
| // In the customized shift lowering, the legal v4i32/v2i64 cases |
| // in AVX2 will be recognized. |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { |
| setOperationAction(ISD::SRL, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| } |
| |
| setOperationAction(ISD::ROTL, MVT::v4i32, Custom); |
| setOperationAction(ISD::ROTL, MVT::v8i16, Custom); |
| setOperationAction(ISD::ROTL, MVT::v16i8, Custom); |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) { |
| setOperationAction(ISD::ABS, MVT::v16i8, Legal); |
| setOperationAction(ISD::ABS, MVT::v8i16, Legal); |
| setOperationAction(ISD::ABS, MVT::v4i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::v16i8, Custom); |
| setOperationAction(ISD::CTLZ, MVT::v16i8, Custom); |
| setOperationAction(ISD::CTLZ, MVT::v8i16, Custom); |
| setOperationAction(ISD::CTLZ, MVT::v4i32, Custom); |
| setOperationAction(ISD::CTLZ, MVT::v2i64, Custom); |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) { |
| for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { |
| setOperationAction(ISD::FFLOOR, RoundedTy, Legal); |
| setOperationAction(ISD::FCEIL, RoundedTy, Legal); |
| setOperationAction(ISD::FTRUNC, RoundedTy, Legal); |
| setOperationAction(ISD::FRINT, RoundedTy, Legal); |
| setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal); |
| } |
| |
| setOperationAction(ISD::SMAX, MVT::v16i8, Legal); |
| setOperationAction(ISD::SMAX, MVT::v4i32, Legal); |
| setOperationAction(ISD::UMAX, MVT::v8i16, Legal); |
| setOperationAction(ISD::UMAX, MVT::v4i32, Legal); |
| setOperationAction(ISD::SMIN, MVT::v16i8, Legal); |
| setOperationAction(ISD::SMIN, MVT::v4i32, Legal); |
| setOperationAction(ISD::UMIN, MVT::v8i16, Legal); |
| setOperationAction(ISD::UMIN, MVT::v4i32, Legal); |
| |
| // FIXME: Do we need to handle scalar-to-vector here? |
| setOperationAction(ISD::MUL, MVT::v4i32, Legal); |
| |
| // We directly match byte blends in the backend as they match the VSELECT |
| // condition form. |
| setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); |
| |
| // SSE41 brings specific instructions for doing vector sign extend even in |
| // cases where we don't have SRA. |
| for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Legal); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Legal); |
| } |
| |
| for (MVT VT : MVT::integer_vector_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom); |
| } |
| |
| // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X |
| for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) { |
| setLoadExtAction(LoadExtOp, MVT::v8i16, MVT::v8i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v2i32, MVT::v2i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i16, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i16, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i32, Legal); |
| } |
| |
| // i8 vectors are custom because the source register and source |
| // source memory operand types are not the same width. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) { |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, |
| MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) |
| setOperationAction(ISD::ROTL, VT, Custom); |
| |
| // XOP can efficiently perform BITREVERSE with VPPERM. |
| for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) |
| setOperationAction(ISD::BITREVERSE, VT, Custom); |
| |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, |
| MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) |
| setOperationAction(ISD::BITREVERSE, VT, Custom); |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasAVX()) { |
| bool HasInt256 = Subtarget.hasInt256(); |
| |
| addRegisterClass(MVT::v32i8, Subtarget.hasVLX() ? &X86::VR256XRegClass |
| : &X86::VR256RegClass); |
| addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass |
| : &X86::VR256RegClass); |
| addRegisterClass(MVT::v8i32, Subtarget.hasVLX() ? &X86::VR256XRegClass |
| : &X86::VR256RegClass); |
| addRegisterClass(MVT::v8f32, Subtarget.hasVLX() ? &X86::VR256XRegClass |
| : &X86::VR256RegClass); |
| addRegisterClass(MVT::v4i64, Subtarget.hasVLX() ? &X86::VR256XRegClass |
| : &X86::VR256RegClass); |
| addRegisterClass(MVT::v4f64, Subtarget.hasVLX() ? &X86::VR256XRegClass |
| : &X86::VR256RegClass); |
| |
| for (auto VT : { MVT::v8f32, MVT::v4f64 }) { |
| setOperationAction(ISD::FFLOOR, VT, Legal); |
| setOperationAction(ISD::FCEIL, VT, Legal); |
| setOperationAction(ISD::FTRUNC, VT, Legal); |
| setOperationAction(ISD::FRINT, VT, Legal); |
| setOperationAction(ISD::FNEARBYINT, VT, Legal); |
| setOperationAction(ISD::FNEG, VT, Custom); |
| setOperationAction(ISD::FABS, VT, Custom); |
| setOperationAction(ISD::FCOPYSIGN, VT, Custom); |
| } |
| |
| // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted |
| // even though v8i16 is a legal type. |
| setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v8i16, MVT::v8i32); |
| setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v8i16, MVT::v8i32); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); |
| |
| setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); |
| setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); |
| |
| if (!Subtarget.hasAVX512()) |
| setOperationAction(ISD::BITCAST, MVT::v32i1, Custom); |
| |
| for (MVT VT : MVT::fp_vector_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal); |
| |
| // In the customized shift lowering, the legal v8i32/v4i64 cases |
| // in AVX2 will be recognized. |
| for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { |
| setOperationAction(ISD::SRL, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| } |
| |
| setOperationAction(ISD::ROTL, MVT::v8i32, Custom); |
| setOperationAction(ISD::ROTL, MVT::v16i16, Custom); |
| setOperationAction(ISD::ROTL, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::v4f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v8f32, Custom); |
| |
| for (auto VT : { MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { |
| setOperationAction(ISD::SIGN_EXTEND, VT, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, VT, Custom); |
| setOperationAction(ISD::ANY_EXTEND, VT, Custom); |
| } |
| |
| setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); |
| setOperationAction(ISD::BITREVERSE, MVT::v32i8, Custom); |
| |
| for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::CTPOP, VT, Custom); |
| setOperationAction(ISD::CTTZ, VT, Custom); |
| setOperationAction(ISD::CTLZ, VT, Custom); |
| |
| // The condition codes aren't legal in SSE/AVX and under AVX512 we use |
| // setcc all the way to isel and prefer SETGT in some isel patterns. |
| setCondCodeAction(ISD::SETLT, VT, Custom); |
| setCondCodeAction(ISD::SETLE, VT, Custom); |
| } |
| |
| if (Subtarget.hasAnyFMA()) { |
| for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32, |
| MVT::v2f64, MVT::v4f64 }) |
| setOperationAction(ISD::FMA, VT, Legal); |
| } |
| |
| for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { |
| setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom); |
| } |
| |
| setOperationAction(ISD::MUL, MVT::v4i64, Custom); |
| setOperationAction(ISD::MUL, MVT::v8i32, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::MUL, MVT::v16i16, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::MUL, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom); |
| setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom); |
| |
| setOperationAction(ISD::MULHU, MVT::v16i16, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::MULHS, MVT::v16i16, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::MULHU, MVT::v32i8, Custom); |
| setOperationAction(ISD::MULHS, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::SMAX, MVT::v4i64, Custom); |
| setOperationAction(ISD::UMAX, MVT::v4i64, Custom); |
| setOperationAction(ISD::SMIN, MVT::v4i64, Custom); |
| setOperationAction(ISD::UMIN, MVT::v4i64, Custom); |
| |
| for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) { |
| setOperationAction(ISD::ABS, VT, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom); |
| setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom); |
| } |
| |
| if (HasInt256) { |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i64, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i32, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i16, Custom); |
| |
| // The custom lowering for UINT_TO_FP for v8i32 becomes interesting |
| // when we have a 256bit-wide blend with immediate. |
| setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom); |
| |
| // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X |
| for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) { |
| setLoadExtAction(LoadExtOp, MVT::v16i16, MVT::v16i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i8, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i16, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i16, Legal); |
| setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i32, Legal); |
| } |
| } |
| |
| for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, |
| MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) { |
| setOperationAction(ISD::MLOAD, VT, Legal); |
| setOperationAction(ISD::MSTORE, VT, Legal); |
| } |
| |
| // Extract subvector is special because the value type |
| // (result) is 128-bit but the source is 256-bit wide. |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, |
| MVT::v4f32, MVT::v2f64 }) { |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); |
| } |
| |
| // Custom lower several nodes for 256-bit types. |
| for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, |
| MVT::v8f32, MVT::v4f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| } |
| |
| if (HasInt256) |
| setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); |
| |
| // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. |
| for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) { |
| setOperationPromotedToType(ISD::AND, VT, MVT::v4i64); |
| setOperationPromotedToType(ISD::OR, VT, MVT::v4i64); |
| setOperationPromotedToType(ISD::XOR, VT, MVT::v4i64); |
| setOperationPromotedToType(ISD::LOAD, VT, MVT::v4i64); |
| setOperationPromotedToType(ISD::SELECT, VT, MVT::v4i64); |
| } |
| |
| if (HasInt256) { |
| // Custom legalize 2x32 to get a little better code. |
| setOperationAction(ISD::MGATHER, MVT::v2f32, Custom); |
| setOperationAction(ISD::MGATHER, MVT::v2i32, Custom); |
| |
| for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, |
| MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) |
| setOperationAction(ISD::MGATHER, VT, Custom); |
| } |
| } |
| |
| // This block controls legalization of the mask vector sizes that are |
| // available with AVX512. 512-bit vectors are in a separate block controlled |
| // by useAVX512Regs. |
| if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) { |
| addRegisterClass(MVT::v1i1, &X86::VK1RegClass); |
| addRegisterClass(MVT::v2i1, &X86::VK2RegClass); |
| addRegisterClass(MVT::v4i1, &X86::VK4RegClass); |
| addRegisterClass(MVT::v8i1, &X86::VK8RegClass); |
| addRegisterClass(MVT::v16i1, &X86::VK16RegClass); |
| |
| setOperationAction(ISD::SELECT, MVT::v1i1, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v1i1, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v1i1, Custom); |
| |
| setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v8i1, MVT::v8i32); |
| setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v8i1, MVT::v8i32); |
| setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v4i1, MVT::v4i32); |
| setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v4i1, MVT::v4i32); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Custom); |
| |
| // There is no byte sized k-register load or store without AVX512DQ. |
| if (!Subtarget.hasDQI()) { |
| setOperationAction(ISD::LOAD, MVT::v1i1, Custom); |
| setOperationAction(ISD::LOAD, MVT::v2i1, Custom); |
| setOperationAction(ISD::LOAD, MVT::v4i1, Custom); |
| setOperationAction(ISD::LOAD, MVT::v8i1, Custom); |
| |
| setOperationAction(ISD::STORE, MVT::v1i1, Custom); |
| setOperationAction(ISD::STORE, MVT::v2i1, Custom); |
| setOperationAction(ISD::STORE, MVT::v4i1, Custom); |
| setOperationAction(ISD::STORE, MVT::v8i1, Custom); |
| } |
| |
| // Extends of v16i1/v8i1/v4i1/v2i1 to 128-bit vectors. |
| for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { |
| setOperationAction(ISD::SIGN_EXTEND, VT, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, VT, Custom); |
| setOperationAction(ISD::ANY_EXTEND, VT, Custom); |
| } |
| |
| for (auto VT : { MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v16i1 }) { |
| setOperationAction(ISD::ADD, VT, Custom); |
| setOperationAction(ISD::SUB, VT, Custom); |
| setOperationAction(ISD::MUL, VT, Custom); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::TRUNCATE, VT, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| } |
| |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v2i1, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom); |
| for (auto VT : { MVT::v1i1, MVT::v2i1, MVT::v4i1, MVT::v8i1 }) |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| } |
| |
| // This block controls legalization for 512-bit operations with 32/64 bit |
| // elements. 512-bits can be disabled based on prefer-vector-width and |
| // required-vector-width function attributes. |
| if (!Subtarget.useSoftFloat() && Subtarget.useAVX512Regs()) { |
| addRegisterClass(MVT::v16i32, &X86::VR512RegClass); |
| addRegisterClass(MVT::v16f32, &X86::VR512RegClass); |
| addRegisterClass(MVT::v8i64, &X86::VR512RegClass); |
| addRegisterClass(MVT::v8f64, &X86::VR512RegClass); |
| |
| for (MVT VT : MVT::fp_vector_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal); |
| |
| for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) { |
| setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8, Legal); |
| setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal); |
| setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i8, Legal); |
| setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i16, Legal); |
| setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i32, Legal); |
| } |
| |
| for (MVT VT : { MVT::v16f32, MVT::v8f64 }) { |
| setOperationAction(ISD::FNEG, VT, Custom); |
| setOperationAction(ISD::FABS, VT, Custom); |
| setOperationAction(ISD::FMA, VT, Legal); |
| setOperationAction(ISD::FCOPYSIGN, VT, Custom); |
| } |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal); |
| setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v16i16, MVT::v16i32); |
| setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v16i8, MVT::v16i32); |
| setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v16i1, MVT::v16i32); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal); |
| setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v16i1, MVT::v16i32); |
| setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v16i8, MVT::v16i32); |
| setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v16i16, MVT::v16i32); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal); |
| |
| setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal); |
| |
| if (!Subtarget.hasVLX()) { |
| // With 512-bit vectors and no VLX, we prefer to widen MLOAD/MSTORE |
| // to 512-bit rather than use the AVX2 instructions so that we can use |
| // k-masks. |
| for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, |
| MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) { |
| setOperationAction(ISD::MLOAD, VT, Custom); |
| setOperationAction(ISD::MSTORE, VT, Custom); |
| } |
| } |
| |
| setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); |
| |
| for (auto VT : { MVT::v16f32, MVT::v8f64 }) { |
| setOperationAction(ISD::FFLOOR, VT, Legal); |
| setOperationAction(ISD::FCEIL, VT, Legal); |
| setOperationAction(ISD::FTRUNC, VT, Legal); |
| setOperationAction(ISD::FRINT, VT, Legal); |
| setOperationAction(ISD::FNEARBYINT, VT, Legal); |
| } |
| |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i64, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i32, Custom); |
| |
| // Without BWI we need to use custom lowering to handle MVT::v64i8 input. |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v64i8, Custom); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v64i8, Custom); |
| |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom); |
| |
| setOperationAction(ISD::MUL, MVT::v8i64, Custom); |
| setOperationAction(ISD::MUL, MVT::v16i32, Legal); |
| |
| setOperationAction(ISD::UMUL_LOHI, MVT::v16i32, Custom); |
| setOperationAction(ISD::SMUL_LOHI, MVT::v16i32, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::v8f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v8i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v16f32, Custom); |
| |
| for (auto VT : { MVT::v16i32, MVT::v8i64 }) { |
| setOperationAction(ISD::SMAX, VT, Legal); |
| setOperationAction(ISD::UMAX, VT, Legal); |
| setOperationAction(ISD::SMIN, VT, Legal); |
| setOperationAction(ISD::UMIN, VT, Legal); |
| setOperationAction(ISD::ABS, VT, Legal); |
| setOperationAction(ISD::SRL, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::CTPOP, VT, Custom); |
| setOperationAction(ISD::CTTZ, VT, Custom); |
| setOperationAction(ISD::ROTL, VT, Custom); |
| setOperationAction(ISD::ROTR, VT, Custom); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| |
| // The condition codes aren't legal in SSE/AVX and under AVX512 we use |
| // setcc all the way to isel and prefer SETGT in some isel patterns. |
| setCondCodeAction(ISD::SETLT, VT, Custom); |
| setCondCodeAction(ISD::SETLE, VT, Custom); |
| } |
| |
| // Need to promote to 64-bit even though we have 32-bit masked instructions |
| // because the IR optimizers rearrange bitcasts around logic ops leaving |
| // too many variations to handle if we don't promote them. |
| setOperationPromotedToType(ISD::AND, MVT::v16i32, MVT::v8i64); |
| setOperationPromotedToType(ISD::OR, MVT::v16i32, MVT::v8i64); |
| setOperationPromotedToType(ISD::XOR, MVT::v16i32, MVT::v8i64); |
| |
| if (Subtarget.hasDQI()) { |
| setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal); |
| |
| setOperationAction(ISD::MUL, MVT::v8i64, Legal); |
| } |
| |
| if (Subtarget.hasCDI()) { |
| // NonVLX sub-targets extend 128/256 vectors to use the 512 version. |
| for (auto VT : { MVT::v16i32, MVT::v8i64} ) { |
| setOperationAction(ISD::CTLZ, VT, Legal); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); |
| } |
| } // Subtarget.hasCDI() |
| |
| if (Subtarget.hasVPOPCNTDQ()) { |
| for (auto VT : { MVT::v16i32, MVT::v8i64 }) |
| setOperationAction(ISD::CTPOP, VT, Legal); |
| } |
| |
| // Extract subvector is special because the value type |
| // (result) is 256-bit but the source is 512-bit wide. |
| // 128-bit was made Legal under AVX1. |
| for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, |
| MVT::v8f32, MVT::v4f64 }) |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); |
| |
| for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) { |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal); |
| setOperationAction(ISD::MLOAD, VT, Legal); |
| setOperationAction(ISD::MSTORE, VT, Legal); |
| setOperationAction(ISD::MGATHER, VT, Custom); |
| setOperationAction(ISD::MSCATTER, VT, Custom); |
| } |
| for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) { |
| setOperationPromotedToType(ISD::LOAD, VT, MVT::v8i64); |
| setOperationPromotedToType(ISD::SELECT, VT, MVT::v8i64); |
| } |
| |
| // Need to custom split v32i16/v64i8 bitcasts. |
| if (!Subtarget.hasBWI()) { |
| setOperationAction(ISD::BITCAST, MVT::v32i16, Custom); |
| setOperationAction(ISD::BITCAST, MVT::v64i8, Custom); |
| } |
| }// has AVX-512 |
| |
| // This block controls legalization for operations that don't have |
| // pre-AVX512 equivalents. Without VLX we use 512-bit operations for |
| // narrower widths. |
| if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) { |
| // These operations are handled on non-VLX by artificially widening in |
| // isel patterns. |
| // TODO: Custom widen in lowering on non-VLX and drop the isel patterns? |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); |
| |
| for (auto VT : { MVT::v2i64, MVT::v4i64 }) { |
| setOperationAction(ISD::SMAX, VT, Legal); |
| setOperationAction(ISD::UMAX, VT, Legal); |
| setOperationAction(ISD::SMIN, VT, Legal); |
| setOperationAction(ISD::UMIN, VT, Legal); |
| setOperationAction(ISD::ABS, VT, Legal); |
| } |
| |
| for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) { |
| setOperationAction(ISD::ROTL, VT, Custom); |
| setOperationAction(ISD::ROTR, VT, Custom); |
| } |
| |
| // Custom legalize 2x32 to get a little better code. |
| setOperationAction(ISD::MSCATTER, MVT::v2f32, Custom); |
| setOperationAction(ISD::MSCATTER, MVT::v2i32, Custom); |
| |
| for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, |
| MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) |
| setOperationAction(ISD::MSCATTER, VT, Custom); |
| |
| if (Subtarget.hasDQI()) { |
| for (auto VT : { MVT::v2i64, MVT::v4i64 }) { |
| setOperationAction(ISD::SINT_TO_FP, VT, Legal); |
| setOperationAction(ISD::UINT_TO_FP, VT, Legal); |
| setOperationAction(ISD::FP_TO_SINT, VT, Legal); |
| setOperationAction(ISD::FP_TO_UINT, VT, Legal); |
| |
| setOperationAction(ISD::MUL, VT, Legal); |
| } |
| } |
| |
| if (Subtarget.hasCDI()) { |
| for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) { |
| setOperationAction(ISD::CTLZ, VT, Legal); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); |
| } |
| } // Subtarget.hasCDI() |
| |
| if (Subtarget.hasVPOPCNTDQ()) { |
| for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) |
| setOperationAction(ISD::CTPOP, VT, Legal); |
| } |
| } |
| |
| // This block control legalization of v32i1/v64i1 which are available with |
| // AVX512BW. 512-bit v32i16 and v64i8 vector legalization is controlled with |
| // useBWIRegs. |
| if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) { |
| addRegisterClass(MVT::v32i1, &X86::VK32RegClass); |
| addRegisterClass(MVT::v64i1, &X86::VK64RegClass); |
| |
| for (auto VT : { MVT::v32i1, MVT::v64i1 }) { |
| setOperationAction(ISD::ADD, VT, Custom); |
| setOperationAction(ISD::SUB, VT, Custom); |
| setOperationAction(ISD::MUL, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| |
| setOperationAction(ISD::TRUNCATE, VT, Custom); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| } |
| |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom); |
| for (auto VT : { MVT::v16i1, MVT::v32i1 }) |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| // Extends from v32i1 masks to 256-bit vectors. |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v32i8, Custom); |
| } |
| |
| // This block controls legalization for v32i16 and v64i8. 512-bits can be |
| // disabled based on prefer-vector-width and required-vector-width function |
| // attributes. |
| if (!Subtarget.useSoftFloat() && Subtarget.useBWIRegs()) { |
| addRegisterClass(MVT::v32i16, &X86::VR512RegClass); |
| addRegisterClass(MVT::v64i8, &X86::VR512RegClass); |
| |
| // Extends from v64i1 masks to 512-bit vectors. |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v64i8, Custom); |
| |
| setOperationAction(ISD::MUL, MVT::v32i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v64i8, Custom); |
| setOperationAction(ISD::MULHS, MVT::v32i16, Legal); |
| setOperationAction(ISD::MULHU, MVT::v32i16, Legal); |
| setOperationAction(ISD::MULHS, MVT::v64i8, Custom); |
| setOperationAction(ISD::MULHU, MVT::v64i8, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Legal); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i16, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v64i8, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v32i16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom); |
| setOperationAction(ISD::BITREVERSE, MVT::v64i8, Custom); |
| |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom); |
| |
| setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal); |
| |
| for (auto VT : { MVT::v64i8, MVT::v32i16 }) { |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| setOperationAction(ISD::ABS, VT, Legal); |
| setOperationAction(ISD::SRL, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::MLOAD, VT, Legal); |
| setOperationAction(ISD::MSTORE, VT, Legal); |
| setOperationAction(ISD::CTPOP, VT, Custom); |
| setOperationAction(ISD::CTTZ, VT, Custom); |
| setOperationAction(ISD::CTLZ, VT, Custom); |
| setOperationAction(ISD::SMAX, VT, Legal); |
| setOperationAction(ISD::UMAX, VT, Legal); |
| setOperationAction(ISD::SMIN, VT, Legal); |
| setOperationAction(ISD::UMIN, VT, Legal); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| |
| setOperationPromotedToType(ISD::AND, VT, MVT::v8i64); |
| setOperationPromotedToType(ISD::OR, VT, MVT::v8i64); |
| setOperationPromotedToType(ISD::XOR, VT, MVT::v8i64); |
| } |
| |
| for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) { |
| setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal); |
| } |
| |
| if (Subtarget.hasBITALG()) { |
| for (auto VT : { MVT::v64i8, MVT::v32i16 }) |
| setOperationAction(ISD::CTPOP, VT, Legal); |
| } |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) { |
| for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) { |
| setOperationAction(ISD::MLOAD, VT, Subtarget.hasVLX() ? Legal : Custom); |
| setOperationAction(ISD::MSTORE, VT, Subtarget.hasVLX() ? Legal : Custom); |
| } |
| |
| // These operations are handled on non-VLX by artificially widening in |
| // isel patterns. |
| // TODO: Custom widen in lowering on non-VLX and drop the isel patterns? |
| |
| if (Subtarget.hasBITALG()) { |
| for (auto VT : { MVT::v16i8, MVT::v32i8, MVT::v8i16, MVT::v16i16 }) |
| setOperationAction(ISD::CTPOP, VT, Legal); |
| } |
| } |
| |
| if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) { |
| setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal); |
| setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal); |
| setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal); |
| |
| setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); |
| |
| if (Subtarget.hasDQI()) { |
| // Fast v2f32 SINT_TO_FP( v2i64 ) custom conversion. |
| // v2f32 UINT_TO_FP is already custom under SSE2. |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2f32, Custom); |
| assert(isOperationCustom(ISD::UINT_TO_FP, MVT::v2f32) && |
| "Unexpected operation action!"); |
| // v2i64 FP_TO_S/UINT(v2f32) custom conversion. |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2f32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v2f32, Custom); |
| } |
| |
| if (Subtarget.hasBWI()) { |
| setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal); |
| setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); |
| } |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| if (!Subtarget.is64Bit()) { |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); |
| } |
| |
| // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't |
| // handle type legalization for these operations here. |
| // |
| // FIXME: We really should do custom legalization for addition and |
| // subtraction on x86-32 once PR3203 is fixed. We really can't do much better |
| // than generic legalization for 64-bit multiplication-with-overflow, though. |
| for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { |
| if (VT == MVT::i64 && !Subtarget.is64Bit()) |
| continue; |
| // Add/Sub/Mul with overflow operations are custom lowered. |
| setOperationAction(ISD::SADDO, VT, Custom); |
| setOperationAction(ISD::UADDO, VT, Custom); |
| setOperationAction(ISD::SSUBO, VT, Custom); |
| setOperationAction(ISD::USUBO, VT, Custom); |
| setOperationAction(ISD::SMULO, VT, Custom); |
| setOperationAction(ISD::UMULO, VT, Custom); |
| |
| // Support carry in as value rather than glue. |
| setOperationAction(ISD::ADDCARRY, VT, Custom); |
| setOperationAction(ISD::SUBCARRY, VT, Custom); |
| setOperationAction(ISD::SETCCCARRY, VT, Custom); |
| } |
| |
| if (!Subtarget.is64Bit()) { |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| setLibcallName(RTLIB::MUL_I128, nullptr); |
| } |
| |
| // Combine sin / cos into _sincos_stret if it is available. |
| if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && |
| getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { |
| setOperationAction(ISD::FSINCOS, MVT::f64, Custom); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Custom); |
| } |
| |
| if (Subtarget.isTargetWin64()) { |
| setOperationAction(ISD::SDIV, MVT::i128, Custom); |
| setOperationAction(ISD::UDIV, MVT::i128, Custom); |
| setOperationAction(ISD::SREM, MVT::i128, Custom); |
| setOperationAction(ISD::UREM, MVT::i128, Custom); |
| setOperationAction(ISD::SDIVREM, MVT::i128, Custom); |
| setOperationAction(ISD::UDIVREM, MVT::i128, Custom); |
| } |
| |
| // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)` |
| // is. We should promote the value to 64-bits to solve this. |
| // This is what the CRT headers do - `fmodf` is an inline header |
| // function casting to f64 and calling `fmod`. |
| if (Subtarget.is32Bit() && (Subtarget.isTargetKnownWindowsMSVC() || |
| Subtarget.isTargetWindowsItanium())) |
| for (ISD::NodeType Op : |
| {ISD::FCEIL, ISD::FCOS, ISD::FEXP, ISD::FFLOOR, ISD::FREM, ISD::FLOG, |
| ISD::FLOG10, ISD::FPOW, ISD::FSIN}) |
| if (isOperationExpand(Op, MVT::f32)) |
| setOperationAction(Op, MVT::f32, Promote); |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); |
| setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::INSERT_SUBVECTOR); |
| setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); |
| setTargetDAGCombine(ISD::BITCAST); |
| setTargetDAGCombine(ISD::VSELECT); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::FADD); |
| setTargetDAGCombine(ISD::FSUB); |
| setTargetDAGCombine(ISD::FNEG); |
| setTargetDAGCombine(ISD::FMA); |
| setTargetDAGCombine(ISD::FMINNUM); |
| setTargetDAGCombine(ISD::FMAXNUM); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::LOAD); |
| setTargetDAGCombine(ISD::MLOAD); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::MSTORE); |
| setTargetDAGCombine(ISD::TRUNCATE); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); |
| setTargetDAGCombine(ISD::SIGN_EXTEND_VECTOR_INREG); |
| setTargetDAGCombine(ISD::ZERO_EXTEND_VECTOR_INREG); |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::UINT_TO_FP); |
| setTargetDAGCombine(ISD::SETCC); |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::XOR); |
| setTargetDAGCombine(ISD::MSCATTER); |
| setTargetDAGCombine(ISD::MGATHER); |
| |
| computeRegisterProperties(Subtarget.getRegisterInfo()); |
| |
| MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores |
| MaxStoresPerMemsetOptSize = 8; |
| MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores |
| MaxStoresPerMemcpyOptSize = 4; |
| MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores |
| MaxStoresPerMemmoveOptSize = 4; |
| |
| // TODO: These control memcmp expansion in CGP and could be raised higher, but |
| // that needs to benchmarked and balanced with the potential use of vector |
| // load/store types (PR33329, PR33914). |
| MaxLoadsPerMemcmp = 2; |
| MaxLoadsPerMemcmpOptSize = 2; |
| |
| // Set loop alignment to 2^ExperimentalPrefLoopAlignment bytes (default: 2^4). |
| setPrefLoopAlignment(ExperimentalPrefLoopAlignment); |
| |
| // An out-of-order CPU can speculatively execute past a predictable branch, |
| // but a conditional move could be stalled by an expensive earlier operation. |
| PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder(); |
| EnableExtLdPromotion = true; |
| setPrefFunctionAlignment(4); // 2^4 bytes. |
| |
| verifyIntrinsicTables(); |
| } |
| |
| // This has so far only been implemented for 64-bit MachO. |
| bool X86TargetLowering::useLoadStackGuardNode() const { |
| return Subtarget.isTargetMachO() && Subtarget.is64Bit(); |
| } |
| |
| bool X86TargetLowering::useStackGuardXorFP() const { |
| // Currently only MSVC CRTs XOR the frame pointer into the stack guard value. |
| return Subtarget.getTargetTriple().isOSMSVCRT(); |
| } |
| |
| SDValue X86TargetLowering::emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, |
| const SDLoc &DL) const { |
| EVT PtrTy = getPointerTy(DAG.getDataLayout()); |
| unsigned XorOp = Subtarget.is64Bit() ? X86::XOR64_FP : X86::XOR32_FP; |
| MachineSDNode *Node = DAG.getMachineNode(XorOp, DL, PtrTy, Val); |
| return SDValue(Node, 0); |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| X86TargetLowering::getPreferredVectorAction(EVT VT) const { |
| if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI()) |
| return TypeSplitVector; |
| |
| if (ExperimentalVectorWideningLegalization && |
| VT.getVectorNumElements() != 1 && |
| VT.getVectorElementType().getSimpleVT() != MVT::i1) |
| return TypeWidenVector; |
| |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| MVT X86TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI()) |
| return MVT::v32i8; |
| return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| } |
| |
| unsigned X86TargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI()) |
| return 1; |
| return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| } |
| |
| EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, |
| LLVMContext& Context, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i8; |
| |
| if (Subtarget.hasAVX512()) { |
| const unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Figure out what this type will be legalized to. |
| EVT LegalVT = VT; |
| while (getTypeAction(Context, LegalVT) != TypeLegal) |
| LegalVT = getTypeToTransformTo(Context, LegalVT); |
| |
| // If we got a 512-bit vector then we'll definitely have a vXi1 compare. |
| if (LegalVT.getSimpleVT().is512BitVector()) |
| return EVT::getVectorVT(Context, MVT::i1, NumElts); |
| |
| if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) { |
| // If we legalized to less than a 512-bit vector, then we will use a vXi1 |
| // compare for vXi32/vXi64 for sure. If we have BWI we will also support |
| // vXi16/vXi8. |
| MVT EltVT = LegalVT.getSimpleVT().getVectorElementType(); |
| if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32) |
| return EVT::getVectorVT(Context, MVT::i1, NumElts); |
| } |
| } |
| |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| /// Helper for getByValTypeAlignment to determine |
| /// the desired ByVal argument alignment. |
| static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { |
| if (MaxAlign == 16) |
| return; |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
| if (VTy->getBitWidth() == 128) |
| MaxAlign = 16; |
| } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(ATy->getElementType(), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| } else if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (auto *EltTy : STy->elements()) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(EltTy, EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| if (MaxAlign == 16) |
| break; |
| } |
| } |
| } |
| |
| /// Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. For X86, aggregates |
| /// that contain SSE vectors are placed at 16-byte boundaries while the rest |
| /// are at 4-byte boundaries. |
| unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty, |
| const DataLayout &DL) const { |
| if (Subtarget.is64Bit()) { |
| // Max of 8 and alignment of type. |
| unsigned TyAlign = DL.getABITypeAlignment(Ty); |
| if (TyAlign > 8) |
| return TyAlign; |
| return 8; |
| } |
| |
| unsigned Align = 4; |
| if (Subtarget.hasSSE1()) |
| getMaxByValAlign(Ty, Align); |
| return Align; |
| } |
| |
| /// Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If 'IsMemset' is |
| /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that |
| /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy |
| /// source is constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| EVT |
| X86TargetLowering::getOptimalMemOpType(uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, bool ZeroMemset, |
| bool MemcpyStrSrc, |
| MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| if (!F.hasFnAttribute(Attribute::NoImplicitFloat)) { |
| if (Size >= 16 && |
| (!Subtarget.isUnalignedMem16Slow() || |
| ((DstAlign == 0 || DstAlign >= 16) && |
| (SrcAlign == 0 || SrcAlign >= 16)))) { |
| // FIXME: Check if unaligned 32-byte accesses are slow. |
| if (Size >= 32 && Subtarget.hasAVX()) { |
| // Although this isn't a well-supported type for AVX1, we'll let |
| // legalization and shuffle lowering produce the optimal codegen. If we |
| // choose an optimal type with a vector element larger than a byte, |
| // getMemsetStores() may create an intermediate splat (using an integer |
| // multiply) before we splat as a vector. |
| return MVT::v32i8; |
| } |
| if (Subtarget.hasSSE2()) |
| return MVT::v16i8; |
| // TODO: Can SSE1 handle a byte vector? |
| if (Subtarget.hasSSE1()) |
| return MVT::v4f32; |
| } else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 && |
| !Subtarget.is64Bit() && Subtarget.hasSSE2()) { |
| // Do not use f64 to lower memcpy if source is string constant. It's |
| // better to use i32 to avoid the loads. |
| // Also, do not use f64 to lower memset unless this is a memset of zeros. |
| // The gymnastics of splatting a byte value into an XMM register and then |
| // only using 8-byte stores (because this is a CPU with slow unaligned |
| // 16-byte accesses) makes that a loser. |
| return MVT::f64; |
| } |
| } |
| // This is a compromise. If we reach here, unaligned accesses may be slow on |
| // this target. However, creating smaller, aligned accesses could be even |
| // slower and would certainly be a lot more code. |
| if (Subtarget.is64Bit() && Size >= 8) |
| return MVT::i64; |
| return MVT::i32; |
| } |
| |
| bool X86TargetLowering::isSafeMemOpType(MVT VT) const { |
| if (VT == MVT::f32) |
| return X86ScalarSSEf32; |
| else if (VT == MVT::f64) |
| return X86ScalarSSEf64; |
| return true; |
| } |
| |
| bool |
| X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, |
| unsigned, |
| unsigned, |
| bool *Fast) const { |
| if (Fast) { |
| switch (VT.getSizeInBits()) { |
| default: |
| // 8-byte and under are always assumed to be fast. |
| *Fast = true; |
| break; |
| case 128: |
| *Fast = !Subtarget.isUnalignedMem16Slow(); |
| break; |
| case 256: |
| *Fast = !Subtarget.isUnalignedMem32Slow(); |
| break; |
| // TODO: What about AVX-512 (512-bit) accesses? |
| } |
| } |
| // Misaligned accesses of any size are always allowed. |
| return true; |
| } |
| |
| /// Return the entry encoding for a jump table in the |
| /// current function. The returned value is a member of the |
| /// MachineJumpTableInfo::JTEntryKind enum. |
| unsigned X86TargetLowering::getJumpTableEncoding() const { |
| // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF |
| // symbol. |
| if (isPositionIndependent() && Subtarget.isPICStyleGOT()) |
| return MachineJumpTableInfo::EK_Custom32; |
| |
| // Otherwise, use the normal jump table encoding heuristics. |
| return TargetLowering::getJumpTableEncoding(); |
| } |
| |
| bool X86TargetLowering::useSoftFloat() const { |
| return Subtarget.useSoftFloat(); |
| } |
| |
| void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC, |
| ArgListTy &Args) const { |
| |
| // Only relabel X86-32 for C / Stdcall CCs. |
| if (Subtarget.is64Bit()) |
| return; |
| if (CC != CallingConv::C && CC != CallingConv::X86_StdCall) |
| return; |
| unsigned ParamRegs = 0; |
| if (auto *M = MF->getFunction().getParent()) |
| ParamRegs = M->getNumberRegisterParameters(); |
| |
| // Mark the first N int arguments as having reg |
| for (unsigned Idx = 0; Idx < Args.size(); Idx++) { |
| Type *T = Args[Idx].Ty; |
| if (T->isIntOrPtrTy()) |
| if (MF->getDataLayout().getTypeAllocSize(T) <= 8) { |
| unsigned numRegs = 1; |
| if (MF->getDataLayout().getTypeAllocSize(T) > 4) |
| numRegs = 2; |
| if (ParamRegs < numRegs) |
| return; |
| ParamRegs -= numRegs; |
| Args[Idx].IsInReg = true; |
| } |
| } |
| } |
| |
| const MCExpr * |
| X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned uid,MCContext &Ctx) const{ |
| assert(isPositionIndependent() && Subtarget.isPICStyleGOT()); |
| // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF |
| // entries. |
| return MCSymbolRefExpr::create(MBB->getSymbol(), |
| MCSymbolRefExpr::VK_GOTOFF, Ctx); |
| } |
| |
| /// Returns relocation base for the given PIC jumptable. |
| SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| if (!Subtarget.is64Bit()) |
| // This doesn't have SDLoc associated with it, but is not really the |
| // same as a Register. |
| return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), |
| getPointerTy(DAG.getDataLayout())); |
| return Table; |
| } |
| |
| /// This returns the relocation base for the given PIC jumptable, |
| /// the same as getPICJumpTableRelocBase, but as an MCExpr. |
| const MCExpr *X86TargetLowering:: |
| getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, |
| MCContext &Ctx) const { |
| // X86-64 uses RIP relative addressing based on the jump table label. |
| if (Subtarget.isPICStyleRIPRel()) |
| return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); |
| |
| // Otherwise, the reference is relative to the PIC base. |
| return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); |
| } |
| |
| std::pair<const TargetRegisterClass *, uint8_t> |
| X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, |
| MVT VT) const { |
| const TargetRegisterClass *RRC = nullptr; |
| uint8_t Cost = 1; |
| switch (VT.SimpleTy) { |
| default: |
| return TargetLowering::findRepresentativeClass(TRI, VT); |
| case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: |
| RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; |
| break; |
| case MVT::x86mmx: |
| RRC = &X86::VR64RegClass; |
| break; |
| case MVT::f32: case MVT::f64: |
| case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: |
| case MVT::v4f32: case MVT::v2f64: |
| case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64: |
| case MVT::v8f32: case MVT::v4f64: |
| case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64: |
| case MVT::v16f32: case MVT::v8f64: |
| RRC = &X86::VR128XRegClass; |
| break; |
| } |
| return std::make_pair(RRC, Cost); |
| } |
| |
| unsigned X86TargetLowering::getAddressSpace() const { |
| if (Subtarget.is64Bit()) |
| return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257; |
| return 256; |
| } |
| |
| static bool hasStackGuardSlotTLS(const Triple &TargetTriple) { |
| return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() || |
| (TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17)); |
| } |
| |
| static Constant* SegmentOffset(IRBuilder<> &IRB, |
| unsigned Offset, unsigned AddressSpace) { |
| return ConstantExpr::getIntToPtr( |
| ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset), |
| Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace)); |
| } |
| |
| Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { |
| // glibc, bionic, and Fuchsia have a special slot for the stack guard in |
| // tcbhead_t; use it instead of the usual global variable (see |
| // sysdeps/{i386,x86_64}/nptl/tls.h) |
| if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) { |
| if (Subtarget.isTargetFuchsia()) { |
| // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. |
| return SegmentOffset(IRB, 0x10, getAddressSpace()); |
| } else { |
| // %fs:0x28, unless we're using a Kernel code model, in which case |
| // it's %gs:0x28. gs:0x14 on i386. |
| unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14; |
| return SegmentOffset(IRB, Offset, getAddressSpace()); |
| } |
| } |
| |
| return TargetLowering::getIRStackGuard(IRB); |
| } |
| |
| void X86TargetLowering::insertSSPDeclarations(Module &M) const { |
| // MSVC CRT provides functionalities for stack protection. |
| if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() || |
| Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) { |
| // MSVC CRT has a global variable holding security cookie. |
| M.getOrInsertGlobal("__security_cookie", |
| Type::getInt8PtrTy(M.getContext())); |
| |
| // MSVC CRT has a function to validate security cookie. |
| auto *SecurityCheckCookie = cast<Function>( |
| M.getOrInsertFunction("__security_check_cookie", |
| Type::getVoidTy(M.getContext()), |
| Type::getInt8PtrTy(M.getContext()))); |
| SecurityCheckCookie->setCallingConv(CallingConv::X86_FastCall); |
| SecurityCheckCookie->addAttribute(1, Attribute::AttrKind::InReg); |
| return; |
| } |
| // glibc, bionic, and Fuchsia have a special slot for the stack guard. |
| if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) |
| return; |
| TargetLowering::insertSSPDeclarations(M); |
| } |
| |
| Value *X86TargetLowering::getSDagStackGuard(const Module &M) const { |
| // MSVC CRT has a global variable holding security cookie. |
| if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() || |
| Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) { |
| return M.getGlobalVariable("__security_cookie"); |
| } |
| return TargetLowering::getSDagStackGuard(M); |
| } |
| |
| Value *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const { |
| // MSVC CRT has a function to validate security cookie. |
| if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() || |
| Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) { |
| return M.getFunction("__security_check_cookie"); |
| } |
| return TargetLowering::getSSPStackGuardCheck(M); |
| } |
| |
| Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { |
| if (Subtarget.getTargetTriple().isOSContiki()) |
| return getDefaultSafeStackPointerLocation(IRB, false); |
| |
| // Android provides a fixed TLS slot for the SafeStack pointer. See the |
| // definition of TLS_SLOT_SAFESTACK in |
| // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h |
| if (Subtarget.isTargetAndroid()) { |
| // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs: |
| // %gs:0x24 on i386 |
| unsigned Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24; |
| return SegmentOffset(IRB, Offset, getAddressSpace()); |
| } |
| |
| // Fuchsia is similar. |
| if (Subtarget.isTargetFuchsia()) { |
| // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. |
| return SegmentOffset(IRB, 0x18, getAddressSpace()); |
| } |
| |
| return TargetLowering::getSafeStackPointerLocation(IRB); |
| } |
| |
| bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, |
| unsigned DestAS) const { |
| assert(SrcAS != DestAS && "Expected different address spaces!"); |
| |
| return SrcAS < 256 && DestAS < 256; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86GenCallingConv.inc" |
| |
| bool X86TargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, RetCC_X86); |
| } |
| |
| const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { |
| static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; |
| return ScratchRegs; |
| } |
| |
| /// Lowers masks values (v*i1) to the local register values |
| /// \returns DAG node after lowering to register type |
| static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc, |
| const SDLoc &Dl, SelectionDAG &DAG) { |
| EVT ValVT = ValArg.getValueType(); |
| |
| if (ValVT == MVT::v1i1) |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, Dl, ValLoc, ValArg, |
| DAG.getIntPtrConstant(0, Dl)); |
| |
| if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) || |
| (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) { |
| // Two stage lowering might be required |
| // bitcast: v8i1 -> i8 / v16i1 -> i16 |
| // anyextend: i8 -> i32 / i16 -> i32 |
| EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16; |
| SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg); |
| if (ValLoc == MVT::i32) |
| ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy); |
| return ValToCopy; |
| } |
| |
| if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) || |
| (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) { |
| // One stage lowering is required |
| // bitcast: v32i1 -> i32 / v64i1 -> i64 |
| return DAG.getBitcast(ValLoc, ValArg); |
| } |
| |
| return DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValArg); |
| } |
| |
| /// Breaks v64i1 value into two registers and adds the new node to the DAG |
| static void Passv64i1ArgInRegs( |
| const SDLoc &Dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, |
| SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, CCValAssign &VA, |
| CCValAssign &NextVA, const X86Subtarget &Subtarget) { |
| assert(Subtarget.hasBWI() && "Expected AVX512BW target!"); |
| assert(Subtarget.is32Bit() && "Expecting 32 bit target"); |
| assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value"); |
| assert(VA.isRegLoc() && NextVA.isRegLoc() && |
| "The value should reside in two registers"); |
| |
| // Before splitting the value we cast it to i64 |
| Arg = DAG.getBitcast(MVT::i64, Arg); |
| |
| // Splitting the value into two i32 types |
| SDValue Lo, Hi; |
| Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg, |
| DAG.getConstant(0, Dl, MVT::i32)); |
| Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg, |
| DAG.getConstant(1, Dl, MVT::i32)); |
| |
| // Attach the two i32 types into corresponding registers |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo)); |
| RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi)); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| // In some cases we need to disable registers from the default CSR list. |
| // For example, when they are used for argument passing. |
| bool ShouldDisableCalleeSavedRegister = |
| CallConv == CallingConv::X86_RegCall || |
| MF.getFunction().hasFnAttribute("no_caller_saved_registers"); |
| |
| if (CallConv == CallingConv::X86_INTR && !Outs.empty()) |
| report_fatal_error("X86 interrupts may not return any value"); |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC_X86); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 6> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| // Operand #1 = Bytes To Pop |
| RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl, |
| MVT::i32)); |
| |
| // Copy the result values into the output registers. |
| for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E; |
| ++I, ++OutsIndex) { |
| CCValAssign &VA = RVLocs[I]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| // Add the register to the CalleeSaveDisableRegs list. |
| if (ShouldDisableCalleeSavedRegister) |
| MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg()); |
| |
| SDValue ValToCopy = OutVals[OutsIndex]; |
| EVT ValVT = ValToCopy.getValueType(); |
| |
| // Promote values to the appropriate types. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); |
| else if (VA.getLocInfo() == CCValAssign::AExt) { |
| if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1) |
| ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG); |
| else |
| ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); |
| } |
| else if (VA.getLocInfo() == CCValAssign::BCvt) |
| ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy); |
| |
| assert(VA.getLocInfo() != CCValAssign::FPExt && |
| "Unexpected FP-extend for return value."); |
| |
| // If this is x86-64, and we disabled SSE, we can't return FP values, |
| // or SSE or MMX vectors. |
| if ((ValVT == MVT::f32 || ValVT == MVT::f64 || |
| VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && |
| (Subtarget.is64Bit() && !Subtarget.hasSSE1())) { |
| errorUnsupported(DAG, dl, "SSE register return with SSE disabled"); |
| VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| } else if (ValVT == MVT::f64 && |
| (Subtarget.is64Bit() && !Subtarget.hasSSE2())) { |
| // Likewise we can't return F64 values with SSE1 only. gcc does so, but |
| // llvm-gcc has never done it right and no one has noticed, so this |
| // should be OK for now. |
| errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled"); |
| VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| } |
| |
| // Returns in ST0/ST1 are handled specially: these are pushed as operands to |
| // the RET instruction and handled by the FP Stackifier. |
| if (VA.getLocReg() == X86::FP0 || |
| VA.getLocReg() == X86::FP1) { |
| // If this is a copy from an xmm register to ST(0), use an FPExtend to |
| // change the value to the FP stack register class. |
| if (isScalarFPTypeInSSEReg(VA.getValVT())) |
| ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); |
| RetOps.push_back(ValToCopy); |
| // Don't emit a copytoreg. |
| continue; |
| } |
| |
| // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 |
| // which is returned in RAX / RDX. |
| if (Subtarget.is64Bit()) { |
| if (ValVT == MVT::x86mmx) { |
| if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { |
| ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy); |
| ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, |
| ValToCopy); |
| // If we don't have SSE2 available, convert to v4f32 so the generated |
| // register is legal. |
| if (!Subtarget.hasSSE2()) |
| ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy); |
| } |
| } |
| } |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| |
| if (VA.needsCustom()) { |
| assert(VA.getValVT() == MVT::v64i1 && |
| "Currently the only custom case is when we split v64i1 to 2 regs"); |
| |
| Passv64i1ArgInRegs(dl, DAG, Chain, ValToCopy, RegsToPass, VA, RVLocs[++I], |
| Subtarget); |
| |
| assert(2 == RegsToPass.size() && |
| "Expecting two registers after Pass64BitArgInRegs"); |
| |
| // Add the second register to the CalleeSaveDisableRegs list. |
| if (ShouldDisableCalleeSavedRegister) |
| MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg()); |
| } else { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy)); |
| } |
| |
| // Add nodes to the DAG and add the values into the RetOps list |
| for (auto &Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| } |
| } |
| |
| // Swift calling convention does not require we copy the sret argument |
| // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. |
| |
| // All x86 ABIs require that for returning structs by value we copy |
| // the sret argument into %rax/%eax (depending on ABI) for the return. |
| // We saved the argument into a virtual register in the entry block, |
| // so now we copy the value out and into %rax/%eax. |
| // |
| // Checking Function.hasStructRetAttr() here is insufficient because the IR |
| // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is |
| // false, then an sret argument may be implicitly inserted in the SelDAG. In |
| // either case FuncInfo->setSRetReturnReg() will have been called. |
| if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { |
| // When we have both sret and another return value, we should use the |
| // original Chain stored in RetOps[0], instead of the current Chain updated |
| // in the above loop. If we only have sret, RetOps[0] equals to Chain. |
| |
| // For the case of sret and another return value, we have |
| // Chain_0 at the function entry |
| // Chain_1 = getCopyToReg(Chain_0) in the above loop |
| // If we use Chain_1 in getCopyFromReg, we will have |
| // Val = getCopyFromReg(Chain_1) |
| // Chain_2 = getCopyToReg(Chain_1, Val) from below |
| |
| // getCopyToReg(Chain_0) will be glued together with |
| // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be |
| // in Unit B, and we will have cyclic dependency between Unit A and Unit B: |
| // Data dependency from Unit B to Unit A due to usage of Val in |
| // getCopyToReg(Chain_1, Val) |
| // Chain dependency from Unit A to Unit B |
| |
| // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg. |
| SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg, |
| getPointerTy(MF.getDataLayout())); |
| |
| unsigned RetValReg |
| = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ? |
| X86::RAX : X86::EAX; |
| Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); |
| Flag = Chain.getValue(1); |
| |
| // RAX/EAX now acts like a return value. |
| RetOps.push_back( |
| DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); |
| |
| // Add the returned register to the CalleeSaveDisableRegs list. |
| if (ShouldDisableCalleeSavedRegister) |
| MF.getRegInfo().disableCalleeSavedRegister(RetValReg); |
| } |
| |
| const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const MCPhysReg *I = |
| TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); |
| if (I) { |
| for (; *I; ++I) { |
| if (X86::GR64RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i64)); |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| } |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| X86ISD::NodeType opcode = X86ISD::RET_FLAG; |
| if (CallConv == CallingConv::X86_INTR) |
| opcode = X86ISD::IRET; |
| return DAG.getNode(opcode, dl, MVT::Other, RetOps); |
| } |
| |
| bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { |
| if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0)) |
| return false; |
| |
| SDValue TCChain = Chain; |
| SDNode *Copy = *N->use_begin(); |
| if (Copy->getOpcode() == ISD::CopyToReg) { |
| // If the copy has a glue operand, we conservatively assume it isn't safe to |
| // perform a tail call. |
| if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) |
| return false; |
| TCChain = Copy->getOperand(0); |
| } else if (Copy->getOpcode() != ISD::FP_EXTEND) |
| return false; |
| |
| bool HasRet = false; |
| for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() != X86ISD::RET_FLAG) |
| return false; |
| // If we are returning more than one value, we can definitely |
| // not make a tail call see PR19530 |
| if (UI->getNumOperands() > 4) |
| return false; |
| if (UI->getNumOperands() == 4 && |
| UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue) |
| return false; |
| HasRet = true; |
| } |
| |
| if (!HasRet) |
| return false; |
| |
| Chain = TCChain; |
| return true; |
| } |
| |
| EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, |
| ISD::NodeType ExtendKind) const { |
| MVT ReturnMVT = MVT::i32; |
| |
| bool Darwin = Subtarget.getTargetTriple().isOSDarwin(); |
| if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) { |
| // The ABI does not require i1, i8 or i16 to be extended. |
| // |
| // On Darwin, there is code in the wild relying on Clang's old behaviour of |
| // always extending i8/i16 return values, so keep doing that for now. |
| // (PR26665). |
| ReturnMVT = MVT::i8; |
| } |
| |
| EVT MinVT = getRegisterType(Context, ReturnMVT); |
| return VT.bitsLT(MinVT) ? MinVT : VT; |
| } |
| |
| /// Reads two 32 bit registers and creates a 64 bit mask value. |
| /// \param VA The current 32 bit value that need to be assigned. |
| /// \param NextVA The next 32 bit value that need to be assigned. |
| /// \param Root The parent DAG node. |
| /// \param [in,out] InFlag Represents SDvalue in the parent DAG node for |
| /// glue purposes. In the case the DAG is already using |
| /// physical register instead of virtual, we should glue |
| /// our new SDValue to InFlag SDvalue. |
| /// \return a new SDvalue of size 64bit. |
| static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA, |
| SDValue &Root, SelectionDAG &DAG, |
| const SDLoc &Dl, const X86Subtarget &Subtarget, |
| SDValue *InFlag = nullptr) { |
| assert((Subtarget.hasBWI()) && "Expected AVX512BW target!"); |
| assert(Subtarget.is32Bit() && "Expecting 32 bit target"); |
| assert(VA.getValVT() == MVT::v64i1 && |
| "Expecting first location of 64 bit width type"); |
| assert(NextVA.getValVT() == VA.getValVT() && |
| "The locations should have the same type"); |
| assert(VA.isRegLoc() && NextVA.isRegLoc() && |
| "The values should reside in two registers"); |
| |
| SDValue Lo, Hi; |
| unsigned Reg; |
| SDValue ArgValueLo, ArgValueHi; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetRegisterClass *RC = &X86::GR32RegClass; |
| |
| // Read a 32 bit value from the registers. |
| if (nullptr == InFlag) { |
| // When no physical register is present, |
| // create an intermediate virtual register. |
| Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32); |
| Reg = MF.addLiveIn(NextVA.getLocReg(), RC); |
| ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32); |
| } else { |
| // When a physical register is available read the value from it and glue |
| // the reads together. |
| ArgValueLo = |
| DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag); |
| *InFlag = ArgValueLo.getValue(2); |
| ArgValueHi = |
| DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag); |
| *InFlag = ArgValueHi.getValue(2); |
| } |
| |
| // Convert the i32 type into v32i1 type. |
| Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo); |
| |
| // Convert the i32 type into v32i1 type. |
| Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi); |
| |
| // Concatenate the two values together. |
| return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi); |
| } |
| |
| /// The function will lower a register of various sizes (8/16/32/64) |
| /// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1) |
| /// \returns a DAG node contains the operand after lowering to mask type. |
| static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT, |
| const EVT &ValLoc, const SDLoc &Dl, |
| SelectionDAG &DAG) { |
| SDValue ValReturned = ValArg; |
| |
| if (ValVT == MVT::v1i1) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v1i1, ValReturned); |
| |
| if (ValVT == MVT::v64i1) { |
| // In 32 bit machine, this case is handled by getv64i1Argument |
| assert(ValLoc == MVT::i64 && "Expecting only i64 locations"); |
| // In 64 bit machine, There is no need to truncate the value only bitcast |
| } else { |
| MVT maskLen; |
| switch (ValVT.getSimpleVT().SimpleTy) { |
| case MVT::v8i1: |
| maskLen = MVT::i8; |
| break; |
| case MVT::v16i1: |
| maskLen = MVT::i16; |
| break; |
| case MVT::v32i1: |
| maskLen = MVT::i32; |
| break; |
| default: |
| llvm_unreachable("Expecting a vector of i1 types"); |
| } |
| |
| ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned); |
| } |
| return DAG.getBitcast(ValVT, ValReturned); |
| } |
| |
| /// Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| /// |
| SDValue X86TargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| uint32_t *RegMask) const { |
| |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| bool Is64Bit = Subtarget.is64Bit(); |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E; |
| ++I, ++InsIndex) { |
| CCValAssign &VA = RVLocs[I]; |
| EVT CopyVT = VA.getLocVT(); |
| |
| // In some calling conventions we need to remove the used registers |
| // from the register mask. |
| if (RegMask) { |
| for (MCSubRegIterator SubRegs(VA.getLocReg(), TRI, /*IncludeSelf=*/true); |
| SubRegs.isValid(); ++SubRegs) |
| RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32)); |
| } |
| |
| // If this is x86-64, and we disabled SSE, we can't return FP values |
| if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) && |
| ((Is64Bit || Ins[InsIndex].Flags.isInReg()) && !Subtarget.hasSSE1())) { |
| errorUnsupported(DAG, dl, "SSE register return with SSE disabled"); |
| VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| } |
| |
| // If we prefer to use the value in xmm registers, copy it out as f80 and |
| // use a truncate to move it from fp stack reg to xmm reg. |
| bool RoundAfterCopy = false; |
| if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && |
| isScalarFPTypeInSSEReg(VA.getValVT())) { |
| if (!Subtarget.hasX87()) |
| report_fatal_error("X87 register return with X87 disabled"); |
| CopyVT = MVT::f80; |
| RoundAfterCopy = (CopyVT != VA.getLocVT()); |
| } |
| |
| SDValue Val; |
| if (VA.needsCustom()) { |
| assert(VA.getValVT() == MVT::v64i1 && |
| "Currently the only custom case is when we split v64i1 to 2 regs"); |
| Val = |
| getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag) |
| .getValue(1); |
| Val = Chain.getValue(0); |
| InFlag = Chain.getValue(2); |
| } |
| |
| if (RoundAfterCopy) |
| Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, |
| // This truncation won't change the value. |
| DAG.getIntPtrConstant(1, dl)); |
| |
| if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) { |
| if (VA.getValVT().isVector() && |
| ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) || |
| (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) { |
| // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8 |
| Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG); |
| } else |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C & StdCall & Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // StdCall calling convention seems to be standard for many Windows' API |
| // routines and around. It differs from C calling convention just a little: |
| // callee should clean up the stack, not caller. Symbols should be also |
| // decorated in some fancy way :) It doesn't support any vector arguments. |
| // For info on fast calling convention see Fast Calling Convention (tail call) |
| // implementation LowerX86_32FastCCCallTo. |
| |
| /// CallIsStructReturn - Determines whether a call uses struct return |
| /// semantics. |
| enum StructReturnType { |
| NotStructReturn, |
| RegStructReturn, |
| StackStructReturn |
| }; |
| static StructReturnType |
| callIsStructReturn(ArrayRef<ISD::OutputArg> Outs, bool IsMCU) { |
| if (Outs.empty()) |
| return NotStructReturn; |
| |
| const ISD::ArgFlagsTy &Flags = Outs[0].Flags; |
| if (!Flags.isSRet()) |
| return NotStructReturn; |
| if (Flags.isInReg() || IsMCU) |
| return RegStructReturn; |
| return StackStructReturn; |
| } |
| |
| /// Determines whether a function uses struct return semantics. |
| static StructReturnType |
| argsAreStructReturn(ArrayRef<ISD::InputArg> Ins, bool IsMCU) { |
| if (Ins.empty()) |
| return NotStructReturn; |
| |
| const ISD::ArgFlagsTy &Flags = Ins[0].Flags; |
| if (!Flags.isSRet()) |
| return NotStructReturn; |
| if (Flags.isInReg() || IsMCU) |
| return RegStructReturn; |
| return StackStructReturn; |
| } |
| |
| /// Make a copy of an aggregate at address specified by "Src" to address |
| /// "Dst" with size and alignment information specified by the specific |
| /// parameter attribute. The copy will be passed as a byval function parameter. |
| static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, |
| SDValue Chain, ISD::ArgFlagsTy Flags, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); |
| |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*isVolatile*/false, /*AlwaysInline=*/true, |
| /*isTailCall*/false, |
| MachinePointerInfo(), MachinePointerInfo()); |
| } |
| |
| /// Return true if the calling convention is one that we can guarantee TCO for. |
| static bool canGuaranteeTCO(CallingConv::ID CC) { |
| return (CC == CallingConv::Fast || CC == CallingConv::GHC || |
| CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE || |
| CC == CallingConv::HHVM); |
| } |
| |
| /// Return true if we might ever do TCO for calls with this calling convention. |
| static bool mayTailCallThisCC(CallingConv::ID CC) { |
| switch (CC) { |
| // C calling conventions: |
| case CallingConv::C: |
| case CallingConv::Win64: |
| case CallingConv::X86_64_SysV: |
| // Callee pop conventions: |
| case CallingConv::X86_ThisCall: |
| case CallingConv::X86_StdCall: |
| case CallingConv::X86_VectorCall: |
| case CallingConv::X86_FastCall: |
| return true; |
| default: |
| return canGuaranteeTCO(CC); |
| } |
| } |
| |
| /// Return true if the function is being made into a tailcall target by |
| /// changing its ABI. |
| static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) { |
| return GuaranteedTailCallOpt && canGuaranteeTCO(CC); |
| } |
| |
| bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| auto Attr = |
| CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); |
| if (!CI->isTailCall() || Attr.getValueAsString() == "true") |
| return false; |
| |
| ImmutableCallSite CS(CI); |
| CallingConv::ID CalleeCC = CS.getCallingConv(); |
| if (!mayTailCallThisCC(CalleeCC)) |
| return false; |
| |
| return true; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| MachineFrameInfo &MFI, unsigned i) const { |
| // Create the nodes corresponding to a load from this parameter slot. |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| bool AlwaysUseMutable = shouldGuaranteeTCO( |
| CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); |
| bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); |
| EVT ValVT; |
| MVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // If value is passed by pointer we have address passed instead of the value |
| // itself. No need to extend if the mask value and location share the same |
| // absolute size. |
| bool ExtendedInMem = |
| VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 && |
| VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits(); |
| |
| if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem) |
| ValVT = VA.getLocVT(); |
| else |
| ValVT = VA.getValVT(); |
| |
| // Calculate SP offset of interrupt parameter, re-arrange the slot normally |
| // taken by a return address. |
| int Offset = 0; |
| if (CallConv == CallingConv::X86_INTR) { |
| // X86 interrupts may take one or two arguments. |
| // On the stack there will be no return address as in regular call. |
| // Offset of last argument need to be set to -4/-8 bytes. |
| // Where offset of the first argument out of two, should be set to 0 bytes. |
| Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1); |
| if (Subtarget.is64Bit() && Ins.size() == 2) { |
| // The stack pointer needs to be realigned for 64 bit handlers with error |
| // code, so the argument offset changes by 8 bytes. |
| Offset += 8; |
| } |
| } |
| |
| // FIXME: For now, all byval parameter objects are marked mutable. This can be |
| // changed with more analysis. |
| // In case of tail call optimization mark all arguments mutable. Since they |
| // could be overwritten by lowering of arguments in case of a tail call. |
| if (Flags.isByVal()) { |
| unsigned Bytes = Flags.getByValSize(); |
| if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. |
| |
| // FIXME: For now, all byval parameter objects are marked as aliasing. This |
| // can be improved with deeper analysis. |
| int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable, |
| /*isAliased=*/true); |
| // Adjust SP offset of interrupt parameter. |
| if (CallConv == CallingConv::X86_INTR) { |
| MFI.setObjectOffset(FI, Offset); |
| } |
| return DAG.getFrameIndex(FI, PtrVT); |
| } |
| |
| // This is an argument in memory. We might be able to perform copy elision. |
| if (Flags.isCopyElisionCandidate()) { |
| EVT ArgVT = Ins[i].ArgVT; |
| SDValue PartAddr; |
| if (Ins[i].PartOffset == 0) { |
| // If this is a one-part value or the first part of a multi-part value, |
| // create a stack object for the entire argument value type and return a |
| // load from our portion of it. This assumes that if the first part of an |
| // argument is in memory, the rest will also be in memory. |
| int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(), |
| /*Immutable=*/false); |
| PartAddr = DAG.getFrameIndex(FI, PtrVT); |
| return DAG.getLoad( |
| ValVT, dl, Chain, PartAddr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); |
| } else { |
| // This is not the first piece of an argument in memory. See if there is |
| // already a fixed stack object including this offset. If so, assume it |
| // was created by the PartOffset == 0 branch above and create a load from |
| // the appropriate offset into it. |
| int64_t PartBegin = VA.getLocMemOffset(); |
| int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8; |
| int FI = MFI.getObjectIndexBegin(); |
| for (; MFI.isFixedObjectIndex(FI); ++FI) { |
| int64_t ObjBegin = MFI.getObjectOffset(FI); |
| int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI); |
| if (ObjBegin <= PartBegin && PartEnd <= ObjEnd) |
| break; |
| } |
| if (MFI.isFixedObjectIndex(FI)) { |
| SDValue Addr = |
| DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT), |
| DAG.getIntPtrConstant(Ins[i].PartOffset, dl)); |
| return DAG.getLoad( |
| ValVT, dl, Chain, Addr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI, |
| Ins[i].PartOffset)); |
| } |
| } |
| } |
| |
| int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, |
| VA.getLocMemOffset(), isImmutable); |
| |
| // Set SExt or ZExt flag. |
| if (VA.getLocInfo() == CCValAssign::ZExt) { |
| MFI.setObjectZExt(FI, true); |
| } else if (VA.getLocInfo() == CCValAssign::SExt) { |
| MFI.setObjectSExt(FI, true); |
| } |
| |
| // Adjust SP offset of interrupt parameter. |
| if (CallConv == CallingConv::X86_INTR) { |
| MFI.setObjectOffset(FI, Offset); |
| } |
| |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Val = DAG.getLoad( |
| ValVT, dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); |
| return ExtendedInMem |
| ? (VA.getValVT().isVector() |
| ? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val) |
| : DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val)) |
| : Val; |
| } |
| |
| // FIXME: Get this from tablegen. |
| static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, |
| const X86Subtarget &Subtarget) { |
| assert(Subtarget.is64Bit()); |
| |
| if (Subtarget.isCallingConvWin64(CallConv)) { |
| static const MCPhysReg GPR64ArgRegsWin64[] = { |
| X86::RCX, X86::RDX, X86::R8, X86::R9 |
| }; |
| return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); |
| } |
| |
| static const MCPhysReg GPR64ArgRegs64Bit[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| }; |
| return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); |
| } |
| |
| // FIXME: Get this from tablegen. |
| static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF, |
| CallingConv::ID CallConv, |
| const X86Subtarget &Subtarget) { |
| assert(Subtarget.is64Bit()); |
| if (Subtarget.isCallingConvWin64(CallConv)) { |
| // The XMM registers which might contain var arg parameters are shadowed |
| // in their paired GPR. So we only need to save the GPR to their home |
| // slots. |
| // TODO: __vectorcall will change this. |
| return None; |
| } |
| |
| const Function &F = MF.getFunction(); |
| bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat); |
| bool isSoftFloat = Subtarget.useSoftFloat(); |
| assert(!(isSoftFloat && NoImplicitFloatOps) && |
| "SSE register cannot be used when SSE is disabled!"); |
| if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1()) |
| // Kernel mode asks for SSE to be disabled, so there are no XMM argument |
| // registers. |
| return None; |
| |
| static const MCPhysReg XMMArgRegs64Bit[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit)); |
| } |
| |
| #ifndef NDEBUG |
| static bool isSortedByValueNo(ArrayRef<CCValAssign> ArgLocs) { |
| return std::is_sorted(ArgLocs.begin(), ArgLocs.end(), |
| [](const CCValAssign &A, const CCValAssign &B) -> bool { |
| return A.getValNo() < B.getValNo(); |
| }); |
| } |
| #endif |
| |
| SDValue X86TargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); |
| |
| const Function &F = MF.getFunction(); |
| if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() && |
| F.getName() == "main") |
| FuncInfo->setForceFramePointer(true); |
| |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool Is64Bit = Subtarget.is64Bit(); |
| bool IsWin64 = Subtarget.isCallingConvWin64(CallConv); |
| |
| assert( |
| !(isVarArg && canGuaranteeTCO(CallConv)) && |
| "Var args not supported with calling conv' regcall, fastcc, ghc or hipe"); |
| |
| if (CallConv == CallingConv::X86_INTR) { |
| bool isLegal = Ins.size() == 1 || |
| (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) || |
| (!Is64Bit && Ins[1].VT == MVT::i32))); |
| if (!isLegal) |
| report_fatal_error("X86 interrupts may take one or two arguments"); |
| } |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| // Allocate shadow area for Win64. |
| if (IsWin64) |
| CCInfo.AllocateStack(32, 8); |
| |
| CCInfo.AnalyzeArguments(Ins, CC_X86); |
| |
| // In vectorcall calling convention a second pass is required for the HVA |
| // types. |
| if (CallingConv::X86_VectorCall == CallConv) { |
| CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86); |
| } |
| |
| // The next loop assumes that the locations are in the same order of the |
| // input arguments. |
| assert(isSortedByValueNo(ArgLocs) && |
| "Argument Location list must be sorted before lowering"); |
| |
| SDValue ArgValue; |
| for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E; |
| ++I, ++InsIndex) { |
| assert(InsIndex < Ins.size() && "Invalid Ins index"); |
| CCValAssign &VA = ArgLocs[I]; |
| |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| if (VA.needsCustom()) { |
| assert( |
| VA.getValVT() == MVT::v64i1 && |
| "Currently the only custom case is when we split v64i1 to 2 regs"); |
| |
| // v64i1 values, in regcall calling convention, that are |
| // compiled to 32 bit arch, are split up into two registers. |
| ArgValue = |
| getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget); |
| } else { |
| const TargetRegisterClass *RC; |
| if (RegVT == MVT::i8) |
| RC = &X86::GR8RegClass; |
| else if (RegVT == MVT::i16) |
| RC = &X86::GR16RegClass; |
| else if (RegVT == MVT::i32) |
| RC = &X86::GR32RegClass; |
| else if (Is64Bit && RegVT == MVT::i64) |
| RC = &X86::GR64RegClass; |
| else if (RegVT == MVT::f32) |
| RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; |
| else if (RegVT == MVT::f64) |
| RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; |
| else if (RegVT == MVT::f80) |
| RC = &X86::RFP80RegClass; |
| else if (RegVT == MVT::f128) |
| RC = &X86::VR128RegClass; |
| else if (RegVT.is512BitVector()) |
| RC = &X86::VR512RegClass; |
| else if (RegVT.is256BitVector()) |
| RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass; |
| else if (RegVT.is128BitVector()) |
| RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass; |
| else if (RegVT == MVT::x86mmx) |
| RC = &X86::VR64RegClass; |
| else if (RegVT == MVT::v1i1) |
| RC = &X86::VK1RegClass; |
| else if (RegVT == MVT::v8i1) |
| RC = &X86::VK8RegClass; |
| else if (RegVT == MVT::v16i1) |
| RC = &X86::VK16RegClass; |
| else if (RegVT == MVT::v32i1) |
| RC = &X86::VK32RegClass; |
| else if (RegVT == MVT::v64i1) |
| RC = &X86::VK64RegClass; |
| else |
| llvm_unreachable("Unknown argument type!"); |
| |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| // right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::BCvt) |
| ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue); |
| |
| if (VA.isExtInLoc()) { |
| // Handle MMX values passed in XMM regs. |
| if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1) |
| ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); |
| else if (VA.getValVT().isVector() && |
| VA.getValVT().getScalarType() == MVT::i1 && |
| ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) || |
| (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) { |
| // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8 |
| ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG); |
| } else |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| } |
| } else { |
| assert(VA.isMemLoc()); |
| ArgValue = |
| LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex); |
| } |
| |
| // If value is passed via pointer - do a load. |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| ArgValue = |
| DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo()); |
| |
| InVals.push_back(ArgValue); |
| } |
| |
| for (unsigned I = 0, E = Ins.size(); I != E; ++I) { |
| // Swift calling convention does not require we copy the sret argument |
| // into %rax/%eax for the return. We don't set SRetReturnReg for Swift. |
| if (CallConv == CallingConv::Swift) |
| continue; |
| |
| // All x86 ABIs require that for returning structs by value we copy the |
| // sret argument into %rax/%eax (depending on ABI) for the return. Save |
| // the argument into a virtual register so that we can access it from the |
| // return points. |
| if (Ins[I].Flags.isSRet()) { |
| unsigned Reg = FuncInfo->getSRetReturnReg(); |
| if (!Reg) { |
| MVT PtrTy = getPointerTy(DAG.getDataLayout()); |
| Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); |
| FuncInfo->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); |
| break; |
| } |
| } |
| |
| unsigned StackSize = CCInfo.getNextStackOffset(); |
| // Align stack specially for tail calls. |
| if (shouldGuaranteeTCO(CallConv, |
| MF.getTarget().Options.GuaranteedTailCallOpt)) |
| StackSize = GetAlignedArgumentStackSize(StackSize, DAG); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. We |
| // can skip this if there are no va_start calls. |
| if (MFI.hasVAStart() && |
| (Is64Bit || (CallConv != CallingConv::X86_FastCall && |
| CallConv != CallingConv::X86_ThisCall))) { |
| FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); |
| } |
| |
| // Figure out if XMM registers are in use. |
| assert(!(Subtarget.useSoftFloat() && |
| F.hasFnAttribute(Attribute::NoImplicitFloat)) && |
| "SSE register cannot be used when SSE is disabled!"); |
| |
| // 64-bit calling conventions support varargs and register parameters, so we |
| // have to do extra work to spill them in the prologue. |
| if (Is64Bit && isVarArg && MFI.hasVAStart()) { |
| // Find the first unallocated argument registers. |
| ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); |
| ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget); |
| unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs); |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs); |
| assert(!(NumXMMRegs && !Subtarget.hasSSE1()) && |
| "SSE register cannot be used when SSE is disabled!"); |
| |
| // Gather all the live in physical registers. |
| SmallVector<SDValue, 6> LiveGPRs; |
| SmallVector<SDValue, 8> LiveXMMRegs; |
| SDValue ALVal; |
| for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) { |
| unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass); |
| LiveGPRs.push_back( |
| DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64)); |
| } |
| if (!ArgXMMs.empty()) { |
| unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); |
| ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8); |
| for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) { |
| unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass); |
| LiveXMMRegs.push_back( |
| DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32)); |
| } |
| } |
| |
| if (IsWin64) { |
| // Get to the caller-allocated home save location. Add 8 to account |
| // for the return address. |
| int HomeOffset = TFI.getOffsetOfLocalArea() + 8; |
| FuncInfo->setRegSaveFrameIndex( |
| MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); |
| // Fixup to set vararg frame on shadow area (4 x i64). |
| if (NumIntRegs < 4) |
| FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); |
| } else { |
| // For X86-64, if there are vararg parameters that are passed via |
| // registers, then we must store them to their spots on the stack so |
| // they may be loaded by dereferencing the result of va_next. |
| FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); |
| FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); |
| FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject( |
| ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false)); |
| } |
| |
| // Store the integer parameter registers. |
| SmallVector<SDValue, 8> MemOps; |
| SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), |
| getPointerTy(DAG.getDataLayout())); |
| unsigned Offset = FuncInfo->getVarArgsGPOffset(); |
| for (SDValue Val : LiveGPRs) { |
| SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), |
| RSFIN, DAG.getIntPtrConstant(Offset, dl)); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), |
| FuncInfo->getRegSaveFrameIndex(), Offset)); |
| MemOps.push_back(Store); |
| Offset += 8; |
| } |
| |
| if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) { |
| // Now store the XMM (fp + vector) parameter registers. |
| SmallVector<SDValue, 12> SaveXMMOps; |
| SaveXMMOps.push_back(Chain); |
| SaveXMMOps.push_back(ALVal); |
| SaveXMMOps.push_back(DAG.getIntPtrConstant( |
| FuncInfo->getRegSaveFrameIndex(), dl)); |
| SaveXMMOps.push_back(DAG.getIntPtrConstant( |
| FuncInfo->getVarArgsFPOffset(), dl)); |
| SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(), |
| LiveXMMRegs.end()); |
| MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, |
| MVT::Other, SaveXMMOps)); |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); |
| } |
| |
| if (isVarArg && MFI.hasMustTailInVarArgFunc()) { |
| // Find the largest legal vector type. |
| MVT VecVT = MVT::Other; |
| // FIXME: Only some x86_32 calling conventions support AVX512. |
| if (Subtarget.hasAVX512() && |
| (Is64Bit || (CallConv == CallingConv::X86_VectorCall || |
| CallConv == CallingConv::Intel_OCL_BI))) |
| VecVT = MVT::v16f32; |
| else if (Subtarget.hasAVX()) |
| VecVT = MVT::v8f32; |
| else if (Subtarget.hasSSE2()) |
| VecVT = MVT::v4f32; |
| |
| // We forward some GPRs and some vector types. |
| SmallVector<MVT, 2> RegParmTypes; |
| MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32; |
| RegParmTypes.push_back(IntVT); |
| if (VecVT != MVT::Other) |
| RegParmTypes.push_back(VecVT); |
| |
| // Compute the set of forwarded registers. The rest are scratch. |
| SmallVectorImpl<ForwardedRegister> &Forwards = |
| FuncInfo->getForwardedMustTailRegParms(); |
| CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86); |
| |
| // Conservatively forward AL on x86_64, since it might be used for varargs. |
| if (Is64Bit && !CCInfo.isAllocated(X86::AL)) { |
| unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass); |
| Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8)); |
| } |
| |
| // Copy all forwards from physical to virtual registers. |
| for (ForwardedRegister &F : Forwards) { |
| // FIXME: Can we use a less constrained schedule? |
| SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); |
| F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal); |
| } |
| } |
| |
| // Some CCs need callee pop. |
| if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, |
| MF.getTarget().Options.GuaranteedTailCallOpt)) { |
| FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. |
| } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) { |
| // X86 interrupts must pop the error code (and the alignment padding) if |
| // present. |
| FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4); |
| } else { |
| FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. |
| // If this is an sret function, the return should pop the hidden pointer. |
| if (!Is64Bit && !canGuaranteeTCO(CallConv) && |
| !Subtarget.getTargetTriple().isOSMSVCRT() && |
| argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn) |
| FuncInfo->setBytesToPopOnReturn(4); |
| } |
| |
| if (!Is64Bit) { |
| // RegSaveFrameIndex is X86-64 only. |
| FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); |
| if (CallConv == CallingConv::X86_FastCall || |
| CallConv == CallingConv::X86_ThisCall) |
| // fastcc functions can't have varargs. |
| FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); |
| } |
| |
| FuncInfo->setArgumentStackSize(StackSize); |
| |
| if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) { |
| EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn()); |
| if (Personality == EHPersonality::CoreCLR) { |
| assert(Is64Bit); |
| // TODO: Add a mechanism to frame lowering that will allow us to indicate |
| // that we'd prefer this slot be allocated towards the bottom of the frame |
| // (i.e. near the stack pointer after allocating the frame). Every |
| // funclet needs a copy of this slot in its (mostly empty) frame, and the |
| // offset from the bottom of this and each funclet's frame must be the |
| // same, so the size of funclets' (mostly empty) frames is dictated by |
| // how far this slot is from the bottom (since they allocate just enough |
| // space to accommodate holding this slot at the correct offset). |
| int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false); |
| EHInfo->PSPSymFrameIdx = PSPSymFI; |
| } |
| } |
| |
| if (CallConv == CallingConv::X86_RegCall || |
| F.hasFnAttribute("no_caller_saved_registers")) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| for (std::pair<unsigned, unsigned> Pair : MRI.liveins()) |
| MRI.disableCalleeSavedRegister(Pair.first); |
| } |
| |
| return Chain; |
| } |
| |
| SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, |
| SDValue Arg, const SDLoc &dl, |
| SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) const { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), |
| StackPtr, PtrOff); |
| if (Flags.isByVal()) |
| return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); |
| |
| return DAG.getStore( |
| Chain, dl, Arg, PtrOff, |
| MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset)); |
| } |
| |
| /// Emit a load of return address if tail call |
| /// optimization is performed and it is required. |
| SDValue X86TargetLowering::EmitTailCallLoadRetAddr( |
| SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, |
| bool Is64Bit, int FPDiff, const SDLoc &dl) const { |
| // Adjust the Return address stack slot. |
| EVT VT = getPointerTy(DAG.getDataLayout()); |
| OutRetAddr = getReturnAddressFrameIndex(DAG); |
| |
| // Load the "old" Return address. |
| OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo()); |
| return SDValue(OutRetAddr.getNode(), 1); |
| } |
| |
| /// Emit a store of the return address if tail call |
| /// optimization is performed and it is required (FPDiff!=0). |
| static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, |
| SDValue Chain, SDValue RetAddrFrIdx, |
| EVT PtrVT, unsigned SlotSize, |
| int FPDiff, const SDLoc &dl) { |
| // Store the return address to the appropriate stack slot. |
| if (!FPDiff) return Chain; |
| // Calculate the new stack slot for the return address. |
| int NewReturnAddrFI = |
| MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, |
| false); |
| SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); |
| Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, |
| MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), NewReturnAddrFI)); |
| return Chain; |
| } |
| |
| /// Returns a vector_shuffle mask for an movs{s|d}, movd |
| /// operation of specified width. |
| static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> Mask; |
| Mask.push_back(NumElems); |
| for (unsigned i = 1; i != NumElems; ++i) |
| Mask.push_back(i); |
| return DAG.getVectorShuffle(VT, dl, V1, V2, Mask); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool &isTailCall = CLI.IsTailCall; |
| bool isVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool Is64Bit = Subtarget.is64Bit(); |
| bool IsWin64 = Subtarget.isCallingConvWin64(CallConv); |
| StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU()); |
| bool IsSibcall = false; |
| X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); |
| auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); |
| const auto *CI = dyn_cast_or_null<CallInst>(CLI.CS.getInstruction()); |
| const Function *Fn = CI ? CI->getCalledFunction() : nullptr; |
| bool HasNCSR = (CI && CI->hasFnAttr("no_caller_saved_registers")) || |
| (Fn && Fn->hasFnAttribute("no_caller_saved_registers")); |
| const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CS.getInstruction()); |
| bool HasNoCfCheck = |
| (CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()); |
| const Module *M = MF.getMMI().getModule(); |
| Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch"); |
| |
| if (CallConv == CallingConv::X86_INTR) |
| report_fatal_error("X86 interrupts may not be called directly"); |
| |
| if (Attr.getValueAsString() == "true") |
| isTailCall = false; |
| |
| if (Subtarget.isPICStyleGOT() && |
| !MF.getTarget().Options.GuaranteedTailCallOpt) { |
| // If we are using a GOT, disable tail calls to external symbols with |
| // default visibility. Tail calling such a symbol requires using a GOT |
| // relocation, which forces early binding of the symbol. This breaks code |
| // that require lazy function symbol resolution. Using musttail or |
| // GuaranteedTailCallOpt will override this. |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| if (!G || (!G->getGlobal()->hasLocalLinkage() && |
| G->getGlobal()->hasDefaultVisibility())) |
| isTailCall = false; |
| } |
| |
| bool IsMustTail = CLI.CS && CLI.CS.isMustTailCall(); |
| if (IsMustTail) { |
| // Force this to be a tail call. The verifier rules are enough to ensure |
| // that we can lower this successfully without moving the return address |
| // around. |
| isTailCall = true; |
| } else if (isTailCall) { |
| // Check if it's really possible to do a tail call. |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| isVarArg, SR != NotStructReturn, |
| MF.getFunction().hasStructRetAttr(), CLI.RetTy, |
| Outs, OutVals, Ins, DAG); |
| |
| // Sibcalls are automatically detected tailcalls which do not require |
| // ABI changes. |
| if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) |
| IsSibcall = true; |
| |
| if (isTailCall) |
| ++NumTailCalls; |
| } |
| |
| assert(!(isVarArg && canGuaranteeTCO(CallConv)) && |
| "Var args not supported with calling convention fastcc, ghc or hipe"); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| // Allocate shadow area for Win64. |
| if (IsWin64) |
| CCInfo.AllocateStack(32, 8); |
| |
| CCInfo.AnalyzeArguments(Outs, CC_X86); |
| |
| // In vectorcall calling convention a second pass is required for the HVA |
| // types. |
| if (CallingConv::X86_VectorCall == CallConv) { |
| CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86); |
| } |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); |
| if (IsSibcall) |
| // This is a sibcall. The memory operands are available in caller's |
| // own caller's stack. |
| NumBytes = 0; |
| else if (MF.getTarget().Options.GuaranteedTailCallOpt && |
| canGuaranteeTCO(CallConv)) |
| NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); |
| |
| int FPDiff = 0; |
| if (isTailCall && !IsSibcall && !IsMustTail) { |
| // Lower arguments at fp - stackoffset + fpdiff. |
| unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); |
| |
| FPDiff = NumBytesCallerPushed - NumBytes; |
| |
| // Set the delta of movement of the returnaddr stackslot. |
| // But only set if delta is greater than previous delta. |
| if (FPDiff < X86Info->getTCReturnAddrDelta()) |
| X86Info->setTCReturnAddrDelta(FPDiff); |
| } |
| |
| unsigned NumBytesToPush = NumBytes; |
| unsigned NumBytesToPop = NumBytes; |
| |
| // If we have an inalloca argument, all stack space has already been allocated |
| // for us and be right at the top of the stack. We don't support multiple |
| // arguments passed in memory when using inalloca. |
| if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { |
| NumBytesToPush = 0; |
| if (!ArgLocs.back().isMemLoc()) |
| report_fatal_error("cannot use inalloca attribute on a register " |
| "parameter"); |
| if (ArgLocs.back().getLocMemOffset() != 0) |
| report_fatal_error("any parameter with the inalloca attribute must be " |
| "the only memory argument"); |
| } |
| |
| if (!IsSibcall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush, |
| NumBytes - NumBytesToPush, dl); |
| |
| SDValue RetAddrFrIdx; |
| // Load return address for tail calls. |
| if (isTailCall && FPDiff) |
| Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, |
| Is64Bit, FPDiff, dl); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| SDValue StackPtr; |
| |
| // The next loop assumes that the locations are in the same order of the |
| // input arguments. |
| assert(isSortedByValueNo(ArgLocs) && |
| "Argument Location list must be sorted before lowering"); |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization arguments are handle later. |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E; |
| ++I, ++OutIndex) { |
| assert(OutIndex < Outs.size() && "Invalid Out index"); |
| // Skip inalloca arguments, they have already been written. |
| ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags; |
| if (Flags.isInAlloca()) |
| continue; |
| |
| CCValAssign &VA = ArgLocs[I]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = OutVals[OutIndex]; |
| bool isByVal = Flags.isByVal(); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::AExt: |
| if (Arg.getValueType().isVector() && |
| Arg.getValueType().getVectorElementType() == MVT::i1) |
| Arg = lowerMasksToReg(Arg, RegVT, dl, DAG); |
| else if (RegVT.is128BitVector()) { |
| // Special case: passing MMX values in XMM registers. |
| Arg = DAG.getBitcast(MVT::i64, Arg); |
| Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); |
| Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); |
| } else |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getBitcast(RegVT, Arg); |
| break; |
| case CCValAssign::Indirect: { |
| // Store the argument. |
| SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); |
| int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| Chain = DAG.getStore( |
| Chain, dl, Arg, SpillSlot, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); |
| Arg = SpillSlot; |
| break; |
| } |
| } |
| |
| if (VA.needsCustom()) { |
| assert(VA.getValVT() == MVT::v64i1 && |
| "Currently the only custom case is when we split v64i1 to 2 regs"); |
| // Split v64i1 value into two registers |
| Passv64i1ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++I], |
| Subtarget); |
| } else if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| if (isVarArg && IsWin64) { |
| // Win64 ABI requires argument XMM reg to be copied to the corresponding |
| // shadow reg if callee is a varargs function. |
| unsigned ShadowReg = 0; |
| switch (VA.getLocReg()) { |
| case X86::XMM0: ShadowReg = X86::RCX; break; |
| case X86::XMM1: ShadowReg = X86::RDX; break; |
| case X86::XMM2: ShadowReg = X86::R8; break; |
| case X86::XMM3: ShadowReg = X86::R9; break; |
| } |
| if (ShadowReg) |
| RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); |
| } |
| } else if (!IsSibcall && (!isTailCall || isByVal)) { |
| assert(VA.isMemLoc()); |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), |
| getPointerTy(DAG.getDataLayout())); |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, |
| dl, DAG, VA, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| if (Subtarget.isPICStyleGOT()) { |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (!isTailCall) { |
| RegsToPass.push_back(std::make_pair( |
| unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), |
| getPointerTy(DAG.getDataLayout())))); |
| } else { |
| // If we are tail calling and generating PIC/GOT style code load the |
| // address of the callee into ECX. The value in ecx is used as target of |
| // the tail jump. This is done to circumvent the ebx/callee-saved problem |
| // for tail calls on PIC/GOT architectures. Normally we would just put the |
| // address of GOT into ebx and then call target@PLT. But for tail calls |
| // ebx would be restored (since ebx is callee saved) before jumping to the |
| // target@PLT. |
| |
| // Note: The actual moving to ECX is done further down. |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| if (G && !G->getGlobal()->hasLocalLinkage() && |
| G->getGlobal()->hasDefaultVisibility()) |
| Callee = LowerGlobalAddress(Callee, DAG); |
| else if (isa<ExternalSymbolSDNode>(Callee)) |
| Callee = LowerExternalSymbol(Callee, DAG); |
| } |
| } |
| |
| if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) { |
| // From AMD64 ABI document: |
| // For calls that may call functions that use varargs or stdargs |
| // (prototype-less calls or calls to functions containing ellipsis (...) in |
| // the declaration) %al is used as hidden argument to specify the number |
| // of SSE registers used. The contents of %al do not need to match exactly |
| // the number of registers, but must be an ubound on the number of SSE |
| // registers used and is in the range 0 - 8 inclusive. |
| |
| // Count the number of XMM registers allocated. |
| static const MCPhysReg XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); |
| assert((Subtarget.hasSSE1() || !NumXMMRegs) |
| && "SSE registers cannot be used when SSE is disabled"); |
| |
| RegsToPass.push_back(std::make_pair(unsigned(X86::AL), |
| DAG.getConstant(NumXMMRegs, dl, |
| MVT::i8))); |
| } |
| |
| if (isVarArg && IsMustTail) { |
| const auto &Forwards = X86Info->getForwardedMustTailRegParms(); |
| for (const auto &F : Forwards) { |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); |
| RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); |
| } |
| } |
| |
| // For tail calls lower the arguments to the 'real' stack slots. Sibcalls |
| // don't need this because the eligibility check rejects calls that require |
| // shuffling arguments passed in memory. |
| if (!IsSibcall && isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); |
| |
| SmallVector<SDValue, 8> MemOpChains2; |
| SDValue FIN; |
| int FI = 0; |
| for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E; |
| ++I, ++OutsIndex) { |
| CCValAssign &VA = ArgLocs[I]; |
| |
| if (VA.isRegLoc()) { |
| if (VA.needsCustom()) { |
| assert((CallConv == CallingConv::X86_RegCall) && |
| "Expecting custom case only in regcall calling convention"); |
| // This means that we are in special case where one argument was |
| // passed through two register locations - Skip the next location |
| ++I; |
| } |
| |
| continue; |
| } |
| |
| assert(VA.isMemLoc()); |
| SDValue Arg = OutVals[OutsIndex]; |
| ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags; |
| // Skip inalloca arguments. They don't require any work. |
| if (Flags.isInAlloca()) |
| continue; |
| // Create frame index. |
| int32_t Offset = VA.getLocMemOffset()+FPDiff; |
| uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; |
| FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); |
| FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| |
| if (Flags.isByVal()) { |
| // Copy relative to framepointer. |
| SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl); |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), |
| getPointerTy(DAG.getDataLayout())); |
| Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), |
| StackPtr, Source); |
| |
| MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, |
| ArgChain, |
| Flags, DAG, dl)); |
| } else { |
| // Store relative to framepointer. |
| MemOpChains2.push_back(DAG.getStore( |
| ArgChain, dl, Arg, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); |
| } |
| } |
| |
| if (!MemOpChains2.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); |
| |
| // Store the return address to the appropriate stack slot. |
| Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, |
| getPointerTy(DAG.getDataLayout()), |
| RegInfo->getSlotSize(), FPDiff, dl); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (DAG.getTarget().getCodeModel() == CodeModel::Large) { |
| assert(Is64Bit && "Large code model is only legal in 64-bit mode."); |
| // In the 64-bit large code model, we have to make all calls |
| // through a register, since the call instruction's 32-bit |
| // pc-relative offset may not be large enough to hold the whole |
| // address. |
| } else if (Callee->getOpcode() == ISD::GlobalAddress) { |
| // If the callee is a GlobalAddress node (quite common, every direct call |
| // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack |
| // it. |
| GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee); |
| |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| const GlobalValue *GV = G->getGlobal(); |
| if (!GV->hasDLLImportStorageClass()) { |
| unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV); |
| |
| Callee = DAG.getTargetGlobalAddress( |
| GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags); |
| |
| if (OpFlags == X86II::MO_GOTPCREL) { |
| // Add a wrapper. |
| Callee = DAG.getNode(X86ISD::WrapperRIP, dl, |
| getPointerTy(DAG.getDataLayout()), Callee); |
| // Add extra indirection |
| Callee = DAG.getLoad( |
| getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } |
| } |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); |
| unsigned char OpFlags = |
| Subtarget.classifyGlobalFunctionReference(nullptr, *Mod); |
| |
| Callee = DAG.getTargetExternalSymbol( |
| S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags); |
| |
| if (OpFlags == X86II::MO_GOTPCREL) { |
| Callee = DAG.getNode(X86ISD::WrapperRIP, dl, |
| getPointerTy(DAG.getDataLayout()), Callee); |
| Callee = DAG.getLoad( |
| getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } |
| } else if (Subtarget.isTarget64BitILP32() && |
| Callee->getValueType(0) == MVT::i32) { |
| // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI |
| Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| |
| if (!IsSibcall && isTailCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(NumBytesToPop, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), InFlag, dl); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| if (isTailCall) |
| Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32)); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists) then we |
| // set X86_INTR calling convention because it has the same CSR mask |
| // (same preserved registers). |
| const uint32_t *Mask = RegInfo->getCallPreservedMask( |
| MF, HasNCSR ? (CallingConv::ID)CallingConv::X86_INTR : CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| |
| // If this is an invoke in a 32-bit function using a funclet-based |
| // personality, assume the function clobbers all registers. If an exception |
| // is thrown, the runtime will not restore CSRs. |
| // FIXME: Model this more precisely so that we can register allocate across |
| // the normal edge and spill and fill across the exceptional edge. |
| if (!Is64Bit && CLI.CS && CLI.CS.isInvoke()) { |
| const Function &CallerFn = MF.getFunction(); |
| EHPersonality Pers = |
| CallerFn.hasPersonalityFn() |
| ? classifyEHPersonality(CallerFn.getPersonalityFn()) |
| : EHPersonality::Unknown; |
| if (isFuncletEHPersonality(Pers)) |
| Mask = RegInfo->getNoPreservedMask(); |
| } |
| |
| // Define a new register mask from the existing mask. |
| uint32_t *RegMask = nullptr; |
| |
| // In some calling conventions we need to remove the used physical registers |
| // from the reg mask. |
| if (CallConv == CallingConv::X86_RegCall || HasNCSR) { |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| |
| // Allocate a new Reg Mask and copy Mask. |
| RegMask = MF.allocateRegMask(); |
| unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs()); |
| memcpy(RegMask, Mask, sizeof(RegMask[0]) * RegMaskSize); |
| |
| // Make sure all sub registers of the argument registers are reset |
| // in the RegMask. |
| for (auto const &RegPair : RegsToPass) |
| for (MCSubRegIterator SubRegs(RegPair.first, TRI, /*IncludeSelf=*/true); |
| SubRegs.isValid(); ++SubRegs) |
| RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32)); |
| |
| // Create the RegMask Operand according to our updated mask. |
| Ops.push_back(DAG.getRegisterMask(RegMask)); |
| } else { |
| // Create the RegMask Operand according to the static mask. |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| } |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| if (isTailCall) { |
| // We used to do: |
| //// If this is the first return lowered for this function, add the regs |
| //// to the liveout set for the function. |
| // This isn't right, although it's probably harmless on x86; liveouts |
| // should be computed from returns not tail calls. Consider a void |
| // function making a tail call to a function returning int. |
| MF.getFrameInfo().setHasTailCall(); |
| return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops); |
| } |
| |
| if (HasNoCfCheck && IsCFProtectionSupported) { |
| Chain = DAG.getNode(X86ISD::NT_CALL, dl, NodeTys, Ops); |
| } else { |
| Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops); |
| } |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPop; |
| if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, |
| DAG.getTarget().Options.GuaranteedTailCallOpt)) |
| NumBytesForCalleeToPop = NumBytes; // Callee pops everything |
| else if (!Is64Bit && !canGuaranteeTCO(CallConv) && |
| !Subtarget.getTargetTriple().isOSMSVCRT() && |
| SR == StackStructReturn) |
| // If this is a call to a struct-return function, the callee |
| // pops the hidden struct pointer, so we have to push it back. |
| // This is common for Darwin/X86, Linux & Mingw32 targets. |
| // For MSVC Win32 targets, the caller pops the hidden struct pointer. |
| NumBytesForCalleeToPop = 4; |
| else |
| NumBytesForCalleeToPop = 0; // Callee pops nothing. |
| |
| if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) { |
| // No need to reset the stack after the call if the call doesn't return. To |
| // make the MI verify, we'll pretend the callee does it for us. |
| NumBytesForCalleeToPop = NumBytes; |
| } |
| |
| // Returns a flag for retval copy to use. |
| if (!IsSibcall) { |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(NumBytesToPop, dl, true), |
| DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl, |
| true), |
| InFlag, dl); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, |
| InVals, RegMask); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention (tail call) implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Like std call, callee cleans arguments, convention except that ECX is |
| // reserved for storing the tail called function address. Only 2 registers are |
| // free for argument passing (inreg). Tail call optimization is performed |
| // provided: |
| // * tailcallopt is enabled |
| // * caller/callee are fastcc |
| // On X86_64 architecture with GOT-style position independent code only local |
| // (within module) calls are supported at the moment. |
| // To keep the stack aligned according to platform abi the function |
| // GetAlignedArgumentStackSize ensures that argument delta is always multiples |
| // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) |
| // If a tail called function callee has more arguments than the caller the |
| // caller needs to make sure that there is room to move the RETADDR to. This is |
| // achieved by reserving an area the size of the argument delta right after the |
| // original RETADDR, but before the saved framepointer or the spilled registers |
| // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) |
| // stack layout: |
| // arg1 |
| // arg2 |
| // RETADDR |
| // [ new RETADDR |
| // move area ] |
| // (possible EBP) |
| // ESI |
| // EDI |
| // local1 .. |
| |
| /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align |
| /// requirement. |
| unsigned |
| X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, |
| SelectionDAG& DAG) const { |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| uint64_t AlignMask = StackAlignment - 1; |
| int64_t Offset = StackSize; |
| unsigned SlotSize = RegInfo->getSlotSize(); |
| if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { |
| // Number smaller than 12 so just add the difference. |
| Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); |
| } else { |
| // Mask out lower bits, add stackalignment once plus the 12 bytes. |
| Offset = ((~AlignMask) & Offset) + StackAlignment + |
| (StackAlignment-SlotSize); |
| } |
| return Offset; |
| } |
| |
| /// Return true if the given stack call argument is already available in the |
| /// same position (relatively) of the caller's incoming argument stack. |
| static |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, |
| const X86InstrInfo *TII, const CCValAssign &VA) { |
| unsigned Bytes = Arg.getValueSizeInBits() / 8; |
| |
| for (;;) { |
| // Look through nodes that don't alter the bits of the incoming value. |
| unsigned Op = Arg.getOpcode(); |
| if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) { |
| Arg = Arg.getOperand(0); |
| continue; |
| } |
| if (Op == ISD::TRUNCATE) { |
| const SDValue &TruncInput = Arg.getOperand(0); |
| if (TruncInput.getOpcode() == ISD::AssertZext && |
| cast<VTSDNode>(TruncInput.getOperand(1))->getVT() == |
| Arg.getValueType()) { |
| Arg = TruncInput.getOperand(0); |
| continue; |
| } |
| } |
| break; |
| } |
| |
| int FI = INT_MAX; |
| if (Arg.getOpcode() == ISD::CopyFromReg) { |
| unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(VR)) |
| return false; |
| MachineInstr *Def = MRI->getVRegDef(VR); |
| if (!Def) |
| return false; |
| if (!Flags.isByVal()) { |
| if (!TII->isLoadFromStackSlot(*Def, FI)) |
| return false; |
| } else { |
| unsigned Opcode = Def->getOpcode(); |
| if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r || |
| Opcode == X86::LEA64_32r) && |
| Def->getOperand(1).isFI()) { |
| FI = Def->getOperand(1).getIndex(); |
| Bytes = Flags.getByValSize(); |
| } else |
| return false; |
| } |
| } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { |
| if (Flags.isByVal()) |
| // ByVal argument is passed in as a pointer but it's now being |
| // dereferenced. e.g. |
| // define @foo(%struct.X* %A) { |
| // tail call @bar(%struct.X* byval %A) |
| // } |
| return false; |
| SDValue Ptr = Ld->getBasePtr(); |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); |
| if (!FINode) |
| return false; |
| FI = FINode->getIndex(); |
| } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { |
| FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); |
| FI = FINode->getIndex(); |
| Bytes = Flags.getByValSize(); |
| } else |
| return false; |
| |
| assert(FI != INT_MAX); |
| if (!MFI.isFixedObjectIndex(FI)) |
| return false; |
| |
| if (Offset != MFI.getObjectOffset(FI)) |
| return false; |
| |
| // If this is not byval, check that the argument stack object is immutable. |
| // inalloca and argument copy elision can create mutable argument stack |
| // objects. Byval objects can be mutated, but a byval call intends to pass the |
| // mutated memory. |
| if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI)) |
| return false; |
| |
| if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) { |
| // If the argument location is wider than the argument type, check that any |
| // extension flags match. |
| if (Flags.isZExt() != MFI.isObjectZExt(FI) || |
| Flags.isSExt() != MFI.isObjectSExt(FI)) { |
| return false; |
| } |
| } |
| |
| return Bytes == MFI.getObjectSize(FI); |
| } |
| |
| /// Check whether the call is eligible for tail call optimization. Targets |
| /// that want to do tail call optimization should implement this function. |
| bool X86TargetLowering::IsEligibleForTailCallOptimization( |
| SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, |
| bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
| if (!mayTailCallThisCC(CalleeCC)) |
| return false; |
| |
| // If -tailcallopt is specified, make fastcc functions tail-callable. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &CallerF = MF.getFunction(); |
| |
| // If the function return type is x86_fp80 and the callee return type is not, |
| // then the FP_EXTEND of the call result is not a nop. It's not safe to |
| // perform a tailcall optimization here. |
| if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) |
| return false; |
| |
| CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC); |
| bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC); |
| |
| // Win64 functions have extra shadow space for argument homing. Don't do the |
| // sibcall if the caller and callee have mismatched expectations for this |
| // space. |
| if (IsCalleeWin64 != IsCallerWin64) |
| return false; |
| |
| if (DAG.getTarget().Options.GuaranteedTailCallOpt) { |
| if (canGuaranteeTCO(CalleeCC) && CCMatch) |
| return true; |
| return false; |
| } |
| |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. This is what gcc calls sibcall. |
| |
| // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to |
| // emit a special epilogue. |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| if (RegInfo->needsStackRealignment(MF)) |
| return false; |
| |
| // Also avoid sibcall optimization if either caller or callee uses struct |
| // return semantics. |
| if (isCalleeStructRet || isCallerStructRet) |
| return false; |
| |
| // Do not sibcall optimize vararg calls unless all arguments are passed via |
| // registers. |
| LLVMContext &C = *DAG.getContext(); |
| if (isVarArg && !Outs.empty()) { |
| // Optimizing for varargs on Win64 is unlikely to be safe without |
| // additional testing. |
| if (IsCalleeWin64 || IsCallerWin64) |
| return false; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CC_X86); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) |
| if (!ArgLocs[i].isRegLoc()) |
| return false; |
| } |
| |
| // If the call result is in ST0 / ST1, it needs to be popped off the x87 |
| // stack. Therefore, if it's not used by the call it is not safe to optimize |
| // this into a sibcall. |
| bool Unused = false; |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| if (!Ins[i].Used) { |
| Unused = true; |
| break; |
| } |
| } |
| if (Unused) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CalleeCC, false, MF, RVLocs, C); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) |
| return false; |
| } |
| } |
| |
| // Check that the call results are passed in the same way. |
| if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, |
| RetCC_X86, RetCC_X86)) |
| return false; |
| // The callee has to preserve all registers the caller needs to preserve. |
| const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| if (!CCMatch) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| unsigned StackArgsSize = 0; |
| |
| // If the callee takes no arguments then go on to check the results of the |
| // call. |
| if (!Outs.empty()) { |
| // Check if stack adjustment is needed. For now, do not do this if any |
| // argument is passed on the stack. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); |
| |
| // Allocate shadow area for Win64 |
| if (IsCalleeWin64) |
| CCInfo.AllocateStack(32, 8); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CC_X86); |
| StackArgsSize = CCInfo.getNextStackOffset(); |
| |
| if (CCInfo.getNextStackOffset()) { |
| // Check if the arguments are already laid out in the right way as |
| // the caller's fixed stack objects. |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (!VA.isRegLoc()) { |
| if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, |
| MFI, MRI, TII, VA)) |
| return false; |
| } |
| } |
| } |
| |
| bool PositionIndependent = isPositionIndependent(); |
| // If the tailcall address may be in a register, then make sure it's |
| // possible to register allocate for it. In 32-bit, the call address can |
| // only target EAX, EDX, or ECX since the tail call must be scheduled after |
| // callee-saved registers are restored. These happen to be the same |
| // registers used to pass 'inreg' arguments so watch out for those. |
| if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) && |
| !isa<ExternalSymbolSDNode>(Callee)) || |
| PositionIndependent)) { |
| unsigned NumInRegs = 0; |
| // In PIC we need an extra register to formulate the address computation |
| // for the callee. |
| unsigned MaxInRegs = PositionIndependent ? 2 : 3; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (!VA.isRegLoc()) |
| continue; |
| unsigned Reg = VA.getLocReg(); |
| switch (Reg) { |
| default: break; |
| case X86::EAX: case X86::EDX: case X86::ECX: |
| if (++NumInRegs == MaxInRegs) |
| return false; |
| break; |
| } |
| } |
| } |
| |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) |
| return false; |
| } |
| |
| bool CalleeWillPop = |
| X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg, |
| MF.getTarget().Options.GuaranteedTailCallOpt); |
| |
| if (unsigned BytesToPop = |
| MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) { |
| // If we have bytes to pop, the callee must pop them. |
| bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize; |
| if (!CalleePopMatches) |
| return false; |
| } else if (CalleeWillPop && StackArgsSize > 0) { |
| // If we don't have bytes to pop, make sure the callee doesn't pop any. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| FastISel * |
| X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) const { |
| return X86::createFastISel(funcInfo, libInfo); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| static bool MayFoldLoad(SDValue Op) { |
| return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); |
| } |
| |
| static bool MayFoldIntoStore(SDValue Op) { |
| return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); |
| } |
| |
| static bool MayFoldIntoZeroExtend(SDValue Op) { |
| if (Op.hasOneUse()) { |
| unsigned Opcode = Op.getNode()->use_begin()->getOpcode(); |
| return (ISD::ZERO_EXTEND == Opcode); |
| } |
| return false; |
| } |
| |
| static bool isTargetShuffle(unsigned Opcode) { |
| switch(Opcode) { |
| default: return false; |
| case X86ISD::BLENDI: |
| case X86ISD::PSHUFB: |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFHW: |
| case X86ISD::PSHUFLW: |
| case X86ISD::SHUFP: |
| case X86ISD::INSERTPS: |
| case X86ISD::EXTRQI: |
| case X86ISD::INSERTQI: |
| case X86ISD::PALIGNR: |
| case X86ISD::VSHLDQ: |
| case X86ISD::VSRLDQ: |
| case X86ISD::MOVLHPS: |
| case X86ISD::MOVHLPS: |
| case X86ISD::MOVSHDUP: |
| case X86ISD::MOVSLDUP: |
| case X86ISD::MOVDDUP: |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: |
| case X86ISD::UNPCKL: |
| case X86ISD::UNPCKH: |
| case X86ISD::VBROADCAST: |
| case X86ISD::VPERMILPI: |
| case X86ISD::VPERMILPV: |
| case X86ISD::VPERM2X128: |
| case X86ISD::SHUF128: |
| case X86ISD::VPERMIL2: |
| case X86ISD::VPERMI: |
| case X86ISD::VPPERM: |
| case X86ISD::VPERMV: |
| case X86ISD::VPERMV3: |
| case X86ISD::VZEXT_MOVL: |
| return true; |
| } |
| } |
| |
| static bool isTargetShuffleVariableMask(unsigned Opcode) { |
| switch (Opcode) { |
| default: return false; |
| // Target Shuffles. |
| case X86ISD::PSHUFB: |
| case X86ISD::VPERMILPV: |
| case X86ISD::VPERMIL2: |
| case X86ISD::VPPERM: |
| case X86ISD::VPERMV: |
| case X86ISD::VPERMV3: |
| return true; |
| // 'Faux' Target Shuffles. |
| case ISD::AND: |
| case X86ISD::ANDNP: |
| return true; |
| } |
| } |
| |
| SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| int ReturnAddrIndex = FuncInfo->getRAIndex(); |
| |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| unsigned SlotSize = RegInfo->getSlotSize(); |
| ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, |
| -(int64_t)SlotSize, |
| false); |
| FuncInfo->setRAIndex(ReturnAddrIndex); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout())); |
| } |
| |
| bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, |
| bool hasSymbolicDisplacement) { |
| // Offset should fit into 32 bit immediate field. |
| if (!isInt<32>(Offset)) |
| return false; |
| |
| // If we don't have a symbolic displacement - we don't have any extra |
| // restrictions. |
| if (!hasSymbolicDisplacement) |
| return true; |
| |
| // FIXME: Some tweaks might be needed for medium code model. |
| if (M != CodeModel::Small && M != CodeModel::Kernel) |
| return false; |
| |
| // For small code model we assume that latest object is 16MB before end of 31 |
| // bits boundary. We may also accept pretty large negative constants knowing |
| // that all objects are in the positive half of address space. |
| if (M == CodeModel::Small && Offset < 16*1024*1024) |
| return true; |
| |
| // For kernel code model we know that all object resist in the negative half |
| // of 32bits address space. We may not accept negative offsets, since they may |
| // be just off and we may accept pretty large positive ones. |
| if (M == CodeModel::Kernel && Offset >= 0) |
| return true; |
| |
| return false; |
| } |
| |
| /// Determines whether the callee is required to pop its own arguments. |
| /// Callee pop is necessary to support tail calls. |
| bool X86::isCalleePop(CallingConv::ID CallingConv, |
| bool is64Bit, bool IsVarArg, bool GuaranteeTCO) { |
| // If GuaranteeTCO is true, we force some calls to be callee pop so that we |
| // can guarantee TCO. |
| if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO)) |
| return true; |
| |
| switch (CallingConv) { |
| default: |
| return false; |
| case CallingConv::X86_StdCall: |
| case CallingConv::X86_FastCall: |
| case CallingConv::X86_ThisCall: |
| case CallingConv::X86_VectorCall: |
| return !is64Bit; |
| } |
| } |
| |
| /// Return true if the condition is an unsigned comparison operation. |
| static bool isX86CCUnsigned(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| llvm_unreachable("Invalid integer condition!"); |
| case X86::COND_E: |
| case X86::COND_NE: |
| case X86::COND_B: |
| case X86::COND_A: |
| case X86::COND_BE: |
| case X86::COND_AE: |
| return true; |
| case X86::COND_G: |
| case X86::COND_GE: |
| case X86::COND_L: |
| case X86::COND_LE: |
| return false; |
| } |
| } |
| |
| static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) { |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Invalid integer condition!"); |
| case ISD::SETEQ: return X86::COND_E; |
| case ISD::SETGT: return X86::COND_G; |
| case ISD::SETGE: return X86::COND_GE; |
| case ISD::SETLT: return X86::COND_L; |
| case ISD::SETLE: return X86::COND_LE; |
| case ISD::SETNE: return X86::COND_NE; |
| case ISD::SETULT: return X86::COND_B; |
| case ISD::SETUGT: return X86::COND_A; |
| case ISD::SETULE: return X86::COND_BE; |
| case ISD::SETUGE: return X86::COND_AE; |
| } |
| } |
| |
| /// Do a one-to-one translation of a ISD::CondCode to the X86-specific |
| /// condition code, returning the condition code and the LHS/RHS of the |
| /// comparison to make. |
| static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL, |
| bool isFP, SDValue &LHS, SDValue &RHS, |
| SelectionDAG &DAG) { |
| if (!isFP) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { |
| // X > -1 -> X == 0, jump !sign. |
| RHS = DAG.getConstant(0, DL, RHS.getValueType()); |
| return X86::COND_NS; |
| } |
| if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { |
| // X < 0 -> X == 0, jump on sign. |
| return X86::COND_S; |
| } |
| if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { |
| // X < 1 -> X <= 0 |
| RHS = DAG.getConstant(0, DL, RHS.getValueType()); |
| return X86::COND_LE; |
| } |
| } |
| |
| return TranslateIntegerX86CC(SetCCOpcode); |
| } |
| |
| // First determine if it is required or is profitable to flip the operands. |
| |
| // If LHS is a foldable load, but RHS is not, flip the condition. |
| if (ISD::isNON_EXTLoad(LHS.getNode()) && |
| !ISD::isNON_EXTLoad(RHS.getNode())) { |
| SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); |
| std::swap(LHS, RHS); |
| } |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| std::swap(LHS, RHS); |
| break; |
| } |
| |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Condcode should be pre-legalized away"); |
| case ISD::SETUEQ: |
| case ISD::SETEQ: return X86::COND_E; |
| case ISD::SETOLT: // flipped |
| case ISD::SETOGT: |
| case ISD::SETGT: return X86::COND_A; |
| case ISD::SETOLE: // flipped |
| case ISD::SETOGE: |
| case ISD::SETGE: return X86::COND_AE; |
| case ISD::SETUGT: // flipped |
| case ISD::SETULT: |
| case ISD::SETLT: return X86::COND_B; |
| case ISD::SETUGE: // flipped |
| case ISD::SETULE: |
| case ISD::SETLE: return X86::COND_BE; |
| case ISD::SETONE: |
| case ISD::SETNE: return X86::COND_NE; |
| case ISD::SETUO: return X86::COND_P; |
| case ISD::SETO: return X86::COND_NP; |
| case ISD::SETOEQ: |
| case ISD::SETUNE: return X86::COND_INVALID; |
| } |
| } |
| |
| /// Is there a floating point cmov for the specific X86 condition code? |
| /// Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86::COND_B: |
| case X86::COND_BE: |
| case X86::COND_E: |
| case X86::COND_P: |
| case X86::COND_A: |
| case X86::COND_AE: |
| case X86::COND_NE: |
| case X86::COND_NP: |
| return true; |
| } |
| } |
| |
| |
| bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| |
| const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic); |
| if (!IntrData) |
| return false; |
| |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.flags = MachineMemOperand::MONone; |
| Info.offset = 0; |
| |
| switch (IntrData->Type) { |
| case TRUNCATE_TO_MEM_VI8: |
| case TRUNCATE_TO_MEM_VI16: |
| case TRUNCATE_TO_MEM_VI32: { |
| Info.ptrVal = I.getArgOperand(0); |
| MVT VT = MVT::getVT(I.getArgOperand(1)->getType()); |
| MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE; |
| if (IntrData->Type == TRUNCATE_TO_MEM_VI8) |
| ScalarVT = MVT::i8; |
| else if (IntrData->Type == TRUNCATE_TO_MEM_VI16) |
| ScalarVT = MVT::i16; |
| else if (IntrData->Type == TRUNCATE_TO_MEM_VI32) |
| ScalarVT = MVT::i32; |
| |
| Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements()); |
| Info.align = 1; |
| Info.flags |= MachineMemOperand::MOStore; |
| break; |
| } |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { |
| if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) |
| return true; |
| } |
| return false; |
| } |
| |
| bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load, |
| ISD::LoadExtType ExtTy, |
| EVT NewVT) const { |
| // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF |
| // relocation target a movq or addq instruction: don't let the load shrink. |
| SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr(); |
| if (BasePtr.getOpcode() == X86ISD::WrapperRIP) |
| if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) |
| return GA->getTargetFlags() != X86II::MO_GOTTPOFF; |
| return true; |
| } |
| |
| /// Returns true if it is beneficial to convert a load of a constant |
| /// to just the constant itself. |
| bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| if (BitSize == 0 || BitSize > 64) |
| return false; |
| return true; |
| } |
| |
| bool X86TargetLowering::convertSelectOfConstantsToMath(EVT VT) const { |
| // TODO: It might be a win to ease or lift this restriction, but the generic |
| // folds in DAGCombiner conflict with vector folds for an AVX512 target. |
| if (VT.isVector() && Subtarget.hasAVX512()) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, |
| unsigned Index) const { |
| if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) |
| return false; |
| |
| // Mask vectors support all subregister combinations and operations that |
| // extract half of vector. |
| if (ResVT.getVectorElementType() == MVT::i1) |
| return Index == 0 || ((ResVT.getSizeInBits() == SrcVT.getSizeInBits()*2) && |
| (Index == ResVT.getVectorNumElements())); |
| |
| return (Index % ResVT.getVectorNumElements()) == 0; |
| } |
| |
| bool X86TargetLowering::isCheapToSpeculateCttz() const { |
| // Speculate cttz only if we can directly use TZCNT. |
| return Subtarget.hasBMI(); |
| } |
| |
| bool X86TargetLowering::isCheapToSpeculateCtlz() const { |
| // Speculate ctlz only if we can directly use LZCNT. |
| return Subtarget.hasLZCNT(); |
| } |
| |
| bool X86TargetLowering::isLoadBitCastBeneficial(EVT LoadVT, |
| EVT BitcastVT) const { |
| if (!Subtarget.hasDQI() && BitcastVT == MVT::v8i1) |
| return false; |
| |
| return TargetLowering::isLoadBitCastBeneficial(LoadVT, BitcastVT); |
| } |
| |
| bool X86TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT, |
| const SelectionDAG &DAG) const { |
| // Do not merge to float value size (128 bytes) if no implicit |
| // float attribute is set. |
| bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute( |
| Attribute::NoImplicitFloat); |
| |
| if (NoFloat) { |
| unsigned MaxIntSize = Subtarget.is64Bit() ? 64 : 32; |
| return (MemVT.getSizeInBits() <= MaxIntSize); |
| } |
| return true; |
| } |
| |
| bool X86TargetLowering::isCtlzFast() const { |
| return Subtarget.hasFastLZCNT(); |
| } |
| |
| bool X86TargetLowering::isMaskAndCmp0FoldingBeneficial( |
| const Instruction &AndI) const { |
| return true; |
| } |
| |
| bool X86TargetLowering::hasAndNotCompare(SDValue Y) const { |
| EVT VT = Y.getValueType(); |
| |
| if (VT.isVector()) |
| return false; |
| |
| if (!Subtarget.hasBMI()) |
| return false; |
| |
| // There are only 32-bit and 64-bit forms for 'andn'. |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return false; |
| |
| // A mask and compare against constant is ok for an 'andn' too |
| // even though the BMI instruction doesn't have an immediate form. |
| |
| return true; |
| } |
| |
| bool X86TargetLowering::hasAndNot(SDValue Y) const { |
| EVT VT = Y.getValueType(); |
| |
| if (!VT.isVector()) // x86 can't form 'andn' with an immediate. |
| return !isa<ConstantSDNode>(Y) && hasAndNotCompare(Y); |
| |
| // Vector. |
| |
| if (!Subtarget.hasSSE1() || VT.getSizeInBits() < 128) |
| return false; |
| |
| if (VT == MVT::v4i32) |
| return true; |
| |
| return Subtarget.hasSSE2(); |
| } |
| |
| bool X86TargetLowering::preferShiftsToClearExtremeBits(SDValue Y) const { |
| EVT VT = Y.getValueType(); |
| |
| // For vectors, we don't have a preference, but we probably want a mask. |
| if (VT.isVector()) |
| return false; |
| |
| // 64-bit shifts on 32-bit targets produce really bad bloated code. |
| if (VT == MVT::i64 && !Subtarget.is64Bit()) |
| return false; |
| |
| return true; |
| } |
| |
| MVT X86TargetLowering::hasFastEqualityCompare(unsigned NumBits) const { |
| MVT VT = MVT::getIntegerVT(NumBits); |
| if (isTypeLegal(VT)) |
| return VT; |
| |
| // PMOVMSKB can handle this. |
| if (NumBits == 128 && isTypeLegal(MVT::v16i8)) |
| return MVT::v16i8; |
| |
| // VPMOVMSKB can handle this. |
| if (NumBits == 256 && isTypeLegal(MVT::v32i8)) |
| return MVT::v32i8; |
| |
| // TODO: Allow 64-bit type for 32-bit target. |
| // TODO: 512-bit types should be allowed, but make sure that those |
| // cases are handled in combineVectorSizedSetCCEquality(). |
| |
| return MVT::INVALID_SIMPLE_VALUE_TYPE; |
| } |
| |
| /// Val is the undef sentinel value or equal to the specified value. |
| static bool isUndefOrEqual(int Val, int CmpVal) { |
| return ((Val == SM_SentinelUndef) || (Val == CmpVal)); |
| } |
| |
| /// Val is either the undef or zero sentinel value. |
| static bool isUndefOrZero(int Val) { |
| return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero)); |
| } |
| |
| /// Return true if every element in Mask, beginning |
| /// from position Pos and ending in Pos+Size is the undef sentinel value. |
| static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) { |
| for (unsigned i = Pos, e = Pos + Size; i != e; ++i) |
| if (Mask[i] != SM_SentinelUndef) |
| return false; |
| return true; |
| } |
| |
| /// Return true if Val falls within the specified range (L, H]. |
| static bool isInRange(int Val, int Low, int Hi) { |
| return (Val >= Low && Val < Hi); |
| } |
| |
| /// Return true if the value of any element in Mask falls within the specified |
| /// range (L, H]. |
| static bool isAnyInRange(ArrayRef<int> Mask, int Low, int Hi) { |
| for (int M : Mask) |
| if (isInRange(M, Low, Hi)) |
| return true; |
| return false; |
| } |
| |
| /// Return true if Val is undef or if its value falls within the |
| /// specified range (L, H]. |
| static bool isUndefOrInRange(int Val, int Low, int Hi) { |
| return (Val == SM_SentinelUndef) || isInRange(Val, Low, Hi); |
| } |
| |
| /// Return true if every element in Mask is undef or if its value |
| /// falls within the specified range (L, H]. |
| static bool isUndefOrInRange(ArrayRef<int> Mask, |
| int Low, int Hi) { |
| for (int M : Mask) |
| if (!isUndefOrInRange(M, Low, Hi)) |
| return false; |
| return true; |
| } |
| |
| /// Return true if Val is undef, zero or if its value falls within the |
| /// specified range (L, H]. |
| static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) { |
| return isUndefOrZero(Val) || isInRange(Val, Low, Hi); |
| } |
| |
| /// Return true if every element in Mask is undef, zero or if its value |
| /// falls within the specified range (L, H]. |
| static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) { |
| for (int M : Mask) |
| if (!isUndefOrZeroOrInRange(M, Low, Hi)) |
| return false; |
| return true; |
| } |
| |
| /// Return true if every element in Mask, beginning |
| /// from position Pos and ending in Pos + Size, falls within the specified |
| /// sequence (Low, Low + Step, ..., Low + (Size - 1) * Step) or is undef. |
| static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, unsigned Pos, |
| unsigned Size, int Low, int Step = 1) { |
| for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step) |
| if (!isUndefOrEqual(Mask[i], Low)) |
| return false; |
| return true; |
| } |
| |
| /// Return true if every element in Mask, beginning |
| /// from position Pos and ending in Pos+Size, falls within the specified |
| /// sequential range (Low, Low+Size], or is undef or is zero. |
| static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos, |
| unsigned Size, int Low) { |
| for (unsigned i = Pos, e = Pos + Size; i != e; ++i, ++Low) |
| if (!isUndefOrZero(Mask[i]) && Mask[i] != Low) |
| return false; |
| return true; |
| } |
| |
| /// Return true if every element in Mask, beginning |
| /// from position Pos and ending in Pos+Size is undef or is zero. |
| static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos, |
| unsigned Size) { |
| for (unsigned i = Pos, e = Pos + Size; i != e; ++i) |
| if (!isUndefOrZero(Mask[i])) |
| return false; |
| return true; |
| } |
| |
| /// Helper function to test whether a shuffle mask could be |
| /// simplified by widening the elements being shuffled. |
| /// |
| /// Appends the mask for wider elements in WidenedMask if valid. Otherwise |
| /// leaves it in an unspecified state. |
| /// |
| /// NOTE: This must handle normal vector shuffle masks and *target* vector |
| /// shuffle masks. The latter have the special property of a '-2' representing |
| /// a zero-ed lane of a vector. |
| static bool canWidenShuffleElements(ArrayRef<int> Mask, |
| SmallVectorImpl<int> &WidenedMask) { |
| WidenedMask.assign(Mask.size() / 2, 0); |
| for (int i = 0, Size = Mask.size(); i < Size; i += 2) { |
| int M0 = Mask[i]; |
| int M1 = Mask[i + 1]; |
| |
| // If both elements are undef, its trivial. |
| if (M0 == SM_SentinelUndef && M1 == SM_SentinelUndef) { |
| WidenedMask[i / 2] = SM_SentinelUndef; |
| continue; |
| } |
| |
| // Check for an undef mask and a mask value properly aligned to fit with |
| // a pair of values. If we find such a case, use the non-undef mask's value. |
| if (M0 == SM_SentinelUndef && M1 >= 0 && (M1 % 2) == 1) { |
| WidenedMask[i / 2] = M1 / 2; |
| continue; |
| } |
| if (M1 == SM_SentinelUndef && M0 >= 0 && (M0 % 2) == 0) { |
| WidenedMask[i / 2] = M0 / 2; |
| continue; |
| } |
| |
| // When zeroing, we need to spread the zeroing across both lanes to widen. |
| if (M0 == SM_SentinelZero || M1 == SM_SentinelZero) { |
| if ((M0 == SM_SentinelZero || M0 == SM_SentinelUndef) && |
| (M1 == SM_SentinelZero || M1 == SM_SentinelUndef)) { |
| WidenedMask[i / 2] = SM_SentinelZero; |
| continue; |
| } |
| return false; |
| } |
| |
| // Finally check if the two mask values are adjacent and aligned with |
| // a pair. |
| if (M0 != SM_SentinelUndef && (M0 % 2) == 0 && (M0 + 1) == M1) { |
| WidenedMask[i / 2] = M0 / 2; |
| continue; |
| } |
| |
| // Otherwise we can't safely widen the elements used in this shuffle. |
| return false; |
| } |
| assert(WidenedMask.size() == Mask.size() / 2 && |
| "Incorrect size of mask after widening the elements!"); |
| |
| return true; |
| } |
| |
| static bool canWidenShuffleElements(ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SmallVectorImpl<int> &WidenedMask) { |
| SmallVector<int, 32> TargetMask(Mask.begin(), Mask.end()); |
| for (int i = 0, Size = TargetMask.size(); i < Size; ++i) { |
| if (TargetMask[i] == SM_SentinelUndef) |
| continue; |
| if (Zeroable[i]) |
| TargetMask[i] = SM_SentinelZero; |
| } |
| return canWidenShuffleElements(TargetMask, WidenedMask); |
| } |
| |
| static bool canWidenShuffleElements(ArrayRef<int> Mask) { |
| SmallVector<int, 32> WidenedMask; |
| return canWidenShuffleElements(Mask, WidenedMask); |
| } |
| |
| /// Returns true if Elt is a constant zero or a floating point constant +0.0. |
| bool X86::isZeroNode(SDValue Elt) { |
| return isNullConstant(Elt) || isNullFPConstant(Elt); |
| } |
| |
| // Build a vector of constants. |
| // Use an UNDEF node if MaskElt == -1. |
| // Split 64-bit constants in the 32-bit mode. |
| static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG, |
| const SDLoc &dl, bool IsMask = false) { |
| |
| SmallVector<SDValue, 32> Ops; |
| bool Split = false; |
| |
| MVT ConstVecVT = VT; |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64); |
| if (!In64BitMode && VT.getVectorElementType() == MVT::i64) { |
| ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2); |
| Split = true; |
| } |
| |
| MVT EltVT = ConstVecVT.getVectorElementType(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| bool IsUndef = Values[i] < 0 && IsMask; |
| SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) : |
| DAG.getConstant(Values[i], dl, EltVT); |
| Ops.push_back(OpNode); |
| if (Split) |
| Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) : |
| DAG.getConstant(0, dl, EltVT)); |
| } |
| SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops); |
| if (Split) |
| ConstsNode = DAG.getBitcast(VT, ConstsNode); |
| return ConstsNode; |
| } |
| |
| static SDValue getConstVector(ArrayRef<APInt> Bits, APInt &Undefs, |
| MVT VT, SelectionDAG &DAG, const SDLoc &dl) { |
| assert(Bits.size() == Undefs.getBitWidth() && |
| "Unequal constant and undef arrays"); |
| SmallVector<SDValue, 32> Ops; |
| bool Split = false; |
| |
| MVT ConstVecVT = VT; |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64); |
| if (!In64BitMode && VT.getVectorElementType() == MVT::i64) { |
| ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2); |
| Split = true; |
| } |
| |
| MVT EltVT = ConstVecVT.getVectorElementType(); |
| for (unsigned i = 0, e = Bits.size(); i != e; ++i) { |
| if (Undefs[i]) { |
| Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT)); |
| continue; |
| } |
| const APInt &V = Bits[i]; |
| assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes"); |
| if (Split) { |
| Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT)); |
| Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT)); |
| } else if (EltVT == MVT::f32) { |
| APFloat FV(APFloat::IEEEsingle(), V); |
| Ops.push_back(DAG.getConstantFP(FV, dl, EltVT)); |
| } else if (EltVT == MVT::f64) { |
| APFloat FV(APFloat::IEEEdouble(), V); |
| Ops.push_back(DAG.getConstantFP(FV, dl, EltVT)); |
| } else { |
| Ops.push_back(DAG.getConstant(V, dl, EltVT)); |
| } |
| } |
| |
| SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops); |
| return DAG.getBitcast(VT, ConstsNode); |
| } |
| |
| /// Returns a vector of specified type with all zero elements. |
| static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() || |
| VT.getVectorElementType() == MVT::i1) && |
| "Unexpected vector type"); |
| |
| // Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest |
| // type. This ensures they get CSE'd. But if the integer type is not |
| // available, use a floating-point +0.0 instead. |
| SDValue Vec; |
| if (!Subtarget.hasSSE2() && VT.is128BitVector()) { |
| Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32); |
| } else if (VT.getVectorElementType() == MVT::i1) { |
| assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) && |
| "Unexpected vector type"); |
| Vec = DAG.getConstant(0, dl, VT); |
| } else { |
| unsigned Num32BitElts = VT.getSizeInBits() / 32; |
| Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts)); |
| } |
| return DAG.getBitcast(VT, Vec); |
| } |
| |
| static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, |
| const SDLoc &dl, unsigned vectorWidth) { |
| EVT VT = Vec.getValueType(); |
| EVT ElVT = VT.getVectorElementType(); |
| unsigned Factor = VT.getSizeInBits()/vectorWidth; |
| EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, |
| VT.getVectorNumElements()/Factor); |
| |
| // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR |
| unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); |
| assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); |
| |
| // This is the index of the first element of the vectorWidth-bit chunk |
| // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. |
| IdxVal &= ~(ElemsPerChunk - 1); |
| |
| // If the input is a buildvector just emit a smaller one. |
| if (Vec.getOpcode() == ISD::BUILD_VECTOR) |
| return DAG.getBuildVector(ResultVT, dl, |
| Vec->ops().slice(IdxVal, ElemsPerChunk)); |
| |
| SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); |
| } |
| |
| /// Generate a DAG to grab 128-bits from a vector > 128 bits. This |
| /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 |
| /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 |
| /// instructions or a simple subregister reference. Idx is an index in the |
| /// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes |
| /// lowering EXTRACT_VECTOR_ELT operations easier. |
| static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| assert((Vec.getValueType().is256BitVector() || |
| Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); |
| return extractSubVector(Vec, IdxVal, DAG, dl, 128); |
| } |
| |
| /// Generate a DAG to grab 256-bits from a 512-bit vector. |
| static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); |
| return extractSubVector(Vec, IdxVal, DAG, dl, 256); |
| } |
| |
| static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal, |
| SelectionDAG &DAG, const SDLoc &dl, |
| unsigned vectorWidth) { |
| assert((vectorWidth == 128 || vectorWidth == 256) && |
| "Unsupported vector width"); |
| // Inserting UNDEF is Result |
| if (Vec.isUndef()) |
| return Result; |
| EVT VT = Vec.getValueType(); |
| EVT ElVT = VT.getVectorElementType(); |
| EVT ResultVT = Result.getValueType(); |
| |
| // Insert the relevant vectorWidth bits. |
| unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); |
| assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); |
| |
| // This is the index of the first element of the vectorWidth-bit chunk |
| // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. |
| IdxVal &= ~(ElemsPerChunk - 1); |
| |
| SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); |
| } |
| |
| /// Generate a DAG to put 128-bits into a vector > 128 bits. This |
| /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or |
| /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a |
| /// simple superregister reference. Idx is an index in the 128 bits |
| /// we want. It need not be aligned to a 128-bit boundary. That makes |
| /// lowering INSERT_VECTOR_ELT operations easier. |
| static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); |
| return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128); |
| } |
| |
| /// Widen a vector to a larger size with the same scalar type, with the new |
| /// elements either zero or undef. |
| static SDValue widenSubVector(MVT VT, SDValue Vec, bool ZeroNewElements, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| assert(Vec.getValueSizeInBits() < VT.getSizeInBits() && |
| Vec.getValueType().getScalarType() == VT.getScalarType() && |
| "Unsupported vector widening type"); |
| SDValue Res = ZeroNewElements ? getZeroVector(VT, Subtarget, DAG, dl) |
| : DAG.getUNDEF(VT); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // Helper for splitting operands of an operation to legal target size and |
| // apply a function on each part. |
| // Useful for operations that are available on SSE2 in 128-bit, on AVX2 in |
| // 256-bit and on AVX512BW in 512-bit. The argument VT is the type used for |
| // deciding if/how to split Ops. Ops elements do *not* have to be of type VT. |
| // The argument Builder is a function that will be applied on each split part: |
| // SDValue Builder(SelectionDAG&G, SDLoc, ArrayRef<SDValue>) |
| template <typename F> |
| SDValue SplitOpsAndApply(SelectionDAG &DAG, const X86Subtarget &Subtarget, |
| const SDLoc &DL, EVT VT, ArrayRef<SDValue> Ops, |
| F Builder, bool CheckBWI = true) { |
| assert(Subtarget.hasSSE2() && "Target assumed to support at least SSE2"); |
| unsigned NumSubs = 1; |
| if ((CheckBWI && Subtarget.useBWIRegs()) || |
| (!CheckBWI && Subtarget.useAVX512Regs())) { |
| if (VT.getSizeInBits() > 512) { |
| NumSubs = VT.getSizeInBits() / 512; |
| assert((VT.getSizeInBits() % 512) == 0 && "Illegal vector size"); |
| } |
| } else if (Subtarget.hasAVX2()) { |
| if (VT.getSizeInBits() > 256) { |
| NumSubs = VT.getSizeInBits() / 256; |
| assert((VT.getSizeInBits() % 256) == 0 && "Illegal vector size"); |
| } |
| } else { |
| if (VT.getSizeInBits() > 128) { |
| NumSubs = VT.getSizeInBits() / 128; |
| assert((VT.getSizeInBits() % 128) == 0 && "Illegal vector size"); |
| } |
| } |
| |
| if (NumSubs == 1) |
| return Builder(DAG, DL, Ops); |
| |
| SmallVector<SDValue, 4> Subs; |
| for (unsigned i = 0; i != NumSubs; ++i) { |
| SmallVector<SDValue, 2> SubOps; |
| for (SDValue Op : Ops) { |
| EVT OpVT = Op.getValueType(); |
| unsigned NumSubElts = OpVT.getVectorNumElements() / NumSubs; |
| unsigned SizeSub = OpVT.getSizeInBits() / NumSubs; |
| SubOps.push_back(extractSubVector(Op, i * NumSubElts, DAG, DL, SizeSub)); |
| } |
| Subs.push_back(Builder(DAG, DL, SubOps)); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Subs); |
| } |
| |
| // Return true if the instruction zeroes the unused upper part of the |
| // destination and accepts mask. |
| static bool isMaskedZeroUpperBitsvXi1(unsigned int Opcode) { |
| switch (Opcode) { |
| default: |
| return false; |
| case X86ISD::CMPM: |
| case X86ISD::CMPM_RND: |
| case ISD::SETCC: |
| return true; |
| } |
| } |
| |
| /// Insert i1-subvector to i1-vector. |
| static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| |
| SDLoc dl(Op); |
| SDValue Vec = Op.getOperand(0); |
| SDValue SubVec = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| |
| if (!isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| // Inserting undef is a nop. We can just return the original vector. |
| if (SubVec.isUndef()) |
| return Vec; |
| |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| if (IdxVal == 0 && Vec.isUndef()) // the operation is legal |
| return Op; |
| |
| MVT OpVT = Op.getSimpleValueType(); |
| unsigned NumElems = OpVT.getVectorNumElements(); |
| |
| SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); |
| |
| // Extend to natively supported kshift. |
| MVT WideOpVT = OpVT; |
| if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) |
| WideOpVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1; |
| |
| // Inserting into the lsbs of a zero vector is legal. ISel will insert shifts |
| // if necessary. |
| if (IdxVal == 0 && ISD::isBuildVectorAllZeros(Vec.getNode())) { |
| // May need to promote to a legal type. |
| Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, |
| getZeroVector(WideOpVT, Subtarget, DAG, dl), |
| SubVec, Idx); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); |
| } |
| |
| MVT SubVecVT = SubVec.getSimpleValueType(); |
| unsigned SubVecNumElems = SubVecVT.getVectorNumElements(); |
| |
| assert(IdxVal + SubVecNumElems <= NumElems && |
| IdxVal % SubVecVT.getSizeInBits() == 0 && |
| "Unexpected index value in INSERT_SUBVECTOR"); |
| |
| SDValue Undef = DAG.getUNDEF(WideOpVT); |
| |
| if (IdxVal == 0) { |
| // Zero lower bits of the Vec |
| SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8); |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, |
| ZeroIdx); |
| Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits); |
| Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits); |
| // Merge them together, SubVec should be zero extended. |
| SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, |
| getZeroVector(WideOpVT, Subtarget, DAG, dl), |
| SubVec, ZeroIdx); |
| Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); |
| } |
| |
| SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, |
| Undef, SubVec, ZeroIdx); |
| |
| if (Vec.isUndef()) { |
| assert(IdxVal != 0 && "Unexpected index"); |
| SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec, |
| DAG.getConstant(IdxVal, dl, MVT::i8)); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx); |
| } |
| |
| if (ISD::isBuildVectorAllZeros(Vec.getNode())) { |
| assert(IdxVal != 0 && "Unexpected index"); |
| NumElems = WideOpVT.getVectorNumElements(); |
| unsigned ShiftLeft = NumElems - SubVecNumElems; |
| unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal; |
| SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec, |
| DAG.getConstant(ShiftLeft, dl, MVT::i8)); |
| if (ShiftRight != 0) |
| SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec, |
| DAG.getConstant(ShiftRight, dl, MVT::i8)); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx); |
| } |
| |
| // Simple case when we put subvector in the upper part |
| if (IdxVal + SubVecNumElems == NumElems) { |
| SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec, |
| DAG.getConstant(IdxVal, dl, MVT::i8)); |
| if (SubVecNumElems * 2 == NumElems) { |
| // Special case, use legal zero extending insert_subvector. This allows |
| // isel to opimitize when bits are known zero. |
| Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVecVT, Vec, ZeroIdx); |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, |
| getZeroVector(WideOpVT, Subtarget, DAG, dl), |
| Vec, ZeroIdx); |
| } else { |
| // Otherwise use explicit shifts to zero the bits. |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, |
| Undef, Vec, ZeroIdx); |
| NumElems = WideOpVT.getVectorNumElements(); |
| SDValue ShiftBits = DAG.getConstant(NumElems - IdxVal, dl, MVT::i8); |
| Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits); |
| Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits); |
| } |
| Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); |
| } |
| |
| // Inserting into the middle is more complicated. |
| |
| NumElems = WideOpVT.getVectorNumElements(); |
| |
| // Widen the vector if needed. |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx); |
| // Move the current value of the bit to be replace to the lsbs. |
| Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, |
| DAG.getConstant(IdxVal, dl, MVT::i8)); |
| // Xor with the new bit. |
| Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Op, SubVec); |
| // Shift to MSB, filling bottom bits with 0. |
| unsigned ShiftLeft = NumElems - SubVecNumElems; |
| Op = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Op, |
| DAG.getConstant(ShiftLeft, dl, MVT::i8)); |
| // Shift to the final position, filling upper bits with 0. |
| unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal; |
| Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Op, |
| DAG.getConstant(ShiftRight, dl, MVT::i8)); |
| // Xor with original vector leaving the new value. |
| Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Vec, Op); |
| // Reduce to original width if needed. |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); |
| } |
| |
| static SDValue concatSubVectors(SDValue V1, SDValue V2, EVT VT, |
| unsigned NumElems, SelectionDAG &DAG, |
| const SDLoc &dl, unsigned VectorWidth) { |
| SDValue V = insertSubVector(DAG.getUNDEF(VT), V1, 0, DAG, dl, VectorWidth); |
| return insertSubVector(V, V2, NumElems / 2, DAG, dl, VectorWidth); |
| } |
| |
| /// Returns a vector of specified type with all bits set. |
| /// Always build ones vectors as <4 x i32>, <8 x i32> or <16 x i32>. |
| /// Then bitcast to their original type, ensuring they get CSE'd. |
| static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) { |
| assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && |
| "Expected a 128/256/512-bit vector type"); |
| |
| APInt Ones = APInt::getAllOnesValue(32); |
| unsigned NumElts = VT.getSizeInBits() / 32; |
| SDValue Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts)); |
| return DAG.getBitcast(VT, Vec); |
| } |
| |
| static SDValue getExtendInVec(unsigned Opc, const SDLoc &DL, EVT VT, SDValue In, |
| SelectionDAG &DAG) { |
| EVT InVT = In.getValueType(); |
| assert((X86ISD::VSEXT == Opc || X86ISD::VZEXT == Opc) && "Unexpected opcode"); |
| |
| if (VT.is128BitVector() && InVT.is128BitVector()) |
| return X86ISD::VSEXT == Opc ? DAG.getSignExtendVectorInReg(In, DL, VT) |
| : DAG.getZeroExtendVectorInReg(In, DL, VT); |
| |
| // For 256-bit vectors, we only need the lower (128-bit) input half. |
| // For 512-bit vectors, we only need the lower input half or quarter. |
| if (VT.getSizeInBits() > 128 && InVT.getSizeInBits() > 128) { |
| int Scale = VT.getScalarSizeInBits() / InVT.getScalarSizeInBits(); |
| In = extractSubVector(In, 0, DAG, DL, |
| std::max(128, (int)VT.getSizeInBits() / Scale)); |
| } |
| |
| return DAG.getNode(Opc, DL, VT, In); |
| } |
| |
| /// Returns a vector_shuffle node for an unpackl operation. |
| static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT, |
| SDValue V1, SDValue V2) { |
| SmallVector<int, 8> Mask; |
| createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false); |
| return DAG.getVectorShuffle(VT, dl, V1, V2, Mask); |
| } |
| |
| /// Returns a vector_shuffle node for an unpackh operation. |
| static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT, |
| SDValue V1, SDValue V2) { |
| SmallVector<int, 8> Mask; |
| createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false); |
| return DAG.getVectorShuffle(VT, dl, V1, V2, Mask); |
| } |
| |
| /// Return a vector_shuffle of the specified vector of zero or undef vector. |
| /// This produces a shuffle where the low element of V2 is swizzled into the |
| /// zero/undef vector, landing at element Idx. |
| /// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). |
| static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx, |
| bool IsZero, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = V2.getSimpleValueType(); |
| SDValue V1 = IsZero |
| ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); |
| int NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 16> MaskVec(NumElems); |
| for (int i = 0; i != NumElems; ++i) |
| // If this is the insertion idx, put the low elt of V2 here. |
| MaskVec[i] = (i == Idx) ? NumElems : i; |
| return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec); |
| } |
| |
| static SDValue peekThroughBitcasts(SDValue V) { |
| while (V.getNode() && V.getOpcode() == ISD::BITCAST) |
| V = V.getOperand(0); |
| return V; |
| } |
| |
| static SDValue peekThroughOneUseBitcasts(SDValue V) { |
| while (V.getNode() && V.getOpcode() == ISD::BITCAST && |
| V.getOperand(0).hasOneUse()) |
| V = V.getOperand(0); |
| return V; |
| } |
| |
| // Peek through EXTRACT_SUBVECTORs - typically used for AVX1 256-bit intops. |
| static SDValue peekThroughEXTRACT_SUBVECTORs(SDValue V) { |
| while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) |
| V = V.getOperand(0); |
| return V; |
| } |
| |
| static const Constant *getTargetConstantFromNode(SDValue Op) { |
| Op = peekThroughBitcasts(Op); |
| |
| auto *Load = dyn_cast<LoadSDNode>(Op); |
| if (!Load) |
| return nullptr; |
| |
| SDValue Ptr = Load->getBasePtr(); |
| if (Ptr->getOpcode() == X86ISD::Wrapper || |
| Ptr->getOpcode() == X86ISD::WrapperRIP) |
| Ptr = Ptr->getOperand(0); |
| |
| auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); |
| if (!CNode || CNode->isMachineConstantPoolEntry()) |
| return nullptr; |
| |
| return dyn_cast<Constant>(CNode->getConstVal()); |
| } |
| |
| // Extract raw constant bits from constant pools. |
| static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits, |
| APInt &UndefElts, |
| SmallVectorImpl<APInt> &EltBits, |
| bool AllowWholeUndefs = true, |
| bool AllowPartialUndefs = true) { |
| assert(EltBits.empty() && "Expected an empty EltBits vector"); |
| |
| Op = peekThroughBitcasts(Op); |
| |
| EVT VT = Op.getValueType(); |
| unsigned SizeInBits = VT.getSizeInBits(); |
| assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!"); |
| unsigned NumElts = SizeInBits / EltSizeInBits; |
| |
| // Bitcast a source array of element bits to the target size. |
| auto CastBitData = [&](APInt &UndefSrcElts, ArrayRef<APInt> SrcEltBits) { |
| unsigned NumSrcElts = UndefSrcElts.getBitWidth(); |
| unsigned SrcEltSizeInBits = SrcEltBits[0].getBitWidth(); |
| assert((NumSrcElts * SrcEltSizeInBits) == SizeInBits && |
| "Constant bit sizes don't match"); |
| |
| // Don't split if we don't allow undef bits. |
| bool AllowUndefs = AllowWholeUndefs || AllowPartialUndefs; |
| if (UndefSrcElts.getBoolValue() && !AllowUndefs) |
| return false; |
| |
| // If we're already the right size, don't bother bitcasting. |
| if (NumSrcElts == NumElts) { |
| UndefElts = UndefSrcElts; |
| EltBits.assign(SrcEltBits.begin(), SrcEltBits.end()); |
| return true; |
| } |
| |
| // Extract all the undef/constant element data and pack into single bitsets. |
| APInt UndefBits(SizeInBits, 0); |
| APInt MaskBits(SizeInBits, 0); |
| |
| for (unsigned i = 0; i != NumSrcElts; ++i) { |
| unsigned BitOffset = i * SrcEltSizeInBits; |
| if (UndefSrcElts[i]) |
| UndefBits.setBits(BitOffset, BitOffset + SrcEltSizeInBits); |
| MaskBits.insertBits(SrcEltBits[i], BitOffset); |
| } |
| |
| // Split the undef/constant single bitset data into the target elements. |
| UndefElts = APInt(NumElts, 0); |
| EltBits.resize(NumElts, APInt(EltSizeInBits, 0)); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| unsigned BitOffset = i * EltSizeInBits; |
| APInt UndefEltBits = UndefBits.extractBits(EltSizeInBits, BitOffset); |
| |
| // Only treat an element as UNDEF if all bits are UNDEF. |
| if (UndefEltBits.isAllOnesValue()) { |
| if (!AllowWholeUndefs) |
| return false; |
| UndefElts.setBit(i); |
| continue; |
| } |
| |
| // If only some bits are UNDEF then treat them as zero (or bail if not |
| // supported). |
| if (UndefEltBits.getBoolValue() && !AllowPartialUndefs) |
| return false; |
| |
| APInt Bits = MaskBits.extractBits(EltSizeInBits, BitOffset); |
| EltBits[i] = Bits.getZExtValue(); |
| } |
| return true; |
| }; |
| |
| // Collect constant bits and insert into mask/undef bit masks. |
| auto CollectConstantBits = [](const Constant *Cst, APInt &Mask, APInt &Undefs, |
| unsigned UndefBitIndex) { |
| if (!Cst) |
| return false; |
| if (isa<UndefValue>(Cst)) { |
| Undefs.setBit(UndefBitIndex); |
| return true; |
| } |
| if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { |
| Mask = CInt->getValue(); |
| return true; |
| } |
| if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { |
| Mask = CFP->getValueAPF().bitcastToAPInt(); |
| return true; |
| } |
| return false; |
| }; |
| |
| // Handle UNDEFs. |
| if (Op.isUndef()) { |
| APInt UndefSrcElts = APInt::getAllOnesValue(NumElts); |
| SmallVector<APInt, 64> SrcEltBits(NumElts, APInt(EltSizeInBits, 0)); |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| |
| // Extract scalar constant bits. |
| if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) { |
| APInt UndefSrcElts = APInt::getNullValue(1); |
| SmallVector<APInt, 64> SrcEltBits(1, Cst->getAPIntValue()); |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| if (auto *Cst = dyn_cast<ConstantFPSDNode>(Op)) { |
| APInt UndefSrcElts = APInt::getNullValue(1); |
| APInt RawBits = Cst->getValueAPF().bitcastToAPInt(); |
| SmallVector<APInt, 64> SrcEltBits(1, RawBits); |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| |
| // Extract constant bits from build vector. |
| if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { |
| unsigned SrcEltSizeInBits = VT.getScalarSizeInBits(); |
| unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits; |
| |
| APInt UndefSrcElts(NumSrcElts, 0); |
| SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0)); |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| const SDValue &Src = Op.getOperand(i); |
| if (Src.isUndef()) { |
| UndefSrcElts.setBit(i); |
| continue; |
| } |
| auto *Cst = cast<ConstantSDNode>(Src); |
| SrcEltBits[i] = Cst->getAPIntValue().zextOrTrunc(SrcEltSizeInBits); |
| } |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| |
| // Extract constant bits from constant pool vector. |
| if (auto *Cst = getTargetConstantFromNode(Op)) { |
| Type *CstTy = Cst->getType(); |
| if (!CstTy->isVectorTy() || (SizeInBits != CstTy->getPrimitiveSizeInBits())) |
| return false; |
| |
| unsigned SrcEltSizeInBits = CstTy->getScalarSizeInBits(); |
| unsigned NumSrcElts = CstTy->getVectorNumElements(); |
| |
| APInt UndefSrcElts(NumSrcElts, 0); |
| SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0)); |
| for (unsigned i = 0; i != NumSrcElts; ++i) |
| if (!CollectConstantBits(Cst->getAggregateElement(i), SrcEltBits[i], |
| UndefSrcElts, i)) |
| return false; |
| |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| |
| // Extract constant bits from a broadcasted constant pool scalar. |
| if (Op.getOpcode() == X86ISD::VBROADCAST && |
| EltSizeInBits <= VT.getScalarSizeInBits()) { |
| if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) { |
| unsigned SrcEltSizeInBits = Broadcast->getType()->getScalarSizeInBits(); |
| unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits; |
| |
| APInt UndefSrcElts(NumSrcElts, 0); |
| SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0)); |
| if (CollectConstantBits(Broadcast, SrcEltBits[0], UndefSrcElts, 0)) { |
| if (UndefSrcElts[0]) |
| UndefSrcElts.setBits(0, NumSrcElts); |
| SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]); |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| } |
| } |
| |
| // Extract a rematerialized scalar constant insertion. |
| if (Op.getOpcode() == X86ISD::VZEXT_MOVL && |
| Op.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && |
| isa<ConstantSDNode>(Op.getOperand(0).getOperand(0))) { |
| unsigned SrcEltSizeInBits = VT.getScalarSizeInBits(); |
| unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits; |
| |
| APInt UndefSrcElts(NumSrcElts, 0); |
| SmallVector<APInt, 64> SrcEltBits; |
| auto *CN = cast<ConstantSDNode>(Op.getOperand(0).getOperand(0)); |
| SrcEltBits.push_back(CN->getAPIntValue().zextOrTrunc(SrcEltSizeInBits)); |
| SrcEltBits.append(NumSrcElts - 1, APInt(SrcEltSizeInBits, 0)); |
| return CastBitData(UndefSrcElts, SrcEltBits); |
| } |
| |
| return false; |
| } |
| |
| static bool getTargetShuffleMaskIndices(SDValue MaskNode, |
| unsigned MaskEltSizeInBits, |
| SmallVectorImpl<uint64_t> &RawMask) { |
| APInt UndefElts; |
| SmallVector<APInt, 64> EltBits; |
| |
| // Extract the raw target constant bits. |
| // FIXME: We currently don't support UNDEF bits or mask entries. |
| if (!getTargetConstantBitsFromNode(MaskNode, MaskEltSizeInBits, UndefElts, |
| EltBits, /* AllowWholeUndefs */ false, |
| /* AllowPartialUndefs */ false)) |
| return false; |
| |
| // Insert the extracted elements into the mask. |
| for (APInt Elt : EltBits) |
| RawMask.push_back(Elt.getZExtValue()); |
| |
| return true; |
| } |
| |
| /// Create a shuffle mask that matches the PACKSS/PACKUS truncation. |
| /// Note: This ignores saturation, so inputs must be checked first. |
| static void createPackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, |
| bool Unary) { |
| assert(Mask.empty() && "Expected an empty shuffle mask vector"); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits() / 128; |
| unsigned NumEltsPerLane = 128 / VT.getScalarSizeInBits(); |
| unsigned Offset = Unary ? 0 : NumElts; |
| |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2) |
| Mask.push_back(Elt + (Lane * NumEltsPerLane)); |
| for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2) |
| Mask.push_back(Elt + (Lane * NumEltsPerLane) + Offset); |
| } |
| } |
| |
| /// Calculates the shuffle mask corresponding to the target-specific opcode. |
| /// If the mask could be calculated, returns it in \p Mask, returns the shuffle |
| /// operands in \p Ops, and returns true. |
| /// Sets \p IsUnary to true if only one source is used. Note that this will set |
| /// IsUnary for shuffles which use a single input multiple times, and in those |
| /// cases it will adjust the mask to only have indices within that single input. |
| /// It is an error to call this with non-empty Mask/Ops vectors. |
| static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero, |
| SmallVectorImpl<SDValue> &Ops, |
| SmallVectorImpl<int> &Mask, bool &IsUnary) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDValue ImmN; |
| |
| assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector"); |
| assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector"); |
| |
| IsUnary = false; |
| bool IsFakeUnary = false; |
| switch(N->getOpcode()) { |
| case X86ISD::BLENDI: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeBLENDMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::SHUFP: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeSHUFPMask(NumElems, VT.getScalarSizeInBits(), |
| cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::INSERTPS: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::EXTRQI: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| if (isa<ConstantSDNode>(N->getOperand(1)) && |
| isa<ConstantSDNode>(N->getOperand(2))) { |
| int BitLen = N->getConstantOperandVal(1); |
| int BitIdx = N->getConstantOperandVal(2); |
| DecodeEXTRQIMask(NumElems, VT.getScalarSizeInBits(), BitLen, BitIdx, |
| Mask); |
| IsUnary = true; |
| } |
| break; |
| case X86ISD::INSERTQI: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| if (isa<ConstantSDNode>(N->getOperand(2)) && |
| isa<ConstantSDNode>(N->getOperand(3))) { |
| int BitLen = N->getConstantOperandVal(2); |
| int BitIdx = N->getConstantOperandVal(3); |
| DecodeINSERTQIMask(NumElems, VT.getScalarSizeInBits(), BitLen, BitIdx, |
| Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| } |
| break; |
| case X86ISD::UNPCKH: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| DecodeUNPCKHMask(NumElems, VT.getScalarSizeInBits(), Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::UNPCKL: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| DecodeUNPCKLMask(NumElems, VT.getScalarSizeInBits(), Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::MOVHLPS: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| DecodeMOVHLPSMask(NumElems, Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::MOVLHPS: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| DecodeMOVLHPSMask(NumElems, Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::PALIGNR: |
| assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePALIGNRMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| Ops.push_back(N->getOperand(1)); |
| Ops.push_back(N->getOperand(0)); |
| break; |
| case X86ISD::VSHLDQ: |
| assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands() - 1); |
| DecodePSLLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::VSRLDQ: |
| assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands() - 1); |
| DecodePSRLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::PSHUFD: |
| case X86ISD::VPERMILPI: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePSHUFMask(NumElems, VT.getScalarSizeInBits(), |
| cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::PSHUFHW: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePSHUFHWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::PSHUFLW: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePSHUFLWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::VZEXT_MOVL: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| DecodeZeroMoveLowMask(NumElems, Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::VBROADCAST: { |
| SDValue N0 = N->getOperand(0); |
| // See if we're broadcasting from index 0 of an EXTRACT_SUBVECTOR. If so, |
| // add the pre-extracted value to the Ops vector. |
| if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| N0.getOperand(0).getValueType() == VT && |
| N0.getConstantOperandVal(1) == 0) |
| Ops.push_back(N0.getOperand(0)); |
| |
| // We only decode broadcasts of same-sized vectors, unless the broadcast |
| // came from an extract from the original width. If we found one, we |
| // pushed it the Ops vector above. |
| if (N0.getValueType() == VT || !Ops.empty()) { |
| DecodeVectorBroadcast(NumElems, Mask); |
| IsUnary = true; |
| break; |
| } |
| return false; |
| } |
| case X86ISD::VPERMILPV: { |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| IsUnary = true; |
| SDValue MaskNode = N->getOperand(1); |
| unsigned MaskEltSize = VT.getScalarSizeInBits(); |
| SmallVector<uint64_t, 32> RawMask; |
| if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) { |
| DecodeVPERMILPMask(NumElems, VT.getScalarSizeInBits(), RawMask, Mask); |
| break; |
| } |
| if (auto *C = getTargetConstantFromNode(MaskNode)) { |
| DecodeVPERMILPMask(C, MaskEltSize, Mask); |
| break; |
| } |
| return false; |
| } |
| case X86ISD::PSHUFB: { |
| assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| IsUnary = true; |
| SDValue MaskNode = N->getOperand(1); |
| SmallVector<uint64_t, 32> RawMask; |
| if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) { |
| DecodePSHUFBMask(RawMask, Mask); |
| break; |
| } |
| if (auto *C = getTargetConstantFromNode(MaskNode)) { |
| DecodePSHUFBMask(C, Mask); |
| break; |
| } |
| return false; |
| } |
| case X86ISD::VPERMI: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeVPERMMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| DecodeScalarMoveMask(NumElems, /* IsLoad */ false, Mask); |
| break; |
| case X86ISD::VPERM2X128: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeVPERM2X128Mask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::SHUF128: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| decodeVSHUF64x2FamilyMask(NumElems, VT.getScalarSizeInBits(), |
| cast<ConstantSDNode>(ImmN)->getZExtValue(), |
| Mask); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| break; |
| case X86ISD::MOVSLDUP: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| DecodeMOVSLDUPMask(NumElems, Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::MOVSHDUP: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| DecodeMOVSHDUPMask(NumElems, Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::MOVDDUP: |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| DecodeMOVDDUPMask(NumElems, Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::VPERMIL2: { |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| unsigned MaskEltSize = VT.getScalarSizeInBits(); |
| SDValue MaskNode = N->getOperand(2); |
| SDValue CtrlNode = N->getOperand(3); |
| if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) { |
| unsigned CtrlImm = CtrlOp->getZExtValue(); |
| SmallVector<uint64_t, 32> RawMask; |
| if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) { |
| DecodeVPERMIL2PMask(NumElems, VT.getScalarSizeInBits(), CtrlImm, |
| RawMask, Mask); |
| break; |
| } |
| if (auto *C = getTargetConstantFromNode(MaskNode)) { |
| DecodeVPERMIL2PMask(C, CtrlImm, MaskEltSize, Mask); |
| break; |
| } |
| } |
| return false; |
| } |
| case X86ISD::VPPERM: { |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); |
| SDValue MaskNode = N->getOperand(2); |
| SmallVector<uint64_t, 32> RawMask; |
| if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) { |
| DecodeVPPERMMask(RawMask, Mask); |
| break; |
| } |
| if (auto *C = getTargetConstantFromNode(MaskNode)) { |
| DecodeVPPERMMask(C, Mask); |
| break; |
| } |
| return false; |
| } |
| case X86ISD::VPERMV: { |
| assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); |
| IsUnary = true; |
| // Unlike most shuffle nodes, VPERMV's mask operand is operand 0. |
| Ops.push_back(N->getOperand(1)); |
| SDValue MaskNode = N->getOperand(0); |
| SmallVector<uint64_t, 32> RawMask; |
| unsigned MaskEltSize = VT.getScalarSizeInBits(); |
| if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) { |
| DecodeVPERMVMask(RawMask, Mask); |
| break; |
| } |
| if (auto *C = getTargetConstantFromNode(MaskNode)) { |
| DecodeVPERMVMask(C, MaskEltSize, Mask); |
| break; |
| } |
| return false; |
| } |
| case X86ISD::VPERMV3: { |
| assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); |
| assert(N->getOperand(2).getValueType() == VT && "Unexpected value type"); |
| IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2); |
| // Unlike most shuffle nodes, VPERMV3's mask operand is the middle one. |
| Ops.push_back(N->getOperand(0)); |
| Ops.push_back(N->getOperand(2)); |
| SDValue MaskNode = N->getOperand(1); |
| unsigned MaskEltSize = VT.getScalarSizeInBits(); |
| if (auto *C = getTargetConstantFromNode(MaskNode)) { |
| DecodeVPERMV3Mask(C, MaskEltSize, Mask); |
| break; |
| } |
| return false; |
| } |
| default: llvm_unreachable("unknown target shuffle node"); |
| } |
| |
| // Empty mask indicates the decode failed. |
| if (Mask.empty()) |
| return false; |
| |
| // Check if we're getting a shuffle mask with zero'd elements. |
| if (!AllowSentinelZero) |
| if (any_of(Mask, [](int M) { return M == SM_SentinelZero; })) |
| return false; |
| |
| // If we have a fake unary shuffle, the shuffle mask is spread across two |
| // inputs that are actually the same node. Re-map the mask to always point |
| // into the first input. |
| if (IsFakeUnary) |
| for (int &M : Mask) |
| if (M >= (int)Mask.size()) |
| M -= Mask.size(); |
| |
| // If we didn't already add operands in the opcode-specific code, default to |
| // adding 1 or 2 operands starting at 0. |
| if (Ops.empty()) { |
| Ops.push_back(N->getOperand(0)); |
| if (!IsUnary || IsFakeUnary) |
| Ops.push_back(N->getOperand(1)); |
| } |
| |
| return true; |
| } |
| |
| /// Check a target shuffle mask's inputs to see if we can set any values to |
| /// SM_SentinelZero - this is for elements that are known to be zero |
| /// (not just zeroable) from their inputs. |
| /// Returns true if the target shuffle mask was decoded. |
| static bool setTargetShuffleZeroElements(SDValue N, |
| SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<SDValue> &Ops) { |
| bool IsUnary; |
| if (!isTargetShuffle(N.getOpcode())) |
| return false; |
| |
| MVT VT = N.getSimpleValueType(); |
| if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary)) |
| return false; |
| |
| SDValue V1 = Ops[0]; |
| SDValue V2 = IsUnary ? V1 : Ops[1]; |
| |
| V1 = peekThroughBitcasts(V1); |
| V2 = peekThroughBitcasts(V2); |
| |
| assert((VT.getSizeInBits() % Mask.size()) == 0 && |
| "Illegal split of shuffle value type"); |
| unsigned EltSizeInBits = VT.getSizeInBits() / Mask.size(); |
| |
| // Extract known constant input data. |
| APInt UndefSrcElts[2]; |
| SmallVector<APInt, 32> SrcEltBits[2]; |
| bool IsSrcConstant[2] = { |
| getTargetConstantBitsFromNode(V1, EltSizeInBits, UndefSrcElts[0], |
| SrcEltBits[0], true, false), |
| getTargetConstantBitsFromNode(V2, EltSizeInBits, UndefSrcElts[1], |
| SrcEltBits[1], true, false)}; |
| |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) { |
| int M = Mask[i]; |
| |
| // Already decoded as SM_SentinelZero / SM_SentinelUndef. |
| if (M < 0) |
| continue; |
| |
| // Determine shuffle input and normalize the mask. |
| unsigned SrcIdx = M / Size; |
| SDValue V = M < Size ? V1 : V2; |
| M %= Size; |
| |
| // We are referencing an UNDEF input. |
| if (V.isUndef()) { |
| Mask[i] = SM_SentinelUndef; |
| continue; |
| } |
| |
| // SCALAR_TO_VECTOR - only the first element is defined, and the rest UNDEF. |
| // TODO: We currently only set UNDEF for integer types - floats use the same |
| // registers as vectors and many of the scalar folded loads rely on the |
| // SCALAR_TO_VECTOR pattern. |
| if (V.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| (Size % V.getValueType().getVectorNumElements()) == 0) { |
| int Scale = Size / V.getValueType().getVectorNumElements(); |
| int Idx = M / Scale; |
| if (Idx != 0 && !VT.isFloatingPoint()) |
| Mask[i] = SM_SentinelUndef; |
| else if (Idx == 0 && X86::isZeroNode(V.getOperand(0))) |
| Mask[i] = SM_SentinelZero; |
| continue; |
| } |
| |
| // Attempt to extract from the source's constant bits. |
| if (IsSrcConstant[SrcIdx]) { |
| if (UndefSrcElts[SrcIdx][M]) |
| Mask[i] = SM_SentinelUndef; |
| else if (SrcEltBits[SrcIdx][M] == 0) |
| Mask[i] = SM_SentinelZero; |
| } |
| } |
| |
| assert(VT.getVectorNumElements() == Mask.size() && |
| "Different mask size from vector size!"); |
| return true; |
| } |
| |
| // Attempt to decode ops that could be represented as a shuffle mask. |
| // The decoded shuffle mask may contain a different number of elements to the |
| // destination value type. |
| static bool getFauxShuffleMask(SDValue N, SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<SDValue> &Ops, |
| const SelectionDAG &DAG) { |
| Mask.clear(); |
| Ops.clear(); |
| |
| MVT VT = N.getSimpleValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumSizeInBits = VT.getSizeInBits(); |
| unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
| assert((NumBitsPerElt % 8) == 0 && (NumSizeInBits % 8) == 0 && |
| "Expected byte aligned value types"); |
| |
| unsigned Opcode = N.getOpcode(); |
| switch (Opcode) { |
| case ISD::VECTOR_SHUFFLE: { |
| // Don't treat ISD::VECTOR_SHUFFLE as a target shuffle so decode it here. |
| ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(N)->getMask(); |
| if (isUndefOrInRange(ShuffleMask, 0, 2 * NumElts)) { |
| Mask.append(ShuffleMask.begin(), ShuffleMask.end()); |
| Ops.push_back(N.getOperand(0)); |
| Ops.push_back(N.getOperand(1)); |
| return true; |
| } |
| return false; |
| } |
| case ISD::AND: |
| case X86ISD::ANDNP: { |
| // Attempt to decode as a per-byte mask. |
| APInt UndefElts; |
| SmallVector<APInt, 32> EltBits; |
| SDValue N0 = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| bool IsAndN = (X86ISD::ANDNP == Opcode); |
| uint64_t ZeroMask = IsAndN ? 255 : 0; |
| if (!getTargetConstantBitsFromNode(IsAndN ? N0 : N1, 8, UndefElts, EltBits)) |
| return false; |
| for (int i = 0, e = (int)EltBits.size(); i != e; ++i) { |
| if (UndefElts[i]) { |
| Mask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| uint64_t ByteBits = EltBits[i].getZExtValue(); |
| if (ByteBits != 0 && ByteBits != 255) |
| return false; |
| Mask.push_back(ByteBits == ZeroMask ? SM_SentinelZero : i); |
| } |
| Ops.push_back(IsAndN ? N1 : N0); |
| return true; |
| } |
| case ISD::SCALAR_TO_VECTOR: { |
| // Match against a scalar_to_vector of an extract from a vector, |
| // for PEXTRW/PEXTRB we must handle the implicit zext of the scalar. |
| SDValue N0 = N.getOperand(0); |
| SDValue SrcExtract; |
| |
| if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| N0.getOperand(0).getValueType() == VT) || |
| (N0.getOpcode() == X86ISD::PEXTRW && |
| N0.getOperand(0).getValueType() == MVT::v8i16) || |
| (N0.getOpcode() == X86ISD::PEXTRB && |
| N0.getOperand(0).getValueType() == MVT::v16i8)) { |
| SrcExtract = N0; |
| } |
| |
| if (!SrcExtract || !isa<ConstantSDNode>(SrcExtract.getOperand(1))) |
| return false; |
| |
| SDValue SrcVec = SrcExtract.getOperand(0); |
| EVT SrcVT = SrcVec.getValueType(); |
| unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| unsigned NumZeros = (NumBitsPerElt / SrcVT.getScalarSizeInBits()) - 1; |
| |
| unsigned SrcIdx = SrcExtract.getConstantOperandVal(1); |
| if (NumSrcElts <= SrcIdx) |
| return false; |
| |
| Ops.push_back(SrcVec); |
| Mask.push_back(SrcIdx); |
| Mask.append(NumZeros, SM_SentinelZero); |
| Mask.append(NumSrcElts - Mask.size(), SM_SentinelUndef); |
| return true; |
| } |
| case X86ISD::PINSRB: |
| case X86ISD::PINSRW: { |
| SDValue InVec = N.getOperand(0); |
| SDValue InScl = N.getOperand(1); |
| SDValue InIndex = N.getOperand(2); |
| if (!isa<ConstantSDNode>(InIndex) || |
| cast<ConstantSDNode>(InIndex)->getAPIntValue().uge(NumElts)) |
| return false; |
| uint64_t InIdx = N.getConstantOperandVal(2); |
| |
| // Attempt to recognise a PINSR*(VEC, 0, Idx) shuffle pattern. |
| if (X86::isZeroNode(InScl)) { |
| Ops.push_back(InVec); |
| for (unsigned i = 0; i != NumElts; ++i) |
| Mask.push_back(i == InIdx ? SM_SentinelZero : (int)i); |
| return true; |
| } |
| |
| // Attempt to recognise a PINSR*(PEXTR*) shuffle pattern. |
| // TODO: Expand this to support INSERT_VECTOR_ELT/etc. |
| unsigned ExOp = |
| (X86ISD::PINSRB == Opcode ? X86ISD::PEXTRB : X86ISD::PEXTRW); |
| if (InScl.getOpcode() != ExOp) |
| return false; |
| |
| SDValue ExVec = InScl.getOperand(0); |
| SDValue ExIndex = InScl.getOperand(1); |
| if (!isa<ConstantSDNode>(ExIndex) || |
| cast<ConstantSDNode>(ExIndex)->getAPIntValue().uge(NumElts)) |
| return false; |
| uint64_t ExIdx = InScl.getConstantOperandVal(1); |
| |
| Ops.push_back(InVec); |
| Ops.push_back(ExVec); |
| for (unsigned i = 0; i != NumElts; ++i) |
| Mask.push_back(i == InIdx ? NumElts + ExIdx : i); |
| return true; |
| } |
| case X86ISD::PACKSS: |
| case X86ISD::PACKUS: { |
| SDValue N0 = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| assert(N0.getValueType().getVectorNumElements() == (NumElts / 2) && |
| N1.getValueType().getVectorNumElements() == (NumElts / 2) && |
| "Unexpected input value type"); |
| |
| // If we know input saturation won't happen we can treat this |
| // as a truncation shuffle. |
| if (Opcode == X86ISD::PACKSS) { |
| if ((!N0.isUndef() && DAG.ComputeNumSignBits(N0) <= NumBitsPerElt) || |
| (!N1.isUndef() && DAG.ComputeNumSignBits(N1) <= NumBitsPerElt)) |
| return false; |
| } else { |
| APInt ZeroMask = APInt::getHighBitsSet(2 * NumBitsPerElt, NumBitsPerElt); |
| if ((!N0.isUndef() && !DAG.MaskedValueIsZero(N0, ZeroMask)) || |
| (!N1.isUndef() && !DAG.MaskedValueIsZero(N1, ZeroMask))) |
| return false; |
| } |
| |
| bool IsUnary = (N0 == N1); |
| |
| Ops.push_back(N0); |
| if (!IsUnary) |
| Ops.push_back(N1); |
| |
| createPackShuffleMask(VT, Mask, IsUnary); |
| return true; |
| } |
| case X86ISD::VSHLI: |
| case X86ISD::VSRLI: { |
| uint64_t ShiftVal = N.getConstantOperandVal(1); |
| // Out of range bit shifts are guaranteed to be zero. |
| if (NumBitsPerElt <= ShiftVal) { |
| Mask.append(NumElts, SM_SentinelZero); |
| return true; |
| } |
| |
| // We can only decode 'whole byte' bit shifts as shuffles. |
| if ((ShiftVal % 8) != 0) |
| break; |
| |
| uint64_t ByteShift = ShiftVal / 8; |
| unsigned NumBytes = NumSizeInBits / 8; |
| unsigned NumBytesPerElt = NumBitsPerElt / 8; |
| Ops.push_back(N.getOperand(0)); |
| |
| // Clear mask to all zeros and insert the shifted byte indices. |
| Mask.append(NumBytes, SM_SentinelZero); |
| |
| if (X86ISD::VSHLI == Opcode) { |
| for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt) |
| for (unsigned j = ByteShift; j != NumBytesPerElt; ++j) |
| Mask[i + j] = i + j - ByteShift; |
| } else { |
| for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt) |
| for (unsigned j = ByteShift; j != NumBytesPerElt; ++j) |
| Mask[i + j - ByteShift] = i + j; |
| } |
| return true; |
| } |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| case X86ISD::VZEXT: { |
| // TODO - add support for VPMOVZX with smaller input vector types. |
| SDValue Src = N.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| if (NumSizeInBits != SrcVT.getSizeInBits()) |
| break; |
| DecodeZeroExtendMask(SrcVT.getScalarSizeInBits(), VT.getScalarSizeInBits(), |
| VT.getVectorNumElements(), Mask); |
| Ops.push_back(Src); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Removes unused shuffle source inputs and adjusts the shuffle mask accordingly. |
| static void resolveTargetShuffleInputsAndMask(SmallVectorImpl<SDValue> &Inputs, |
| SmallVectorImpl<int> &Mask) { |
| int MaskWidth = Mask.size(); |
| SmallVector<SDValue, 16> UsedInputs; |
| for (int i = 0, e = Inputs.size(); i < e; ++i) { |
| int lo = UsedInputs.size() * MaskWidth; |
| int hi = lo + MaskWidth; |
| |
| // Strip UNDEF input usage. |
| if (Inputs[i].isUndef()) |
| for (int &M : Mask) |
| if ((lo <= M) && (M < hi)) |
| M = SM_SentinelUndef; |
| |
| // Check for unused inputs. |
| if (any_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) { |
| UsedInputs.push_back(Inputs[i]); |
| continue; |
| } |
| for (int &M : Mask) |
| if (lo <= M) |
| M -= MaskWidth; |
| } |
| Inputs = UsedInputs; |
| } |
| |
| /// Calls setTargetShuffleZeroElements to resolve a target shuffle mask's inputs |
| /// and set the SM_SentinelUndef and SM_SentinelZero values. Then check the |
| /// remaining input indices in case we now have a unary shuffle and adjust the |
| /// inputs accordingly. |
| /// Returns true if the target shuffle mask was decoded. |
| static bool resolveTargetShuffleInputs(SDValue Op, |
| SmallVectorImpl<SDValue> &Inputs, |
| SmallVectorImpl<int> &Mask, |
| const SelectionDAG &DAG) { |
| if (!setTargetShuffleZeroElements(Op, Mask, Inputs)) |
| if (!getFauxShuffleMask(Op, Mask, Inputs, DAG)) |
| return false; |
| |
| resolveTargetShuffleInputsAndMask(Inputs, Mask); |
| return true; |
| } |
| |
| /// Returns the scalar element that will make up the ith |
| /// element of the result of the vector shuffle. |
| static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, |
| unsigned Depth) { |
| if (Depth == 6) |
| return SDValue(); // Limit search depth. |
| |
| SDValue V = SDValue(N, 0); |
| EVT VT = V.getValueType(); |
| unsigned Opcode = V.getOpcode(); |
| |
| // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. |
| if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { |
| int Elt = SV->getMaskElt(Index); |
| |
| if (Elt < 0) |
| return DAG.getUNDEF(VT.getVectorElementType()); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) |
| : SV->getOperand(1); |
| return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); |
| } |
| |
| // Recurse into target specific vector shuffles to find scalars. |
| if (isTargetShuffle(Opcode)) { |
| MVT ShufVT = V.getSimpleValueType(); |
| MVT ShufSVT = ShufVT.getVectorElementType(); |
| int NumElems = (int)ShufVT.getVectorNumElements(); |
| SmallVector<int, 16> ShuffleMask; |
| SmallVector<SDValue, 16> ShuffleOps; |
| bool IsUnary; |
| |
| if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary)) |
| return SDValue(); |
| |
| int Elt = ShuffleMask[Index]; |
| if (Elt == SM_SentinelZero) |
| return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT) |
| : DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT); |
| if (Elt == SM_SentinelUndef) |
| return DAG.getUNDEF(ShufSVT); |
| |
| assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range"); |
| SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1]; |
| return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, |
| Depth+1); |
| } |
| |
| // Actual nodes that may contain scalar elements |
| if (Opcode == ISD::BITCAST) { |
| V = V.getOperand(0); |
| EVT SrcVT = V.getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) |
| return SDValue(); |
| } |
| |
| if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return (Index == 0) ? V.getOperand(0) |
| : DAG.getUNDEF(VT.getVectorElementType()); |
| |
| if (V.getOpcode() == ISD::BUILD_VECTOR) |
| return V.getOperand(Index); |
| |
| return SDValue(); |
| } |
| |
| // Use PINSRB/PINSRW/PINSRD to create a build vector. |
| static SDValue LowerBuildVectorAsInsert(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = Op.getSimpleValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert(((VT == MVT::v8i16 && Subtarget.hasSSE2()) || |
| ((VT == MVT::v16i8 || VT == MVT::v4i32) && Subtarget.hasSSE41())) && |
| "Illegal vector insertion"); |
| |
| SDLoc dl(Op); |
| SDValue V; |
| bool First = true; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| bool IsNonZero = (NonZeros & (1 << i)) != 0; |
| if (!IsNonZero) |
| continue; |
| |
| // If the build vector contains zeros or our first insertion is not the |
| // first index then insert into zero vector to break any register |
| // dependency else use SCALAR_TO_VECTOR/VZEXT_MOVL. |
| if (First) { |
| First = false; |
| if (NumZero || 0 != i) |
| V = getZeroVector(VT, Subtarget, DAG, dl); |
| else { |
| assert(0 == i && "Expected insertion into zero-index"); |
| V = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32); |
| V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V); |
| V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V); |
| V = DAG.getBitcast(VT, V); |
| continue; |
| } |
| } |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V, Op.getOperand(i), |
| DAG.getIntPtrConstant(i, dl)); |
| } |
| |
| return V; |
| } |
| |
| /// Custom lower build_vector of v16i8. |
| static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (NumNonZero > 8 && !Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| // SSE4.1 - use PINSRB to insert each byte directly. |
| if (Subtarget.hasSSE41()) |
| return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG, |
| Subtarget); |
| |
| SDLoc dl(Op); |
| SDValue V; |
| bool First = true; |
| |
| // Pre-SSE4.1 - merge byte pairs and insert with PINSRW. |
| for (unsigned i = 0; i < 16; ++i) { |
| bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| if (ThisIsNonZero && First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); |
| else |
| V = DAG.getUNDEF(MVT::v8i16); |
| First = false; |
| } |
| |
| if ((i & 1) != 0) { |
| // FIXME: Investigate extending to i32 instead of just i16. |
| // FIXME: Investigate combining the first 4 bytes as a i32 instead. |
| SDValue ThisElt, LastElt; |
| bool LastIsNonZero = (NonZeros & (1 << (i - 1))) != 0; |
| if (LastIsNonZero) { |
| LastElt = |
| DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i - 1)); |
| } |
| if (ThisIsNonZero) { |
| ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); |
| ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt, |
| DAG.getConstant(8, dl, MVT::i8)); |
| if (LastIsNonZero) |
| ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); |
| } else |
| ThisElt = LastElt; |
| |
| if (ThisElt) { |
| if (1 == i) { |
| V = NumZero ? DAG.getZExtOrTrunc(ThisElt, dl, MVT::i32) |
| : DAG.getAnyExtOrTrunc(ThisElt, dl, MVT::i32); |
| V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V); |
| V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V); |
| V = DAG.getBitcast(MVT::v8i16, V); |
| } else { |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, |
| DAG.getIntPtrConstant(i / 2, dl)); |
| } |
| } |
| } |
| } |
| |
| return DAG.getBitcast(MVT::v16i8, V); |
| } |
| |
| /// Custom lower build_vector of v8i16. |
| static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (NumNonZero > 4 && !Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| // Use PINSRW to insert each byte directly. |
| return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG, |
| Subtarget); |
| } |
| |
| /// Custom lower build_vector of v4i32 or v4f32. |
| static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // Find all zeroable elements. |
| std::bitset<4> Zeroable; |
| for (int i=0; i < 4; ++i) { |
| SDValue Elt = Op->getOperand(i); |
| Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt)); |
| } |
| assert(Zeroable.size() - Zeroable.count() > 1 && |
| "We expect at least two non-zero elements!"); |
| |
| // We only know how to deal with build_vector nodes where elements are either |
| // zeroable or extract_vector_elt with constant index. |
| SDValue FirstNonZero; |
| unsigned FirstNonZeroIdx; |
| for (unsigned i=0; i < 4; ++i) { |
| if (Zeroable[i]) |
| continue; |
| SDValue Elt = Op->getOperand(i); |
| if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(Elt.getOperand(1))) |
| return SDValue(); |
| // Make sure that this node is extracting from a 128-bit vector. |
| MVT VT = Elt.getOperand(0).getSimpleValueType(); |
| if (!VT.is128BitVector()) |
| return SDValue(); |
| if (!FirstNonZero.getNode()) { |
| FirstNonZero = Elt; |
| FirstNonZeroIdx = i; |
| } |
| } |
| |
| assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!"); |
| SDValue V1 = FirstNonZero.getOperand(0); |
| MVT VT = V1.getSimpleValueType(); |
| |
| // See if this build_vector can be lowered as a blend with zero. |
| SDValue Elt; |
| unsigned EltMaskIdx, EltIdx; |
| int Mask[4]; |
| for (EltIdx = 0; EltIdx < 4; ++EltIdx) { |
| if (Zeroable[EltIdx]) { |
| // The zero vector will be on the right hand side. |
| Mask[EltIdx] = EltIdx+4; |
| continue; |
| } |
| |
| Elt = Op->getOperand(EltIdx); |
| // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index. |
| EltMaskIdx = Elt.getConstantOperandVal(1); |
| if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx) |
| break; |
| Mask[EltIdx] = EltIdx; |
| } |
| |
| if (EltIdx == 4) { |
| // Let the shuffle legalizer deal with blend operations. |
| SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op)); |
| if (V1.getSimpleValueType() != VT) |
| V1 = DAG.getBitcast(VT, V1); |
| return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, Mask); |
| } |
| |
| // See if we can lower this build_vector to a INSERTPS. |
| if (!Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| SDValue V2 = Elt.getOperand(0); |
| if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx) |
| V1 = SDValue(); |
| |
| bool CanFold = true; |
| for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) { |
| if (Zeroable[i]) |
| continue; |
| |
| SDValue Current = Op->getOperand(i); |
| SDValue SrcVector = Current->getOperand(0); |
| if (!V1.getNode()) |
| V1 = SrcVector; |
| CanFold = (SrcVector == V1) && (Current.getConstantOperandVal(1) == i); |
| } |
| |
| if (!CanFold) |
| return SDValue(); |
| |
| assert(V1.getNode() && "Expected at least two non-zero elements!"); |
| if (V1.getSimpleValueType() != MVT::v4f32) |
| V1 = DAG.getBitcast(MVT::v4f32, V1); |
| if (V2.getSimpleValueType() != MVT::v4f32) |
| V2 = DAG.getBitcast(MVT::v4f32, V2); |
| |
| // Ok, we can emit an INSERTPS instruction. |
| unsigned ZMask = Zeroable.to_ulong(); |
| |
| unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask; |
| assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); |
| SDLoc DL(Op); |
| SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, |
| DAG.getIntPtrConstant(InsertPSMask, DL)); |
| return DAG.getBitcast(VT, Result); |
| } |
| |
| /// Return a vector logical shift node. |
| static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, |
| SelectionDAG &DAG, const TargetLowering &TLI, |
| const SDLoc &dl) { |
| assert(VT.is128BitVector() && "Unknown type for VShift"); |
| MVT ShVT = MVT::v16i8; |
| unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; |
| SrcOp = DAG.getBitcast(ShVT, SrcOp); |
| assert(NumBits % 8 == 0 && "Only support byte sized shifts"); |
| SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, MVT::i8); |
| return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal)); |
| } |
| |
| static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl, |
| SelectionDAG &DAG) { |
| |
| // Check if the scalar load can be widened into a vector load. And if |
| // the address is "base + cst" see if the cst can be "absorbed" into |
| // the shuffle mask. |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { |
| SDValue Ptr = LD->getBasePtr(); |
| if (!ISD::isNormalLoad(LD) || LD->isVolatile()) |
| return SDValue(); |
| EVT PVT = LD->getValueType(0); |
| if (PVT != MVT::i32 && PVT != MVT::f32) |
| return SDValue(); |
| |
| int FI = -1; |
| int64_t Offset = 0; |
| if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { |
| FI = FINode->getIndex(); |
| Offset = 0; |
| } else if (DAG.isBaseWithConstantOffset(Ptr) && |
| isa<FrameIndexSDNode>(Ptr.getOperand(0))) { |
| FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| Offset = Ptr.getConstantOperandVal(1); |
| Ptr = Ptr.getOperand(0); |
| } else { |
| return SDValue(); |
| } |
| |
| // FIXME: 256-bit vector instructions don't require a strict alignment, |
| // improve this code to support it better. |
| unsigned RequiredAlign = VT.getSizeInBits()/8; |
| SDValue Chain = LD->getChain(); |
| // Make sure the stack object alignment is at least 16 or 32. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { |
| if (MFI.isFixedObjectIndex(FI)) { |
| // Can't change the alignment. FIXME: It's possible to compute |
| // the exact stack offset and reference FI + adjust offset instead. |
| // If someone *really* cares about this. That's the way to implement it. |
| return SDValue(); |
| } else { |
| MFI.setObjectAlignment(FI, RequiredAlign); |
| } |
| } |
| |
| // (Offset % 16 or 32) must be multiple of 4. Then address is then |
| // Ptr + (Offset & ~15). |
| if (Offset < 0) |
| return SDValue(); |
| if ((Offset % RequiredAlign) & 3) |
| return SDValue(); |
| int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1); |
| if (StartOffset) { |
| SDLoc DL(Ptr); |
| Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, |
| DAG.getConstant(StartOffset, DL, Ptr.getValueType())); |
| } |
| |
| int EltNo = (Offset - StartOffset) >> 2; |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); |
| SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(StartOffset)); |
| |
| SmallVector<int, 8> Mask(NumElems, EltNo); |
| |
| return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Given the initializing elements 'Elts' of a vector of type 'VT', see if the |
| /// elements can be replaced by a single large load which has the same value as |
| /// a build_vector or insert_subvector whose loaded operands are 'Elts'. |
| /// |
| /// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a |
| static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts, |
| const SDLoc &DL, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| bool isAfterLegalize) { |
| unsigned NumElems = Elts.size(); |
| |
| int LastLoadedElt = -1; |
| SmallBitVector LoadMask(NumElems, false); |
| SmallBitVector ZeroMask(NumElems, false); |
| SmallBitVector UndefMask(NumElems, false); |
| |
| // For each element in the initializer, see if we've found a load, zero or an |
| // undef. |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue Elt = peekThroughBitcasts(Elts[i]); |
| if (!Elt.getNode()) |
| return SDValue(); |
| |
| if (Elt.isUndef()) |
| UndefMask[i] = true; |
| else if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode())) |
| ZeroMask[i] = true; |
| else if (ISD::isNON_EXTLoad(Elt.getNode())) { |
| LoadMask[i] = true; |
| LastLoadedElt = i; |
| // Each loaded element must be the correct fractional portion of the |
| // requested vector load. |
| if ((NumElems * Elt.getValueSizeInBits()) != VT.getSizeInBits()) |
| return SDValue(); |
| } else |
| return SDValue(); |
| } |
| assert((ZeroMask | UndefMask | LoadMask).count() == NumElems && |
| "Incomplete element masks"); |
| |
| // Handle Special Cases - all undef or undef/zero. |
| if (UndefMask.count() == NumElems) |
| return DAG.getUNDEF(VT); |
| |
| // FIXME: Should we return this as a BUILD_VECTOR instead? |
| if ((ZeroMask | UndefMask).count() == NumElems) |
| return VT.isInteger() ? DAG.getConstant(0, DL, VT) |
| : DAG.getConstantFP(0.0, DL, VT); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| int FirstLoadedElt = LoadMask.find_first(); |
| SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]); |
| LoadSDNode *LDBase = cast<LoadSDNode>(EltBase); |
| EVT LDBaseVT = EltBase.getValueType(); |
| |
| // Consecutive loads can contain UNDEFS but not ZERO elements. |
| // Consecutive loads with UNDEFs and ZEROs elements require a |
| // an additional shuffle stage to clear the ZERO elements. |
| bool IsConsecutiveLoad = true; |
| bool IsConsecutiveLoadWithZeros = true; |
| for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) { |
| if (LoadMask[i]) { |
| SDValue Elt = peekThroughBitcasts(Elts[i]); |
| LoadSDNode *LD = cast<LoadSDNode>(Elt); |
| if (!DAG.areNonVolatileConsecutiveLoads( |
| LD, LDBase, Elt.getValueType().getStoreSizeInBits() / 8, |
| i - FirstLoadedElt)) { |
| IsConsecutiveLoad = false; |
| IsConsecutiveLoadWithZeros = false; |
| break; |
| } |
| } else if (ZeroMask[i]) { |
| IsConsecutiveLoad = false; |
| } |
| } |
| |
| SmallVector<LoadSDNode *, 8> Loads; |
| for (int i = FirstLoadedElt; i <= LastLoadedElt; ++i) |
| if (LoadMask[i]) |
| Loads.push_back(cast<LoadSDNode>(peekThroughBitcasts(Elts[i]))); |
| |
| auto CreateLoad = [&DAG, &DL, &Loads](EVT VT, LoadSDNode *LDBase) { |
| auto MMOFlags = LDBase->getMemOperand()->getFlags(); |
| assert(!(MMOFlags & MachineMemOperand::MOVolatile) && |
| "Cannot merge volatile loads."); |
| SDValue NewLd = |
| DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), |
| LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags); |
| for (auto *LD : Loads) |
| DAG.makeEquivalentMemoryOrdering(LD, NewLd); |
| return NewLd; |
| }; |
| |
| // LOAD - all consecutive load/undefs (must start/end with a load). |
| // If we have found an entire vector of loads and undefs, then return a large |
| // load of the entire vector width starting at the base pointer. |
| // If the vector contains zeros, then attempt to shuffle those elements. |
| if (FirstLoadedElt == 0 && LastLoadedElt == (int)(NumElems - 1) && |
| (IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) { |
| assert(LDBase && "Did not find base load for merging consecutive loads"); |
| EVT EltVT = LDBase->getValueType(0); |
| // Ensure that the input vector size for the merged loads matches the |
| // cumulative size of the input elements. |
| if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems) |
| return SDValue(); |
| |
| if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT)) |
| return SDValue(); |
| |
| // Don't create 256-bit non-temporal aligned loads without AVX2 as these |
| // will lower to regular temporal loads and use the cache. |
| if (LDBase->isNonTemporal() && LDBase->getAlignment() >= 32 && |
| VT.is256BitVector() && !Subtarget.hasInt256()) |
| return SDValue(); |
| |
| if (IsConsecutiveLoad) |
| return CreateLoad(VT, LDBase); |
| |
| // IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded |
| // vector and a zero vector to clear out the zero elements. |
| if (!isAfterLegalize && NumElems == VT.getVectorNumElements()) { |
| SmallVector<int, 4> ClearMask(NumElems, -1); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| if (ZeroMask[i]) |
| ClearMask[i] = i + NumElems; |
| else if (LoadMask[i]) |
| ClearMask[i] = i; |
| } |
| SDValue V = CreateLoad(VT, LDBase); |
| SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT) |
| : DAG.getConstantFP(0.0, DL, VT); |
| return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask); |
| } |
| } |
| |
| int LoadSize = |
| (1 + LastLoadedElt - FirstLoadedElt) * LDBaseVT.getStoreSizeInBits(); |
| |
| // VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs. |
| if (IsConsecutiveLoad && FirstLoadedElt == 0 && |
| (LoadSize == 32 || LoadSize == 64) && |
| ((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) { |
| MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSize) |
| : MVT::getIntegerVT(LoadSize); |
| MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSize); |
| if (TLI.isTypeLegal(VecVT)) { |
| SDVTList Tys = DAG.getVTList(VecVT, MVT::Other); |
| SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; |
| SDValue ResNode = |
| DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT, |
| LDBase->getPointerInfo(), |
| LDBase->getAlignment(), |
| MachineMemOperand::MOLoad); |
| for (auto *LD : Loads) |
| DAG.makeEquivalentMemoryOrdering(LD, ResNode); |
| return DAG.getBitcast(VT, ResNode); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static Constant *getConstantVector(MVT VT, const APInt &SplatValue, |
| unsigned SplatBitSize, LLVMContext &C) { |
| unsigned ScalarSize = VT.getScalarSizeInBits(); |
| unsigned NumElm = SplatBitSize / ScalarSize; |
| |
| SmallVector<Constant *, 32> ConstantVec; |
| for (unsigned i = 0; i < NumElm; i++) { |
| APInt Val = SplatValue.extractBits(ScalarSize, ScalarSize * i); |
| Constant *Const; |
| if (VT.isFloatingPoint()) { |
| if (ScalarSize == 32) { |
| Const = ConstantFP::get(C, APFloat(APFloat::IEEEsingle(), Val)); |
| } else { |
| assert(ScalarSize == 64 && "Unsupported floating point scalar size"); |
| Const = ConstantFP::get(C, APFloat(APFloat::IEEEdouble(), Val)); |
| } |
| } else |
| Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val); |
| ConstantVec.push_back(Const); |
| } |
| return ConstantVector::get(ArrayRef<Constant *>(ConstantVec)); |
| } |
| |
| static bool isUseOfShuffle(SDNode *N) { |
| for (auto *U : N->uses()) { |
| if (isTargetShuffle(U->getOpcode())) |
| return true; |
| if (U->getOpcode() == ISD::BITCAST) // Ignore bitcasts |
| return isUseOfShuffle(U); |
| } |
| return false; |
| } |
| |
| // Check if the current node of build vector is a zero extended vector. |
| // // If so, return the value extended. |
| // // For example: (0,0,0,a,0,0,0,a,0,0,0,a,0,0,0,a) returns a. |
| // // NumElt - return the number of zero extended identical values. |
| // // EltType - return the type of the value include the zero extend. |
| static SDValue isSplatZeroExtended(const BuildVectorSDNode *Op, |
| unsigned &NumElt, MVT &EltType) { |
| SDValue ExtValue = Op->getOperand(0); |
| unsigned NumElts = Op->getNumOperands(); |
| unsigned Delta = NumElts; |
| |
| for (unsigned i = 1; i < NumElts; i++) { |
| if (Op->getOperand(i) == ExtValue) { |
| Delta = i; |
| break; |
| } |
| if (!(Op->getOperand(i).isUndef() || isNullConstant(Op->getOperand(i)))) |
| return SDValue(); |
| } |
| if (!isPowerOf2_32(Delta) || Delta == 1) |
| return SDValue(); |
| |
| for (unsigned i = Delta; i < NumElts; i++) { |
| if (i % Delta == 0) { |
| if (Op->getOperand(i) != ExtValue) |
| return SDValue(); |
| } else if (!(isNullConstant(Op->getOperand(i)) || |
| Op->getOperand(i).isUndef())) |
| return SDValue(); |
| } |
| unsigned EltSize = Op->getSimpleValueType(0).getScalarSizeInBits(); |
| unsigned ExtVTSize = EltSize * Delta; |
| EltType = MVT::getIntegerVT(ExtVTSize); |
| NumElt = NumElts / Delta; |
| return ExtValue; |
| } |
| |
| /// Attempt to use the vbroadcast instruction to generate a splat value |
| /// from a splat BUILD_VECTOR which uses: |
| /// a. A single scalar load, or a constant. |
| /// b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>). |
| /// |
| /// The VBROADCAST node is returned when a pattern is found, |
| /// or SDValue() otherwise. |
| static SDValue lowerBuildVectorAsBroadcast(BuildVectorSDNode *BVOp, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| // VBROADCAST requires AVX. |
| // TODO: Splats could be generated for non-AVX CPUs using SSE |
| // instructions, but there's less potential gain for only 128-bit vectors. |
| if (!Subtarget.hasAVX()) |
| return SDValue(); |
| |
| MVT VT = BVOp->getSimpleValueType(0); |
| SDLoc dl(BVOp); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && |
| "Unsupported vector type for broadcast."); |
| |
| BitVector UndefElements; |
| SDValue Ld = BVOp->getSplatValue(&UndefElements); |
| |
| // Attempt to use VBROADCASTM |
| // From this paterrn: |
| // a. t0 = (zext_i64 (bitcast_i8 v2i1 X)) |
| // b. t1 = (build_vector t0 t0) |
| // |
| // Create (VBROADCASTM v2i1 X) |
| if (Subtarget.hasCDI() && (VT.is512BitVector() || Subtarget.hasVLX())) { |
| MVT EltType = VT.getScalarType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDValue BOperand; |
| SDValue ZeroExtended = isSplatZeroExtended(BVOp, NumElts, EltType); |
| if ((ZeroExtended && ZeroExtended.getOpcode() == ISD::BITCAST) || |
| (Ld && Ld.getOpcode() == ISD::ZERO_EXTEND && |
| Ld.getOperand(0).getOpcode() == ISD::BITCAST)) { |
| if (ZeroExtended) |
| BOperand = ZeroExtended.getOperand(0); |
| else |
| BOperand = Ld.getOperand(0).getOperand(0); |
| MVT MaskVT = BOperand.getSimpleValueType(); |
| if ((EltType == MVT::i64 && MaskVT == MVT::v8i1) || // for broadcastmb2q |
| (EltType == MVT::i32 && MaskVT == MVT::v16i1)) { // for broadcastmw2d |
| SDValue Brdcst = |
| DAG.getNode(X86ISD::VBROADCASTM, dl, |
| MVT::getVectorVT(EltType, NumElts), BOperand); |
| return DAG.getBitcast(VT, Brdcst); |
| } |
| } |
| } |
| |
| // We need a splat of a single value to use broadcast, and it doesn't |
| // make any sense if the value is only in one element of the vector. |
| if (!Ld || (VT.getVectorNumElements() - UndefElements.count()) <= 1) { |
| APInt SplatValue, Undef; |
| unsigned SplatBitSize; |
| bool HasUndef; |
| // Check if this is a repeated constant pattern suitable for broadcasting. |
| if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) && |
| SplatBitSize > VT.getScalarSizeInBits() && |
| SplatBitSize < VT.getSizeInBits()) { |
| // Avoid replacing with broadcast when it's a use of a shuffle |
| // instruction to preserve the present custom lowering of shuffles. |
| if (isUseOfShuffle(BVOp) || BVOp->hasOneUse()) |
| return SDValue(); |
| // replace BUILD_VECTOR with broadcast of the repeated constants. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| LLVMContext *Ctx = DAG.getContext(); |
| MVT PVT = TLI.getPointerTy(DAG.getDataLayout()); |
| if (Subtarget.hasAVX()) { |
| if (SplatBitSize <= 64 && Subtarget.hasAVX2() && |
| !(SplatBitSize == 64 && Subtarget.is32Bit())) { |
| // Splatted value can fit in one INTEGER constant in constant pool. |
| // Load the constant and broadcast it. |
| MVT CVT = MVT::getIntegerVT(SplatBitSize); |
| Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize); |
| Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue); |
| SDValue CP = DAG.getConstantPool(C, PVT); |
| unsigned Repeat = VT.getSizeInBits() / SplatBitSize; |
| |
| unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); |
| Ld = DAG.getLoad( |
| CVT, dl, DAG.getEntryNode(), CP, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl, |
| MVT::getVectorVT(CVT, Repeat), Ld); |
| return DAG.getBitcast(VT, Brdcst); |
| } else if (SplatBitSize == 32 || SplatBitSize == 64) { |
| // Splatted value can fit in one FLOAT constant in constant pool. |
| // Load the constant and broadcast it. |
| // AVX have support for 32 and 64 bit broadcast for floats only. |
| // No 64bit integer in 32bit subtarget. |
| MVT CVT = MVT::getFloatingPointVT(SplatBitSize); |
| // Lower the splat via APFloat directly, to avoid any conversion. |
| Constant *C = |
| SplatBitSize == 32 |
| ? ConstantFP::get(*Ctx, |
| APFloat(APFloat::IEEEsingle(), SplatValue)) |
| : ConstantFP::get(*Ctx, |
| APFloat(APFloat::IEEEdouble(), SplatValue)); |
| SDValue CP = DAG.getConstantPool(C, PVT); |
| unsigned Repeat = VT.getSizeInBits() / SplatBitSize; |
| |
| unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); |
| Ld = DAG.getLoad( |
| CVT, dl, DAG.getEntryNode(), CP, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl, |
| MVT::getVectorVT(CVT, Repeat), Ld); |
| return DAG.getBitcast(VT, Brdcst); |
| } else if (SplatBitSize > 64) { |
| // Load the vector of constants and broadcast it. |
| MVT CVT = VT.getScalarType(); |
| Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize, |
| *Ctx); |
| SDValue VCP = DAG.getConstantPool(VecC, PVT); |
| unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits(); |
| unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment(); |
| Ld = DAG.getLoad( |
| MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld); |
| return DAG.getBitcast(VT, Brdcst); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| bool ConstSplatVal = |
| (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); |
| |
| // Make sure that all of the users of a non-constant load are from the |
| // BUILD_VECTOR node. |
| if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode())) |
| return SDValue(); |
| |
| unsigned ScalarSize = Ld.getValueSizeInBits(); |
| bool IsGE256 = (VT.getSizeInBits() >= 256); |
| |
| // When optimizing for size, generate up to 5 extra bytes for a broadcast |
| // instruction to save 8 or more bytes of constant pool data. |
| // TODO: If multiple splats are generated to load the same constant, |
| // it may be detrimental to overall size. There needs to be a way to detect |
| // that condition to know if this is truly a size win. |
| bool OptForSize = DAG.getMachineFunction().getFunction().optForSize(); |
| |
| // Handle broadcasting a single constant scalar from the constant pool |
| // into a vector. |
| // On Sandybridge (no AVX2), it is still better to load a constant vector |
| // from the constant pool and not to broadcast it from a scalar. |
| // But override that restriction when optimizing for size. |
| // TODO: Check if splatting is recommended for other AVX-capable CPUs. |
| if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) { |
| EVT CVT = Ld.getValueType(); |
| assert(!CVT.isVector() && "Must not broadcast a vector type"); |
| |
| // Splat f32, i32, v4f64, v4i64 in all cases with AVX2. |
| // For size optimization, also splat v2f64 and v2i64, and for size opt |
| // with AVX2, also splat i8 and i16. |
| // With pattern matching, the VBROADCAST node may become a VMOVDDUP. |
| if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || |
| (OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) { |
| const Constant *C = nullptr; |
| if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) |
| C = CI->getConstantIntValue(); |
| else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) |
| C = CF->getConstantFPValue(); |
| |
| assert(C && "Invalid constant type"); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue CP = |
| DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); |
| Ld = DAG.getLoad( |
| CVT, dl, DAG.getEntryNode(), CP, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| } |
| } |
| |
| bool IsLoad = ISD::isNormalLoad(Ld.getNode()); |
| |
| // Handle AVX2 in-register broadcasts. |
| if (!IsLoad && Subtarget.hasInt256() && |
| (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| |
| // The scalar source must be a normal load. |
| if (!IsLoad) |
| return SDValue(); |
| |
| if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || |
| (Subtarget.hasVLX() && ScalarSize == 64)) |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| |
| // The integer check is needed for the 64-bit into 128-bit so it doesn't match |
| // double since there is no vbroadcastsd xmm |
| if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) { |
| if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| } |
| |
| // Unsupported broadcast. |
| return SDValue(); |
| } |
| |
| /// For an EXTRACT_VECTOR_ELT with a constant index return the real |
| /// underlying vector and index. |
| /// |
| /// Modifies \p ExtractedFromVec to the real vector and returns the real |
| /// index. |
| static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec, |
| SDValue ExtIdx) { |
| int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); |
| if (!isa<ShuffleVectorSDNode>(ExtractedFromVec)) |
| return Idx; |
| |
| // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already |
| // lowered this: |
| // (extract_vector_elt (v8f32 %1), Constant<6>) |
| // to: |
| // (extract_vector_elt (vector_shuffle<2,u,u,u> |
| // (extract_subvector (v8f32 %0), Constant<4>), |
| // undef) |
| // Constant<0>) |
| // In this case the vector is the extract_subvector expression and the index |
| // is 2, as specified by the shuffle. |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec); |
| SDValue ShuffleVec = SVOp->getOperand(0); |
| MVT ShuffleVecVT = ShuffleVec.getSimpleValueType(); |
| assert(ShuffleVecVT.getVectorElementType() == |
| ExtractedFromVec.getSimpleValueType().getVectorElementType()); |
| |
| int ShuffleIdx = SVOp->getMaskElt(Idx); |
| if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) { |
| ExtractedFromVec = ShuffleVec; |
| return ShuffleIdx; |
| } |
| return Idx; |
| } |
| |
| static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| // Skip if insert_vec_elt is not supported. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| unsigned NumElems = Op.getNumOperands(); |
| |
| SDValue VecIn1; |
| SDValue VecIn2; |
| SmallVector<unsigned, 4> InsertIndices; |
| SmallVector<int, 8> Mask(NumElems, -1); |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| unsigned Opc = Op.getOperand(i).getOpcode(); |
| |
| if (Opc == ISD::UNDEF) |
| continue; |
| |
| if (Opc != ISD::EXTRACT_VECTOR_ELT) { |
| // Quit if more than 1 elements need inserting. |
| if (InsertIndices.size() > 1) |
| return SDValue(); |
| |
| InsertIndices.push_back(i); |
| continue; |
| } |
| |
| SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); |
| SDValue ExtIdx = Op.getOperand(i).getOperand(1); |
| |
| // Quit if non-constant index. |
| if (!isa<ConstantSDNode>(ExtIdx)) |
| return SDValue(); |
| int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx); |
| |
| // Quit if extracted from vector of different type. |
| if (ExtractedFromVec.getValueType() != VT) |
| return SDValue(); |
| |
| if (!VecIn1.getNode()) |
| VecIn1 = ExtractedFromVec; |
| else if (VecIn1 != ExtractedFromVec) { |
| if (!VecIn2.getNode()) |
| VecIn2 = ExtractedFromVec; |
| else if (VecIn2 != ExtractedFromVec) |
| // Quit if more than 2 vectors to shuffle |
| return SDValue(); |
| } |
| |
| if (ExtractedFromVec == VecIn1) |
| Mask[i] = Idx; |
| else if (ExtractedFromVec == VecIn2) |
| Mask[i] = Idx + NumElems; |
| } |
| |
| if (!VecIn1.getNode()) |
| return SDValue(); |
| |
| VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); |
| SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask); |
| |
| for (unsigned Idx : InsertIndices) |
| NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), |
| DAG.getIntPtrConstant(Idx, DL)); |
| |
| return NV; |
| } |
| |
| static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) { |
| assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && |
| Op.getScalarValueSizeInBits() == 1 && |
| "Can not convert non-constant vector"); |
| uint64_t Immediate = 0; |
| for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { |
| SDValue In = Op.getOperand(idx); |
| if (!In.isUndef()) |
| Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx; |
| } |
| SDLoc dl(Op); |
| MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8)); |
| return DAG.getConstant(Immediate, dl, VT); |
| } |
| // Lower BUILD_VECTOR operation for v8i1 and v16i1 types. |
| static SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| |
| MVT VT = Op.getSimpleValueType(); |
| assert((VT.getVectorElementType() == MVT::i1) && |
| "Unexpected type in LowerBUILD_VECTORvXi1!"); |
| |
| SDLoc dl(Op); |
| if (ISD::isBuildVectorAllZeros(Op.getNode())) |
| return Op; |
| |
| if (ISD::isBuildVectorAllOnes(Op.getNode())) |
| return Op; |
| |
| if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { |
| if (VT == MVT::v64i1 && !Subtarget.is64Bit()) { |
| // Split the pieces. |
| SDValue Lower = |
| DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(0, 32)); |
| SDValue Upper = |
| DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(32, 32)); |
| // We have to manually lower both halves so getNode doesn't try to |
| // reassemble the build_vector. |
| Lower = LowerBUILD_VECTORvXi1(Lower, DAG, Subtarget); |
| Upper = LowerBUILD_VECTORvXi1(Upper, DAG, Subtarget); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lower, Upper); |
| } |
| SDValue Imm = ConvertI1VectorToInteger(Op, DAG); |
| if (Imm.getValueSizeInBits() == VT.getSizeInBits()) |
| return DAG.getBitcast(VT, Imm); |
| SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // Vector has one or more non-const elements |
| uint64_t Immediate = 0; |
| SmallVector<unsigned, 16> NonConstIdx; |
| bool IsSplat = true; |
| bool HasConstElts = false; |
| int SplatIdx = -1; |
| for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { |
| SDValue In = Op.getOperand(idx); |
| if (In.isUndef()) |
| continue; |
| if (!isa<ConstantSDNode>(In)) |
| NonConstIdx.push_back(idx); |
| else { |
| Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx; |
| HasConstElts = true; |
| } |
| if (SplatIdx < 0) |
| SplatIdx = idx; |
| else if (In != Op.getOperand(SplatIdx)) |
| IsSplat = false; |
| } |
| |
| // for splat use " (select i1 splat_elt, all-ones, all-zeroes)" |
| if (IsSplat) |
| return DAG.getSelect(dl, VT, Op.getOperand(SplatIdx), |
| DAG.getConstant(1, dl, VT), |
| DAG.getConstant(0, dl, VT)); |
| |
| // insert elements one by one |
| SDValue DstVec; |
| SDValue Imm; |
| if (Immediate) { |
| MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8)); |
| Imm = DAG.getConstant(Immediate, dl, ImmVT); |
| } |
| else if (HasConstElts) |
| Imm = DAG.getConstant(0, dl, VT); |
| else |
| Imm = DAG.getUNDEF(VT); |
| if (Imm.getValueSizeInBits() == VT.getSizeInBits()) |
| DstVec = DAG.getBitcast(VT, Imm); |
| else { |
| SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); |
| DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) { |
| unsigned InsertIdx = NonConstIdx[i]; |
| DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, |
| Op.getOperand(InsertIdx), |
| DAG.getIntPtrConstant(InsertIdx, dl)); |
| } |
| return DstVec; |
| } |
| |
| /// Return true if \p N implements a horizontal binop and return the |
| /// operands for the horizontal binop into V0 and V1. |
| /// |
| /// This is a helper function of LowerToHorizontalOp(). |
| /// This function checks that the build_vector \p N in input implements a |
| /// horizontal operation. Parameter \p Opcode defines the kind of horizontal |
| /// operation to match. |
| /// For example, if \p Opcode is equal to ISD::ADD, then this function |
| /// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode |
| /// is equal to ISD::SUB, then this function checks if this is a horizontal |
| /// arithmetic sub. |
| /// |
| /// This function only analyzes elements of \p N whose indices are |
| /// in range [BaseIdx, LastIdx). |
| static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode, |
| SelectionDAG &DAG, |
| unsigned BaseIdx, unsigned LastIdx, |
| SDValue &V0, SDValue &V1) { |
| EVT VT = N->getValueType(0); |
| |
| assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!"); |
| assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx && |
| "Invalid Vector in input!"); |
| |
| bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD); |
| bool CanFold = true; |
| unsigned ExpectedVExtractIdx = BaseIdx; |
| unsigned NumElts = LastIdx - BaseIdx; |
| V0 = DAG.getUNDEF(VT); |
| V1 = DAG.getUNDEF(VT); |
| |
| // Check if N implements a horizontal binop. |
| for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) { |
| SDValue Op = N->getOperand(i + BaseIdx); |
| |
| // Skip UNDEFs. |
| if (Op->isUndef()) { |
| // Update the expected vector extract index. |
| if (i * 2 == NumElts) |
| ExpectedVExtractIdx = BaseIdx; |
| ExpectedVExtractIdx += 2; |
| continue; |
| } |
| |
| CanFold = Op->getOpcode() == Opcode && Op->hasOneUse(); |
| |
| if (!CanFold) |
| break; |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| |
| // Try to match the following pattern: |
| // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1)) |
| CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op0.getOperand(0) == Op1.getOperand(0) && |
| isa<ConstantSDNode>(Op0.getOperand(1)) && |
| isa<ConstantSDNode>(Op1.getOperand(1))); |
| if (!CanFold) |
| break; |
| |
| unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); |
| unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue(); |
| |
| if (i * 2 < NumElts) { |
| if (V0.isUndef()) { |
| V0 = Op0.getOperand(0); |
| if (V0.getValueType() != VT) |
| return false; |
| } |
| } else { |
| if (V1.isUndef()) { |
| V1 = Op0.getOperand(0); |
| if (V1.getValueType() != VT) |
| return false; |
| } |
| if (i * 2 == NumElts) |
| ExpectedVExtractIdx = BaseIdx; |
| } |
| |
| SDValue Expected = (i * 2 < NumElts) ? V0 : V1; |
| if (I0 == ExpectedVExtractIdx) |
| CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected; |
| else if (IsCommutable && I1 == ExpectedVExtractIdx) { |
| // Try to match the following dag sequence: |
| // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I)) |
| CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected; |
| } else |
| CanFold = false; |
| |
| ExpectedVExtractIdx += 2; |
| } |
| |
| return CanFold; |
| } |
| |
| /// Emit a sequence of two 128-bit horizontal add/sub followed by |
| /// a concat_vector. |
| /// |
| /// This is a helper function of LowerToHorizontalOp(). |
| /// This function expects two 256-bit vectors called V0 and V1. |
| /// At first, each vector is split into two separate 128-bit vectors. |
| /// Then, the resulting 128-bit vectors are used to implement two |
| /// horizontal binary operations. |
| /// |
| /// The kind of horizontal binary operation is defined by \p X86Opcode. |
| /// |
| /// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to |
| /// the two new horizontal binop. |
| /// When Mode is set, the first horizontal binop dag node would take as input |
| /// the lower 128-bit of V0 and the upper 128-bit of V0. The second |
| /// horizontal binop dag node would take as input the lower 128-bit of V1 |
| /// and the upper 128-bit of V1. |
| /// Example: |
| /// HADD V0_LO, V0_HI |
| /// HADD V1_LO, V1_HI |
| /// |
| /// Otherwise, the first horizontal binop dag node takes as input the lower |
| /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop |
| /// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1. |
| /// Example: |
| /// HADD V0_LO, V1_LO |
| /// HADD V0_HI, V1_HI |
| /// |
| /// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower |
| /// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to |
| /// the upper 128-bits of the result. |
| static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1, |
| const SDLoc &DL, SelectionDAG &DAG, |
| unsigned X86Opcode, bool Mode, |
| bool isUndefLO, bool isUndefHI) { |
| MVT VT = V0.getSimpleValueType(); |
| assert(VT.is256BitVector() && VT == V1.getSimpleValueType() && |
| "Invalid nodes in input!"); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL); |
| SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL); |
| SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL); |
| SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL); |
| MVT NewVT = V0_LO.getSimpleValueType(); |
| |
| SDValue LO = DAG.getUNDEF(NewVT); |
| SDValue HI = DAG.getUNDEF(NewVT); |
| |
| if (Mode) { |
| // Don't emit a horizontal binop if the result is expected to be UNDEF. |
| if (!isUndefLO && !V0->isUndef()) |
| LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI); |
| if (!isUndefHI && !V1->isUndef()) |
| HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI); |
| } else { |
| // Don't emit a horizontal binop if the result is expected to be UNDEF. |
| if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef())) |
| LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO); |
| |
| if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef())) |
| HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI); |
| } |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI); |
| } |
| |
| /// Returns true iff \p BV builds a vector with the result equivalent to |
| /// the result of ADDSUB/SUBADD operation. |
| /// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1 |
| /// (SUBADD = Opnd0 -+ Opnd1) operation are written to the parameters |
| /// \p Opnd0 and \p Opnd1. |
| static bool isAddSubOrSubAdd(const BuildVectorSDNode *BV, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| SDValue &Opnd0, SDValue &Opnd1, |
| unsigned &NumExtracts, |
| bool &IsSubAdd) { |
| |
| MVT VT = BV->getSimpleValueType(0); |
| if (!Subtarget.hasSSE3() || !VT.isFloatingPoint()) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDValue InVec0 = DAG.getUNDEF(VT); |
| SDValue InVec1 = DAG.getUNDEF(VT); |
| |
| NumExtracts = 0; |
| |
| // Odd-numbered elements in the input build vector are obtained from |
| // adding/subtracting two integer/float elements. |
| // Even-numbered elements in the input build vector are obtained from |
| // subtracting/adding two integer/float elements. |
| unsigned Opc[2] {0, 0}; |
| for (unsigned i = 0, e = NumElts; i != e; ++i) { |
| SDValue Op = BV->getOperand(i); |
| |
| // Skip 'undef' values. |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::UNDEF) |
| continue; |
| |
| // Early exit if we found an unexpected opcode. |
| if (Opcode != ISD::FADD && Opcode != ISD::FSUB) |
| return false; |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| |
| // Try to match the following pattern: |
| // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i)) |
| // Early exit if we cannot match that sequence. |
| if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(Op0.getOperand(1)) || |
| !isa<ConstantSDNode>(Op1.getOperand(1)) || |
| Op0.getOperand(1) != Op1.getOperand(1)) |
| return false; |
| |
| unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); |
| if (I0 != i) |
| return false; |
| |
| // We found a valid add/sub node, make sure its the same opcode as previous |
| // elements for this parity. |
| if (Opc[i % 2] != 0 && Opc[i % 2] != Opcode) |
| return false; |
| Opc[i % 2] = Opcode; |
| |
| // Update InVec0 and InVec1. |
| if (InVec0.isUndef()) { |
| InVec0 = Op0.getOperand(0); |
| if (InVec0.getSimpleValueType() != VT) |
| return false; |
| } |
| if (InVec1.isUndef()) { |
| InVec1 = Op1.getOperand(0); |
| if (InVec1.getSimpleValueType() != VT) |
| return false; |
| } |
| |
| // Make sure that operands in input to each add/sub node always |
| // come from a same pair of vectors. |
| if (InVec0 != Op0.getOperand(0)) { |
| if (Opcode == ISD::FSUB) |
| return false; |
| |
| // FADD is commutable. Try to commute the operands |
| // and then test again. |
| std::swap(Op0, Op1); |
| if (InVec0 != Op0.getOperand(0)) |
| return false; |
| } |
| |
| if (InVec1 != Op1.getOperand(0)) |
| return false; |
| |
| // Increment the number of extractions done. |
| ++NumExtracts; |
| } |
| |
| // Ensure we have found an opcode for both parities and that they are |
| // different. Don't try to fold this build_vector into an ADDSUB/SUBADD if the |
| // inputs are undef. |
| if (!Opc[0] || !Opc[1] || Opc[0] == Opc[1] || |
| InVec0.isUndef() || InVec1.isUndef()) |
| return false; |
| |
| IsSubAdd = Opc[0] == ISD::FADD; |
| |
| Opnd0 = InVec0; |
| Opnd1 = InVec1; |
| return true; |
| } |
| |
| /// Returns true if is possible to fold MUL and an idiom that has already been |
| /// recognized as ADDSUB/SUBADD(\p Opnd0, \p Opnd1) into |
| /// FMADDSUB/FMSUBADD(x, y, \p Opnd1). If (and only if) true is returned, the |
| /// operands of FMADDSUB/FMSUBADD are written to parameters \p Opnd0, \p Opnd1, \p Opnd2. |
| /// |
| /// Prior to calling this function it should be known that there is some |
| /// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation |
| /// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called |
| /// before replacement of such SDNode with ADDSUB operation. Thus the number |
| /// of \p Opnd0 uses is expected to be equal to 2. |
| /// For example, this function may be called for the following IR: |
| /// %AB = fmul fast <2 x double> %A, %B |
| /// %Sub = fsub fast <2 x double> %AB, %C |
| /// %Add = fadd fast <2 x double> %AB, %C |
| /// %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add, |
| /// <2 x i32> <i32 0, i32 3> |
| /// There is a def for %Addsub here, which potentially can be replaced by |
| /// X86ISD::ADDSUB operation: |
| /// %Addsub = X86ISD::ADDSUB %AB, %C |
| /// and such ADDSUB can further be replaced with FMADDSUB: |
| /// %Addsub = FMADDSUB %A, %B, %C. |
| /// |
| /// The main reason why this method is called before the replacement of the |
| /// recognized ADDSUB idiom with ADDSUB operation is that such replacement |
| /// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit |
| /// FMADDSUB is. |
| static bool isFMAddSubOrFMSubAdd(const X86Subtarget &Subtarget, |
| SelectionDAG &DAG, |
| SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2, |
| unsigned ExpectedUses) { |
| if (Opnd0.getOpcode() != ISD::FMUL || |
| !Opnd0->hasNUsesOfValue(ExpectedUses, 0) || !Subtarget.hasAnyFMA()) |
| return false; |
| |
| // FIXME: These checks must match the similar ones in |
| // DAGCombiner::visitFADDForFMACombine. It would be good to have one |
| // function that would answer if it is Ok to fuse MUL + ADD to FMADD |
| // or MUL + ADDSUB to FMADDSUB. |
| const TargetOptions &Options = DAG.getTarget().Options; |
| bool AllowFusion = |
| (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); |
| if (!AllowFusion) |
| return false; |
| |
| Opnd2 = Opnd1; |
| Opnd1 = Opnd0.getOperand(1); |
| Opnd0 = Opnd0.getOperand(0); |
| |
| return true; |
| } |
| |
| /// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' or |
| /// 'fsubadd' operation accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB or |
| /// X86ISD::FMSUBADD node. |
| static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue Opnd0, Opnd1; |
| unsigned NumExtracts; |
| bool IsSubAdd; |
| if (!isAddSubOrSubAdd(BV, Subtarget, DAG, Opnd0, Opnd1, NumExtracts, |
| IsSubAdd)) |
| return SDValue(); |
| |
| MVT VT = BV->getSimpleValueType(0); |
| SDLoc DL(BV); |
| |
| // Try to generate X86ISD::FMADDSUB node here. |
| SDValue Opnd2; |
| if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, NumExtracts)) { |
| unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB; |
| return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2); |
| } |
| |
| // We only support ADDSUB. |
| if (IsSubAdd) |
| return SDValue(); |
| |
| // Do not generate X86ISD::ADDSUB node for 512-bit types even though |
| // the ADDSUB idiom has been successfully recognized. There are no known |
| // X86 targets with 512-bit ADDSUB instructions! |
| // 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom |
| // recognition. |
| if (VT.is512BitVector()) |
| return SDValue(); |
| |
| return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1); |
| } |
| |
| /// Lower BUILD_VECTOR to a horizontal add/sub operation if possible. |
| static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = BV->getSimpleValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumUndefsLO = 0; |
| unsigned NumUndefsHI = 0; |
| unsigned Half = NumElts/2; |
| |
| // Count the number of UNDEF operands in the build_vector in input. |
| for (unsigned i = 0, e = Half; i != e; ++i) |
| if (BV->getOperand(i)->isUndef()) |
| NumUndefsLO++; |
| |
| for (unsigned i = Half, e = NumElts; i != e; ++i) |
| if (BV->getOperand(i)->isUndef()) |
| NumUndefsHI++; |
| |
| // Early exit if this is either a build_vector of all UNDEFs or all the |
| // operands but one are UNDEF. |
| if (NumUndefsLO + NumUndefsHI + 1 >= NumElts) |
| return SDValue(); |
| |
| SDLoc DL(BV); |
| SDValue InVec0, InVec1; |
| if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) { |
| // Try to match an SSE3 float HADD/HSUB. |
| if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) |
| return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); |
| |
| if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) |
| return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); |
| } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget.hasSSSE3()) { |
| // Try to match an SSSE3 integer HADD/HSUB. |
| if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) |
| return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1); |
| |
| if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) |
| return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1); |
| } |
| |
| if (!Subtarget.hasAVX()) |
| return SDValue(); |
| |
| if ((VT == MVT::v8f32 || VT == MVT::v4f64)) { |
| // Try to match an AVX horizontal add/sub of packed single/double |
| // precision floating point values from 256-bit vectors. |
| SDValue InVec2, InVec3; |
| if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) && |
| isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) && |
| ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && |
| ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) |
| return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); |
| |
| if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) && |
| isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) && |
| ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && |
| ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) |
| return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); |
| } else if (VT == MVT::v8i32 || VT == MVT::v16i16) { |
| // Try to match an AVX2 horizontal add/sub of signed integers. |
| SDValue InVec2, InVec3; |
| unsigned X86Opcode; |
| bool CanFold = true; |
| |
| if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) && |
| isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) && |
| ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && |
| ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) |
| X86Opcode = X86ISD::HADD; |
| else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) && |
| isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) && |
| ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && |
| ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) |
| X86Opcode = X86ISD::HSUB; |
| else |
| CanFold = false; |
| |
| if (CanFold) { |
| // Fold this build_vector into a single horizontal add/sub. |
| // Do this only if the target has AVX2. |
| if (Subtarget.hasAVX2()) |
| return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1); |
| |
| // Do not try to expand this build_vector into a pair of horizontal |
| // add/sub if we can emit a pair of scalar add/sub. |
| if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) |
| return SDValue(); |
| |
| // Convert this build_vector into a pair of horizontal binop followed by |
| // a concat vector. |
| bool isUndefLO = NumUndefsLO == Half; |
| bool isUndefHI = NumUndefsHI == Half; |
| return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false, |
| isUndefLO, isUndefHI); |
| } |
| } |
| |
| if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 || |
| VT == MVT::v16i16) && Subtarget.hasAVX()) { |
| unsigned X86Opcode; |
| if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) |
| X86Opcode = X86ISD::HADD; |
| else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) |
| X86Opcode = X86ISD::HSUB; |
| else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) |
| X86Opcode = X86ISD::FHADD; |
| else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) |
| X86Opcode = X86ISD::FHSUB; |
| else |
| return SDValue(); |
| |
| // Don't try to expand this build_vector into a pair of horizontal add/sub |
| // if we can simply emit a pair of scalar add/sub. |
| if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) |
| return SDValue(); |
| |
| // Convert this build_vector into two horizontal add/sub followed by |
| // a concat vector. |
| bool isUndefLO = NumUndefsLO == Half; |
| bool isUndefHI = NumUndefsHI == Half; |
| return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true, |
| isUndefLO, isUndefHI); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If a BUILD_VECTOR's source elements all apply the same bit operation and |
| /// one of their operands is constant, lower to a pair of BUILD_VECTOR and |
| /// just apply the bit to the vectors. |
| /// NOTE: Its not in our interest to start make a general purpose vectorizer |
| /// from this, but enough scalar bit operations are created from the later |
| /// legalization + scalarization stages to need basic support. |
| static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op, |
| SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| MVT VT = Op->getSimpleValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Check that all elements have the same opcode. |
| // TODO: Should we allow UNDEFS and if so how many? |
| unsigned Opcode = Op->getOperand(0).getOpcode(); |
| for (unsigned i = 1; i < NumElems; ++i) |
| if (Opcode != Op->getOperand(i).getOpcode()) |
| return SDValue(); |
| |
| // TODO: We may be able to add support for other Ops (ADD/SUB + shifts). |
| switch (Opcode) { |
| default: |
| return SDValue(); |
| case ISD::AND: |
| case ISD::XOR: |
| case ISD::OR: |
| // Don't do this if the buildvector is a splat - we'd replace one |
| // constant with an entire vector. |
| if (Op->getSplatValue()) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrPromote(Opcode, VT)) |
| return SDValue(); |
| break; |
| } |
| |
| SmallVector<SDValue, 4> LHSElts, RHSElts; |
| for (SDValue Elt : Op->ops()) { |
| SDValue LHS = Elt.getOperand(0); |
| SDValue RHS = Elt.getOperand(1); |
| |
| // We expect the canonicalized RHS operand to be the constant. |
| if (!isa<ConstantSDNode>(RHS)) |
| return SDValue(); |
| LHSElts.push_back(LHS); |
| RHSElts.push_back(RHS); |
| } |
| |
| SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts); |
| SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts); |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| } |
| |
| /// Create a vector constant without a load. SSE/AVX provide the bare minimum |
| /// functionality to do this, so it's all zeros, all ones, or some derivation |
| /// that is cheap to calculate. |
| static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| // Vectors containing all zeros can be matched by pxor and xorps. |
| if (ISD::isBuildVectorAllZeros(Op.getNode())) { |
| // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd |
| // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. |
| if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) |
| return Op; |
| |
| return getZeroVector(VT, Subtarget, DAG, DL); |
| } |
| |
| // Vectors containing all ones can be matched by pcmpeqd on 128-bit width |
| // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use |
| // vpcmpeqd on 256-bit vectors. |
| if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { |
| if (VT == MVT::v4i32 || VT == MVT::v16i32 || |
| (VT == MVT::v8i32 && Subtarget.hasInt256())) |
| return Op; |
| |
| return getOnesVector(VT, DAG, DL); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Look for opportunities to create a VPERMV/VPERMILPV/PSHUFB variable permute |
| /// from a vector of source values and a vector of extraction indices. |
| /// The vectors might be manipulated to match the type of the permute op. |
| static SDValue createVariablePermute(MVT VT, SDValue SrcVec, SDValue IndicesVec, |
| SDLoc &DL, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT ShuffleVT = VT; |
| EVT IndicesVT = EVT(VT).changeVectorElementTypeToInteger(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned SizeInBits = VT.getSizeInBits(); |
| |
| // Adjust IndicesVec to match VT size. |
| assert(IndicesVec.getValueType().getVectorNumElements() >= NumElts && |
| "Illegal variable permute mask size"); |
| if (IndicesVec.getValueType().getVectorNumElements() > NumElts) |
| IndicesVec = extractSubVector(IndicesVec, 0, DAG, SDLoc(IndicesVec), |
| NumElts * VT.getScalarSizeInBits()); |
| IndicesVec = DAG.getZExtOrTrunc(IndicesVec, SDLoc(IndicesVec), IndicesVT); |
| |
| // Handle SrcVec that don't match VT type. |
| if (SrcVec.getValueSizeInBits() != SizeInBits) { |
| if ((SrcVec.getValueSizeInBits() % SizeInBits) == 0) { |
| // Handle larger SrcVec by treating it as a larger permute. |
| unsigned Scale = SrcVec.getValueSizeInBits() / SizeInBits; |
| VT = MVT::getVectorVT(VT.getScalarType(), Scale * NumElts); |
| IndicesVT = EVT(VT).changeVectorElementTypeToInteger(); |
| IndicesVec = widenSubVector(IndicesVT.getSimpleVT(), IndicesVec, false, |
| Subtarget, DAG, SDLoc(IndicesVec)); |
| return extractSubVector( |
| createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget), 0, |
| DAG, DL, SizeInBits); |
| } else if (SrcVec.getValueSizeInBits() < SizeInBits) { |
| // Widen smaller SrcVec to match VT. |
| SrcVec = widenSubVector(VT, SrcVec, false, Subtarget, DAG, SDLoc(SrcVec)); |
| } else |
| return SDValue(); |
| } |
| |
| auto ScaleIndices = [&DAG](SDValue Idx, uint64_t Scale) { |
| assert(isPowerOf2_64(Scale) && "Illegal variable permute shuffle scale"); |
| EVT SrcVT = Idx.getValueType(); |
| unsigned NumDstBits = SrcVT.getScalarSizeInBits() / Scale; |
| uint64_t IndexScale = 0; |
| uint64_t IndexOffset = 0; |
| |
| // If we're scaling a smaller permute op, then we need to repeat the |
| // indices, scaling and offsetting them as well. |
| // e.g. v4i32 -> v16i8 (Scale = 4) |
| // IndexScale = v4i32 Splat(4 << 24 | 4 << 16 | 4 << 8 | 4) |
| // IndexOffset = v4i32 Splat(3 << 24 | 2 << 16 | 1 << 8 | 0) |
| for (uint64_t i = 0; i != Scale; ++i) { |
| IndexScale |= Scale << (i * NumDstBits); |
| IndexOffset |= i << (i * NumDstBits); |
| } |
| |
| Idx = DAG.getNode(ISD::MUL, SDLoc(Idx), SrcVT, Idx, |
| DAG.getConstant(IndexScale, SDLoc(Idx), SrcVT)); |
| Idx = DAG.getNode(ISD::ADD, SDLoc(Idx), SrcVT, Idx, |
| DAG.getConstant(IndexOffset, SDLoc(Idx), SrcVT)); |
| return Idx; |
| }; |
| |
| unsigned Opcode = 0; |
| switch (VT.SimpleTy) { |
| default: |
| break; |
| case MVT::v16i8: |
| if (Subtarget.hasSSSE3()) |
| Opcode = X86ISD::PSHUFB; |
| break; |
| case MVT::v8i16: |
| if (Subtarget.hasVLX() && Subtarget.hasBWI()) |
| Opcode = X86ISD::VPERMV; |
| else if (Subtarget.hasSSSE3()) { |
| Opcode = X86ISD::PSHUFB; |
| ShuffleVT = MVT::v16i8; |
| } |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| if (Subtarget.hasAVX()) { |
| Opcode = X86ISD::VPERMILPV; |
| ShuffleVT = MVT::v4f32; |
| } else if (Subtarget.hasSSSE3()) { |
| Opcode = X86ISD::PSHUFB; |
| ShuffleVT = MVT::v16i8; |
| } |
| break; |
| case MVT::v2f64: |
| case MVT::v2i64: |
| if (Subtarget.hasAVX()) { |
| // VPERMILPD selects using bit#1 of the index vector, so scale IndicesVec. |
| IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec); |
| Opcode = X86ISD::VPERMILPV; |
| ShuffleVT = MVT::v2f64; |
| } else if (Subtarget.hasSSE41()) { |
| // SSE41 can compare v2i64 - select between indices 0 and 1. |
| return DAG.getSelectCC( |
| DL, IndicesVec, |
| getZeroVector(IndicesVT.getSimpleVT(), Subtarget, DAG, DL), |
| DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {0, 0}), |
| DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {1, 1}), |
| ISD::CondCode::SETEQ); |
| } |
| break; |
| case MVT::v32i8: |
| if (Subtarget.hasVLX() && Subtarget.hasVBMI()) |
| Opcode = X86ISD::VPERMV; |
| else if (Subtarget.hasXOP()) { |
| SDValue LoSrc = extract128BitVector(SrcVec, 0, DAG, DL); |
| SDValue HiSrc = extract128BitVector(SrcVec, 16, DAG, DL); |
| SDValue LoIdx = extract128BitVector(IndicesVec, 0, DAG, DL); |
| SDValue HiIdx = extract128BitVector(IndicesVec, 16, DAG, DL); |
| return DAG.getNode( |
| ISD::CONCAT_VECTORS, DL, VT, |
| DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, LoIdx), |
| DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, HiIdx)); |
| } else if (Subtarget.hasAVX()) { |
| SDValue Lo = extract128BitVector(SrcVec, 0, DAG, DL); |
| SDValue Hi = extract128BitVector(SrcVec, 16, DAG, DL); |
| SDValue LoLo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Lo); |
| SDValue HiHi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Hi, Hi); |
| auto PSHUFBBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| // Permute Lo and Hi and then select based on index range. |
| // This works as SHUFB uses bits[3:0] to permute elements and we don't |
| // care about the bit[7] as its just an index vector. |
| SDValue Idx = Ops[2]; |
| EVT VT = Idx.getValueType(); |
| return DAG.getSelectCC(DL, Idx, DAG.getConstant(15, DL, VT), |
| DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[1], Idx), |
| DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[0], Idx), |
| ISD::CondCode::SETGT); |
| }; |
| SDValue Ops[] = {LoLo, HiHi, IndicesVec}; |
| return SplitOpsAndApply(DAG, Subtarget, DL, MVT::v32i8, Ops, |
| PSHUFBBuilder); |
| } |
| break; |
| case MVT::v16i16: |
| if (Subtarget.hasVLX() && Subtarget.hasBWI()) |
| Opcode = X86ISD::VPERMV; |
| else if (Subtarget.hasAVX()) { |
| // Scale to v32i8 and perform as v32i8. |
| IndicesVec = ScaleIndices(IndicesVec, 2); |
| return DAG.getBitcast( |
| VT, createVariablePermute( |
| MVT::v32i8, DAG.getBitcast(MVT::v32i8, SrcVec), |
| DAG.getBitcast(MVT::v32i8, IndicesVec), DL, DAG, Subtarget)); |
| } |
| break; |
| case MVT::v8f32: |
| case MVT::v8i32: |
| if (Subtarget.hasAVX2()) |
| Opcode = X86ISD::VPERMV; |
| else if (Subtarget.hasAVX()) { |
| SrcVec = DAG.getBitcast(MVT::v8f32, SrcVec); |
| SDValue LoLo = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec, |
| {0, 1, 2, 3, 0, 1, 2, 3}); |
| SDValue HiHi = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec, |
| {4, 5, 6, 7, 4, 5, 6, 7}); |
| if (Subtarget.hasXOP()) |
| return DAG.getBitcast(VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v8f32, |
| LoLo, HiHi, IndicesVec, |
| DAG.getConstant(0, DL, MVT::i8))); |
| // Permute Lo and Hi and then select based on index range. |
| // This works as VPERMILPS only uses index bits[0:1] to permute elements. |
| SDValue Res = DAG.getSelectCC( |
| DL, IndicesVec, DAG.getConstant(3, DL, MVT::v8i32), |
| DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, HiHi, IndicesVec), |
| DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, LoLo, IndicesVec), |
| ISD::CondCode::SETGT); |
| return DAG.getBitcast(VT, Res); |
| } |
| break; |
| case MVT::v4i64: |
| case MVT::v4f64: |
| if (Subtarget.hasAVX512()) { |
| if (!Subtarget.hasVLX()) { |
| MVT WidenSrcVT = MVT::getVectorVT(VT.getScalarType(), 8); |
| SrcVec = widenSubVector(WidenSrcVT, SrcVec, false, Subtarget, DAG, |
| SDLoc(SrcVec)); |
| IndicesVec = widenSubVector(MVT::v8i64, IndicesVec, false, Subtarget, |
| DAG, SDLoc(IndicesVec)); |
| SDValue Res = createVariablePermute(WidenSrcVT, SrcVec, IndicesVec, DL, |
| DAG, Subtarget); |
| return extract256BitVector(Res, 0, DAG, DL); |
| } |
| Opcode = X86ISD::VPERMV; |
| } else if (Subtarget.hasAVX()) { |
| SrcVec = DAG.getBitcast(MVT::v4f64, SrcVec); |
| SDValue LoLo = |
| DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {0, 1, 0, 1}); |
| SDValue HiHi = |
| DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {2, 3, 2, 3}); |
| // VPERMIL2PD selects with bit#1 of the index vector, so scale IndicesVec. |
| IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec); |
| if (Subtarget.hasXOP()) |
| return DAG.getBitcast(VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v4f64, |
| LoLo, HiHi, IndicesVec, |
| DAG.getConstant(0, DL, MVT::i8))); |
| // Permute Lo and Hi and then select based on index range. |
| // This works as VPERMILPD only uses index bit[1] to permute elements. |
| SDValue Res = DAG.getSelectCC( |
| DL, IndicesVec, DAG.getConstant(2, DL, MVT::v4i64), |
| DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, HiHi, IndicesVec), |
| DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, LoLo, IndicesVec), |
| ISD::CondCode::SETGT); |
| return DAG.getBitcast(VT, Res); |
| } |
| break; |
| case MVT::v64i8: |
| if (Subtarget.hasVBMI()) |
| Opcode = X86ISD::VPERMV; |
| break; |
| case MVT::v32i16: |
| if (Subtarget.hasBWI()) |
| Opcode = X86ISD::VPERMV; |
| break; |
| case MVT::v16f32: |
| case MVT::v16i32: |
| case MVT::v8f64: |
| case MVT::v8i64: |
| if (Subtarget.hasAVX512()) |
| Opcode = X86ISD::VPERMV; |
| break; |
| } |
| if (!Opcode) |
| return SDValue(); |
| |
| assert((VT.getSizeInBits() == ShuffleVT.getSizeInBits()) && |
| (VT.getScalarSizeInBits() % ShuffleVT.getScalarSizeInBits()) == 0 && |
| "Illegal variable permute shuffle type"); |
| |
| uint64_t Scale = VT.getScalarSizeInBits() / ShuffleVT.getScalarSizeInBits(); |
| if (Scale > 1) |
| IndicesVec = ScaleIndices(IndicesVec, Scale); |
| |
| EVT ShuffleIdxVT = EVT(ShuffleVT).changeVectorElementTypeToInteger(); |
| IndicesVec = DAG.getBitcast(ShuffleIdxVT, IndicesVec); |
| |
| SrcVec = DAG.getBitcast(ShuffleVT, SrcVec); |
| SDValue Res = Opcode == X86ISD::VPERMV |
| ? DAG.getNode(Opcode, DL, ShuffleVT, IndicesVec, SrcVec) |
| : DAG.getNode(Opcode, DL, ShuffleVT, SrcVec, IndicesVec); |
| return DAG.getBitcast(VT, Res); |
| } |
| |
| // Tries to lower a BUILD_VECTOR composed of extract-extract chains that can be |
| // reasoned to be a permutation of a vector by indices in a non-constant vector. |
| // (build_vector (extract_elt V, (extract_elt I, 0)), |
| // (extract_elt V, (extract_elt I, 1)), |
| // ... |
| // -> |
| // (vpermv I, V) |
| // |
| // TODO: Handle undefs |
| // TODO: Utilize pshufb and zero mask blending to support more efficient |
| // construction of vectors with constant-0 elements. |
| static SDValue |
| LowerBUILD_VECTORAsVariablePermute(SDValue V, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue SrcVec, IndicesVec; |
| // Check for a match of the permute source vector and permute index elements. |
| // This is done by checking that the i-th build_vector operand is of the form: |
| // (extract_elt SrcVec, (extract_elt IndicesVec, i)). |
| for (unsigned Idx = 0, E = V.getNumOperands(); Idx != E; ++Idx) { |
| SDValue Op = V.getOperand(Idx); |
| if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| // If this is the first extract encountered in V, set the source vector, |
| // otherwise verify the extract is from the previously defined source |
| // vector. |
| if (!SrcVec) |
| SrcVec = Op.getOperand(0); |
| else if (SrcVec != Op.getOperand(0)) |
| return SDValue(); |
| SDValue ExtractedIndex = Op->getOperand(1); |
| // Peek through extends. |
| if (ExtractedIndex.getOpcode() == ISD::ZERO_EXTEND || |
| ExtractedIndex.getOpcode() == ISD::SIGN_EXTEND) |
| ExtractedIndex = ExtractedIndex.getOperand(0); |
| if (ExtractedIndex.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| // If this is the first extract from the index vector candidate, set the |
| // indices vector, otherwise verify the extract is from the previously |
| // defined indices vector. |
| if (!IndicesVec) |
| IndicesVec = ExtractedIndex.getOperand(0); |
| else if (IndicesVec != ExtractedIndex.getOperand(0)) |
| return SDValue(); |
| |
| auto *PermIdx = dyn_cast<ConstantSDNode>(ExtractedIndex.getOperand(1)); |
| if (!PermIdx || PermIdx->getZExtValue() != Idx) |
| return SDValue(); |
| } |
| |
| SDLoc DL(V); |
| MVT VT = V.getSimpleValueType(); |
| return createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| |
| MVT VT = Op.getSimpleValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned NumElems = Op.getNumOperands(); |
| |
| // Generate vectors for predicate vectors. |
| if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) |
| return LowerBUILD_VECTORvXi1(Op, DAG, Subtarget); |
| |
| if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget)) |
| return VectorConstant; |
| |
| BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode()); |
| if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG)) |
| return AddSub; |
| if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG)) |
| return HorizontalOp; |
| if (SDValue Broadcast = lowerBuildVectorAsBroadcast(BV, Subtarget, DAG)) |
| return Broadcast; |
| if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG)) |
| return BitOp; |
| |
| unsigned EVTBits = EltVT.getSizeInBits(); |
| |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| uint64_t NonZeros = 0; |
| bool IsAllConstants = true; |
| SmallSet<SDValue, 8> Values; |
| unsigned NumConstants = NumElems; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue Elt = Op.getOperand(i); |
| if (Elt.isUndef()) |
| continue; |
| Values.insert(Elt); |
| if (!isa<ConstantSDNode>(Elt) && !isa<ConstantFPSDNode>(Elt)) { |
| IsAllConstants = false; |
| NumConstants--; |
| } |
| if (X86::isZeroNode(Elt)) |
| NumZero++; |
| else { |
| assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range. |
| NonZeros |= ((uint64_t)1 << i); |
| NumNonZero++; |
| } |
| } |
| |
| // All undef vector. Return an UNDEF. All zero vectors were handled above. |
| if (NumNonZero == 0) |
| return DAG.getUNDEF(VT); |
| |
| // If we are inserting one variable into a vector of non-zero constants, try |
| // to avoid loading each constant element as a scalar. Load the constants as a |
| // vector and then insert the variable scalar element. If insertion is not |
| // supported, we assume that we will fall back to a shuffle to get the scalar |
| // blended with the constants. Insertion into a zero vector is handled as a |
| // special-case somewhere below here. |
| if (NumConstants == NumElems - 1 && NumNonZero != 1 && |
| (isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT) || |
| isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) { |
| // Create an all-constant vector. The variable element in the old |
| // build vector is replaced by undef in the constant vector. Save the |
| // variable scalar element and its index for use in the insertelement. |
| LLVMContext &Context = *DAG.getContext(); |
| Type *EltType = Op.getValueType().getScalarType().getTypeForEVT(Context); |
| SmallVector<Constant *, 16> ConstVecOps(NumElems, UndefValue::get(EltType)); |
| SDValue VarElt; |
| SDValue InsIndex; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDValue Elt = Op.getOperand(i); |
| if (auto *C = dyn_cast<ConstantSDNode>(Elt)) |
| ConstVecOps[i] = ConstantInt::get(Context, C->getAPIntValue()); |
| else if (auto *C = dyn_cast<ConstantFPSDNode>(Elt)) |
| ConstVecOps[i] = ConstantFP::get(Context, C->getValueAPF()); |
| else if (!Elt.isUndef()) { |
| assert(!VarElt.getNode() && !InsIndex.getNode() && |
| "Expected one variable element in this vector"); |
| VarElt = Elt; |
| InsIndex = DAG.getConstant(i, dl, getVectorIdxTy(DAG.getDataLayout())); |
| } |
| } |
| Constant *CV = ConstantVector::get(ConstVecOps); |
| SDValue DAGConstVec = DAG.getConstantPool(CV, VT); |
| |
| // The constants we just created may not be legal (eg, floating point). We |
| // must lower the vector right here because we can not guarantee that we'll |
| // legalize it before loading it. This is also why we could not just create |
| // a new build vector here. If the build vector contains illegal constants, |
| // it could get split back up into a series of insert elements. |
| // TODO: Improve this by using shorter loads with broadcast/VZEXT_LOAD. |
| SDValue LegalDAGConstVec = LowerConstantPool(DAGConstVec, DAG); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachinePointerInfo MPI = MachinePointerInfo::getConstantPool(MF); |
| SDValue Ld = DAG.getLoad(VT, dl, DAG.getEntryNode(), LegalDAGConstVec, MPI); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ld, VarElt, InsIndex); |
| } |
| |
| // Special case for single non-zero, non-undef, element. |
| if (NumNonZero == 1) { |
| unsigned Idx = countTrailingZeros(NonZeros); |
| SDValue Item = Op.getOperand(Idx); |
| |
| // If we have a constant or non-constant insertion into the low element of |
| // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into |
| // the rest of the elements. This will be matched as movd/movq/movss/movsd |
| // depending on what the source datatype is. |
| if (Idx == 0) { |
| if (NumZero == 0) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| |
| if (EltVT == MVT::i32 || EltVT == MVT::f32 || EltVT == MVT::f64 || |
| (EltVT == MVT::i64 && Subtarget.is64Bit())) { |
| assert((VT.is128BitVector() || VT.is256BitVector() || |
| VT.is512BitVector()) && |
| "Expected an SSE value type!"); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); |
| } |
| |
| // We can't directly insert an i8 or i16 into a vector, so zero extend |
| // it to i32 first. |
| if (EltVT == MVT::i16 || EltVT == MVT::i8) { |
| Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); |
| if (VT.getSizeInBits() >= 256) { |
| MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); |
| if (Subtarget.hasAVX()) { |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item); |
| Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); |
| } else { |
| // Without AVX, we need to extend to a 128-bit vector and then |
| // insert into the 256-bit vector. |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); |
| SDValue ZeroVec = getZeroVector(ShufVT, Subtarget, DAG, dl); |
| Item = insert128BitVector(ZeroVec, Item, 0, DAG, dl); |
| } |
| } else { |
| assert(VT.is128BitVector() && "Expected an SSE value type!"); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); |
| Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); |
| } |
| return DAG.getBitcast(VT, Item); |
| } |
| } |
| |
| // Is it a vector logical left shift? |
| if (NumElems == 2 && Idx == 1 && |
| X86::isZeroNode(Op.getOperand(0)) && |
| !X86::isZeroNode(Op.getOperand(1))) { |
| unsigned NumBits = VT.getSizeInBits(); |
| return getVShift(true, VT, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| VT, Op.getOperand(1)), |
| NumBits/2, DAG, *this, dl); |
| } |
| |
| if (IsAllConstants) // Otherwise, it's better to do a constpool load. |
| return SDValue(); |
| |
| // Otherwise, if this is a vector with i32 or f32 elements, and the element |
| // is a non-constant being inserted into an element other than the low one, |
| // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka |
| // movd/movss) to move this into the low element, then shuffle it into |
| // place. |
| if (EVTBits == 32) { |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG); |
| } |
| } |
| |
| // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| if (Values.size() == 1) { |
| if (EVTBits == 32) { |
| // Instead of a shuffle like this: |
| // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> |
| // Check if it's possible to issue this instead. |
| // shuffle (vload ptr)), undef, <1, 1, 1, 1> |
| unsigned Idx = countTrailingZeros(NonZeros); |
| SDValue Item = Op.getOperand(Idx); |
| if (Op.getNode()->isOnlyUserOf(Item.getNode())) |
| return LowerAsSplatVectorLoad(Item, VT, dl, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // A vector full of immediates; various special cases are already |
| // handled, so this is best done with a single constant-pool load. |
| if (IsAllConstants) |
| return SDValue(); |
| |
| if (SDValue V = LowerBUILD_VECTORAsVariablePermute(Op, DAG, Subtarget)) |
| return V; |
| |
| // See if we can use a vector load to get all of the elements. |
| { |
| SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems); |
| if (SDValue LD = |
| EltsFromConsecutiveLoads(VT, Ops, dl, DAG, Subtarget, false)) |
| return LD; |
| } |
| |
| // If this is a splat of pairs of 32-bit elements, we can use a narrower |
| // build_vector and broadcast it. |
| // TODO: We could probably generalize this more. |
| if (Subtarget.hasAVX2() && EVTBits == 32 && Values.size() == 2) { |
| SDValue Ops[4] = { Op.getOperand(0), Op.getOperand(1), |
| DAG.getUNDEF(EltVT), DAG.getUNDEF(EltVT) }; |
| auto CanSplat = [](SDValue Op, unsigned NumElems, ArrayRef<SDValue> Ops) { |
| // Make sure all the even/odd operands match. |
| for (unsigned i = 2; i != NumElems; ++i) |
| if (Ops[i % 2] != Op.getOperand(i)) |
| return false; |
| return true; |
| }; |
| if (CanSplat(Op, NumElems, Ops)) { |
| MVT WideEltVT = VT.isFloatingPoint() ? MVT::f64 : MVT::i64; |
| MVT NarrowVT = MVT::getVectorVT(EltVT, 4); |
| // Create a new build vector and cast to v2i64/v2f64. |
| SDValue NewBV = DAG.getBitcast(MVT::getVectorVT(WideEltVT, 2), |
| DAG.getBuildVector(NarrowVT, dl, Ops)); |
| // Broadcast from v2i64/v2f64 and cast to final VT. |
| MVT BcastVT = MVT::getVectorVT(WideEltVT, NumElems/2); |
| return DAG.getBitcast(VT, DAG.getNode(X86ISD::VBROADCAST, dl, BcastVT, |
| NewBV)); |
| } |
| } |
| |
| // For AVX-length vectors, build the individual 128-bit pieces and use |
| // shuffles to put them in place. |
| if (VT.getSizeInBits() > 128) { |
| MVT HVT = MVT::getVectorVT(EltVT, NumElems/2); |
| |
| // Build both the lower and upper subvector. |
| SDValue Lower = |
| DAG.getBuildVector(HVT, dl, Op->ops().slice(0, NumElems / 2)); |
| SDValue Upper = DAG.getBuildVector( |
| HVT, dl, Op->ops().slice(NumElems / 2, NumElems /2)); |
| |
| // Recreate the wider vector with the lower and upper part. |
| return concatSubVectors(Lower, Upper, VT, NumElems, DAG, dl, |
| VT.getSizeInBits() / 2); |
| } |
| |
| // Let legalizer expand 2-wide build_vectors. |
| if (EVTBits == 64) { |
| if (NumNonZero == 1) { |
| // One half is zero or undef. |
| unsigned Idx = countTrailingZeros(NonZeros); |
| SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, |
| Op.getOperand(Idx)); |
| return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| if (EVTBits == 8 && NumElems == 16) |
| if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero, |
| DAG, Subtarget)) |
| return V; |
| |
| if (EVTBits == 16 && NumElems == 8) |
| if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero, |
| DAG, Subtarget)) |
| return V; |
| |
| // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS |
| if (EVTBits == 32 && NumElems == 4) |
| if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget)) |
| return V; |
| |
| // If element VT is == 32 bits, turn it into a number of shuffles. |
| if (NumElems == 4 && NumZero > 0) { |
| SmallVector<SDValue, 8> Ops(NumElems); |
| for (unsigned i = 0; i < 4; ++i) { |
| bool isZero = !(NonZeros & (1ULL << i)); |
| if (isZero) |
| Ops[i] = getZeroVector(VT, Subtarget, DAG, dl); |
| else |
| Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); |
| } |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| switch ((NonZeros >> (i*2)) & 0x3) { |
| default: llvm_unreachable("Unexpected NonZero count"); |
| case 0: |
| Ops[i] = Ops[i*2]; // Must be a zero vector. |
| break; |
| case 1: |
| Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]); |
| break; |
| case 2: |
| Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]); |
| break; |
| case 3: |
| Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]); |
| break; |
| } |
| } |
| |
| bool Reverse1 = (NonZeros & 0x3) == 2; |
| bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| int MaskVec[] = { |
| Reverse1 ? 1 : 0, |
| Reverse1 ? 0 : 1, |
| static_cast<int>(Reverse2 ? NumElems+1 : NumElems), |
| static_cast<int>(Reverse2 ? NumElems : NumElems+1) |
| }; |
| return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec); |
| } |
| |
| assert(Values.size() > 1 && "Expected non-undef and non-splat vector"); |
| |
| // Check for a build vector from mostly shuffle plus few inserting. |
| if (SDValue Sh = buildFromShuffleMostly(Op, DAG)) |
| return Sh; |
| |
| // For SSE 4.1, use insertps to put the high elements into the low element. |
| if (Subtarget.hasSSE41()) { |
| SDValue Result; |
| if (!Op.getOperand(0).isUndef()) |
| Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); |
| else |
| Result = DAG.getUNDEF(VT); |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| if (Op.getOperand(i).isUndef()) continue; |
| Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, |
| Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); |
| } |
| return Result; |
| } |
| |
| // Otherwise, expand into a number of unpckl*, start by extending each of |
| // our (non-undef) elements to the full vector width with the element in the |
| // bottom slot of the vector (which generates no code for SSE). |
| SmallVector<SDValue, 8> Ops(NumElems); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| if (!Op.getOperand(i).isUndef()) |
| Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); |
| else |
| Ops[i] = DAG.getUNDEF(VT); |
| } |
| |
| // Next, we iteratively mix elements, e.g. for v4f32: |
| // Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0> |
| // : unpcklps 2, 3 ==> Y: <?, ?, 3, 2> |
| // Step 2: unpcklpd X, Y ==> <3, 2, 1, 0> |
| for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) { |
| // Generate scaled UNPCKL shuffle mask. |
| SmallVector<int, 16> Mask; |
| for(unsigned i = 0; i != Scale; ++i) |
| Mask.push_back(i); |
| for (unsigned i = 0; i != Scale; ++i) |
| Mask.push_back(NumElems+i); |
| Mask.append(NumElems - Mask.size(), SM_SentinelUndef); |
| |
| for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i) |
| Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask); |
| } |
| return Ops[0]; |
| } |
| |
| // 256-bit AVX can use the vinsertf128 instruction |
| // to create 256-bit vectors from two other 128-bit ones. |
| // TODO: Detect subvector broadcast here instead of DAG combine? |
| static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| MVT ResVT = Op.getSimpleValueType(); |
| |
| assert((ResVT.is256BitVector() || |
| ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); |
| |
| unsigned NumOperands = Op.getNumOperands(); |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| unsigned NonZeros = 0; |
| for (unsigned i = 0; i != NumOperands; ++i) { |
| SDValue SubVec = Op.getOperand(i); |
| if (SubVec.isUndef()) |
| continue; |
| if (ISD::isBuildVectorAllZeros(SubVec.getNode())) |
| ++NumZero; |
| else { |
| assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range. |
| NonZeros |= 1 << i; |
| ++NumNonZero; |
| } |
| } |
| |
| // If we have more than 2 non-zeros, build each half separately. |
| if (NumNonZero > 2) { |
| MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), |
| ResVT.getVectorNumElements()/2); |
| ArrayRef<SDUse> Ops = Op->ops(); |
| SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, |
| Ops.slice(0, NumOperands/2)); |
| SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, |
| Ops.slice(NumOperands/2)); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); |
| } |
| |
| // Otherwise, build it up through insert_subvectors. |
| SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl) |
| : DAG.getUNDEF(ResVT); |
| |
| MVT SubVT = Op.getOperand(0).getSimpleValueType(); |
| unsigned NumSubElems = SubVT.getVectorNumElements(); |
| for (unsigned i = 0; i != NumOperands; ++i) { |
| if ((NonZeros & (1 << i)) == 0) |
| continue; |
| |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, |
| Op.getOperand(i), |
| DAG.getIntPtrConstant(i * NumSubElems, dl)); |
| } |
| |
| return Vec; |
| } |
| |
| // Return true if all the operands of the given CONCAT_VECTORS node are zeros |
| // except for the first one. (CONCAT_VECTORS Op, 0, 0,...,0) |
| static bool isExpandWithZeros(const SDValue &Op) { |
| assert(Op.getOpcode() == ISD::CONCAT_VECTORS && |
| "Expand with zeros only possible in CONCAT_VECTORS nodes!"); |
| |
| for (unsigned i = 1; i < Op.getNumOperands(); i++) |
| if (!ISD::isBuildVectorAllZeros(Op.getOperand(i).getNode())) |
| return false; |
| |
| return true; |
| } |
| |
| // Returns true if the given node is a type promotion (by concatenating i1 |
| // zeros) of the result of a node that already zeros all upper bits of |
| // k-register. |
| static SDValue isTypePromotionOfi1ZeroUpBits(SDValue Op) { |
| unsigned Opc = Op.getOpcode(); |
| |
| assert(Opc == ISD::CONCAT_VECTORS && |
| Op.getSimpleValueType().getVectorElementType() == MVT::i1 && |
| "Unexpected node to check for type promotion!"); |
| |
| // As long as we are concatenating zeros to the upper part of a previous node |
| // result, climb up the tree until a node with different opcode is |
| // encountered |
| while (Opc == ISD::INSERT_SUBVECTOR || Opc == ISD::CONCAT_VECTORS) { |
| if (Opc == ISD::INSERT_SUBVECTOR) { |
| if (ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()) && |
| Op.getConstantOperandVal(2) == 0) |
| Op = Op.getOperand(1); |
| else |
| return SDValue(); |
| } else { // Opc == ISD::CONCAT_VECTORS |
| if (isExpandWithZeros(Op)) |
| Op = Op.getOperand(0); |
| else |
| return SDValue(); |
| } |
| Opc = Op.getOpcode(); |
| } |
| |
| // Check if the first inserted node zeroes the upper bits, or an 'and' result |
| // of a node that zeros the upper bits (its masked version). |
| if (isMaskedZeroUpperBitsvXi1(Op.getOpcode()) || |
| (Op.getOpcode() == ISD::AND && |
| (isMaskedZeroUpperBitsvXi1(Op.getOperand(0).getOpcode()) || |
| isMaskedZeroUpperBitsvXi1(Op.getOperand(1).getOpcode())))) { |
| return Op; |
| } |
| |
| return SDValue(); |
| } |
| |
| // TODO: Merge this with LowerAVXCONCAT_VECTORS? |
| static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op, |
| const X86Subtarget &Subtarget, |
| SelectionDAG & DAG) { |
| SDLoc dl(Op); |
| MVT ResVT = Op.getSimpleValueType(); |
| unsigned NumOperands = Op.getNumOperands(); |
| |
| assert(NumOperands > 1 && isPowerOf2_32(NumOperands) && |
| "Unexpected number of operands in CONCAT_VECTORS"); |
| |
| // If this node promotes - by concatenating zeroes - the type of the result |
| // of a node with instruction that zeroes all upper (irrelevant) bits of the |
| // output register, mark it as legal and catch the pattern in instruction |
| // selection to avoid emitting extra instructions (for zeroing upper bits). |
| if (SDValue Promoted = isTypePromotionOfi1ZeroUpBits(Op)) |
| return widenSubVector(ResVT, Promoted, true, Subtarget, DAG, dl); |
| |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| uint64_t NonZeros = 0; |
| for (unsigned i = 0; i != NumOperands; ++i) { |
| SDValue SubVec = Op.getOperand(i); |
| if (SubVec.isUndef()) |
| continue; |
| if (ISD::isBuildVectorAllZeros(SubVec.getNode())) |
| ++NumZero; |
| else { |
| assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range. |
| NonZeros |= (uint64_t)1 << i; |
| ++NumNonZero; |
| } |
| } |
| |
| |
| // If there are zero or one non-zeros we can handle this very simply. |
| if (NumNonZero <= 1) { |
| SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl) |
| : DAG.getUNDEF(ResVT); |
| if (!NumNonZero) |
| return Vec; |
| unsigned Idx = countTrailingZeros(NonZeros); |
| SDValue SubVec = Op.getOperand(Idx); |
| unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements(); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, SubVec, |
| DAG.getIntPtrConstant(Idx * SubVecNumElts, dl)); |
| } |
| |
| if (NumOperands > 2) { |
| MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), |
| ResVT.getVectorNumElements()/2); |
| ArrayRef<SDUse> Ops = Op->ops(); |
| SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, |
| Ops.slice(0, NumOperands/2)); |
| SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, |
| Ops.slice(NumOperands/2)); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); |
| } |
| |
| assert(NumNonZero == 2 && "Simple cases not handled?"); |
| |
| if (ResVT.getVectorNumElements() >= 16) |
| return Op; // The operation is legal with KUNPCK |
| |
| SDValue Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, |
| DAG.getUNDEF(ResVT), Op.getOperand(0), |
| DAG.getIntPtrConstant(0, dl)); |
| unsigned NumElems = ResVT.getVectorNumElements(); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Op.getOperand(1), |
| DAG.getIntPtrConstant(NumElems/2, dl)); |
| } |
| |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| if (VT.getVectorElementType() == MVT::i1) |
| return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG); |
| |
| assert((VT.is256BitVector() && Op.getNumOperands() == 2) || |
| (VT.is512BitVector() && (Op.getNumOperands() == 2 || |
| Op.getNumOperands() == 4))); |
| |
| // AVX can use the vinsertf128 instruction to create 256-bit vectors |
| // from two other 128-bit ones. |
| |
| // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors |
| return LowerAVXCONCAT_VECTORS(Op, DAG, Subtarget); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector shuffle lowering |
| // |
| // This is an experimental code path for lowering vector shuffles on x86. It is |
| // designed to handle arbitrary vector shuffles and blends, gracefully |
| // degrading performance as necessary. It works hard to recognize idiomatic |
| // shuffles and lower them to optimal instruction patterns without leaving |
| // a framework that allows reasonably efficient handling of all vector shuffle |
| // patterns. |
| //===----------------------------------------------------------------------===// |
| |
| /// Tiny helper function to identify a no-op mask. |
| /// |
| /// This is a somewhat boring predicate function. It checks whether the mask |
| /// array input, which is assumed to be a single-input shuffle mask of the kind |
| /// used by the X86 shuffle instructions (not a fully general |
| /// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an |
| /// in-place shuffle are 'no-op's. |
| static bool isNoopShuffleMask(ArrayRef<int> Mask) { |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) { |
| assert(Mask[i] >= -1 && "Out of bound mask element!"); |
| if (Mask[i] >= 0 && Mask[i] != i) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Test whether there are elements crossing 128-bit lanes in this |
| /// shuffle mask. |
| /// |
| /// X86 divides up its shuffles into in-lane and cross-lane shuffle operations |
| /// and we routinely test for these. |
| static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) { |
| int LaneSize = 128 / VT.getScalarSizeInBits(); |
| int Size = Mask.size(); |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) |
| return true; |
| return false; |
| } |
| |
| /// Test whether a shuffle mask is equivalent within each sub-lane. |
| /// |
| /// This checks a shuffle mask to see if it is performing the same |
| /// lane-relative shuffle in each sub-lane. This trivially implies |
| /// that it is also not lane-crossing. It may however involve a blend from the |
| /// same lane of a second vector. |
| /// |
| /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is |
| /// non-trivial to compute in the face of undef lanes. The representation is |
| /// suitable for use with existing 128-bit shuffles as entries from the second |
| /// vector have been remapped to [LaneSize, 2*LaneSize). |
| static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, |
| ArrayRef<int> Mask, |
| SmallVectorImpl<int> &RepeatedMask) { |
| auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits(); |
| RepeatedMask.assign(LaneSize, -1); |
| int Size = Mask.size(); |
| for (int i = 0; i < Size; ++i) { |
| assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0); |
| if (Mask[i] < 0) |
| continue; |
| if ((Mask[i] % Size) / LaneSize != i / LaneSize) |
| // This entry crosses lanes, so there is no way to model this shuffle. |
| return false; |
| |
| // Ok, handle the in-lane shuffles by detecting if and when they repeat. |
| // Adjust second vector indices to start at LaneSize instead of Size. |
| int LocalM = Mask[i] < Size ? Mask[i] % LaneSize |
| : Mask[i] % LaneSize + LaneSize; |
| if (RepeatedMask[i % LaneSize] < 0) |
| // This is the first non-undef entry in this slot of a 128-bit lane. |
| RepeatedMask[i % LaneSize] = LocalM; |
| else if (RepeatedMask[i % LaneSize] != LocalM) |
| // Found a mismatch with the repeated mask. |
| return false; |
| } |
| return true; |
| } |
| |
| /// Test whether a shuffle mask is equivalent within each 128-bit lane. |
| static bool |
| is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, |
| SmallVectorImpl<int> &RepeatedMask) { |
| return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask); |
| } |
| |
| static bool |
| is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask) { |
| SmallVector<int, 32> RepeatedMask; |
| return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask); |
| } |
| |
| /// Test whether a shuffle mask is equivalent within each 256-bit lane. |
| static bool |
| is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, |
| SmallVectorImpl<int> &RepeatedMask) { |
| return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask); |
| } |
| |
| /// Test whether a target shuffle mask is equivalent within each sub-lane. |
| /// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero. |
| static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT, |
| ArrayRef<int> Mask, |
| SmallVectorImpl<int> &RepeatedMask) { |
| int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits(); |
| RepeatedMask.assign(LaneSize, SM_SentinelUndef); |
| int Size = Mask.size(); |
| for (int i = 0; i < Size; ++i) { |
| assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0)); |
| if (Mask[i] == SM_SentinelUndef) |
| continue; |
| if (Mask[i] == SM_SentinelZero) { |
| if (!isUndefOrZero(RepeatedMask[i % LaneSize])) |
| return false; |
| RepeatedMask[i % LaneSize] = SM_SentinelZero; |
| continue; |
| } |
| if ((Mask[i] % Size) / LaneSize != i / LaneSize) |
| // This entry crosses lanes, so there is no way to model this shuffle. |
| return false; |
| |
| // Ok, handle the in-lane shuffles by detecting if and when they repeat. |
| // Adjust second vector indices to start at LaneSize instead of Size. |
| int LocalM = |
| Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize; |
| if (RepeatedMask[i % LaneSize] == SM_SentinelUndef) |
| // This is the first non-undef entry in this slot of a 128-bit lane. |
| RepeatedMask[i % LaneSize] = LocalM; |
| else if (RepeatedMask[i % LaneSize] != LocalM) |
| // Found a mismatch with the repeated mask. |
| return false; |
| } |
| return true; |
| } |
| |
| /// Checks whether a shuffle mask is equivalent to an explicit list of |
| /// arguments. |
| /// |
| /// This is a fast way to test a shuffle mask against a fixed pattern: |
| /// |
| /// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... } |
| /// |
| /// It returns true if the mask is exactly as wide as the argument list, and |
| /// each element of the mask is either -1 (signifying undef) or the value given |
| /// in the argument. |
| static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask, |
| ArrayRef<int> ExpectedMask) { |
| if (Mask.size() != ExpectedMask.size()) |
| return false; |
| |
| int Size = Mask.size(); |
| |
| // If the values are build vectors, we can look through them to find |
| // equivalent inputs that make the shuffles equivalent. |
| auto *BV1 = dyn_cast<BuildVectorSDNode>(V1); |
| auto *BV2 = dyn_cast<BuildVectorSDNode>(V2); |
| |
| for (int i = 0; i < Size; ++i) { |
| assert(Mask[i] >= -1 && "Out of bound mask element!"); |
| if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) { |
| auto *MaskBV = Mask[i] < Size ? BV1 : BV2; |
| auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2; |
| if (!MaskBV || !ExpectedBV || |
| MaskBV->getOperand(Mask[i] % Size) != |
| ExpectedBV->getOperand(ExpectedMask[i] % Size)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Checks whether a target shuffle mask is equivalent to an explicit pattern. |
| /// |
| /// The masks must be exactly the same width. |
| /// |
| /// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding |
| /// value in ExpectedMask is always accepted. Otherwise the indices must match. |
| /// |
| /// SM_SentinelZero is accepted as a valid negative index but must match in both. |
| static bool isTargetShuffleEquivalent(ArrayRef<int> Mask, |
| ArrayRef<int> ExpectedMask) { |
| int Size = Mask.size(); |
| if (Size != (int)ExpectedMask.size()) |
| return false; |
| |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] == SM_SentinelUndef) |
| continue; |
| else if (Mask[i] < 0 && Mask[i] != SM_SentinelZero) |
| return false; |
| else if (Mask[i] != ExpectedMask[i]) |
| return false; |
| |
| return true; |
| } |
| |
| // Merges a general DAG shuffle mask and zeroable bit mask into a target shuffle |
| // mask. |
| static SmallVector<int, 64> createTargetShuffleMask(ArrayRef<int> Mask, |
| const APInt &Zeroable) { |
| int NumElts = Mask.size(); |
| assert(NumElts == (int)Zeroable.getBitWidth() && "Mismatch mask sizes"); |
| |
| SmallVector<int, 64> TargetMask(NumElts, SM_SentinelUndef); |
| for (int i = 0; i != NumElts; ++i) { |
| int M = Mask[i]; |
| if (M == SM_SentinelUndef) |
| continue; |
| assert(0 <= M && M < (2 * NumElts) && "Out of range shuffle index"); |
| TargetMask[i] = (Zeroable[i] ? SM_SentinelZero : M); |
| } |
| return TargetMask; |
| } |
| |
| // Check if the shuffle mask is suitable for the AVX vpunpcklwd or vpunpckhwd |
| // instructions. |
| static bool isUnpackWdShuffleMask(ArrayRef<int> Mask, MVT VT) { |
| if (VT != MVT::v8i32 && VT != MVT::v8f32) |
| return false; |
| |
| SmallVector<int, 8> Unpcklwd; |
| createUnpackShuffleMask(MVT::v8i16, Unpcklwd, /* Lo = */ true, |
| /* Unary = */ false); |
| SmallVector<int, 8> Unpckhwd; |
| createUnpackShuffleMask(MVT::v8i16, Unpckhwd, /* Lo = */ false, |
| /* Unary = */ false); |
| bool IsUnpackwdMask = (isTargetShuffleEquivalent(Mask, Unpcklwd) || |
| isTargetShuffleEquivalent(Mask, Unpckhwd)); |
| return IsUnpackwdMask; |
| } |
| |
| /// Get a 4-lane 8-bit shuffle immediate for a mask. |
| /// |
| /// This helper function produces an 8-bit shuffle immediate corresponding to |
| /// the ubiquitous shuffle encoding scheme used in x86 instructions for |
| /// shuffling 4 lanes. It can be used with most of the PSHUF instructions for |
| /// example. |
| /// |
| /// NB: We rely heavily on "undef" masks preserving the input lane. |
| static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) { |
| assert(Mask.size() == 4 && "Only 4-lane shuffle masks"); |
| assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!"); |
| assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!"); |
| assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!"); |
| assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!"); |
| |
| unsigned Imm = 0; |
| Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0; |
| Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2; |
| Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4; |
| Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6; |
| return Imm; |
| } |
| |
| static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL, |
| SelectionDAG &DAG) { |
| return DAG.getConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8); |
| } |
| |
| /// Compute whether each element of a shuffle is zeroable. |
| /// |
| /// A "zeroable" vector shuffle element is one which can be lowered to zero. |
| /// Either it is an undef element in the shuffle mask, the element of the input |
| /// referenced is undef, or the element of the input referenced is known to be |
| /// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle |
| /// as many lanes with this technique as possible to simplify the remaining |
| /// shuffle. |
| static APInt computeZeroableShuffleElements(ArrayRef<int> Mask, |
| SDValue V1, SDValue V2) { |
| APInt Zeroable(Mask.size(), 0); |
| V1 = peekThroughBitcasts(V1); |
| V2 = peekThroughBitcasts(V2); |
| |
| bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); |
| bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); |
| |
| int VectorSizeInBits = V1.getValueSizeInBits(); |
| int ScalarSizeInBits = VectorSizeInBits / Mask.size(); |
| assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size"); |
| |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) { |
| int M = Mask[i]; |
| // Handle the easy cases. |
| if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { |
| Zeroable.setBit(i); |
| continue; |
| } |
| |
| // Determine shuffle input and normalize the mask. |
| SDValue V = M < Size ? V1 : V2; |
| M %= Size; |
| |
| // Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements. |
| if (V.getOpcode() != ISD::BUILD_VECTOR) |
| continue; |
| |
| // If the BUILD_VECTOR has fewer elements then the bitcasted portion of |
| // the (larger) source element must be UNDEF/ZERO. |
| if ((Size % V.getNumOperands()) == 0) { |
| int Scale = Size / V->getNumOperands(); |
| SDValue Op = V.getOperand(M / Scale); |
| if (Op.isUndef() || X86::isZeroNode(Op)) |
| Zeroable.setBit(i); |
| else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) { |
| APInt Val = Cst->getAPIntValue(); |
| Val.lshrInPlace((M % Scale) * ScalarSizeInBits); |
| Val = Val.getLoBits(ScalarSizeInBits); |
| if (Val == 0) |
| Zeroable.setBit(i); |
| } else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) { |
| APInt Val = Cst->getValueAPF().bitcastToAPInt(); |
| Val.lshrInPlace((M % Scale) * ScalarSizeInBits); |
| Val = Val.getLoBits(ScalarSizeInBits); |
| if (Val == 0) |
| Zeroable.setBit(i); |
| } |
| continue; |
| } |
| |
| // If the BUILD_VECTOR has more elements then all the (smaller) source |
| // elements must be UNDEF or ZERO. |
| if ((V.getNumOperands() % Size) == 0) { |
| int Scale = V->getNumOperands() / Size; |
| bool AllZeroable = true; |
| for (int j = 0; j < Scale; ++j) { |
| SDValue Op = V.getOperand((M * Scale) + j); |
| AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op)); |
| } |
| if (AllZeroable) |
| Zeroable.setBit(i); |
| continue; |
| } |
| } |
| |
| return Zeroable; |
| } |
| |
| // The Shuffle result is as follow: |
| // 0*a[0]0*a[1]...0*a[n] , n >=0 where a[] elements in a ascending order. |
| // Each Zeroable's element correspond to a particular Mask's element. |
| // As described in computeZeroableShuffleElements function. |
| // |
| // The function looks for a sub-mask that the nonzero elements are in |
| // increasing order. If such sub-mask exist. The function returns true. |
| static bool isNonZeroElementsInOrder(const APInt &Zeroable, |
| ArrayRef<int> Mask, const EVT &VectorType, |
| bool &IsZeroSideLeft) { |
| int NextElement = -1; |
| // Check if the Mask's nonzero elements are in increasing order. |
| for (int i = 0, e = Mask.size(); i < e; i++) { |
| // Checks if the mask's zeros elements are built from only zeros. |
| assert(Mask[i] >= -1 && "Out of bound mask element!"); |
| if (Mask[i] < 0) |
| return false; |
| if (Zeroable[i]) |
| continue; |
| // Find the lowest non zero element |
| if (NextElement < 0) { |
| NextElement = Mask[i] != 0 ? VectorType.getVectorNumElements() : 0; |
| IsZeroSideLeft = NextElement != 0; |
| } |
| // Exit if the mask's non zero elements are not in increasing order. |
| if (NextElement != Mask[i]) |
| return false; |
| NextElement++; |
| } |
| return true; |
| } |
| |
| /// Try to lower a shuffle with a single PSHUFB of V1 or V2. |
| static SDValue lowerVectorShuffleWithPSHUFB(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, SDValue V1, |
| SDValue V2, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| int Size = Mask.size(); |
| int LaneSize = 128 / VT.getScalarSizeInBits(); |
| const int NumBytes = VT.getSizeInBits() / 8; |
| const int NumEltBytes = VT.getScalarSizeInBits() / 8; |
| |
| assert((Subtarget.hasSSSE3() && VT.is128BitVector()) || |
| (Subtarget.hasAVX2() && VT.is256BitVector()) || |
| (Subtarget.hasBWI() && VT.is512BitVector())); |
| |
| SmallVector<SDValue, 64> PSHUFBMask(NumBytes); |
| // Sign bit set in i8 mask means zero element. |
| SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8); |
| |
| SDValue V; |
| for (int i = 0; i < NumBytes; ++i) { |
| int M = Mask[i / NumEltBytes]; |
| if (M < 0) { |
| PSHUFBMask[i] = DAG.getUNDEF(MVT::i8); |
| continue; |
| } |
| if (Zeroable[i / NumEltBytes]) { |
| PSHUFBMask[i] = ZeroMask; |
| continue; |
| } |
| |
| // We can only use a single input of V1 or V2. |
| SDValue SrcV = (M >= Size ? V2 : V1); |
| if (V && V != SrcV) |
| return SDValue(); |
| V = SrcV; |
| M %= Size; |
| |
| // PSHUFB can't cross lanes, ensure this doesn't happen. |
| if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize)) |
| return SDValue(); |
| |
| M = M % LaneSize; |
| M = M * NumEltBytes + (i % NumEltBytes); |
| PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8); |
| } |
| assert(V && "Failed to find a source input"); |
| |
| MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes); |
| return DAG.getBitcast( |
| VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V), |
| DAG.getBuildVector(I8VT, DL, PSHUFBMask))); |
| } |
| |
| static SDValue getMaskNode(SDValue Mask, MVT MaskVT, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl); |
| |
| // X86 has dedicated shuffle that can be lowered to VEXPAND |
| static SDValue lowerVectorShuffleToEXPAND(const SDLoc &DL, MVT VT, |
| const APInt &Zeroable, |
| ArrayRef<int> Mask, SDValue &V1, |
| SDValue &V2, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| bool IsLeftZeroSide = true; |
| if (!isNonZeroElementsInOrder(Zeroable, Mask, V1.getValueType(), |
| IsLeftZeroSide)) |
| return SDValue(); |
| unsigned VEXPANDMask = (~Zeroable).getZExtValue(); |
| MVT IntegerType = |
| MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8)); |
| SDValue MaskNode = DAG.getConstant(VEXPANDMask, DL, IntegerType); |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert((NumElts == 4 || NumElts == 8 || NumElts == 16) && |
| "Unexpected number of vector elements"); |
| SDValue VMask = getMaskNode(MaskNode, MVT::getVectorVT(MVT::i1, NumElts), |
| Subtarget, DAG, DL); |
| SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, DL); |
| SDValue ExpandedVector = IsLeftZeroSide ? V2 : V1; |
| return DAG.getSelect(DL, VT, VMask, |
| DAG.getNode(X86ISD::EXPAND, DL, VT, ExpandedVector), |
| ZeroVector); |
| } |
| |
| static bool matchVectorShuffleWithUNPCK(MVT VT, SDValue &V1, SDValue &V2, |
| unsigned &UnpackOpcode, bool IsUnary, |
| ArrayRef<int> TargetMask, |
| const SDLoc &DL, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| int NumElts = VT.getVectorNumElements(); |
| |
| bool Undef1 = true, Undef2 = true, Zero1 = true, Zero2 = true; |
| for (int i = 0; i != NumElts; i += 2) { |
| int M1 = TargetMask[i + 0]; |
| int M2 = TargetMask[i + 1]; |
| Undef1 &= (SM_SentinelUndef == M1); |
| Undef2 &= (SM_SentinelUndef == M2); |
| Zero1 &= isUndefOrZero(M1); |
| Zero2 &= isUndefOrZero(M2); |
| } |
| assert(!((Undef1 || Zero1) && (Undef2 || Zero2)) && |
| "Zeroable shuffle detected"); |
| |
| // Attempt to match the target mask against the unpack lo/hi mask patterns. |
| SmallVector<int, 64> Unpckl, Unpckh; |
| createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, IsUnary); |
| if (isTargetShuffleEquivalent(TargetMask, Unpckl)) { |
| UnpackOpcode = X86ISD::UNPCKL; |
| V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2)); |
| V1 = (Undef1 ? DAG.getUNDEF(VT) : V1); |
| return true; |
| } |
| |
| createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, IsUnary); |
| if (isTargetShuffleEquivalent(TargetMask, Unpckh)) { |
| UnpackOpcode = X86ISD::UNPCKH; |
| V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2)); |
| V1 = (Undef1 ? DAG.getUNDEF(VT) : V1); |
| return true; |
| } |
| |
| // If an unary shuffle, attempt to match as an unpack lo/hi with zero. |
| if (IsUnary && (Zero1 || Zero2)) { |
| // Don't bother if we can blend instead. |
| if ((Subtarget.hasSSE41() || VT == MVT::v2i64 || VT == MVT::v2f64) && |
| isSequentialOrUndefOrZeroInRange(TargetMask, 0, NumElts, 0)) |
| return false; |
| |
| bool MatchLo = true, MatchHi = true; |
| for (int i = 0; (i != NumElts) && (MatchLo || MatchHi); ++i) { |
| int M = TargetMask[i]; |
| |
| // Ignore if the input is known to be zero or the index is undef. |
| if ((((i & 1) == 0) && Zero1) || (((i & 1) == 1) && Zero2) || |
| (M == SM_SentinelUndef)) |
| continue; |
| |
| MatchLo &= (M == Unpckl[i]); |
| MatchHi &= (M == Unpckh[i]); |
| } |
| |
| if (MatchLo || MatchHi) { |
| UnpackOpcode = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH; |
| V2 = Zero2 ? getZeroVector(VT, Subtarget, DAG, DL) : V1; |
| V1 = Zero1 ? getZeroVector(VT, Subtarget, DAG, DL) : V1; |
| return true; |
| } |
| } |
| |
| // If a binary shuffle, commute and try again. |
| if (!IsUnary) { |
| ShuffleVectorSDNode::commuteMask(Unpckl); |
| if (isTargetShuffleEquivalent(TargetMask, Unpckl)) { |
| UnpackOpcode = X86ISD::UNPCKL; |
| std::swap(V1, V2); |
| return true; |
| } |
| |
| ShuffleVectorSDNode::commuteMask(Unpckh); |
| if (isTargetShuffleEquivalent(TargetMask, Unpckh)) { |
| UnpackOpcode = X86ISD::UNPCKH; |
| std::swap(V1, V2); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // X86 has dedicated unpack instructions that can handle specific blend |
| // operations: UNPCKH and UNPCKL. |
| static SDValue lowerVectorShuffleWithUNPCK(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, SDValue V1, |
| SDValue V2, SelectionDAG &DAG) { |
| SmallVector<int, 8> Unpckl; |
| createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false); |
| if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) |
| return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); |
| |
| SmallVector<int, 8> Unpckh; |
| createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false); |
| if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) |
| return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); |
| |
| // Commute and try again. |
| ShuffleVectorSDNode::commuteMask(Unpckl); |
| if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) |
| return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1); |
| |
| ShuffleVectorSDNode::commuteMask(Unpckh); |
| if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) |
| return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1); |
| |
| return SDValue(); |
| } |
| |
| static bool matchVectorShuffleAsVPMOV(ArrayRef<int> Mask, bool SwappedOps, |
| int Delta) { |
| int Size = (int)Mask.size(); |
| int Split = Size / Delta; |
| int TruncatedVectorStart = SwappedOps ? Size : 0; |
| |
| // Match for mask starting with e.g.: <8, 10, 12, 14,... or <0, 2, 4, 6,... |
| if (!isSequentialOrUndefInRange(Mask, 0, Split, TruncatedVectorStart, Delta)) |
| return false; |
| |
| // The rest of the mask should not refer to the truncated vector's elements. |
| if (isAnyInRange(Mask.slice(Split, Size - Split), TruncatedVectorStart, |
| TruncatedVectorStart + Size)) |
| return false; |
| |
| return true; |
| } |
| |
| // Try to lower trunc+vector_shuffle to a vpmovdb or a vpmovdw instruction. |
| // |
| // An example is the following: |
| // |
| // t0: ch = EntryToken |
| // t2: v4i64,ch = CopyFromReg t0, Register:v4i64 %0 |
| // t25: v4i32 = truncate t2 |
| // t41: v8i16 = bitcast t25 |
| // t21: v8i16 = BUILD_VECTOR undef:i16, undef:i16, undef:i16, undef:i16, |
| // Constant:i16<0>, Constant:i16<0>, Constant:i16<0>, Constant:i16<0> |
| // t51: v8i16 = vector_shuffle<0,2,4,6,12,13,14,15> t41, t21 |
| // t18: v2i64 = bitcast t51 |
| // |
| // Without avx512vl, this is lowered to: |
| // |
| // vpmovqd %zmm0, %ymm0 |
| // vpshufb {{.*#+}} xmm0 = |
| // xmm0[0,1,4,5,8,9,12,13],zero,zero,zero,zero,zero,zero,zero,zero |
| // |
| // But when avx512vl is available, one can just use a single vpmovdw |
| // instruction. |
| static SDValue lowerVectorShuffleWithVPMOV(const SDLoc &DL, ArrayRef<int> Mask, |
| MVT VT, SDValue V1, SDValue V2, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (VT != MVT::v16i8 && VT != MVT::v8i16) |
| return SDValue(); |
| |
| if (Mask.size() != VT.getVectorNumElements()) |
| return SDValue(); |
| |
| bool SwappedOps = false; |
| |
| if (!ISD::isBuildVectorAllZeros(V2.getNode())) { |
| if (!ISD::isBuildVectorAllZeros(V1.getNode())) |
| return SDValue(); |
| |
| std::swap(V1, V2); |
| SwappedOps = true; |
| } |
| |
| // Look for: |
| // |
| // bitcast (truncate <8 x i32> %vec to <8 x i16>) to <16 x i8> |
| // bitcast (truncate <4 x i64> %vec to <4 x i32>) to <8 x i16> |
| // |
| // and similar ones. |
| if (V1.getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| if (V1.getOperand(0).getOpcode() != ISD::TRUNCATE) |
| return SDValue(); |
| |
| SDValue Src = V1.getOperand(0).getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| |
| // The vptrunc** instructions truncating 128 bit and 256 bit vectors |
| // are only available with avx512vl. |
| if (!SrcVT.is512BitVector() && !Subtarget.hasVLX()) |
| return SDValue(); |
| |
| // Down Convert Word to Byte is only available with avx512bw. The case with |
| // 256-bit output doesn't contain a shuffle and is therefore not handled here. |
| if (SrcVT.getVectorElementType() == MVT::i16 && VT == MVT::v16i8 && |
| !Subtarget.hasBWI()) |
| return SDValue(); |
| |
| // The first half/quarter of the mask should refer to every second/fourth |
| // element of the vector truncated and bitcasted. |
| if (!matchVectorShuffleAsVPMOV(Mask, SwappedOps, 2) && |
| !matchVectorShuffleAsVPMOV(Mask, SwappedOps, 4)) |
| return SDValue(); |
| |
| return DAG.getNode(X86ISD::VTRUNC, DL, VT, Src); |
| } |
| |
| // X86 has dedicated pack instructions that can handle specific truncation |
| // operations: PACKSS and PACKUS. |
| static bool matchVectorShuffleWithPACK(MVT VT, MVT &SrcVT, SDValue &V1, |
| SDValue &V2, unsigned &PackOpcode, |
| ArrayRef<int> TargetMask, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned BitSize = VT.getScalarSizeInBits(); |
| MVT PackSVT = MVT::getIntegerVT(BitSize * 2); |
| MVT PackVT = MVT::getVectorVT(PackSVT, NumElts / 2); |
| |
| auto MatchPACK = [&](SDValue N1, SDValue N2) { |
| SDValue VV1 = DAG.getBitcast(PackVT, N1); |
| SDValue VV2 = DAG.getBitcast(PackVT, N2); |
| if (Subtarget.hasSSE41() || PackSVT == MVT::i16) { |
| APInt ZeroMask = APInt::getHighBitsSet(BitSize * 2, BitSize); |
| if ((N1.isUndef() || DAG.MaskedValueIsZero(VV1, ZeroMask)) && |
| (N2.isUndef() || DAG.MaskedValueIsZero(VV2, ZeroMask))) { |
| V1 = VV1; |
| V2 = VV2; |
| SrcVT = PackVT; |
| PackOpcode = X86ISD::PACKUS; |
| return true; |
| } |
| } |
| if ((N1.isUndef() || DAG.ComputeNumSignBits(VV1) > BitSize) && |
| (N2.isUndef() || DAG.ComputeNumSignBits(VV2) > BitSize)) { |
| V1 = VV1; |
| V2 = VV2; |
| SrcVT = PackVT; |
| PackOpcode = X86ISD::PACKSS; |
| return true; |
| } |
| return false; |
| }; |
| |
| // Try binary shuffle. |
| SmallVector<int, 32> BinaryMask; |
| createPackShuffleMask(VT, BinaryMask, false); |
| if (isTargetShuffleEquivalent(TargetMask, BinaryMask)) |
| if (MatchPACK(V1, V2)) |
| return true; |
| |
| // Try unary shuffle. |
| SmallVector<int, 32> UnaryMask; |
| createPackShuffleMask(VT, UnaryMask, true); |
| if (isTargetShuffleEquivalent(TargetMask, UnaryMask)) |
| if (MatchPACK(V1, V1)) |
| return true; |
| |
| return false; |
| } |
| |
| static SDValue lowerVectorShuffleWithPACK(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, SDValue V1, |
| SDValue V2, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT PackVT; |
| unsigned PackOpcode; |
| if (matchVectorShuffleWithPACK(VT, PackVT, V1, V2, PackOpcode, Mask, DAG, |
| Subtarget)) |
| return DAG.getNode(PackOpcode, DL, VT, DAG.getBitcast(PackVT, V1), |
| DAG.getBitcast(PackVT, V2)); |
| |
| return SDValue(); |
| } |
| |
| /// Try to emit a bitmask instruction for a shuffle. |
| /// |
| /// This handles cases where we can model a blend exactly as a bitmask due to |
| /// one of the inputs being zeroable. |
| static SDValue lowerVectorShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SelectionDAG &DAG) { |
| assert(!VT.isFloatingPoint() && "Floating point types are not supported"); |
| MVT EltVT = VT.getVectorElementType(); |
| SDValue Zero = DAG.getConstant(0, DL, EltVT); |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT); |
| SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero); |
| SDValue V; |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) { |
| if (Zeroable[i]) |
| continue; |
| if (Mask[i] % Size != i) |
| return SDValue(); // Not a blend. |
| if (!V) |
| V = Mask[i] < Size ? V1 : V2; |
| else if (V != (Mask[i] < Size ? V1 : V2)) |
| return SDValue(); // Can only let one input through the mask. |
| |
| VMaskOps[i] = AllOnes; |
| } |
| if (!V) |
| return SDValue(); // No non-zeroable elements! |
| |
| SDValue VMask = DAG.getBuildVector(VT, DL, VMaskOps); |
| return DAG.getNode(ISD::AND, DL, VT, V, VMask); |
| } |
| |
| /// Try to emit a blend instruction for a shuffle using bit math. |
| /// |
| /// This is used as a fallback approach when first class blend instructions are |
| /// unavailable. Currently it is only suitable for integer vectors, but could |
| /// be generalized for floating point vectors if desirable. |
| static SDValue lowerVectorShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| assert(VT.isInteger() && "Only supports integer vector types!"); |
| MVT EltVT = VT.getVectorElementType(); |
| SDValue Zero = DAG.getConstant(0, DL, EltVT); |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT); |
| SmallVector<SDValue, 16> MaskOps; |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) { |
| if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size) |
| return SDValue(); // Shuffled input! |
| MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero); |
| } |
| |
| SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps); |
| V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask); |
| // We have to cast V2 around. |
| MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); |
| V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT, |
| DAG.getBitcast(MaskVT, V1Mask), |
| DAG.getBitcast(MaskVT, V2))); |
| return DAG.getNode(ISD::OR, DL, VT, V1, V2); |
| } |
| |
| static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, |
| SDValue PreservedSrc, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG); |
| |
| static bool matchVectorShuffleAsBlend(SDValue V1, SDValue V2, |
| MutableArrayRef<int> TargetMask, |
| bool &ForceV1Zero, bool &ForceV2Zero, |
| uint64_t &BlendMask) { |
| bool V1IsZeroOrUndef = |
| V1.isUndef() || ISD::isBuildVectorAllZeros(V1.getNode()); |
| bool V2IsZeroOrUndef = |
| V2.isUndef() || ISD::isBuildVectorAllZeros(V2.getNode()); |
| |
| BlendMask = 0; |
| ForceV1Zero = false, ForceV2Zero = false; |
| assert(TargetMask.size() <= 64 && "Shuffle mask too big for blend mask"); |
| |
| // Attempt to generate the binary blend mask. If an input is zero then |
| // we can use any lane. |
| // TODO: generalize the zero matching to any scalar like isShuffleEquivalent. |
| for (int i = 0, Size = TargetMask.size(); i < Size; ++i) { |
| int M = TargetMask[i]; |
| if (M == SM_SentinelUndef) |
| continue; |
| if (M == i) |
| continue; |
| if (M == i + Size) { |
| BlendMask |= 1ull << i; |
| continue; |
| } |
| if (M == SM_SentinelZero) { |
| if (V1IsZeroOrUndef) { |
| ForceV1Zero = true; |
| TargetMask[i] = i; |
| continue; |
| } |
| if (V2IsZeroOrUndef) { |
| ForceV2Zero = true; |
| BlendMask |= 1ull << i; |
| TargetMask[i] = i + Size; |
| continue; |
| } |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| static uint64_t scaleVectorShuffleBlendMask(uint64_t BlendMask, int Size, |
| int Scale) { |
| uint64_t ScaledMask = 0; |
| for (int i = 0; i != Size; ++i) |
| if (BlendMask & (1ull << i)) |
| ScaledMask |= ((1ull << Scale) - 1) << (i * Scale); |
| return ScaledMask; |
| } |
| |
| /// Try to emit a blend instruction for a shuffle. |
| /// |
| /// This doesn't do any checks for the availability of instructions for blending |
| /// these values. It relies on the availability of the X86ISD::BLENDI pattern to |
| /// be matched in the backend with the type given. What it does check for is |
| /// that the shuffle mask is a blend, or convertible into a blend with zero. |
| static SDValue lowerVectorShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Original, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SmallVector<int, 64> Mask = createTargetShuffleMask(Original, Zeroable); |
| |
| uint64_t BlendMask = 0; |
| bool ForceV1Zero = false, ForceV2Zero = false; |
| if (!matchVectorShuffleAsBlend(V1, V2, Mask, ForceV1Zero, ForceV2Zero, |
| BlendMask)) |
| return SDValue(); |
| |
| // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs. |
| if (ForceV1Zero) |
| V1 = getZeroVector(VT, Subtarget, DAG, DL); |
| if (ForceV2Zero) |
| V2 = getZeroVector(VT, Subtarget, DAG, DL); |
| |
| switch (VT.SimpleTy) { |
| case MVT::v2f64: |
| case MVT::v4f32: |
| case MVT::v4f64: |
| case MVT::v8f32: |
| return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2, |
| DAG.getConstant(BlendMask, DL, MVT::i8)); |
| |
| case MVT::v4i64: |
| case MVT::v8i32: |
| assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!"); |
| LLVM_FALLTHROUGH; |
| case MVT::v2i64: |
| case MVT::v4i32: |
| // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into |
| // that instruction. |
| if (Subtarget.hasAVX2()) { |
| // Scale the blend by the number of 32-bit dwords per element. |
| int Scale = VT.getScalarSizeInBits() / 32; |
| BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale); |
| MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32; |
| V1 = DAG.getBitcast(BlendVT, V1); |
| V2 = DAG.getBitcast(BlendVT, V2); |
| return DAG.getBitcast( |
| VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2, |
| DAG.getConstant(BlendMask, DL, MVT::i8))); |
| } |
| LLVM_FALLTHROUGH; |
| case MVT::v8i16: { |
| // For integer shuffles we need to expand the mask and cast the inputs to |
| // v8i16s prior to blending. |
| int Scale = 8 / VT.getVectorNumElements(); |
| BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale); |
| V1 = DAG.getBitcast(MVT::v8i16, V1); |
| V2 = DAG.getBitcast(MVT::v8i16, V2); |
| return DAG.getBitcast(VT, |
| DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2, |
| DAG.getConstant(BlendMask, DL, MVT::i8))); |
| } |
| |
| case MVT::v16i16: { |
| assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!"); |
| SmallVector<int, 8> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { |
| // We can lower these with PBLENDW which is mirrored across 128-bit lanes. |
| assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!"); |
| BlendMask = 0; |
| for (int i = 0; i < 8; ++i) |
| if (RepeatedMask[i] >= 8) |
| BlendMask |= 1ull << i; |
| return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2, |
| DAG.getConstant(BlendMask, DL, MVT::i8)); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case MVT::v16i8: |
| case MVT::v32i8: { |
| assert((VT.is128BitVector() || Subtarget.hasAVX2()) && |
| "256-bit byte-blends require AVX2 support!"); |
| |
| if (Subtarget.hasBWI() && Subtarget.hasVLX()) { |
| MVT IntegerType = |
| MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8)); |
| SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType); |
| return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG); |
| } |
| |
| // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB. |
| if (SDValue Masked = |
| lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG)) |
| return Masked; |
| |
| // Scale the blend by the number of bytes per element. |
| int Scale = VT.getScalarSizeInBits() / 8; |
| |
| // This form of blend is always done on bytes. Compute the byte vector |
| // type. |
| MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); |
| |
| // Compute the VSELECT mask. Note that VSELECT is really confusing in the |
| // mix of LLVM's code generator and the x86 backend. We tell the code |
| // generator that boolean values in the elements of an x86 vector register |
| // are -1 for true and 0 for false. We then use the LLVM semantics of 'true' |
| // mapping a select to operand #1, and 'false' mapping to operand #2. The |
| // reality in x86 is that vector masks (pre-AVX-512) use only the high bit |
| // of the element (the remaining are ignored) and 0 in that high bit would |
| // mean operand #1 while 1 in the high bit would mean operand #2. So while |
| // the LLVM model for boolean values in vector elements gets the relevant |
| // bit set, it is set backwards and over constrained relative to x86's |
| // actual model. |
| SmallVector<SDValue, 32> VSELECTMask; |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) |
| for (int j = 0; j < Scale; ++j) |
| VSELECTMask.push_back( |
| Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) |
| : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL, |
| MVT::i8)); |
| |
| V1 = DAG.getBitcast(BlendVT, V1); |
| V2 = DAG.getBitcast(BlendVT, V2); |
| return DAG.getBitcast( |
| VT, |
| DAG.getSelect(DL, BlendVT, DAG.getBuildVector(BlendVT, DL, VSELECTMask), |
| V1, V2)); |
| } |
| case MVT::v16f32: |
| case MVT::v8f64: |
| case MVT::v8i64: |
| case MVT::v16i32: |
| case MVT::v32i16: |
| case MVT::v64i8: { |
| MVT IntegerType = |
| MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8)); |
| SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType); |
| return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG); |
| } |
| default: |
| llvm_unreachable("Not a supported integer vector type!"); |
| } |
| } |
| |
| /// Try to lower as a blend of elements from two inputs followed by |
| /// a single-input permutation. |
| /// |
| /// This matches the pattern where we can blend elements from two inputs and |
| /// then reduce the shuffle to a single-input permutation. |
| static SDValue lowerVectorShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| // We build up the blend mask while checking whether a blend is a viable way |
| // to reduce the shuffle. |
| SmallVector<int, 32> BlendMask(Mask.size(), -1); |
| SmallVector<int, 32> PermuteMask(Mask.size(), -1); |
| |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| |
| assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds."); |
| |
| if (BlendMask[Mask[i] % Size] < 0) |
| BlendMask[Mask[i] % Size] = Mask[i]; |
| else if (BlendMask[Mask[i] % Size] != Mask[i]) |
| return SDValue(); // Can't blend in the needed input! |
| |
| PermuteMask[i] = Mask[i] % Size; |
| } |
| |
| SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); |
| return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask); |
| } |
| |
| /// Generic routine to decompose a shuffle and blend into independent |
| /// blends and permutes. |
| /// |
| /// This matches the extremely common pattern for handling combined |
| /// shuffle+blend operations on newer X86 ISAs where we have very fast blend |
| /// operations. It will try to pick the best arrangement of shuffles and |
| /// blends. |
| static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(const SDLoc &DL, |
| MVT VT, SDValue V1, |
| SDValue V2, |
| ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| // Shuffle the input elements into the desired positions in V1 and V2 and |
| // blend them together. |
| SmallVector<int, 32> V1Mask(Mask.size(), -1); |
| SmallVector<int, 32> V2Mask(Mask.size(), -1); |
| SmallVector<int, 32> BlendMask(Mask.size(), -1); |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) |
| if (Mask[i] >= 0 && Mask[i] < Size) { |
| V1Mask[i] = Mask[i]; |
| BlendMask[i] = i; |
| } else if (Mask[i] >= Size) { |
| V2Mask[i] = Mask[i] - Size; |
| BlendMask[i] = i + Size; |
| } |
| |
| // Try to lower with the simpler initial blend strategy unless one of the |
| // input shuffles would be a no-op. We prefer to shuffle inputs as the |
| // shuffle may be able to fold with a load or other benefit. However, when |
| // we'll have to do 2x as many shuffles in order to achieve this, blending |
| // first is a better strategy. |
| if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) |
| if (SDValue BlendPerm = |
| lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG)) |
| return BlendPerm; |
| |
| V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); |
| V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); |
| return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); |
| } |
| |
| /// Try to lower a vector shuffle as a rotation. |
| /// |
| /// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512. |
| static int matchVectorShuffleAsRotate(SDValue &V1, SDValue &V2, |
| ArrayRef<int> Mask) { |
| int NumElts = Mask.size(); |
| |
| // We need to detect various ways of spelling a rotation: |
| // [11, 12, 13, 14, 15, 0, 1, 2] |
| // [-1, 12, 13, 14, -1, -1, 1, -1] |
| // [-1, -1, -1, -1, -1, -1, 1, 2] |
| // [ 3, 4, 5, 6, 7, 8, 9, 10] |
| // [-1, 4, 5, 6, -1, -1, 9, -1] |
| // [-1, 4, 5, 6, -1, -1, -1, -1] |
| int Rotation = 0; |
| SDValue Lo, Hi; |
| for (int i = 0; i < NumElts; ++i) { |
| int M = Mask[i]; |
| assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) && |
| "Unexpected mask index."); |
| if (M < 0) |
| continue; |
| |
| // Determine where a rotated vector would have started. |
| int StartIdx = i - (M % NumElts); |
| if (StartIdx == 0) |
| // The identity rotation isn't interesting, stop. |
| return -1; |
| |
| // If we found the tail of a vector the rotation must be the missing |
| // front. If we found the head of a vector, it must be how much of the |
| // head. |
| int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx; |
| |
| if (Rotation == 0) |
| Rotation = CandidateRotation; |
| else if (Rotation != CandidateRotation) |
| // The rotations don't match, so we can't match this mask. |
| return -1; |
| |
| // Compute which value this mask is pointing at. |
| SDValue MaskV = M < NumElts ? V1 : V2; |
| |
| // Compute which of the two target values this index should be assigned |
| // to. This reflects whether the high elements are remaining or the low |
| // elements are remaining. |
| SDValue &TargetV = StartIdx < 0 ? Hi : Lo; |
| |
| // Either set up this value if we've not encountered it before, or check |
| // that it remains consistent. |
| if (!TargetV) |
| TargetV = MaskV; |
| else if (TargetV != MaskV) |
| // This may be a rotation, but it pulls from the inputs in some |
| // unsupported interleaving. |
| return -1; |
| } |
| |
| // Check that we successfully analyzed the mask, and normalize the results. |
| assert(Rotation != 0 && "Failed to locate a viable rotation!"); |
| assert((Lo || Hi) && "Failed to find a rotated input vector!"); |
| if (!Lo) |
| Lo = Hi; |
| else if (!Hi) |
| Hi = Lo; |
| |
| V1 = Lo; |
| V2 = Hi; |
| |
| return Rotation; |
| } |
| |
| /// Try to lower a vector shuffle as a byte rotation. |
| /// |
| /// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary |
| /// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use |
| /// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will |
| /// try to generically lower a vector shuffle through such an pattern. It |
| /// does not check for the profitability of lowering either as PALIGNR or |
| /// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form. |
| /// This matches shuffle vectors that look like: |
| /// |
| /// v8i16 [11, 12, 13, 14, 15, 0, 1, 2] |
| /// |
| /// Essentially it concatenates V1 and V2, shifts right by some number of |
| /// elements, and takes the low elements as the result. Note that while this is |
| /// specified as a *right shift* because x86 is little-endian, it is a *left |
| /// rotate* of the vector lanes. |
| static int matchVectorShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, |
| ArrayRef<int> Mask) { |
| // Don't accept any shuffles with zero elements. |
| if (any_of(Mask, [](int M) { return M == SM_SentinelZero; })) |
| return -1; |
| |
| // PALIGNR works on 128-bit lanes. |
| SmallVector<int, 16> RepeatedMask; |
| if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask)) |
| return -1; |
| |
| int Rotation = matchVectorShuffleAsRotate(V1, V2, RepeatedMask); |
| if (Rotation <= 0) |
| return -1; |
| |
| // PALIGNR rotates bytes, so we need to scale the |
| // rotation based on how many bytes are in the vector lane. |
| int NumElts = RepeatedMask.size(); |
| int Scale = 16 / NumElts; |
| return Rotation * Scale; |
| } |
| |
| static SDValue lowerVectorShuffleAsByteRotate(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); |
| |
| SDValue Lo = V1, Hi = V2; |
| int ByteRotation = matchVectorShuffleAsByteRotate(VT, Lo, Hi, Mask); |
| if (ByteRotation <= 0) |
| return SDValue(); |
| |
| // Cast the inputs to i8 vector of correct length to match PALIGNR or |
| // PSLLDQ/PSRLDQ. |
| MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); |
| Lo = DAG.getBitcast(ByteVT, Lo); |
| Hi = DAG.getBitcast(ByteVT, Hi); |
| |
| // SSSE3 targets can use the palignr instruction. |
| if (Subtarget.hasSSSE3()) { |
| assert((!VT.is512BitVector() || Subtarget.hasBWI()) && |
| "512-bit PALIGNR requires BWI instructions"); |
| return DAG.getBitcast( |
| VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi, |
| DAG.getConstant(ByteRotation, DL, MVT::i8))); |
| } |
| |
| assert(VT.is128BitVector() && |
| "Rotate-based lowering only supports 128-bit lowering!"); |
| assert(Mask.size() <= 16 && |
| "Can shuffle at most 16 bytes in a 128-bit vector!"); |
| assert(ByteVT == MVT::v16i8 && |
| "SSE2 rotate lowering only needed for v16i8!"); |
| |
| // Default SSE2 implementation |
| int LoByteShift = 16 - ByteRotation; |
| int HiByteShift = ByteRotation; |
| |
| SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo, |
| DAG.getConstant(LoByteShift, DL, MVT::i8)); |
| SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi, |
| DAG.getConstant(HiByteShift, DL, MVT::i8)); |
| return DAG.getBitcast(VT, |
| DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift)); |
| } |
| |
| /// Try to lower a vector shuffle as a dword/qword rotation. |
| /// |
| /// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary |
| /// rotation of the concatenation of two vectors; This routine will |
| /// try to generically lower a vector shuffle through such an pattern. |
| /// |
| /// Essentially it concatenates V1 and V2, shifts right by some number of |
| /// elements, and takes the low elements as the result. Note that while this is |
| /// specified as a *right shift* because x86 is little-endian, it is a *left |
| /// rotate* of the vector lanes. |
| static SDValue lowerVectorShuffleAsRotate(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) && |
| "Only 32-bit and 64-bit elements are supported!"); |
| |
| // 128/256-bit vectors are only supported with VLX. |
| assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector())) |
| && "VLX required for 128/256-bit vectors"); |
| |
| SDValue Lo = V1, Hi = V2; |
| int Rotation = matchVectorShuffleAsRotate(Lo, Hi, Mask); |
| if (Rotation <= 0) |
| return SDValue(); |
| |
| return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi, |
| DAG.getConstant(Rotation, DL, MVT::i8)); |
| } |
| |
| /// Try to lower a vector shuffle as a bit shift (shifts in zeros). |
| /// |
| /// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and |
| /// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function |
| /// matches elements from one of the input vectors shuffled to the left or |
| /// right with zeroable elements 'shifted in'. It handles both the strictly |
| /// bit-wise element shifts and the byte shift across an entire 128-bit double |
| /// quad word lane. |
| /// |
| /// PSHL : (little-endian) left bit shift. |
| /// [ zz, 0, zz, 2 ] |
| /// [ -1, 4, zz, -1 ] |
| /// PSRL : (little-endian) right bit shift. |
| /// [ 1, zz, 3, zz] |
| /// [ -1, -1, 7, zz] |
| /// PSLLDQ : (little-endian) left byte shift |
| /// [ zz, 0, 1, 2, 3, 4, 5, 6] |
| /// [ zz, zz, -1, -1, 2, 3, 4, -1] |
| /// [ zz, zz, zz, zz, zz, zz, -1, 1] |
| /// PSRLDQ : (little-endian) right byte shift |
| /// [ 5, 6, 7, zz, zz, zz, zz, zz] |
| /// [ -1, 5, 6, 7, zz, zz, zz, zz] |
| /// [ 1, 2, -1, -1, -1, -1, zz, zz] |
| static int matchVectorShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, |
| unsigned ScalarSizeInBits, |
| ArrayRef<int> Mask, int MaskOffset, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget) { |
| int Size = Mask.size(); |
| unsigned SizeInBits = Size * ScalarSizeInBits; |
| |
| auto CheckZeros = [&](int Shift, int Scale, bool Left) { |
| for (int i = 0; i < Size; i += Scale) |
| for (int j = 0; j < Shift; ++j) |
| if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))]) |
| return false; |
| |
| return true; |
| }; |
| |
| auto MatchShift = [&](int Shift, int Scale, bool Left) { |
| for (int i = 0; i != Size; i += Scale) { |
| unsigned Pos = Left ? i + Shift : i; |
| unsigned Low = Left ? i : i + Shift; |
| unsigned Len = Scale - Shift; |
| if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset)) |
| return -1; |
| } |
| |
| int ShiftEltBits = ScalarSizeInBits * Scale; |
| bool ByteShift = ShiftEltBits > 64; |
| Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI) |
| : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI); |
| int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1); |
| |
| // Normalize the scale for byte shifts to still produce an i64 element |
| // type. |
| Scale = ByteShift ? Scale / 2 : Scale; |
| |
| // We need to round trip through the appropriate type for the shift. |
| MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale); |
| ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8) |
| : MVT::getVectorVT(ShiftSVT, Size / Scale); |
| return (int)ShiftAmt; |
| }; |
| |
| // SSE/AVX supports logical shifts up to 64-bit integers - so we can just |
| // keep doubling the size of the integer elements up to that. We can |
| // then shift the elements of the integer vector by whole multiples of |
| // their width within the elements of the larger integer vector. Test each |
| // multiple to see if we can find a match with the moved element indices |
| // and that the shifted in elements are all zeroable. |
| unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128); |
| for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2) |
| for (int Shift = 1; Shift != Scale; ++Shift) |
| for (bool Left : {true, false}) |
| if (CheckZeros(Shift, Scale, Left)) { |
| int ShiftAmt = MatchShift(Shift, Scale, Left); |
| if (0 < ShiftAmt) |
| return ShiftAmt; |
| } |
| |
| // no match |
| return -1; |
| } |
| |
| static SDValue lowerVectorShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| int Size = Mask.size(); |
| assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); |
| |
| MVT ShiftVT; |
| SDValue V = V1; |
| unsigned Opcode; |
| |
| // Try to match shuffle against V1 shift. |
| int ShiftAmt = matchVectorShuffleAsShift( |
| ShiftVT, Opcode, VT.getScalarSizeInBits(), Mask, 0, Zeroable, Subtarget); |
| |
| // If V1 failed, try to match shuffle against V2 shift. |
| if (ShiftAmt < 0) { |
| ShiftAmt = |
| matchVectorShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(), |
| Mask, Size, Zeroable, Subtarget); |
| V = V2; |
| } |
| |
| if (ShiftAmt < 0) |
| return SDValue(); |
| |
| assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) && |
| "Illegal integer vector type"); |
| V = DAG.getBitcast(ShiftVT, V); |
| V = DAG.getNode(Opcode, DL, ShiftVT, V, |
| DAG.getConstant(ShiftAmt, DL, MVT::i8)); |
| return DAG.getBitcast(VT, V); |
| } |
| |
| // EXTRQ: Extract Len elements from lower half of source, starting at Idx. |
| // Remainder of lower half result is zero and upper half is all undef. |
| static bool matchVectorShuffleAsEXTRQ(MVT VT, SDValue &V1, SDValue &V2, |
| ArrayRef<int> Mask, uint64_t &BitLen, |
| uint64_t &BitIdx, const APInt &Zeroable) { |
| int Size = Mask.size(); |
| int HalfSize = Size / 2; |
| assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); |
| assert(!Zeroable.isAllOnesValue() && "Fully zeroable shuffle mask"); |
| |
| // Upper half must be undefined. |
| if (!isUndefInRange(Mask, HalfSize, HalfSize)) |
| return false; |
| |
| // Determine the extraction length from the part of the |
| // lower half that isn't zeroable. |
| int Len = HalfSize; |
| for (; Len > 0; --Len) |
| if (!Zeroable[Len - 1]) |
| break; |
| assert(Len > 0 && "Zeroable shuffle mask"); |
| |
| // Attempt to match first Len sequential elements from the lower half. |
| SDValue Src; |
| int Idx = -1; |
| for (int i = 0; i != Len; ++i) { |
| int M = Mask[i]; |
| if (M == SM_SentinelUndef) |
| continue; |
| SDValue &V = (M < Size ? V1 : V2); |
| M = M % Size; |
| |
| // The extracted elements must start at a valid index and all mask |
| // elements must be in the lower half. |
| if (i > M || M >= HalfSize) |
| return false; |
| |
| if (Idx < 0 || (Src == V && Idx == (M - i))) { |
| Src = V; |
| Idx = M - i; |
| continue; |
| } |
| return false; |
| } |
| |
| if (!Src || Idx < 0) |
| return false; |
| |
| assert((Idx + Len) <= HalfSize && "Illegal extraction mask"); |
| BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; |
| BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; |
| V1 = Src; |
| return true; |
| } |
| |
| // INSERTQ: Extract lowest Len elements from lower half of second source and |
| // insert over first source, starting at Idx. |
| // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... } |
| static bool matchVectorShuffleAsINSERTQ(MVT VT, SDValue &V1, SDValue &V2, |
| ArrayRef<int> Mask, uint64_t &BitLen, |
| uint64_t &BitIdx) { |
| int Size = Mask.size(); |
| int HalfSize = Size / 2; |
| assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); |
| |
| // Upper half must be undefined. |
| if (!isUndefInRange(Mask, HalfSize, HalfSize)) |
| return false; |
| |
| for (int Idx = 0; Idx != HalfSize; ++Idx) { |
| SDValue Base; |
| |
| // Attempt to match first source from mask before insertion point. |
| if (isUndefInRange(Mask, 0, Idx)) { |
| /* EMPTY */ |
| } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) { |
| Base = V1; |
| } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) { |
| Base = V2; |
| } else { |
| continue; |
| } |
| |
| // Extend the extraction length looking to match both the insertion of |
| // the second source and the remaining elements of the first. |
| for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) { |
| SDValue Insert; |
| int Len = Hi - Idx; |
| |
| // Match insertion. |
| if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) { |
| Insert = V1; |
| } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) { |
| Insert = V2; |
| } else { |
| continue; |
| } |
| |
| // Match the remaining elements of the lower half. |
| if (isUndefInRange(Mask, Hi, HalfSize - Hi)) { |
| /* EMPTY */ |
| } else if ((!Base || (Base == V1)) && |
| isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) { |
| Base = V1; |
| } else if ((!Base || (Base == V2)) && |
| isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, |
| Size + Hi)) { |
| Base = V2; |
| } else { |
| continue; |
| } |
| |
| BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; |
| BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; |
| V1 = Base; |
| V2 = Insert; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ. |
| static SDValue lowerVectorShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SelectionDAG &DAG) { |
| uint64_t BitLen, BitIdx; |
| if (matchVectorShuffleAsEXTRQ(VT, V1, V2, Mask, BitLen, BitIdx, Zeroable)) |
| return DAG.getNode(X86ISD::EXTRQI, DL, VT, V1, |
| DAG.getConstant(BitLen, DL, MVT::i8), |
| DAG.getConstant(BitIdx, DL, MVT::i8)); |
| |
| if (matchVectorShuffleAsINSERTQ(VT, V1, V2, Mask, BitLen, BitIdx)) |
| return DAG.getNode(X86ISD::INSERTQI, DL, VT, V1 ? V1 : DAG.getUNDEF(VT), |
| V2 ? V2 : DAG.getUNDEF(VT), |
| DAG.getConstant(BitLen, DL, MVT::i8), |
| DAG.getConstant(BitIdx, DL, MVT::i8)); |
| |
| return SDValue(); |
| } |
| |
| /// Lower a vector shuffle as a zero or any extension. |
| /// |
| /// Given a specific number of elements, element bit width, and extension |
| /// stride, produce either a zero or any extension based on the available |
| /// features of the subtarget. The extended elements are consecutive and |
| /// begin and can start from an offsetted element index in the input; to |
| /// avoid excess shuffling the offset must either being in the bottom lane |
| /// or at the start of a higher lane. All extended elements must be from |
| /// the same lane. |
| static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend( |
| const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV, |
| ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) { |
| assert(Scale > 1 && "Need a scale to extend."); |
| int EltBits = VT.getScalarSizeInBits(); |
| int NumElements = VT.getVectorNumElements(); |
| int NumEltsPerLane = 128 / EltBits; |
| int OffsetLane = Offset / NumEltsPerLane; |
| assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && |
| "Only 8, 16, and 32 bit elements can be extended."); |
| assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits."); |
| assert(0 <= Offset && "Extension offset must be positive."); |
| assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) && |
| "Extension offset must be in the first lane or start an upper lane."); |
| |
| // Check that an index is in same lane as the base offset. |
| auto SafeOffset = [&](int Idx) { |
| return OffsetLane == (Idx / NumEltsPerLane); |
| }; |
| |
| // Shift along an input so that the offset base moves to the first element. |
| auto ShuffleOffset = [&](SDValue V) { |
| if (!Offset) |
| return V; |
| |
| SmallVector<int, 8> ShMask((unsigned)NumElements, -1); |
| for (int i = 0; i * Scale < NumElements; ++i) { |
| int SrcIdx = i + Offset; |
| ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1; |
| } |
| return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask); |
| }; |
| |
| // Found a valid zext mask! Try various lowering strategies based on the |
| // input type and available ISA extensions. |
| if (Subtarget.hasSSE41()) { |
| // Not worth offsetting 128-bit vectors if scale == 2, a pattern using |
| // PUNPCK will catch this in a later shuffle match. |
| if (Offset && Scale == 2 && VT.is128BitVector()) |
| return SDValue(); |
| MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale), |
| NumElements / Scale); |
| InputV = ShuffleOffset(InputV); |
| InputV = getExtendInVec(X86ISD::VZEXT, DL, ExtVT, InputV, DAG); |
| return DAG.getBitcast(VT, InputV); |
| } |
| |
| assert(VT.is128BitVector() && "Only 128-bit vectors can be extended."); |
| |
| // For any extends we can cheat for larger element sizes and use shuffle |
| // instructions that can fold with a load and/or copy. |
| if (AnyExt && EltBits == 32) { |
| int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1, |
| -1}; |
| return DAG.getBitcast( |
| VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, |
| DAG.getBitcast(MVT::v4i32, InputV), |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); |
| } |
| if (AnyExt && EltBits == 16 && Scale > 2) { |
| int PSHUFDMask[4] = {Offset / 2, -1, |
| SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1}; |
| InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, |
| DAG.getBitcast(MVT::v4i32, InputV), |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); |
| int PSHUFWMask[4] = {1, -1, -1, -1}; |
| unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW); |
| return DAG.getBitcast( |
| VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16, |
| DAG.getBitcast(MVT::v8i16, InputV), |
| getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG))); |
| } |
| |
| // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes |
| // to 64-bits. |
| if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) { |
| assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!"); |
| assert(VT.is128BitVector() && "Unexpected vector width!"); |
| |
| int LoIdx = Offset * EltBits; |
| SDValue Lo = DAG.getBitcast( |
| MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, |
| DAG.getConstant(EltBits, DL, MVT::i8), |
| DAG.getConstant(LoIdx, DL, MVT::i8))); |
| |
| if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) || |
| !SafeOffset(Offset + 1)) |
| return DAG.getBitcast(VT, Lo); |
| |
| int HiIdx = (Offset + 1) * EltBits; |
| SDValue Hi = DAG.getBitcast( |
| MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, |
| DAG.getConstant(EltBits, DL, MVT::i8), |
| DAG.getConstant(HiIdx, DL, MVT::i8))); |
| return DAG.getBitcast(VT, |
| DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi)); |
| } |
| |
| // If this would require more than 2 unpack instructions to expand, use |
| // pshufb when available. We can only use more than 2 unpack instructions |
| // when zero extending i8 elements which also makes it easier to use pshufb. |
| if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) { |
| assert(NumElements == 16 && "Unexpected byte vector width!"); |
| SDValue PSHUFBMask[16]; |
| for (int i = 0; i < 16; ++i) { |
| int Idx = Offset + (i / Scale); |
| PSHUFBMask[i] = DAG.getConstant( |
| (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8); |
| } |
| InputV = DAG.getBitcast(MVT::v16i8, InputV); |
| return DAG.getBitcast( |
| VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV, |
| DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask))); |
| } |
| |
| // If we are extending from an offset, ensure we start on a boundary that |
| // we can unpack from. |
| int AlignToUnpack = Offset % (NumElements / Scale); |
| if (AlignToUnpack) { |
| SmallVector<int, 8> ShMask((unsigned)NumElements, -1); |
| for (int i = AlignToUnpack; i < NumElements; ++i) |
| ShMask[i - AlignToUnpack] = i; |
| InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask); |
| Offset -= AlignToUnpack; |
| } |
| |
| // Otherwise emit a sequence of unpacks. |
| do { |
| unsigned UnpackLoHi = X86ISD::UNPCKL; |
| if (Offset >= (NumElements / 2)) { |
| UnpackLoHi = X86ISD::UNPCKH; |
| Offset -= (NumElements / 2); |
| } |
| |
| MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); |
| SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT) |
| : getZeroVector(InputVT, Subtarget, DAG, DL); |
| InputV = DAG.getBitcast(InputVT, InputV); |
| InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext); |
| Scale /= 2; |
| EltBits *= 2; |
| NumElements /= 2; |
| } while (Scale > 1); |
| return DAG.getBitcast(VT, InputV); |
| } |
| |
| /// Try to lower a vector shuffle as a zero extension on any microarch. |
| /// |
| /// This routine will try to do everything in its power to cleverly lower |
| /// a shuffle which happens to match the pattern of a zero extend. It doesn't |
| /// check for the profitability of this lowering, it tries to aggressively |
| /// match this pattern. It will use all of the micro-architectural details it |
| /// can to emit an efficient lowering. It handles both blends with all-zero |
| /// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to |
| /// masking out later). |
| /// |
| /// The reason we have dedicated lowering for zext-style shuffles is that they |
| /// are both incredibly common and often quite performance sensitive. |
| static SDValue lowerVectorShuffleAsZeroOrAnyExtend( |
| const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| int Bits = VT.getSizeInBits(); |
| int NumLanes = Bits / 128; |
| int NumElements = VT.getVectorNumElements(); |
| int NumEltsPerLane = NumElements / NumLanes; |
| assert(VT.getScalarSizeInBits() <= 32 && |
| "Exceeds 32-bit integer zero extension limit"); |
| assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size"); |
| |
| // Define a helper function to check a particular ext-scale and lower to it if |
| // valid. |
| auto Lower = [&](int Scale) -> SDValue { |
| SDValue InputV; |
| bool AnyExt = true; |
| int Offset = 0; |
| int Matches = 0; |
| for (int i = 0; i < NumElements; ++i) { |
| int M = Mask[i]; |
| if (M < 0) |
| continue; // Valid anywhere but doesn't tell us anything. |
| if (i % Scale != 0) { |
| // Each of the extended elements need to be zeroable. |
| if (!Zeroable[i]) |
| return SDValue(); |
| |
| // We no longer are in the anyext case. |
| AnyExt = false; |
| continue; |
| } |
| |
| // Each of the base elements needs to be consecutive indices into the |
| // same input vector. |
| SDValue V = M < NumElements ? V1 : V2; |
| M = M % NumElements; |
| if (!InputV) { |
| InputV = V; |
| Offset = M - (i / Scale); |
| } else if (InputV != V) |
| return SDValue(); // Flip-flopping inputs. |
| |
| // Offset must start in the lowest 128-bit lane or at the start of an |
| // upper lane. |
| // FIXME: Is it ever worth allowing a negative base offset? |
| if (!((0 <= Offset && Offset < NumEltsPerLane) || |
| (Offset % NumEltsPerLane) == 0)) |
| return SDValue(); |
| |
| // If we are offsetting, all referenced entries must come from the same |
| // lane. |
| if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane)) |
| return SDValue(); |
| |
| if ((M % NumElements) != (Offset + (i / Scale))) |
| return SDValue(); // Non-consecutive strided elements. |
| Matches++; |
| } |
| |
| // If we fail to find an input, we have a zero-shuffle which should always |
| // have already been handled. |
| // FIXME: Maybe handle this here in case during blending we end up with one? |
| if (!InputV) |
| return SDValue(); |
| |
| // If we are offsetting, don't extend if we only match a single input, we |
| // can always do better by using a basic PSHUF or PUNPCK. |
| if (Offset != 0 && Matches < 2) |
| return SDValue(); |
| |
| return lowerVectorShuffleAsSpecificZeroOrAnyExtend( |
| DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG); |
| }; |
| |
| // The widest scale possible for extending is to a 64-bit integer. |
| assert(Bits % 64 == 0 && |
| "The number of bits in a vector must be divisible by 64 on x86!"); |
| int NumExtElements = Bits / 64; |
| |
| // Each iteration, try extending the elements half as much, but into twice as |
| // many elements. |
| for (; NumExtElements < NumElements; NumExtElements *= 2) { |
| assert(NumElements % NumExtElements == 0 && |
| "The input vector size must be divisible by the extended size."); |
| if (SDValue V = Lower(NumElements / NumExtElements)) |
| return V; |
| } |
| |
| // General extends failed, but 128-bit vectors may be able to use MOVQ. |
| if (Bits != 128) |
| return SDValue(); |
| |
| // Returns one of the source operands if the shuffle can be reduced to a |
| // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits. |
| auto CanZExtLowHalf = [&]() { |
| for (int i = NumElements / 2; i != NumElements; ++i) |
| if (!Zeroable[i]) |
| return SDValue(); |
| if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0)) |
| return V1; |
| if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements)) |
| return V2; |
| return SDValue(); |
| }; |
| |
| if (SDValue V = CanZExtLowHalf()) { |
| V = DAG.getBitcast(MVT::v2i64, V); |
| V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V); |
| return DAG.getBitcast(VT, V); |
| } |
| |
| // No viable ext lowering found. |
| return SDValue(); |
| } |
| |
| /// Try to get a scalar value for a specific element of a vector. |
| /// |
| /// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar. |
| static SDValue getScalarValueForVectorElement(SDValue V, int Idx, |
| SelectionDAG &DAG) { |
| MVT VT = V.getSimpleValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| V = peekThroughBitcasts(V); |
| |
| // If the bitcasts shift the element size, we can't extract an equivalent |
| // element from it. |
| MVT NewVT = V.getSimpleValueType(); |
| if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| if (V.getOpcode() == ISD::BUILD_VECTOR || |
| (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) { |
| // Ensure the scalar operand is the same size as the destination. |
| // FIXME: Add support for scalar truncation where possible. |
| SDValue S = V.getOperand(Idx); |
| if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits()) |
| return DAG.getBitcast(EltVT, S); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Helper to test for a load that can be folded with x86 shuffles. |
| /// |
| /// This is particularly important because the set of instructions varies |
| /// significantly based on whether the operand is a load or not. |
| static bool isShuffleFoldableLoad(SDValue V) { |
| V = peekThroughBitcasts(V); |
| return ISD::isNON_EXTLoad(V.getNode()); |
| } |
| |
| /// Try to lower insertion of a single element into a zero vector. |
| /// |
| /// This is a common pattern that we have especially efficient patterns to lower |
| /// across all subtarget feature sets. |
| static SDValue lowerVectorShuffleAsElementInsertion( |
| const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT ExtVT = VT; |
| MVT EltVT = VT.getVectorElementType(); |
| |
| int V2Index = |
| find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) - |
| Mask.begin(); |
| bool IsV1Zeroable = true; |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) |
| if (i != V2Index && !Zeroable[i]) { |
| IsV1Zeroable = false; |
| break; |
| } |
| |
| // Check for a single input from a SCALAR_TO_VECTOR node. |
| // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and |
| // all the smarts here sunk into that routine. However, the current |
| // lowering of BUILD_VECTOR makes that nearly impossible until the old |
| // vector shuffle lowering is dead. |
| SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(), |
| DAG); |
| if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) { |
| // We need to zext the scalar if it is smaller than an i32. |
| V2S = DAG.getBitcast(EltVT, V2S); |
| if (EltVT == MVT::i8 || EltVT == MVT::i16) { |
| // Using zext to expand a narrow element won't work for non-zero |
| // insertions. |
| if (!IsV1Zeroable) |
| return SDValue(); |
| |
| // Zero-extend directly to i32. |
| ExtVT = MVT::getVectorVT(MVT::i32, ExtVT.getSizeInBits() / 32); |
| V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S); |
| } |
| V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S); |
| } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 || |
| EltVT == MVT::i16) { |
| // Either not inserting from the low element of the input or the input |
| // element size is too small to use VZEXT_MOVL to clear the high bits. |
| return SDValue(); |
| } |
| |
| if (!IsV1Zeroable) { |
| // If V1 can't be treated as a zero vector we have fewer options to lower |
| // this. We can't support integer vectors or non-zero targets cheaply, and |
| // the V1 elements can't be permuted in any way. |
| assert(VT == ExtVT && "Cannot change extended type when non-zeroable!"); |
| if (!VT.isFloatingPoint() || V2Index != 0) |
| return SDValue(); |
| SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end()); |
| V1Mask[V2Index] = -1; |
| if (!isNoopShuffleMask(V1Mask)) |
| return SDValue(); |
| if (!VT.is128BitVector()) |
| return SDValue(); |
| |
| // Otherwise, use MOVSD or MOVSS. |
| assert((EltVT == MVT::f32 || EltVT == MVT::f64) && |
| "Only two types of floating point element types to handle!"); |
| return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL, |
| ExtVT, V1, V2); |
| } |
| |
| // This lowering only works for the low element with floating point vectors. |
| if (VT.isFloatingPoint() && V2Index != 0) |
| return SDValue(); |
| |
| V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2); |
| if (ExtVT != VT) |
| V2 = DAG.getBitcast(VT, V2); |
| |
| if (V2Index != 0) { |
| // If we have 4 or fewer lanes we can cheaply shuffle the element into |
| // the desired position. Otherwise it is more efficient to do a vector |
| // shift left. We know that we can do a vector shift left because all |
| // the inputs are zero. |
| if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) { |
| SmallVector<int, 4> V2Shuffle(Mask.size(), 1); |
| V2Shuffle[V2Index] = 0; |
| V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle); |
| } else { |
| V2 = DAG.getBitcast(MVT::v16i8, V2); |
| V2 = DAG.getNode( |
| X86ISD::VSHLDQ, DL, MVT::v16i8, V2, |
| DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL, MVT::i8)); |
| V2 = DAG.getBitcast(VT, V2); |
| } |
| } |
| return V2; |
| } |
| |
| /// Try to lower broadcast of a single - truncated - integer element, |
| /// coming from a scalar_to_vector/build_vector node \p V0 with larger elements. |
| /// |
| /// This assumes we have AVX2. |
| static SDValue lowerVectorShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT, |
| SDValue V0, int BroadcastIdx, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Subtarget.hasAVX2() && |
| "We can only lower integer broadcasts with AVX2!"); |
| |
| EVT EltVT = VT.getVectorElementType(); |
| EVT V0VT = V0.getValueType(); |
| |
| assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!"); |
| assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!"); |
| |
| EVT V0EltVT = V0VT.getVectorElementType(); |
| if (!V0EltVT.isInteger()) |
| return SDValue(); |
| |
| const unsigned EltSize = EltVT.getSizeInBits(); |
| const unsigned V0EltSize = V0EltVT.getSizeInBits(); |
| |
| // This is only a truncation if the original element type is larger. |
| if (V0EltSize <= EltSize) |
| return SDValue(); |
| |
| assert(((V0EltSize % EltSize) == 0) && |
| "Scalar type sizes must all be powers of 2 on x86!"); |
| |
| const unsigned V0Opc = V0.getOpcode(); |
| const unsigned Scale = V0EltSize / EltSize; |
| const unsigned V0BroadcastIdx = BroadcastIdx / Scale; |
| |
| if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) && |
| V0Opc != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| SDValue Scalar = V0.getOperand(V0BroadcastIdx); |
| |
| // If we're extracting non-least-significant bits, shift so we can truncate. |
| // Hopefully, we can fold away the trunc/srl/load into the broadcast. |
| // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer |
| // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd. |
| if (const int OffsetIdx = BroadcastIdx % Scale) |
| Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar, |
| DAG.getConstant(OffsetIdx * EltSize, DL, MVT::i8)); |
| |
| return DAG.getNode(X86ISD::VBROADCAST, DL, VT, |
| DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar)); |
| } |
| |
| /// Try to lower broadcast of a single element. |
| /// |
| /// For convenience, this code also bundles all of the subtarget feature set |
| /// filtering. While a little annoying to re-dispatch on type here, there isn't |
| /// a convenient way to factor it out. |
| static SDValue lowerVectorShuffleAsBroadcast(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) || |
| (Subtarget.hasAVX() && VT.isFloatingPoint()) || |
| (Subtarget.hasAVX2() && VT.isInteger()))) |
| return SDValue(); |
| |
| // With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise |
| // we can only broadcast from a register with AVX2. |
| unsigned NumElts = Mask.size(); |
| unsigned Opcode = (VT == MVT::v2f64 && !Subtarget.hasAVX2()) |
| ? X86ISD::MOVDDUP |
| : X86ISD::VBROADCAST; |
| bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2(); |
| |
| // Check that the mask is a broadcast. |
| int BroadcastIdx = -1; |
| for (int i = 0; i != (int)NumElts; ++i) { |
| SmallVector<int, 8> BroadcastMask(NumElts, i); |
| if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) { |
| BroadcastIdx = i; |
| break; |
| } |
| } |
| |
| if (BroadcastIdx < 0) |
| return SDValue(); |
| assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with " |
| "a sorted mask where the broadcast " |
| "comes from V1."); |
| |
| // Go up the chain of (vector) values to find a scalar load that we can |
| // combine with the broadcast. |
| SDValue V = V1; |
| for (;;) { |
| switch (V.getOpcode()) { |
| case ISD::BITCAST: { |
| // Peek through bitcasts as long as BroadcastIdx can be adjusted. |
| SDValue VSrc = V.getOperand(0); |
| unsigned NumEltBits = V.getScalarValueSizeInBits(); |
| unsigned NumSrcBits = VSrc.getScalarValueSizeInBits(); |
| if ((NumEltBits % NumSrcBits) == 0) |
| BroadcastIdx *= (NumEltBits / NumSrcBits); |
| else if ((NumSrcBits % NumEltBits) == 0 && |
| (BroadcastIdx % (NumSrcBits / NumEltBits)) == 0) |
| BroadcastIdx /= (NumSrcBits / NumEltBits); |
| else |
| break; |
| V = VSrc; |
| continue; |
| } |
| case ISD::CONCAT_VECTORS: { |
| int OperandSize = Mask.size() / V.getNumOperands(); |
| V = V.getOperand(BroadcastIdx / OperandSize); |
| BroadcastIdx %= OperandSize; |
| continue; |
| } |
| case ISD::INSERT_SUBVECTOR: { |
| SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1); |
| auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); |
| if (!ConstantIdx) |
| break; |
| |
| int BeginIdx = (int)ConstantIdx->getZExtValue(); |
| int EndIdx = |
| BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements(); |
| if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) { |
| BroadcastIdx -= BeginIdx; |
| V = VInner; |
| } else { |
| V = VOuter; |
| } |
| continue; |
| } |
| } |
| break; |
| } |
| |
| // Ensure the source vector and BroadcastIdx are for a suitable type. |
| if (VT.getScalarSizeInBits() != V.getScalarValueSizeInBits()) { |
| unsigned NumEltBits = VT.getScalarSizeInBits(); |
| unsigned NumSrcBits = V.getScalarValueSizeInBits(); |
| if ((NumSrcBits % NumEltBits) == 0) |
| BroadcastIdx *= (NumSrcBits / NumEltBits); |
| else if ((NumEltBits % NumSrcBits) == 0 && |
| (BroadcastIdx % (NumEltBits / NumSrcBits)) == 0) |
| BroadcastIdx /= (NumEltBits / NumSrcBits); |
| else |
| return SDValue(); |
| |
| unsigned NumSrcElts = V.getValueSizeInBits() / NumEltBits; |
| MVT SrcVT = MVT::getVectorVT(VT.getScalarType(), NumSrcElts); |
| V = DAG.getBitcast(SrcVT, V); |
| } |
| |
| // Check if this is a broadcast of a scalar. We special case lowering |
| // for scalars so that we can more effectively fold with loads. |
| // First, look through bitcast: if the original value has a larger element |
| // type than the shuffle, the broadcast element is in essence truncated. |
| // Make that explicit to ease folding. |
| if (V.getOpcode() == ISD::BITCAST && VT.isInteger()) |
| if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast( |
| DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG)) |
| return TruncBroadcast; |
| |
| MVT BroadcastVT = VT; |
| |
| // Peek through any bitcast (only useful for loads). |
| SDValue BC = peekThroughBitcasts(V); |
| |
| // Also check the simpler case, where we can directly reuse the scalar. |
| if (V.getOpcode() == ISD::BUILD_VECTOR || |
| (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) { |
| V = V.getOperand(BroadcastIdx); |
| |
| // If we can't broadcast from a register, check that the input is a load. |
| if (!BroadcastFromReg && !isShuffleFoldableLoad(V)) |
| return SDValue(); |
| } else if (MayFoldLoad(BC) && !cast<LoadSDNode>(BC)->isVolatile()) { |
| // 32-bit targets need to load i64 as a f64 and then bitcast the result. |
| if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) { |
| BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements()); |
| Opcode = (BroadcastVT.is128BitVector() && !Subtarget.hasAVX2()) |
| ? X86ISD::MOVDDUP |
| : Opcode; |
| } |
| |
| // If we are broadcasting a load that is only used by the shuffle |
| // then we can reduce the vector load to the broadcasted scalar load. |
| LoadSDNode *Ld = cast<LoadSDNode>(BC); |
| SDValue BaseAddr = Ld->getOperand(1); |
| EVT SVT = BroadcastVT.getScalarType(); |
| unsigned Offset = BroadcastIdx * SVT.getStoreSize(); |
| SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); |
| V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, |
| DAG.getMachineFunction().getMachineMemOperand( |
| Ld->getMemOperand(), Offset, SVT.getStoreSize())); |
| DAG.makeEquivalentMemoryOrdering(Ld, V); |
| } else if (!BroadcastFromReg) { |
| // We can't broadcast from a vector register. |
| return SDValue(); |
| } else if (BroadcastIdx != 0) { |
| // We can only broadcast from the zero-element of a vector register, |
| // but it can be advantageous to broadcast from the zero-element of a |
| // subvector. |
| if (!VT.is256BitVector() && !VT.is512BitVector()) |
| return SDValue(); |
| |
| // VPERMQ/VPERMPD can perform the cross-lane shuffle directly. |
| if (VT == MVT::v4f64 || VT == MVT::v4i64) |
| return SDValue(); |
| |
| // Only broadcast the zero-element of a 128-bit subvector. |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| if (((BroadcastIdx * EltSize) % 128) != 0) |
| return SDValue(); |
| |
| // The shuffle input might have been a bitcast we looked through; look at |
| // the original input vector. Emit an EXTRACT_SUBVECTOR of that type; we'll |
| // later bitcast it to BroadcastVT. |
| assert(V.getScalarValueSizeInBits() == BroadcastVT.getScalarSizeInBits() && |
| "Unexpected vector element size"); |
| assert((V.getValueSizeInBits() == 256 || V.getValueSizeInBits() == 512) && |
| "Unexpected vector size"); |
| V = extract128BitVector(V, BroadcastIdx, DAG, DL); |
| } |
| |
| if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector()) |
| V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, |
| DAG.getBitcast(MVT::f64, V)); |
| |
| // Bitcast back to the same scalar type as BroadcastVT. |
| MVT SrcVT = V.getSimpleValueType(); |
| if (SrcVT.getScalarType() != BroadcastVT.getScalarType()) { |
| assert(SrcVT.getScalarSizeInBits() == BroadcastVT.getScalarSizeInBits() && |
| "Unexpected vector element size"); |
| if (SrcVT.isVector()) { |
| unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| SrcVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts); |
| } else { |
| SrcVT = BroadcastVT.getScalarType(); |
| } |
| V = DAG.getBitcast(SrcVT, V); |
| } |
| |
| // 32-bit targets need to load i64 as a f64 and then bitcast the result. |
| if (!Subtarget.is64Bit() && SrcVT == MVT::i64) { |
| V = DAG.getBitcast(MVT::f64, V); |
| unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements(); |
| BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts); |
| } |
| |
| // We only support broadcasting from 128-bit vectors to minimize the |
| // number of patterns we need to deal with in isel. So extract down to |
| // 128-bits, removing as many bitcasts as possible. |
| if (SrcVT.getSizeInBits() > 128) { |
| MVT ExtVT = MVT::getVectorVT(SrcVT.getScalarType(), |
| 128 / SrcVT.getScalarSizeInBits()); |
| V = extract128BitVector(peekThroughBitcasts(V), 0, DAG, DL); |
| V = DAG.getBitcast(ExtVT, V); |
| } |
| |
| return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V)); |
| } |
| |
| // Check for whether we can use INSERTPS to perform the shuffle. We only use |
| // INSERTPS when the V1 elements are already in the correct locations |
| // because otherwise we can just always use two SHUFPS instructions which |
| // are much smaller to encode than a SHUFPS and an INSERTPS. We can also |
| // perform INSERTPS if a single V1 element is out of place and all V2 |
| // elements are zeroable. |
| static bool matchVectorShuffleAsInsertPS(SDValue &V1, SDValue &V2, |
| unsigned &InsertPSMask, |
| const APInt &Zeroable, |
| ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!"); |
| assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!"); |
| assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); |
| |
| // Attempt to match INSERTPS with one element from VA or VB being |
| // inserted into VA (or undef). If successful, V1, V2 and InsertPSMask |
| // are updated. |
| auto matchAsInsertPS = [&](SDValue VA, SDValue VB, |
| ArrayRef<int> CandidateMask) { |
| unsigned ZMask = 0; |
| int VADstIndex = -1; |
| int VBDstIndex = -1; |
| bool VAUsedInPlace = false; |
| |
| for (int i = 0; i < 4; ++i) { |
| // Synthesize a zero mask from the zeroable elements (includes undefs). |
| if (Zeroable[i]) { |
| ZMask |= 1 << i; |
| continue; |
| } |
| |
| // Flag if we use any VA inputs in place. |
| if (i == CandidateMask[i]) { |
| VAUsedInPlace = true; |
| continue; |
| } |
| |
| // We can only insert a single non-zeroable element. |
| if (VADstIndex >= 0 || VBDstIndex >= 0) |
| return false; |
| |
| if (CandidateMask[i] < 4) { |
| // VA input out of place for insertion. |
| VADstIndex = i; |
| } else { |
| // VB input for insertion. |
| VBDstIndex = i; |
| } |
| } |
| |
| // Don't bother if we have no (non-zeroable) element for insertion. |
| if (VADstIndex < 0 && VBDstIndex < 0) |
| return false; |
| |
| // Determine element insertion src/dst indices. The src index is from the |
| // start of the inserted vector, not the start of the concatenated vector. |
| unsigned VBSrcIndex = 0; |
| if (VADstIndex >= 0) { |
| // If we have a VA input out of place, we use VA as the V2 element |
| // insertion and don't use the original V2 at all. |
| VBSrcIndex = CandidateMask[VADstIndex]; |
| VBDstIndex = VADstIndex; |
| VB = VA; |
| } else { |
| VBSrcIndex = CandidateMask[VBDstIndex] - 4; |
| } |
| |
| // If no V1 inputs are used in place, then the result is created only from |
| // the zero mask and the V2 insertion - so remove V1 dependency. |
| if (!VAUsedInPlace) |
| VA = DAG.getUNDEF(MVT::v4f32); |
| |
| // Update V1, V2 and InsertPSMask accordingly. |
| V1 = VA; |
| V2 = VB; |
| |
| // Insert the V2 element into the desired position. |
| InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask; |
| assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); |
| return true; |
| }; |
| |
| if (matchAsInsertPS(V1, V2, Mask)) |
| return true; |
| |
| // Commute and try again. |
| SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end()); |
| ShuffleVectorSDNode::commuteMask(CommutedMask); |
| if (matchAsInsertPS(V2, V1, CommutedMask)) |
| return true; |
| |
| return false; |
| } |
| |
| static SDValue lowerVectorShuffleAsInsertPS(const SDLoc &DL, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); |
| |
| // Attempt to match the insertps pattern. |
| unsigned InsertPSMask; |
| if (!matchVectorShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG)) |
| return SDValue(); |
| |
| // Insert the V2 element into the desired position. |
| return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, |
| DAG.getConstant(InsertPSMask, DL, MVT::i8)); |
| } |
| |
| /// Try to lower a shuffle as a permute of the inputs followed by an |
| /// UNPCK instruction. |
| /// |
| /// This specifically targets cases where we end up with alternating between |
| /// the two inputs, and so can permute them into something that feeds a single |
| /// UNPCK instruction. Note that this routine only targets integer vectors |
| /// because for floating point vectors we have a generalized SHUFPS lowering |
| /// strategy that handles everything that doesn't *exactly* match an unpack, |
| /// making this clever lowering unnecessary. |
| static SDValue lowerVectorShuffleAsPermuteAndUnpack(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| assert(!VT.isFloatingPoint() && |
| "This routine only supports integer vectors."); |
| assert(VT.is128BitVector() && |
| "This routine only works on 128-bit vectors."); |
| assert(!V2.isUndef() && |
| "This routine should only be used when blending two inputs."); |
| assert(Mask.size() >= 2 && "Single element masks are invalid."); |
| |
| int Size = Mask.size(); |
| |
| int NumLoInputs = |
| count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; }); |
| int NumHiInputs = |
| count_if(Mask, [Size](int M) { return M % Size >= Size / 2; }); |
| |
| bool UnpackLo = NumLoInputs >= NumHiInputs; |
| |
| auto TryUnpack = [&](int ScalarSize, int Scale) { |
| SmallVector<int, 16> V1Mask((unsigned)Size, -1); |
| SmallVector<int, 16> V2Mask((unsigned)Size, -1); |
| |
| for (int i = 0; i < Size; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| |
| // Each element of the unpack contains Scale elements from this mask. |
| int UnpackIdx = i / Scale; |
| |
| // We only handle the case where V1 feeds the first slots of the unpack. |
| // We rely on canonicalization to ensure this is the case. |
| if ((UnpackIdx % 2 == 0) != (Mask[i] < Size)) |
| return SDValue(); |
| |
| // Setup the mask for this input. The indexing is tricky as we have to |
| // handle the unpack stride. |
| SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask; |
| VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] = |
| Mask[i] % Size; |
| } |
| |
| // If we will have to shuffle both inputs to use the unpack, check whether |
| // we can just unpack first and shuffle the result. If so, skip this unpack. |
| if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) && |
| !isNoopShuffleMask(V2Mask)) |
| return SDValue(); |
| |
| // Shuffle the inputs into place. |
| V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); |
| V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); |
| |
| // Cast the inputs to the type we will use to unpack them. |
| MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale); |
| V1 = DAG.getBitcast(UnpackVT, V1); |
| V2 = DAG.getBitcast(UnpackVT, V2); |
| |
| // Unpack the inputs and cast the result back to the desired type. |
| return DAG.getBitcast( |
| VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, |
| UnpackVT, V1, V2)); |
| }; |
| |
| // We try each unpack from the largest to the smallest to try and find one |
| // that fits this mask. |
| int OrigScalarSize = VT.getScalarSizeInBits(); |
| for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) |
| if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize)) |
| return Unpack; |
| |
| // If none of the unpack-rooted lowerings worked (or were profitable) try an |
| // initial unpack. |
| if (NumLoInputs == 0 || NumHiInputs == 0) { |
| assert((NumLoInputs > 0 || NumHiInputs > 0) && |
| "We have to have *some* inputs!"); |
| int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0; |
| |
| // FIXME: We could consider the total complexity of the permute of each |
| // possible unpacking. Or at the least we should consider how many |
| // half-crossings are created. |
| // FIXME: We could consider commuting the unpacks. |
| |
| SmallVector<int, 32> PermMask((unsigned)Size, -1); |
| for (int i = 0; i < Size; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| |
| assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!"); |
| |
| PermMask[i] = |
| 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1); |
| } |
| return DAG.getVectorShuffle( |
| VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL, |
| DL, VT, V1, V2), |
| DAG.getUNDEF(VT), PermMask); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Handle lowering of 2-lane 64-bit floating point shuffles. |
| /// |
| /// This is the basis function for the 2-lane 64-bit shuffles as we have full |
| /// support for floating point shuffles but not integer shuffles. These |
| /// instructions will incur a domain crossing penalty on some chips though so |
| /// it is better to avoid lowering through this for integer vectors where |
| /// possible. |
| static SDValue lowerV2F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); |
| assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); |
| |
| if (V2.isUndef()) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Straight shuffle of a single input vector. Simulate this by using the |
| // single input as both of the "inputs" to this instruction.. |
| unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1); |
| |
| if (Subtarget.hasAVX()) { |
| // If we have AVX, we can use VPERMILPS which will allow folding a load |
| // into the shuffle. |
| return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1, |
| DAG.getConstant(SHUFPDMask, DL, MVT::i8)); |
| } |
| |
| return DAG.getNode( |
| X86ISD::SHUFP, DL, MVT::v2f64, |
| Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1, |
| Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1, |
| DAG.getConstant(SHUFPDMask, DL, MVT::i8)); |
| } |
| assert(Mask[0] >= 0 && "No undef lanes in multi-input v2 shuffles!"); |
| assert(Mask[1] >= 0 && "No undef lanes in multi-input v2 shuffles!"); |
| assert(Mask[0] < 2 && "We sort V1 to be the first input."); |
| assert(Mask[1] >= 2 && "We sort V2 to be the second input."); |
| |
| // When loading a scalar and then shuffling it into a vector we can often do |
| // the insertion cheaply. |
| if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return Insertion; |
| // Try inverting the insertion since for v2 masks it is easy to do and we |
| // can't reliably sort the mask one way or the other. |
| int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), |
| Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; |
| if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG)) |
| return Insertion; |
| |
| // Try to use one of the special instruction patterns to handle two common |
| // blend patterns if a zero-blend above didn't work. |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) || |
| isShuffleEquivalent(V1, V2, Mask, {1, 3})) |
| if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG)) |
| // We can either use a special instruction to load over the low double or |
| // to move just the low double. |
| return DAG.getNode( |
| X86ISD::MOVSD, DL, MVT::v2f64, V2, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S)); |
| |
| if (Subtarget.hasSSE41()) |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG)) |
| return V; |
| |
| unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1); |
| return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2, |
| DAG.getConstant(SHUFPDMask, DL, MVT::i8)); |
| } |
| |
| /// Handle lowering of 2-lane 64-bit integer shuffles. |
| /// |
| /// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by |
| /// the integer unit to minimize domain crossing penalties. However, for blends |
| /// it falls back to the floating point shuffle operation with appropriate bit |
| /// casting. |
| static SDValue lowerV2I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); |
| assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); |
| |
| if (V2.isUndef()) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Straight shuffle of a single input vector. For everything from SSE2 |
| // onward this has a single fast instruction with no scary immediates. |
| // We have to map the mask as it is actually a v4i32 shuffle instruction. |
| V1 = DAG.getBitcast(MVT::v4i32, V1); |
| int WidenedMask[4] = { |
| std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1, |
| std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1}; |
| return DAG.getBitcast( |
| MVT::v2i64, |
| DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, |
| getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG))); |
| } |
| assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!"); |
| assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!"); |
| assert(Mask[0] < 2 && "We sort V1 to be the first input."); |
| assert(Mask[1] >= 2 && "We sort V2 to be the second input."); |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // When loading a scalar and then shuffling it into a vector we can often do |
| // the insertion cheaply. |
| if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return Insertion; |
| // Try inverting the insertion since for v2 masks it is easy to do and we |
| // can't reliably sort the mask one way or the other. |
| int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2}; |
| if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG)) |
| return Insertion; |
| |
| // We have different paths for blend lowering, but they all must use the |
| // *exact* same predicate. |
| bool IsBlendSupported = Subtarget.hasSSE41(); |
| if (IsBlendSupported) |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Try to use byte rotation instructions. |
| // Its more profitable for pre-SSSE3 to use shuffles/unpacks. |
| if (Subtarget.hasSSSE3()) { |
| if (Subtarget.hasVLX()) |
| if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v2i64, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| } |
| |
| // If we have direct support for blends, we should lower by decomposing into |
| // a permute. That will be faster than the domain cross. |
| if (IsBlendSupported) |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, |
| Mask, DAG); |
| |
| // We implement this with SHUFPD which is pretty lame because it will likely |
| // incur 2 cycles of stall for integer vectors on Nehalem and older chips. |
| // However, all the alternatives are still more cycles and newer chips don't |
| // have this problem. It would be really nice if x86 had better shuffles here. |
| V1 = DAG.getBitcast(MVT::v2f64, V1); |
| V2 = DAG.getBitcast(MVT::v2f64, V2); |
| return DAG.getBitcast(MVT::v2i64, |
| DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask)); |
| } |
| |
| /// Test whether this can be lowered with a single SHUFPS instruction. |
| /// |
| /// This is used to disable more specialized lowerings when the shufps lowering |
| /// will happen to be efficient. |
| static bool isSingleSHUFPSMask(ArrayRef<int> Mask) { |
| // This routine only handles 128-bit shufps. |
| assert(Mask.size() == 4 && "Unsupported mask size!"); |
| assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!"); |
| assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!"); |
| assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!"); |
| assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!"); |
| |
| // To lower with a single SHUFPS we need to have the low half and high half |
| // each requiring a single input. |
| if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4)) |
| return false; |
| if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Lower a vector shuffle using the SHUFPS instruction. |
| /// |
| /// This is a helper routine dedicated to lowering vector shuffles using SHUFPS. |
| /// It makes no assumptions about whether this is the *best* lowering, it simply |
| /// uses it. |
| static SDValue lowerVectorShuffleWithSHUFPS(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, SDValue V1, |
| SDValue V2, SelectionDAG &DAG) { |
| SDValue LowV = V1, HighV = V2; |
| int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]}; |
| |
| int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; }); |
| |
| if (NumV2Elements == 1) { |
| int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin(); |
| |
| // Compute the index adjacent to V2Index and in the same half by toggling |
| // the low bit. |
| int V2AdjIndex = V2Index ^ 1; |
| |
| if (Mask[V2AdjIndex] < 0) { |
| // Handles all the cases where we have a single V2 element and an undef. |
| // This will only ever happen in the high lanes because we commute the |
| // vector otherwise. |
| if (V2Index < 2) |
| std::swap(LowV, HighV); |
| NewMask[V2Index] -= 4; |
| } else { |
| // Handle the case where the V2 element ends up adjacent to a V1 element. |
| // To make this work, blend them together as the first step. |
| int V1Index = V2AdjIndex; |
| int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0}; |
| V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, |
| getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); |
| |
| // Now proceed to reconstruct the final blend as we have the necessary |
| // high or low half formed. |
| if (V2Index < 2) { |
| LowV = V2; |
| HighV = V1; |
| } else { |
| HighV = V2; |
| } |
| NewMask[V1Index] = 2; // We put the V1 element in V2[2]. |
| NewMask[V2Index] = 0; // We shifted the V2 element into V2[0]. |
| } |
| } else if (NumV2Elements == 2) { |
| if (Mask[0] < 4 && Mask[1] < 4) { |
| // Handle the easy case where we have V1 in the low lanes and V2 in the |
| // high lanes. |
| NewMask[2] -= 4; |
| NewMask[3] -= 4; |
| } else if (Mask[2] < 4 && Mask[3] < 4) { |
| // We also handle the reversed case because this utility may get called |
| // when we detect a SHUFPS pattern but can't easily commute the shuffle to |
| // arrange things in the right direction. |
| NewMask[0] -= 4; |
| NewMask[1] -= 4; |
| HighV = V1; |
| LowV = V2; |
| } else { |
| // We have a mixture of V1 and V2 in both low and high lanes. Rather than |
| // trying to place elements directly, just blend them and set up the final |
| // shuffle to place them. |
| |
| // The first two blend mask elements are for V1, the second two are for |
| // V2. |
| int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1], |
| Mask[2] < 4 ? Mask[2] : Mask[3], |
| (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4, |
| (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4}; |
| V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, |
| getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); |
| |
| // Now we do a normal shuffle of V1 by giving V1 as both operands to |
| // a blend. |
| LowV = HighV = V1; |
| NewMask[0] = Mask[0] < 4 ? 0 : 2; |
| NewMask[1] = Mask[0] < 4 ? 2 : 0; |
| NewMask[2] = Mask[2] < 4 ? 1 : 3; |
| NewMask[3] = Mask[2] < 4 ? 3 : 1; |
| } |
| } |
| return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV, |
| getV4X86ShuffleImm8ForMask(NewMask, DL, DAG)); |
| } |
| |
| /// Lower 4-lane 32-bit floating point shuffles. |
| /// |
| /// Uses instructions exclusively from the floating point unit to minimize |
| /// domain crossing penalties, as these are sufficient to implement all v4f32 |
| /// shuffles. |
| static SDValue lowerV4F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); |
| assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); |
| |
| int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; }); |
| |
| if (NumV2Elements == 0) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Use even/odd duplicate instructions for masks that match their pattern. |
| if (Subtarget.hasSSE3()) { |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) |
| return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1); |
| if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3})) |
| return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1); |
| } |
| |
| if (Subtarget.hasAVX()) { |
| // If we have AVX, we can use VPERMILPS which will allow folding a load |
| // into the shuffle. |
| return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1, |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| } |
| |
| // Use MOVLHPS/MOVHLPS to simulate unary shuffles. These are only valid |
| // in SSE1 because otherwise they are widened to v2f64 and never get here. |
| if (!Subtarget.hasSSE2()) { |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1})) |
| return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V1); |
| if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 2, 3})) |
| return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V1, V1); |
| } |
| |
| // Otherwise, use a straight shuffle of a single input vector. We pass the |
| // input vector to both operands to simulate this with a SHUFPS. |
| return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1, |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| } |
| |
| // There are special ways we can lower some single-element blends. However, we |
| // have custom ways we can lower more complex single-element blends below that |
| // we defer to if both this and BLENDPS fail to match, so restrict this to |
| // when the V2 input is targeting element 0 of the mask -- that is the fast |
| // case here. |
| if (NumV2Elements == 1 && Mask[0] >= 4) |
| if (SDValue V = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return V; |
| |
| if (Subtarget.hasSSE41()) { |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Use INSERTPS if we can complete the shuffle efficiently. |
| if (SDValue V = |
| lowerVectorShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG)) |
| return V; |
| |
| if (!isSingleSHUFPSMask(Mask)) |
| if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute( |
| DL, MVT::v4f32, V1, V2, Mask, DAG)) |
| return BlendPerm; |
| } |
| |
| // Use low/high mov instructions. These are only valid in SSE1 because |
| // otherwise they are widened to v2f64 and never get here. |
| if (!Subtarget.hasSSE2()) { |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) |
| return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2); |
| if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7})) |
| return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1); |
| } |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Otherwise fall back to a SHUFPS lowering strategy. |
| return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG); |
| } |
| |
| /// Lower 4-lane i32 vector shuffles. |
| /// |
| /// We try to handle these with integer-domain shuffles where we can, but for |
| /// blends we use the floating point domain blend instructions. |
| static SDValue lowerV4I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); |
| assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; }); |
| |
| if (NumV2Elements == 0) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Straight shuffle of a single input vector. For everything from SSE2 |
| // onward this has a single fast instruction with no scary immediates. |
| // We coerce the shuffle pattern to be compatible with UNPCK instructions |
| // but we aren't actually going to use the UNPCK instruction because doing |
| // so prevents folding a load into this instruction or making a copy. |
| const int UnpackLoMask[] = {0, 0, 1, 1}; |
| const int UnpackHiMask[] = {2, 2, 3, 3}; |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1})) |
| Mask = UnpackLoMask; |
| else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3})) |
| Mask = UnpackHiMask; |
| |
| return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| } |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // There are special ways we can lower some single-element blends. |
| if (NumV2Elements == 1) |
| if (SDValue V = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return V; |
| |
| // We have different paths for blend lowering, but they all must use the |
| // *exact* same predicate. |
| bool IsBlendSupported = Subtarget.hasSSE41(); |
| if (IsBlendSupported) |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, |
| Zeroable, DAG)) |
| return Masked; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Try to use byte rotation instructions. |
| // Its more profitable for pre-SSSE3 to use shuffles/unpacks. |
| if (Subtarget.hasSSSE3()) { |
| if (Subtarget.hasVLX()) |
| if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i32, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| } |
| |
| // Assume that a single SHUFPS is faster than an alternative sequence of |
| // multiple instructions (even if the CPU has a domain penalty). |
| // If some CPU is harmed by the domain switch, we can fix it in a later pass. |
| if (!isSingleSHUFPSMask(Mask)) { |
| // If we have direct support for blends, we should lower by decomposing into |
| // a permute. That will be faster than the domain cross. |
| if (IsBlendSupported) |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, |
| Mask, DAG); |
| |
| // Try to lower by permuting the inputs into an unpack instruction. |
| if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( |
| DL, MVT::v4i32, V1, V2, Mask, DAG)) |
| return Unpack; |
| } |
| |
| // We implement this with SHUFPS because it can blend from two vectors. |
| // Because we're going to eventually use SHUFPS, we use SHUFPS even to build |
| // up the inputs, bypassing domain shift penalties that we would incur if we |
| // directly used PSHUFD on Nehalem and older. For newer chips, this isn't |
| // relevant. |
| SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1); |
| SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2); |
| SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask); |
| return DAG.getBitcast(MVT::v4i32, ShufPS); |
| } |
| |
| /// Lowering of single-input v8i16 shuffles is the cornerstone of SSE2 |
| /// shuffle lowering, and the most complex part. |
| /// |
| /// The lowering strategy is to try to form pairs of input lanes which are |
| /// targeted at the same half of the final vector, and then use a dword shuffle |
| /// to place them onto the right half, and finally unpack the paired lanes into |
| /// their final position. |
| /// |
| /// The exact breakdown of how to form these dword pairs and align them on the |
| /// correct sides is really tricky. See the comments within the function for |
| /// more of the details. |
| /// |
| /// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each |
| /// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to |
| /// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16 |
| /// vector, form the analogous 128-bit 8-element Mask. |
| static SDValue lowerV8I16GeneralSingleInputVectorShuffle( |
| const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG) { |
| assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!"); |
| MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); |
| |
| assert(Mask.size() == 8 && "Shuffle mask length doesn't match!"); |
| MutableArrayRef<int> LoMask = Mask.slice(0, 4); |
| MutableArrayRef<int> HiMask = Mask.slice(4, 4); |
| |
| // Attempt to directly match PSHUFLW or PSHUFHW. |
| if (isUndefOrInRange(LoMask, 0, 4) && |
| isSequentialOrUndefInRange(HiMask, 0, 4, 4)) { |
| return DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(LoMask, DL, DAG)); |
| } |
| if (isUndefOrInRange(HiMask, 4, 8) && |
| isSequentialOrUndefInRange(LoMask, 0, 4, 0)) { |
| for (int i = 0; i != 4; ++i) |
| HiMask[i] = (HiMask[i] < 0 ? HiMask[i] : (HiMask[i] - 4)); |
| return DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(HiMask, DL, DAG)); |
| } |
| |
| SmallVector<int, 4> LoInputs; |
| copy_if(LoMask, std::back_inserter(LoInputs), [](int M) { return M >= 0; }); |
| array_pod_sort(LoInputs.begin(), LoInputs.end()); |
| LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); |
| SmallVector<int, 4> HiInputs; |
| copy_if(HiMask, std::back_inserter(HiInputs), [](int M) { return M >= 0; }); |
| array_pod_sort(HiInputs.begin(), HiInputs.end()); |
| HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); |
| int NumLToL = |
| std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin(); |
| int NumHToL = LoInputs.size() - NumLToL; |
| int NumLToH = |
| std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin(); |
| int NumHToH = HiInputs.size() - NumLToH; |
| MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL); |
| MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH); |
| MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL); |
| MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH); |
| |
| // If we are shuffling values from one half - check how many different DWORD |
| // pairs we need to create. If only 1 or 2 then we can perform this as a |
| // PSHUFLW/PSHUFHW + PSHUFD instead of the PSHUFD+PSHUFLW+PSHUFHW chain below. |
| auto ShuffleDWordPairs = [&](ArrayRef<int> PSHUFHalfMask, |
| ArrayRef<int> PSHUFDMask, unsigned ShufWOp) { |
| V = DAG.getNode(ShufWOp, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); |
| V = DAG.getBitcast(PSHUFDVT, V); |
| V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V, |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); |
| return DAG.getBitcast(VT, V); |
| }; |
| |
| if ((NumHToL + NumHToH) == 0 || (NumLToL + NumLToH) == 0) { |
| int PSHUFDMask[4] = { -1, -1, -1, -1 }; |
| SmallVector<std::pair<int, int>, 4> DWordPairs; |
| int DOffset = ((NumHToL + NumHToH) == 0 ? 0 : 2); |
| |
| // Collect the different DWORD pairs. |
| for (int DWord = 0; DWord != 4; ++DWord) { |
| int M0 = Mask[2 * DWord + 0]; |
| int M1 = Mask[2 * DWord + 1]; |
| M0 = (M0 >= 0 ? M0 % 4 : M0); |
| M1 = (M1 >= 0 ? M1 % 4 : M1); |
| if (M0 < 0 && M1 < 0) |
| continue; |
| |
| bool Match = false; |
| for (int j = 0, e = DWordPairs.size(); j < e; ++j) { |
| auto &DWordPair = DWordPairs[j]; |
| if ((M0 < 0 || isUndefOrEqual(DWordPair.first, M0)) && |
| (M1 < 0 || isUndefOrEqual(DWordPair.second, M1))) { |
| DWordPair.first = (M0 >= 0 ? M0 : DWordPair.first); |
| DWordPair.second = (M1 >= 0 ? M1 : DWordPair.second); |
| PSHUFDMask[DWord] = DOffset + j; |
| Match = true; |
| break; |
| } |
| } |
| if (!Match) { |
| PSHUFDMask[DWord] = DOffset + DWordPairs.size(); |
| DWordPairs.push_back(std::make_pair(M0, M1)); |
| } |
| } |
| |
| if (DWordPairs.size() <= 2) { |
| DWordPairs.resize(2, std::make_pair(-1, -1)); |
| int PSHUFHalfMask[4] = {DWordPairs[0].first, DWordPairs[0].second, |
| DWordPairs[1].first, DWordPairs[1].second}; |
| if ((NumHToL + NumHToH) == 0) |
| return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFLW); |
| if ((NumLToL + NumLToH) == 0) |
| return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFHW); |
| } |
| } |
| |
| // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all |
| // such inputs we can swap two of the dwords across the half mark and end up |
| // with <=2 inputs to each half in each half. Once there, we can fall through |
| // to the generic code below. For example: |
| // |
| // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] |
| // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5] |
| // |
| // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half |
| // and an existing 2-into-2 on the other half. In this case we may have to |
| // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or |
| // 1-into-3 which could cause us to cycle endlessly fixing each side in turn. |
| // Fortunately, we don't have to handle anything but a 2-into-2 pattern |
| // because any other situation (including a 3-into-1 or 1-into-3 in the other |
| // half than the one we target for fixing) will be fixed when we re-enter this |
| // path. We will also combine away any sequence of PSHUFD instructions that |
| // result into a single instruction. Here is an example of the tricky case: |
| // |
| // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] |
| // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3] |
| // |
| // This now has a 1-into-3 in the high half! Instead, we do two shuffles: |
| // |
| // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h] |
| // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6] |
| // |
| // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h] |
| // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6] |
| // |
| // The result is fine to be handled by the generic logic. |
| auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs, |
| ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs, |
| int AOffset, int BOffset) { |
| assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) && |
| "Must call this with A having 3 or 1 inputs from the A half."); |
| assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) && |
| "Must call this with B having 1 or 3 inputs from the B half."); |
| assert(AToAInputs.size() + BToAInputs.size() == 4 && |
| "Must call this with either 3:1 or 1:3 inputs (summing to 4)."); |
| |
| bool ThreeAInputs = AToAInputs.size() == 3; |
| |
| // Compute the index of dword with only one word among the three inputs in |
| // a half by taking the sum of the half with three inputs and subtracting |
| // the sum of the actual three inputs. The difference is the remaining |
| // slot. |
| int ADWord, BDWord; |
| int &TripleDWord = ThreeAInputs ? ADWord : BDWord; |
| int &OneInputDWord = ThreeAInputs ? BDWord : ADWord; |
| int TripleInputOffset = ThreeAInputs ? AOffset : BOffset; |
| ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs; |
| int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0]; |
| int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset); |
| int TripleNonInputIdx = |
| TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0); |
| TripleDWord = TripleNonInputIdx / 2; |
| |
| // We use xor with one to compute the adjacent DWord to whichever one the |
| // OneInput is in. |
| OneInputDWord = (OneInput / 2) ^ 1; |
| |
| // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA |
| // and BToA inputs. If there is also such a problem with the BToB and AToB |
| // inputs, we don't try to fix it necessarily -- we'll recurse and see it in |
| // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it |
| // is essential that we don't *create* a 3<-1 as then we might oscillate. |
| if (BToBInputs.size() == 2 && AToBInputs.size() == 2) { |
| // Compute how many inputs will be flipped by swapping these DWords. We |
| // need |
| // to balance this to ensure we don't form a 3-1 shuffle in the other |
| // half. |
| int NumFlippedAToBInputs = |
| std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) + |
| std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1); |
| int NumFlippedBToBInputs = |
| std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) + |
| std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1); |
| if ((NumFlippedAToBInputs == 1 && |
| (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) || |
| (NumFlippedBToBInputs == 1 && |
| (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) { |
| // We choose whether to fix the A half or B half based on whether that |
| // half has zero flipped inputs. At zero, we may not be able to fix it |
| // with that half. We also bias towards fixing the B half because that |
| // will more commonly be the high half, and we have to bias one way. |
| auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord, |
| ArrayRef<int> Inputs) { |
| int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot. |
| bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1); |
| // Determine whether the free index is in the flipped dword or the |
| // unflipped dword based on where the pinned index is. We use this bit |
| // in an xor to conditionally select the adjacent dword. |
| int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord)); |
| bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx); |
| if (IsFixIdxInput == IsFixFreeIdxInput) |
| FixFreeIdx += 1; |
| IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx); |
| assert(IsFixIdxInput != IsFixFreeIdxInput && |
| "We need to be changing the number of flipped inputs!"); |
| int PSHUFHalfMask[] = {0, 1, 2, 3}; |
| std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]); |
| V = DAG.getNode( |
| FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL, |
| MVT::getVectorVT(MVT::i16, V.getValueSizeInBits() / 16), V, |
| getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); |
| |
| for (int &M : Mask) |
| if (M >= 0 && M == FixIdx) |
| M = FixFreeIdx; |
| else if (M >= 0 && M == FixFreeIdx) |
| M = FixIdx; |
| }; |
| if (NumFlippedBToBInputs != 0) { |
| int BPinnedIdx = |
| BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; |
| FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs); |
| } else { |
| assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!"); |
| int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput; |
| FixFlippedInputs(APinnedIdx, ADWord, AToBInputs); |
| } |
| } |
| } |
| |
| int PSHUFDMask[] = {0, 1, 2, 3}; |
| PSHUFDMask[ADWord] = BDWord; |
| PSHUFDMask[BDWord] = ADWord; |
| V = DAG.getBitcast( |
| VT, |
| DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); |
| |
| // Adjust the mask to match the new locations of A and B. |
| for (int &M : Mask) |
| if (M >= 0 && M/2 == ADWord) |
| M = 2 * BDWord + M % 2; |
| else if (M >= 0 && M/2 == BDWord) |
| M = 2 * ADWord + M % 2; |
| |
| // Recurse back into this routine to re-compute state now that this isn't |
| // a 3 and 1 problem. |
| return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget, |
| DAG); |
| }; |
| if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3)) |
| return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4); |
| if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3)) |
| return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0); |
| |
| // At this point there are at most two inputs to the low and high halves from |
| // each half. That means the inputs can always be grouped into dwords and |
| // those dwords can then be moved to the correct half with a dword shuffle. |
| // We use at most one low and one high word shuffle to collect these paired |
| // inputs into dwords, and finally a dword shuffle to place them. |
| int PSHUFLMask[4] = {-1, -1, -1, -1}; |
| int PSHUFHMask[4] = {-1, -1, -1, -1}; |
| int PSHUFDMask[4] = {-1, -1, -1, -1}; |
| |
| // First fix the masks for all the inputs that are staying in their |
| // original halves. This will then dictate the targets of the cross-half |
| // shuffles. |
| auto fixInPlaceInputs = |
| [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs, |
| MutableArrayRef<int> SourceHalfMask, |
| MutableArrayRef<int> HalfMask, int HalfOffset) { |
| if (InPlaceInputs.empty()) |
| return; |
| if (InPlaceInputs.size() == 1) { |
| SourceHalfMask[InPlaceInputs[0] - HalfOffset] = |
| InPlaceInputs[0] - HalfOffset; |
| PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2; |
| return; |
| } |
| if (IncomingInputs.empty()) { |
| // Just fix all of the in place inputs. |
| for (int Input : InPlaceInputs) { |
| SourceHalfMask[Input - HalfOffset] = Input - HalfOffset; |
| PSHUFDMask[Input / 2] = Input / 2; |
| } |
| return; |
| } |
| |
| assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!"); |
| SourceHalfMask[InPlaceInputs[0] - HalfOffset] = |
| InPlaceInputs[0] - HalfOffset; |
| // Put the second input next to the first so that they are packed into |
| // a dword. We find the adjacent index by toggling the low bit. |
| int AdjIndex = InPlaceInputs[0] ^ 1; |
| SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset; |
| std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex); |
| PSHUFDMask[AdjIndex / 2] = AdjIndex / 2; |
| }; |
| fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0); |
| fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4); |
| |
| // Now gather the cross-half inputs and place them into a free dword of |
| // their target half. |
| // FIXME: This operation could almost certainly be simplified dramatically to |
| // look more like the 3-1 fixing operation. |
| auto moveInputsToRightHalf = [&PSHUFDMask]( |
| MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs, |
| MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask, |
| MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset, |
| int DestOffset) { |
| auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) { |
| return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word; |
| }; |
| auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask, |
| int Word) { |
| int LowWord = Word & ~1; |
| int HighWord = Word | 1; |
| return isWordClobbered(SourceHalfMask, LowWord) || |
| isWordClobbered(SourceHalfMask, HighWord); |
| }; |
| |
| if (IncomingInputs.empty()) |
| return; |
| |
| if (ExistingInputs.empty()) { |
| // Map any dwords with inputs from them into the right half. |
| for (int Input : IncomingInputs) { |
| // If the source half mask maps over the inputs, turn those into |
| // swaps and use the swapped lane. |
| if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) { |
| if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) { |
| SourceHalfMask[SourceHalfMask[Input - SourceOffset]] = |
| Input - SourceOffset; |
| // We have to swap the uses in our half mask in one sweep. |
| for (int &M : HalfMask) |
| if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset) |
| M = Input; |
| else if (M == Input) |
| M = SourceHalfMask[Input - SourceOffset] + SourceOffset; |
| } else { |
| assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == |
| Input - SourceOffset && |
| "Previous placement doesn't match!"); |
| } |
| // Note that this correctly re-maps both when we do a swap and when |
| // we observe the other side of the swap above. We rely on that to |
| // avoid swapping the members of the input list directly. |
| Input = SourceHalfMask[Input - SourceOffset] + SourceOffset; |
| } |
| |
| // Map the input's dword into the correct half. |
| if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0) |
| PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2; |
| else |
| assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == |
| Input / 2 && |
| "Previous placement doesn't match!"); |
| } |
| |
| // And just directly shift any other-half mask elements to be same-half |
| // as we will have mirrored the dword containing the element into the |
| // same position within that half. |
| for (int &M : HalfMask) |
| if (M >= SourceOffset && M < SourceOffset + 4) { |
| M = M - SourceOffset + DestOffset; |
| assert(M >= 0 && "This should never wrap below zero!"); |
| } |
| return; |
| } |
| |
| // Ensure we have the input in a viable dword of its current half. This |
| // is particularly tricky because the original position may be clobbered |
| // by inputs being moved and *staying* in that half. |
| if (IncomingInputs.size() == 1) { |
| if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { |
| int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) + |
| SourceOffset; |
| SourceHalfMask[InputFixed - SourceOffset] = |
| IncomingInputs[0] - SourceOffset; |
| std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0], |
| InputFixed); |
| IncomingInputs[0] = InputFixed; |
| } |
| } else if (IncomingInputs.size() == 2) { |
| if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 || |
| isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { |
| // We have two non-adjacent or clobbered inputs we need to extract from |
| // the source half. To do this, we need to map them into some adjacent |
| // dword slot in the source mask. |
| int InputsFixed[2] = {IncomingInputs[0] - SourceOffset, |
| IncomingInputs[1] - SourceOffset}; |
| |
| // If there is a free slot in the source half mask adjacent to one of |
| // the inputs, place the other input in it. We use (Index XOR 1) to |
| // compute an adjacent index. |
| if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) && |
| SourceHalfMask[InputsFixed[0] ^ 1] < 0) { |
| SourceHalfMask[InputsFixed[0]] = InputsFixed[0]; |
| SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; |
| InputsFixed[1] = InputsFixed[0] ^ 1; |
| } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) && |
| SourceHalfMask[InputsFixed[1] ^ 1] < 0) { |
| SourceHalfMask[InputsFixed[1]] = InputsFixed[1]; |
| SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0]; |
| InputsFixed[0] = InputsFixed[1] ^ 1; |
| } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 && |
| SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) { |
| // The two inputs are in the same DWord but it is clobbered and the |
| // adjacent DWord isn't used at all. Move both inputs to the free |
| // slot. |
| SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0]; |
| SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1]; |
| InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1); |
| InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1; |
| } else { |
| // The only way we hit this point is if there is no clobbering |
| // (because there are no off-half inputs to this half) and there is no |
| // free slot adjacent to one of the inputs. In this case, we have to |
| // swap an input with a non-input. |
| for (int i = 0; i < 4; ++i) |
| assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) && |
| "We can't handle any clobbers here!"); |
| assert(InputsFixed[1] != (InputsFixed[0] ^ 1) && |
| "Cannot have adjacent inputs here!"); |
| |
| SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; |
| SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1; |
| |
| // We also have to update the final source mask in this case because |
| // it may need to undo the above swap. |
| for (int &M : FinalSourceHalfMask) |
| if (M == (InputsFixed[0] ^ 1) + SourceOffset) |
| M = InputsFixed[1] + SourceOffset; |
| else if (M == InputsFixed[1] + SourceOffset) |
| M = (InputsFixed[0] ^ 1) + SourceOffset; |
| |
| InputsFixed[1] = InputsFixed[0] ^ 1; |
| } |
| |
| // Point everything at the fixed inputs. |
| for (int &M : HalfMask) |
| if (M == IncomingInputs[0]) |
| M = InputsFixed[0] + SourceOffset; |
| else if (M == IncomingInputs[1]) |
| M = InputsFixed[1] + SourceOffset; |
| |
| IncomingInputs[0] = InputsFixed[0] + SourceOffset; |
| IncomingInputs[1] = InputsFixed[1] + SourceOffset; |
| } |
| } else { |
| llvm_unreachable("Unhandled input size!"); |
| } |
| |
| // Now hoist the DWord down to the right half. |
| int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2; |
| assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free"); |
| PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2; |
| for (int &M : HalfMask) |
| for (int Input : IncomingInputs) |
| if (M == Input) |
| M = FreeDWord * 2 + Input % 2; |
| }; |
| moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask, |
| /*SourceOffset*/ 4, /*DestOffset*/ 0); |
| moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask, |
| /*SourceOffset*/ 0, /*DestOffset*/ 4); |
| |
| // Now enact all the shuffles we've computed to move the inputs into their |
| // target half. |
| if (!isNoopShuffleMask(PSHUFLMask)) |
| V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG)); |
| if (!isNoopShuffleMask(PSHUFHMask)) |
| V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG)); |
| if (!isNoopShuffleMask(PSHUFDMask)) |
| V = DAG.getBitcast( |
| VT, |
| DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); |
| |
| // At this point, each half should contain all its inputs, and we can then |
| // just shuffle them into their final position. |
| assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 && |
| "Failed to lift all the high half inputs to the low mask!"); |
| assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 && |
| "Failed to lift all the low half inputs to the high mask!"); |
| |
| // Do a half shuffle for the low mask. |
| if (!isNoopShuffleMask(LoMask)) |
| V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(LoMask, DL, DAG)); |
| |
| // Do a half shuffle with the high mask after shifting its values down. |
| for (int &M : HiMask) |
| if (M >= 0) |
| M -= 4; |
| if (!isNoopShuffleMask(HiMask)) |
| V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, |
| getV4X86ShuffleImm8ForMask(HiMask, DL, DAG)); |
| |
| return V; |
| } |
| |
| /// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the |
| /// blend if only one input is used. |
| static SDValue lowerVectorShuffleAsBlendOfPSHUFBs( |
| const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, SelectionDAG &DAG, bool &V1InUse, |
| bool &V2InUse) { |
| SDValue V1Mask[16]; |
| SDValue V2Mask[16]; |
| V1InUse = false; |
| V2InUse = false; |
| |
| int Size = Mask.size(); |
| int Scale = 16 / Size; |
| for (int i = 0; i < 16; ++i) { |
| if (Mask[i / Scale] < 0) { |
| V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8); |
| } else { |
| const int ZeroMask = 0x80; |
| int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale |
| : ZeroMask; |
| int V2Idx = Mask[i / Scale] < Size |
| ? ZeroMask |
| : (Mask[i / Scale] - Size) * Scale + i % Scale; |
| if (Zeroable[i / Scale]) |
| V1Idx = V2Idx = ZeroMask; |
| V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8); |
| V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8); |
| V1InUse |= (ZeroMask != V1Idx); |
| V2InUse |= (ZeroMask != V2Idx); |
| } |
| } |
| |
| if (V1InUse) |
| V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, |
| DAG.getBitcast(MVT::v16i8, V1), |
| DAG.getBuildVector(MVT::v16i8, DL, V1Mask)); |
| if (V2InUse) |
| V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, |
| DAG.getBitcast(MVT::v16i8, V2), |
| DAG.getBuildVector(MVT::v16i8, DL, V2Mask)); |
| |
| // If we need shuffled inputs from both, blend the two. |
| SDValue V; |
| if (V1InUse && V2InUse) |
| V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2); |
| else |
| V = V1InUse ? V1 : V2; |
| |
| // Cast the result back to the correct type. |
| return DAG.getBitcast(VT, V); |
| } |
| |
| /// Generic lowering of 8-lane i16 shuffles. |
| /// |
| /// This handles both single-input shuffles and combined shuffle/blends with |
| /// two inputs. The single input shuffles are immediately delegated to |
| /// a dedicated lowering routine. |
| /// |
| /// The blends are lowered in one of three fundamental ways. If there are few |
| /// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle |
| /// of the input is significantly cheaper when lowered as an interleaving of |
| /// the two inputs, try to interleave them. Otherwise, blend the low and high |
| /// halves of the inputs separately (making them have relatively few inputs) |
| /// and then concatenate them. |
| static SDValue lowerV8I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); |
| assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; }); |
| |
| if (NumV2Inputs == 0) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Use dedicated pack instructions for masks that match their pattern. |
| if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, |
| DAG, Subtarget)) |
| return V; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Make a copy of the mask so it can be modified. |
| SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end()); |
| return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, |
| MutableMask, Subtarget, |
| DAG); |
| } |
| |
| assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) && |
| "All single-input shuffles should be canonicalized to be V1-input " |
| "shuffles."); |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // See if we can use SSE4A Extraction / Insertion. |
| if (Subtarget.hasSSE4A()) |
| if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, |
| Zeroable, DAG)) |
| return V; |
| |
| // There are special ways we can lower some single-element blends. |
| if (NumV2Inputs == 1) |
| if (SDValue V = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return V; |
| |
| // We have different paths for blend lowering, but they all must use the |
| // *exact* same predicate. |
| bool IsBlendSupported = Subtarget.hasSSE41(); |
| if (IsBlendSupported) |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, |
| Zeroable, DAG)) |
| return Masked; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Use dedicated pack instructions for masks that match their pattern. |
| if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG, |
| Subtarget)) |
| return V; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue BitBlend = |
| lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG)) |
| return BitBlend; |
| |
| // Try to lower by permuting the inputs into an unpack instruction. |
| if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, |
| V2, Mask, DAG)) |
| return Unpack; |
| |
| // If we can't directly blend but can use PSHUFB, that will be better as it |
| // can both shuffle and set up the inefficient blend. |
| if (!IsBlendSupported && Subtarget.hasSSSE3()) { |
| bool V1InUse, V2InUse; |
| return lowerVectorShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask, |
| Zeroable, DAG, V1InUse, V2InUse); |
| } |
| |
| // We can always bit-blend if we have to so the fallback strategy is to |
| // decompose into single-input permutes and blends. |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2, |
| Mask, DAG); |
| } |
| |
| /// Check whether a compaction lowering can be done by dropping even |
| /// elements and compute how many times even elements must be dropped. |
| /// |
| /// This handles shuffles which take every Nth element where N is a power of |
| /// two. Example shuffle masks: |
| /// |
| /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14 |
| /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 |
| /// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12 |
| /// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28 |
| /// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8 |
| /// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24 |
| /// |
| /// Any of these lanes can of course be undef. |
| /// |
| /// This routine only supports N <= 3. |
| /// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here |
| /// for larger N. |
| /// |
| /// \returns N above, or the number of times even elements must be dropped if |
| /// there is such a number. Otherwise returns zero. |
| static int canLowerByDroppingEvenElements(ArrayRef<int> Mask, |
| bool IsSingleInput) { |
| // The modulus for the shuffle vector entries is based on whether this is |
| // a single input or not. |
| int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2); |
| assert(isPowerOf2_32((uint32_t)ShuffleModulus) && |
| "We should only be called with masks with a power-of-2 size!"); |
| |
| uint64_t ModMask = (uint64_t)ShuffleModulus - 1; |
| |
| // We track whether the input is viable for all power-of-2 strides 2^1, 2^2, |
| // and 2^3 simultaneously. This is because we may have ambiguity with |
| // partially undef inputs. |
| bool ViableForN[3] = {true, true, true}; |
| |
| for (int i = 0, e = Mask.size(); i < e; ++i) { |
| // Ignore undef lanes, we'll optimistically collapse them to the pattern we |
| // want. |
| if (Mask[i] < 0) |
| continue; |
| |
| bool IsAnyViable = false; |
| for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) |
| if (ViableForN[j]) { |
| uint64_t N = j + 1; |
| |
| // The shuffle mask must be equal to (i * 2^N) % M. |
| if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask)) |
| IsAnyViable = true; |
| else |
| ViableForN[j] = false; |
| } |
| // Early exit if we exhaust the possible powers of two. |
| if (!IsAnyViable) |
| break; |
| } |
| |
| for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) |
| if (ViableForN[j]) |
| return j + 1; |
| |
| // Return 0 as there is no viable power of two. |
| return 0; |
| } |
| |
| static SDValue lowerVectorShuffleWithPERMV(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, SDValue V1, |
| SDValue V2, SelectionDAG &DAG) { |
| MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); |
| MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements()); |
| |
| SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true); |
| if (V2.isUndef()) |
| return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1); |
| |
| return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2); |
| } |
| |
| /// Generic lowering of v16i8 shuffles. |
| /// |
| /// This is a hybrid strategy to lower v16i8 vectors. It first attempts to |
| /// detect any complexity reducing interleaving. If that doesn't help, it uses |
| /// UNPCK to spread the i8 elements across two i16-element vectors, and uses |
| /// the existing lowering for v8i16 blends on each half, finally PACK-ing them |
| /// back together. |
| static SDValue lowerV16I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); |
| assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Use dedicated pack instructions for masks that match their pattern. |
| if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i8, Mask, V1, V2, DAG, |
| Subtarget)) |
| return V; |
| |
| // Try to use a zext lowering. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // See if we can use SSE4A Extraction / Insertion. |
| if (Subtarget.hasSSE4A()) |
| if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, |
| Zeroable, DAG)) |
| return V; |
| |
| int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; }); |
| |
| // For single-input shuffles, there are some nicer lowering tricks we can use. |
| if (NumV2Elements == 0) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Check whether we can widen this to an i16 shuffle by duplicating bytes. |
| // Notably, this handles splat and partial-splat shuffles more efficiently. |
| // However, it only makes sense if the pre-duplication shuffle simplifies |
| // things significantly. Currently, this means we need to be able to |
| // express the pre-duplication shuffle as an i16 shuffle. |
| // |
| // FIXME: We should check for other patterns which can be widened into an |
| // i16 shuffle as well. |
| auto canWidenViaDuplication = [](ArrayRef<int> Mask) { |
| for (int i = 0; i < 16; i += 2) |
| if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1]) |
| return false; |
| |
| return true; |
| }; |
| auto tryToWidenViaDuplication = [&]() -> SDValue { |
| if (!canWidenViaDuplication(Mask)) |
| return SDValue(); |
| SmallVector<int, 4> LoInputs; |
| copy_if(Mask, std::back_inserter(LoInputs), |
| [](int M) { return M >= 0 && M < 8; }); |
| array_pod_sort(LoInputs.begin(), LoInputs.end()); |
| LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), |
| LoInputs.end()); |
| SmallVector<int, 4> HiInputs; |
| copy_if(Mask, std::back_inserter(HiInputs), [](int M) { return M >= 8; }); |
| array_pod_sort(HiInputs.begin(), HiInputs.end()); |
| HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), |
| HiInputs.end()); |
| |
| bool TargetLo = LoInputs.size() >= HiInputs.size(); |
| ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs; |
| ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs; |
| |
| int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1}; |
| SmallDenseMap<int, int, 8> LaneMap; |
| for (int I : InPlaceInputs) { |
| PreDupI16Shuffle[I/2] = I/2; |
| LaneMap[I] = I; |
| } |
| int j = TargetLo ? 0 : 4, je = j + 4; |
| for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) { |
| // Check if j is already a shuffle of this input. This happens when |
| // there are two adjacent bytes after we move the low one. |
| if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) { |
| // If we haven't yet mapped the input, search for a slot into which |
| // we can map it. |
| while (j < je && PreDupI16Shuffle[j] >= 0) |
| ++j; |
| |
| if (j == je) |
| // We can't place the inputs into a single half with a simple i16 shuffle, so bail. |
| return SDValue(); |
| |
| // Map this input with the i16 shuffle. |
| PreDupI16Shuffle[j] = MovingInputs[i] / 2; |
| } |
| |
| // Update the lane map based on the mapping we ended up with. |
| LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2; |
| } |
| V1 = DAG.getBitcast( |
| MVT::v16i8, |
| DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), |
| DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle)); |
| |
| // Unpack the bytes to form the i16s that will be shuffled into place. |
| V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, |
| MVT::v16i8, V1, V1); |
| |
| int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; |
| for (int i = 0; i < 16; ++i) |
| if (Mask[i] >= 0) { |
| int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8); |
| assert(MappedMask < 8 && "Invalid v8 shuffle mask!"); |
| if (PostDupI16Shuffle[i / 2] < 0) |
| PostDupI16Shuffle[i / 2] = MappedMask; |
| else |
| assert(PostDupI16Shuffle[i / 2] == MappedMask && |
| "Conflicting entries in the original shuffle!"); |
| } |
| return DAG.getBitcast( |
| MVT::v16i8, |
| DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), |
| DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle)); |
| }; |
| if (SDValue V = tryToWidenViaDuplication()) |
| return V; |
| } |
| |
| if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, |
| Zeroable, DAG)) |
| return Masked; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly |
| // with PSHUFB. It is important to do this before we attempt to generate any |
| // blends but after all of the single-input lowerings. If the single input |
| // lowerings can find an instruction sequence that is faster than a PSHUFB, we |
| // want to preserve that and we can DAG combine any longer sequences into |
| // a PSHUFB in the end. But once we start blending from multiple inputs, |
| // the complexity of DAG combining bad patterns back into PSHUFB is too high, |
| // and there are *very* few patterns that would actually be faster than the |
| // PSHUFB approach because of its ability to zero lanes. |
| // |
| // FIXME: The only exceptions to the above are blends which are exact |
| // interleavings with direct instructions supporting them. We currently don't |
| // handle those well here. |
| if (Subtarget.hasSSSE3()) { |
| bool V1InUse = false; |
| bool V2InUse = false; |
| |
| SDValue PSHUFB = lowerVectorShuffleAsBlendOfPSHUFBs( |
| DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse); |
| |
| // If both V1 and V2 are in use and we can use a direct blend or an unpack, |
| // do so. This avoids using them to handle blends-with-zero which is |
| // important as a single pshufb is significantly faster for that. |
| if (V1InUse && V2InUse) { |
| if (Subtarget.hasSSE41()) |
| if (SDValue Blend = lowerVectorShuffleAsBlend( |
| DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // We can use an unpack to do the blending rather than an or in some |
| // cases. Even though the or may be (very minorly) more efficient, we |
| // preference this lowering because there are common cases where part of |
| // the complexity of the shuffles goes away when we do the final blend as |
| // an unpack. |
| // FIXME: It might be worth trying to detect if the unpack-feeding |
| // shuffles will both be pshufb, in which case we shouldn't bother with |
| // this. |
| if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( |
| DL, MVT::v16i8, V1, V2, Mask, DAG)) |
| return Unpack; |
| |
| // If we have VBMI we can use one VPERM instead of multiple PSHUFBs. |
| if (Subtarget.hasVBMI() && Subtarget.hasVLX()) |
| return lowerVectorShuffleWithPERMV(DL, MVT::v16i8, Mask, V1, V2, DAG); |
| } |
| |
| return PSHUFB; |
| } |
| |
| // There are special ways we can lower some single-element blends. |
| if (NumV2Elements == 1) |
| if (SDValue V = lowerVectorShuffleAsElementInsertion( |
| DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return V; |
| |
| if (SDValue BitBlend = |
| lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG)) |
| return BitBlend; |
| |
| // Check whether a compaction lowering can be done. This handles shuffles |
| // which take every Nth element for some even N. See the helper function for |
| // details. |
| // |
| // We special case these as they can be particularly efficiently handled with |
| // the PACKUSB instruction on x86 and they show up in common patterns of |
| // rearranging bytes to truncate wide elements. |
| bool IsSingleInput = V2.isUndef(); |
| if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) { |
| // NumEvenDrops is the power of two stride of the elements. Another way of |
| // thinking about it is that we need to drop the even elements this many |
| // times to get the original input. |
| |
| // First we need to zero all the dropped bytes. |
| assert(NumEvenDrops <= 3 && |
| "No support for dropping even elements more than 3 times."); |
| // We use the mask type to pick which bytes are preserved based on how many |
| // elements are dropped. |
| MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 }; |
| SDValue ByteClearMask = DAG.getBitcast( |
| MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1])); |
| V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask); |
| if (!IsSingleInput) |
| V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask); |
| |
| // Now pack things back together. |
| V1 = DAG.getBitcast(MVT::v8i16, V1); |
| V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2); |
| SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2); |
| for (int i = 1; i < NumEvenDrops; ++i) { |
| Result = DAG.getBitcast(MVT::v8i16, Result); |
| Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result); |
| } |
| |
| return Result; |
| } |
| |
| // Handle multi-input cases by blending single-input shuffles. |
| if (NumV2Elements > 0) |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, |
| Mask, DAG); |
| |
| // The fallback path for single-input shuffles widens this into two v8i16 |
| // vectors with unpacks, shuffles those, and then pulls them back together |
| // with a pack. |
| SDValue V = V1; |
| |
| std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}}; |
| std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}}; |
| for (int i = 0; i < 16; ++i) |
| if (Mask[i] >= 0) |
| (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i]; |
| |
| SDValue VLoHalf, VHiHalf; |
| // Check if any of the odd lanes in the v16i8 are used. If not, we can mask |
| // them out and avoid using UNPCK{L,H} to extract the elements of V as |
| // i16s. |
| if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) && |
| none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) { |
| // Use a mask to drop the high bytes. |
| VLoHalf = DAG.getBitcast(MVT::v8i16, V); |
| VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf, |
| DAG.getConstant(0x00FF, DL, MVT::v8i16)); |
| |
| // This will be a single vector shuffle instead of a blend so nuke VHiHalf. |
| VHiHalf = DAG.getUNDEF(MVT::v8i16); |
| |
| // Squash the masks to point directly into VLoHalf. |
| for (int &M : LoBlendMask) |
| if (M >= 0) |
| M /= 2; |
| for (int &M : HiBlendMask) |
| if (M >= 0) |
| M /= 2; |
| } else { |
| // Otherwise just unpack the low half of V into VLoHalf and the high half into |
| // VHiHalf so that we can blend them as i16s. |
| SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL); |
| |
| VLoHalf = DAG.getBitcast( |
| MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero)); |
| VHiHalf = DAG.getBitcast( |
| MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero)); |
| } |
| |
| SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask); |
| SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask); |
| |
| return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV); |
| } |
| |
| /// Dispatching routine to lower various 128-bit x86 vector shuffles. |
| /// |
| /// This routine breaks down the specific type of 128-bit shuffle and |
| /// dispatches to the lowering routines accordingly. |
| static SDValue lower128BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| MVT VT, SDValue V1, SDValue V2, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| switch (VT.SimpleTy) { |
| case MVT::v2i64: |
| return lowerV2I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v2f64: |
| return lowerV2F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v4i32: |
| return lowerV4I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v4f32: |
| return lowerV4F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v8i16: |
| return lowerV8I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v16i8: |
| return lowerV16I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| |
| default: |
| llvm_unreachable("Unimplemented!"); |
| } |
| } |
| |
| /// Generic routine to split vector shuffle into half-sized shuffles. |
| /// |
| /// This routine just extracts two subvectors, shuffles them independently, and |
| /// then concatenates them back together. This should work effectively with all |
| /// AVX vector shuffle types. |
| static SDValue splitAndLowerVectorShuffle(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| assert(VT.getSizeInBits() >= 256 && |
| "Only for 256-bit or wider vector shuffles!"); |
| assert(V1.getSimpleValueType() == VT && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == VT && "Bad operand type!"); |
| |
| ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2); |
| ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2); |
| |
| int NumElements = VT.getVectorNumElements(); |
| int SplitNumElements = NumElements / 2; |
| MVT ScalarVT = VT.getVectorElementType(); |
| MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2); |
| |
| // Rather than splitting build-vectors, just build two narrower build |
| // vectors. This helps shuffling with splats and zeros. |
| auto SplitVector = [&](SDValue V) { |
| V = peekThroughBitcasts(V); |
| |
| MVT OrigVT = V.getSimpleValueType(); |
| int OrigNumElements = OrigVT.getVectorNumElements(); |
| int OrigSplitNumElements = OrigNumElements / 2; |
| MVT OrigScalarVT = OrigVT.getVectorElementType(); |
| MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2); |
| |
| SDValue LoV, HiV; |
| |
| auto *BV = dyn_cast<BuildVectorSDNode>(V); |
| if (!BV) { |
| LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, |
| DAG.getIntPtrConstant(0, DL)); |
| HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, |
| DAG.getIntPtrConstant(OrigSplitNumElements, DL)); |
| } else { |
| |
| SmallVector<SDValue, 16> LoOps, HiOps; |
| for (int i = 0; i < OrigSplitNumElements; ++i) { |
| LoOps.push_back(BV->getOperand(i)); |
| HiOps.push_back(BV->getOperand(i + OrigSplitNumElements)); |
| } |
| LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps); |
| HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps); |
| } |
| return std::make_pair(DAG.getBitcast(SplitVT, LoV), |
| DAG.getBitcast(SplitVT, HiV)); |
| }; |
| |
| SDValue LoV1, HiV1, LoV2, HiV2; |
| std::tie(LoV1, HiV1) = SplitVector(V1); |
| std::tie(LoV2, HiV2) = SplitVector(V2); |
| |
| // Now create two 4-way blends of these half-width vectors. |
| auto HalfBlend = [&](ArrayRef<int> HalfMask) { |
| bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false; |
| SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1); |
| SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1); |
| SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1); |
| for (int i = 0; i < SplitNumElements; ++i) { |
| int M = HalfMask[i]; |
| if (M >= NumElements) { |
| if (M >= NumElements + SplitNumElements) |
| UseHiV2 = true; |
| else |
| UseLoV2 = true; |
| V2BlendMask[i] = M - NumElements; |
| BlendMask[i] = SplitNumElements + i; |
| } else if (M >= 0) { |
| if (M >= SplitNumElements) |
| UseHiV1 = true; |
| else |
| UseLoV1 = true; |
| V1BlendMask[i] = M; |
| BlendMask[i] = i; |
| } |
| } |
| |
| // Because the lowering happens after all combining takes place, we need to |
| // manually combine these blend masks as much as possible so that we create |
| // a minimal number of high-level vector shuffle nodes. |
| |
| // First try just blending the halves of V1 or V2. |
| if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2) |
| return DAG.getUNDEF(SplitVT); |
| if (!UseLoV2 && !UseHiV2) |
| return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); |
| if (!UseLoV1 && !UseHiV1) |
| return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); |
| |
| SDValue V1Blend, V2Blend; |
| if (UseLoV1 && UseHiV1) { |
| V1Blend = |
| DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); |
| } else { |
| // We only use half of V1 so map the usage down into the final blend mask. |
| V1Blend = UseLoV1 ? LoV1 : HiV1; |
| for (int i = 0; i < SplitNumElements; ++i) |
| if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements) |
| BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements); |
| } |
| if (UseLoV2 && UseHiV2) { |
| V2Blend = |
| DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); |
| } else { |
| // We only use half of V2 so map the usage down into the final blend mask. |
| V2Blend = UseLoV2 ? LoV2 : HiV2; |
| for (int i = 0; i < SplitNumElements; ++i) |
| if (BlendMask[i] >= SplitNumElements) |
| BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0); |
| } |
| return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask); |
| }; |
| SDValue Lo = HalfBlend(LoMask); |
| SDValue Hi = HalfBlend(HiMask); |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); |
| } |
| |
| /// Either split a vector in halves or decompose the shuffles and the |
| /// blend. |
| /// |
| /// This is provided as a good fallback for many lowerings of non-single-input |
| /// shuffles with more than one 128-bit lane. In those cases, we want to select |
| /// between splitting the shuffle into 128-bit components and stitching those |
| /// back together vs. extracting the single-input shuffles and blending those |
| /// results. |
| static SDValue lowerVectorShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| assert(!V2.isUndef() && "This routine must not be used to lower single-input " |
| "shuffles as it could then recurse on itself."); |
| int Size = Mask.size(); |
| |
| // If this can be modeled as a broadcast of two elements followed by a blend, |
| // prefer that lowering. This is especially important because broadcasts can |
| // often fold with memory operands. |
| auto DoBothBroadcast = [&] { |
| int V1BroadcastIdx = -1, V2BroadcastIdx = -1; |
| for (int M : Mask) |
| if (M >= Size) { |
| if (V2BroadcastIdx < 0) |
| V2BroadcastIdx = M - Size; |
| else if (M - Size != V2BroadcastIdx) |
| return false; |
| } else if (M >= 0) { |
| if (V1BroadcastIdx < 0) |
| V1BroadcastIdx = M; |
| else if (M != V1BroadcastIdx) |
| return false; |
| } |
| return true; |
| }; |
| if (DoBothBroadcast()) |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, |
| DAG); |
| |
| // If the inputs all stem from a single 128-bit lane of each input, then we |
| // split them rather than blending because the split will decompose to |
| // unusually few instructions. |
| int LaneCount = VT.getSizeInBits() / 128; |
| int LaneSize = Size / LaneCount; |
| SmallBitVector LaneInputs[2]; |
| LaneInputs[0].resize(LaneCount, false); |
| LaneInputs[1].resize(LaneCount, false); |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] >= 0) |
| LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true; |
| if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1) |
| return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); |
| |
| // Otherwise, just fall back to decomposed shuffles and a blend. This requires |
| // that the decomposed single-input shuffles don't end up here. |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); |
| } |
| |
| /// Lower a vector shuffle crossing multiple 128-bit lanes as |
| /// a permutation and blend of those lanes. |
| /// |
| /// This essentially blends the out-of-lane inputs to each lane into the lane |
| /// from a permuted copy of the vector. This lowering strategy results in four |
| /// instructions in the worst case for a single-input cross lane shuffle which |
| /// is lower than any other fully general cross-lane shuffle strategy I'm aware |
| /// of. Special cases for each particular shuffle pattern should be handled |
| /// prior to trying this lowering. |
| static SDValue lowerVectorShuffleAsLanePermuteAndBlend(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // FIXME: This should probably be generalized for 512-bit vectors as well. |
| assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!"); |
| int Size = Mask.size(); |
| int LaneSize = Size / 2; |
| |
| // If there are only inputs from one 128-bit lane, splitting will in fact be |
| // less expensive. The flags track whether the given lane contains an element |
| // that crosses to another lane. |
| if (!Subtarget.hasAVX2()) { |
| bool LaneCrossing[2] = {false, false}; |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) |
| LaneCrossing[(Mask[i] % Size) / LaneSize] = true; |
| if (!LaneCrossing[0] || !LaneCrossing[1]) |
| return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); |
| } else { |
| bool LaneUsed[2] = {false, false}; |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] >= 0) |
| LaneUsed[(Mask[i] / LaneSize)] = true; |
| if (!LaneUsed[0] || !LaneUsed[1]) |
| return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); |
| } |
| |
| assert(V2.isUndef() && |
| "This last part of this routine only works on single input shuffles"); |
| |
| SmallVector<int, 32> FlippedBlendMask(Size); |
| for (int i = 0; i < Size; ++i) |
| FlippedBlendMask[i] = |
| Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize) |
| ? Mask[i] |
| : Mask[i] % LaneSize + |
| (i / LaneSize) * LaneSize + Size); |
| |
| // Flip the vector, and blend the results which should now be in-lane. |
| MVT PVT = VT.isFloatingPoint() ? MVT::v4f64 : MVT::v4i64; |
| SDValue Flipped = DAG.getBitcast(PVT, V1); |
| Flipped = DAG.getVectorShuffle(PVT, DL, Flipped, DAG.getUNDEF(PVT), |
| { 2, 3, 0, 1 }); |
| Flipped = DAG.getBitcast(VT, Flipped); |
| return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask); |
| } |
| |
| /// Handle lowering 2-lane 128-bit shuffles. |
| static SDValue lowerV2X128VectorShuffle(const SDLoc &DL, MVT VT, SDValue V1, |
| SDValue V2, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| // With AVX2, use VPERMQ/VPERMPD for unary shuffles to allow memory folding. |
| if (Subtarget.hasAVX2() && V2.isUndef()) |
| return SDValue(); |
| |
| SmallVector<int, 4> WidenedMask; |
| if (!canWidenShuffleElements(Mask, Zeroable, WidenedMask)) |
| return SDValue(); |
| |
| bool IsLowZero = (Zeroable & 0x3) == 0x3; |
| bool IsHighZero = (Zeroable & 0xc) == 0xc; |
| |
| // Try to use an insert into a zero vector. |
| if (WidenedMask[0] == 0 && IsHighZero) { |
| MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2); |
| SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, |
| getZeroVector(VT, Subtarget, DAG, DL), LoV, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| // TODO: If minimizing size and one of the inputs is a zero vector and the |
| // the zero vector has only one use, we could use a VPERM2X128 to save the |
| // instruction bytes needed to explicitly generate the zero vector. |
| |
| // Blends are faster and handle all the non-lane-crossing cases. |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // If either input operand is a zero vector, use VPERM2X128 because its mask |
| // allows us to replace the zero input with an implicit zero. |
| if (!IsLowZero && !IsHighZero) { |
| // Check for patterns which can be matched with a single insert of a 128-bit |
| // subvector. |
| bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}); |
| if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) { |
| |
| // With AVX1, use vperm2f128 (below) to allow load folding. Otherwise, |
| // this will likely become vinsertf128 which can't fold a 256-bit memop. |
| if (!isa<LoadSDNode>(peekThroughBitcasts(V1))) { |
| MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2); |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, |
| OnlyUsesV1 ? V1 : V2, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec, |
| DAG.getIntPtrConstant(2, DL)); |
| } |
| } |
| |
| // Try to use SHUF128 if possible. |
| if (Subtarget.hasVLX()) { |
| if (WidenedMask[0] < 2 && WidenedMask[1] >= 2) { |
| unsigned PermMask = ((WidenedMask[0] % 2) << 0) | |
| ((WidenedMask[1] % 2) << 1); |
| return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2, |
| DAG.getConstant(PermMask, DL, MVT::i8)); |
| } |
| } |
| } |
| |
| // Otherwise form a 128-bit permutation. After accounting for undefs, |
| // convert the 64-bit shuffle mask selection values into 128-bit |
| // selection bits by dividing the indexes by 2 and shifting into positions |
| // defined by a vperm2*128 instruction's immediate control byte. |
| |
| // The immediate permute control byte looks like this: |
| // [1:0] - select 128 bits from sources for low half of destination |
| // [2] - ignore |
| // [3] - zero low half of destination |
| // [5:4] - select 128 bits from sources for high half of destination |
| // [6] - ignore |
| // [7] - zero high half of destination |
| |
| assert((WidenedMask[0] >= 0 || IsLowZero) && |
| (WidenedMask[1] >= 0 || IsHighZero) && "Undef half?"); |
| |
| unsigned PermMask = 0; |
| PermMask |= IsLowZero ? 0x08 : (WidenedMask[0] << 0); |
| PermMask |= IsHighZero ? 0x80 : (WidenedMask[1] << 4); |
| |
| // Check the immediate mask and replace unused sources with undef. |
| if ((PermMask & 0x0a) != 0x00 && (PermMask & 0xa0) != 0x00) |
| V1 = DAG.getUNDEF(VT); |
| if ((PermMask & 0x0a) != 0x02 && (PermMask & 0xa0) != 0x20) |
| V2 = DAG.getUNDEF(VT); |
| |
| return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2, |
| DAG.getConstant(PermMask, DL, MVT::i8)); |
| } |
| |
| /// Lower a vector shuffle by first fixing the 128-bit lanes and then |
| /// shuffling each lane. |
| /// |
| /// This will only succeed when the result of fixing the 128-bit lanes results |
| /// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in |
| /// each 128-bit lanes. This handles many cases where we can quickly blend away |
| /// the lane crosses early and then use simpler shuffles within each lane. |
| /// |
| /// FIXME: It might be worthwhile at some point to support this without |
| /// requiring the 128-bit lane-relative shuffles to be repeating, but currently |
| /// in x86 only floating point has interesting non-repeating shuffles, and even |
| /// those are still *marginally* more expensive. |
| static SDValue lowerVectorShuffleByMerging128BitLanes( |
| const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG) { |
| assert(!V2.isUndef() && "This is only useful with multiple inputs."); |
| |
| int Size = Mask.size(); |
| int LaneSize = 128 / VT.getScalarSizeInBits(); |
| int NumLanes = Size / LaneSize; |
| assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles."); |
| |
| // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also |
| // check whether the in-128-bit lane shuffles share a repeating pattern. |
| SmallVector<int, 4> Lanes((unsigned)NumLanes, -1); |
| SmallVector<int, 4> InLaneMask((unsigned)LaneSize, -1); |
| for (int i = 0; i < Size; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| |
| int j = i / LaneSize; |
| |
| if (Lanes[j] < 0) { |
| // First entry we've seen for this lane. |
| Lanes[j] = Mask[i] / LaneSize; |
| } else if (Lanes[j] != Mask[i] / LaneSize) { |
| // This doesn't match the lane selected previously! |
| return SDValue(); |
| } |
| |
| // Check that within each lane we have a consistent shuffle mask. |
| int k = i % LaneSize; |
| if (InLaneMask[k] < 0) { |
| InLaneMask[k] = Mask[i] % LaneSize; |
| } else if (InLaneMask[k] != Mask[i] % LaneSize) { |
| // This doesn't fit a repeating in-lane mask. |
| return SDValue(); |
| } |
| } |
| |
| // First shuffle the lanes into place. |
| MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64, |
| VT.getSizeInBits() / 64); |
| SmallVector<int, 8> LaneMask((unsigned)NumLanes * 2, -1); |
| for (int i = 0; i < NumLanes; ++i) |
| if (Lanes[i] >= 0) { |
| LaneMask[2 * i + 0] = 2*Lanes[i] + 0; |
| LaneMask[2 * i + 1] = 2*Lanes[i] + 1; |
| } |
| |
| V1 = DAG.getBitcast(LaneVT, V1); |
| V2 = DAG.getBitcast(LaneVT, V2); |
| SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask); |
| |
| // Cast it back to the type we actually want. |
| LaneShuffle = DAG.getBitcast(VT, LaneShuffle); |
| |
| // Now do a simple shuffle that isn't lane crossing. |
| SmallVector<int, 8> NewMask((unsigned)Size, -1); |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] >= 0) |
| NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize; |
| assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) && |
| "Must not introduce lane crosses at this point!"); |
| |
| return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask); |
| } |
| |
| /// Lower shuffles where an entire half of a 256 or 512-bit vector is UNDEF. |
| /// This allows for fast cases such as subvector extraction/insertion |
| /// or shuffling smaller vector types which can lower more efficiently. |
| static SDValue lowerVectorShuffleWithUndefHalf(const SDLoc &DL, MVT VT, |
| SDValue V1, SDValue V2, |
| ArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert((VT.is256BitVector() || VT.is512BitVector()) && |
| "Expected 256-bit or 512-bit vector"); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned HalfNumElts = NumElts / 2; |
| MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts); |
| |
| bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts); |
| bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts); |
| if (!UndefLower && !UndefUpper) |
| return SDValue(); |
| |
| // Upper half is undef and lower half is whole upper subvector. |
| // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> |
| if (UndefUpper && |
| isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) { |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, |
| DAG.getIntPtrConstant(HalfNumElts, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| // Lower half is undef and upper half is whole lower subvector. |
| // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> |
| if (UndefLower && |
| isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) { |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi, |
| DAG.getIntPtrConstant(HalfNumElts, DL)); |
| } |
| |
| // If the shuffle only uses two of the four halves of the input operands, |
| // then extract them and perform the 'half' shuffle at half width. |
| // e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u> |
| int HalfIdx1 = -1, HalfIdx2 = -1; |
| SmallVector<int, 8> HalfMask(HalfNumElts); |
| unsigned Offset = UndefLower ? HalfNumElts : 0; |
| for (unsigned i = 0; i != HalfNumElts; ++i) { |
| int M = Mask[i + Offset]; |
| if (M < 0) { |
| HalfMask[i] = M; |
| continue; |
| } |
| |
| // Determine which of the 4 half vectors this element is from. |
| // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2. |
| int HalfIdx = M / HalfNumElts; |
| |
| // Determine the element index into its half vector source. |
| int HalfElt = M % HalfNumElts; |
| |
| // We can shuffle with up to 2 half vectors, set the new 'half' |
| // shuffle mask accordingly. |
| if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) { |
| HalfMask[i] = HalfElt; |
| HalfIdx1 = HalfIdx; |
| continue; |
| } |
| if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) { |
| HalfMask[i] = HalfElt + HalfNumElts; |
| HalfIdx2 = HalfIdx; |
| continue; |
| } |
| |
| // Too many half vectors referenced. |
| return SDValue(); |
| } |
| assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length"); |
| |
| // Only shuffle the halves of the inputs when useful. |
| int NumLowerHalves = |
| (HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2); |
| int NumUpperHalves = |
| (HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3); |
| |
| // uuuuXXXX - don't extract uppers just to insert again. |
| if (UndefLower && NumUpperHalves != 0) |
| return SDValue(); |
| |
| // XXXXuuuu - don't extract both uppers, instead shuffle and then extract. |
| if (UndefUpper && NumUpperHalves == 2) |
| return SDValue(); |
| |
| // AVX2 - XXXXuuuu - always extract lowers. |
| if (Subtarget.hasAVX2() && !(UndefUpper && NumUpperHalves == 0)) { |
| // AVX2 supports efficient immediate 64-bit element cross-lane shuffles. |
| if (VT == MVT::v4f64 || VT == MVT::v4i64) |
| return SDValue(); |
| // AVX2 supports variable 32-bit element cross-lane shuffles. |
| if (VT == MVT::v8f32 || VT == MVT::v8i32) { |
| // XXXXuuuu - don't extract lowers and uppers. |
| if (UndefUpper && NumLowerHalves != 0 && NumUpperHalves != 0) |
| return SDValue(); |
| } |
| } |
| |
| // AVX512 - XXXXuuuu - always extract lowers. |
| if (VT.is512BitVector() && !(UndefUpper && NumUpperHalves == 0)) |
| return SDValue(); |
| |
| auto GetHalfVector = [&](int HalfIdx) { |
| if (HalfIdx < 0) |
| return DAG.getUNDEF(HalfVT); |
| SDValue V = (HalfIdx < 2 ? V1 : V2); |
| HalfIdx = (HalfIdx % 2) * HalfNumElts; |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V, |
| DAG.getIntPtrConstant(HalfIdx, DL)); |
| }; |
| |
| SDValue Half1 = GetHalfVector(HalfIdx1); |
| SDValue Half2 = GetHalfVector(HalfIdx2); |
| SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, |
| DAG.getIntPtrConstant(Offset, DL)); |
| } |
| |
| /// Test whether the specified input (0 or 1) is in-place blended by the |
| /// given mask. |
| /// |
| /// This returns true if the elements from a particular input are already in the |
| /// slot required by the given mask and require no permutation. |
| static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) { |
| assert((Input == 0 || Input == 1) && "Only two inputs to shuffles."); |
| int Size = Mask.size(); |
| for (int i = 0; i < Size; ++i) |
| if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i) |
| return false; |
| |
| return true; |
| } |
| |
| /// Handle case where shuffle sources are coming from the same 128-bit lane and |
| /// every lane can be represented as the same repeating mask - allowing us to |
| /// shuffle the sources with the repeating shuffle and then permute the result |
| /// to the destination lanes. |
| static SDValue lowerShuffleAsRepeatedMaskAndLanePermute( |
| const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG) { |
| int NumElts = VT.getVectorNumElements(); |
| int NumLanes = VT.getSizeInBits() / 128; |
| int NumLaneElts = NumElts / NumLanes; |
| |
| // On AVX2 we may be able to just shuffle the lowest elements and then |
| // broadcast the result. |
| if (Subtarget.hasAVX2()) { |
| for (unsigned BroadcastSize : {16, 32, 64}) { |
| if (BroadcastSize <= VT.getScalarSizeInBits()) |
| continue; |
| int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits(); |
| |
| // Attempt to match a repeating pattern every NumBroadcastElts, |
| // accounting for UNDEFs but only references the lowest 128-bit |
| // lane of the inputs. |
| auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) { |
| for (int i = 0; i != NumElts; i += NumBroadcastElts) |
| for (int j = 0; j != NumBroadcastElts; ++j) { |
| int M = Mask[i + j]; |
| if (M < 0) |
| continue; |
| int &R = RepeatMask[j]; |
| if (0 != ((M % NumElts) / NumLaneElts)) |
| return false; |
| if (0 <= R && R != M) |
| return false; |
| R = M; |
| } |
| return true; |
| }; |
| |
| SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1); |
| if (!FindRepeatingBroadcastMask(RepeatMask)) |
| continue; |
| |
| // Shuffle the (lowest) repeated elements in place for broadcast. |
| SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask); |
| |
| // Shuffle the actual broadcast. |
| SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1); |
| for (int i = 0; i != NumElts; i += NumBroadcastElts) |
| for (int j = 0; j != NumBroadcastElts; ++j) |
| BroadcastMask[i + j] = j; |
| return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT), |
| BroadcastMask); |
| } |
| } |
| |
| // Bail if the shuffle mask doesn't cross 128-bit lanes. |
| if (!is128BitLaneCrossingShuffleMask(VT, Mask)) |
| return SDValue(); |
| |
| // Bail if we already have a repeated lane shuffle mask. |
| SmallVector<int, 8> RepeatedShuffleMask; |
| if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask)) |
| return SDValue(); |
| |
| // On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes |
| // (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes. |
| int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1; |
| int NumSubLanes = NumLanes * SubLaneScale; |
| int NumSubLaneElts = NumLaneElts / SubLaneScale; |
| |
| // Check that all the sources are coming from the same lane and see if we can |
| // form a repeating shuffle mask (local to each sub-lane). At the same time, |
| // determine the source sub-lane for each destination sub-lane. |
| int TopSrcSubLane = -1; |
| SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1); |
| SmallVector<int, 8> RepeatedSubLaneMasks[2] = { |
| SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef), |
| SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)}; |
| |
| for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) { |
| // Extract the sub-lane mask, check that it all comes from the same lane |
| // and normalize the mask entries to come from the first lane. |
| int SrcLane = -1; |
| SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1); |
| for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) { |
| int M = Mask[(DstSubLane * NumSubLaneElts) + Elt]; |
| if (M < 0) |
| continue; |
| int Lane = (M % NumElts) / NumLaneElts; |
| if ((0 <= SrcLane) && (SrcLane != Lane)) |
| return SDValue(); |
| SrcLane = Lane; |
| int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts); |
| SubLaneMask[Elt] = LocalM; |
| } |
| |
| // Whole sub-lane is UNDEF. |
| if (SrcLane < 0) |
| continue; |
| |
| // Attempt to match against the candidate repeated sub-lane masks. |
| for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) { |
| auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) { |
| for (int i = 0; i != NumSubLaneElts; ++i) { |
| if (M1[i] < 0 || M2[i] < 0) |
| continue; |
| if (M1[i] != M2[i]) |
| return false; |
| } |
| return true; |
| }; |
| |
| auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane]; |
| if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask)) |
| continue; |
| |
| // Merge the sub-lane mask into the matching repeated sub-lane mask. |
| for (int i = 0; i != NumSubLaneElts; ++i) { |
| int M = SubLaneMask[i]; |
| if (M < 0) |
| continue; |
| assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) && |
| "Unexpected mask element"); |
| RepeatedSubLaneMask[i] = M; |
| } |
| |
| // Track the top most source sub-lane - by setting the remaining to UNDEF |
| // we can greatly simplify shuffle matching. |
| int SrcSubLane = (SrcLane * SubLaneScale) + SubLane; |
| TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane); |
| Dst2SrcSubLanes[DstSubLane] = SrcSubLane; |
| break; |
| } |
| |
| // Bail if we failed to find a matching repeated sub-lane mask. |
| if (Dst2SrcSubLanes[DstSubLane] < 0) |
| return SDValue(); |
| } |
| assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes && |
| "Unexpected source lane"); |
| |
| // Create a repeating shuffle mask for the entire vector. |
| SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1); |
| for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) { |
| int Lane = SubLane / SubLaneScale; |
| auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale]; |
| for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) { |
| int M = RepeatedSubLaneMask[Elt]; |
| if (M < 0) |
| continue; |
| int Idx = (SubLane * NumSubLaneElts) + Elt; |
| RepeatedMask[Idx] = M + (Lane * NumLaneElts); |
| } |
| } |
| SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask); |
| |
| // Shuffle each source sub-lane to its destination. |
| SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1); |
| for (int i = 0; i != NumElts; i += NumSubLaneElts) { |
| int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts]; |
| if (SrcSubLane < 0) |
| continue; |
| for (int j = 0; j != NumSubLaneElts; ++j) |
| SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts); |
| } |
| |
| return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT), |
| SubLaneMask); |
| } |
| |
| static bool matchVectorShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2, |
| unsigned &ShuffleImm, |
| ArrayRef<int> Mask) { |
| int NumElts = VT.getVectorNumElements(); |
| assert(VT.getScalarSizeInBits() == 64 && |
| (NumElts == 2 || NumElts == 4 || NumElts == 8) && |
| "Unexpected data type for VSHUFPD"); |
| |
| // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, .. |
| // Mask for V4F64; 0/1, 4/5, 2/3, 6/7.. |
| ShuffleImm = 0; |
| bool ShufpdMask = true; |
| bool CommutableMask = true; |
| for (int i = 0; i < NumElts; ++i) { |
| if (Mask[i] == SM_SentinelUndef) |
| continue; |
| if (Mask[i] < 0) |
| return false; |
| int Val = (i & 6) + NumElts * (i & 1); |
| int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1); |
| if (Mask[i] < Val || Mask[i] > Val + 1) |
| ShufpdMask = false; |
| if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1) |
| CommutableMask = false; |
| ShuffleImm |= (Mask[i] % 2) << i; |
| } |
| |
| if (ShufpdMask) |
| return true; |
| if (CommutableMask) { |
| std::swap(V1, V2); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static SDValue lowerVectorShuffleWithSHUFPD(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, SDValue V1, |
| SDValue V2, SelectionDAG &DAG) { |
| assert((VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v8f64)&& |
| "Unexpected data type for VSHUFPD"); |
| |
| unsigned Immediate = 0; |
| if (!matchVectorShuffleWithSHUFPD(VT, V1, V2, Immediate, Mask)) |
| return SDValue(); |
| |
| return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, |
| DAG.getConstant(Immediate, DL, MVT::i8)); |
| } |
| |
| /// Handle lowering of 4-lane 64-bit floating point shuffles. |
| /// |
| /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2 |
| /// isn't available. |
| static SDValue lowerV4F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); |
| assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); |
| |
| if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return V; |
| |
| if (V2.isUndef()) { |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( |
| DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Use low duplicate instructions for masks that match their pattern. |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) |
| return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1); |
| |
| if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) { |
| // Non-half-crossing single input shuffles can be lowered with an |
| // interleaved permutation. |
| unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | |
| ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3); |
| return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1, |
| DAG.getConstant(VPERMILPMask, DL, MVT::i8)); |
| } |
| |
| // With AVX2 we have direct support for this permutation. |
| if (Subtarget.hasAVX2()) |
| return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1, |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // Otherwise, fall back. |
| return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask, |
| DAG, Subtarget); |
| } |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Check if the blend happens to exactly fit that of SHUFPD. |
| if (SDValue Op = |
| lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG)) |
| return Op; |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // Try to simplify this by merging 128-bit lanes to enable a lane-based |
| // shuffle. However, if we have AVX2 and either inputs are already in place, |
| // we will be able to shuffle even across lanes the other input in a single |
| // instruction so skip this pattern. |
| if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || |
| isShuffleMaskInputInPlace(1, Mask)))) |
| if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( |
| DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) |
| return Result; |
| // If we have VLX support, we can use VEXPAND. |
| if (Subtarget.hasVLX()) |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4f64, Zeroable, Mask, |
| V1, V2, DAG, Subtarget)) |
| return V; |
| |
| // If we have AVX2 then we always want to lower with a blend because an v4 we |
| // can fully permute the elements. |
| if (Subtarget.hasAVX2()) |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, |
| Mask, DAG); |
| |
| // Otherwise fall back on generic lowering. |
| return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); |
| } |
| |
| /// Handle lowering of 4-lane 64-bit integer shuffles. |
| /// |
| /// This routine is only called when we have AVX2 and thus a reasonable |
| /// instruction set for v4i64 shuffling.. |
| static SDValue lowerV4I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); |
| assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); |
| assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!"); |
| |
| if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| if (V2.isUndef()) { |
| // When the shuffle is mirrored between the 128-bit lanes of the unit, we |
| // can use lower latency instructions that will operate on both lanes. |
| SmallVector<int, 2> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) { |
| SmallVector<int, 4> PSHUFDMask; |
| scaleShuffleMask<int>(2, RepeatedMask, PSHUFDMask); |
| return DAG.getBitcast( |
| MVT::v4i64, |
| DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, |
| DAG.getBitcast(MVT::v8i32, V1), |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); |
| } |
| |
| // AVX2 provides a direct instruction for permuting a single input across |
| // lanes. |
| return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1, |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| } |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // If we have VLX support, we can use VALIGN or VEXPAND. |
| if (Subtarget.hasVLX()) { |
| if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i64, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4i64, Zeroable, Mask, |
| V1, V2, DAG, Subtarget)) |
| return V; |
| } |
| |
| // Try to use PALIGNR. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v4i64, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // Try to simplify this by merging 128-bit lanes to enable a lane-based |
| // shuffle. However, if we have AVX2 and either inputs are already in place, |
| // we will be able to shuffle even across lanes the other input in a single |
| // instruction so skip this pattern. |
| if (!isShuffleMaskInputInPlace(0, Mask) && |
| !isShuffleMaskInputInPlace(1, Mask)) |
| if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( |
| DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) |
| return Result; |
| |
| // Otherwise fall back on generic blend lowering. |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, |
| Mask, DAG); |
| } |
| |
| /// Handle lowering of 8-lane 32-bit floating point shuffles. |
| /// |
| /// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2 |
| /// isn't available. |
| static SDValue lowerV8F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); |
| assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // If the shuffle mask is repeated in each 128-bit lane, we have many more |
| // options to efficiently lower the shuffle. |
| SmallVector<int, 4> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) { |
| assert(RepeatedMask.size() == 4 && |
| "Repeated masks must be half the mask width!"); |
| |
| // Use even/odd duplicate instructions for masks that match their pattern. |
| if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2})) |
| return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1); |
| if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3})) |
| return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1); |
| |
| if (V2.isUndef()) |
| return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1, |
| getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Otherwise, fall back to a SHUFPS sequence. Here it is important that we |
| // have already handled any direct blends. |
| return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG); |
| } |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // If we have a single input shuffle with different shuffle patterns in the |
| // two 128-bit lanes use the variable mask to VPERMILPS. |
| if (V2.isUndef()) { |
| SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true); |
| if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask)) |
| return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask); |
| |
| if (Subtarget.hasAVX2()) |
| return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1); |
| |
| // Otherwise, fall back. |
| return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask, |
| DAG, Subtarget); |
| } |
| |
| // Try to simplify this by merging 128-bit lanes to enable a lane-based |
| // shuffle. |
| if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( |
| DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) |
| return Result; |
| // If we have VLX support, we can use VEXPAND. |
| if (Subtarget.hasVLX()) |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f32, Zeroable, Mask, |
| V1, V2, DAG, Subtarget)) |
| return V; |
| |
| // For non-AVX512 if the Mask is of 16bit elements in lane then try to split |
| // since after split we get a more efficient code using vpunpcklwd and |
| // vpunpckhwd instrs than vblend. |
| if (!Subtarget.hasAVX512() && isUnpackWdShuffleMask(Mask, MVT::v8f32)) |
| if (SDValue V = lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, |
| Mask, DAG)) |
| return V; |
| |
| // If we have AVX2 then we always want to lower with a blend because at v8 we |
| // can fully permute the elements. |
| if (Subtarget.hasAVX2()) |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, |
| Mask, DAG); |
| |
| // Otherwise fall back on generic lowering. |
| return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); |
| } |
| |
| /// Handle lowering of 8-lane 32-bit integer shuffles. |
| /// |
| /// This routine is only called when we have AVX2 and thus a reasonable |
| /// instruction set for v8i32 shuffling.. |
| static SDValue lowerV8I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); |
| assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); |
| assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v8i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // For non-AVX512 if the Mask is of 16bit elements in lane then try to split |
| // since after split we get a more efficient code than vblend by using |
| // vpunpcklwd and vpunpckhwd instrs. |
| if (isUnpackWdShuffleMask(Mask, MVT::v8i32) && !V2.isUndef() && |
| !Subtarget.hasAVX512()) |
| if (SDValue V = |
| lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8i32, V1, V2, Mask, DAG)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // If the shuffle mask is repeated in each 128-bit lane we can use more |
| // efficient instructions that mirror the shuffles across the two 128-bit |
| // lanes. |
| SmallVector<int, 4> RepeatedMask; |
| bool Is128BitLaneRepeatedShuffle = |
| is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask); |
| if (Is128BitLaneRepeatedShuffle) { |
| assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); |
| if (V2.isUndef()) |
| return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1, |
| getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG)) |
| return V; |
| } |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // If we have VLX support, we can use VALIGN or EXPAND. |
| if (Subtarget.hasVLX()) { |
| if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i32, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i32, Zeroable, Mask, |
| V1, V2, DAG, Subtarget)) |
| return V; |
| } |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // If the shuffle patterns aren't repeated but it is a single input, directly |
| // generate a cross-lane VPERMD instruction. |
| if (V2.isUndef()) { |
| SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true); |
| return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1); |
| } |
| |
| // Assume that a single SHUFPS is faster than an alternative sequence of |
| // multiple instructions (even if the CPU has a domain penalty). |
| // If some CPU is harmed by the domain switch, we can fix it in a later pass. |
| if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) { |
| SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1); |
| SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2); |
| SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, |
| CastV1, CastV2, DAG); |
| return DAG.getBitcast(MVT::v8i32, ShufPS); |
| } |
| |
| // Try to simplify this by merging 128-bit lanes to enable a lane-based |
| // shuffle. |
| if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( |
| DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) |
| return Result; |
| |
| // Otherwise fall back on generic blend lowering. |
| return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, |
| Mask, DAG); |
| } |
| |
| /// Handle lowering of 16-lane 16-bit integer shuffles. |
| /// |
| /// This routine is only called when we have AVX2 and thus a reasonable |
| /// instruction set for v16i16 shuffling.. |
| static SDValue lowerV16I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); |
| assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); |
| assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Use dedicated pack instructions for masks that match their pattern. |
| if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i16, Mask, V1, V2, DAG, |
| Subtarget)) |
| return V; |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| if (V2.isUndef()) { |
| // There are no generalized cross-lane shuffle operations available on i16 |
| // element types. |
| if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) |
| return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2, |
| Mask, DAG, Subtarget); |
| |
| SmallVector<int, 8> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { |
| // As this is a single-input shuffle, the repeated mask should be |
| // a strictly valid v8i16 mask that we can pass through to the v8i16 |
| // lowering to handle even the v16 case. |
| return lowerV8I16GeneralSingleInputVectorShuffle( |
| DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG); |
| } |
| } |
| |
| if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( |
| DL, MVT::v16i16, Mask, V1, V2, Zeroable, Subtarget, DAG)) |
| return PSHUFB; |
| |
| // AVX512BWVL can lower to VPERMW. |
| if (Subtarget.hasBWI() && Subtarget.hasVLX()) |
| return lowerVectorShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG); |
| |
| // Try to simplify this by merging 128-bit lanes to enable a lane-based |
| // shuffle. |
| if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( |
| DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) |
| return Result; |
| |
| // Otherwise fall back on generic lowering. |
| return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); |
| } |
| |
| /// Handle lowering of 32-lane 8-bit integer shuffles. |
| /// |
| /// This routine is only called when we have AVX2 and thus a reasonable |
| /// instruction set for v32i8 shuffling.. |
| static SDValue lowerV32I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); |
| assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); |
| assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v32i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Use dedicated pack instructions for masks that match their pattern. |
| if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v32i8, Mask, V1, V2, DAG, |
| Subtarget)) |
| return V; |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // There are no generalized cross-lane shuffle operations available on i8 |
| // element types. |
| if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) |
| return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask, |
| DAG, Subtarget); |
| |
| if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( |
| DL, MVT::v32i8, Mask, V1, V2, Zeroable, Subtarget, DAG)) |
| return PSHUFB; |
| |
| // AVX512VBMIVL can lower to VPERMB. |
| if (Subtarget.hasVBMI() && Subtarget.hasVLX()) |
| return lowerVectorShuffleWithPERMV(DL, MVT::v32i8, Mask, V1, V2, DAG); |
| |
| // Try to simplify this by merging 128-bit lanes to enable a lane-based |
| // shuffle. |
| if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( |
| DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) |
| return Result; |
| |
| // Otherwise fall back on generic lowering. |
| return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); |
| } |
| |
| /// High-level routine to lower various 256-bit x86 vector shuffles. |
| /// |
| /// This routine either breaks down the specific type of a 256-bit x86 vector |
| /// shuffle or splits it into two 128-bit shuffles and fuses the results back |
| /// together based on the available instructions. |
| static SDValue lower256BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| MVT VT, SDValue V1, SDValue V2, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| // If we have a single input to the zero element, insert that into V1 if we |
| // can do so cheaply. |
| int NumElts = VT.getVectorNumElements(); |
| int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; }); |
| |
| if (NumV2Elements == 1 && Mask[0] >= NumElts) |
| if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( |
| DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return Insertion; |
| |
| // Handle special cases where the lower or upper half is UNDEF. |
| if (SDValue V = |
| lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // There is a really nice hard cut-over between AVX1 and AVX2 that means we |
| // can check for those subtargets here and avoid much of the subtarget |
| // querying in the per-vector-type lowering routines. With AVX1 we have |
| // essentially *zero* ability to manipulate a 256-bit vector with integer |
| // types. Since we'll use floating point types there eventually, just |
| // immediately cast everything to a float and operate entirely in that domain. |
| if (VT.isInteger() && !Subtarget.hasAVX2()) { |
| int ElementBits = VT.getScalarSizeInBits(); |
| if (ElementBits < 32) { |
| // No floating point type available, if we can't use the bit operations |
| // for masking/blending then decompose into 128-bit vectors. |
| if (SDValue V = |
| lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG)) |
| return V; |
| if (SDValue V = lowerVectorShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG)) |
| return V; |
| return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); |
| } |
| |
| MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits), |
| VT.getVectorNumElements()); |
| V1 = DAG.getBitcast(FpVT, V1); |
| V2 = DAG.getBitcast(FpVT, V2); |
| return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask)); |
| } |
| |
| switch (VT.SimpleTy) { |
| case MVT::v4f64: |
| return lowerV4F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v4i64: |
| return lowerV4I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v8f32: |
| return lowerV8F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v8i32: |
| return lowerV8I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v16i16: |
| return lowerV16I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v32i8: |
| return lowerV32I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| |
| default: |
| llvm_unreachable("Not a valid 256-bit x86 vector type!"); |
| } |
| } |
| |
| /// Try to lower a vector shuffle as a 128-bit shuffles. |
| static SDValue lowerV4X128VectorShuffle(const SDLoc &DL, MVT VT, |
| ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(VT.getScalarSizeInBits() == 64 && |
| "Unexpected element type size for 128bit shuffle."); |
| |
| // To handle 256 bit vector requires VLX and most probably |
| // function lowerV2X128VectorShuffle() is better solution. |
| assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle."); |
| |
| // TODO - use Zeroable like we do for lowerV2X128VectorShuffle? |
| SmallVector<int, 4> WidenedMask; |
| if (!canWidenShuffleElements(Mask, WidenedMask)) |
| return SDValue(); |
| |
| // Try to use an insert into a zero vector. |
| if (WidenedMask[0] == 0 && (Zeroable & 0xf0) == 0xf0 && |
| (WidenedMask[1] == 1 || (Zeroable & 0x0c) == 0x0c)) { |
| unsigned NumElts = ((Zeroable & 0x0c) == 0x0c) ? 2 : 4; |
| MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), NumElts); |
| SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, |
| getZeroVector(VT, Subtarget, DAG, DL), LoV, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| // Check for patterns which can be matched with a single insert of a 256-bit |
| // subvector. |
| bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, |
| {0, 1, 2, 3, 0, 1, 2, 3}); |
| if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, |
| {0, 1, 2, 3, 8, 9, 10, 11})) { |
| MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4); |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, |
| OnlyUsesV1 ? V1 : V2, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec, |
| DAG.getIntPtrConstant(4, DL)); |
| } |
| |
| assert(WidenedMask.size() == 4); |
| |
| // See if this is an insertion of the lower 128-bits of V2 into V1. |
| bool IsInsert = true; |
| int V2Index = -1; |
| for (int i = 0; i < 4; ++i) { |
| assert(WidenedMask[i] >= -1); |
| if (WidenedMask[i] < 0) |
| continue; |
| |
| // Make sure all V1 subvectors are in place. |
| if (WidenedMask[i] < 4) { |
| if (WidenedMask[i] != i) { |
| IsInsert = false; |
| break; |
| } |
| } else { |
| // Make sure we only have a single V2 index and its the lowest 128-bits. |
| if (V2Index >= 0 || WidenedMask[i] != 4) { |
| IsInsert = false; |
| break; |
| } |
| V2Index = i; |
| } |
| } |
| if (IsInsert && V2Index >= 0) { |
| MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2); |
| SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2, |
| DAG.getIntPtrConstant(0, DL)); |
| return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL); |
| } |
| |
| // Try to lower to vshuf64x2/vshuf32x4. |
| SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)}; |
| unsigned PermMask = 0; |
| // Insure elements came from the same Op. |
| for (int i = 0; i < 4; ++i) { |
| assert(WidenedMask[i] >= -1); |
| if (WidenedMask[i] < 0) |
| continue; |
| |
| SDValue Op = WidenedMask[i] >= 4 ? V2 : V1; |
| unsigned OpIndex = i / 2; |
| if (Ops[OpIndex].isUndef()) |
| Ops[OpIndex] = Op; |
| else if (Ops[OpIndex] != Op) |
| return SDValue(); |
| |
| // Convert the 128-bit shuffle mask selection values into 128-bit selection |
| // bits defined by a vshuf64x2 instruction's immediate control byte. |
| PermMask |= (WidenedMask[i] % 4) << (i * 2); |
| } |
| |
| return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1], |
| DAG.getConstant(PermMask, DL, MVT::i8)); |
| } |
| |
| /// Handle lowering of 8-lane 64-bit floating point shuffles. |
| static SDValue lowerV8F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); |
| assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); |
| |
| if (V2.isUndef()) { |
| // Use low duplicate instructions for masks that match their pattern. |
| if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6})) |
| return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1); |
| |
| if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) { |
| // Non-half-crossing single input shuffles can be lowered with an |
| // interleaved permutation. |
| unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | |
| ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) | |
| ((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) | |
| ((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7); |
| return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1, |
| DAG.getConstant(VPERMILPMask, DL, MVT::i8)); |
| } |
| |
| SmallVector<int, 4> RepeatedMask; |
| if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) |
| return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1, |
| getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); |
| } |
| |
| if (SDValue Shuf128 = |
| lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, Zeroable, V1, V2, |
| Subtarget, DAG)) |
| return Shuf128; |
| |
| if (SDValue Unpck = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG)) |
| return Unpck; |
| |
| // Check if the blend happens to exactly fit that of SHUFPD. |
| if (SDValue Op = |
| lowerVectorShuffleWithSHUFPD(DL, MVT::v8f64, Mask, V1, V2, DAG)) |
| return Op; |
| |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f64, Zeroable, Mask, V1, |
| V2, DAG, Subtarget)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG); |
| } |
| |
| /// Handle lowering of 16-lane 32-bit floating point shuffles. |
| static SDValue lowerV16F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); |
| assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); |
| |
| // If the shuffle mask is repeated in each 128-bit lane, we have many more |
| // options to efficiently lower the shuffle. |
| SmallVector<int, 4> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) { |
| assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); |
| |
| // Use even/odd duplicate instructions for masks that match their pattern. |
| if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2})) |
| return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1); |
| if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3})) |
| return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1); |
| |
| if (V2.isUndef()) |
| return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1, |
| getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue Unpck = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG)) |
| return Unpck; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16f32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // Otherwise, fall back to a SHUFPS sequence. |
| return lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG); |
| } |
| |
| // If we have a single input shuffle with different shuffle patterns in the |
| // 128-bit lanes and don't lane cross, use variable mask VPERMILPS. |
| if (V2.isUndef() && |
| !is128BitLaneCrossingShuffleMask(MVT::v16f32, Mask)) { |
| SDValue VPermMask = getConstVector(Mask, MVT::v16i32, DAG, DL, true); |
| return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v16f32, V1, VPermMask); |
| } |
| |
| // If we have AVX512F support, we can use VEXPAND. |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16f32, Zeroable, Mask, |
| V1, V2, DAG, Subtarget)) |
| return V; |
| |
| return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG); |
| } |
| |
| /// Handle lowering of 8-lane 64-bit integer shuffles. |
| static SDValue lowerV8I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); |
| assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); |
| |
| if (V2.isUndef()) { |
| // When the shuffle is mirrored between the 128-bit lanes of the unit, we |
| // can use lower latency instructions that will operate on all four |
| // 128-bit lanes. |
| SmallVector<int, 2> Repeated128Mask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) { |
| SmallVector<int, 4> PSHUFDMask; |
| scaleShuffleMask<int>(2, Repeated128Mask, PSHUFDMask); |
| return DAG.getBitcast( |
| MVT::v8i64, |
| DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, |
| DAG.getBitcast(MVT::v16i32, V1), |
| getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); |
| } |
| |
| SmallVector<int, 4> Repeated256Mask; |
| if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask)) |
| return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1, |
| getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG)); |
| } |
| |
| if (SDValue Shuf128 = |
| lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, Zeroable, |
| V1, V2, Subtarget, DAG)) |
| return Shuf128; |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use VALIGN. |
| if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i64, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Try to use PALIGNR. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i64, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue Unpck = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG)) |
| return Unpck; |
| // If we have AVX512F support, we can use VEXPAND. |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i64, Zeroable, Mask, V1, |
| V2, DAG, Subtarget)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i64, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG); |
| } |
| |
| /// Handle lowering of 16-lane 32-bit integer shuffles. |
| static SDValue lowerV16I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); |
| assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // If the shuffle mask is repeated in each 128-bit lane we can use more |
| // efficient instructions that mirror the shuffles across the four 128-bit |
| // lanes. |
| SmallVector<int, 4> RepeatedMask; |
| bool Is128BitLaneRepeatedShuffle = |
| is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask); |
| if (Is128BitLaneRepeatedShuffle) { |
| assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); |
| if (V2.isUndef()) |
| return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1, |
| getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG)) |
| return V; |
| } |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use VALIGN. |
| if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v16i32, V1, V2, |
| Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Try to use byte rotation instructions. |
| if (Subtarget.hasBWI()) |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v16i32, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| // Assume that a single SHUFPS is faster than using a permv shuffle. |
| // If some CPU is harmed by the domain switch, we can fix it in a later pass. |
| if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) { |
| SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1); |
| SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2); |
| SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, |
| CastV1, CastV2, DAG); |
| return DAG.getBitcast(MVT::v16i32, ShufPS); |
| } |
| // If we have AVX512F support, we can use VEXPAND. |
| if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16i32, Zeroable, Mask, |
| V1, V2, DAG, Subtarget)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i32, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG); |
| } |
| |
| /// Handle lowering of 32-lane 16-bit integer shuffles. |
| static SDValue lowerV32I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); |
| assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); |
| assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v32i16, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (V2.isUndef()) { |
| SmallVector<int, 8> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) { |
| // As this is a single-input shuffle, the repeated mask should be |
| // a strictly valid v8i16 mask that we can pass through to the v8i16 |
| // lowering to handle even the v32 case. |
| return lowerV8I16GeneralSingleInputVectorShuffle( |
| DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG); |
| } |
| } |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i16, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( |
| DL, MVT::v32i16, Mask, V1, V2, Zeroable, Subtarget, DAG)) |
| return PSHUFB; |
| |
| return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG); |
| } |
| |
| /// Handle lowering of 64-lane 8-bit integer shuffles. |
| static SDValue lowerV64I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| SDValue V1, SDValue V2, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); |
| assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); |
| assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!"); |
| assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!"); |
| |
| // Whenever we can lower this as a zext, that instruction is strictly faster |
| // than any alternative. It also allows us to fold memory operands into the |
| // shuffle in many cases. |
| if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( |
| DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return ZExt; |
| |
| // Use dedicated unpack instructions for masks that match their pattern. |
| if (SDValue V = |
| lowerVectorShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG)) |
| return V; |
| |
| // Try to use shift instructions. |
| if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Shift; |
| |
| // Try to use byte rotation instructions. |
| if (SDValue Rotate = lowerVectorShuffleAsByteRotate( |
| DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG)) |
| return Rotate; |
| |
| if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( |
| DL, MVT::v64i8, Mask, V1, V2, Zeroable, Subtarget, DAG)) |
| return PSHUFB; |
| |
| // VBMI can use VPERMV/VPERMV3 byte shuffles. |
| if (Subtarget.hasVBMI()) |
| return lowerVectorShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG); |
| |
| // Try to create an in-lane repeating shuffle mask and then shuffle the |
| // results into the target lanes. |
| if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( |
| DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v64i8, V1, V2, Mask, |
| Zeroable, Subtarget, DAG)) |
| return Blend; |
| |
| // FIXME: Implement direct support for this type! |
| return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG); |
| } |
| |
| /// High-level routine to lower various 512-bit x86 vector shuffles. |
| /// |
| /// This routine either breaks down the specific type of a 512-bit x86 vector |
| /// shuffle or splits it into two 256-bit shuffles and fuses the results back |
| /// together based on the available instructions. |
| static SDValue lower512BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| MVT VT, SDValue V1, SDValue V2, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Subtarget.hasAVX512() && |
| "Cannot lower 512-bit vectors w/ basic ISA!"); |
| |
| // If we have a single input to the zero element, insert that into V1 if we |
| // can do so cheaply. |
| int NumElts = Mask.size(); |
| int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; }); |
| |
| if (NumV2Elements == 1 && Mask[0] >= NumElts) |
| if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( |
| DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG)) |
| return Insertion; |
| |
| // Handle special cases where the lower or upper half is UNDEF. |
| if (SDValue V = |
| lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG)) |
| return V; |
| |
| // Check for being able to broadcast a single element. |
| if (SDValue Broadcast = |
| lowerVectorShuffleAsBroadcast(DL, VT, V1, V2, Mask, Subtarget, DAG)) |
| return Broadcast; |
| |
| // Dispatch to each element type for lowering. If we don't have support for |
| // specific element type shuffles at 512 bits, immediately split them and |
| // lower them. Each lowering routine of a given type is allowed to assume that |
| // the requisite ISA extensions for that element type are available. |
| switch (VT.SimpleTy) { |
| case MVT::v8f64: |
| return lowerV8F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v16f32: |
| return lowerV16F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v8i64: |
| return lowerV8I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v16i32: |
| return lowerV16I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v32i16: |
| return lowerV32I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| case MVT::v64i8: |
| return lowerV64I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); |
| |
| default: |
| llvm_unreachable("Not a valid 512-bit x86 vector type!"); |
| } |
| } |
| |
| // Lower vXi1 vector shuffles. |
| // There is no a dedicated instruction on AVX-512 that shuffles the masks. |
| // The only way to shuffle bits is to sign-extend the mask vector to SIMD |
| // vector, shuffle and then truncate it back. |
| static SDValue lower1BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, |
| MVT VT, SDValue V1, SDValue V2, |
| const APInt &Zeroable, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| unsigned NumElts = Mask.size(); |
| |
| // Try to recognize shuffles that are just padding a subvector with zeros. |
| unsigned SubvecElts = 0; |
| for (int i = 0; i != (int)NumElts; ++i) { |
| if (Mask[i] >= 0 && Mask[i] != i) |
| break; |
| |
| ++SubvecElts; |
| } |
| assert(SubvecElts != NumElts && "Identity shuffle?"); |
| |
| // Clip to a power 2. |
| SubvecElts = PowerOf2Floor(SubvecElts); |
| |
| // Make sure the number of zeroable bits in the top at least covers the bits |
| // not covered by the subvector. |
| if (Zeroable.countLeadingOnes() >= (NumElts - SubvecElts)) { |
| MVT ExtractVT = MVT::getVectorVT(MVT::i1, SubvecElts); |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, |
| V1, DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, |
| getZeroVector(VT, Subtarget, DAG, DL), |
| Extract, DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| |
| assert(Subtarget.hasAVX512() && |
| "Cannot lower 512-bit vectors w/o basic ISA!"); |
| MVT ExtVT; |
| switch (VT.SimpleTy) { |
| default: |
| llvm_unreachable("Expected a vector of i1 elements"); |
| case MVT::v2i1: |
| ExtVT = MVT::v2i64; |
| break; |
| case MVT::v4i1: |
| ExtVT = MVT::v4i32; |
| break; |
| case MVT::v8i1: |
| // Take 512-bit type, more shuffles on KNL. If we have VLX use a 256-bit |
| // shuffle. |
| ExtVT = Subtarget.hasVLX() ? MVT::v8i32 : MVT::v8i64; |
| break; |
| case MVT::v16i1: |
| // Take 512-bit type, unless we are avoiding 512-bit types and have the |
| // 256-bit operation available. |
| ExtVT = Subtarget.canExtendTo512DQ() ? MVT::v16i32 : MVT::v16i16; |
| break; |
| case MVT::v32i1: |
| // Take 512-bit type, unless we are avoiding 512-bit types and have the |
| // 256-bit operation available. |
| assert(Subtarget.hasBWI() && "Expected AVX512BW support"); |
| ExtVT = Subtarget.canExtendTo512BW() ? MVT::v32i16 : MVT::v32i8; |
| break; |
| case MVT::v64i1: |
| ExtVT = MVT::v64i8; |
| break; |
| } |
| |
| V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1); |
| V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2); |
| |
| SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask); |
| // i1 was sign extended we can use X86ISD::CVT2MASK. |
| int NumElems = VT.getVectorNumElements(); |
| if ((Subtarget.hasBWI() && (NumElems >= 32)) || |
| (Subtarget.hasDQI() && (NumElems < 32))) |
| return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, ExtVT), |
| Shuffle, ISD::SETGT); |
| |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle); |
| } |
| |
| /// Helper function that returns true if the shuffle mask should be |
| /// commuted to improve canonicalization. |
| static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) { |
| int NumElements = Mask.size(); |
| |
| int NumV1Elements = 0, NumV2Elements = 0; |
| for (int M : Mask) |
| if (M < 0) |
| continue; |
| else if (M < NumElements) |
| ++NumV1Elements; |
| else |
| ++NumV2Elements; |
| |
| // Commute the shuffle as needed such that more elements come from V1 than |
| // V2. This allows us to match the shuffle pattern strictly on how many |
| // elements come from V1 without handling the symmetric cases. |
| if (NumV2Elements > NumV1Elements) |
| return true; |
| |
| assert(NumV1Elements > 0 && "No V1 indices"); |
| |
| if (NumV2Elements == 0) |
| return false; |
| |
| // When the number of V1 and V2 elements are the same, try to minimize the |
| // number of uses of V2 in the low half of the vector. When that is tied, |
| // ensure that the sum of indices for V1 is equal to or lower than the sum |
| // indices for V2. When those are equal, try to ensure that the number of odd |
| // indices for V1 is lower than the number of odd indices for V2. |
| if (NumV1Elements == NumV2Elements) { |
| int LowV1Elements = 0, LowV2Elements = 0; |
| for (int M : Mask.slice(0, NumElements / 2)) |
| if (M >= NumElements) |
| ++LowV2Elements; |
| else if (M >= 0) |
| ++LowV1Elements; |
| if (LowV2Elements > LowV1Elements) |
| return true; |
| if (LowV2Elements == LowV1Elements) { |
| int SumV1Indices = 0, SumV2Indices = 0; |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) |
| if (Mask[i] >= NumElements) |
| SumV2Indices += i; |
| else if (Mask[i] >= 0) |
| SumV1Indices += i; |
| if (SumV2Indices < SumV1Indices) |
| return true; |
| if (SumV2Indices == SumV1Indices) { |
| int NumV1OddIndices = 0, NumV2OddIndices = 0; |
| for (int i = 0, Size = Mask.size(); i < Size; ++i) |
| if (Mask[i] >= NumElements) |
| NumV2OddIndices += i % 2; |
| else if (Mask[i] >= 0) |
| NumV1OddIndices += i % 2; |
| if (NumV2OddIndices < NumV1OddIndices) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Top-level lowering for x86 vector shuffles. |
| /// |
| /// This handles decomposition, canonicalization, and lowering of all x86 |
| /// vector shuffles. Most of the specific lowering strategies are encapsulated |
| /// above in helper routines. The canonicalization attempts to widen shuffles |
| /// to involve fewer lanes of wider elements, consolidate symmetric patterns |
| /// s.t. only one of the two inputs needs to be tested, etc. |
| static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| ArrayRef<int> Mask = SVOp->getMask(); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| MVT VT = Op.getSimpleValueType(); |
| int NumElements = VT.getVectorNumElements(); |
| SDLoc DL(Op); |
| bool Is1BitVector = (VT.getVectorElementType() == MVT::i1); |
| |
| assert((VT.getSizeInBits() != 64 || Is1BitVector) && |
| "Can't lower MMX shuffles"); |
| |
| bool V1IsUndef = V1.isUndef(); |
| bool V2IsUndef = V2.isUndef(); |
| if (V1IsUndef && V2IsUndef) |
| return DAG.getUNDEF(VT); |
| |
| // When we create a shuffle node we put the UNDEF node to second operand, |
| // but in some cases the first operand may be transformed to UNDEF. |
| // In this case we should just commute the node. |
| if (V1IsUndef) |
| return DAG.getCommutedVectorShuffle(*SVOp); |
| |
| // Check for non-undef masks pointing at an undef vector and make the masks |
| // undef as well. This makes it easier to match the shuffle based solely on |
| // the mask. |
| if (V2IsUndef) |
| for (int M : Mask) |
| if (M >= NumElements) { |
| SmallVector<int, 8> NewMask(Mask.begin(), Mask.end()); |
| for (int &M : NewMask) |
| if (M >= NumElements) |
| M = -1; |
| return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask); |
| } |
| |
| // Check for illegal shuffle mask element index values. |
| int MaskUpperLimit = Mask.size() * (V2IsUndef ? 1 : 2); (void)MaskUpperLimit; |
| assert(llvm::all_of(Mask, |
| [&](int M) { return -1 <= M && M < MaskUpperLimit; }) && |
| "Out of bounds shuffle index"); |
| |
| // We actually see shuffles that are entirely re-arrangements of a set of |
| // zero inputs. This mostly happens while decomposing complex shuffles into |
| // simple ones. Directly lower these as a buildvector of zeros. |
| APInt Zeroable = computeZeroableShuffleElements(Mask, V1, V2); |
| if (Zeroable.isAllOnesValue()) |
| return getZeroVector(VT, Subtarget, DAG, DL); |
| |
| bool V2IsZero = !V2IsUndef && ISD::isBuildVectorAllZeros(V2.getNode()); |
| |
| // Create an alternative mask with info about zeroable elements. |
| // Here we do not set undef elements as zeroable. |
| SmallVector<int, 64> ZeroableMask(Mask.begin(), Mask.end()); |
| if (V2IsZero) { |
| assert(!Zeroable.isNullValue() && "V2's non-undef elements are used?!"); |
| for (int i = 0; i != NumElements; ++i) |
| if (Mask[i] != SM_SentinelUndef && Zeroable[i]) |
| ZeroableMask[i] = SM_SentinelZero; |
| } |
| |
| // Try to collapse shuffles into using a vector type with fewer elements but |
| // wider element types. We cap this to not form integers or floating point |
| // elements wider than 64 bits, but it might be interesting to form i128 |
| // integers to handle flipping the low and high halves of AVX 256-bit vectors. |
| SmallVector<int, 16> WidenedMask; |
| if (VT.getScalarSizeInBits() < 64 && !Is1BitVector && |
| canWidenShuffleElements(ZeroableMask, WidenedMask)) { |
| MVT NewEltVT = VT.isFloatingPoint() |
| ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2) |
| : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2); |
| int NewNumElts = NumElements / 2; |
| MVT NewVT = MVT::getVectorVT(NewEltVT, NewNumElts); |
| // Make sure that the new vector type is legal. For example, v2f64 isn't |
| // legal on SSE1. |
| if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { |
| if (V2IsZero) { |
| // Modify the new Mask to take all zeros from the all-zero vector. |
| // Choose indices that are blend-friendly. |
| bool UsedZeroVector = false; |
| assert(find(WidenedMask, SM_SentinelZero) != WidenedMask.end() && |
| "V2's non-undef elements are used?!"); |
| for (int i = 0; i != NewNumElts; ++i) |
| if (WidenedMask[i] == SM_SentinelZero) { |
| WidenedMask[i] = i + NewNumElts; |
| UsedZeroVector = true; |
| } |
| // Ensure all elements of V2 are zero - isBuildVectorAllZeros permits |
| // some elements to be undef. |
| if (UsedZeroVector) |
| V2 = getZeroVector(NewVT, Subtarget, DAG, DL); |
| } |
| V1 = DAG.getBitcast(NewVT, V1); |
| V2 = DAG.getBitcast(NewVT, V2); |
| return DAG.getBitcast( |
| VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask)); |
| } |
| } |
| |
| // Commute the shuffle if it will improve canonicalization. |
| if (canonicalizeShuffleMaskWithCommute(Mask)) |
| return DAG.getCommutedVectorShuffle(*SVOp); |
| |
| if (SDValue V = |
| lowerVectorShuffleWithVPMOV(DL, Mask, VT, V1, V2, DAG, Subtarget)) |
| return V; |
| |
| // For each vector width, delegate to a specialized lowering routine. |
| if (VT.is128BitVector()) |
| return lower128BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, |
| DAG); |
| |
| if (VT.is256BitVector()) |
| return lower256BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, |
| DAG); |
| |
| if (VT.is512BitVector()) |
| return lower512BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, |
| DAG); |
| |
| if (Is1BitVector) |
| return lower1BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, |
| DAG); |
| |
| llvm_unreachable("Unimplemented!"); |
| } |
| |
| /// Try to lower a VSELECT instruction to a vector shuffle. |
| static SDValue lowerVSELECTtoVectorShuffle(SDValue Op, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue Cond = Op.getOperand(0); |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) |
| return SDValue(); |
| auto *CondBV = cast<BuildVectorSDNode>(Cond); |
| |
| // Only non-legal VSELECTs reach this lowering, convert those into generic |
| // shuffles and re-use the shuffle lowering path for blends. |
| SmallVector<int, 32> Mask; |
| for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) { |
| SDValue CondElt = CondBV->getOperand(i); |
| int M = i; |
| // We can't map undef to undef here. They have different meanings. Treat |
| // as the same as zero. |
| if (CondElt.isUndef() || isNullConstant(CondElt)) |
| M += Size; |
| Mask.push_back(M); |
| } |
| return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask); |
| } |
| |
| SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { |
| // A vselect where all conditions and data are constants can be optimized into |
| // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). |
| if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) && |
| ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) && |
| ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode())) |
| return SDValue(); |
| |
| // Try to lower this to a blend-style vector shuffle. This can handle all |
| // constant condition cases. |
| if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG)) |
| return BlendOp; |
| |
| // If this VSELECT has a vector if i1 as a mask, it will be directly matched |
| // with patterns on the mask registers on AVX-512. |
| if (Op->getOperand(0).getValueType().getScalarSizeInBits() == 1) |
| return Op; |
| |
| // Variable blends are only legal from SSE4.1 onward. |
| if (!Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| // If the VSELECT is on a 512-bit type, we have to convert a non-i1 condition |
| // into an i1 condition so that we can use the mask-based 512-bit blend |
| // instructions. |
| if (VT.getSizeInBits() == 512) { |
| SDValue Cond = Op.getOperand(0); |
| // The vNi1 condition case should be handled above as it can be trivially |
| // lowered. |
| assert(Cond.getValueType().getScalarSizeInBits() == |
| VT.getScalarSizeInBits() && |
| "Should have a size-matched integer condition!"); |
| // Build a mask by testing the condition against zero. |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); |
| SDValue Mask = DAG.getSetCC(dl, MaskVT, Cond, |
| getZeroVector(VT, Subtarget, DAG, dl), |
| ISD::SETNE); |
| // Now return a new VSELECT using the mask. |
| return DAG.getSelect(dl, VT, Mask, Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| // Only some types will be legal on some subtargets. If we can emit a legal |
| // VSELECT-matching blend, return Op, and but if we need to expand, return |
| // a null value. |
| switch (VT.SimpleTy) { |
| default: |
| // Most of the vector types have blends past SSE4.1. |
| return Op; |
| |
| case MVT::v32i8: |
| // The byte blends for AVX vectors were introduced only in AVX2. |
| if (Subtarget.hasAVX2()) |
| return Op; |
| |
| return SDValue(); |
| |
| case MVT::v8i16: |
| case MVT::v16i16: { |
| // Bitcast everything to the vXi8 type and use a vXi8 vselect. |
| MVT CastVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2); |
| SDValue Cond = DAG.getBitcast(CastVT, Op->getOperand(0)); |
| SDValue LHS = DAG.getBitcast(CastVT, Op->getOperand(1)); |
| SDValue RHS = DAG.getBitcast(CastVT, Op->getOperand(2)); |
| SDValue Select = DAG.getNode(ISD::VSELECT, dl, CastVT, Cond, LHS, RHS); |
| return DAG.getBitcast(VT, Select); |
| } |
| } |
| } |
| |
| static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) |
| return SDValue(); |
| |
| if (VT.getSizeInBits() == 8) { |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract); |
| } |
| |
| if (VT == MVT::f32) { |
| // EXTRACTPS outputs to a GPR32 register which will require a movd to copy |
| // the result back to FR32 register. It's only worth matching if the |
| // result has a single use which is a store or a bitcast to i32. And in |
| // the case of a store, it's not worth it if the index is a constant 0, |
| // because a MOVSSmr can be used instead, which is smaller and faster. |
| if (!Op.hasOneUse()) |
| return SDValue(); |
| SDNode *User = *Op.getNode()->use_begin(); |
| if ((User->getOpcode() != ISD::STORE || |
| isNullConstant(Op.getOperand(1))) && |
| (User->getOpcode() != ISD::BITCAST || |
| User->getValueType(0) != MVT::i32)) |
| return SDValue(); |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), |
| Op.getOperand(1)); |
| return DAG.getBitcast(MVT::f32, Extract); |
| } |
| |
| if (VT == MVT::i32 || VT == MVT::i64) { |
| // ExtractPS/pextrq works with constant index. |
| if (isa<ConstantSDNode>(Op.getOperand(1))) |
| return Op; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Extract one bit from mask vector, like v16i1 or v8i1. |
| /// AVX-512 feature. |
| static SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue Vec = Op.getOperand(0); |
| SDLoc dl(Vec); |
| MVT VecVT = Vec.getSimpleValueType(); |
| SDValue Idx = Op.getOperand(1); |
| MVT EltVT = Op.getSimpleValueType(); |
| |
| assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) && |
| "Unexpected vector type in ExtractBitFromMaskVector"); |
| |
| // variable index can't be handled in mask registers, |
| // extend vector to VR512/128 |
| if (!isa<ConstantSDNode>(Idx)) { |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| // Extending v8i1/v16i1 to 512-bit get better performance on KNL |
| // than extending to 128/256bit. |
| MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8; |
| MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts); |
| SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtEltVT, Ext, Idx); |
| return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); |
| } |
| |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| |
| // If the kshift instructions of the correct width aren't natively supported |
| // then we need to promote the vector to the native size to get the correct |
| // zeroing behavior. |
| if (VecVT.getVectorNumElements() < 16) { |
| VecVT = MVT::v16i1; |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1, |
| DAG.getUNDEF(VecVT), Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // Extracts from element 0 are always allowed. |
| if (IdxVal != 0) { |
| // Use kshiftr instruction to move to the lower element. |
| Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec, |
| DAG.getConstant(IdxVal, dl, MVT::i8)); |
| } |
| |
| // Shrink to v16i1 since that's always legal. |
| if (VecVT.getVectorNumElements() > 16) { |
| VecVT = MVT::v16i1; |
| Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VecVT, Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // Convert to a bitcast+aext/trunc. |
| MVT CastVT = MVT::getIntegerVT(VecVT.getVectorNumElements()); |
| return DAG.getAnyExtOrTrunc(DAG.getBitcast(CastVT, Vec), dl, EltVT); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue Vec = Op.getOperand(0); |
| MVT VecVT = Vec.getSimpleValueType(); |
| SDValue Idx = Op.getOperand(1); |
| |
| if (VecVT.getVectorElementType() == MVT::i1) |
| return ExtractBitFromMaskVector(Op, DAG, Subtarget); |
| |
| if (!isa<ConstantSDNode>(Idx)) { |
| // Its more profitable to go through memory (1 cycles throughput) |
| // than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput) |
| // IACA tool was used to get performance estimation |
| // (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer) |
| // |
| // example : extractelement <16 x i8> %a, i32 %i |
| // |
| // Block Throughput: 3.00 Cycles |
| // Throughput Bottleneck: Port5 |
| // |
| // | Num Of | Ports pressure in cycles | | |
| // | Uops | 0 - DV | 5 | 6 | 7 | | |
| // --------------------------------------------- |
| // | 1 | | 1.0 | | | CP | vmovd xmm1, edi |
| // | 1 | | 1.0 | | | CP | vpshufb xmm0, xmm0, xmm1 |
| // | 2 | 1.0 | 1.0 | | | CP | vpextrb eax, xmm0, 0x0 |
| // Total Num Of Uops: 4 |
| // |
| // |
| // Block Throughput: 1.00 Cycles |
| // Throughput Bottleneck: PORT2_AGU, PORT3_AGU, Port4 |
| // |
| // | | Ports pressure in cycles | | |
| // |Uops| 1 | 2 - D |3 - D | 4 | 5 | | |
| // --------------------------------------------------------- |
| // |2^ | | 0.5 | 0.5 |1.0| |CP| vmovaps xmmword ptr [rsp-0x18], xmm0 |
| // |1 |0.5| | | |0.5| | lea rax, ptr [rsp-0x18] |
| // |1 | |0.5, 0.5|0.5, 0.5| | |CP| mov al, byte ptr [rdi+rax*1] |
| // Total Num Of Uops: 4 |
| |
| return SDValue(); |
| } |
| |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| |
| // If this is a 256-bit vector result, first extract the 128-bit vector and |
| // then extract the element from the 128-bit vector. |
| if (VecVT.is256BitVector() || VecVT.is512BitVector()) { |
| // Get the 128-bit vector. |
| Vec = extract128BitVector(Vec, IdxVal, DAG, dl); |
| MVT EltVT = VecVT.getVectorElementType(); |
| |
| unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); |
| assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); |
| |
| // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2 |
| // this can be done with a mask. |
| IdxVal &= ElemsPerChunk - 1; |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, |
| DAG.getConstant(IdxVal, dl, MVT::i32)); |
| } |
| |
| assert(VecVT.is128BitVector() && "Unexpected vector length"); |
| |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (VT.getSizeInBits() == 16) { |
| // If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless |
| // we're going to zero extend the register or fold the store (SSE41 only). |
| if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) && |
| !(Subtarget.hasSSE41() && MayFoldIntoStore(Op))) |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getBitcast(MVT::v4i32, Vec), Idx)); |
| |
| // Transform it so it match pextrw which produces a 32-bit result. |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract); |
| } |
| |
| if (Subtarget.hasSSE41()) |
| if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG)) |
| return Res; |
| |
| // TODO: We only extract a single element from v16i8, we can probably afford |
| // to be more aggressive here before using the default approach of spilling to |
| // stack. |
| if (VT.getSizeInBits() == 8 && Op->isOnlyUserOf(Vec.getNode())) { |
| // Extract either the lowest i32 or any i16, and extract the sub-byte. |
| int DWordIdx = IdxVal / 4; |
| if (DWordIdx == 0) { |
| SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getBitcast(MVT::v4i32, Vec), |
| DAG.getIntPtrConstant(DWordIdx, dl)); |
| int ShiftVal = (IdxVal % 4) * 8; |
| if (ShiftVal != 0) |
| Res = DAG.getNode(ISD::SRL, dl, MVT::i32, Res, |
| DAG.getConstant(ShiftVal, dl, MVT::i8)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Res); |
| } |
| |
| int WordIdx = IdxVal / 2; |
| SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, |
| DAG.getBitcast(MVT::v8i16, Vec), |
| DAG.getIntPtrConstant(WordIdx, dl)); |
| int ShiftVal = (IdxVal % 2) * 8; |
| if (ShiftVal != 0) |
| Res = DAG.getNode(ISD::SRL, dl, MVT::i16, Res, |
| DAG.getConstant(ShiftVal, dl, MVT::i8)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Res); |
| } |
| |
| if (VT.getSizeInBits() == 32) { |
| if (IdxVal == 0) |
| return Op; |
| |
| // SHUFPS the element to the lowest double word, then movss. |
| int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 }; |
| Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| if (VT.getSizeInBits() == 64) { |
| // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b |
| // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught |
| // to match extract_elt for f64. |
| if (IdxVal == 0) |
| return Op; |
| |
| // UNPCKHPD the element to the lowest double word, then movsd. |
| // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| int Mask[2] = { 1, -1 }; |
| Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Insert one bit to mask vector, like v16i1 or v8i1. |
| /// AVX-512 feature. |
| static SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| SDValue Vec = Op.getOperand(0); |
| SDValue Elt = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| MVT VecVT = Vec.getSimpleValueType(); |
| |
| if (!isa<ConstantSDNode>(Idx)) { |
| // Non constant index. Extend source and destination, |
| // insert element and then truncate the result. |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8; |
| MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts); |
| SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT, |
| DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec), |
| DAG.getNode(ISD::SIGN_EXTEND, dl, ExtEltVT, Elt), Idx); |
| return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp); |
| } |
| |
| // Copy into a k-register, extract to v1i1 and insert_subvector. |
| SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Elt); |
| |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT, Vec, EltInVec, |
| Op.getOperand(2)); |
| } |
| |
| SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VT = Op.getSimpleValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| if (EltVT == MVT::i1) |
| return InsertBitToMaskVector(Op, DAG, Subtarget); |
| |
| SDLoc dl(Op); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2 = Op.getOperand(2); |
| if (!isa<ConstantSDNode>(N2)) |
| return SDValue(); |
| auto *N2C = cast<ConstantSDNode>(N2); |
| unsigned IdxVal = N2C->getZExtValue(); |
| |
| bool IsZeroElt = X86::isZeroNode(N1); |
| bool IsAllOnesElt = VT.isInteger() && llvm::isAllOnesConstant(N1); |
| |
| // If we are inserting a element, see if we can do this more efficiently with |
| // a blend shuffle with a rematerializable vector than a costly integer |
| // insertion. |
| if ((IsZeroElt || IsAllOnesElt) && Subtarget.hasSSE41() && |
| 16 <= EltVT.getSizeInBits()) { |
| SmallVector<int, 8> BlendMask; |
| for (unsigned i = 0; i != NumElts; ++i) |
| BlendMask.push_back(i == IdxVal ? i + NumElts : i); |
| SDValue CstVector = IsZeroElt ? getZeroVector(VT, Subtarget, DAG, dl) |
| : getOnesVector(VT, DAG, dl); |
| return DAG.getVectorShuffle(VT, dl, N0, CstVector, BlendMask); |
| } |
| |
| // If the vector is wider than 128 bits, extract the 128-bit subvector, insert |
| // into that, and then insert the subvector back into the result. |
| if (VT.is256BitVector() || VT.is512BitVector()) { |
| // With a 256-bit vector, we can insert into the zero element efficiently |
| // using a blend if we have AVX or AVX2 and the right data type. |
| if (VT.is256BitVector() && IdxVal == 0) { |
| // TODO: It is worthwhile to cast integer to floating point and back |
| // and incur a domain crossing penalty if that's what we'll end up |
| // doing anyway after extracting to a 128-bit vector. |
| if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) || |
| (Subtarget.hasAVX2() && EltVT == MVT::i32)) { |
| SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1); |
| N2 = DAG.getIntPtrConstant(1, dl); |
| return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2); |
| } |
| } |
| |
| // Get the desired 128-bit vector chunk. |
| SDValue V = extract128BitVector(N0, IdxVal, DAG, dl); |
| |
| // Insert the element into the desired chunk. |
| unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits(); |
| assert(isPowerOf2_32(NumEltsIn128)); |
| // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo. |
| unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1); |
| |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, |
| DAG.getConstant(IdxIn128, dl, MVT::i32)); |
| |
| // Insert the changed part back into the bigger vector |
| return insert128BitVector(N0, V, IdxVal, DAG, dl); |
| } |
| assert(VT.is128BitVector() && "Only 128-bit vector types should be left!"); |
| |
| // Transform it so it match pinsr{b,w} which expects a GR32 as its second |
| // argument. SSE41 required for pinsrb. |
| if (VT == MVT::v8i16 || (VT == MVT::v16i8 && Subtarget.hasSSE41())) { |
| unsigned Opc; |
| if (VT == MVT::v8i16) { |
| assert(Subtarget.hasSSE2() && "SSE2 required for PINSRW"); |
| Opc = X86ISD::PINSRW; |
| } else { |
| assert(VT == MVT::v16i8 && "PINSRB requires v16i8 vector"); |
| assert(Subtarget.hasSSE41() && "SSE41 required for PINSRB"); |
| Opc = X86ISD::PINSRB; |
| } |
| |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(IdxVal, dl); |
| return DAG.getNode(Opc, dl, VT, N0, N1, N2); |
| } |
| |
| if (Subtarget.hasSSE41()) { |
| if (EltVT == MVT::f32) { |
| // Bits [7:6] of the constant are the source select. This will always be |
| // zero here. The DAG Combiner may combine an extract_elt index into |
| // these bits. For example (insert (extract, 3), 2) could be matched by |
| // putting the '3' into bits [7:6] of X86ISD::INSERTPS. |
| // Bits [5:4] of the constant are the destination select. This is the |
| // value of the incoming immediate. |
| // Bits [3:0] of the constant are the zero mask. The DAG Combiner may |
| // combine either bitwise AND or insert of float 0.0 to set these bits. |
| |
| bool MinSize = DAG.getMachineFunction().getFunction().optForMinSize(); |
| if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) { |
| // If this is an insertion of 32-bits into the low 32-bits of |
| // a vector, we prefer to generate a blend with immediate rather |
| // than an insertps. Blends are simpler operations in hardware and so |
| // will always have equal or better performance than insertps. |
| // But if optimizing for size and there's a load folding opportunity, |
| // generate insertps because blendps does not have a 32-bit memory |
| // operand form. |
| N2 = DAG.getIntPtrConstant(1, dl); |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); |
| return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2); |
| } |
| N2 = DAG.getIntPtrConstant(IdxVal << 4, dl); |
| // Create this as a scalar to vector.. |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); |
| return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); |
| } |
| |
| // PINSR* works with constant index. |
| if (EltVT == MVT::i32 || EltVT == MVT::i64) |
| return Op; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDLoc dl(Op); |
| MVT OpVT = Op.getSimpleValueType(); |
| |
| // It's always cheaper to replace a xor+movd with xorps and simplifies further |
| // combines. |
| if (X86::isZeroNode(Op.getOperand(0))) |
| return getZeroVector(OpVT, Subtarget, DAG, dl); |
| |
| // If this is a 256-bit vector result, first insert into a 128-bit |
| // vector and then insert into the 256-bit vector. |
| if (!OpVT.is128BitVector()) { |
| // Insert into a 128-bit vector. |
| unsigned SizeFactor = OpVT.getSizeInBits() / 128; |
| MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), |
| OpVT.getVectorNumElements() / SizeFactor); |
| |
| Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); |
| |
| // Insert the 128-bit vector. |
| return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); |
| } |
| assert(OpVT.is128BitVector() && "Expected an SSE type!"); |
| |
| // Pass through a v4i32 SCALAR_TO_VECTOR as that's what we use in tblgen. |
| if (OpVT == MVT::v4i32) |
| return Op; |
| |
| SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); |
| return DAG.getBitcast( |
| OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt)); |
| } |
| |
| // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a |
| // simple superregister reference or explicit instructions to insert |
| // the upper bits of a vector. |
| static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1); |
| |
| return insert1BitVector(Op, DAG, Subtarget); |
| } |
| |
| static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1 && |
| "Only vXi1 extract_subvectors need custom lowering"); |
| |
| SDLoc dl(Op); |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| |
| if (!isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| if (IdxVal == 0) // the operation is legal |
| return Op; |
| |
| MVT VecVT = Vec.getSimpleValueType(); |
| unsigned NumElems = VecVT.getVectorNumElements(); |
| |
| // Extend to natively supported kshift. |
| MVT WideVecVT = VecVT; |
| if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) { |
| WideVecVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1; |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVecVT, |
| DAG.getUNDEF(WideVecVT), Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // Shift to the LSB. |
| Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideVecVT, Vec, |
| DAG.getConstant(IdxVal, dl, MVT::i8)); |
| |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, Op.getValueType(), Vec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // Returns the appropriate wrapper opcode for a global reference. |
| unsigned X86TargetLowering::getGlobalWrapperKind( |
| const GlobalValue *GV, const unsigned char OpFlags) const { |
| // References to absolute symbols are never PC-relative. |
| if (GV && GV->isAbsoluteSymbolRef()) |
| return X86ISD::Wrapper; |
| |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| if (Subtarget.isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| return X86ISD::WrapperRIP; |
| |
| // GOTPCREL references must always use RIP. |
| if (OpFlags == X86II::MO_GOTPCREL) |
| return X86ISD::WrapperRIP; |
| |
| return X86ISD::Wrapper; |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target counterpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOV32ri. |
| SDValue |
| X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr); |
| |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result = DAG.getTargetConstantPool( |
| CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag); |
| SDLoc DL(CP); |
| Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result); |
| // With PIC, the address is actually $g + Offset. |
| if (OpFlag) { |
| Result = |
| DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr); |
| |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); |
| SDLoc DL(JT); |
| Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (OpFlag) |
| Result = |
| DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { |
| const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); |
| unsigned char OpFlag = Subtarget.classifyGlobalReference(nullptr, *Mod); |
| |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag); |
| |
| SDLoc DL(Op); |
| Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isPositionIndependent() && !Subtarget.is64Bit()) { |
| Result = |
| DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); |
| } |
| |
| // For symbols that require a load from a stub to get the address, emit the |
| // load. |
| if (isGlobalStubReference(OpFlag)) |
| Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { |
| // Create the TargetBlockAddressAddress node. |
| unsigned char OpFlags = |
| Subtarget.classifyBlockAddressReference(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); |
| SDLoc dl(Op); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags); |
| Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isGlobalRelativeToPICBase(OpFlags)) { |
| Result = DAG.getNode(ISD::ADD, dl, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, |
| const SDLoc &dl, int64_t Offset, |
| SelectionDAG &DAG) const { |
| // Create the TargetGlobalAddress node, folding in the constant |
| // offset if it is legal. |
| unsigned char OpFlags = Subtarget.classifyGlobalReference(GV); |
| CodeModel::Model M = DAG.getTarget().getCodeModel(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result; |
| if (OpFlags == X86II::MO_NO_FLAG && |
| X86::isOffsetSuitableForCodeModel(Offset, M)) { |
| // A direct static reference to a global. |
| Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); |
| Offset = 0; |
| } else { |
| Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags); |
| } |
| |
| Result = DAG.getNode(getGlobalWrapperKind(GV, OpFlags), dl, PtrVT, Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isGlobalRelativeToPICBase(OpFlags)) { |
| Result = DAG.getNode(ISD::ADD, dl, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); |
| } |
| |
| // For globals that require a load from a stub to get the address, emit the |
| // load. |
| if (isGlobalStubReference(OpFlags)) |
| Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| |
| // If there was a non-zero offset that we didn't fold, create an explicit |
| // addition for it. |
| if (Offset != 0) |
| Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, |
| DAG.getConstant(Offset, dl, PtrVT)); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); |
| } |
| |
| static SDValue |
| GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, |
| SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, |
| unsigned char OperandFlags, bool LocalDynamic = false) { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDLoc dl(GA); |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), |
| OperandFlags); |
| |
| X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR |
| : X86ISD::TLSADDR; |
| |
| if (InFlag) { |
| SDValue Ops[] = { Chain, TGA, *InFlag }; |
| Chain = DAG.getNode(CallType, dl, NodeTys, Ops); |
| } else { |
| SDValue Ops[] = { Chain, TGA }; |
| Chain = DAG.getNode(CallType, dl, NodeTys, Ops); |
| } |
| |
| // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
| MFI.setAdjustsStack(true); |
| MFI.setHasCalls(true); |
| |
| SDValue Flag = Chain.getValue(1); |
| return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit |
| static SDValue |
| LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT) { |
| SDValue InFlag; |
| SDLoc dl(GA); // ? function entry point might be better |
| SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| SDLoc(), PtrVT), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit |
| static SDValue |
| LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT) { |
| return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, |
| X86::RAX, X86II::MO_TLSGD); |
| } |
| |
| static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG, |
| const EVT PtrVT, |
| bool is64Bit) { |
| SDLoc dl(GA); |
| |
| // Get the start address of the TLS block for this module. |
| X86MachineFunctionInfo *MFI = DAG.getMachineFunction() |
| .getInfo<X86MachineFunctionInfo>(); |
| MFI->incNumLocalDynamicTLSAccesses(); |
| |
| SDValue Base; |
| if (is64Bit) { |
| Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, |
| X86II::MO_TLSLD, /*LocalDynamic=*/true); |
| } else { |
| SDValue InFlag; |
| SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); |
| InFlag = Chain.getValue(1); |
| Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, |
| X86II::MO_TLSLDM, /*LocalDynamic=*/true); |
| } |
| |
| // Note: the CleanupLocalDynamicTLSPass will remove redundant computations |
| // of Base. |
| |
| // Build x@dtpoff. |
| unsigned char OperandFlags = X86II::MO_DTPOFF; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), OperandFlags); |
| SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); |
| |
| // Add x@dtpoff with the base. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. |
| static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT, TLSModel::Model model, |
| bool is64Bit, bool isPIC) { |
| SDLoc dl(GA); |
| |
| // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). |
| Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), |
| is64Bit ? 257 : 256)); |
| |
| SDValue ThreadPointer = |
| DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl), |
| MachinePointerInfo(Ptr)); |
| |
| unsigned char OperandFlags = 0; |
| // Most TLS accesses are not RIP relative, even on x86-64. One exception is |
| // initialexec. |
| unsigned WrapperKind = X86ISD::Wrapper; |
| if (model == TLSModel::LocalExec) { |
| OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; |
| } else if (model == TLSModel::InitialExec) { |
| if (is64Bit) { |
| OperandFlags = X86II::MO_GOTTPOFF; |
| WrapperKind = X86ISD::WrapperRIP; |
| } else { |
| OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; |
| } |
| } else { |
| llvm_unreachable("Unexpected model"); |
| } |
| |
| // emit "addl x@ntpoff,%eax" (local exec) |
| // or "addl x@indntpoff,%eax" (initial exec) |
| // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) |
| SDValue TGA = |
| DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), |
| GA->getOffset(), OperandFlags); |
| SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); |
| |
| if (model == TLSModel::InitialExec) { |
| if (isPIC && !is64Bit) { |
| Offset = DAG.getNode(ISD::ADD, dl, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), |
| Offset); |
| } |
| |
| Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(GA, DAG); |
| |
| const GlobalValue *GV = GA->getGlobal(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| bool PositionIndependent = isPositionIndependent(); |
| |
| if (Subtarget.isTargetELF()) { |
| TLSModel::Model model = DAG.getTarget().getTLSModel(GV); |
| switch (model) { |
| case TLSModel::GeneralDynamic: |
| if (Subtarget.is64Bit()) |
| return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT); |
| return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT); |
| case TLSModel::LocalDynamic: |
| return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT, |
| Subtarget.is64Bit()); |
| case TLSModel::InitialExec: |
| case TLSModel::LocalExec: |
| return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(), |
| PositionIndependent); |
| } |
| llvm_unreachable("Unknown TLS model."); |
| } |
| |
| if (Subtarget.isTargetDarwin()) { |
| // Darwin only has one model of TLS. Lower to that. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ? |
| X86ISD::WrapperRIP : X86ISD::Wrapper; |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| bool PIC32 = PositionIndependent && !Subtarget.is64Bit(); |
| if (PIC32) |
| OpFlag = X86II::MO_TLVP_PIC_BASE; |
| else |
| OpFlag = X86II::MO_TLVP; |
| SDLoc DL(Op); |
| SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, |
| GA->getValueType(0), |
| GA->getOffset(), OpFlag); |
| SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result); |
| |
| // With PIC32, the address is actually $g + Offset. |
| if (PIC32) |
| Offset = DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), |
| Offset); |
| |
| // Lowering the machine isd will make sure everything is in the right |
| // location. |
| SDValue Chain = DAG.getEntryNode(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); |
| SDValue Args[] = { Chain, Offset }; |
| Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args); |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), |
| DAG.getIntPtrConstant(0, DL, true), |
| Chain.getValue(1), DL); |
| |
| // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setAdjustsStack(true); |
| |
| // And our return value (tls address) is in the standard call return value |
| // location. |
| unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; |
| return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1)); |
| } |
| |
| if (Subtarget.isTargetKnownWindowsMSVC() || |
| Subtarget.isTargetWindowsItanium() || |
| Subtarget.isTargetWindowsGNU()) { |
| // Just use the implicit TLS architecture |
| // Need to generate something similar to: |
| // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage |
| // ; from TEB |
| // mov ecx, dword [rel _tls_index]: Load index (from C runtime) |
| // mov rcx, qword [rdx+rcx*8] |
| // mov eax, .tls$:tlsvar |
| // [rax+rcx] contains the address |
| // Windows 64bit: gs:0x58 |
| // Windows 32bit: fs:__tls_array |
| |
| SDLoc dl(GA); |
| SDValue Chain = DAG.getEntryNode(); |
| |
| // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or |
| // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly |
| // use its literal value of 0x2C. |
| Value *Ptr = Constant::getNullValue(Subtarget.is64Bit() |
| ? Type::getInt8PtrTy(*DAG.getContext(), |
| 256) |
| : Type::getInt32PtrTy(*DAG.getContext(), |
| 257)); |
| |
| SDValue TlsArray = Subtarget.is64Bit() |
| ? DAG.getIntPtrConstant(0x58, dl) |
| : (Subtarget.isTargetWindowsGNU() |
| ? DAG.getIntPtrConstant(0x2C, dl) |
| : DAG.getExternalSymbol("_tls_array", PtrVT)); |
| |
| SDValue ThreadPointer = |
| DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr)); |
| |
| SDValue res; |
| if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) { |
| res = ThreadPointer; |
| } else { |
| // Load the _tls_index variable |
| SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT); |
| if (Subtarget.is64Bit()) |
| IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX, |
| MachinePointerInfo(), MVT::i32); |
| else |
| IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo()); |
| |
| auto &DL = DAG.getDataLayout(); |
| SDValue Scale = |
| DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, MVT::i8); |
| IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale); |
| |
| res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX); |
| } |
| |
| res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo()); |
| |
| // Get the offset of start of .tls section |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), X86II::MO_SECREL); |
| SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA); |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset); |
| } |
| |
| llvm_unreachable("TLS not implemented for this target."); |
| } |
| |
| /// Lower SRA_PARTS and friends, which return two i32 values |
| /// and take a 2 x i32 value to shift plus a shift amount. |
| static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| MVT VT = Op.getSimpleValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the |
| // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away |
| // during isel. |
| SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, |
| DAG.getConstant(VTBits - 1, dl, MVT::i8)); |
| SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, |
| DAG.getConstant(VTBits - 1, dl, MVT::i8)) |
| : DAG.getConstant(0, dl, VT); |
| |
| SDValue Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); |
| } |
| |
| // If the shift amount is larger or equal than the width of a part we can't |
| // rely on the results of shld/shrd. Insert a test and select the appropriate |
| // values for large shift amounts. |
| SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i8)); |
| SDValue Cond = DAG.getSetCC(dl, MVT::i8, AndNode, |
| DAG.getConstant(0, dl, MVT::i8), ISD::SETNE); |
| |
| SDValue Hi, Lo; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); |
| Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); |
| } else { |
| Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); |
| Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); |
| } |
| |
| return DAG.getMergeValues({ Lo, Hi }, dl); |
| } |
| |
| // Try to use a packed vector operation to handle i64 on 32-bit targets when |
| // AVX512DQ is enabled. |
| static SDValue LowerI64IntToFP_AVX512DQ(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| assert((Op.getOpcode() == ISD::SINT_TO_FP || |
| Op.getOpcode() == ISD::UINT_TO_FP) && "Unexpected opcode!"); |
| SDValue Src = Op.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (!Subtarget.hasDQI() || SrcVT != MVT::i64 || Subtarget.is64Bit() || |
| (VT != MVT::f32 && VT != MVT::f64)) |
| return SDValue(); |
| |
| // Pack the i64 into a vector, do the operation and extract. |
| |
| // Using 256-bit to ensure result is 128-bits for f32 case. |
| unsigned NumElts = Subtarget.hasVLX() ? 4 : 8; |
| MVT VecInVT = MVT::getVectorVT(MVT::i64, NumElts); |
| MVT VecVT = MVT::getVectorVT(VT, NumElts); |
| |
| SDLoc dl(Op); |
| SDValue InVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecInVT, Src); |
| SDValue CvtVec = DAG.getNode(Op.getOpcode(), dl, VecVT, InVec); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, CvtVec, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Src = Op.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| if (SrcVT.isVector()) { |
| if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) { |
| return DAG.getNode(X86ISD::CVTSI2P, dl, VT, |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src, |
| DAG.getUNDEF(SrcVT))); |
| } |
| return SDValue(); |
| } |
| |
| assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| // These are really Legal; return the operand so the caller accepts it as |
| // Legal. |
| if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(VT)) |
| return Op; |
| if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(VT) && Subtarget.is64Bit()) { |
| return Op; |
| } |
| |
| if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget)) |
| return V; |
| |
| SDValue ValueToStore = Op.getOperand(0); |
| if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(VT) && |
| !Subtarget.is64Bit()) |
| // Bitcasting to f64 here allows us to do a single 64-bit store from |
| // an SSE register, avoiding the store forwarding penalty that would come |
| // with two 32-bit stores. |
| ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore); |
| |
| unsigned Size = SrcVT.getSizeInBits()/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); |
| SDValue Chain = DAG.getStore( |
| DAG.getEntryNode(), dl, ValueToStore, StackSlot, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI)); |
| return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); |
| } |
| |
| SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, |
| SDValue StackSlot, |
| SelectionDAG &DAG) const { |
| // Build the FILD |
| SDLoc DL(Op); |
| SDVTList Tys; |
| bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); |
| if (useSSE) |
| Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); |
| else |
| Tys = DAG.getVTList(Op.getValueType(), MVT::Other); |
| |
| unsigned ByteSize = SrcVT.getSizeInBits()/8; |
| |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); |
| MachineMemOperand *MMO; |
| if (FI) { |
| int SSFI = FI->getIndex(); |
| MMO = DAG.getMachineFunction().getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), |
| MachineMemOperand::MOLoad, ByteSize, ByteSize); |
| } else { |
| MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); |
| StackSlot = StackSlot.getOperand(1); |
| } |
| SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; |
| SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : |
| X86ISD::FILD, DL, |
| Tys, Ops, SrcVT, MMO); |
| |
| if (useSSE) { |
| Chain = Result.getValue(1); |
| SDValue InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned SSFISize = Op.getValueSizeInBits()/8; |
| int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false); |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); |
| Tys = DAG.getVTList(MVT::Other); |
| SDValue Ops[] = { |
| Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag |
| }; |
| MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), |
| MachineMemOperand::MOStore, SSFISize, SSFISize); |
| |
| Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, |
| Ops, Op.getValueType(), MMO); |
| Result = DAG.getLoad( |
| Op.getValueType(), DL, Chain, StackSlot, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI)); |
| } |
| |
| return Result; |
| } |
| |
| /// 64-bit unsigned integer to double expansion. |
| static SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // This algorithm is not obvious. Here it is what we're trying to output: |
| /* |
| movq %rax, %xmm0 |
| punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } |
| subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } |
| #ifdef __SSE3__ |
| haddpd %xmm0, %xmm0 |
| #else |
| pshufd $0x4e, %xmm0, %xmm1 |
| addpd %xmm1, %xmm0 |
| #endif |
| */ |
| |
| SDLoc dl(Op); |
| LLVMContext *Context = DAG.getContext(); |
| |
| // Build some magic constants. |
| static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; |
| Constant *C0 = ConstantDataVector::get(*Context, CV0); |
| auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
| SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16); |
| |
| SmallVector<Constant*,2> CV1; |
| CV1.push_back( |
| ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(), |
| APInt(64, 0x4330000000000000ULL)))); |
| CV1.push_back( |
| ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(), |
| APInt(64, 0x4530000000000000ULL)))); |
| Constant *C1 = ConstantVector::get(CV1); |
| SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16); |
| |
| // Load the 64-bit value into an XMM register. |
| SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, |
| Op.getOperand(0)); |
| SDValue CLod0 = |
| DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| /* Alignment = */ 16); |
| SDValue Unpck1 = |
| getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0); |
| |
| SDValue CLod1 = |
| DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| /* Alignment = */ 16); |
| SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1); |
| // TODO: Are there any fast-math-flags to propagate here? |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); |
| SDValue Result; |
| |
| if (Subtarget.hasSSE3()) { |
| // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. |
| Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); |
| } else { |
| SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub); |
| SDValue Shuffle = DAG.getVectorShuffle(MVT::v4i32, dl, S2F, S2F, {2,3,0,1}); |
| Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, |
| DAG.getBitcast(MVT::v2f64, Shuffle), Sub); |
| } |
| |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| /// 32-bit unsigned integer to float expansion. |
| static SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| // FP constant to bias correct the final result. |
| SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, |
| MVT::f64); |
| |
| // Load the 32-bit value into an XMM register. |
| SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, |
| Op.getOperand(0)); |
| |
| // Zero out the upper parts of the register. |
| Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); |
| |
| Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| DAG.getBitcast(MVT::v2f64, Load), |
| DAG.getIntPtrConstant(0, dl)); |
| |
| // Or the load with the bias. |
| SDValue Or = DAG.getNode( |
| ISD::OR, dl, MVT::v2i64, |
| DAG.getBitcast(MVT::v2i64, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), |
| DAG.getBitcast(MVT::v2i64, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); |
| Or = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl)); |
| |
| // Subtract the bias. |
| // TODO: Are there any fast-math-flags to propagate here? |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); |
| |
| // Handle final rounding. |
| return DAG.getFPExtendOrRound(Sub, dl, Op.getSimpleValueType()); |
| } |
| |
| static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| const SDLoc &DL) { |
| if (Op.getSimpleValueType() != MVT::v2f64) |
| return SDValue(); |
| |
| SDValue N0 = Op.getOperand(0); |
| assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type"); |
| |
| // Legalize to v4i32 type. |
| N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0, |
| DAG.getUNDEF(MVT::v2i32)); |
| |
| if (Subtarget.hasAVX512()) |
| return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0); |
| |
| // Same implementation as VectorLegalizer::ExpandUINT_TO_FLOAT, |
| // but using v2i32 to v2f64 with X86ISD::CVTSI2P. |
| SDValue HalfWord = DAG.getConstant(16, DL, MVT::v4i32); |
| SDValue HalfWordMask = DAG.getConstant(0x0000FFFF, DL, MVT::v4i32); |
| |
| // Two to the power of half-word-size. |
| SDValue TWOHW = DAG.getConstantFP(1 << 16, DL, MVT::v2f64); |
| |
| // Clear upper part of LO, lower HI. |
| SDValue HI = DAG.getNode(ISD::SRL, DL, MVT::v4i32, N0, HalfWord); |
| SDValue LO = DAG.getNode(ISD::AND, DL, MVT::v4i32, N0, HalfWordMask); |
| |
| SDValue fHI = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, HI); |
| fHI = DAG.getNode(ISD::FMUL, DL, MVT::v2f64, fHI, TWOHW); |
| SDValue fLO = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, LO); |
| |
| // Add the two halves. |
| return DAG.getNode(ISD::FADD, DL, MVT::v2f64, fHI, fLO); |
| } |
| |
| static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // The algorithm is the following: |
| // #ifdef __SSE4_1__ |
| // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); |
| // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), |
| // (uint4) 0x53000000, 0xaa); |
| // #else |
| // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; |
| // uint4 hi = (v >> 16) | (uint4) 0x53000000; |
| // #endif |
| // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); |
| // return (float4) lo + fhi; |
| |
| // We shouldn't use it when unsafe-fp-math is enabled though: we might later |
| // reassociate the two FADDs, and if we do that, the algorithm fails |
| // spectacularly (PR24512). |
| // FIXME: If we ever have some kind of Machine FMF, this should be marked |
| // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because |
| // there's also the MachineCombiner reassociations happening on Machine IR. |
| if (DAG.getTarget().Options.UnsafeFPMath) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| SDValue V = Op->getOperand(0); |
| MVT VecIntVT = V.getSimpleValueType(); |
| bool Is128 = VecIntVT == MVT::v4i32; |
| MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32; |
| // If we convert to something else than the supported type, e.g., to v4f64, |
| // abort early. |
| if (VecFloatVT != Op->getSimpleValueType(0)) |
| return SDValue(); |
| |
| assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) && |
| "Unsupported custom type"); |
| |
| // In the #idef/#else code, we have in common: |
| // - The vector of constants: |
| // -- 0x4b000000 |
| // -- 0x53000000 |
| // - A shift: |
| // -- v >> 16 |
| |
| // Create the splat vector for 0x4b000000. |
| SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT); |
| // Create the splat vector for 0x53000000. |
| SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT); |
| |
| // Create the right shift. |
| SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT); |
| SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift); |
| |
| SDValue Low, High; |
| if (Subtarget.hasSSE41()) { |
| MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16; |
| // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); |
| SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow); |
| SDValue VecBitcast = DAG.getBitcast(VecI16VT, V); |
| // Low will be bitcasted right away, so do not bother bitcasting back to its |
| // original type. |
| Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast, |
| VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); |
| // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), |
| // (uint4) 0x53000000, 0xaa); |
| SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh); |
| SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift); |
| // High will be bitcasted right away, so do not bother bitcasting back to |
| // its original type. |
| High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast, |
| VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); |
| } else { |
| SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT); |
| // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; |
| SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask); |
| Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow); |
| |
| // uint4 hi = (v >> 16) | (uint4) 0x53000000; |
| High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh); |
| } |
| |
| // Create the vector constant for -(0x1.0p39f + 0x1.0p23f). |
| SDValue VecCstFAdd = DAG.getConstantFP( |
| APFloat(APFloat::IEEEsingle(), APInt(32, 0xD3000080)), DL, VecFloatVT); |
| |
| // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); |
| SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High); |
| // TODO: Are there any fast-math-flags to propagate here? |
| SDValue FHigh = |
| DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd); |
| // return (float4) lo + fhi; |
| SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low); |
| return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh); |
| } |
| |
| static SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue N0 = Op.getOperand(0); |
| MVT SrcVT = N0.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| switch (SrcVT.SimpleTy) { |
| default: |
| llvm_unreachable("Custom UINT_TO_FP is not supported!"); |
| case MVT::v2i32: |
| return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl); |
| case MVT::v4i32: |
| case MVT::v8i32: |
| assert(!Subtarget.hasAVX512()); |
| return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget); |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue N0 = Op.getOperand(0); |
| SDLoc dl(Op); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| if (Op.getSimpleValueType().isVector()) |
| return lowerUINT_TO_FP_vec(Op, DAG, Subtarget); |
| |
| MVT SrcVT = N0.getSimpleValueType(); |
| MVT DstVT = Op.getSimpleValueType(); |
| |
| if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) && |
| (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) { |
| // Conversions from unsigned i32 to f32/f64 are legal, |
| // using VCVTUSI2SS/SD. Same for i64 in 64-bit mode. |
| return Op; |
| } |
| |
| if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget)) |
| return V; |
| |
| if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) |
| return LowerUINT_TO_FP_i64(Op, DAG, Subtarget); |
| if (SrcVT == MVT::i32 && X86ScalarSSEf64) |
| return LowerUINT_TO_FP_i32(Op, DAG, Subtarget); |
| if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) |
| return SDValue(); |
| |
| // Make a 64-bit buffer, and use it to build an FILD. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); |
| if (SrcVT == MVT::i32) { |
| SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl); |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), |
| StackSlot, MachinePointerInfo()); |
| SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32), |
| OffsetSlot, MachinePointerInfo()); |
| SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); |
| return Fild; |
| } |
| |
| assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); |
| SDValue ValueToStore = Op.getOperand(0); |
| if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit()) |
| // Bitcasting to f64 here allows us to do a single 64-bit store from |
| // an SSE register, avoiding the store forwarding penalty that would come |
| // with two 32-bit stores. |
| ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore); |
| SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, ValueToStore, StackSlot, |
| MachinePointerInfo()); |
| // For i64 source, we need to add the appropriate power of 2 if the input |
| // was negative. This is the same as the optimization in |
| // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, |
| // we must be careful to do the computation in x87 extended precision, not |
| // in SSE. (The generic code can't know it's OK to do this, or how to.) |
| int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); |
| MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), |
| MachineMemOperand::MOLoad, 8, 8); |
| |
| SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); |
| SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; |
| SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, |
| MVT::i64, MMO); |
| |
| APInt FF(32, 0x5F800000ULL); |
| |
| // Check whether the sign bit is set. |
| SDValue SignSet = DAG.getSetCC( |
| dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), |
| Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); |
| |
| // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. |
| SDValue FudgePtr = DAG.getConstantPool( |
| ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT); |
| |
| // Get a pointer to FF if the sign bit was set, or to 0 otherwise. |
| SDValue Zero = DAG.getIntPtrConstant(0, dl); |
| SDValue Four = DAG.getIntPtrConstant(4, dl); |
| SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Zero, Four); |
| FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset); |
| |
| // Load the value out, extending it from f32 to f80. |
| // FIXME: Avoid the extend by constructing the right constant pool? |
| SDValue Fudge = DAG.getExtLoad( |
| ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, |
| /* Alignment = */ 4); |
| // Extend everything to 80 bits to force it to be done on x87. |
| // TODO: Are there any fast-math-flags to propagate here? |
| SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); |
| return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation |
| // is legal, or has an fp128 or f16 source (which needs to be promoted to f32), |
| // just return an <SDValue(), SDValue()> pair. |
| // Otherwise it is assumed to be a conversion from one of f32, f64 or f80 |
| // to i16, i32 or i64, and we lower it to a legal sequence. |
| // If lowered to the final integer result we return a <result, SDValue()> pair. |
| // Otherwise we lower it to a sequence ending with a FIST, return a |
| // <FIST, StackSlot> pair, and the caller is responsible for loading |
| // the final integer result from StackSlot. |
| std::pair<SDValue,SDValue> |
| X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, |
| bool IsSigned, bool IsReplace) const { |
| SDLoc DL(Op); |
| |
| EVT DstTy = Op.getValueType(); |
| EVT TheVT = Op.getOperand(0).getValueType(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) { |
| // f16 must be promoted before using the lowering in this routine. |
| // fp128 does not use this lowering. |
| return std::make_pair(SDValue(), SDValue()); |
| } |
| |
| // If using FIST to compute an unsigned i64, we'll need some fixup |
| // to handle values above the maximum signed i64. A FIST is always |
| // used for the 32-bit subtarget, but also for f80 on a 64-bit target. |
| bool UnsignedFixup = !IsSigned && |
| DstTy == MVT::i64 && |
| (!Subtarget.is64Bit() || |
| !isScalarFPTypeInSSEReg(TheVT)); |
| |
| if (!IsSigned && DstTy != MVT::i64 && !Subtarget.hasAVX512()) { |
| // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST. |
| // The low 32 bits of the fist result will have the correct uint32 result. |
| assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); |
| DstTy = MVT::i64; |
| } |
| |
| assert(DstTy.getSimpleVT() <= MVT::i64 && |
| DstTy.getSimpleVT() >= MVT::i16 && |
| "Unknown FP_TO_INT to lower!"); |
| |
| // These are really Legal. |
| if (DstTy == MVT::i32 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDValue(), SDValue()); |
| if (Subtarget.is64Bit() && |
| DstTy == MVT::i64 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDValue(), SDValue()); |
| |
| // We lower FP->int64 into FISTP64 followed by a load from a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = DstTy.getSizeInBits()/8; |
| int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); |
| |
| unsigned Opc; |
| switch (DstTy.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue Value = Op.getOperand(0); |
| SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment. |
| |
| if (UnsignedFixup) { |
| // |
| // Conversion to unsigned i64 is implemented with a select, |
| // depending on whether the source value fits in the range |
| // of a signed i64. Let Thresh be the FP equivalent of |
| // 0x8000000000000000ULL. |
| // |
| // Adjust i32 = (Value < Thresh) ? 0 : 0x80000000; |
| // FistSrc = (Value < Thresh) ? Value : (Value - Thresh); |
| // Fist-to-mem64 FistSrc |
| // Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent |
| // to XOR'ing the high 32 bits with Adjust. |
| // |
| // Being a power of 2, Thresh is exactly representable in all FP formats. |
| // For X87 we'd like to use the smallest FP type for this constant, but |
| // for DAG type consistency we have to match the FP operand type. |
| |
| APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000)); |
| LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK; |
| bool LosesInfo = false; |
| if (TheVT == MVT::f64) |
| // The rounding mode is irrelevant as the conversion should be exact. |
| Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, |
| &LosesInfo); |
| else if (TheVT == MVT::f80) |
| Status = Thresh.convert(APFloat::x87DoubleExtended(), |
| APFloat::rmNearestTiesToEven, &LosesInfo); |
| |
| assert(Status == APFloat::opOK && !LosesInfo && |
| "FP conversion should have been exact"); |
| |
| SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT); |
| |
| SDValue Cmp = DAG.getSetCC(DL, |
| getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), TheVT), |
| Value, ThreshVal, ISD::SETLT); |
| Adjust = DAG.getSelect(DL, MVT::i32, Cmp, |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(0x80000000, DL, MVT::i32)); |
| SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal); |
| Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), TheVT), |
| Value, ThreshVal, ISD::SETLT); |
| Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub); |
| } |
| |
| // FIXME This causes a redundant load/store if the SSE-class value is already |
| // in memory, such as if it is on the callstack. |
| if (isScalarFPTypeInSSEReg(TheVT)) { |
| assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getStore(Chain, DL, Value, StackSlot, |
| MachinePointerInfo::getFixedStack(MF, SSFI)); |
| SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); |
| SDValue Ops[] = { |
| Chain, StackSlot, DAG.getValueType(TheVT) |
| }; |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), |
| MachineMemOperand::MOLoad, MemSize, MemSize); |
| Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false); |
| StackSlot = DAG.getFrameIndex(SSFI, PtrVT); |
| } |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), |
| MachineMemOperand::MOStore, MemSize, MemSize); |
| |
| if (UnsignedFixup) { |
| |
| // Insert the FIST, load its result as two i32's, |
| // and XOR the high i32 with Adjust. |
| |
| SDValue FistOps[] = { Chain, Value, StackSlot }; |
| SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), |
| FistOps, DstTy, MMO); |
| |
| SDValue Low32 = |
| DAG.getLoad(MVT::i32, DL, FIST, StackSlot, MachinePointerInfo()); |
| SDValue HighAddr = DAG.getMemBasePlusOffset(StackSlot, 4, DL); |
| |
| SDValue High32 = |
| DAG.getLoad(MVT::i32, DL, FIST, HighAddr, MachinePointerInfo()); |
| High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust); |
| |
| if (Subtarget.is64Bit()) { |
| // Join High32 and Low32 into a 64-bit result. |
| // (High32 << 32) | Low32 |
| Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32); |
| High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32); |
| High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32, |
| DAG.getConstant(32, DL, MVT::i8)); |
| SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32); |
| return std::make_pair(Result, SDValue()); |
| } |
| |
| SDValue ResultOps[] = { Low32, High32 }; |
| |
| SDValue pair = IsReplace |
| ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps) |
| : DAG.getMergeValues(ResultOps, DL); |
| return std::make_pair(pair, SDValue()); |
| } else { |
| // Build the FP_TO_INT*_IN_MEM |
| SDValue Ops[] = { Chain, Value, StackSlot }; |
| SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), |
| Ops, DstTy, MMO); |
| return std::make_pair(FIST, StackSlot); |
| } |
| } |
| |
| static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = Op->getSimpleValueType(0); |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| assert(VT.isVector() && InVT.isVector() && "Expected vector type"); |
| assert(VT.getVectorNumElements() == VT.getVectorNumElements() && |
| "Expected same number of elements"); |
| assert((VT.getVectorElementType() == MVT::i16 || |
| VT.getVectorElementType() == MVT::i32 || |
| VT.getVectorElementType() == MVT::i64) && |
| "Unexpected element type"); |
| assert((InVT.getVectorElementType() == MVT::i8 || |
| InVT.getVectorElementType() == MVT::i16 || |
| InVT.getVectorElementType() == MVT::i32) && |
| "Unexpected element type"); |
| |
| if (Subtarget.hasInt256()) |
| return DAG.getNode(X86ISD::VZEXT, dl, VT, In); |
| |
| // Optimize vectors in AVX mode: |
| // |
| // v8i16 -> v8i32 |
| // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. |
| // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. |
| // Concat upper and lower parts. |
| // |
| // v4i32 -> v4i64 |
| // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. |
| // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. |
| // Concat upper and lower parts. |
| // |
| |
| SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); |
| SDValue Undef = DAG.getUNDEF(InVT); |
| bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; |
| SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); |
| SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); |
| |
| MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), |
| VT.getVectorNumElements()/2); |
| |
| OpLo = DAG.getBitcast(HVT, OpLo); |
| OpHi = DAG.getBitcast(HVT, OpHi); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); |
| } |
| |
| // Helper to split and extend a v16i1 mask to v16i8 or v16i16. |
| static SDValue SplitAndExtendv16i1(unsigned ExtOpc, MVT VT, SDValue In, |
| const SDLoc &dl, SelectionDAG &DAG) { |
| assert((VT == MVT::v16i8 || VT == MVT::v16i16) && "Unexpected VT."); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In, |
| DAG.getIntPtrConstant(0, dl)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In, |
| DAG.getIntPtrConstant(8, dl)); |
| Lo = DAG.getNode(ExtOpc, dl, MVT::v8i16, Lo); |
| Hi = DAG.getNode(ExtOpc, dl, MVT::v8i16, Hi); |
| SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i16, Lo, Hi); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Res); |
| } |
| |
| static SDValue LowerZERO_EXTEND_Mask(SDValue Op, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op->getSimpleValueType(0); |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!"); |
| SDLoc DL(Op); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // For all vectors, but vXi8 we can just emit a sign_extend a shift. This |
| // avoids a constant pool load. |
| if (VT.getVectorElementType() != MVT::i8) { |
| SDValue Extend = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, In); |
| return DAG.getNode(ISD::SRL, DL, VT, Extend, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); |
| } |
| |
| // Extend VT if BWI is not supported. |
| MVT ExtVT = VT; |
| if (!Subtarget.hasBWI()) { |
| // If v16i32 is to be avoided, we'll need to split and concatenate. |
| if (NumElts == 16 && !Subtarget.canExtendTo512DQ()) |
| return SplitAndExtendv16i1(ISD::ZERO_EXTEND, VT, In, DL, DAG); |
| |
| ExtVT = MVT::getVectorVT(MVT::i32, NumElts); |
| } |
| |
| // Widen to 512-bits if VLX is not supported. |
| MVT WideVT = ExtVT; |
| if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) { |
| NumElts *= 512 / ExtVT.getSizeInBits(); |
| InVT = MVT::getVectorVT(MVT::i1, NumElts); |
| In = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT, DAG.getUNDEF(InVT), |
| In, DAG.getIntPtrConstant(0, DL)); |
| WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), |
| NumElts); |
| } |
| |
| SDValue One = DAG.getConstant(1, DL, WideVT); |
| SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, DL); |
| |
| SDValue SelectedVal = DAG.getSelect(DL, WideVT, In, One, Zero); |
| |
| // Truncate if we had to extend above. |
| if (VT != ExtVT) { |
| WideVT = MVT::getVectorVT(MVT::i8, NumElts); |
| SelectedVal = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SelectedVal); |
| } |
| |
| // Extract back to 128/256-bit if we widened. |
| if (WideVT != VT) |
| SelectedVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SelectedVal, |
| DAG.getIntPtrConstant(0, DL)); |
| |
| return SelectedVal; |
| } |
| |
| static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue In = Op.getOperand(0); |
| MVT SVT = In.getSimpleValueType(); |
| |
| if (SVT.getVectorElementType() == MVT::i1) |
| return LowerZERO_EXTEND_Mask(Op, Subtarget, DAG); |
| |
| assert(Subtarget.hasAVX() && "Expected AVX support"); |
| return LowerAVXExtend(Op, DAG, Subtarget); |
| } |
| |
| /// Helper to recursively truncate vector elements in half with PACKSS/PACKUS. |
| /// It makes use of the fact that vectors with enough leading sign/zero bits |
| /// prevent the PACKSS/PACKUS from saturating the results. |
| /// AVX2 (Int256) sub-targets require extra shuffling as the PACK*S operates |
| /// within each 128-bit lane. |
| static SDValue truncateVectorWithPACK(unsigned Opcode, EVT DstVT, SDValue In, |
| const SDLoc &DL, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| assert((Opcode == X86ISD::PACKSS || Opcode == X86ISD::PACKUS) && |
| "Unexpected PACK opcode"); |
| |
| // Requires SSE2 but AVX512 has fast vector truncate. |
| if (!Subtarget.hasSSE2() || Subtarget.hasAVX512() || !DstVT.isVector()) |
| return SDValue(); |
| |
| EVT SrcVT = In.getValueType(); |
| |
| // No truncation required, we might get here due to recursive calls. |
| if (SrcVT == DstVT) |
| return In; |
| |
| // We only support vector truncation to 64bits or greater from a |
| // 128bits or greater source. |
| unsigned DstSizeInBits = DstVT.getSizeInBits(); |
| unsigned SrcSizeInBits = SrcVT.getSizeInBits(); |
| if ((DstSizeInBits % 64) != 0 || (SrcSizeInBits % 128) != 0) |
| return SDValue(); |
| |
| unsigned NumElems = SrcVT.getVectorNumElements(); |
| if (!isPowerOf2_32(NumElems)) |
| return SDValue(); |
| |
| LLVMContext &Ctx = *DAG.getContext(); |
| assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); |
| assert(SrcSizeInBits > DstSizeInBits && "Illegal truncation"); |
| |
| EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); |
| |
| // Pack to the largest type possible: |
| // vXi64/vXi32 -> PACK*SDW and vXi16 -> PACK*SWB. |
| EVT InVT = MVT::i16, OutVT = MVT::i8; |
| if (SrcVT.getScalarSizeInBits() > 16 && |
| (Opcode == X86ISD::PACKSS || Subtarget.hasSSE41())) { |
| InVT = MVT::i32; |
| OutVT = MVT::i16; |
| } |
| |
| // 128bit -> 64bit truncate - PACK 128-bit src in the lower subvector. |
| if (SrcVT.is128BitVector()) { |
| InVT = EVT::getVectorVT(Ctx, InVT, 128 / InVT.getSizeInBits()); |
| OutVT = EVT::getVectorVT(Ctx, OutVT, 128 / OutVT.getSizeInBits()); |
| In = DAG.getBitcast(InVT, In); |
| SDValue Res = DAG.getNode(Opcode, DL, OutVT, In, In); |
| Res = extractSubVector(Res, 0, DAG, DL, 64); |
| return DAG.getBitcast(DstVT, Res); |
| } |
| |
| // Extract lower/upper subvectors. |
| unsigned NumSubElts = NumElems / 2; |
| SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2); |
| SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2); |
| |
| unsigned SubSizeInBits = SrcSizeInBits / 2; |
| InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); |
| OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); |
| |
| // 256bit -> 128bit truncate - PACK lower/upper 128-bit subvectors. |
| if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { |
| Lo = DAG.getBitcast(InVT, Lo); |
| Hi = DAG.getBitcast(InVT, Hi); |
| SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi); |
| return DAG.getBitcast(DstVT, Res); |
| } |
| |
| // AVX2: 512bit -> 256bit truncate - PACK lower/upper 256-bit subvectors. |
| // AVX2: 512bit -> 128bit truncate - PACK(PACK, PACK). |
| if (SrcVT.is512BitVector() && Subtarget.hasInt256()) { |
| Lo = DAG.getBitcast(InVT, Lo); |
| Hi = DAG.getBitcast(InVT, Hi); |
| SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi); |
| |
| // 256-bit PACK(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)), |
| // so we need to shuffle to get ((LO0,HI0),(LO1,HI1)). |
| Res = DAG.getBitcast(MVT::v4i64, Res); |
| Res = DAG.getVectorShuffle(MVT::v4i64, DL, Res, Res, {0, 2, 1, 3}); |
| |
| if (DstVT.is256BitVector()) |
| return DAG.getBitcast(DstVT, Res); |
| |
| // If 512bit -> 128bit truncate another stage. |
| EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); |
| Res = DAG.getBitcast(PackedVT, Res); |
| return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget); |
| } |
| |
| // Recursively pack lower/upper subvectors, concat result and pack again. |
| assert(SrcSizeInBits >= 256 && "Expected 256-bit vector or greater"); |
| EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumSubElts); |
| Lo = truncateVectorWithPACK(Opcode, PackedVT, Lo, DL, DAG, Subtarget); |
| Hi = truncateVectorWithPACK(Opcode, PackedVT, Hi, DL, DAG, Subtarget); |
| |
| PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); |
| SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); |
| return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget); |
| } |
| |
| static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue In = Op.getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| |
| assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type."); |
| |
| // Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q. |
| unsigned ShiftInx = InVT.getScalarSizeInBits() - 1; |
| if (InVT.getScalarSizeInBits() <= 16) { |
| if (Subtarget.hasBWI()) { |
| // legal, will go to VPMOVB2M, VPMOVW2M |
| if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) { |
| // We need to shift to get the lsb into sign position. |
| // Shift packed bytes not supported natively, bitcast to word |
| MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16); |
| In = DAG.getNode(ISD::SHL, DL, ExtVT, |
| DAG.getBitcast(ExtVT, In), |
| DAG.getConstant(ShiftInx, DL, ExtVT)); |
| In = DAG.getBitcast(InVT, In); |
| } |
| return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT), |
| In, ISD::SETGT); |
| } |
| // Use TESTD/Q, extended vector to packed dword/qword. |
| assert((InVT.is256BitVector() || InVT.is128BitVector()) && |
| "Unexpected vector type."); |
| unsigned NumElts = InVT.getVectorNumElements(); |
| assert((NumElts == 8 || NumElts == 16) && "Unexpected number of elements"); |
| // We need to change to a wider element type that we have support for. |
| // For 8 element vectors this is easy, we either extend to v8i32 or v8i64. |
| // For 16 element vectors we extend to v16i32 unless we are explicitly |
| // trying to avoid 512-bit vectors. If we are avoiding 512-bit vectors |
| // we need to split into two 8 element vectors which we can extend to v8i32, |
| // truncate and concat the results. There's an additional complication if |
| // the original type is v16i8. In that case we can't split the v16i8 so |
| // first we pre-extend it to v16i16 which we can split to v8i16, then extend |
| // to v8i32, truncate that to v8i1 and concat the two halves. |
| if (NumElts == 16 && !Subtarget.canExtendTo512DQ()) { |
| if (InVT == MVT::v16i8) { |
| // First we need to sign extend up to 256-bits so we can split that. |
| InVT = MVT::v16i16; |
| In = DAG.getNode(ISD::SIGN_EXTEND, DL, InVT, In); |
| } |
| SDValue Lo = extract128BitVector(In, 0, DAG, DL); |
| SDValue Hi = extract128BitVector(In, 8, DAG, DL); |
| // We're split now, just emit two truncates and a concat. The two |
| // truncates will trigger legalization to come back to this function. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Lo); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Hi); |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); |
| } |
| // We either have 8 elements or we're allowed to use 512-bit vectors. |
| // If we have VLX, we want to use the narrowest vector that can get the |
| // job done so we use vXi32. |
| MVT EltVT = Subtarget.hasVLX() ? MVT::i32 : MVT::getIntegerVT(512/NumElts); |
| MVT ExtVT = MVT::getVectorVT(EltVT, NumElts); |
| In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); |
| InVT = ExtVT; |
| ShiftInx = InVT.getScalarSizeInBits() - 1; |
| } |
| |
| if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) { |
| // We need to shift to get the lsb into sign position. |
| In = DAG.getNode(ISD::SHL, DL, InVT, In, |
| DAG.getConstant(ShiftInx, DL, InVT)); |
| } |
| // If we have DQI, emit a pattern that will be iseled as vpmovq2m/vpmovd2m. |
| if (Subtarget.hasDQI()) |
| return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT), |
| In, ISD::SETGT); |
| return DAG.getSetCC(DL, VT, In, getZeroVector(InVT, Subtarget, DAG, DL), |
| ISD::SETNE); |
| } |
| |
| SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue In = Op.getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| unsigned InNumEltBits = InVT.getScalarSizeInBits(); |
| |
| assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && |
| "Invalid TRUNCATE operation"); |
| |
| if (VT.getVectorElementType() == MVT::i1) |
| return LowerTruncateVecI1(Op, DAG, Subtarget); |
| |
| // vpmovqb/w/d, vpmovdb/w, vpmovwb |
| if (Subtarget.hasAVX512()) { |
| // word to byte only under BWI |
| if (InVT == MVT::v16i16 && !Subtarget.hasBWI()) { // v16i16 -> v16i8 |
| // Make sure we're allowed to promote 512-bits. |
| if (Subtarget.canExtendTo512DQ()) |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, |
| DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In)); |
| } else { |
| return Op; |
| } |
| } |
| |
| unsigned NumPackedSignBits = std::min<unsigned>(VT.getScalarSizeInBits(), 16); |
| unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8; |
| |
| // Truncate with PACKUS if we are truncating a vector with leading zero bits |
| // that extend all the way to the packed/truncated value. |
| // Pre-SSE41 we can only use PACKUSWB. |
| KnownBits Known; |
| DAG.computeKnownBits(In, Known); |
| if ((InNumEltBits - NumPackedZeroBits) <= Known.countMinLeadingZeros()) |
| if (SDValue V = |
| truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget)) |
| return V; |
| |
| // Truncate with PACKSS if we are truncating a vector with sign-bits that |
| // extend all the way to the packed/truncated value. |
| if ((InNumEltBits - NumPackedSignBits) < DAG.ComputeNumSignBits(In)) |
| if (SDValue V = |
| truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget)) |
| return V; |
| |
| if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { |
| // On AVX2, v4i64 -> v4i32 becomes VPERMD. |
| if (Subtarget.hasInt256()) { |
| static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; |
| In = DAG.getBitcast(MVT::v8i32, In); |
| In = DAG.getVectorShuffle(MVT::v8i32, DL, In, In, ShufMask); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, |
| DAG.getIntPtrConstant(2, DL)); |
| OpLo = DAG.getBitcast(MVT::v4i32, OpLo); |
| OpHi = DAG.getBitcast(MVT::v4i32, OpHi); |
| static const int ShufMask[] = {0, 2, 4, 6}; |
| return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); |
| } |
| |
| if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { |
| // On AVX2, v8i32 -> v8i16 becomes PSHUFB. |
| if (Subtarget.hasInt256()) { |
| In = DAG.getBitcast(MVT::v32i8, In); |
| |
| // The PSHUFB mask: |
| static const int ShufMask1[] = { 0, 1, 4, 5, 8, 9, 12, 13, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| 16, 17, 20, 21, 24, 25, 28, 29, |
| -1, -1, -1, -1, -1, -1, -1, -1 }; |
| In = DAG.getVectorShuffle(MVT::v32i8, DL, In, In, ShufMask1); |
| In = DAG.getBitcast(MVT::v4i64, In); |
| |
| static const int ShufMask2[] = {0, 2, -1, -1}; |
| In = DAG.getVectorShuffle(MVT::v4i64, DL, In, In, ShufMask2); |
| In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getBitcast(VT, In); |
| } |
| |
| SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, |
| DAG.getIntPtrConstant(0, DL)); |
| |
| SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, |
| DAG.getIntPtrConstant(4, DL)); |
| |
| OpLo = DAG.getBitcast(MVT::v16i8, OpLo); |
| OpHi = DAG.getBitcast(MVT::v16i8, OpHi); |
| |
| // The PSHUFB mask: |
| static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, |
| -1, -1, -1, -1, -1, -1, -1, -1}; |
| |
| OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, OpLo, ShufMask1); |
| OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, OpHi, ShufMask1); |
| |
| OpLo = DAG.getBitcast(MVT::v4i32, OpLo); |
| OpHi = DAG.getBitcast(MVT::v4i32, OpHi); |
| |
| // The MOVLHPS Mask: |
| static const int ShufMask2[] = {0, 1, 4, 5}; |
| SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); |
| return DAG.getBitcast(MVT::v8i16, res); |
| } |
| |
| // Handle truncation of V256 to V128 using shuffles. |
| assert(VT.is128BitVector() && InVT.is256BitVector() && "Unexpected types!"); |
| |
| assert(Subtarget.hasAVX() && "256-bit vector without AVX!"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); |
| |
| SmallVector<int, 16> MaskVec(NumElems * 2, -1); |
| // Prepare truncation shuffle mask |
| for (unsigned i = 0; i != NumElems; ++i) |
| MaskVec[i] = i * 2; |
| In = DAG.getBitcast(NVT, In); |
| SDValue V = DAG.getVectorShuffle(NVT, DL, In, In, MaskVec); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { |
| bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (VT.isVector()) { |
| SDValue Src = Op.getOperand(0); |
| SDLoc dl(Op); |
| |
| if (VT == MVT::v2i1 && Src.getSimpleValueType() == MVT::v2f64) { |
| MVT ResVT = MVT::v4i32; |
| MVT TruncVT = MVT::v4i1; |
| unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI; |
| if (!IsSigned && !Subtarget.hasVLX()) { |
| // Widen to 512-bits. |
| ResVT = MVT::v8i32; |
| TruncVT = MVT::v8i1; |
| Opc = ISD::FP_TO_UINT; |
| Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64, |
| DAG.getUNDEF(MVT::v8f64), |
| Src, DAG.getIntPtrConstant(0, dl)); |
| } |
| SDValue Res = DAG.getNode(Opc, dl, ResVT, Src); |
| Res = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Res); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i1, Res, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!"); |
| if (VT == MVT::v2i64 && Src.getSimpleValueType() == MVT::v2f32) { |
| return DAG.getNode(IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI, dl, VT, |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src, |
| DAG.getUNDEF(MVT::v2f32))); |
| } |
| |
| return SDValue(); |
| } |
| |
| assert(!VT.isVector()); |
| |
| std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, |
| IsSigned, /*IsReplace=*/ false); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. |
| if (!FIST.getNode()) |
| return Op; |
| |
| if (StackSlot.getNode()) |
| // Load the result. |
| return DAG.getLoad(VT, SDLoc(Op), FIST, StackSlot, MachinePointerInfo()); |
| |
| // The node is the result. |
| return FIST; |
| } |
| |
| static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue In = Op.getOperand(0); |
| MVT SVT = In.getSimpleValueType(); |
| |
| assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); |
| |
| return DAG.getNode(X86ISD::VFPEXT, DL, VT, |
| DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, |
| In, DAG.getUNDEF(SVT))); |
| } |
| |
| /// The only differences between FABS and FNEG are the mask and the logic op. |
| /// FNEG also has a folding opportunity for FNEG(FABS(x)). |
| static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) { |
| assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) && |
| "Wrong opcode for lowering FABS or FNEG."); |
| |
| bool IsFABS = (Op.getOpcode() == ISD::FABS); |
| |
| // If this is a FABS and it has an FNEG user, bail out to fold the combination |
| // into an FNABS. We'll lower the FABS after that if it is still in use. |
| if (IsFABS) |
| for (SDNode *User : Op->uses()) |
| if (User->getOpcode() == ISD::FNEG) |
| return Op; |
| |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| bool IsF128 = (VT == MVT::f128); |
| |
| // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to |
| // decide if we should generate a 16-byte constant mask when we only need 4 or |
| // 8 bytes for the scalar case. |
| |
| MVT LogicVT; |
| MVT EltVT; |
| |
| if (VT.isVector()) { |
| LogicVT = VT; |
| EltVT = VT.getVectorElementType(); |
| } else if (IsF128) { |
| // SSE instructions are used for optimized f128 logical operations. |
| LogicVT = MVT::f128; |
| EltVT = VT; |
| } else { |
| // There are no scalar bitwise logical SSE/AVX instructions, so we |
| // generate a 16-byte vector constant and logic op even for the scalar case. |
| // Using a 16-byte mask allows folding the load of the mask with |
| // the logic op, so it can save (~4 bytes) on code size. |
| LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; |
| EltVT = VT; |
| } |
| |
| unsigned EltBits = EltVT.getSizeInBits(); |
| // For FABS, mask is 0x7f...; for FNEG, mask is 0x80... |
| APInt MaskElt = |
| IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignMask(EltBits); |
| const fltSemantics &Sem = |
| EltVT == MVT::f64 ? APFloat::IEEEdouble() : |
| (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle()); |
| SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT); |
| |
| SDValue Op0 = Op.getOperand(0); |
| bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS); |
| unsigned LogicOp = |
| IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR; |
| SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0; |
| |
| if (VT.isVector() || IsF128) |
| return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); |
| |
| // For the scalar case extend to a 128-bit vector, perform the logic op, |
| // and extract the scalar result back out. |
| Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand); |
| SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { |
| SDValue Mag = Op.getOperand(0); |
| SDValue Sign = Op.getOperand(1); |
| SDLoc dl(Op); |
| |
| // If the sign operand is smaller, extend it first. |
| MVT VT = Op.getSimpleValueType(); |
| if (Sign.getSimpleValueType().bitsLT(VT)) |
| Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign); |
| |
| // And if it is bigger, shrink it first. |
| if (Sign.getSimpleValueType().bitsGT(VT)) |
| Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl)); |
| |
| // At this point the operands and the result should have the same |
| // type, and that won't be f80 since that is not custom lowered. |
| bool IsF128 = (VT == MVT::f128); |
| assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 || |
| VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 || |
| VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) && |
| "Unexpected type in LowerFCOPYSIGN"); |
| |
| MVT EltVT = VT.getScalarType(); |
| const fltSemantics &Sem = |
| EltVT == MVT::f64 ? APFloat::IEEEdouble() |
| : (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle()); |
| |
| // Perform all scalar logic operations as 16-byte vectors because there are no |
| // scalar FP logic instructions in SSE. |
| // TODO: This isn't necessary. If we used scalar types, we might avoid some |
| // unnecessary splats, but we might miss load folding opportunities. Should |
| // this decision be based on OptimizeForSize? |
| bool IsFakeVector = !VT.isVector() && !IsF128; |
| MVT LogicVT = VT; |
| if (IsFakeVector) |
| LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; |
| |
| // The mask constants are automatically splatted for vector types. |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| SDValue SignMask = DAG.getConstantFP( |
| APFloat(Sem, APInt::getSignMask(EltSizeInBits)), dl, LogicVT); |
| SDValue MagMask = DAG.getConstantFP( |
| APFloat(Sem, ~APInt::getSignMask(EltSizeInBits)), dl, LogicVT); |
| |
| // First, clear all bits but the sign bit from the second operand (sign). |
| if (IsFakeVector) |
| Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign); |
| SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask); |
| |
| // Next, clear the sign bit from the first operand (magnitude). |
| // TODO: If we had general constant folding for FP logic ops, this check |
| // wouldn't be necessary. |
| SDValue MagBits; |
| if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Mag)) { |
| APFloat APF = Op0CN->getValueAPF(); |
| APF.clearSign(); |
| MagBits = DAG.getConstantFP(APF, dl, LogicVT); |
| } else { |
| // If the magnitude operand wasn't a constant, we need to AND out the sign. |
| if (IsFakeVector) |
| Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag); |
| MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask); |
| } |
| |
| // OR the magnitude value with the sign bit. |
| SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit); |
| return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { |
| SDValue N0 = Op.getOperand(0); |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| MVT OpVT = N0.getSimpleValueType(); |
| assert((OpVT == MVT::f32 || OpVT == MVT::f64) && |
| "Unexpected type for FGETSIGN"); |
| |
| // Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1). |
| MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64); |
| SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0); |
| Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res); |
| Res = DAG.getZExtOrTrunc(Res, dl, VT); |
| Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT)); |
| return Res; |
| } |
| |
| /// Helper for creating a X86ISD::SETCC node. |
| static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl, |
| SelectionDAG &DAG) { |
| return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(Cond, dl, MVT::i8), EFLAGS); |
| } |
| |
| // Check whether an OR'd tree is PTEST-able. |
| static SDValue LowerVectorAllZeroTest(SDValue Op, ISD::CondCode CC, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); |
| |
| if (!Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| if (!Op->hasOneUse()) |
| return SDValue(); |
| |
| SDNode *N = Op.getNode(); |
| SDLoc DL(N); |
| |
| SmallVector<SDValue, 8> Opnds; |
| DenseMap<SDValue, unsigned> VecInMap; |
| SmallVector<SDValue, 8> VecIns; |
| EVT VT = MVT::Other; |
| |
| // Recognize a special case where a vector is casted into wide integer to |
| // test all 0s. |
| Opnds.push_back(N->getOperand(0)); |
| Opnds.push_back(N->getOperand(1)); |
| |
| for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { |
| SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot; |
| // BFS traverse all OR'd operands. |
| if (I->getOpcode() == ISD::OR) { |
| Opnds.push_back(I->getOperand(0)); |
| Opnds.push_back(I->getOperand(1)); |
| // Re-evaluate the number of nodes to be traversed. |
| e += 2; // 2 more nodes (LHS and RHS) are pushed. |
| continue; |
| } |
| |
| // Quit if a non-EXTRACT_VECTOR_ELT |
| if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| // Quit if without a constant index. |
| SDValue Idx = I->getOperand(1); |
| if (!isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| SDValue ExtractedFromVec = I->getOperand(0); |
| DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); |
| if (M == VecInMap.end()) { |
| VT = ExtractedFromVec.getValueType(); |
| // Quit if not 128/256-bit vector. |
| if (!VT.is128BitVector() && !VT.is256BitVector()) |
| return SDValue(); |
| // Quit if not the same type. |
| if (VecInMap.begin() != VecInMap.end() && |
| VT != VecInMap.begin()->first.getValueType()) |
| return SDValue(); |
| M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; |
| VecIns.push_back(ExtractedFromVec); |
| } |
| M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); |
| } |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Not extracted from 128-/256-bit vector."); |
| |
| unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; |
| |
| for (DenseMap<SDValue, unsigned>::const_iterator |
| I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { |
| // Quit if not all elements are used. |
| if (I->second != FullMask) |
| return SDValue(); |
| } |
| |
| MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; |
| |
| // Cast all vectors into TestVT for PTEST. |
| for (unsigned i = 0, e = VecIns.size(); i < e; ++i) |
| VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]); |
| |
| // If more than one full vector is evaluated, OR them first before PTEST. |
| for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { |
| // Each iteration will OR 2 nodes and append the result until there is only |
| // 1 node left, i.e. the final OR'd value of all vectors. |
| SDValue LHS = VecIns[Slot]; |
| SDValue RHS = VecIns[Slot + 1]; |
| VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); |
| } |
| |
| SDValue Res = DAG.getNode(X86ISD::PTEST, DL, MVT::i32, |
| VecIns.back(), VecIns.back()); |
| return getSETCC(CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE, Res, DL, DAG); |
| } |
| |
| /// return true if \c Op has a use that doesn't just read flags. |
| static bool hasNonFlagsUse(SDValue Op) { |
| for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; |
| ++UI) { |
| SDNode *User = *UI; |
| unsigned UOpNo = UI.getOperandNo(); |
| if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { |
| // Look pass truncate. |
| UOpNo = User->use_begin().getOperandNo(); |
| User = *User->use_begin(); |
| } |
| |
| if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && |
| !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Emit nodes that will be selected as "test Op0,Op0", or something |
| /// equivalent. |
| SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl, |
| SelectionDAG &DAG) const { |
| // CF and OF aren't always set the way we want. Determine which |
| // of these we need. |
| bool NeedCF = false; |
| bool NeedOF = false; |
| switch (X86CC) { |
| default: break; |
| case X86::COND_A: case X86::COND_AE: |
| case X86::COND_B: case X86::COND_BE: |
| NeedCF = true; |
| break; |
| case X86::COND_G: case X86::COND_GE: |
| case X86::COND_L: case X86::COND_LE: |
| case X86::COND_O: case X86::COND_NO: { |
| // Check if we really need to set the |
| // Overflow flag. If NoSignedWrap is present |
| // that is not actually needed. |
| switch (Op->getOpcode()) { |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SHL: |
| if (Op.getNode()->getFlags().hasNoSignedWrap()) |
| break; |
| LLVM_FALLTHROUGH; |
| default: |
| NeedOF = true; |
| break; |
| } |
| break; |
| } |
| } |
| // See if we can use the EFLAGS value from the operand instead of |
| // doing a separate TEST. TEST always sets OF and CF to 0, so unless |
| // we prove that the arithmetic won't overflow, we can't use OF or CF. |
| if (Op.getResNo() != 0 || NeedOF || NeedCF) { |
| // Emit a CMP with 0, which is the TEST pattern. |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, |
| DAG.getConstant(0, dl, Op.getValueType())); |
| } |
| unsigned Opcode = 0; |
| unsigned NumOperands = 0; |
| |
| // Truncate operations may prevent the merge of the SETCC instruction |
| // and the arithmetic instruction before it. Attempt to truncate the operands |
| // of the arithmetic instruction and use a reduced bit-width instruction. |
| bool NeedTruncation = false; |
| SDValue ArithOp = Op; |
| if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { |
| SDValue Arith = Op->getOperand(0); |
| // Both the trunc and the arithmetic op need to have one user each. |
| if (Arith->hasOneUse()) |
| switch (Arith.getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| NeedTruncation = true; |
| ArithOp = Arith; |
| } |
| } |
| } |
| |
| // Sometimes flags can be set either with an AND or with an SRL/SHL |
| // instruction. SRL/SHL variant should be preferred for masks longer than this |
| // number of bits. |
| const int ShiftToAndMaxMaskWidth = 32; |
| const bool ZeroCheck = (X86CC == X86::COND_E || X86CC == X86::COND_NE); |
| |
| // NOTICE: In the code below we use ArithOp to hold the arithmetic operation |
| // which may be the result of a CAST. We use the variable 'Op', which is the |
| // non-casted variable when we check for possible users. |
| switch (ArithOp.getOpcode()) { |
| case ISD::ADD: |
| // We only want to rewrite this as a target-specific node with attached |
| // flags if there is a reasonable chance of either using that to do custom |
| // instructions selection that can fold some of the memory operands, or if |
| // only the flags are used. If there are other uses, leave the node alone |
| // and emit a test instruction. |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) |
| if (UI->getOpcode() != ISD::CopyToReg && |
| UI->getOpcode() != ISD::SETCC && |
| UI->getOpcode() != ISD::STORE) |
| goto default_case; |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(ArithOp.getOperand(1))) { |
| // An add of one will be selected as an INC. |
| if (C->isOne() && |
| (!Subtarget.slowIncDec() || |
| DAG.getMachineFunction().getFunction().optForSize())) { |
| Opcode = X86ISD::INC; |
| NumOperands = 1; |
| break; |
| } |
| |
| // An add of negative one (subtract of one) will be selected as a DEC. |
| if (C->isAllOnesValue() && |
| (!Subtarget.slowIncDec() || |
| DAG.getMachineFunction().getFunction().optForSize())) { |
| Opcode = X86ISD::DEC; |
| NumOperands = 1; |
| break; |
| } |
| } |
| |
| // Otherwise use a regular EFLAGS-setting add. |
| Opcode = X86ISD::ADD; |
| NumOperands = 2; |
| break; |
| case ISD::SHL: |
| case ISD::SRL: |
| // If we have a constant logical shift that's only used in a comparison |
| // against zero turn it into an equivalent AND. This allows turning it into |
| // a TEST instruction later. |
| if (ZeroCheck && Op->hasOneUse() && |
| isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) { |
| EVT VT = Op.getValueType(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| unsigned ShAmt = Op->getConstantOperandVal(1); |
| if (ShAmt >= BitWidth) // Avoid undefined shifts. |
| break; |
| APInt Mask = ArithOp.getOpcode() == ISD::SRL |
| ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) |
| : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); |
| if (!Mask.isSignedIntN(ShiftToAndMaxMaskWidth)) |
| break; |
| Op = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0), |
| DAG.getConstant(Mask, dl, VT)); |
| } |
| break; |
| |
| case ISD::AND: |
| // If the primary 'and' result isn't used, don't bother using X86ISD::AND, |
| // because a TEST instruction will be better. However, AND should be |
| // preferred if the instruction can be combined into ANDN. |
| if (!hasNonFlagsUse(Op)) { |
| SDValue Op0 = ArithOp->getOperand(0); |
| SDValue Op1 = ArithOp->getOperand(1); |
| EVT VT = ArithOp.getValueType(); |
| bool isAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1); |
| bool isLegalAndnType = VT == MVT::i32 || VT == MVT::i64; |
| bool isProperAndn = isAndn && isLegalAndnType && Subtarget.hasBMI(); |
| |
| // If we cannot select an ANDN instruction, check if we can replace |
| // AND+IMM64 with a shift before giving up. This is possible for masks |
| // like 0xFF000000 or 0x00FFFFFF and if we care only about the zero flag. |
| if (!isProperAndn) { |
| if (!ZeroCheck) |
| break; |
| |
| assert(!isa<ConstantSDNode>(Op0) && "AND node isn't canonicalized"); |
| auto *CN = dyn_cast<ConstantSDNode>(Op1); |
| if (!CN) |
| break; |
| |
| const APInt &Mask = CN->getAPIntValue(); |
| if (Mask.isSignedIntN(ShiftToAndMaxMaskWidth)) |
| break; // Prefer TEST instruction. |
| |
| unsigned BitWidth = Mask.getBitWidth(); |
| unsigned LeadingOnes = Mask.countLeadingOnes(); |
| unsigned TrailingZeros = Mask.countTrailingZeros(); |
| |
| if (LeadingOnes + TrailingZeros == BitWidth) { |
| assert(TrailingZeros < VT.getSizeInBits() && |
| "Shift amount should be less than the type width"); |
| MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT); |
| SDValue ShAmt = DAG.getConstant(TrailingZeros, dl, ShTy); |
| Op = DAG.getNode(ISD::SRL, dl, VT, Op0, ShAmt); |
| break; |
| } |
| |
| unsigned LeadingZeros = Mask.countLeadingZeros(); |
| unsigned TrailingOnes = Mask.countTrailingOnes(); |
| |
| if (LeadingZeros + TrailingOnes == BitWidth) { |
| assert(LeadingZeros < VT.getSizeInBits() && |
| "Shift amount should be less than the type width"); |
| MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT); |
| SDValue ShAmt = DAG.getConstant(LeadingZeros, dl, ShTy); |
| Op = DAG.getNode(ISD::SHL, dl, VT, Op0, ShAmt); |
| break; |
| } |
| |
| break; |
| } |
| } |
| LLVM_FALLTHROUGH; |
| case ISD::SUB: |
| case ISD::OR: |
| case ISD::XOR: |
| // Similar to ISD::ADD above, check if the uses will preclude useful |
| // lowering of the target-specific node. |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) |
| if (UI->getOpcode() != ISD::CopyToReg && |
| UI->getOpcode() != ISD::SETCC && |
| UI->getOpcode() != ISD::STORE) |
| goto default_case; |
| |
| // Otherwise use a regular EFLAGS-setting instruction. |
| switch (ArithOp.getOpcode()) { |
| default: llvm_unreachable("unexpected operator!"); |
| case ISD::SUB: Opcode = X86ISD::SUB; break; |
| case ISD::XOR: Opcode = X86ISD::XOR; break; |
| case ISD::AND: Opcode = X86ISD::AND; break; |
| case ISD::OR: Opcode = X86ISD::OR; break; |
| } |
| |
| NumOperands = 2; |
| break; |
| case X86ISD::ADD: |
| case X86ISD::SUB: |
| case X86ISD::INC: |
| case X86ISD::DEC: |
| case X86ISD::OR: |
| case X86ISD::XOR: |
| case X86ISD::AND: |
| return SDValue(Op.getNode(), 1); |
| default: |
| default_case: |
| break; |
| } |
| |
| // If we found that truncation is beneficial, perform the truncation and |
| // update 'Op'. |
| if (NeedTruncation) { |
| EVT VT = Op.getValueType(); |
| SDValue WideVal = Op->getOperand(0); |
| EVT WideVT = WideVal.getValueType(); |
| unsigned ConvertedOp = 0; |
| // Use a target machine opcode to prevent further DAGCombine |
| // optimizations that may separate the arithmetic operations |
| // from the setcc node. |
| switch (WideVal.getOpcode()) { |
| default: break; |
| case ISD::ADD: ConvertedOp = X86ISD::ADD; break; |
| case ISD::SUB: ConvertedOp = X86ISD::SUB; break; |
| case ISD::AND: ConvertedOp = X86ISD::AND; break; |
| case ISD::OR: ConvertedOp = X86ISD::OR; break; |
| case ISD::XOR: ConvertedOp = X86ISD::XOR; break; |
| } |
| |
| if (ConvertedOp) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { |
| SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); |
| SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| Op = DAG.getNode(ConvertedOp, dl, VTs, V0, V1); |
| } |
| } |
| } |
| |
| if (Opcode == 0) { |
| // Emit a CMP with 0, which is the TEST pattern. |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, |
| DAG.getConstant(0, dl, Op.getValueType())); |
| } |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands); |
| |
| SDValue New = DAG.getNode(Opcode, dl, VTs, Ops); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), New); |
| return SDValue(New.getNode(), 1); |
| } |
| |
| /// Emit nodes that will be selected as "cmp Op0,Op1", or something |
| /// equivalent. |
| SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| if (isNullConstant(Op1)) |
| return EmitTest(Op0, X86CC, dl, DAG); |
| |
| assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) && |
| "Unexpected comparison operation for MVT::i1 operands"); |
| |
| if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || |
| Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { |
| // Only promote the compare up to I32 if it is a 16 bit operation |
| // with an immediate. 16 bit immediates are to be avoided. |
| if ((Op0.getValueType() == MVT::i16 && |
| (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) && |
| !DAG.getMachineFunction().getFunction().optForMinSize() && |
| !Subtarget.isAtom()) { |
| unsigned ExtendOp = |
| isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; |
| Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); |
| Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); |
| } |
| // Use SUB instead of CMP to enable CSE between SUB and CMP. |
| SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); |
| SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1); |
| return SDValue(Sub.getNode(), 1); |
| } |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); |
| } |
| |
| /// Convert a comparison if required by the subtarget. |
| SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, |
| SelectionDAG &DAG) const { |
| // If the subtarget does not support the FUCOMI instruction, floating-point |
| // comparisons have to be converted. |
| if (Subtarget.hasCMov() || |
| Cmp.getOpcode() != X86ISD::CMP || |
| !Cmp.getOperand(0).getValueType().isFloatingPoint() || |
| !Cmp.getOperand(1).getValueType().isFloatingPoint()) |
| return Cmp; |
| |
| // The instruction selector will select an FUCOM instruction instead of |
| // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence |
| // build an SDNode sequence that transfers the result from FPSW into EFLAGS: |
| // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) |
| SDLoc dl(Cmp); |
| SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); |
| SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); |
| SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, |
| DAG.getConstant(8, dl, MVT::i8)); |
| SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); |
| |
| // Some 64-bit targets lack SAHF support, but they do support FCOMI. |
| assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?"); |
| return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); |
| } |
| |
| /// Check if replacement of SQRT with RSQRT should be disabled. |
| bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| // We never want to use both SQRT and RSQRT instructions for the same input. |
| if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op)) |
| return false; |
| |
| if (VT.isVector()) |
| return Subtarget.hasFastVectorFSQRT(); |
| return Subtarget.hasFastScalarFSQRT(); |
| } |
| |
| /// The minimum architected relative accuracy is 2^-12. We need one |
| /// Newton-Raphson step to have a good float result (24 bits of precision). |
| SDValue X86TargetLowering::getSqrtEstimate(SDValue Op, |
| SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps, |
| bool &UseOneConstNR, |
| bool Reciprocal) const { |
| EVT VT = Op.getValueType(); |
| |
| // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps. |
| // It is likely not profitable to do this for f64 because a double-precision |
| // rsqrt estimate with refinement on x86 prior to FMA requires at least 16 |
| // instructions: convert to single, rsqrtss, convert back to double, refine |
| // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA |
| // along with FMA, this could be a throughput win. |
| // TODO: SQRT requires SSE2 to prevent the introduction of an illegal v4i32 |
| // after legalize types. |
| if ((VT == MVT::f32 && Subtarget.hasSSE1()) || |
| (VT == MVT::v4f32 && Subtarget.hasSSE1() && Reciprocal) || |
| (VT == MVT::v4f32 && Subtarget.hasSSE2() && !Reciprocal) || |
| (VT == MVT::v8f32 && Subtarget.hasAVX()) || |
| (VT == MVT::v16f32 && Subtarget.useAVX512Regs())) { |
| if (RefinementSteps == ReciprocalEstimate::Unspecified) |
| RefinementSteps = 1; |
| |
| UseOneConstNR = false; |
| // There is no FSQRT for 512-bits, but there is RSQRT14. |
| unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RSQRT14 : X86ISD::FRSQRT; |
| return DAG.getNode(Opcode, SDLoc(Op), VT, Op); |
| } |
| return SDValue(); |
| } |
| |
| /// The minimum architected relative accuracy is 2^-12. We need one |
| /// Newton-Raphson step to have a good float result (24 bits of precision). |
| SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG, |
| int Enabled, |
| int &RefinementSteps) const { |
| EVT VT = Op.getValueType(); |
| |
| // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps. |
| // It is likely not profitable to do this for f64 because a double-precision |
| // reciprocal estimate with refinement on x86 prior to FMA requires |
| // 15 instructions: convert to single, rcpss, convert back to double, refine |
| // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA |
| // along with FMA, this could be a throughput win. |
| |
| if ((VT == MVT::f32 && Subtarget.hasSSE1()) || |
| (VT == MVT::v4f32 && Subtarget.hasSSE1()) || |
| (VT == MVT::v8f32 && Subtarget.hasAVX()) || |
| (VT == MVT::v16f32 && Subtarget.useAVX512Regs())) { |
| // Enable estimate codegen with 1 refinement step for vector division. |
| // Scalar division estimates are disabled because they break too much |
| // real-world code. These defaults are intended to match GCC behavior. |
| if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified) |
| return SDValue(); |
| |
| if (RefinementSteps == ReciprocalEstimate::Unspecified) |
| RefinementSteps = 1; |
| |
| // There is no FSQRT for 512-bits, but there is RCP14. |
| unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RCP14 : X86ISD::FRCP; |
| return DAG.getNode(Opcode, SDLoc(Op), VT, Op); |
| } |
| return SDValue(); |
| } |
| |
| /// If we have at least two divisions that use the same divisor, convert to |
| /// multiplication by a reciprocal. This may need to be adjusted for a given |
| /// CPU if a division's cost is not at least twice the cost of a multiplication. |
| /// This is because we still need one division to calculate the reciprocal and |
| /// then we need two multiplies by that reciprocal as replacements for the |
| /// original divisions. |
| unsigned X86TargetLowering::combineRepeatedFPDivisors() const { |
| return 2; |
| } |
| |
| /// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition |
| /// according to equal/not-equal condition code \p CC. |
| static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC, |
| const SDLoc &dl, SelectionDAG &DAG) { |
| // If Src is i8, promote it to i32 with any_extend. There is no i8 BT |
| // instruction. Since the shift amount is in-range-or-undefined, we know |
| // that doing a bittest on the i32 value is ok. We extend to i32 because |
| // the encoding for the i16 version is larger than the i32 version. |
| // Also promote i16 to i32 for performance / code size reason. |
| if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16) |
| Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src); |
| |
| // See if we can use the 32-bit instruction instead of the 64-bit one for a |
| // shorter encoding. Since the former takes the modulo 32 of BitNo and the |
| // latter takes the modulo 64, this is only valid if the 5th bit of BitNo is |
| // known to be zero. |
| if (Src.getValueType() == MVT::i64 && |
| DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32))) |
| Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src); |
| |
| // If the operand types disagree, extend the shift amount to match. Since |
| // BT ignores high bits (like shifts) we can use anyextend. |
| if (Src.getValueType() != BitNo.getValueType()) |
| BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo); |
| |
| SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo); |
| X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; |
| return getSETCC(Cond, BT, dl , DAG); |
| } |
| |
| /// Result of 'and' is compared against zero. Change to a BT node if possible. |
| static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC, |
| const SDLoc &dl, SelectionDAG &DAG) { |
| assert(And.getOpcode() == ISD::AND && "Expected AND node!"); |
| SDValue Op0 = And.getOperand(0); |
| SDValue Op1 = And.getOperand(1); |
| if (Op0.getOpcode() == ISD::TRUNCATE) |
| Op0 = Op0.getOperand(0); |
| if (Op1.getOpcode() == ISD::TRUNCATE) |
| Op1 = Op1.getOperand(0); |
| |
| SDValue LHS, RHS; |
| if (Op1.getOpcode() == ISD::SHL) |
| std::swap(Op0, Op1); |
| if (Op0.getOpcode() == ISD::SHL) { |
| if (isOneConstant(Op0.getOperand(0))) { |
| // If we looked past a truncate, check that it's only truncating away |
| // known zeros. |
| unsigned BitWidth = Op0.getValueSizeInBits(); |
| unsigned AndBitWidth = And.getValueSizeInBits(); |
| if (BitWidth > AndBitWidth) { |
| KnownBits Known; |
| DAG.computeKnownBits(Op0, Known); |
| if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth) |
| return SDValue(); |
| } |
| LHS = Op1; |
| RHS = Op0.getOperand(1); |
| } |
| } else if (Op1.getOpcode() == ISD::Constant) { |
| ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); |
| uint64_t AndRHSVal = AndRHS->getZExtValue(); |
| SDValue AndLHS = Op0; |
| |
| if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { |
| LHS = AndLHS.getOperand(0); |
| RHS = AndLHS.getOperand(1); |
| } else { |
| // Use BT if the immediate can't be encoded in a TEST instruction or we |
| // are optimizing for size and the immedaite won't fit in a byte. |
| bool OptForSize = DAG.getMachineFunction().getFunction().optForSize(); |
| if ((!isUInt<32>(AndRHSVal) || (OptForSize && !isUInt<8>(AndRHSVal))) && |
| isPowerOf2_64(AndRHSVal)) { |
| LHS = AndLHS; |
| RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType()); |
| } |
| } |
| } |
| |
| if (LHS.getNode()) |
| return getBitTestCondition(LHS, RHS, CC, dl, DAG); |
| |
| return SDValue(); |
| } |
| |
| /// Turns an ISD::CondCode into a value suitable for SSE floating-point mask |
| /// CMPs. |
| static unsigned translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, |
| SDValue &Op1) { |
| unsigned SSECC; |
| bool Swap = false; |
| |
| // SSE Condition code mapping: |
| // 0 - EQ |
| // 1 - LT |
| // 2 - LE |
| // 3 - UNORD |
| // 4 - NEQ |
| // 5 - NLT |
| // 6 - NLE |
| // 7 - ORD |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Unexpected SETCC condition"); |
| case ISD::SETOEQ: |
| case ISD::SETEQ: SSECC = 0; break; |
| case ISD::SETOGT: |
| case ISD::SETGT: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETLT: |
| case ISD::SETOLT: SSECC = 1; break; |
| case ISD::SETOGE: |
| case ISD::SETGE: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETLE: |
| case ISD::SETOLE: SSECC = 2; break; |
| case ISD::SETUO: SSECC = 3; break; |
| case ISD::SETUNE: |
| case ISD::SETNE: SSECC = 4; break; |
| case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETUGE: SSECC = 5; break; |
| case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETUGT: SSECC = 6; break; |
| case ISD::SETO: SSECC = 7; break; |
| case ISD::SETUEQ: SSECC = 8; break; |
| case ISD::SETONE: SSECC = 12; break; |
| } |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| return SSECC; |
| } |
| |
| /// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then |
| /// concatenate the result back. |
| static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && |
| "Unsupported value type for operation"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDLoc dl(Op); |
| SDValue CC = Op.getOperand(2); |
| |
| // Extract the LHS vectors |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl); |
| SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl); |
| |
| // Extract the RHS vectors |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl); |
| SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl); |
| |
| // Issue the operation on the smaller types and concatenate the result back |
| MVT EltVT = VT.getVectorElementType(); |
| MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); |
| } |
| |
| static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) { |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| assert(VT.getVectorElementType() == MVT::i1 && |
| "Cannot set masked compare for this operation"); |
| |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| |
| // If this is a seteq make sure any build vectors of all zeros are on the RHS. |
| // This helps with vptestm matching. |
| // TODO: Should we just canonicalize the setcc during DAG combine? |
| if ((SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE) && |
| ISD::isBuildVectorAllZeros(Op0.getNode())) |
| std::swap(Op0, Op1); |
| |
| // Prefer SETGT over SETLT. |
| if (SetCCOpcode == ISD::SETLT) { |
| SetCCOpcode = ISD::getSetCCSwappedOperands(SetCCOpcode); |
| std::swap(Op0, Op1); |
| } |
| |
| return DAG.getSetCC(dl, VT, Op0, Op1, SetCCOpcode); |
| } |
| |
| /// Try to turn a VSETULT into a VSETULE by modifying its second |
| /// operand \p Op1. If non-trivial (for example because it's not constant) |
| /// return an empty value. |
| static SDValue ChangeVSETULTtoVSETULE(const SDLoc &dl, SDValue Op1, |
| SelectionDAG &DAG) { |
| BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode()); |
| if (!BV) |
| return SDValue(); |
| |
| MVT VT = Op1.getSimpleValueType(); |
| MVT EVT = VT.getVectorElementType(); |
| unsigned n = VT.getVectorNumElements(); |
| SmallVector<SDValue, 8> ULTOp1; |
| |
| for (unsigned i = 0; i < n; ++i) { |
| ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i)); |
| if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT) |
| return SDValue(); |
| |
| // Avoid underflow. |
| APInt Val = Elt->getAPIntValue(); |
| if (Val == 0) |
| return SDValue(); |
| |
| ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT)); |
| } |
| |
| return DAG.getBuildVector(VT, dl, ULTOp1); |
| } |
| |
| /// As another special case, use PSUBUS[BW] when it's profitable. E.g. for |
| /// Op0 u<= Op1: |
| /// t = psubus Op0, Op1 |
| /// pcmpeq t, <0..0> |
| static SDValue LowerVSETCCWithSUBUS(SDValue Op0, SDValue Op1, MVT VT, |
| ISD::CondCode Cond, const SDLoc &dl, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| MVT VET = VT.getVectorElementType(); |
| if (VET != MVT::i8 && VET != MVT::i16) |
| return SDValue(); |
| |
| switch (Cond) { |
| default: |
| return SDValue(); |
| case ISD::SETULT: { |
| // If the comparison is against a constant we can turn this into a |
| // setule. With psubus, setule does not require a swap. This is |
| // beneficial because the constant in the register is no longer |
| // destructed as the destination so it can be hoisted out of a loop. |
| // Only do this pre-AVX since vpcmp* is no longer destructive. |
| if (Subtarget.hasAVX()) |
| return SDValue(); |
| SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG); |
| if (!ULEOp1) |
| return SDValue(); |
| Op1 = ULEOp1; |
| break; |
| } |
| // Psubus is better than flip-sign because it requires no inversion. |
| case ISD::SETUGE: |
| std::swap(Op0, Op1); |
| break; |
| case ISD::SETULE: |
| break; |
| } |
| |
| SDValue Result = DAG.getNode(X86ISD::SUBUS, dl, VT, Op0, Op1); |
| return DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, |
| getZeroVector(VT, Subtarget, DAG, dl)); |
| } |
| |
| static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| MVT VT = Op.getSimpleValueType(); |
| ISD::CondCode Cond = cast<CondCodeSDNode>(CC)->get(); |
| bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); |
| SDLoc dl(Op); |
| |
| if (isFP) { |
| #ifndef NDEBUG |
| MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); |
| assert(EltVT == MVT::f32 || EltVT == MVT::f64); |
| #endif |
| |
| unsigned Opc; |
| if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) { |
| assert(VT.getVectorNumElements() <= 16); |
| Opc = X86ISD::CMPM; |
| } else { |
| Opc = X86ISD::CMPP; |
| // The SSE/AVX packed FP comparison nodes are defined with a |
| // floating-point vector result that matches the operand type. This allows |
| // them to work with an SSE1 target (integer vector types are not legal). |
| VT = Op0.getSimpleValueType(); |
| } |
| |
| // In the two cases not handled by SSE compare predicates (SETUEQ/SETONE), |
| // emit two comparisons and a logic op to tie them together. |
| SDValue Cmp; |
| unsigned SSECC = translateX86FSETCC(Cond, Op0, Op1); |
| if (SSECC >= 8 && !Subtarget.hasAVX()) { |
| // LLVM predicate is SETUEQ or SETONE. |
| unsigned CC0, CC1; |
| unsigned CombineOpc; |
| if (Cond == ISD::SETUEQ) { |
| CC0 = 3; // UNORD |
| CC1 = 0; // EQ |
| CombineOpc = X86ISD::FOR; |
| } else { |
| assert(Cond == ISD::SETONE); |
| CC0 = 7; // ORD |
| CC1 = 4; // NEQ |
| CombineOpc = X86ISD::FAND; |
| } |
| |
| SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, |
| DAG.getConstant(CC0, dl, MVT::i8)); |
| SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, |
| DAG.getConstant(CC1, dl, MVT::i8)); |
| Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); |
| } else { |
| // Handle all other FP comparisons here. |
| Cmp = DAG.getNode(Opc, dl, VT, Op0, Op1, |
| DAG.getConstant(SSECC, dl, MVT::i8)); |
| } |
| |
| // If this is SSE/AVX CMPP, bitcast the result back to integer to match the |
| // result type of SETCC. The bitcast is expected to be optimized away |
| // during combining/isel. |
| if (Opc == X86ISD::CMPP) |
| Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp); |
| |
| return Cmp; |
| } |
| |
| MVT VTOp0 = Op0.getSimpleValueType(); |
| assert(VTOp0 == Op1.getSimpleValueType() && |
| "Expected operands with same type!"); |
| assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() && |
| "Invalid number of packed elements for source and destination!"); |
| |
| // This is being called by type legalization because v2i32 is marked custom |
| // for result type legalization for v2f32. |
| if (VTOp0 == MVT::v2i32) |
| return SDValue(); |
| |
| // The non-AVX512 code below works under the assumption that source and |
| // destination types are the same. |
| assert((Subtarget.hasAVX512() || (VT == VTOp0)) && |
| "Value types for source and destination must be the same!"); |
| |
| // Break 256-bit integer vector compare into smaller ones. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) |
| return Lower256IntVSETCC(Op, DAG); |
| |
| // The result is boolean, but operands are int/float |
| if (VT.getVectorElementType() == MVT::i1) { |
| // In AVX-512 architecture setcc returns mask with i1 elements, |
| // But there is no compare instruction for i8 and i16 elements in KNL. |
| assert((VTOp0.getScalarSizeInBits() >= 32 || Subtarget.hasBWI()) && |
| "Unexpected operand type"); |
| return LowerIntVSETCC_AVX512(Op, DAG); |
| } |
| |
| // Lower using XOP integer comparisons. |
| if (VT.is128BitVector() && Subtarget.hasXOP()) { |
| // Translate compare code to XOP PCOM compare mode. |
| unsigned CmpMode = 0; |
| switch (Cond) { |
| default: llvm_unreachable("Unexpected SETCC condition"); |
| case ISD::SETULT: |
| case ISD::SETLT: CmpMode = 0x00; break; |
| case ISD::SETULE: |
| case ISD::SETLE: CmpMode = 0x01; break; |
| case ISD::SETUGT: |
| case ISD::SETGT: CmpMode = 0x02; break; |
| case ISD::SETUGE: |
| case ISD::SETGE: CmpMode = 0x03; break; |
| case ISD::SETEQ: CmpMode = 0x04; break; |
| case ISD::SETNE: CmpMode = 0x05; break; |
| } |
| |
| // Are we comparing unsigned or signed integers? |
| unsigned Opc = |
| ISD::isUnsignedIntSetCC(Cond) ? X86ISD::VPCOMU : X86ISD::VPCOM; |
| |
| return DAG.getNode(Opc, dl, VT, Op0, Op1, |
| DAG.getConstant(CmpMode, dl, MVT::i8)); |
| } |
| |
| // (X & Y) != 0 --> (X & Y) == Y iff Y is power-of-2. |
| // Revert part of the simplifySetCCWithAnd combine, to avoid an invert. |
| if (Cond == ISD::SETNE && ISD::isBuildVectorAllZeros(Op1.getNode())) { |
| SDValue BC0 = peekThroughBitcasts(Op0); |
| if (BC0.getOpcode() == ISD::AND) { |
| APInt UndefElts; |
| SmallVector<APInt, 64> EltBits; |
| if (getTargetConstantBitsFromNode(BC0.getOperand(1), |
| VT.getScalarSizeInBits(), UndefElts, |
| EltBits, false, false)) { |
| if (llvm::all_of(EltBits, [](APInt &V) { return V.isPowerOf2(); })) { |
| Cond = ISD::SETEQ; |
| Op1 = DAG.getBitcast(VT, BC0.getOperand(1)); |
| } |
| } |
| } |
| } |
| |
| // If this is a SETNE against the signed minimum value, change it to SETGT. |
| // If this is a SETNE against the signed maximum value, change it to SETLT. |
| // which will be swapped to SETGT. |
| // Otherwise we use PCMPEQ+invert. |
| APInt ConstValue; |
| if (Cond == ISD::SETNE && |
| ISD::isConstantSplatVector(Op1.getNode(), ConstValue)) { |
| if (ConstValue.isMinSignedValue()) |
| Cond = ISD::SETGT; |
| else if (ConstValue.isMaxSignedValue()) |
| Cond = ISD::SETLT; |
| } |
| |
| // If both operands are known non-negative, then an unsigned compare is the |
| // same as a signed compare and there's no need to flip signbits. |
| // TODO: We could check for more general simplifications here since we're |
| // computing known bits. |
| bool FlipSigns = ISD::isUnsignedIntSetCC(Cond) && |
| !(DAG.SignBitIsZero(Op0) && DAG.SignBitIsZero(Op1)); |
| |
| // Special case: Use min/max operations for unsigned compares. We only want |
| // to do this for unsigned compares if we need to flip signs or if it allows |
| // use to avoid an invert. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (ISD::isUnsignedIntSetCC(Cond) && |
| (FlipSigns || ISD::isTrueWhenEqual(Cond)) && |
| TLI.isOperationLegal(ISD::UMIN, VT)) { |
| bool Invert = false; |
| unsigned Opc; |
| switch (Cond) { |
| default: llvm_unreachable("Unexpected condition code"); |
| case ISD::SETUGT: Invert = true; LLVM_FALLTHROUGH; |
| case ISD::SETULE: Opc = ISD::UMIN; break; |
| case ISD::SETULT: Invert = true; LLVM_FALLTHROUGH; |
| case ISD::SETUGE: Opc = ISD::UMAX; break; |
| } |
| |
| SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); |
| |
| // If the logical-not of the result is required, perform that now. |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| // Try to use SUBUS and PCMPEQ. |
| if (SDValue V = LowerVSETCCWithSUBUS(Op0, Op1, VT, Cond, dl, Subtarget, DAG)) |
| return V; |
| |
| // We are handling one of the integer comparisons here. Since SSE only has |
| // GT and EQ comparisons for integer, swapping operands and multiple |
| // operations may be required for some comparisons. |
| unsigned Opc = (Cond == ISD::SETEQ || Cond == ISD::SETNE) ? X86ISD::PCMPEQ |
| : X86ISD::PCMPGT; |
| bool Swap = Cond == ISD::SETLT || Cond == ISD::SETULT || |
| Cond == ISD::SETGE || Cond == ISD::SETUGE; |
| bool Invert = Cond == ISD::SETNE || |
| (Cond != ISD::SETEQ && ISD::isTrueWhenEqual(Cond)); |
| |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // Check that the operation in question is available (most are plain SSE2, |
| // but PCMPGTQ and PCMPEQQ have different requirements). |
| if (VT == MVT::v2i64) { |
| if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) { |
| assert(Subtarget.hasSSE2() && "Don't know how to lower!"); |
| |
| // First cast everything to the right type. |
| Op0 = DAG.getBitcast(MVT::v4i32, Op0); |
| Op1 = DAG.getBitcast(MVT::v4i32, Op1); |
| |
| // Since SSE has no unsigned integer comparisons, we need to flip the sign |
| // bits of the inputs before performing those operations. The lower |
| // compare is always unsigned. |
| SDValue SB; |
| if (FlipSigns) { |
| SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32); |
| } else { |
| SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32); |
| SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32); |
| SB = DAG.getBuildVector(MVT::v4i32, dl, {Sign, Zero, Sign, Zero}); |
| } |
| Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); |
| Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); |
| |
| // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) |
| SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); |
| SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); |
| |
| // Create masks for only the low parts/high parts of the 64 bit integers. |
| static const int MaskHi[] = { 1, 1, 3, 3 }; |
| static const int MaskLo[] = { 0, 0, 2, 2 }; |
| SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); |
| SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); |
| SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); |
| |
| SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); |
| Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); |
| |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, MVT::v4i32); |
| |
| return DAG.getBitcast(VT, Result); |
| } |
| |
| if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) { |
| // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with |
| // pcmpeqd + pshufd + pand. |
| assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!"); |
| |
| // First cast everything to the right type. |
| Op0 = DAG.getBitcast(MVT::v4i32, Op0); |
| Op1 = DAG.getBitcast(MVT::v4i32, Op1); |
| |
| // Do the compare. |
| SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); |
| |
| // Make sure the lower and upper halves are both all-ones. |
| static const int Mask[] = { 1, 0, 3, 2 }; |
| SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); |
| Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); |
| |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, MVT::v4i32); |
| |
| return DAG.getBitcast(VT, Result); |
| } |
| } |
| |
| // Since SSE has no unsigned integer comparisons, we need to flip the sign |
| // bits of the inputs before performing those operations. |
| if (FlipSigns) { |
| MVT EltVT = VT.getVectorElementType(); |
| SDValue SM = DAG.getConstant(APInt::getSignMask(EltVT.getSizeInBits()), dl, |
| VT); |
| Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SM); |
| Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SM); |
| } |
| |
| SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| |
| // If the logical-not of the result is required, perform that now. |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| // Try to select this as a KTEST+SETCC if possible. |
| static SDValue EmitKTEST(SDValue Op0, SDValue Op1, ISD::CondCode CC, |
| const SDLoc &dl, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // Only support equality comparisons. |
| if (CC != ISD::SETEQ && CC != ISD::SETNE) |
| return SDValue(); |
| |
| // Must be a bitcast from vXi1. |
| if (Op0.getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| |
| Op0 = Op0.getOperand(0); |
| MVT VT = Op0.getSimpleValueType(); |
| if (!(Subtarget.hasAVX512() && VT == MVT::v16i1) && |
| !(Subtarget.hasDQI() && VT == MVT::v8i1) && |
| !(Subtarget.hasBWI() && (VT == MVT::v32i1 || VT == MVT::v64i1))) |
| return SDValue(); |
| |
| X86::CondCode X86CC; |
| if (isNullConstant(Op1)) { |
| X86CC = CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE; |
| } else if (isAllOnesConstant(Op1)) { |
| // C flag is set for all ones. |
| X86CC = CC == ISD::SETEQ ? X86::COND_B : X86::COND_AE; |
| } else |
| return SDValue(); |
| |
| // If the input is an OR, we can combine it's operands into the KORTEST. |
| SDValue LHS = Op0; |
| SDValue RHS = Op0; |
| if (Op0.getOpcode() == ISD::OR && Op0.hasOneUse()) { |
| LHS = Op0.getOperand(0); |
| RHS = Op0.getOperand(1); |
| } |
| |
| SDValue KORTEST = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); |
| return getSETCC(X86CC, KORTEST, dl, DAG); |
| } |
| |
| SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); |
| |
| assert(VT == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDLoc dl(Op); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| // Optimize to BT if possible. |
| // Lower (X & (1 << N)) == 0 to BT(X, N). |
| // Lower ((X >>u N) & 1) != 0 to BT(X, N). |
| // Lower ((X >>s N) & 1) != 0 to BT(X, N). |
| if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| if (SDValue NewSetCC = LowerAndToBT(Op0, CC, dl, DAG)) |
| return NewSetCC; |
| } |
| |
| // Try to use PTEST for a tree ORs equality compared with 0. |
| // TODO: We could do AND tree with all 1s as well by using the C flag. |
| if (Op0.getOpcode() == ISD::OR && isNullConstant(Op1) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| if (SDValue NewSetCC = LowerVectorAllZeroTest(Op0, CC, Subtarget, DAG)) |
| return NewSetCC; |
| } |
| |
| // Try to lower using KTEST. |
| if (SDValue NewSetCC = EmitKTEST(Op0, Op1, CC, dl, DAG, Subtarget)) |
| return NewSetCC; |
| |
| // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of |
| // these. |
| if ((isOneConstant(Op1) || isNullConstant(Op1)) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| |
| // If the input is a setcc, then reuse the input setcc or use a new one with |
| // the inverted condition. |
| if (Op0.getOpcode() == X86ISD::SETCC) { |
| X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); |
| bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1); |
| if (!Invert) |
| return Op0; |
| |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| return getSETCC(CCode, Op0.getOperand(1), dl, DAG); |
| } |
| } |
| |
| bool IsFP = Op1.getSimpleValueType().isFloatingPoint(); |
| X86::CondCode X86CC = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG); |
| if (X86CC == X86::COND_INVALID) |
| return SDValue(); |
| |
| SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG); |
| EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); |
| return getSETCC(X86CC, EFLAGS, dl, DAG); |
| } |
| |
| SDValue X86TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue Carry = Op.getOperand(2); |
| SDValue Cond = Op.getOperand(3); |
| SDLoc DL(Op); |
| |
| assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only."); |
| X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get()); |
| |
| // Recreate the carry if needed. |
| EVT CarryVT = Carry.getValueType(); |
| APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits()); |
| Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), |
| Carry, DAG.getConstant(NegOne, DL, CarryVT)); |
| |
| SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); |
| SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry.getValue(1)); |
| return getSETCC(CC, Cmp.getValue(1), DL, DAG); |
| } |
| |
| /// Return true if opcode is a X86 logical comparison. |
| static bool isX86LogicalCmp(SDValue Op) { |
| unsigned Opc = Op.getOpcode(); |
| if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || |
| Opc == X86ISD::SAHF) |
| return true; |
| if (Op.getResNo() == 1 && |
| (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC || |
| Opc == X86ISD::SBB || Opc == X86ISD::SMUL || |
| Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR || |
| Opc == X86ISD::XOR || Opc == X86ISD::AND)) |
| return true; |
| |
| if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { |
| if (V.getOpcode() != ISD::TRUNCATE) |
| return false; |
| |
| SDValue VOp0 = V.getOperand(0); |
| unsigned InBits = VOp0.getValueSizeInBits(); |
| unsigned Bits = V.getValueSizeInBits(); |
| return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); |
| } |
| |
| SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| bool AddTest = true; |
| SDValue Cond = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| SDLoc DL(Op); |
| MVT VT = Op1.getSimpleValueType(); |
| SDValue CC; |
| |
| // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops |
| // are available or VBLENDV if AVX is available. |
| // Otherwise FP cmovs get lowered into a less efficient branch sequence later. |
| if (Cond.getOpcode() == ISD::SETCC && |
| ((Subtarget.hasSSE2() && VT == MVT::f64) || |
| (Subtarget.hasSSE1() && VT == MVT::f32)) && |
| VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) { |
| SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); |
| unsigned SSECC = translateX86FSETCC( |
| cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1); |
| |
| if (Subtarget.hasAVX512()) { |
| SDValue Cmp = DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CondOp0, |
| CondOp1, DAG.getConstant(SSECC, DL, MVT::i8)); |
| assert(!VT.isVector() && "Not a scalar type?"); |
| return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2); |
| } |
| |
| if (SSECC < 8 || Subtarget.hasAVX()) { |
| SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, |
| DAG.getConstant(SSECC, DL, MVT::i8)); |
| |
| // If we have AVX, we can use a variable vector select (VBLENDV) instead |
| // of 3 logic instructions for size savings and potentially speed. |
| // Unfortunately, there is no scalar form of VBLENDV. |
| |
| // If either operand is a constant, don't try this. We can expect to |
| // optimize away at least one of the logic instructions later in that |
| // case, so that sequence would be faster than a variable blend. |
| |
| // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly |
| // uses XMM0 as the selection register. That may need just as many |
| // instructions as the AND/ANDN/OR sequence due to register moves, so |
| // don't bother. |
| |
| if (Subtarget.hasAVX() && |
| !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) { |
| |
| // Convert to vectors, do a VSELECT, and convert back to scalar. |
| // All of the conversions should be optimized away. |
| |
| MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64; |
| SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1); |
| SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2); |
| SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp); |
| |
| MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64; |
| VCmp = DAG.getBitcast(VCmpVT, VCmp); |
| |
| SDValue VSel = DAG.getSelect(DL, VecVT, VCmp, VOp1, VOp2); |
| |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, |
| VSel, DAG.getIntPtrConstant(0, DL)); |
| } |
| SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); |
| SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); |
| return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); |
| } |
| } |
| |
| // AVX512 fallback is to lower selects of scalar floats to masked moves. |
| if ((VT == MVT::f64 || VT == MVT::f32) && Subtarget.hasAVX512()) { |
| SDValue Cmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, Cond); |
| return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2); |
| } |
| |
| // For v64i1 without 64-bit support we need to split and rejoin. |
| if (VT == MVT::v64i1 && !Subtarget.is64Bit()) { |
| assert(Subtarget.hasBWI() && "Expected BWI to be legal"); |
| SDValue Op1Lo = extractSubVector(Op1, 0, DAG, DL, 32); |
| SDValue Op2Lo = extractSubVector(Op2, 0, DAG, DL, 32); |
| SDValue Op1Hi = extractSubVector(Op1, 32, DAG, DL, 32); |
| SDValue Op2Hi = extractSubVector(Op2, 32, DAG, DL, 32); |
| SDValue Lo = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Lo, Op2Lo); |
| SDValue Hi = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Hi, Op2Hi); |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); |
| } |
| |
| if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { |
| SDValue Op1Scalar; |
| if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode())) |
| Op1Scalar = ConvertI1VectorToInteger(Op1, DAG); |
| else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0)) |
| Op1Scalar = Op1.getOperand(0); |
| SDValue Op2Scalar; |
| if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode())) |
| Op2Scalar = ConvertI1VectorToInteger(Op2, DAG); |
| else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0)) |
| Op2Scalar = Op2.getOperand(0); |
| if (Op1Scalar.getNode() && Op2Scalar.getNode()) { |
| SDValue newSelect = DAG.getSelect(DL, Op1Scalar.getValueType(), Cond, |
| Op1Scalar, Op2Scalar); |
| if (newSelect.getValueSizeInBits() == VT.getSizeInBits()) |
| return DAG.getBitcast(VT, newSelect); |
| SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| } |
| |
| if (VT == MVT::v4i1 || VT == MVT::v2i1) { |
| SDValue zeroConst = DAG.getIntPtrConstant(0, DL); |
| Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, |
| DAG.getUNDEF(MVT::v8i1), Op1, zeroConst); |
| Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, |
| DAG.getUNDEF(MVT::v8i1), Op2, zeroConst); |
| SDValue newSelect = DAG.getSelect(DL, MVT::v8i1, Cond, Op1, Op2); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst); |
| } |
| |
| if (Cond.getOpcode() == ISD::SETCC) { |
| if (SDValue NewCond = LowerSETCC(Cond, DAG)) { |
| Cond = NewCond; |
| // If the condition was updated, it's possible that the operands of the |
| // select were also updated (for example, EmitTest has a RAUW). Refresh |
| // the local references to the select operands in case they got stale. |
| Op1 = Op.getOperand(1); |
| Op2 = Op.getOperand(2); |
| } |
| } |
| |
| // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y |
| // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y |
| // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y |
| // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y |
| // (select (and (x , 0x1) == 0), y, (z ^ y) ) -> (-(and (x , 0x1)) & z ) ^ y |
| // (select (and (x , 0x1) == 0), y, (z | y) ) -> (-(and (x , 0x1)) & z ) | y |
| if (Cond.getOpcode() == X86ISD::SETCC && |
| Cond.getOperand(1).getOpcode() == X86ISD::CMP && |
| isNullConstant(Cond.getOperand(1).getOperand(1))) { |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned CondCode = |
| cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); |
| |
| if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && |
| (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { |
| SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2; |
| SDValue CmpOp0 = Cmp.getOperand(0); |
| |
| // Apply further optimizations for special cases |
| // (select (x != 0), -1, 0) -> neg & sbb |
| // (select (x == 0), 0, -1) -> neg & sbb |
| if (isNullConstant(Y) && |
| (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) { |
| SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); |
| SDValue Zero = DAG.getConstant(0, DL, CmpOp0.getValueType()); |
| SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, Zero, CmpOp0); |
| SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), |
| SDValue(Neg.getNode(), 1)); |
| return Res; |
| } |
| |
| Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, |
| CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType())); |
| Cmp = ConvertCmpIfNecessary(Cmp, DAG); |
| |
| SDValue Res = // Res = 0 or -1. |
| DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp); |
| |
| if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E)) |
| Res = DAG.getNOT(DL, Res, Res.getValueType()); |
| |
| if (!isNullConstant(Op2)) |
| Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); |
| return Res; |
| } else if (!Subtarget.hasCMov() && CondCode == X86::COND_E && |
| Cmp.getOperand(0).getOpcode() == ISD::AND && |
| isOneConstant(Cmp.getOperand(0).getOperand(1))) { |
| SDValue CmpOp0 = Cmp.getOperand(0); |
| SDValue Src1, Src2; |
| // true if Op2 is XOR or OR operator and one of its operands |
| // is equal to Op1 |
| // ( a , a op b) || ( b , a op b) |
| auto isOrXorPattern = [&]() { |
| if ((Op2.getOpcode() == ISD::XOR || Op2.getOpcode() == ISD::OR) && |
| (Op2.getOperand(0) == Op1 || Op2.getOperand(1) == Op1)) { |
| Src1 = |
| Op2.getOperand(0) == Op1 ? Op2.getOperand(1) : Op2.getOperand(0); |
| Src2 = Op1; |
| return true; |
| } |
| return false; |
| }; |
| |
| if (isOrXorPattern()) { |
| SDValue Neg; |
| unsigned int CmpSz = CmpOp0.getSimpleValueType().getSizeInBits(); |
| // we need mask of all zeros or ones with same size of the other |
| // operands. |
| if (CmpSz > VT.getSizeInBits()) |
| Neg = DAG.getNode(ISD::TRUNCATE, DL, VT, CmpOp0); |
| else if (CmpSz < VT.getSizeInBits()) |
| Neg = DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(ISD::ANY_EXTEND, DL, VT, CmpOp0.getOperand(0)), |
| DAG.getConstant(1, DL, VT)); |
| else |
| Neg = CmpOp0; |
| SDValue Mask = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| Neg); // -(and (x, 0x1)) |
| SDValue And = DAG.getNode(ISD::AND, DL, VT, Mask, Src1); // Mask & z |
| return DAG.getNode(Op2.getOpcode(), DL, VT, And, Src2); // And Op y |
| } |
| } |
| } |
| |
| // Look past (and (setcc_carry (cmp ...)), 1). |
| if (Cond.getOpcode() == ISD::AND && |
| Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && |
| isOneConstant(Cond.getOperand(1))) |
| Cond = Cond.getOperand(0); |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| unsigned CondOpcode = Cond.getOpcode(); |
| if (CondOpcode == X86ISD::SETCC || |
| CondOpcode == X86ISD::SETCC_CARRY) { |
| CC = Cond.getOperand(0); |
| |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| MVT VT = Op.getSimpleValueType(); |
| |
| bool IllegalFPCMov = false; |
| if (VT.isFloatingPoint() && !VT.isVector() && |
| !isScalarFPTypeInSSEReg(VT)) // FPStack? |
| IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); |
| |
| if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || |
| Opc == X86ISD::BT) { // FIXME |
| Cond = Cmp; |
| AddTest = false; |
| } |
| } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || |
| CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || |
| ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && |
| Cond.getOperand(0).getValueType() != MVT::i8)) { |
| SDValue LHS = Cond.getOperand(0); |
| SDValue RHS = Cond.getOperand(1); |
| unsigned X86Opcode; |
| unsigned X86Cond; |
| SDVTList VTs; |
| switch (CondOpcode) { |
| case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; |
| case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; |
| case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; |
| case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; |
| case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; |
| case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; |
| default: llvm_unreachable("unexpected overflowing operator"); |
| } |
| if (CondOpcode == ISD::UMULO) |
| VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), |
| MVT::i32); |
| else |
| VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); |
| |
| SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); |
| |
| if (CondOpcode == ISD::UMULO) |
| Cond = X86Op.getValue(2); |
| else |
| Cond = X86Op.getValue(1); |
| |
| CC = DAG.getConstant(X86Cond, DL, MVT::i8); |
| AddTest = false; |
| } |
| |
| if (AddTest) { |
| // Look past the truncate if the high bits are known zero. |
| if (isTruncWithZeroHighBitsInput(Cond, DAG)) |
| Cond = Cond.getOperand(0); |
| |
| // We know the result of AND is compared against zero. Try to match |
| // it to BT. |
| if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { |
| if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, DL, DAG)) { |
| CC = NewSetCC.getOperand(0); |
| Cond = NewSetCC.getOperand(1); |
| AddTest = false; |
| } |
| } |
| } |
| |
| if (AddTest) { |
| CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8); |
| Cond = EmitTest(Cond, X86::COND_NE, DL, DAG); |
| } |
| |
| // a < b ? -1 : 0 -> RES = ~setcc_carry |
| // a < b ? 0 : -1 -> RES = setcc_carry |
| // a >= b ? -1 : 0 -> RES = setcc_carry |
| // a >= b ? 0 : -1 -> RES = ~setcc_carry |
| if (Cond.getOpcode() == X86ISD::SUB) { |
| Cond = ConvertCmpIfNecessary(Cond, DAG); |
| unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); |
| |
| if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && |
| (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && |
| (isNullConstant(Op1) || isNullConstant(Op2))) { |
| SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), |
| Cond); |
| if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B)) |
| return DAG.getNOT(DL, Res, Res.getValueType()); |
| return Res; |
| } |
| } |
| |
| // X86 doesn't have an i8 cmov. If both operands are the result of a truncate |
| // widen the cmov and push the truncate through. This avoids introducing a new |
| // branch during isel and doesn't add any extensions. |
| if (Op.getValueType() == MVT::i8 && |
| Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { |
| SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); |
| if (T1.getValueType() == T2.getValueType() && |
| // Blacklist CopyFromReg to avoid partial register stalls. |
| T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ |
| SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, T1.getValueType(), T2, T1, |
| CC, Cond); |
| return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); |
| } |
| } |
| |
| // Promote i16 cmovs if it won't prevent folding a load. |
| if (Op.getValueType() == MVT::i16 && !MayFoldLoad(Op1) && !MayFoldLoad(Op2)) { |
| Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); |
| Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); |
| SDValue Ops[] = { Op2, Op1, CC, Cond }; |
| SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, MVT::i32, Ops); |
| return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); |
| } |
| |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| SDValue Ops[] = { Op2, Op1, CC, Cond }; |
| return DAG.getNode(X86ISD::CMOV, DL, Op.getValueType(), Ops); |
| } |
| |
| static SDValue LowerSIGN_EXTEND_Mask(SDValue Op, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op->getSimpleValueType(0); |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!"); |
| MVT VTElt = VT.getVectorElementType(); |
| SDLoc dl(Op); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Extend VT if the scalar type is v8/v16 and BWI is not supported. |
| MVT ExtVT = VT; |
| if (!Subtarget.hasBWI() && VTElt.getSizeInBits() <= 16) { |
| // If v16i32 is to be avoided, we'll need to split and concatenate. |
| if (NumElts == 16 && !Subtarget.canExtendTo512DQ()) |
| return SplitAndExtendv16i1(ISD::SIGN_EXTEND, VT, In, dl, DAG); |
| |
| ExtVT = MVT::getVectorVT(MVT::i32, NumElts); |
| } |
| |
| // Widen to 512-bits if VLX is not supported. |
| MVT WideVT = ExtVT; |
| if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) { |
| NumElts *= 512 / ExtVT.getSizeInBits(); |
| InVT = MVT::getVectorVT(MVT::i1, NumElts); |
| In = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, InVT, DAG.getUNDEF(InVT), |
| In, DAG.getIntPtrConstant(0, dl)); |
| WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), NumElts); |
| } |
| |
| SDValue V; |
| MVT WideEltVT = WideVT.getVectorElementType(); |
| if ((Subtarget.hasDQI() && WideEltVT.getSizeInBits() >= 32) || |
| (Subtarget.hasBWI() && WideEltVT.getSizeInBits() <= 16)) { |
| V = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, In); |
| } else { |
| SDValue NegOne = getOnesVector(WideVT, DAG, dl); |
| SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, dl); |
| V = DAG.getSelect(dl, WideVT, In, NegOne, Zero); |
| } |
| |
| // Truncate if we had to extend i16/i8 above. |
| if (VT != ExtVT) { |
| WideVT = MVT::getVectorVT(VTElt, NumElts); |
| V = DAG.getNode(ISD::TRUNCATE, dl, WideVT, V); |
| } |
| |
| // Extract back to 128/256-bit if we widened. |
| if (WideVT != VT) |
| V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, V, |
| DAG.getIntPtrConstant(0, dl)); |
| |
| return V; |
| } |
| |
| static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| |
| if (InVT.getVectorElementType() == MVT::i1) |
| return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG); |
| |
| assert(Subtarget.hasAVX() && "Expected AVX support"); |
| return LowerAVXExtend(Op, DAG, Subtarget); |
| } |
| |
| // Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG. |
| // For sign extend this needs to handle all vector sizes and SSE4.1 and |
| // non-SSE4.1 targets. For zero extend this should only handle inputs of |
| // MVT::v64i8 when BWI is not supported, but AVX512 is. |
| static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue In = Op->getOperand(0); |
| MVT VT = Op->getSimpleValueType(0); |
| MVT InVT = In.getSimpleValueType(); |
| assert(VT.getSizeInBits() == InVT.getSizeInBits()); |
| |
| MVT SVT = VT.getVectorElementType(); |
| MVT InSVT = InVT.getVectorElementType(); |
| assert(SVT.getSizeInBits() > InSVT.getSizeInBits()); |
| |
| if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16) |
| return SDValue(); |
| if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) |
| return SDValue(); |
| if (!(VT.is128BitVector() && Subtarget.hasSSE2()) && |
| !(VT.is256BitVector() && Subtarget.hasInt256()) && |
| !(VT.is512BitVector() && Subtarget.hasAVX512())) |
| return SDValue(); |
| |
| SDLoc dl(Op); |
| |
| // For 256-bit vectors, we only need the lower (128-bit) half of the input. |
| // For 512-bit vectors, we need 128-bits or 256-bits. |
| if (VT.getSizeInBits() > 128) { |
| // Input needs to be at least the same number of elements as output, and |
| // at least 128-bits. |
| int InSize = InSVT.getSizeInBits() * VT.getVectorNumElements(); |
| In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128)); |
| } |
| |
| assert((Op.getOpcode() != ISD::ZERO_EXTEND_VECTOR_INREG || |
| InVT == MVT::v64i8) && "Zero extend only for v64i8 input!"); |
| |
| // SSE41 targets can use the pmovsx* instructions directly for 128-bit results, |
| // so are legal and shouldn't occur here. AVX2/AVX512 pmovsx* instructions still |
| // need to be handled here for 256/512-bit results. |
| if (Subtarget.hasInt256()) { |
| assert(VT.getSizeInBits() > 128 && "Unexpected 128-bit vector extension"); |
| unsigned ExtOpc = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ? |
| X86ISD::VSEXT : X86ISD::VZEXT; |
| return DAG.getNode(ExtOpc, dl, VT, In); |
| } |
| |
| // We should only get here for sign extend. |
| assert(Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG && |
| "Unexpected opcode!"); |
| |
| // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI. |
| SDValue Curr = In; |
| MVT CurrVT = InVT; |
| |
| // As SRAI is only available on i16/i32 types, we expand only up to i32 |
| // and handle i64 separately. |
| while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) { |
| Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr); |
| MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2); |
| CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2); |
| Curr = DAG.getBitcast(CurrVT, Curr); |
| } |
| |
| SDValue SignExt = Curr; |
| if (CurrVT != InVT) { |
| unsigned SignExtShift = |
| CurrVT.getScalarSizeInBits() - InSVT.getSizeInBits(); |
| SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, |
| DAG.getConstant(SignExtShift, dl, MVT::i8)); |
| } |
| |
| if (CurrVT == VT) |
| return SignExt; |
| |
| if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) { |
| SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, |
| DAG.getConstant(31, dl, MVT::i8)); |
| SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5}); |
| return DAG.getBitcast(VT, Ext); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op->getSimpleValueType(0); |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| if (InVT.getVectorElementType() == MVT::i1) |
| return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG); |
| |
| assert(VT.isVector() && InVT.isVector() && "Expected vector type"); |
| assert(VT.getVectorNumElements() == VT.getVectorNumElements() && |
| "Expected same number of elements"); |
| assert((VT.getVectorElementType() == MVT::i16 || |
| VT.getVectorElementType() == MVT::i32 || |
| VT.getVectorElementType() == MVT::i64) && |
| "Unexpected element type"); |
| assert((InVT.getVectorElementType() == MVT::i8 || |
| InVT.getVectorElementType() == MVT::i16 || |
| InVT.getVectorElementType() == MVT::i32) && |
| "Unexpected element type"); |
| |
| if (Subtarget.hasInt256()) |
| return DAG.getNode(X86ISD::VSEXT, dl, VT, In); |
| |
| // Optimize vectors in AVX mode |
| // Sign extend v8i16 to v8i32 and |
| // v4i32 to v4i64 |
| // |
| // Divide input vector into two parts |
| // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} |
| // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 |
| // concat the vectors to original VT |
| |
| unsigned NumElems = InVT.getVectorNumElements(); |
| SDValue Undef = DAG.getUNDEF(InVT); |
| |
| SmallVector<int,8> ShufMask1(NumElems, -1); |
| for (unsigned i = 0; i != NumElems/2; ++i) |
| ShufMask1[i] = i; |
| |
| SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask1); |
| |
| SmallVector<int,8> ShufMask2(NumElems, -1); |
| for (unsigned i = 0; i != NumElems/2; ++i) |
| ShufMask2[i] = i + NumElems/2; |
| |
| SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask2); |
| |
| MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), |
| VT.getVectorNumElements() / 2); |
| |
| OpLo = DAG.getSignExtendVectorInReg(OpLo, dl, HalfVT); |
| OpHi = DAG.getSignExtendVectorInReg(OpHi, dl, HalfVT); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); |
| } |
| |
| static SDValue LowerStore(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); |
| SDLoc dl(St); |
| SDValue StoredVal = St->getValue(); |
| |
| // Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 loads. |
| assert(StoredVal.getValueType().isVector() && |
| StoredVal.getValueType().getVectorElementType() == MVT::i1 && |
| StoredVal.getValueType().getVectorNumElements() <= 8 && |
| "Unexpected VT"); |
| assert(!St->isTruncatingStore() && "Expected non-truncating store"); |
| assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() && |
| "Expected AVX512F without AVX512DQI"); |
| |
| StoredVal = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1, |
| DAG.getUNDEF(MVT::v8i1), StoredVal, |
| DAG.getIntPtrConstant(0, dl)); |
| StoredVal = DAG.getBitcast(MVT::i8, StoredVal); |
| |
| return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(), |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| } |
| |
| // Lower vector extended loads using a shuffle. If SSSE3 is not available we |
| // may emit an illegal shuffle but the expansion is still better than scalar |
| // code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise |
| // we'll emit a shuffle and a arithmetic shift. |
| // FIXME: Is the expansion actually better than scalar code? It doesn't seem so. |
| // TODO: It is possible to support ZExt by zeroing the undef values during |
| // the shuffle phase or after the shuffle. |
| static SDValue LowerLoad(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT RegVT = Op.getSimpleValueType(); |
| assert(RegVT.isVector() && "We only custom lower vector sext loads."); |
| assert(RegVT.isInteger() && |
| "We only custom lower integer vector sext loads."); |
| |
| LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode()); |
| SDLoc dl(Ld); |
| EVT MemVT = Ld->getMemoryVT(); |
| |
| // Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 loads. |
| if (RegVT.isVector() && RegVT.getVectorElementType() == MVT::i1) { |
| assert(EVT(RegVT) == MemVT && "Expected non-extending load"); |
| assert(RegVT.getVectorNumElements() <= 8 && "Unexpected VT"); |
| assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() && |
| "Expected AVX512F without AVX512DQI"); |
| |
| SDValue NewLd = DAG.getLoad(MVT::i8, dl, Ld->getChain(), Ld->getBasePtr(), |
| Ld->getPointerInfo(), Ld->getAlignment(), |
| Ld->getMemOperand()->getFlags()); |
| |
| // Replace chain users with the new chain. |
| assert(NewLd->getNumValues() == 2 && "Loads must carry a chain!"); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewLd.getValue(1)); |
| |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RegVT, |
| DAG.getBitcast(MVT::v8i1, NewLd), |
| DAG.getIntPtrConstant(0, dl)); |
| return DAG.getMergeValues({Extract, NewLd.getValue(1)}, dl); |
| } |
| |
| // Nothing useful we can do without SSE2 shuffles. |
| assert(Subtarget.hasSSE2() && "We only custom lower sext loads with SSE2."); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned RegSz = RegVT.getSizeInBits(); |
| |
| ISD::LoadExtType Ext = Ld->getExtensionType(); |
| |
| assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD) |
| && "Only anyext and sext are currently implemented."); |
| assert(MemVT != RegVT && "Cannot extend to the same type"); |
| assert(MemVT.isVector() && "Must load a vector from memory"); |
| |
| unsigned NumElems = RegVT.getVectorNumElements(); |
| unsigned MemSz = MemVT.getSizeInBits(); |
| assert(RegSz > MemSz && "Register size must be greater than the mem size"); |
| |
| if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget.hasInt256()) { |
| // The only way in which we have a legal 256-bit vector result but not the |
| // integer 256-bit operations needed to directly lower a sextload is if we |
| // have AVX1 but not AVX2. In that case, we can always emit a sextload to |
| // a 128-bit vector and a normal sign_extend to 256-bits that should get |
| // correctly legalized. We do this late to allow the canonical form of |
| // sextload to persist throughout the rest of the DAG combiner -- it wants |
| // to fold together any extensions it can, and so will fuse a sign_extend |
| // of an sextload into a sextload targeting a wider value. |
| SDValue Load; |
| if (MemSz == 128) { |
| // Just switch this to a normal load. |
| assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, " |
| "it must be a legal 128-bit vector " |
| "type!"); |
| Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(), |
| Ld->getPointerInfo(), Ld->getAlignment(), |
| Ld->getMemOperand()->getFlags()); |
| } else { |
| assert(MemSz < 128 && |
| "Can't extend a type wider than 128 bits to a 256 bit vector!"); |
| // Do an sext load to a 128-bit vector type. We want to use the same |
| // number of elements, but elements half as wide. This will end up being |
| // recursively lowered by this routine, but will succeed as we definitely |
| // have all the necessary features if we're using AVX1. |
| EVT HalfEltVT = |
| EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2); |
| EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems); |
| Load = |
| DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(), |
| Ld->getPointerInfo(), MemVT, Ld->getAlignment(), |
| Ld->getMemOperand()->getFlags()); |
| } |
| |
| // Replace chain users with the new chain. |
| assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); |
| |
| // Finally, do a normal sign-extend to the desired register. |
| return DAG.getSExtOrTrunc(Load, dl, RegVT); |
| } |
| |
| // All sizes must be a power of two. |
| assert(isPowerOf2_32(RegSz * MemSz * NumElems) && |
| "Non-power-of-two elements are not custom lowered!"); |
| |
| // Attempt to load the original value using scalar loads. |
| // Find the largest scalar type that divides the total loaded size. |
| MVT SclrLoadTy = MVT::i8; |
| for (MVT Tp : MVT::integer_valuetypes()) { |
| if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { |
| SclrLoadTy = Tp; |
| } |
| } |
| |
| // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. |
| if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && |
| (64 <= MemSz)) |
| SclrLoadTy = MVT::f64; |
| |
| // Calculate the number of scalar loads that we need to perform |
| // in order to load our vector from memory. |
| unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); |
| |
| assert((Ext != ISD::SEXTLOAD || NumLoads == 1) && |
| "Can only lower sext loads with a single scalar load!"); |
| |
| unsigned loadRegZize = RegSz; |
| if (Ext == ISD::SEXTLOAD && RegSz >= 256) |
| loadRegZize = 128; |
| |
| // If we don't have BWI we won't be able to create the shuffle needed for |
| // v8i8->v8i64. |
| if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 && |
| MemVT == MVT::v8i8) |
| loadRegZize = 128; |
| |
| // Represent our vector as a sequence of elements which are the |
| // largest scalar that we can load. |
| EVT LoadUnitVecVT = EVT::getVectorVT( |
| *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits()); |
| |
| // Represent the data using the same element type that is stored in |
| // memory. In practice, we ''widen'' MemVT. |
| EVT WideVecVT = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), |
| loadRegZize / MemVT.getScalarSizeInBits()); |
| |
| assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && |
| "Invalid vector type"); |
| |
| // We can't shuffle using an illegal type. |
| assert(TLI.isTypeLegal(WideVecVT) && |
| "We only lower types that form legal widened vector types"); |
| |
| SmallVector<SDValue, 8> Chains; |
| SDValue Ptr = Ld->getBasePtr(); |
| SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl, |
| TLI.getPointerTy(DAG.getDataLayout())); |
| SDValue Res = DAG.getUNDEF(LoadUnitVecVT); |
| |
| for (unsigned i = 0; i < NumLoads; ++i) { |
| // Perform a single load. |
| SDValue ScalarLoad = |
| DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), |
| Ld->getAlignment(), Ld->getMemOperand()->getFlags()); |
| Chains.push_back(ScalarLoad.getValue(1)); |
| // Create the first element type using SCALAR_TO_VECTOR in order to avoid |
| // another round of DAGCombining. |
| if (i == 0) |
| Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); |
| else |
| Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, |
| ScalarLoad, DAG.getIntPtrConstant(i, dl)); |
| |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| } |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); |
| |
| // Bitcast the loaded value to a vector of the original element type, in |
| // the size of the target vector type. |
| SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res); |
| unsigned SizeRatio = RegSz / MemSz; |
| |
| if (Ext == ISD::SEXTLOAD) { |
| // If we have SSE4.1, we can directly emit a VSEXT node. |
| if (Subtarget.hasSSE41()) { |
| SDValue Sext = getExtendInVec(X86ISD::VSEXT, dl, RegVT, SlicedVec, DAG); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); |
| return Sext; |
| } |
| |
| // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest |
| // lanes. |
| assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) && |
| "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!"); |
| |
| SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); |
| return Shuff; |
| } |
| |
| if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 && |
| MemVT == MVT::v8i8) { |
| SDValue Sext = getExtendInVec(X86ISD::VZEXT, dl, RegVT, SlicedVec, DAG); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); |
| return Sext; |
| } |
| |
| // Redistribute the loaded elements into the different locations. |
| SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i * SizeRatio] = i; |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, |
| DAG.getUNDEF(WideVecVT), ShuffleVec); |
| |
| // Bitcast to the requested type. |
| Shuff = DAG.getBitcast(RegVT, Shuff); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); |
| return Shuff; |
| } |
| |
| /// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes |
| /// each of which has no other use apart from the AND / OR. |
| static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { |
| Opc = Op.getOpcode(); |
| if (Opc != ISD::OR && Opc != ISD::AND) |
| return false; |
| return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(0).hasOneUse() && |
| Op.getOperand(1).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(1).hasOneUse()); |
| } |
| |
| /// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the |
| /// SETCC node has a single use. |
| static bool isXor1OfSetCC(SDValue Op) { |
| if (Op.getOpcode() != ISD::XOR) |
| return false; |
| if (isOneConstant(Op.getOperand(1))) |
| return Op.getOperand(0).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(0).hasOneUse(); |
| return false; |
| } |
| |
| SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| bool addTest = true; |
| SDValue Chain = Op.getOperand(0); |
| SDValue Cond = Op.getOperand(1); |
| SDValue Dest = Op.getOperand(2); |
| SDLoc dl(Op); |
| SDValue CC; |
| bool Inverted = false; |
| |
| if (Cond.getOpcode() == ISD::SETCC) { |
| // Check for setcc([su]{add,sub,mul}o == 0). |
| if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && |
| isNullConstant(Cond.getOperand(1)) && |
| Cond.getOperand(0).getResNo() == 1 && |
| (Cond.getOperand(0).getOpcode() == ISD::SADDO || |
| Cond.getOperand(0).getOpcode() == ISD::UADDO || |
| Cond.getOperand(0).getOpcode() == ISD::SSUBO || |
| Cond.getOperand(0).getOpcode() == ISD::USUBO || |
| Cond.getOperand(0).getOpcode() == ISD::SMULO || |
| Cond.getOperand(0).getOpcode() == ISD::UMULO)) { |
| Inverted = true; |
| Cond = Cond.getOperand(0); |
| } else { |
| if (SDValue NewCond = LowerSETCC(Cond, DAG)) |
| Cond = NewCond; |
| } |
| } |
| #if 0 |
| // FIXME: LowerXALUO doesn't handle these!! |
| else if (Cond.getOpcode() == X86ISD::ADD || |
| Cond.getOpcode() == X86ISD::SUB || |
| Cond.getOpcode() == X86ISD::SMUL || |
| Cond.getOpcode() == X86ISD::UMUL) |
| Cond = LowerXALUO(Cond, DAG); |
| #endif |
| |
| // Look pass (and (setcc_carry (cmp ...)), 1). |
| if (Cond.getOpcode() == ISD::AND && |
| Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && |
| isOneConstant(Cond.getOperand(1))) |
| Cond = Cond.getOperand(0); |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| unsigned CondOpcode = Cond.getOpcode(); |
| if (CondOpcode == X86ISD::SETCC || |
| CondOpcode == X86ISD::SETCC_CARRY) { |
| CC = Cond.getOperand(0); |
| |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? |
| if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { |
| Cond = Cmp; |
| addTest = false; |
| } else { |
| switch (cast<ConstantSDNode>(CC)->getZExtValue()) { |
| default: break; |
| case X86::COND_O: |
| case X86::COND_B: |
| // These can only come from an arithmetic instruction with overflow, |
| // e.g. SADDO, UADDO. |
| Cond = Cond.getOperand(1); |
| addTest = false; |
| break; |
| } |
| } |
| } |
| CondOpcode = Cond.getOpcode(); |
| if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || |
| CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || |
| ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && |
| Cond.getOperand(0).getValueType() != MVT::i8)) { |
| SDValue LHS = Cond.getOperand(0); |
| SDValue RHS = Cond.getOperand(1); |
| unsigned X86Opcode; |
| unsigned X86Cond; |
| SDVTList VTs; |
| // Keep this in sync with LowerXALUO, otherwise we might create redundant |
| // instructions that can't be removed afterwards (i.e. X86ISD::ADD and |
| // X86ISD::INC). |
| switch (CondOpcode) { |
| case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; |
| case ISD::SADDO: |
| if (isOneConstant(RHS)) { |
| X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; |
| break; |
| } |
| X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; |
| case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; |
| case ISD::SSUBO: |
| if (isOneConstant(RHS)) { |
| X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; |
| break; |
| } |
| X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; |
| case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; |
| case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; |
| default: llvm_unreachable("unexpected overflowing operator"); |
| } |
| if (Inverted) |
| X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); |
| if (CondOpcode == ISD::UMULO) |
| VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), |
| MVT::i32); |
| else |
| VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); |
| |
| SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); |
| |
| if (CondOpcode == ISD::UMULO) |
| Cond = X86Op.getValue(2); |
| else |
| Cond = X86Op.getValue(1); |
| |
| CC = DAG.getConstant(X86Cond, dl, MVT::i8); |
| addTest = false; |
| } else { |
| unsigned CondOpc; |
| if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { |
| SDValue Cmp = Cond.getOperand(0).getOperand(1); |
| if (CondOpc == ISD::OR) { |
| // Also, recognize the pattern generated by an FCMP_UNE. We can emit |
| // two branches instead of an explicit OR instruction with a |
| // separate test. |
| if (Cmp == Cond.getOperand(1).getOperand(1) && |
| isX86LogicalCmp(Cmp)) { |
| CC = Cond.getOperand(0).getOperand(0); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = Cond.getOperand(1).getOperand(0); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } else { // ISD::AND |
| // Also, recognize the pattern generated by an FCMP_OEQ. We can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Cmp == Cond.getOperand(1).getOperand(1) && |
| isX86LogicalCmp(Cmp) && |
| Op.getNode()->hasOneUse()) { |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, dl, MVT::i8); |
| SDNode *User = *Op.getNode()->use_begin(); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_OEQ. |
| if (User->getOpcode() == ISD::BR) { |
| SDValue FalseBB = User->getOperand(1); |
| SDNode *NewBR = |
| DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); |
| assert(NewBR == User); |
| (void)NewBR; |
| Dest = FalseBB; |
| |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, dl, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| } |
| } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { |
| // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. |
| // It should be transformed during dag combiner except when the condition |
| // is set by a arithmetics with overflow node. |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, dl, MVT::i8); |
| Cond = Cond.getOperand(0).getOperand(1); |
| addTest = false; |
| } else if (Cond.getOpcode() == ISD::SETCC && |
| cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { |
| // For FCMP_OEQ, we can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Op.getNode()->hasOneUse()) { |
| SDNode *User = *Op.getNode()->use_begin(); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_OEQ. |
| if (User->getOpcode() == ISD::BR) { |
| SDValue FalseBB = User->getOperand(1); |
| SDNode *NewBR = |
| DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); |
| assert(NewBR == User); |
| (void)NewBR; |
| Dest = FalseBB; |
| |
| SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| Cmp = ConvertCmpIfNecessary(Cmp, DAG); |
| CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = DAG.getConstant(X86::COND_P, dl, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| } else if (Cond.getOpcode() == ISD::SETCC && |
| cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { |
| // For FCMP_UNE, we can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Op.getNode()->hasOneUse()) { |
| SDNode *User = *Op.getNode()->use_begin(); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_UNE. |
| if (User->getOpcode() == ISD::BR) { |
| SDValue FalseBB = User->getOperand(1); |
| SDNode *NewBR = |
| DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); |
| assert(NewBR == User); |
| (void)NewBR; |
| |
| SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| Cmp = ConvertCmpIfNecessary(Cmp, DAG); |
| CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| Dest = FalseBB; |
| } |
| } |
| } |
| } |
| |
| if (addTest) { |
| // Look pass the truncate if the high bits are known zero. |
| if (isTruncWithZeroHighBitsInput(Cond, DAG)) |
| Cond = Cond.getOperand(0); |
| |
| // We know the result of AND is compared against zero. Try to match |
| // it to BT. |
| if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { |
| if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, dl, DAG)) { |
| CC = NewSetCC.getOperand(0); |
| Cond = NewSetCC.getOperand(1); |
| addTest = false; |
| } |
| } |
| } |
| |
| if (addTest) { |
| X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE; |
| CC = DAG.getConstant(X86Cond, dl, MVT::i8); |
| Cond = EmitTest(Cond, X86Cond, dl, DAG); |
| } |
| Cond = ConvertCmpIfNecessary(Cond, DAG); |
| return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cond); |
| } |
| |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. |
| // Calls to _alloca are needed to probe the stack when allocating more than 4k |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure |
| // that the guard pages used by the OS virtual memory manager are allocated in |
| // correct sequence. |
| SDValue |
| X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool SplitStack = MF.shouldSplitStack(); |
| bool EmitStackProbe = !getStackProbeSymbolName(MF).empty(); |
| bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) || |
| SplitStack || EmitStackProbe; |
| SDLoc dl(Op); |
| |
| // Get the inputs. |
| SDNode *Node = Op.getNode(); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| EVT VT = Node->getValueType(0); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
| |
| bool Is64Bit = Subtarget.is64Bit(); |
| MVT SPTy = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue Result; |
| if (!Lower) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); |
| assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" |
| " not tell us which reg is the stack pointer!"); |
| |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| Chain = SP.getValue(1); |
| const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); |
| unsigned StackAlign = TFI.getStackAlignment(); |
| Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value |
| if (Align > StackAlign) |
| Result = DAG.getNode(ISD::AND, dl, VT, Result, |
| DAG.getConstant(-(uint64_t)Align, dl, VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain |
| } else if (SplitStack) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (Is64Bit) { |
| // The 64 bit implementation of segmented stacks needs to clobber both r10 |
| // r11. This makes it impossible to use it along with nested parameters. |
| const Function &F = MF.getFunction(); |
| for (const auto &A : F.args()) { |
| if (A.hasNestAttr()) |
| report_fatal_error("Cannot use segmented stacks with functions that " |
| "have nested arguments."); |
| } |
| } |
| |
| const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); |
| unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); |
| Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); |
| Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, |
| DAG.getRegister(Vreg, SPTy)); |
| } else { |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size); |
| MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true); |
| |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| unsigned SPReg = RegInfo->getStackRegister(); |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); |
| Chain = SP.getValue(1); |
| |
| if (Align) { |
| SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), |
| DAG.getConstant(-(uint64_t)Align, dl, VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); |
| } |
| |
| Result = SP; |
| } |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); |
| |
| SDValue Ops[2] = {Result, Chain}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| SDLoc DL(Op); |
| |
| if (!Subtarget.is64Bit() || |
| Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| // __va_list_tag: |
| // gp_offset (0 - 6 * 8) |
| // fp_offset (48 - 48 + 8 * 16) |
| // overflow_arg_area (point to parameters coming in memory). |
| // reg_save_area |
| SmallVector<SDValue, 8> MemOps; |
| SDValue FIN = Op.getOperand(1); |
| // Store gp_offset |
| SDValue Store = DAG.getStore( |
| Op.getOperand(0), DL, |
| DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN, |
| MachinePointerInfo(SV)); |
| MemOps.push_back(Store); |
| |
| // Store fp_offset |
| FIN = DAG.getMemBasePlusOffset(FIN, 4, DL); |
| Store = DAG.getStore( |
| Op.getOperand(0), DL, |
| DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN, |
| MachinePointerInfo(SV, 4)); |
| MemOps.push_back(Store); |
| |
| // Store ptr to overflow_arg_area |
| FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); |
| SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| Store = |
| DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8)); |
| MemOps.push_back(Store); |
| |
| // Store ptr to reg_save_area. |
| FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant( |
| Subtarget.isTarget64BitLP64() ? 8 : 4, DL)); |
| SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT); |
| Store = DAG.getStore( |
| Op.getOperand(0), DL, RSFIN, FIN, |
| MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12)); |
| MemOps.push_back(Store); |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); |
| } |
| |
| SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget.is64Bit() && |
| "LowerVAARG only handles 64-bit va_arg!"); |
| assert(Op.getNumOperands() == 4); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) |
| // The Win64 ABI uses char* instead of a structure. |
| return DAG.expandVAArg(Op.getNode()); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue SrcPtr = Op.getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| unsigned Align = Op.getConstantOperandVal(3); |
| SDLoc dl(Op); |
| |
| EVT ArgVT = Op.getNode()->getValueType(0); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); |
| uint8_t ArgMode; |
| |
| // Decide which area this value should be read from. |
| // TODO: Implement the AMD64 ABI in its entirety. This simple |
| // selection mechanism works only for the basic types. |
| if (ArgVT == MVT::f80) { |
| llvm_unreachable("va_arg for f80 not yet implemented"); |
| } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { |
| ArgMode = 2; // Argument passed in XMM register. Use fp_offset. |
| } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { |
| ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. |
| } else { |
| llvm_unreachable("Unhandled argument type in LowerVAARG"); |
| } |
| |
| if (ArgMode == 2) { |
| // Sanity Check: Make sure using fp_offset makes sense. |
| assert(!Subtarget.useSoftFloat() && |
| !(MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) && |
| Subtarget.hasSSE1()); |
| } |
| |
| // Insert VAARG_64 node into the DAG |
| // VAARG_64 returns two values: Variable Argument Address, Chain |
| SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32), |
| DAG.getConstant(ArgMode, dl, MVT::i8), |
| DAG.getConstant(Align, dl, MVT::i32)}; |
| SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other); |
| SDValue VAARG = DAG.getMemIntrinsicNode( |
| X86ISD::VAARG_64, dl, |
| VTs, InstOps, MVT::i64, |
| MachinePointerInfo(SV), |
| /*Align=*/0, |
| MachineMemOperand::MOLoad | MachineMemOperand::MOStore); |
| Chain = VAARG.getValue(1); |
| |
| // Load the next argument and return it |
| return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo()); |
| } |
| |
| static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows, |
| // where a va_list is still an i8*. |
| assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!"); |
| if (Subtarget.isCallingConvWin64( |
| DAG.getMachineFunction().getFunction().getCallingConv())) |
| // Probably a Win64 va_copy. |
| return DAG.expandVACopy(Op.getNode()); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue DstPtr = Op.getOperand(1); |
| SDValue SrcPtr = Op.getOperand(2); |
| const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| SDLoc DL(Op); |
| |
| return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, |
| DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false, |
| false, false, |
| MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); |
| } |
| |
| /// Handle vector element shifts where the shift amount is a constant. |
| /// Takes immediate version of shift as input. |
| static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT, |
| SDValue SrcOp, uint64_t ShiftAmt, |
| SelectionDAG &DAG) { |
| MVT ElementType = VT.getVectorElementType(); |
| |
| // Bitcast the source vector to the output type, this is mainly necessary for |
| // vXi8/vXi64 shifts. |
| if (VT != SrcOp.getSimpleValueType()) |
| SrcOp = DAG.getBitcast(VT, SrcOp); |
| |
| // Fold this packed shift into its first operand if ShiftAmt is 0. |
| if (ShiftAmt == 0) |
| return SrcOp; |
| |
| // Check for ShiftAmt >= element width |
| if (ShiftAmt >= ElementType.getSizeInBits()) { |
| if (Opc == X86ISD::VSRAI) |
| ShiftAmt = ElementType.getSizeInBits() - 1; |
| else |
| return DAG.getConstant(0, dl, VT); |
| } |
| |
| assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) |
| && "Unknown target vector shift-by-constant node"); |
| |
| // Fold this packed vector shift into a build vector if SrcOp is a |
| // vector of Constants or UNDEFs. |
| if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { |
| SmallVector<SDValue, 8> Elts; |
| unsigned NumElts = SrcOp->getNumOperands(); |
| ConstantSDNode *ND; |
| |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode!"); |
| case X86ISD::VSHLI: |
| for (unsigned i=0; i!=NumElts; ++i) { |
| SDValue CurrentOp = SrcOp->getOperand(i); |
| if (CurrentOp->isUndef()) { |
| Elts.push_back(CurrentOp); |
| continue; |
| } |
| ND = cast<ConstantSDNode>(CurrentOp); |
| const APInt &C = ND->getAPIntValue(); |
| Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType)); |
| } |
| break; |
| case X86ISD::VSRLI: |
| for (unsigned i=0; i!=NumElts; ++i) { |
| SDValue CurrentOp = SrcOp->getOperand(i); |
| if (CurrentOp->isUndef()) { |
| Elts.push_back(CurrentOp); |
| continue; |
| } |
| ND = cast<ConstantSDNode>(CurrentOp); |
| const APInt &C = ND->getAPIntValue(); |
| Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType)); |
| } |
| break; |
| case X86ISD::VSRAI: |
| for (unsigned i=0; i!=NumElts; ++i) { |
| SDValue CurrentOp = SrcOp->getOperand(i); |
| if (CurrentOp->isUndef()) { |
| Elts.push_back(CurrentOp); |
| continue; |
| } |
| ND = cast<ConstantSDNode>(CurrentOp); |
| const APInt &C = ND->getAPIntValue(); |
| Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType)); |
| } |
| break; |
| } |
| |
| return DAG.getBuildVector(VT, dl, Elts); |
| } |
| |
| return DAG.getNode(Opc, dl, VT, SrcOp, |
| DAG.getConstant(ShiftAmt, dl, MVT::i8)); |
| } |
| |
| /// Handle vector element shifts where the shift amount may or may not be a |
| /// constant. Takes immediate version of shift as input. |
| static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT, |
| SDValue SrcOp, SDValue ShAmt, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT SVT = ShAmt.getSimpleValueType(); |
| assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!"); |
| |
| // Catch shift-by-constant. |
| if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt)) |
| return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, |
| CShAmt->getZExtValue(), DAG); |
| |
| // Change opcode to non-immediate version |
| switch (Opc) { |
| default: llvm_unreachable("Unknown target vector shift node"); |
| case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; |
| case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; |
| case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; |
| } |
| |
| // Need to build a vector containing shift amount. |
| // SSE/AVX packed shifts only use the lower 64-bit of the shift count. |
| // +=================+============+=======================================+ |
| // | ShAmt is | HasSSE4.1? | Construct ShAmt vector as | |
| // +=================+============+=======================================+ |
| // | i64 | Yes, No | Use ShAmt as lowest elt | |
| // | i32 | Yes | zero-extend in-reg | |
| // | (i32 zext(i16)) | Yes | zero-extend in-reg | |
| // | i16/i32 | No | v4i32 build_vector(ShAmt, 0, ud, ud)) | |
| // +=================+============+=======================================+ |
| |
| if (SVT == MVT::i64) |
| ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt); |
| else if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND && |
| ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) { |
| ShAmt = ShAmt.getOperand(0); |
| ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v8i16, ShAmt); |
| ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64); |
| } else if (Subtarget.hasSSE41() && |
| ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt); |
| ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64); |
| } else { |
| SDValue ShOps[4] = {ShAmt, DAG.getConstant(0, dl, SVT), |
| DAG.getUNDEF(SVT), DAG.getUNDEF(SVT)}; |
| ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps); |
| } |
| |
| // The return type has to be a 128-bit type with the same element |
| // type as the input type. |
| MVT EltVT = VT.getVectorElementType(); |
| MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); |
| |
| ShAmt = DAG.getBitcast(ShVT, ShAmt); |
| return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); |
| } |
| |
| /// Return Mask with the necessary casting or extending |
| /// for \p Mask according to \p MaskVT when lowering masking intrinsics |
| static SDValue getMaskNode(SDValue Mask, MVT MaskVT, |
| const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| |
| if (isAllOnesConstant(Mask)) |
| return DAG.getConstant(1, dl, MaskVT); |
| if (X86::isZeroNode(Mask)) |
| return DAG.getConstant(0, dl, MaskVT); |
| |
| if (MaskVT.bitsGT(Mask.getSimpleValueType())) { |
| // Mask should be extended |
| Mask = DAG.getNode(ISD::ANY_EXTEND, dl, |
| MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask); |
| } |
| |
| if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) { |
| assert(MaskVT == MVT::v64i1 && "Expected v64i1 mask!"); |
| assert(Subtarget.hasBWI() && "Expected AVX512BW target!"); |
| // In case 32bit mode, bitcast i64 is illegal, extend/split it. |
| SDValue Lo, Hi; |
| Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, |
| DAG.getConstant(0, dl, MVT::i32)); |
| Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| Lo = DAG.getBitcast(MVT::v32i1, Lo); |
| Hi = DAG.getBitcast(MVT::v32i1, Hi); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi); |
| } else { |
| MVT BitcastVT = MVT::getVectorVT(MVT::i1, |
| Mask.getSimpleValueType().getSizeInBits()); |
| // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements |
| // are extracted by EXTRACT_SUBVECTOR. |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, |
| DAG.getBitcast(BitcastVT, Mask), |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| } |
| |
| /// Return (and \p Op, \p Mask) for compare instructions or |
| /// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the |
| /// necessary casting or extending for \p Mask when lowering masking intrinsics |
| static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, |
| SDValue PreservedSrc, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); |
| unsigned OpcodeSelect = ISD::VSELECT; |
| SDLoc dl(Op); |
| |
| if (isAllOnesConstant(Mask)) |
| return Op; |
| |
| SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); |
| |
| switch (Op.getOpcode()) { |
| default: break; |
| case X86ISD::CMPM: |
| case X86ISD::CMPM_RND: |
| case X86ISD::VPSHUFBITQMB: |
| case X86ISD::VFPCLASS: |
| return DAG.getNode(ISD::AND, dl, VT, Op, VMask); |
| case ISD::TRUNCATE: |
| case X86ISD::VTRUNC: |
| case X86ISD::VTRUNCS: |
| case X86ISD::VTRUNCUS: |
| case X86ISD::CVTPS2PH: |
| // We can't use ISD::VSELECT here because it is not always "Legal" |
| // for the destination type. For example vpmovqb require only AVX512 |
| // and vselect that can operate on byte element type require BWI |
| OpcodeSelect = X86ISD::SELECT; |
| break; |
| } |
| if (PreservedSrc.isUndef()) |
| PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); |
| return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc); |
| } |
| |
| /// Creates an SDNode for a predicated scalar operation. |
| /// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc). |
| /// The mask is coming as MVT::i8 and it should be transformed |
| /// to MVT::v1i1 while lowering masking intrinsics. |
| /// The main difference between ScalarMaskingNode and VectorMaskingNode is using |
| /// "X86select" instead of "vselect". We just can't create the "vselect" node |
| /// for a scalar instruction. |
| static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, |
| SDValue PreservedSrc, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| |
| if (auto *MaskConst = dyn_cast<ConstantSDNode>(Mask)) |
| if (MaskConst->getZExtValue() & 0x1) |
| return Op; |
| |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| assert(Mask.getValueType() == MVT::i8 && "Unexpect type"); |
| SDValue IMask = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Mask); |
| if (Op.getOpcode() == X86ISD::FSETCCM || |
| Op.getOpcode() == X86ISD::FSETCCM_RND || |
| Op.getOpcode() == X86ISD::VFPCLASSS) |
| return DAG.getNode(ISD::AND, dl, VT, Op, IMask); |
| |
| if (PreservedSrc.isUndef()) |
| PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); |
| return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc); |
| } |
| |
| static int getSEHRegistrationNodeSize(const Function *Fn) { |
| if (!Fn->hasPersonalityFn()) |
| report_fatal_error( |
| "querying registration node size for function without personality"); |
| // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See |
| // WinEHStatePass for the full struct definition. |
| switch (classifyEHPersonality(Fn->getPersonalityFn())) { |
| case EHPersonality::MSVC_X86SEH: return 24; |
| case EHPersonality::MSVC_CXX: return 16; |
| default: break; |
| } |
| report_fatal_error( |
| "can only recover FP for 32-bit MSVC EH personality functions"); |
| } |
| |
| /// When the MSVC runtime transfers control to us, either to an outlined |
| /// function or when returning to a parent frame after catching an exception, we |
| /// recover the parent frame pointer by doing arithmetic on the incoming EBP. |
| /// Here's the math: |
| /// RegNodeBase = EntryEBP - RegNodeSize |
| /// ParentFP = RegNodeBase - ParentFrameOffset |
| /// Subtracting RegNodeSize takes us to the offset of the registration node, and |
| /// subtracting the offset (negative on x86) takes us back to the parent FP. |
| static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn, |
| SDValue EntryEBP) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SDLoc dl; |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); |
| |
| // It's possible that the parent function no longer has a personality function |
| // if the exceptional code was optimized away, in which case we just return |
| // the incoming EBP. |
| if (!Fn->hasPersonalityFn()) |
| return EntryEBP; |
| |
| // Get an MCSymbol that will ultimately resolve to the frame offset of the EH |
| // registration, or the .set_setframe offset. |
| MCSymbol *OffsetSym = |
| MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( |
| GlobalValue::dropLLVMManglingEscape(Fn->getName())); |
| SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT); |
| SDValue ParentFrameOffset = |
| DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal); |
| |
| // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after |
| // prologue to RBP in the parent function. |
| const X86Subtarget &Subtarget = |
| static_cast<const X86Subtarget &>(DAG.getSubtarget()); |
| if (Subtarget.is64Bit()) |
| return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset); |
| |
| int RegNodeSize = getSEHRegistrationNodeSize(Fn); |
| // RegNodeBase = EntryEBP - RegNodeSize |
| // ParentFP = RegNodeBase - ParentFrameOffset |
| SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP, |
| DAG.getConstant(RegNodeSize, dl, PtrVT)); |
| return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset); |
| } |
| |
| SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Helper to detect if the operand is CUR_DIRECTION rounding mode. |
| auto isRoundModeCurDirection = [](SDValue Rnd) { |
| if (!isa<ConstantSDNode>(Rnd)) |
| return false; |
| |
| unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); |
| return Round == X86::STATIC_ROUNDING::CUR_DIRECTION; |
| }; |
| |
| SDLoc dl(Op); |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| MVT VT = Op.getSimpleValueType(); |
| const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo); |
| if (IntrData) { |
| switch(IntrData->Type) { |
| case INTR_TYPE_1OP: { |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(2); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), |
| Op.getOperand(1), Rnd); |
| } |
| } |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1)); |
| } |
| case INTR_TYPE_2OP: |
| case INTR_TYPE_2OP_IMM8: { |
| SDValue Src2 = Op.getOperand(2); |
| |
| if (IntrData->Type == INTR_TYPE_2OP_IMM8) |
| Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2); |
| |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(3); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), |
| Op.getOperand(1), Src2, Rnd); |
| } |
| } |
| |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), |
| Op.getOperand(1), Src2); |
| } |
| case INTR_TYPE_3OP: |
| case INTR_TYPE_3OP_IMM8: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue Src3 = Op.getOperand(3); |
| |
| if (IntrData->Type == INTR_TYPE_3OP_IMM8) |
| Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3); |
| |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(4); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, Op.getValueType(), |
| Src1, Src2, Src3, Rnd); |
| } |
| } |
| |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), |
| Src1, Src2, Src3); |
| } |
| case INTR_TYPE_4OP: |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); |
| case INTR_TYPE_1OP_MASK_RM: { |
| SDValue Src = Op.getOperand(1); |
| SDValue PassThru = Op.getOperand(2); |
| SDValue Mask = Op.getOperand(3); |
| SDValue RoundingMode; |
| // We always add rounding mode to the Node. |
| // If the rounding mode is not specified, we add the |
| // "current direction" mode. |
| if (Op.getNumOperands() == 4) |
| RoundingMode = |
| DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); |
| else |
| RoundingMode = Op.getOperand(4); |
| assert(IntrData->Opc1 == 0 && "Unexpected second opcode!"); |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, |
| RoundingMode), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case INTR_TYPE_1OP_MASK: { |
| SDValue Src = Op.getOperand(1); |
| SDValue PassThru = Op.getOperand(2); |
| SDValue Mask = Op.getOperand(3); |
| // We add rounding mode to the Node when |
| // - RM Opcode is specified and |
| // - RM is not "current direction". |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(4); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, Op.getValueType(), |
| Src, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| } |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case INTR_TYPE_SCALAR_MASK: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue passThru = Op.getOperand(3); |
| SDValue Mask = Op.getOperand(4); |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| // There are 2 kinds of intrinsics in this group: |
| // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands |
| // (2) With rounding mode and sae - 7 operands. |
| bool HasRounding = IntrWithRoundingModeOpcode != 0; |
| if (Op.getNumOperands() == (5U + HasRounding)) { |
| if (HasRounding) { |
| SDValue Rnd = Op.getOperand(5); |
| if (!isRoundModeCurDirection(Rnd)) |
| return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, VT, Src1, Src2, Rnd), |
| Mask, passThru, Subtarget, DAG); |
| } |
| return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, |
| Src2), |
| Mask, passThru, Subtarget, DAG); |
| } |
| |
| assert(Op.getNumOperands() == (6U + HasRounding) && |
| "Unexpected intrinsic form"); |
| SDValue RoundingMode = Op.getOperand(5); |
| if (HasRounding) { |
| SDValue Sae = Op.getOperand(6); |
| if (!isRoundModeCurDirection(Sae)) |
| return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, VT, Src1, Src2, |
| RoundingMode, Sae), |
| Mask, passThru, Subtarget, DAG); |
| } |
| return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, |
| Src2, RoundingMode), |
| Mask, passThru, Subtarget, DAG); |
| } |
| case INTR_TYPE_SCALAR_MASK_RM: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue Src0 = Op.getOperand(3); |
| SDValue Mask = Op.getOperand(4); |
| // There are 2 kinds of intrinsics in this group: |
| // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands |
| // (2) With rounding mode and sae - 7 operands. |
| if (Op.getNumOperands() == 6) { |
| SDValue Sae = Op.getOperand(5); |
| return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, |
| Sae), |
| Mask, Src0, Subtarget, DAG); |
| } |
| assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form"); |
| SDValue RoundingMode = Op.getOperand(5); |
| SDValue Sae = Op.getOperand(6); |
| return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, |
| RoundingMode, Sae), |
| Mask, Src0, Subtarget, DAG); |
| } |
| case INTR_TYPE_2OP_MASK: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue PassThru = Op.getOperand(3); |
| SDValue Mask = Op.getOperand(4); |
| |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(5); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, Op.getValueType(), |
| Src1, Src2, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| } |
| // TODO: Intrinsics should have fast-math-flags to propagate. |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case INTR_TYPE_2OP_MASK_RM: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue PassThru = Op.getOperand(3); |
| SDValue Mask = Op.getOperand(4); |
| // We specify 2 possible modes for intrinsics, with/without rounding |
| // modes. |
| // First, we check if the intrinsic have rounding mode (6 operands), |
| // if not, we set rounding mode to "current". |
| SDValue Rnd; |
| if (Op.getNumOperands() == 6) |
| Rnd = Op.getOperand(5); |
| else |
| Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, |
| Src1, Src2, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case INTR_TYPE_3OP_SCALAR_MASK: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue Src3 = Op.getOperand(3); |
| SDValue PassThru = Op.getOperand(4); |
| SDValue Mask = Op.getOperand(5); |
| |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(6); |
| if (!isRoundModeCurDirection(Rnd)) |
| return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, VT, Src1, Src2, Src3, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, |
| Src2, Src3), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case INTR_TYPE_3OP_MASK: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue Src3 = Op.getOperand(3); |
| SDValue PassThru = Op.getOperand(4); |
| SDValue Mask = Op.getOperand(5); |
| |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(6); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, Op.getValueType(), |
| Src1, Src2, Src3, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| } |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, |
| Src1, Src2, Src3), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case VPERM_2OP : { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| |
| // Swap Src1 and Src2 in the node creation |
| return DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1); |
| } |
| case FMA_OP_MASKZ: |
| case FMA_OP_MASK: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue Src3 = Op.getOperand(3); |
| SDValue Mask = Op.getOperand(4); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue PassThru = SDValue(); |
| |
| // set PassThru element |
| if (IntrData->Type == FMA_OP_MASKZ) |
| PassThru = getZeroVector(VT, Subtarget, DAG, dl); |
| else |
| PassThru = Src1; |
| |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(5); |
| if (!isRoundModeCurDirection(Rnd)) |
| return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, Op.getValueType(), |
| Src1, Src2, Src3, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, |
| dl, Op.getValueType(), |
| Src1, Src2, Src3), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case IFMA_OP: |
| // NOTE: We need to swizzle the operands to pass the multiply operands |
| // first. |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), |
| Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); |
| case CVTPD2PS: |
| // ISD::FP_ROUND has a second argument that indicates if the truncation |
| // does not change the value. Set it to 0 since it can change. |
| return DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1), |
| DAG.getIntPtrConstant(0, dl)); |
| case CVTPD2PS_MASK: { |
| SDValue Src = Op.getOperand(1); |
| SDValue PassThru = Op.getOperand(2); |
| SDValue Mask = Op.getOperand(3); |
| // We add rounding mode to the Node when |
| // - RM Opcode is specified and |
| // - RM is not "current direction". |
| unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; |
| if (IntrWithRoundingModeOpcode != 0) { |
| SDValue Rnd = Op.getOperand(4); |
| if (!isRoundModeCurDirection(Rnd)) { |
| return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, |
| dl, Op.getValueType(), |
| Src, Rnd), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| } |
| assert(IntrData->Opc0 == ISD::FP_ROUND && "Unexpected opcode!"); |
| // ISD::FP_ROUND has a second argument that indicates if the truncation |
| // does not change the value. Set it to 0 since it can change. |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, |
| DAG.getIntPtrConstant(0, dl)), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case FPCLASS: { |
| // FPclass intrinsics |
| SDValue Src1 = Op.getOperand(1); |
| MVT MaskVT = Op.getSimpleValueType(); |
| SDValue Imm = Op.getOperand(2); |
| return DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm); |
| } |
| case FPCLASSS: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Imm = Op.getOperand(2); |
| SDValue Mask = Op.getOperand(3); |
| SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Imm); |
| SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, SDValue(), |
| Subtarget, DAG); |
| // Need to fill with zeros to ensure the bitcast will produce zeroes |
| // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that. |
| SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1, |
| DAG.getConstant(0, dl, MVT::v8i1), |
| FPclassMask, DAG.getIntPtrConstant(0, dl)); |
| return DAG.getBitcast(MVT::i8, Ins); |
| } |
| case CMP_MASK: { |
| // Comparison intrinsics with masks. |
| // Example of transformation: |
| // (i8 (int_x86_avx512_mask_pcmpeq_q_128 |
| // (v2i64 %a), (v2i64 %b), (i8 %mask))) -> |
| // (i8 (bitcast |
| // (v8i1 (insert_subvector zero, |
| // (v2i1 (and (PCMPEQM %a, %b), |
| // (extract_subvector |
| // (v8i1 (bitcast %mask)), 0))), 0)))) |
| MVT VT = Op.getOperand(1).getSimpleValueType(); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); |
| SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3); |
| MVT BitcastVT = MVT::getVectorVT(MVT::i1, |
| Mask.getSimpleValueType().getSizeInBits()); |
| SDValue Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), |
| Op.getOperand(2)); |
| SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, SDValue(), |
| Subtarget, DAG); |
| // Need to fill with zeros to ensure the bitcast will produce zeroes |
| // for the upper bits in the v2i1/v4i1 case. |
| SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, |
| DAG.getConstant(0, dl, BitcastVT), |
| CmpMask, DAG.getIntPtrConstant(0, dl)); |
| return DAG.getBitcast(Op.getValueType(), Res); |
| } |
| |
| case CMP_MASK_CC: { |
| MVT MaskVT = Op.getSimpleValueType(); |
| SDValue Cmp; |
| SDValue CC = Op.getOperand(3); |
| CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC); |
| // We specify 2 possible opcodes for intrinsics with rounding modes. |
| // First, we check if the intrinsic may have non-default rounding mode, |
| // (IntrData->Opc1 != 0), then we check the rounding mode operand. |
| if (IntrData->Opc1 != 0) { |
| SDValue Rnd = Op.getOperand(4); |
| if (!isRoundModeCurDirection(Rnd)) |
| Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1), |
| Op.getOperand(2), CC, Rnd); |
| } |
| //default rounding mode |
| if (!Cmp.getNode()) |
| Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), |
| Op.getOperand(2), CC); |
| |
| return Cmp; |
| } |
| case CMP_MASK_SCALAR_CC: { |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3)); |
| SDValue Mask = Op.getOperand(4); |
| |
| SDValue Cmp; |
| if (IntrData->Opc1 != 0) { |
| SDValue Rnd = Op.getOperand(5); |
| if (!isRoundModeCurDirection(Rnd)) |
| Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::v1i1, Src1, Src2, CC, Rnd); |
| } |
| //default rounding mode |
| if(!Cmp.getNode()) |
| Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Src2, CC); |
| |
| SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, SDValue(), |
| Subtarget, DAG); |
| // Need to fill with zeros to ensure the bitcast will produce zeroes |
| // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that. |
| SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1, |
| DAG.getConstant(0, dl, MVT::v8i1), |
| CmpMask, DAG.getIntPtrConstant(0, dl)); |
| return DAG.getBitcast(MVT::i8, Ins); |
| } |
| case COMI: { // Comparison intrinsics |
| ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1; |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS); |
| SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS); |
| SDValue SetCC; |
| switch (CC) { |
| case ISD::SETEQ: { // (ZF = 0 and PF = 0) |
| SetCC = getSETCC(X86::COND_E, Comi, dl, DAG); |
| SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG); |
| SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP); |
| break; |
| } |
| case ISD::SETNE: { // (ZF = 1 or PF = 1) |
| SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG); |
| SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG); |
| SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP); |
| break; |
| } |
| case ISD::SETGT: // (CF = 0 and ZF = 0) |
| SetCC = getSETCC(X86::COND_A, Comi, dl, DAG); |
| break; |
| case ISD::SETLT: { // The condition is opposite to GT. Swap the operands. |
| SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG); |
| break; |
| } |
| case ISD::SETGE: // CF = 0 |
| SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG); |
| break; |
| case ISD::SETLE: // The condition is opposite to GE. Swap the operands. |
| SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG); |
| break; |
| default: |
| llvm_unreachable("Unexpected illegal condition!"); |
| } |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| case COMI_RM: { // Comparison intrinsics with Sae |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| unsigned CondVal = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| SDValue Sae = Op.getOperand(4); |
| |
| SDValue FCmp; |
| if (isRoundModeCurDirection(Sae)) |
| FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::v1i1, LHS, RHS, |
| DAG.getConstant(CondVal, dl, MVT::i8)); |
| else |
| FCmp = DAG.getNode(X86ISD::FSETCCM_RND, dl, MVT::v1i1, LHS, RHS, |
| DAG.getConstant(CondVal, dl, MVT::i8), Sae); |
| // Need to fill with zeros to ensure the bitcast will produce zeroes |
| // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that. |
| SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1, |
| DAG.getConstant(0, dl, MVT::v16i1), |
| FCmp, DAG.getIntPtrConstant(0, dl)); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, |
| DAG.getBitcast(MVT::i16, Ins)); |
| } |
| case VSHIFT: |
| return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), |
| Op.getOperand(1), Op.getOperand(2), Subtarget, |
| DAG); |
| case COMPRESS_EXPAND_IN_REG: { |
| SDValue Mask = Op.getOperand(3); |
| SDValue DataToCompress = Op.getOperand(1); |
| SDValue PassThru = Op.getOperand(2); |
| if (isAllOnesConstant(Mask)) // return data as is |
| return Op.getOperand(1); |
| |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, |
| DataToCompress), |
| Mask, PassThru, Subtarget, DAG); |
| } |
| case FIXUPIMMS: |
| case FIXUPIMMS_MASKZ: |
| case FIXUPIMM: |
| case FIXUPIMM_MASKZ:{ |
| SDValue Src1 = Op.getOperand(1); |
| SDValue Src2 = Op.getOperand(2); |
| SDValue Src3 = Op.getOperand(3); |
| SDValue Imm = Op.getOperand(4); |
| SDValue Mask = Op.getOperand(5); |
| SDValue Passthru = (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMMS ) ? |
| Src1 : getZeroVector(VT, Subtarget, DAG, dl); |
| // We specify 2 possible modes for intrinsics, with/without rounding |
| // modes. |
| // First, we check if the intrinsic have rounding mode (7 operands), |
| // if not, we set rounding mode to "current". |
| SDValue Rnd; |
| if (Op.getNumOperands() == 7) |
| Rnd = Op.getOperand(6); |
| else |
| Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); |
| if (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMM_MASKZ) |
| return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, |
| Src1, Src2, Src3, Imm, Rnd), |
| Mask, Passthru, Subtarget, DAG); |
| else // Scalar - FIXUPIMMS, FIXUPIMMS_MASKZ |
| return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, |
| Src1, Src2, Src3, Imm, Rnd), |
| Mask, Passthru, Subtarget, DAG); |
| } |
| case ROUNDP: { |
| assert(IntrData->Opc0 == X86ISD::VRNDSCALE && "Unexpected opcode"); |
| // Clear the upper bits of the rounding immediate so that the legacy |
| // intrinsic can't trigger the scaling behavior of VRNDSCALE. |
| SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32, |
| Op.getOperand(2), |
| DAG.getConstant(0xf, dl, MVT::i32)); |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), |
| Op.getOperand(1), RoundingMode); |
| } |
| case ROUNDS: { |
| assert(IntrData->Opc0 == X86ISD::VRNDSCALES && "Unexpected opcode"); |
| // Clear the upper bits of the rounding immediate so that the legacy |
| // intrinsic can't trigger the scaling behavior of VRNDSCALE. |
| SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32, |
| Op.getOperand(3), |
| DAG.getConstant(0xf, dl, MVT::i32)); |
| return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), RoundingMode); |
| } |
| default: |
| break; |
| } |
| } |
| |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| |
| // ptest and testp intrinsics. The intrinsic these come from are designed to |
| // return an integer value, not just an instruction so lower it to the ptest |
| // or testp pattern and a setcc for the result. |
| case Intrinsic::x86_sse41_ptestz: |
| case Intrinsic::x86_sse41_ptestc: |
| case Intrinsic::x86_sse41_ptestnzc: |
| case Intrinsic::x86_avx_ptestz_256: |
| case Intrinsic::x86_avx_ptestc_256: |
| case Intrinsic::x86_avx_ptestnzc_256: |
| case Intrinsic::x86_avx_vtestz_ps: |
| case Intrinsic::x86_avx_vtestc_ps: |
| case Intrinsic::x86_avx_vtestnzc_ps: |
| case Intrinsic::x86_avx_vtestz_pd: |
| case Intrinsic::x86_avx_vtestc_pd: |
| case Intrinsic::x86_avx_vtestnzc_pd: |
| case Intrinsic::x86_avx_vtestz_ps_256: |
| case Intrinsic::x86_avx_vtestc_ps_256: |
| case Intrinsic::x86_avx_vtestnzc_ps_256: |
| case Intrinsic::x86_avx_vtestz_pd_256: |
| case Intrinsic::x86_avx_vtestc_pd_256: |
| case Intrinsic::x86_avx_vtestnzc_pd_256: { |
| bool IsTestPacked = false; |
| X86::CondCode X86CC; |
| switch (IntNo) { |
| default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); |
| case Intrinsic::x86_avx_vtestz_ps: |
| case Intrinsic::x86_avx_vtestz_pd: |
| case Intrinsic::x86_avx_vtestz_ps_256: |
| case Intrinsic::x86_avx_vtestz_pd_256: |
| IsTestPacked = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::x86_sse41_ptestz: |
| case Intrinsic::x86_avx_ptestz_256: |
| // ZF = 1 |
| X86CC = X86::COND_E; |
| break; |
| case Intrinsic::x86_avx_vtestc_ps: |
| case Intrinsic::x86_avx_vtestc_pd: |
| case Intrinsic::x86_avx_vtestc_ps_256: |
| case Intrinsic::x86_avx_vtestc_pd_256: |
| IsTestPacked = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::x86_sse41_ptestc: |
| case Intrinsic::x86_avx_ptestc_256: |
| // CF = 1 |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_avx_vtestnzc_ps: |
| case Intrinsic::x86_avx_vtestnzc_pd: |
| case Intrinsic::x86_avx_vtestnzc_ps_256: |
| case Intrinsic::x86_avx_vtestnzc_pd_256: |
| IsTestPacked = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::x86_sse41_ptestnzc: |
| case Intrinsic::x86_avx_ptestnzc_256: |
| // ZF and CF = 0 |
| X86CC = X86::COND_A; |
| break; |
| } |
| |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; |
| SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); |
| SDValue SetCC = getSETCC(X86CC, Test, dl, DAG); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| |
| case Intrinsic::x86_sse42_pcmpistria128: |
| case Intrinsic::x86_sse42_pcmpestria128: |
| case Intrinsic::x86_sse42_pcmpistric128: |
| case Intrinsic::x86_sse42_pcmpestric128: |
| case Intrinsic::x86_sse42_pcmpistrio128: |
| case Intrinsic::x86_sse42_pcmpestrio128: |
| case Intrinsic::x86_sse42_pcmpistris128: |
| case Intrinsic::x86_sse42_pcmpestris128: |
| case Intrinsic::x86_sse42_pcmpistriz128: |
| case Intrinsic::x86_sse42_pcmpestriz128: { |
| unsigned Opcode; |
| X86::CondCode X86CC; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse42_pcmpistria128: |
| Opcode = X86ISD::PCMPISTR; |
| X86CC = X86::COND_A; |
| break; |
| case Intrinsic::x86_sse42_pcmpestria128: |
| Opcode = X86ISD::PCMPESTR; |
| X86CC = X86::COND_A; |
| break; |
| case Intrinsic::x86_sse42_pcmpistric128: |
| Opcode = X86ISD::PCMPISTR; |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_sse42_pcmpestric128: |
| Opcode = X86ISD::PCMPESTR; |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_sse42_pcmpistrio128: |
| Opcode = X86ISD::PCMPISTR; |
| X86CC = X86::COND_O; |
| break; |
| case Intrinsic::x86_sse42_pcmpestrio128: |
| Opcode = X86ISD::PCMPESTR; |
| X86CC = X86::COND_O; |
| break; |
| case Intrinsic::x86_sse42_pcmpistris128: |
| Opcode = X86ISD::PCMPISTR; |
| X86CC = X86::COND_S; |
| break; |
| case Intrinsic::x86_sse42_pcmpestris128: |
| Opcode = X86ISD::PCMPESTR; |
| X86CC = X86::COND_S; |
| break; |
| case Intrinsic::x86_sse42_pcmpistriz128: |
| Opcode = X86ISD::PCMPISTR; |
| X86CC = X86::COND_E; |
| break; |
| case Intrinsic::x86_sse42_pcmpestriz128: |
| Opcode = X86ISD::PCMPESTR; |
| X86CC = X86::COND_E; |
| break; |
| } |
| SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32); |
| SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps).getValue(2); |
| SDValue SetCC = getSETCC(X86CC, PCMP, dl, DAG); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| |
| case Intrinsic::x86_sse42_pcmpistri128: |
| case Intrinsic::x86_sse42_pcmpestri128: { |
| unsigned Opcode; |
| if (IntNo == Intrinsic::x86_sse42_pcmpistri128) |
| Opcode = X86ISD::PCMPISTR; |
| else |
| Opcode = X86ISD::PCMPESTR; |
| |
| SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32); |
| return DAG.getNode(Opcode, dl, VTs, NewOps); |
| } |
| |
| case Intrinsic::x86_sse42_pcmpistrm128: |
| case Intrinsic::x86_sse42_pcmpestrm128: { |
| unsigned Opcode; |
| if (IntNo == Intrinsic::x86_sse42_pcmpistrm128) |
| Opcode = X86ISD::PCMPISTR; |
| else |
| Opcode = X86ISD::PCMPESTR; |
| |
| SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32); |
| return DAG.getNode(Opcode, dl, VTs, NewOps).getValue(1); |
| } |
| |
| case Intrinsic::eh_sjlj_lsda: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); |
| auto &Context = MF.getMMI().getContext(); |
| MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + |
| Twine(MF.getFunctionNumber())); |
| return DAG.getNode(getGlobalWrapperKind(), dl, VT, |
| DAG.getMCSymbol(S, PtrVT)); |
| } |
| |
| case Intrinsic::x86_seh_lsda: { |
| // Compute the symbol for the LSDA. We know it'll get emitted later. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SDValue Op1 = Op.getOperand(1); |
| auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal()); |
| MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol( |
| GlobalValue::dropLLVMManglingEscape(Fn->getName())); |
| |
| // Generate a simple absolute symbol reference. This intrinsic is only |
| // supported on 32-bit Windows, which isn't PIC. |
| SDValue Result = DAG.getMCSymbol(LSDASym, VT); |
| return DAG.getNode(X86ISD::Wrapper, dl, VT, Result); |
| } |
| |
| case Intrinsic::x86_seh_recoverfp: { |
| SDValue FnOp = Op.getOperand(1); |
| SDValue IncomingFPOp = Op.getOperand(2); |
| GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); |
| auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); |
| if (!Fn) |
| report_fatal_error( |
| "llvm.x86.seh.recoverfp must take a function as the first argument"); |
| return recoverFramePointer(DAG, Fn, IncomingFPOp); |
| } |
| |
| case Intrinsic::localaddress: { |
| // Returns one of the stack, base, or frame pointer registers, depending on |
| // which is used to reference local variables. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| unsigned Reg; |
| if (RegInfo->hasBasePointer(MF)) |
| Reg = RegInfo->getBaseRegister(); |
| else // This function handles the SP or FP case. |
| Reg = RegInfo->getPtrSizedFrameRegister(MF); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); |
| } |
| } |
| } |
| |
| static SDValue getAVX2GatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, |
| SDValue Src, SDValue Mask, SDValue Base, |
| SDValue Index, SDValue ScaleOp, SDValue Chain, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| auto *C = dyn_cast<ConstantSDNode>(ScaleOp); |
| // Scale must be constant. |
| if (!C) |
| return SDValue(); |
| SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); |
| EVT MaskVT = Mask.getValueType(); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); |
| SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); |
| SDValue Segment = DAG.getRegister(0, MVT::i32); |
| // If source is undef or we know it won't be used, use a zero vector |
| // to break register dependency. |
| // TODO: use undef instead and let BreakFalseDeps deal with it? |
| if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode())) |
| Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl); |
| SDValue Ops[] = {Src, Base, Scale, Index, Disp, Segment, Mask, Chain}; |
| SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); |
| SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; |
| return DAG.getMergeValues(RetOps, dl); |
| } |
| |
| static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, |
| SDValue Src, SDValue Mask, SDValue Base, |
| SDValue Index, SDValue ScaleOp, SDValue Chain, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| auto *C = dyn_cast<ConstantSDNode>(ScaleOp); |
| // Scale must be constant. |
| if (!C) |
| return SDValue(); |
| SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, |
| Index.getSimpleValueType().getVectorNumElements()); |
| |
| SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); |
| SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); |
| SDValue Segment = DAG.getRegister(0, MVT::i32); |
| // If source is undef or we know it won't be used, use a zero vector |
| // to break register dependency. |
| // TODO: use undef instead and let BreakFalseDeps deal with it? |
| if (Src.isUndef() || ISD::isBuildVectorAllOnes(VMask.getNode())) |
| Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl); |
| SDValue Ops[] = {Src, VMask, Base, Scale, Index, Disp, Segment, Chain}; |
| SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); |
| SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; |
| return DAG.getMergeValues(RetOps, dl); |
| } |
| |
| static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, |
| SDValue Src, SDValue Mask, SDValue Base, |
| SDValue Index, SDValue ScaleOp, SDValue Chain, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| auto *C = dyn_cast<ConstantSDNode>(ScaleOp); |
| // Scale must be constant. |
| if (!C) |
| return SDValue(); |
| SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); |
| SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); |
| SDValue Segment = DAG.getRegister(0, MVT::i32); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, |
| Index.getSimpleValueType().getVectorNumElements()); |
| |
| SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); |
| SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); |
| SDValue Ops[] = {Base, Scale, Index, Disp, Segment, VMask, Src, Chain}; |
| SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); |
| return SDValue(Res, 1); |
| } |
| |
| static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, |
| SDValue Mask, SDValue Base, SDValue Index, |
| SDValue ScaleOp, SDValue Chain, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(Op); |
| auto *C = dyn_cast<ConstantSDNode>(ScaleOp); |
| // Scale must be constant. |
| if (!C) |
| return SDValue(); |
| SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); |
| SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); |
| SDValue Segment = DAG.getRegister(0, MVT::i32); |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); |
| SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); |
| SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain}; |
| SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops); |
| return SDValue(Res, 0); |
| } |
| |
| /// Handles the lowering of builtin intrinsic that return the value |
| /// of the extended control register. |
| static void getExtendedControlRegister(SDNode *N, const SDLoc &DL, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| SmallVectorImpl<SDValue> &Results) { |
| assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue LO, HI; |
| |
| // The ECX register is used to select the index of the XCR register to |
| // return. |
| SDValue Chain = |
| DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2)); |
| SDNode *N1 = DAG.getMachineNode(X86::XGETBV, DL, Tys, Chain); |
| Chain = SDValue(N1, 0); |
| |
| // Reads the content of XCR and returns it in registers EDX:EAX. |
| if (Subtarget.is64Bit()) { |
| LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1)); |
| HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, |
| LO.getValue(2)); |
| } else { |
| LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1)); |
| HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, |
| LO.getValue(2)); |
| } |
| Chain = HI.getValue(1); |
| |
| if (Subtarget.is64Bit()) { |
| // Merge the two 32-bit values into a 64-bit one.. |
| SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, |
| DAG.getConstant(32, DL, MVT::i8)); |
| Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); |
| Results.push_back(Chain); |
| return; |
| } |
| |
| // Use a buildpair to merge the two 32-bit values into a 64-bit one. |
| SDValue Ops[] = { LO, HI }; |
| SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); |
| Results.push_back(Pair); |
| Results.push_back(Chain); |
| } |
| |
| /// Handles the lowering of builtin intrinsics that read performance monitor |
| /// counters (x86_rdpmc). |
| static void getReadPerformanceCounter(SDNode *N, const SDLoc &DL, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| SmallVectorImpl<SDValue> &Results) { |
| assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue LO, HI; |
| |
| // The ECX register is used to select the index of the performance counter |
| // to read. |
| SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, |
| N->getOperand(2)); |
| SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain); |
| |
| // Reads the content of a 64-bit performance counter and returns it in the |
| // registers EDX:EAX. |
| if (Subtarget.is64Bit()) { |
| LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); |
| HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, |
| LO.getValue(2)); |
| } else { |
| LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); |
| HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, |
| LO.getValue(2)); |
| } |
| Chain = HI.getValue(1); |
| |
| if (Subtarget.is64Bit()) { |
| // The EAX register is loaded with the low-order 32 bits. The EDX register |
| // is loaded with the supported high-order bits of the counter. |
| SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, |
| DAG.getConstant(32, DL, MVT::i8)); |
| Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); |
| Results.push_back(Chain); |
| return; |
| } |
| |
| // Use a buildpair to merge the two 32-bit values into a 64-bit one. |
| SDValue Ops[] = { LO, HI }; |
| SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); |
| Results.push_back(Pair); |
| Results.push_back(Chain); |
| } |
| |
| /// Handles the lowering of builtin intrinsics that read the time stamp counter |
| /// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower |
| /// READCYCLECOUNTER nodes. |
| static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| SmallVectorImpl<SDValue> &Results) { |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0)); |
| SDValue LO, HI; |
| |
| // The processor's time-stamp counter (a 64-bit MSR) is stored into the |
| // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR |
| // and the EAX register is loaded with the low-order 32 bits. |
| if (Subtarget.is64Bit()) { |
| LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); |
| HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, |
| LO.getValue(2)); |
| } else { |
| LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); |
| HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, |
| LO.getValue(2)); |
| } |
| SDValue Chain = HI.getValue(1); |
| |
| if (Opcode == X86ISD::RDTSCP_DAG) { |
| assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); |
| |
| // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into |
| // the ECX register. Add 'ecx' explicitly to the chain. |
| SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, |
| HI.getValue(2)); |
| // Explicitly store the content of ECX at the location passed in input |
| // to the 'rdtscp' intrinsic. |
| Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2), |
| MachinePointerInfo()); |
| } |
| |
| if (Subtarget.is64Bit()) { |
| // The EDX register is loaded with the high-order 32 bits of the MSR, and |
| // the EAX register is loaded with the low-order 32 bits. |
| SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, |
| DAG.getConstant(32, DL, MVT::i8)); |
| Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); |
| Results.push_back(Chain); |
| return; |
| } |
| |
| // Use a buildpair to merge the two 32-bit values into a 64-bit one. |
| SDValue Ops[] = { LO, HI }; |
| SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); |
| Results.push_back(Pair); |
| Results.push_back(Chain); |
| } |
| |
| static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SmallVector<SDValue, 2> Results; |
| SDLoc DL(Op); |
| getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget, |
| Results); |
| return DAG.getMergeValues(Results, DL); |
| } |
| |
| static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SDValue Chain = Op.getOperand(0); |
| SDValue RegNode = Op.getOperand(2); |
| WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); |
| if (!EHInfo) |
| report_fatal_error("EH registrations only live in functions using WinEH"); |
| |
| // Cast the operand to an alloca, and remember the frame index. |
| auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode); |
| if (!FINode) |
| report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca"); |
| EHInfo->EHRegNodeFrameIndex = FINode->getIndex(); |
| |
| // Return the chain operand without making any DAG nodes. |
| return Chain; |
| } |
| |
| static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SDValue Chain = Op.getOperand(0); |
| SDValue EHGuard = Op.getOperand(2); |
| WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); |
| if (!EHInfo) |
| report_fatal_error("EHGuard only live in functions using WinEH"); |
| |
| // Cast the operand to an alloca, and remember the frame index. |
| auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard); |
| if (!FINode) |
| report_fatal_error("llvm.x86.seh.ehguard expects a static alloca"); |
| EHInfo->EHGuardFrameIndex = FINode->getIndex(); |
| |
| // Return the chain operand without making any DAG nodes. |
| return Chain; |
| } |
| |
| /// Emit Truncating Store with signed or unsigned saturation. |
| static SDValue |
| EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val, |
| SDValue Ptr, EVT MemVT, MachineMemOperand *MMO, |
| SelectionDAG &DAG) { |
| |
| SDVTList VTs = DAG.getVTList(MVT::Other); |
| SDValue Undef = DAG.getUNDEF(Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| return SignedSat ? |
| DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) : |
| DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO); |
| } |
| |
| /// Emit Masked Truncating Store with signed or unsigned saturation. |
| static SDValue |
| EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, |
| SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT, |
| MachineMemOperand *MMO, SelectionDAG &DAG) { |
| |
| SDVTList VTs = DAG.getVTList(MVT::Other); |
| SDValue Ops[] = { Chain, Ptr, Mask, Val }; |
| return SignedSat ? |
| DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) : |
| DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO); |
| } |
| |
| static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| |
| const IntrinsicData *IntrData = getIntrinsicWithChain(IntNo); |
| if (!IntrData) { |
| switch (IntNo) { |
| case llvm::Intrinsic::x86_seh_ehregnode: |
| return MarkEHRegistrationNode(Op, DAG); |
| case llvm::Intrinsic::x86_seh_ehguard: |
| return MarkEHGuard(Op, DAG); |
| case llvm::Intrinsic::x86_flags_read_u32: |
| case llvm::Intrinsic::x86_flags_read_u64: |
| case llvm::Intrinsic::x86_flags_write_u32: |
| case llvm::Intrinsic::x86_flags_write_u64: { |
| // We need a frame pointer because this will get lowered to a PUSH/POP |
| // sequence. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setHasCopyImplyingStackAdjustment(true); |
| // Don't do anything here, we will expand these intrinsics out later |
| // during ExpandISelPseudos in EmitInstrWithCustomInserter. |
| return SDValue(); |
| } |
| case Intrinsic::x86_lwpins32: |
| case Intrinsic::x86_lwpins64: |
| case Intrinsic::x86_umwait: |
| case Intrinsic::x86_tpause: { |
| SDLoc dl(Op); |
| SDValue Chain = Op->getOperand(0); |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); |
| unsigned Opcode; |
| |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); |
| case Intrinsic::x86_umwait: |
| Opcode = X86ISD::UMWAIT; |
| break; |
| case Intrinsic::x86_tpause: |
| Opcode = X86ISD::TPAUSE; |
| break; |
| case Intrinsic::x86_lwpins32: |
| case Intrinsic::x86_lwpins64: |
| Opcode = X86ISD::LWPINS; |
| break; |
| } |
| |
| SDValue Operation = |
| DAG.getNode(Opcode, dl, VTs, Chain, Op->getOperand(2), |
| Op->getOperand(3), Op->getOperand(4)); |
| SDValue SetCC = getSETCC(X86::COND_B, Operation.getValue(0), dl, DAG); |
| SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, |
| Operation.getValue(1)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDLoc dl(Op); |
| switch(IntrData->Type) { |
| default: llvm_unreachable("Unknown Intrinsic Type"); |
| case RDSEED: |
| case RDRAND: { |
| // Emit the node with the right value type. |
| SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32, MVT::Other); |
| SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); |
| |
| // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. |
| // Otherwise return the value from Rand, which is always 0, casted to i32. |
| SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), |
| DAG.getConstant(1, dl, Op->getValueType(1)), |
| DAG.getConstant(X86::COND_B, dl, MVT::i8), |
| SDValue(Result.getNode(), 1) }; |
| SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, Op->getValueType(1), Ops); |
| |
| // Return { result, isValid, chain }. |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, |
| SDValue(Result.getNode(), 2)); |
| } |
| case GATHER_AVX2: { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Src = Op.getOperand(2); |
| SDValue Base = Op.getOperand(3); |
| SDValue Index = Op.getOperand(4); |
| SDValue Mask = Op.getOperand(5); |
| SDValue Scale = Op.getOperand(6); |
| return getAVX2GatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, |
| Scale, Chain, Subtarget); |
| } |
| case GATHER: { |
| //gather(v1, mask, index, base, scale); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Src = Op.getOperand(2); |
| SDValue Base = Op.getOperand(3); |
| SDValue Index = Op.getOperand(4); |
| SDValue Mask = Op.getOperand(5); |
| SDValue Scale = Op.getOperand(6); |
| return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, |
| Chain, Subtarget); |
| } |
| case SCATTER: { |
| //scatter(base, mask, index, v1, scale); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Base = Op.getOperand(2); |
| SDValue Mask = Op.getOperand(3); |
| SDValue Index = Op.getOperand(4); |
| SDValue Src = Op.getOperand(5); |
| SDValue Scale = Op.getOperand(6); |
| return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, |
| Scale, Chain, Subtarget); |
| } |
| case PREFETCH: { |
| SDValue Hint = Op.getOperand(6); |
| unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue(); |
| assert((HintVal == 2 || HintVal == 3) && |
| "Wrong prefetch hint in intrinsic: should be 2 or 3"); |
| unsigned Opcode = (HintVal == 2 ? IntrData->Opc1 : IntrData->Opc0); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Mask = Op.getOperand(2); |
| SDValue Index = Op.getOperand(3); |
| SDValue Base = Op.getOperand(4); |
| SDValue Scale = Op.getOperand(5); |
| return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain, |
| Subtarget); |
| } |
| // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP). |
| case RDTSC: { |
| SmallVector<SDValue, 2> Results; |
| getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, |
| Results); |
| return DAG.getMergeValues(Results, dl); |
| } |
| // Read Performance Monitoring Counters. |
| case RDPMC: { |
| SmallVector<SDValue, 2> Results; |
| getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results); |
| return DAG.getMergeValues(Results, dl); |
| } |
| // Get Extended Control Register. |
| case XGETBV: { |
| SmallVector<SDValue, 2> Results; |
| getExtendedControlRegister(Op.getNode(), dl, DAG, Subtarget, Results); |
| return DAG.getMergeValues(Results, dl); |
| } |
| // XTEST intrinsics. |
| case XTEST: { |
| SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); |
| SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); |
| |
| SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG); |
| SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), |
| Ret, SDValue(InTrans.getNode(), 1)); |
| } |
| // ADC/ADCX/SBB |
| case ADX: { |
| SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::i32); |
| SDVTList VTs = DAG.getVTList(Op.getOperand(3).getValueType(), MVT::i32); |
| SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2), |
| DAG.getConstant(-1, dl, MVT::i8)); |
| SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3), |
| Op.getOperand(4), GenCF.getValue(1)); |
| SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0), |
| Op.getOperand(5), MachinePointerInfo()); |
| SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG); |
| SDValue Results[] = { SetCC, Store }; |
| return DAG.getMergeValues(Results, dl); |
| } |
| case TRUNCATE_TO_MEM_VI8: |
| case TRUNCATE_TO_MEM_VI16: |
| case TRUNCATE_TO_MEM_VI32: { |
| SDValue Mask = Op.getOperand(4); |
| SDValue DataToTruncate = Op.getOperand(3); |
| SDValue Addr = Op.getOperand(2); |
| SDValue Chain = Op.getOperand(0); |
| |
| MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op); |
| assert(MemIntr && "Expected MemIntrinsicSDNode!"); |
| |
| EVT MemVT = MemIntr->getMemoryVT(); |
| |
| uint16_t TruncationOp = IntrData->Opc0; |
| switch (TruncationOp) { |
| case X86ISD::VTRUNC: { |
| if (isAllOnesConstant(Mask)) // return just a truncate store |
| return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT, |
| MemIntr->getMemOperand()); |
| |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements()); |
| SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); |
| |
| return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, MemVT, |
| MemIntr->getMemOperand(), true /* truncating */); |
| } |
| case X86ISD::VTRUNCUS: |
| case X86ISD::VTRUNCS: { |
| bool IsSigned = (TruncationOp == X86ISD::VTRUNCS); |
| if (isAllOnesConstant(Mask)) |
| return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT, |
| MemIntr->getMemOperand(), DAG); |
| |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements()); |
| SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); |
| |
| return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, |
| VMask, MemVT, MemIntr->getMemOperand(), DAG); |
| } |
| default: |
| llvm_unreachable("Unsupported truncstore intrinsic"); |
| } |
| } |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDLoc dl(Op); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| if (Depth > 0) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Just load the return address. |
| SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, |
| MachinePointerInfo()); |
| } |
| |
| SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true); |
| return getReturnAddressFrameIndex(DAG); |
| } |
| |
| SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| EVT VT = Op.getValueType(); |
| |
| MFI.setFrameAddressIsTaken(true); |
| |
| if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { |
| // Depth > 0 makes no sense on targets which use Windows unwind codes. It |
| // is not possible to crawl up the stack without looking at the unwind codes |
| // simultaneously. |
| int FrameAddrIndex = FuncInfo->getFAIndex(); |
| if (!FrameAddrIndex) { |
| // Set up a frame object for the return address. |
| unsigned SlotSize = RegInfo->getSlotSize(); |
| FrameAddrIndex = MF.getFrameInfo().CreateFixedObject( |
| SlotSize, /*Offset=*/0, /*IsImmutable=*/false); |
| FuncInfo->setFAIndex(FrameAddrIndex); |
| } |
| return DAG.getFrameIndex(FrameAddrIndex, VT); |
| } |
| |
| unsigned FrameReg = |
| RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); |
| SDLoc dl(Op); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| assert(((FrameReg == X86::RBP && VT == MVT::i64) || |
| (FrameReg == X86::EBP && VT == MVT::i32)) && |
| "Invalid Frame Register!"); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo()); |
| return FrameAddr; |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT, |
| SelectionDAG &DAG) const { |
| const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| |
| unsigned Reg = StringSwitch<unsigned>(RegName) |
| .Case("esp", X86::ESP) |
| .Case("rsp", X86::RSP) |
| .Case("ebp", X86::EBP) |
| .Case("rbp", X86::RBP) |
| .Default(0); |
| |
| if (Reg == X86::EBP || Reg == X86::RBP) { |
| if (!TFI.hasFP(MF)) |
| report_fatal_error("register " + StringRef(RegName) + |
| " is allocatable: function has no frame pointer"); |
| #ifndef NDEBUG |
| else { |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| unsigned FrameReg = |
| RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); |
| assert((FrameReg == X86::EBP || FrameReg == X86::RBP) && |
| "Invalid Frame Register!"); |
| } |
| #endif |
| } |
| |
| if (Reg) |
| return Reg; |
| |
| report_fatal_error("Invalid register name global variable"); |
| } |
| |
| SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, |
| SelectionDAG &DAG) const { |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op)); |
| } |
| |
| unsigned X86TargetLowering::getExceptionPointerRegister( |
| const Constant *PersonalityFn) const { |
| if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR) |
| return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX; |
| |
| return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX; |
| } |
| |
| unsigned X86TargetLowering::getExceptionSelectorRegister( |
| const Constant *PersonalityFn) const { |
| // Funclet personalities don't use selectors (the runtime does the selection). |
| assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn))); |
| return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX; |
| } |
| |
| bool X86TargetLowering::needsFixedCatchObjects() const { |
| return Subtarget.isTargetWin64(); |
| } |
| |
| SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Offset = Op.getOperand(1); |
| SDValue Handler = Op.getOperand(2); |
| SDLoc dl (Op); |
| |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); |
| assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || |
| (FrameReg == X86::EBP && PtrVT == MVT::i32)) && |
| "Invalid Frame Register!"); |
| SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); |
| unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; |
| |
| SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, |
| DAG.getIntPtrConstant(RegInfo->getSlotSize(), |
| dl)); |
| StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); |
| Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); |
| Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); |
| |
| return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, |
| DAG.getRegister(StoreAddrReg, PtrVT)); |
| } |
| |
| SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| // If the subtarget is not 64bit, we may need the global base reg |
| // after isel expand pseudo, i.e., after CGBR pass ran. |
| // Therefore, ask for the GlobalBaseReg now, so that the pass |
| // inserts the code for us in case we need it. |
| // Otherwise, we will end up in a situation where we will |
| // reference a virtual register that is not defined! |
| if (!Subtarget.is64Bit()) { |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| (void)TII->getGlobalBaseReg(&DAG.getMachineFunction()); |
| } |
| return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, |
| DAG.getVTList(MVT::i32, MVT::Other), |
| Op.getOperand(0), Op.getOperand(1)); |
| } |
| |
| SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, |
| Op.getOperand(0), Op.getOperand(1)); |
| } |
| |
| SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, |
| Op.getOperand(0)); |
| } |
| |
| static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { |
| return Op.getOperand(0); |
| } |
| |
| SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Root = Op.getOperand(0); |
| SDValue Trmp = Op.getOperand(1); // trampoline |
| SDValue FPtr = Op.getOperand(2); // nested function |
| SDValue Nest = Op.getOperand(3); // 'nest' parameter value |
| SDLoc dl (Op); |
| |
| const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| |
| if (Subtarget.is64Bit()) { |
| SDValue OutChains[6]; |
| |
| // Large code-model. |
| const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. |
| const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. |
| |
| const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; |
| const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; |
| |
| const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix |
| |
| // Load the pointer to the nested function into R11. |
| unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 |
| SDValue Addr = Trmp; |
| OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), |
| Addr, MachinePointerInfo(TrmpAddr)); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(2, dl, MVT::i64)); |
| OutChains[1] = |
| DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2), |
| /* Alignment = */ 2); |
| |
| // Load the 'nest' parameter value into R10. |
| // R10 is specified in X86CallingConv.td |
| OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(10, dl, MVT::i64)); |
| OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), |
| Addr, MachinePointerInfo(TrmpAddr, 10)); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(12, dl, MVT::i64)); |
| OutChains[3] = |
| DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12), |
| /* Alignment = */ 2); |
| |
| // Jump to the nested function. |
| OpCode = (JMP64r << 8) | REX_WB; // jmpq *... |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(20, dl, MVT::i64)); |
| OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), |
| Addr, MachinePointerInfo(TrmpAddr, 20)); |
| |
| unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(22, dl, MVT::i64)); |
| OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8), |
| Addr, MachinePointerInfo(TrmpAddr, 22)); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } else { |
| const Function *Func = |
| cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); |
| CallingConv::ID CC = Func->getCallingConv(); |
| unsigned NestReg; |
| |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::X86_StdCall: { |
| // Pass 'nest' parameter in ECX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::ECX; |
| |
| // Check that ECX wasn't needed by an 'inreg' parameter. |
| FunctionType *FTy = Func->getFunctionType(); |
| const AttributeList &Attrs = Func->getAttributes(); |
| |
| if (!Attrs.isEmpty() && !Func->isVarArg()) { |
| unsigned InRegCount = 0; |
| unsigned Idx = 1; |
| |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I, ++Idx) |
| if (Attrs.hasAttribute(Idx, Attribute::InReg)) { |
| auto &DL = DAG.getDataLayout(); |
| // FIXME: should only count parameters that are lowered to integers. |
| InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32; |
| } |
| |
| if (InRegCount > 2) { |
| report_fatal_error("Nest register in use - reduce number of inreg" |
| " parameters!"); |
| } |
| } |
| break; |
| } |
| case CallingConv::X86_FastCall: |
| case CallingConv::X86_ThisCall: |
| case CallingConv::Fast: |
| // Pass 'nest' parameter in EAX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::EAX; |
| break; |
| } |
| |
| SDValue OutChains[4]; |
| SDValue Addr, Disp; |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(10, dl, MVT::i32)); |
| Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); |
| |
| // This is storing the opcode for MOV32ri. |
| const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. |
| const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; |
| OutChains[0] = |
| DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8), |
| Trmp, MachinePointerInfo(TrmpAddr)); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(1, dl, MVT::i32)); |
| OutChains[1] = |
| DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1), |
| /* Alignment = */ 1); |
| |
| const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(5, dl, MVT::i32)); |
| OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8), |
| Addr, MachinePointerInfo(TrmpAddr, 5), |
| /* Alignment = */ 1); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(6, dl, MVT::i32)); |
| OutChains[3] = |
| DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6), |
| /* Alignment = */ 1); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, |
| SelectionDAG &DAG) const { |
| /* |
| The rounding mode is in bits 11:10 of FPSR, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to -inf |
| 10 Round to +inf |
| 11 Round to 0 |
| |
| FLT_ROUNDS, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| |
| To perform the conversion, we do: |
| (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) |
| */ |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc DL(Op); |
| |
| // Save FP Control Word to stack slot |
| int SSFI = MF.getFrameInfo().CreateStackObject(2, StackAlignment, false); |
| SDValue StackSlot = |
| DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout())); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), |
| MachineMemOperand::MOStore, 2, 2); |
| |
| SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; |
| SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, |
| DAG.getVTList(MVT::Other), |
| Ops, MVT::i16, MMO); |
| |
| // Load FP Control Word from stack slot |
| SDValue CWD = |
| DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo()); |
| |
| // Transform as necessary |
| SDValue CWD1 = |
| DAG.getNode(ISD::SRL, DL, MVT::i16, |
| DAG.getNode(ISD::AND, DL, MVT::i16, |
| CWD, DAG.getConstant(0x800, DL, MVT::i16)), |
| DAG.getConstant(11, DL, MVT::i8)); |
| SDValue CWD2 = |
| DAG.getNode(ISD::SRL, DL, MVT::i16, |
| DAG.getNode(ISD::AND, DL, MVT::i16, |
| CWD, DAG.getConstant(0x400, DL, MVT::i16)), |
| DAG.getConstant(9, DL, MVT::i8)); |
| |
| SDValue RetVal = |
| DAG.getNode(ISD::AND, DL, MVT::i16, |
| DAG.getNode(ISD::ADD, DL, MVT::i16, |
| DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), |
| DAG.getConstant(1, DL, MVT::i16)), |
| DAG.getConstant(3, DL, MVT::i16)); |
| |
| return DAG.getNode((VT.getSizeInBits() < 16 ? |
| ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); |
| } |
| |
| // Split an unary integer op into 2 half sized ops. |
| static SDValue LowerVectorIntUnary(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned SizeInBits = VT.getSizeInBits(); |
| MVT EltVT = VT.getVectorElementType(); |
| SDValue Src = Op.getOperand(0); |
| assert(EltVT == Src.getSimpleValueType().getVectorElementType() && |
| "Src and Op should have the same element type!"); |
| |
| // Extract the Lo/Hi vectors |
| SDLoc dl(Op); |
| SDValue Lo = extractSubVector(Src, 0, DAG, dl, SizeInBits / 2); |
| SDValue Hi = extractSubVector(Src, NumElems / 2, DAG, dl, SizeInBits / 2); |
| |
| MVT NewVT = MVT::getVectorVT(EltVT, NumElems / 2); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, NewVT, Lo), |
| DAG.getNode(Op.getOpcode(), dl, NewVT, Hi)); |
| } |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| static SDValue Lower256IntUnary(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getSimpleValueType().is256BitVector() && |
| Op.getSimpleValueType().isInteger() && |
| "Only handle AVX 256-bit vector integer operation"); |
| return LowerVectorIntUnary(Op, DAG); |
| } |
| |
| // Decompose 512-bit ops into smaller 256-bit ops. |
| static SDValue Lower512IntUnary(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getSimpleValueType().is512BitVector() && |
| Op.getSimpleValueType().isInteger() && |
| "Only handle AVX 512-bit vector integer operation"); |
| return LowerVectorIntUnary(Op, DAG); |
| } |
| |
| /// Lower a vector CTLZ using native supported vector CTLZ instruction. |
| // |
| // i8/i16 vector implemented using dword LZCNT vector instruction |
| // ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal, |
| // split the vector, perform operation on it's Lo a Hi part and |
| // concatenate the results. |
| static SDValue LowerVectorCTLZ_AVX512CDI(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| assert(Op.getOpcode() == ISD::CTLZ); |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| assert((EltVT == MVT::i8 || EltVT == MVT::i16) && |
| "Unsupported element type"); |
| |
| // Split vector, it's Lo and Hi parts will be handled in next iteration. |
| if (NumElems > 16 || |
| (NumElems == 16 && !Subtarget.canExtendTo512DQ())) |
| return LowerVectorIntUnary(Op, DAG); |
| |
| MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems); |
| assert((NewVT.is256BitVector() || NewVT.is512BitVector()) && |
| "Unsupported value type for operation"); |
| |
| // Use native supported vector instruction vplzcntd. |
| Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0)); |
| SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op); |
| SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode); |
| SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT); |
| |
| return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta); |
| } |
| |
| // Lower CTLZ using a PSHUFB lookup table implementation. |
| static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| int NumElts = VT.getVectorNumElements(); |
| int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8); |
| MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes); |
| |
| // Per-nibble leading zero PSHUFB lookup table. |
| const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2, |
| /* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1, |
| /* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0, |
| /* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0}; |
| |
| SmallVector<SDValue, 64> LUTVec; |
| for (int i = 0; i < NumBytes; ++i) |
| LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); |
| SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec); |
| |
| // Begin by bitcasting the input to byte vector, then split those bytes |
| // into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them. |
| // If the hi input nibble is zero then we add both results together, otherwise |
| // we just take the hi result (by masking the lo result to zero before the |
| // add). |
| SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0)); |
| SDValue Zero = getZeroVector(CurrVT, Subtarget, DAG, DL); |
| |
| SDValue NibbleMask = DAG.getConstant(0xF, DL, CurrVT); |
| SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT); |
| SDValue Lo = DAG.getNode(ISD::AND, DL, CurrVT, Op0, NibbleMask); |
| SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift); |
| SDValue HiZ; |
| if (CurrVT.is512BitVector()) { |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements()); |
| HiZ = DAG.getSetCC(DL, MaskVT, Hi, Zero, ISD::SETEQ); |
| HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ); |
| } else { |
| HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ); |
| } |
| |
| Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo); |
| Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi); |
| Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ); |
| SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi); |
| |
| // Merge result back from vXi8 back to VT, working on the lo/hi halves |
| // of the current vector width in the same way we did for the nibbles. |
| // If the upper half of the input element is zero then add the halves' |
| // leading zero counts together, otherwise just use the upper half's. |
| // Double the width of the result until we are at target width. |
| while (CurrVT != VT) { |
| int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits(); |
| int CurrNumElts = CurrVT.getVectorNumElements(); |
| MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2); |
| MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2); |
| SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT); |
| |
| // Check if the upper half of the input element is zero. |
| if (CurrVT.is512BitVector()) { |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements()); |
| HiZ = DAG.getSetCC(DL, MaskVT, DAG.getBitcast(CurrVT, Op0), |
| DAG.getBitcast(CurrVT, Zero), ISD::SETEQ); |
| HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ); |
| } else { |
| HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0), |
| DAG.getBitcast(CurrVT, Zero), ISD::SETEQ); |
| } |
| HiZ = DAG.getBitcast(NextVT, HiZ); |
| |
| // Move the upper/lower halves to the lower bits as we'll be extending to |
| // NextVT. Mask the lower result to zero if HiZ is true and add the results |
| // together. |
| SDValue ResNext = Res = DAG.getBitcast(NextVT, Res); |
| SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift); |
| SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift); |
| R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1); |
| Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1); |
| CurrVT = NextVT; |
| } |
| |
| return Res; |
| } |
| |
| static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (Subtarget.hasCDI() && |
| // vXi8 vectors need to be promoted to 512-bits for vXi32. |
| (Subtarget.canExtendTo512DQ() || VT.getVectorElementType() != MVT::i8)) |
| return LowerVectorCTLZ_AVX512CDI(Op, DAG, Subtarget); |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) |
| return Lower256IntUnary(Op, DAG); |
| |
| // Decompose 512-bit ops into smaller 256-bit ops. |
| if (VT.is512BitVector() && !Subtarget.hasBWI()) |
| return Lower512IntUnary(Op, DAG); |
| |
| assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB"); |
| return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG); |
| } |
| |
| static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| MVT OpVT = VT; |
| unsigned NumBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| unsigned Opc = Op.getOpcode(); |
| |
| if (VT.isVector()) |
| return LowerVectorCTLZ(Op, dl, Subtarget, DAG); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| // Zero extend to i32 since there is not an i8 bsr. |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); |
| } |
| |
| // Issue a bsr (scan bits in reverse) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); |
| |
| if (Opc == ISD::CTLZ) { |
| // If src is zero (i.e. bsr sets ZF), returns NumBits. |
| SDValue Ops[] = { |
| Op, |
| DAG.getConstant(NumBits + NumBits - 1, dl, OpVT), |
| DAG.getConstant(X86::COND_E, dl, MVT::i8), |
| Op.getValue(1) |
| }; |
| Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops); |
| } |
| |
| // Finally xor with NumBits-1. |
| Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, |
| DAG.getConstant(NumBits - 1, dl, OpVT)); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); |
| return Op; |
| } |
| |
| static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| unsigned NumBits = VT.getScalarSizeInBits(); |
| SDLoc dl(Op); |
| |
| if (VT.isVector()) { |
| SDValue N0 = Op.getOperand(0); |
| SDValue Zero = DAG.getConstant(0, dl, VT); |
| |
| // lsb(x) = (x & -x) |
| SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0, |
| DAG.getNode(ISD::SUB, dl, VT, Zero, N0)); |
| |
| // cttz_undef(x) = (width - 1) - ctlz(lsb) |
| if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { |
| SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT); |
| return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne, |
| DAG.getNode(ISD::CTLZ, dl, VT, LSB)); |
| } |
| |
| // cttz(x) = ctpop(lsb - 1) |
| SDValue One = DAG.getConstant(1, dl, VT); |
| return DAG.getNode(ISD::CTPOP, dl, VT, |
| DAG.getNode(ISD::SUB, dl, VT, LSB, One)); |
| } |
| |
| assert(Op.getOpcode() == ISD::CTTZ && |
| "Only scalar CTTZ requires custom lowering"); |
| |
| // Issue a bsf (scan bits forward) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0)); |
| |
| // If src is zero (i.e. bsf sets ZF), returns NumBits. |
| SDValue Ops[] = { |
| Op, |
| DAG.getConstant(NumBits, dl, VT), |
| DAG.getConstant(X86::COND_E, dl, MVT::i8), |
| Op.getValue(1) |
| }; |
| return DAG.getNode(X86ISD::CMOV, dl, VT, Ops); |
| } |
| |
| /// Break a 256-bit integer operation into two new 128-bit ones and then |
| /// concatenate the result back. |
| static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| assert(VT.is256BitVector() && VT.isInteger() && |
| "Unsupported value type for operation"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDLoc dl(Op); |
| |
| // Extract the LHS vectors |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl); |
| SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl); |
| |
| // Extract the RHS vectors |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl); |
| SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl); |
| |
| MVT EltVT = VT.getVectorElementType(); |
| MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); |
| } |
| |
| /// Break a 512-bit integer operation into two new 256-bit ones and then |
| /// concatenate the result back. |
| static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| assert(VT.is512BitVector() && VT.isInteger() && |
| "Unsupported value type for operation"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDLoc dl(Op); |
| |
| // Extract the LHS vectors |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl); |
| SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl); |
| |
| // Extract the RHS vectors |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl); |
| SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl); |
| |
| MVT EltVT = VT.getVectorElementType(); |
| MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); |
| } |
| |
| static SDValue LowerADD_SUB(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| if (VT.getScalarType() == MVT::i1) |
| return DAG.getNode(ISD::XOR, SDLoc(Op), VT, |
| Op.getOperand(0), Op.getOperand(1)); |
| assert(Op.getSimpleValueType().is256BitVector() && |
| Op.getSimpleValueType().isInteger() && |
| "Only handle AVX 256-bit vector integer operation"); |
| return Lower256IntArith(Op, DAG); |
| } |
| |
| static SDValue LowerABS(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) { |
| // Since X86 does not have CMOV for 8-bit integer, we don't convert |
| // 8-bit integer abs to NEG and CMOV. |
| SDLoc DL(Op); |
| SDValue N0 = Op.getOperand(0); |
| SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), |
| DAG.getConstant(0, DL, VT), N0); |
| SDValue Ops[] = {N0, Neg, DAG.getConstant(X86::COND_GE, DL, MVT::i8), |
| SDValue(Neg.getNode(), 1)}; |
| return DAG.getNode(X86ISD::CMOV, DL, VT, Ops); |
| } |
| |
| assert(Op.getSimpleValueType().is256BitVector() && |
| Op.getSimpleValueType().isInteger() && |
| "Only handle AVX 256-bit vector integer operation"); |
| return Lower256IntUnary(Op, DAG); |
| } |
| |
| static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| // For AVX1 cases, split to use legal ops (everything but v4i64). |
| if (VT.getScalarType() != MVT::i64 && VT.is256BitVector()) |
| return Lower256IntArith(Op, DAG); |
| |
| SDLoc DL(Op); |
| unsigned Opcode = Op.getOpcode(); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| |
| // For pre-SSE41, we can perform UMIN/UMAX v8i16 by flipping the signbit, |
| // using the SMIN/SMAX instructions and flipping the signbit back. |
| if (VT == MVT::v8i16) { |
| assert((Opcode == ISD::UMIN || Opcode == ISD::UMAX) && |
| "Unexpected MIN/MAX opcode"); |
| SDValue Sign = DAG.getConstant(APInt::getSignedMinValue(16), DL, VT); |
| N0 = DAG.getNode(ISD::XOR, DL, VT, N0, Sign); |
| N1 = DAG.getNode(ISD::XOR, DL, VT, N1, Sign); |
| Opcode = (Opcode == ISD::UMIN ? ISD::SMIN : ISD::SMAX); |
| SDValue Result = DAG.getNode(Opcode, DL, VT, N0, N1); |
| return DAG.getNode(ISD::XOR, DL, VT, Result, Sign); |
| } |
| |
| // Else, expand to a compare/select. |
| ISD::CondCode CC; |
| switch (Opcode) { |
| case ISD::SMIN: CC = ISD::CondCode::SETLT; break; |
| case ISD::SMAX: CC = ISD::CondCode::SETGT; break; |
| case ISD::UMIN: CC = ISD::CondCode::SETULT; break; |
| case ISD::UMAX: CC = ISD::CondCode::SETUGT; break; |
| default: llvm_unreachable("Unknown MINMAX opcode"); |
| } |
| |
| SDValue Cond = DAG.getSetCC(DL, VT, N0, N1, CC); |
| return DAG.getSelect(DL, VT, Cond, N0, N1); |
| } |
| |
| static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (VT.getScalarType() == MVT::i1) |
| return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1)); |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) |
| return Lower256IntArith(Op, DAG); |
| |
| SDValue A = Op.getOperand(0); |
| SDValue B = Op.getOperand(1); |
| |
| // Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16 |
| // vector pairs, multiply and truncate. |
| if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) { |
| if (Subtarget.hasInt256()) { |
| // For 512-bit vectors, split into 256-bit vectors to allow the |
| // sign-extension to occur. |
| if (VT == MVT::v64i8) |
| return Lower512IntArith(Op, DAG); |
| |
| // For 256-bit vectors, split into 128-bit vectors to allow the |
| // sign-extension to occur. We don't need this on AVX512BW as we can |
| // safely sign-extend to v32i16. |
| if (VT == MVT::v32i8 && !Subtarget.hasBWI()) |
| return Lower256IntArith(Op, DAG); |
| |
| MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements()); |
| return DAG.getNode( |
| ISD::TRUNCATE, dl, VT, |
| DAG.getNode(ISD::MUL, dl, ExVT, |
| DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A), |
| DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B))); |
| } |
| |
| assert(VT == MVT::v16i8 && |
| "Pre-AVX2 support only supports v16i8 multiplication"); |
| MVT ExVT = MVT::v8i16; |
| |
| // Extract the lo parts and sign extend to i16 |
| // We're going to mask off the low byte of each result element of the |
| // pmullw, so it doesn't matter what's in the high byte of each 16-bit |
| // element. |
| const int LoShufMask[] = {0, -1, 1, -1, 2, -1, 3, -1, |
| 4, -1, 5, -1, 6, -1, 7, -1}; |
| SDValue ALo = DAG.getVectorShuffle(VT, dl, A, A, LoShufMask); |
| SDValue BLo = DAG.getVectorShuffle(VT, dl, B, B, LoShufMask); |
| ALo = DAG.getBitcast(ExVT, ALo); |
| BLo = DAG.getBitcast(ExVT, BLo); |
| |
| // Extract the hi parts and sign extend to i16 |
| // We're going to mask off the low byte of each result element of the |
| // pmullw, so it doesn't matter what's in the high byte of each 16-bit |
| // element. |
| const int HiShufMask[] = {8, -1, 9, -1, 10, -1, 11, -1, |
| 12, -1, 13, -1, 14, -1, 15, -1}; |
| SDValue AHi = DAG.getVectorShuffle(VT, dl, A, A, HiShufMask); |
| SDValue BHi = DAG.getVectorShuffle(VT, dl, B, B, HiShufMask); |
| AHi = DAG.getBitcast(ExVT, AHi); |
| BHi = DAG.getBitcast(ExVT, BHi); |
| |
| // Multiply, mask the lower 8bits of the lo/hi results and pack |
| SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); |
| SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); |
| RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT)); |
| RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT)); |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); |
| } |
| |
| // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. |
| if (VT == MVT::v4i32) { |
| assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() && |
| "Should not custom lower when pmulld is available!"); |
| |
| // Extract the odd parts. |
| static const int UnpackMask[] = { 1, -1, 3, -1 }; |
| SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); |
| SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); |
| |
| // Multiply the even parts. |
| SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, |
| DAG.getBitcast(MVT::v2i64, A), |
| DAG.getBitcast(MVT::v2i64, B)); |
| // Now multiply odd parts. |
| SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, |
| DAG.getBitcast(MVT::v2i64, Aodds), |
| DAG.getBitcast(MVT::v2i64, Bodds)); |
| |
| Evens = DAG.getBitcast(VT, Evens); |
| Odds = DAG.getBitcast(VT, Odds); |
| |
| // Merge the two vectors back together with a shuffle. This expands into 2 |
| // shuffles. |
| static const int ShufMask[] = { 0, 4, 2, 6 }; |
| return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); |
| } |
| |
| assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && |
| "Only know how to lower V2I64/V4I64/V8I64 multiply"); |
| assert(!Subtarget.hasDQI() && "DQI should use MULLQ"); |
| |
| // Ahi = psrlqi(a, 32); |
| // Bhi = psrlqi(b, 32); |
| // |
| // AloBlo = pmuludq(a, b); |
| // AloBhi = pmuludq(a, Bhi); |
| // AhiBlo = pmuludq(Ahi, b); |
| // |
| // Hi = psllqi(AloBhi + AhiBlo, 32); |
| // return AloBlo + Hi; |
| KnownBits AKnown, BKnown; |
| DAG.computeKnownBits(A, AKnown); |
| DAG.computeKnownBits(B, BKnown); |
| |
| APInt LowerBitsMask = APInt::getLowBitsSet(64, 32); |
| bool ALoIsZero = LowerBitsMask.isSubsetOf(AKnown.Zero); |
| bool BLoIsZero = LowerBitsMask.isSubsetOf(BKnown.Zero); |
| |
| APInt UpperBitsMask = APInt::getHighBitsSet(64, 32); |
| bool AHiIsZero = UpperBitsMask.isSubsetOf(AKnown.Zero); |
| bool BHiIsZero = UpperBitsMask.isSubsetOf(BKnown.Zero); |
| |
| SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl); |
| |
| // Only multiply lo/hi halves that aren't known to be zero. |
| SDValue AloBlo = Zero; |
| if (!ALoIsZero && !BLoIsZero) |
| AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); |
| |
| SDValue AloBhi = Zero; |
| if (!ALoIsZero && !BHiIsZero) { |
| SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); |
| AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); |
| } |
| |
| SDValue AhiBlo = Zero; |
| if (!AHiIsZero && !BLoIsZero) { |
| SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); |
| AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); |
| } |
| |
| SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo); |
| Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG); |
| |
| return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi); |
| } |
| |
| static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) |
| return Lower256IntArith(Op, DAG); |
| |
| // Only i8 vectors should need custom lowering after this. |
| assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256()) || |
| (VT == MVT::v64i8 && Subtarget.hasBWI())) && |
| "Unsupported vector type"); |
| |
| // Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply, |
| // logical shift down the upper half and pack back to i8. |
| SDValue A = Op.getOperand(0); |
| SDValue B = Op.getOperand(1); |
| |
| // With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack |
| // and then ashr/lshr the upper bits down to the lower bits before multiply. |
| unsigned Opcode = Op.getOpcode(); |
| unsigned ExShift = (ISD::MULHU == Opcode ? ISD::SRL : ISD::SRA); |
| unsigned ExAVX = (ISD::MULHU == Opcode ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); |
| |
| // For 512-bit vectors, split into 256-bit vectors to allow the |
| // sign-extension to occur. |
| if (VT == MVT::v64i8) |
| return Lower512IntArith(Op, DAG); |
| |
| // AVX2 implementations - extend xmm subvectors to ymm. |
| if (Subtarget.hasInt256()) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDValue Lo = DAG.getIntPtrConstant(0, dl); |
| SDValue Hi = DAG.getIntPtrConstant(NumElems / 2, dl); |
| |
| if (VT == MVT::v32i8) { |
| if (Subtarget.canExtendTo512BW()) { |
| SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v32i16, A); |
| SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v32i16, B); |
| SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v32i16, ExA, ExB); |
| Mul = DAG.getNode(ISD::SRL, dl, MVT::v32i16, Mul, |
| DAG.getConstant(8, dl, MVT::v32i16)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); |
| } |
| SDValue ALo = extract128BitVector(A, 0, DAG, dl); |
| SDValue BLo = extract128BitVector(B, 0, DAG, dl); |
| SDValue AHi = extract128BitVector(A, NumElems / 2, DAG, dl); |
| SDValue BHi = extract128BitVector(B, NumElems / 2, DAG, dl); |
| ALo = DAG.getNode(ExAVX, dl, MVT::v16i16, ALo); |
| BLo = DAG.getNode(ExAVX, dl, MVT::v16i16, BLo); |
| AHi = DAG.getNode(ExAVX, dl, MVT::v16i16, AHi); |
| BHi = DAG.getNode(ExAVX, dl, MVT::v16i16, BHi); |
| Lo = DAG.getNode(ISD::SRL, dl, MVT::v16i16, |
| DAG.getNode(ISD::MUL, dl, MVT::v16i16, ALo, BLo), |
| DAG.getConstant(8, dl, MVT::v16i16)); |
| Hi = DAG.getNode(ISD::SRL, dl, MVT::v16i16, |
| DAG.getNode(ISD::MUL, dl, MVT::v16i16, AHi, BHi), |
| DAG.getConstant(8, dl, MVT::v16i16)); |
| // The ymm variant of PACKUS treats the 128-bit lanes separately, so before |
| // using PACKUS we need to permute the inputs to the correct lo/hi xmm lane. |
| const int LoMask[] = {0, 1, 2, 3, 4, 5, 6, 7, |
| 16, 17, 18, 19, 20, 21, 22, 23}; |
| const int HiMask[] = {8, 9, 10, 11, 12, 13, 14, 15, |
| 24, 25, 26, 27, 28, 29, 30, 31}; |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, |
| DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, LoMask), |
| DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, HiMask)); |
| } |
| |
| assert(VT == MVT::v16i8 && "Unexpected VT"); |
| |
| SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v16i16, A); |
| SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v16i16, B); |
| SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v16i16, ExA, ExB); |
| Mul = DAG.getNode(ISD::SRL, dl, MVT::v16i16, Mul, |
| DAG.getConstant(8, dl, MVT::v16i16)); |
| // If we have BWI we can use truncate instruction. |
| if (Subtarget.hasBWI()) |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); |
| Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Lo); |
| Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Hi); |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); |
| } |
| |
| assert(VT == MVT::v16i8 && |
| "Pre-AVX2 support only supports v16i8 multiplication"); |
| MVT ExVT = MVT::v8i16; |
| unsigned ExSSE41 = ISD::MULHU == Opcode ? ISD::ZERO_EXTEND_VECTOR_INREG |
| : ISD::SIGN_EXTEND_VECTOR_INREG; |
| |
| // Extract the lo parts and zero/sign extend to i16. |
| SDValue ALo, BLo; |
| if (Subtarget.hasSSE41()) { |
| ALo = DAG.getNode(ExSSE41, dl, ExVT, A); |
| BLo = DAG.getNode(ExSSE41, dl, ExVT, B); |
| } else { |
| const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3, |
| -1, 4, -1, 5, -1, 6, -1, 7}; |
| ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); |
| BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); |
| ALo = DAG.getBitcast(ExVT, ALo); |
| BLo = DAG.getBitcast(ExVT, BLo); |
| ALo = DAG.getNode(ExShift, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT)); |
| BLo = DAG.getNode(ExShift, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT)); |
| } |
| |
| // Extract the hi parts and zero/sign extend to i16. |
| SDValue AHi, BHi; |
| if (Subtarget.hasSSE41()) { |
| const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15, |
| -1, -1, -1, -1, -1, -1, -1, -1}; |
| AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); |
| BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); |
| AHi = DAG.getNode(ExSSE41, dl, ExVT, AHi); |
| BHi = DAG.getNode(ExSSE41, dl, ExVT, BHi); |
| } else { |
| const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11, |
| -1, 12, -1, 13, -1, 14, -1, 15}; |
| AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); |
| BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); |
| AHi = DAG.getBitcast(ExVT, AHi); |
| BHi = DAG.getBitcast(ExVT, BHi); |
| AHi = DAG.getNode(ExShift, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT)); |
| BHi = DAG.getNode(ExShift, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT)); |
| } |
| |
| // Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and |
| // pack back to v16i8. |
| SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); |
| SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); |
| RLo = DAG.getNode(ISD::SRL, dl, ExVT, RLo, DAG.getConstant(8, dl, ExVT)); |
| RHi = DAG.getNode(ISD::SRL, dl, ExVT, RHi, DAG.getConstant(8, dl, ExVT)); |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); |
| } |
| |
| SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget.isTargetWin64() && "Unexpected target"); |
| EVT VT = Op.getValueType(); |
| assert(VT.isInteger() && VT.getSizeInBits() == 128 && |
| "Unexpected return type for lowering"); |
| |
| RTLIB::Libcall LC; |
| bool isSigned; |
| switch (Op->getOpcode()) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break; |
| case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break; |
| case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break; |
| case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break; |
| case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break; |
| case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break; |
| } |
| |
| SDLoc dl(Op); |
| SDValue InChain = DAG.getEntryNode(); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { |
| EVT ArgVT = Op->getOperand(i).getValueType(); |
| assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 && |
| "Unexpected argument type for lowering"); |
| SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16); |
| Entry.Node = StackPtr; |
| InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, |
| MachinePointerInfo(), /* Alignment = */ 16); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Ty = PointerType::get(ArgTy,0); |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| } |
| |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(InChain) |
| .setLibCallee( |
| getLibcallCallingConv(LC), |
| static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee, |
| std::move(Args)) |
| .setInRegister() |
| .setSExtResult(isSigned) |
| .setZExtResult(!isSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| return DAG.getBitcast(VT, CallInfo.first); |
| } |
| |
| static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); |
| MVT VT = Op0.getSimpleValueType(); |
| SDLoc dl(Op); |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) { |
| unsigned Opcode = Op.getOpcode(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), NumElems / 2); |
| SDValue Lo0 = extract128BitVector(Op0, 0, DAG, dl); |
| SDValue Lo1 = extract128BitVector(Op1, 0, DAG, dl); |
| SDValue Hi0 = extract128BitVector(Op0, NumElems / 2, DAG, dl); |
| SDValue Hi1 = extract128BitVector(Op1, NumElems / 2, DAG, dl); |
| SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Lo0, Lo1); |
| SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Hi0, Hi1); |
| SDValue Ops[] = { |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(0), Hi.getValue(0)), |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(1), Hi.getValue(1)) |
| }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) || |
| (VT == MVT::v8i32 && Subtarget.hasInt256()) || |
| (VT == MVT::v16i32 && Subtarget.hasAVX512())); |
| |
| int NumElts = VT.getVectorNumElements(); |
| |
| // PMULxD operations multiply each even value (starting at 0) of LHS with |
| // the related value of RHS and produce a widen result. |
| // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> |
| // => <2 x i64> <ae|cg> |
| // |
| // In other word, to have all the results, we need to perform two PMULxD: |
| // 1. one with the even values. |
| // 2. one with the odd values. |
| // To achieve #2, with need to place the odd values at an even position. |
| // |
| // Place the odd value at an even position (basically, shift all values 1 |
| // step to the left): |
| const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1, 9, -1, 11, -1, 13, -1, 15, -1}; |
| // <a|b|c|d> => <b|undef|d|undef> |
| SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, |
| makeArrayRef(&Mask[0], NumElts)); |
| // <e|f|g|h> => <f|undef|h|undef> |
| SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, |
| makeArrayRef(&Mask[0], NumElts)); |
| |
| // Emit two multiplies, one for the lower 2 ints and one for the higher 2 |
| // ints. |
| MVT MulVT = MVT::getVectorVT(MVT::i64, NumElts / 2); |
| bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI; |
| unsigned Opcode = |
| (!IsSigned || !Subtarget.hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ; |
| // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> |
| // => <2 x i64> <ae|cg> |
| SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, |
| DAG.getBitcast(MulVT, Op0), |
| DAG.getBitcast(MulVT, Op1))); |
| // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef> |
| // => <2 x i64> <bf|dh> |
| SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, |
| DAG.getBitcast(MulVT, Odd0), |
| DAG.getBitcast(MulVT, Odd1))); |
| |
| // Shuffle it back into the right order. |
| SmallVector<int, 16> HighMask(NumElts); |
| SmallVector<int, 16> LowMask(NumElts); |
| for (int i = 0; i != NumElts; ++i) { |
| HighMask[i] = (i / 2) * 2 + ((i % 2) * NumElts) + 1; |
| LowMask[i] = (i / 2) * 2 + ((i % 2) * NumElts); |
| } |
| |
| SDValue Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); |
| SDValue Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); |
| |
| // If we have a signed multiply but no PMULDQ fix up the high parts of a |
| // unsigned multiply. |
| if (IsSigned && !Subtarget.hasSSE41()) { |
| SDValue ShAmt = DAG.getConstant( |
| 31, dl, |
| DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout())); |
| SDValue T1 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1); |
| SDValue T2 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0); |
| |
| SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2); |
| Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup); |
| } |
| |
| // The first result of MUL_LOHI is actually the low value, followed by the |
| // high value. |
| SDValue Ops[] = {Lows, Highs}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| // Return true if the required (according to Opcode) shift-imm form is natively |
| // supported by the Subtarget |
| static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget, |
| unsigned Opcode) { |
| if (VT.getScalarSizeInBits() < 16) |
| return false; |
| |
| if (VT.is512BitVector() && Subtarget.hasAVX512() && |
| (VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI())) |
| return true; |
| |
| bool LShift = (VT.is128BitVector() && Subtarget.hasSSE2()) || |
| (VT.is256BitVector() && Subtarget.hasInt256()); |
| |
| bool AShift = LShift && (Subtarget.hasAVX512() || |
| (VT != MVT::v2i64 && VT != MVT::v4i64)); |
| return (Opcode == ISD::SRA) ? AShift : LShift; |
| } |
| |
| // The shift amount is a variable, but it is the same for all vector lanes. |
| // These instructions are defined together with shift-immediate. |
| static |
| bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget, |
| unsigned Opcode) { |
| return SupportedVectorShiftWithImm(VT, Subtarget, Opcode); |
| } |
| |
| // Return true if the required (according to Opcode) variable-shift form is |
| // natively supported by the Subtarget |
| static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget, |
| unsigned Opcode) { |
| |
| if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16) |
| return false; |
| |
| // vXi16 supported only on AVX-512, BWI |
| if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI()) |
| return false; |
| |
| if (Subtarget.hasAVX512()) |
| return true; |
| |
| bool LShift = VT.is128BitVector() || VT.is256BitVector(); |
| bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64; |
| return (Opcode == ISD::SRA) ? AShift : LShift; |
| } |
| |
| static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| SDValue R = Op.getOperand(0); |
| SDValue Amt = Op.getOperand(1); |
| |
| unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : |
| (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; |
| |
| auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) { |
| assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type"); |
| MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2); |
| SDValue Ex = DAG.getBitcast(ExVT, R); |
| |
| // ashr(R, 63) === cmp_slt(R, 0) |
| if (ShiftAmt == 63 && Subtarget.hasSSE42()) { |
| assert((VT != MVT::v4i64 || Subtarget.hasInt256()) && |
| "Unsupported PCMPGT op"); |
| return DAG.getNode(X86ISD::PCMPGT, dl, VT, |
| getZeroVector(VT, Subtarget, DAG, dl), R); |
| } |
| |
| if (ShiftAmt >= 32) { |
| // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32. |
| SDValue Upper = |
| getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG); |
| SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, |
| ShiftAmt - 32, DAG); |
| if (VT == MVT::v2i64) |
| Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3}); |
| if (VT == MVT::v4i64) |
| Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, |
| {9, 1, 11, 3, 13, 5, 15, 7}); |
| } else { |
| // SRA upper i32, SHL whole i64 and select lower i32. |
| SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, |
| ShiftAmt, DAG); |
| SDValue Lower = |
| getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); |
| Lower = DAG.getBitcast(ExVT, Lower); |
| if (VT == MVT::v2i64) |
| Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3}); |
| if (VT == MVT::v4i64) |
| Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, |
| {8, 1, 10, 3, 12, 5, 14, 7}); |
| } |
| return DAG.getBitcast(VT, Ex); |
| }; |
| |
| // Optimize shl/srl/sra with constant shift amount. |
| if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { |
| if (auto *ShiftConst = BVAmt->getConstantSplatNode()) { |
| uint64_t ShiftAmt = ShiftConst->getZExtValue(); |
| |
| if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) |
| return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); |
| |
| // i64 SRA needs to be performed as partial shifts. |
| if (((!Subtarget.hasXOP() && VT == MVT::v2i64) || |
| (Subtarget.hasInt256() && VT == MVT::v4i64)) && |
| Op.getOpcode() == ISD::SRA) |
| return ArithmeticShiftRight64(ShiftAmt); |
| |
| if (VT == MVT::v16i8 || |
| (Subtarget.hasInt256() && VT == MVT::v32i8) || |
| VT == MVT::v64i8) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2); |
| |
| // Simple i8 add case |
| if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1) |
| return DAG.getNode(ISD::ADD, dl, VT, R, R); |
| |
| // ashr(R, 7) === cmp_slt(R, 0) |
| if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) { |
| SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); |
| if (VT.is512BitVector()) { |
| assert(VT == MVT::v64i8 && "Unexpected element type!"); |
| SDValue CMP = DAG.getSetCC(dl, MVT::v64i1, Zeros, R, |
| ISD::SETGT); |
| return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP); |
| } |
| return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); |
| } |
| |
| // XOP can shift v16i8 directly instead of as shift v8i16 + mask. |
| if (VT == MVT::v16i8 && Subtarget.hasXOP()) |
| return SDValue(); |
| |
| if (Op.getOpcode() == ISD::SHL) { |
| // Make a large shift. |
| SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, |
| R, ShiftAmt, DAG); |
| SHL = DAG.getBitcast(VT, SHL); |
| // Zero out the rightmost bits. |
| return DAG.getNode(ISD::AND, dl, VT, SHL, |
| DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT)); |
| } |
| if (Op.getOpcode() == ISD::SRL) { |
| // Make a large shift. |
| SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, |
| R, ShiftAmt, DAG); |
| SRL = DAG.getBitcast(VT, SRL); |
| // Zero out the leftmost bits. |
| return DAG.getNode(ISD::AND, dl, VT, SRL, |
| DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT)); |
| } |
| if (Op.getOpcode() == ISD::SRA) { |
| // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask) |
| SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); |
| |
| SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT); |
| Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); |
| Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); |
| return Res; |
| } |
| llvm_unreachable("Unknown shift opcode."); |
| } |
| } |
| } |
| |
| // Check cases (mainly 32-bit) where i64 is expanded into high and low parts. |
| // TODO: Replace constant extraction with getTargetConstantBitsFromNode. |
| if (!Subtarget.hasXOP() && |
| (VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64) || |
| (Subtarget.hasAVX512() && VT == MVT::v8i64))) { |
| |
| // AVX1 targets maybe extracting a 128-bit vector from a 256-bit constant. |
| unsigned SubVectorScale = 1; |
| if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| SubVectorScale = |
| Amt.getOperand(0).getValueSizeInBits() / Amt.getValueSizeInBits(); |
| Amt = Amt.getOperand(0); |
| } |
| |
| // Peek through any splat that was introduced for i64 shift vectorization. |
| int SplatIndex = -1; |
| if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode())) |
| if (SVN->isSplat()) { |
| SplatIndex = SVN->getSplatIndex(); |
| Amt = Amt.getOperand(0); |
| assert(SplatIndex < (int)VT.getVectorNumElements() && |
| "Splat shuffle referencing second operand"); |
| } |
| |
| if (Amt.getOpcode() != ISD::BITCAST || |
| Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| Amt = Amt.getOperand(0); |
| unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / |
| (SubVectorScale * VT.getVectorNumElements()); |
| unsigned RatioInLog2 = Log2_32_Ceil(Ratio); |
| uint64_t ShiftAmt = 0; |
| unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio); |
| for (unsigned i = 0; i != Ratio; ++i) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp)); |
| if (!C) |
| return SDValue(); |
| // 6 == Log2(64) |
| ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); |
| } |
| |
| // Check remaining shift amounts (if not a splat). |
| if (SplatIndex < 0) { |
| for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { |
| uint64_t ShAmt = 0; |
| for (unsigned j = 0; j != Ratio; ++j) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); |
| if (!C) |
| return SDValue(); |
| // 6 == Log2(64) |
| ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); |
| } |
| if (ShAmt != ShiftAmt) |
| return SDValue(); |
| } |
| } |
| |
| if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) |
| return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); |
| |
| if (Op.getOpcode() == ISD::SRA) |
| return ArithmeticShiftRight64(ShiftAmt); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Determine if V is a splat value, and return the scalar. |
| static SDValue IsSplatValue(MVT VT, SDValue V, const SDLoc &dl, |
| SelectionDAG &DAG, const X86Subtarget &Subtarget, |
| unsigned Opcode) { |
| V = peekThroughEXTRACT_SUBVECTORs(V); |
| |
| // Check if this is a splat build_vector node. |
| if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V)) { |
| SDValue SplatAmt = BV->getSplatValue(); |
| if (SplatAmt && SplatAmt.isUndef()) |
| return SDValue(); |
| return SplatAmt; |
| } |
| |
| // Check for SUB(SPLAT_BV, SPLAT) cases from rotate patterns. |
| if (V.getOpcode() == ISD::SUB && |
| !SupportedVectorVarShift(VT, Subtarget, Opcode)) { |
| SDValue LHS = peekThroughEXTRACT_SUBVECTORs(V.getOperand(0)); |
| SDValue RHS = peekThroughEXTRACT_SUBVECTORs(V.getOperand(1)); |
| |
| // Ensure that the corresponding splat BV element is not UNDEF. |
| BitVector UndefElts; |
| BuildVectorSDNode *BV0 = dyn_cast<BuildVectorSDNode>(LHS); |
| ShuffleVectorSDNode *SVN1 = dyn_cast<ShuffleVectorSDNode>(RHS); |
| if (BV0 && SVN1 && BV0->getSplatValue(&UndefElts) && SVN1->isSplat()) { |
| unsigned SplatIdx = (unsigned)SVN1->getSplatIndex(); |
| if (!UndefElts[SplatIdx]) |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| VT.getVectorElementType(), V, |
| DAG.getIntPtrConstant(SplatIdx, dl)); |
| } |
| } |
| |
| // Check if this is a shuffle node doing a splat. |
| ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V); |
| if (!SVN || !SVN->isSplat()) |
| return SDValue(); |
| |
| unsigned SplatIdx = (unsigned)SVN->getSplatIndex(); |
| SDValue InVec = V.getOperand(0); |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR) { |
| assert((SplatIdx < VT.getVectorNumElements()) && |
| "Unexpected shuffle index found!"); |
| return InVec.getOperand(SplatIdx); |
| } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) |
| if (C->getZExtValue() == SplatIdx) |
| return InVec.getOperand(1); |
| } |
| |
| // Avoid introducing an extract element from a shuffle. |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| VT.getVectorElementType(), InVec, |
| DAG.getIntPtrConstant(SplatIdx, dl)); |
| } |
| |
| static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| SDValue R = Op.getOperand(0); |
| SDValue Amt = Op.getOperand(1); |
| unsigned Opcode = Op.getOpcode(); |
| |
| unsigned X86OpcI = (Opcode == ISD::SHL) ? X86ISD::VSHLI : |
| (Opcode == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; |
| |
| unsigned X86OpcV = (Opcode == ISD::SHL) ? X86ISD::VSHL : |
| (Opcode == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA; |
| |
| Amt = peekThroughEXTRACT_SUBVECTORs(Amt); |
| |
| if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Opcode)) { |
| if (SDValue BaseShAmt = IsSplatValue(VT, Amt, dl, DAG, Subtarget, Opcode)) { |
| MVT EltVT = VT.getVectorElementType(); |
| assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!"); |
| if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32)) |
| BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt); |
| else if (EltVT.bitsLT(MVT::i32)) |
| BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); |
| |
| return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG); |
| } |
| } |
| |
| // Check cases (mainly 32-bit) where i64 is expanded into high and low parts. |
| if (VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST && |
| Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { |
| Amt = Amt.getOperand(0); |
| unsigned Ratio = 64 / Amt.getScalarValueSizeInBits(); |
| std::vector<SDValue> Vals(Ratio); |
| for (unsigned i = 0; i != Ratio; ++i) |
| Vals[i] = Amt.getOperand(i); |
| for (unsigned i = Ratio, e = Amt.getNumOperands(); i != e; i += Ratio) { |
| for (unsigned j = 0; j != Ratio; ++j) |
| if (Vals[j] != Amt.getOperand(i + j)) |
| return SDValue(); |
| } |
| |
| if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) |
| return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1)); |
| } |
| return SDValue(); |
| } |
| |
| // Convert a shift/rotate left amount to a multiplication scale factor. |
| static SDValue convertShiftLeftToScale(SDValue Amt, const SDLoc &dl, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Amt.getSimpleValueType(); |
| if (!(VT == MVT::v8i16 || VT == MVT::v4i32 || |
| (Subtarget.hasInt256() && VT == MVT::v16i16) || |
| (!Subtarget.hasAVX512() && VT == MVT::v16i8))) |
| return SDValue(); |
| |
| if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { |
| SmallVector<SDValue, 8> Elts; |
| MVT SVT = VT.getVectorElementType(); |
| unsigned SVTBits = SVT.getSizeInBits(); |
| APInt One(SVTBits, 1); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDValue Op = Amt->getOperand(i); |
| if (Op->isUndef()) { |
| Elts.push_back(Op); |
| continue; |
| } |
| |
| ConstantSDNode *ND = cast<ConstantSDNode>(Op); |
| APInt C(SVTBits, ND->getAPIntValue().getZExtValue()); |
| uint64_t ShAmt = C.getZExtValue(); |
| if (ShAmt >= SVTBits) { |
| Elts.push_back(DAG.getUNDEF(SVT)); |
| continue; |
| } |
| Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT)); |
| } |
| return DAG.getBuildVector(VT, dl, Elts); |
| } |
| |
| // If the target doesn't support variable shifts, use either FP conversion |
| // or integer multiplication to avoid shifting each element individually. |
| if (VT == MVT::v4i32) { |
| Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT)); |
| Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, |
| DAG.getConstant(0x3f800000U, dl, VT)); |
| Amt = DAG.getBitcast(MVT::v4f32, Amt); |
| return DAG.getNode(ISD::FP_TO_SINT, dl, VT, Amt); |
| } |
| |
| // AVX2 can more effectively perform this as a zext/trunc to/from v8i32. |
| if (VT == MVT::v8i16 && !Subtarget.hasAVX2()) { |
| SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); |
| SDValue Lo = DAG.getBitcast(MVT::v4i32, getUnpackl(DAG, dl, VT, Amt, Z)); |
| SDValue Hi = DAG.getBitcast(MVT::v4i32, getUnpackh(DAG, dl, VT, Amt, Z)); |
| Lo = convertShiftLeftToScale(Lo, dl, Subtarget, DAG); |
| Hi = convertShiftLeftToScale(Hi, dl, Subtarget, DAG); |
| if (Subtarget.hasSSE41()) |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); |
| |
| return DAG.getVectorShuffle(VT, dl, DAG.getBitcast(VT, Lo), |
| DAG.getBitcast(VT, Hi), |
| {0, 2, 4, 6, 8, 10, 12, 14}); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc dl(Op); |
| SDValue R = Op.getOperand(0); |
| SDValue Amt = Op.getOperand(1); |
| bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()); |
| |
| assert(VT.isVector() && "Custom lowering only for vector shifts!"); |
| assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!"); |
| |
| if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget)) |
| return V; |
| |
| if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget)) |
| return V; |
| |
| if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode())) |
| return Op; |
| |
| // XOP has 128-bit variable logical/arithmetic shifts. |
| // +ve/-ve Amt = shift left/right. |
| if (Subtarget.hasXOP() && (VT == MVT::v2i64 || VT == MVT::v4i32 || |
| VT == MVT::v8i16 || VT == MVT::v16i8)) { |
| if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) { |
| SDValue Zero = DAG.getConstant(0, dl, VT); |
| Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt); |
| } |
| if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL) |
| return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt); |
| if (Op.getOpcode() == ISD::SRA) |
| return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt); |
| } |
| |
| // 2i64 vector logical shifts can efficiently avoid scalarization - do the |
| // shifts per-lane and then shuffle the partial results back together. |
| if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) { |
| // Splat the shift amounts so the scalar shifts above will catch it. |
| SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0}); |
| SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1}); |
| SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0); |
| SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1); |
| return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3}); |
| } |
| |
| // i64 vector arithmetic shift can be emulated with the transform: |
| // M = lshr(SIGN_MASK, Amt) |
| // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M) |
| if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) && |
| Op.getOpcode() == ISD::SRA) { |
| SDValue S = DAG.getConstant(APInt::getSignMask(64), dl, VT); |
| SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt); |
| R = DAG.getNode(ISD::SRL, dl, VT, R, Amt); |
| R = DAG.getNode(ISD::XOR, dl, VT, R, M); |
| R = DAG.getNode(ISD::SUB, dl, VT, R, M); |
| return R; |
| } |
| |
| // If possible, lower this shift as a sequence of two shifts by |
| // constant plus a BLENDing shuffle instead of scalarizing it. |
| // Example: |
| // (v4i32 (srl A, (build_vector < X, Y, Y, Y>))) |
| // |
| // Could be rewritten as: |
| // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>))) |
| // |
| // The advantage is that the two shifts from the example would be |
| // lowered as X86ISD::VSRLI nodes in parallel before blending. |
| if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32 || |
| (VT == MVT::v16i16 && Subtarget.hasInt256()))) { |
| SDValue Amt1, Amt2; |
| unsigned NumElts = VT.getVectorNumElements(); |
| SmallVector<int, 8> ShuffleMask; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDValue A = Amt->getOperand(i); |
| if (A.isUndef()) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| if (!Amt1 || Amt1 == A) { |
| ShuffleMask.push_back(i); |
| Amt1 = A; |
| continue; |
| } |
| if (!Amt2 || Amt2 == A) { |
| ShuffleMask.push_back(i + NumElts); |
| Amt2 = A; |
| continue; |
| } |
| break; |
| } |
| |
| // Only perform this blend if we can perform it without loading a mask. |
| if (ShuffleMask.size() == NumElts && Amt1 && Amt2 && |
| isa<ConstantSDNode>(Amt1) && isa<ConstantSDNode>(Amt2) && |
| (VT != MVT::v16i16 || |
| is128BitLaneRepeatedShuffleMask(VT, ShuffleMask)) && |
| (VT == MVT::v4i32 || Subtarget.hasSSE41() || |
| Op.getOpcode() != ISD::SHL || canWidenShuffleElements(ShuffleMask))) { |
| SDValue Splat1 = |
| DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT); |
| SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1); |
| SDValue Splat2 = |
| DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT); |
| SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2); |
| return DAG.getVectorShuffle(VT, dl, Shift1, Shift2, ShuffleMask); |
| } |
| } |
| |
| // If possible, lower this packed shift into a vector multiply instead of |
| // expanding it into a sequence of scalar shifts. |
| if (Op.getOpcode() == ISD::SHL) |
| if (SDValue Scale = convertShiftLeftToScale(Amt, dl, Subtarget, DAG)) |
| return DAG.getNode(ISD::MUL, dl, VT, R, Scale); |
| |
| // Constant ISD::SRL can be performed efficiently on vXi8/vXi16 vectors as we |
| // can replace with ISD::MULHU, creating scale factor from (NumEltBits - Amt). |
| // TODO: Improve support for the shift by zero special case. |
| if (Op.getOpcode() == ISD::SRL && ConstantAmt && |
| ((Subtarget.hasSSE41() && VT == MVT::v8i16) || |
| DAG.isKnownNeverZero(Amt)) && |
| (VT == MVT::v16i8 || VT == MVT::v8i16 || |
| ((VT == MVT::v32i8 || VT == MVT::v16i16) && Subtarget.hasInt256()))) { |
| SDValue EltBits = DAG.getConstant(VT.getScalarSizeInBits(), dl, VT); |
| SDValue RAmt = DAG.getNode(ISD::SUB, dl, VT, EltBits, Amt); |
| if (SDValue Scale = convertShiftLeftToScale(RAmt, dl, Subtarget, DAG)) { |
| SDValue Zero = DAG.getConstant(0, dl, VT); |
| SDValue ZAmt = DAG.getSetCC(dl, VT, Amt, Zero, ISD::SETEQ); |
| SDValue Res = DAG.getNode(ISD::MULHU, dl, VT, R, Scale); |
| return DAG.getSelect(dl, VT, ZAmt, R, Res); |
| } |
| } |
| |
| // v4i32 Non Uniform Shifts. |
| // If the shift amount is constant we can shift each lane using the SSE2 |
| // immediate shifts, else we need to zero-extend each lane to the lower i64 |
| // and shift using the SSE2 variable shifts. |
| // The separate results can then be blended together. |
| if (VT == MVT::v4i32) { |
| unsigned Opc = Op.getOpcode(); |
| SDValue Amt0, Amt1, Amt2, Amt3; |
| if (ConstantAmt) { |
| Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0}); |
| Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1}); |
| Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2}); |
| Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3}); |
| } else { |
| // ISD::SHL is handled above but we include it here for completeness. |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unknown target vector shift node"); |
| case ISD::SHL: |
| Opc = X86ISD::VSHL; |
| break; |
| case ISD::SRL: |
| Opc = X86ISD::VSRL; |
| break; |
| case ISD::SRA: |
| Opc = X86ISD::VSRA; |
| break; |
| } |
| // The SSE2 shifts use the lower i64 as the same shift amount for |
| // all lanes and the upper i64 is ignored. On AVX we're better off |
| // just zero-extending, but for SSE just duplicating the top 16-bits is |
| // cheaper and has the same effect for out of range values. |
| if (Subtarget.hasAVX()) { |
| SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); |
| Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1}); |
| Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1}); |
| Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1}); |
| Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1}); |
| } else { |
| SDValue Amt01 = DAG.getBitcast(MVT::v8i16, Amt); |
| SDValue Amt23 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01, |
| {4, 5, 6, 7, -1, -1, -1, -1}); |
| Amt0 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01, |
| {0, 1, 1, 1, -1, -1, -1, -1}); |
| Amt1 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01, |
| {2, 3, 3, 3, -1, -1, -1, -1}); |
| Amt2 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23, |
| {0, 1, 1, 1, -1, -1, -1, -1}); |
| Amt3 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23, |
| {2, 3, 3, 3, -1, -1, -1, -1}); |
| } |
| } |
| |
| SDValue R0 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt0)); |
| SDValue R1 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt1)); |
| SDValue R2 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt2)); |
| SDValue R3 = DAG.getNode(Opc, dl, VT, R, DAG.getBitcast(VT, Amt3)); |
| |
| // Merge the shifted lane results optimally with/without PBLENDW. |
| // TODO - ideally shuffle combining would handle this. |
| if (Subtarget.hasSSE41()) { |
| SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1}); |
| SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7}); |
| return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7}); |
| } |
| SDValue R01 = DAG.getVectorShuffle(VT, dl, R0, R1, {0, -1, -1, 5}); |
| SDValue R23 = DAG.getVectorShuffle(VT, dl, R2, R3, {2, -1, -1, 7}); |
| return DAG.getVectorShuffle(VT, dl, R01, R23, {0, 3, 4, 7}); |
| } |
| |
| // It's worth extending once and using the vXi16/vXi32 shifts for smaller |
| // types, but without AVX512 the extra overheads to get from vXi8 to vXi32 |
| // make the existing SSE solution better. |
| // NOTE: We honor prefered vector width before promoting to 512-bits. |
| if ((Subtarget.hasInt256() && VT == MVT::v8i16) || |
| (Subtarget.canExtendTo512DQ() && VT == MVT::v16i16) || |
| (Subtarget.canExtendTo512DQ() && VT == MVT::v16i8) || |
| (Subtarget.canExtendTo512BW() && VT == MVT::v32i8) || |
| (Subtarget.hasBWI() && Subtarget.hasVLX() && VT == MVT::v16i8)) { |
| assert((!Subtarget.hasBWI() || VT == MVT::v32i8 || VT == MVT::v16i8) && |
| "Unexpected vector type"); |
| MVT EvtSVT = Subtarget.hasBWI() ? MVT::i16 : MVT::i32; |
| MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements()); |
| unsigned ExtOpc = |
| Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| R = DAG.getNode(ExtOpc, dl, ExtVT, R); |
| Amt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Amt); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt)); |
| } |
| |
| if (VT == MVT::v16i8 || |
| (VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP()) || |
| (VT == MVT::v64i8 && Subtarget.hasBWI())) { |
| MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2); |
| unsigned ShiftOpcode = Op->getOpcode(); |
| |
| auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) { |
| if (VT.is512BitVector()) { |
| // On AVX512BW targets we make use of the fact that VSELECT lowers |
| // to a masked blend which selects bytes based just on the sign bit |
| // extracted to a mask. |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); |
| V0 = DAG.getBitcast(VT, V0); |
| V1 = DAG.getBitcast(VT, V1); |
| Sel = DAG.getBitcast(VT, Sel); |
| Sel = DAG.getSetCC(dl, MaskVT, DAG.getConstant(0, dl, VT), Sel, |
| ISD::SETGT); |
| return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1)); |
| } else if (Subtarget.hasSSE41()) { |
| // On SSE41 targets we make use of the fact that VSELECT lowers |
| // to PBLENDVB which selects bytes based just on the sign bit. |
| V0 = DAG.getBitcast(VT, V0); |
| V1 = DAG.getBitcast(VT, V1); |
| Sel = DAG.getBitcast(VT, Sel); |
| return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1)); |
| } |
| // On pre-SSE41 targets we test for the sign bit by comparing to |
| // zero - a negative value will set all bits of the lanes to true |
| // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering. |
| SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl); |
| SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel); |
| return DAG.getSelect(dl, SelVT, C, V0, V1); |
| }; |
| |
| // Turn 'a' into a mask suitable for VSELECT: a = a << 5; |
| // We can safely do this using i16 shifts as we're only interested in |
| // the 3 lower bits of each byte. |
| Amt = DAG.getBitcast(ExtVT, Amt); |
| Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT)); |
| Amt = DAG.getBitcast(VT, Amt); |
| |
| if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) { |
| // r = VSELECT(r, shift(r, 4), a); |
| SDValue M = |
| DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); |
| R = SignBitSelect(VT, Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); |
| |
| // r = VSELECT(r, shift(r, 2), a); |
| M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); |
| R = SignBitSelect(VT, Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); |
| |
| // return VSELECT(r, shift(r, 1), a); |
| M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); |
| R = SignBitSelect(VT, Amt, M, R); |
| return R; |
| } |
| |
| if (Op->getOpcode() == ISD::SRA) { |
| // For SRA we need to unpack each byte to the higher byte of a i16 vector |
| // so we can correctly sign extend. We don't care what happens to the |
| // lower byte. |
| SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt); |
| SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt); |
| SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R); |
| SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R); |
| ALo = DAG.getBitcast(ExtVT, ALo); |
| AHi = DAG.getBitcast(ExtVT, AHi); |
| RLo = DAG.getBitcast(ExtVT, RLo); |
| RHi = DAG.getBitcast(ExtVT, RHi); |
| |
| // r = VSELECT(r, shift(r, 4), a); |
| SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, |
| DAG.getConstant(4, dl, ExtVT)); |
| SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, |
| DAG.getConstant(4, dl, ExtVT)); |
| RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); |
| RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); |
| |
| // a += a |
| ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); |
| AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); |
| |
| // r = VSELECT(r, shift(r, 2), a); |
| MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, |
| DAG.getConstant(2, dl, ExtVT)); |
| MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, |
| DAG.getConstant(2, dl, ExtVT)); |
| RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); |
| RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); |
| |
| // a += a |
| ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); |
| AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); |
| |
| // r = VSELECT(r, shift(r, 1), a); |
| MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, |
| DAG.getConstant(1, dl, ExtVT)); |
| MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, |
| DAG.getConstant(1, dl, ExtVT)); |
| RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); |
| RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); |
| |
| // Logical shift the result back to the lower byte, leaving a zero upper |
| // byte |
| // meaning that we can safely pack with PACKUSWB. |
| RLo = |
| DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT)); |
| RHi = |
| DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT)); |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); |
| } |
| } |
| |
| if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) { |
| MVT ExtVT = MVT::v8i32; |
| SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); |
| SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z); |
| SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z); |
| SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Z, R); |
| SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Z, R); |
| ALo = DAG.getBitcast(ExtVT, ALo); |
| AHi = DAG.getBitcast(ExtVT, AHi); |
| RLo = DAG.getBitcast(ExtVT, RLo); |
| RHi = DAG.getBitcast(ExtVT, RHi); |
| SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo); |
| SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi); |
| Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT)); |
| Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT)); |
| return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); |
| } |
| |
| if (VT == MVT::v8i16) { |
| unsigned ShiftOpcode = Op->getOpcode(); |
| |
| // If we have a constant shift amount, the non-SSE41 path is best as |
| // avoiding bitcasts make it easier to constant fold and reduce to PBLENDW. |
| bool UseSSE41 = Subtarget.hasSSE41() && |
| !ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()); |
| |
| auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) { |
| // On SSE41 targets we make use of the fact that VSELECT lowers |
| // to PBLENDVB which selects bytes based just on the sign bit. |
| if (UseSSE41) { |
| MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2); |
| V0 = DAG.getBitcast(ExtVT, V0); |
| V1 = DAG.getBitcast(ExtVT, V1); |
| Sel = DAG.getBitcast(ExtVT, Sel); |
| return DAG.getBitcast(VT, DAG.getSelect(dl, ExtVT, Sel, V0, V1)); |
| } |
| // On pre-SSE41 targets we splat the sign bit - a negative value will |
| // set all bits of the lanes to true and VSELECT uses that in |
| // its OR(AND(V0,C),AND(V1,~C)) lowering. |
| SDValue C = |
| DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT)); |
| return DAG.getSelect(dl, VT, C, V0, V1); |
| }; |
| |
| // Turn 'a' into a mask suitable for VSELECT: a = a << 12; |
| if (UseSSE41) { |
| // On SSE41 targets we need to replicate the shift mask in both |
| // bytes for PBLENDVB. |
| Amt = DAG.getNode( |
| ISD::OR, dl, VT, |
| DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)), |
| DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT))); |
| } else { |
| Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)); |
| } |
| |
| // r = VSELECT(r, shift(r, 8), a); |
| SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT)); |
| R = SignBitSelect(Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); |
| |
| // r = VSELECT(r, shift(r, 4), a); |
| M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); |
| R = SignBitSelect(Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); |
| |
| // r = VSELECT(r, shift(r, 2), a); |
| M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); |
| R = SignBitSelect(Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); |
| |
| // return VSELECT(r, shift(r, 1), a); |
| M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); |
| R = SignBitSelect(Amt, M, R); |
| return R; |
| } |
| |
| // Decompose 256-bit shifts into smaller 128-bit shifts. |
| if (VT.is256BitVector()) |
| return Lower256IntArith(Op, DAG); |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT.isVector() && "Custom lowering only for vector rotates!"); |
| |
| SDLoc DL(Op); |
| SDValue R = Op.getOperand(0); |
| SDValue Amt = Op.getOperand(1); |
| unsigned Opcode = Op.getOpcode(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| |
| if (Subtarget.hasAVX512() && 32 <= EltSizeInBits) { |
| // Attempt to rotate by immediate. |
| APInt UndefElts; |
| SmallVector<APInt, 16> EltBits; |
| if (getTargetConstantBitsFromNode(Amt, EltSizeInBits, UndefElts, EltBits)) { |
| if (!UndefElts && llvm::all_of(EltBits, [EltBits](APInt &V) { |
| return EltBits[0] == V; |
| })) { |
| unsigned Op = (Opcode == ISD::ROTL ? X86ISD::VROTLI : X86ISD::VROTRI); |
| uint64_t RotateAmt = EltBits[0].urem(EltSizeInBits); |
| return DAG.getNode(Op, DL, VT, R, |
| DAG.getConstant(RotateAmt, DL, MVT::i8)); |
| } |
| } |
| |
| // Else, fall-back on VPROLV/VPRORV. |
| return Op; |
| } |
| |
| assert((Opcode == ISD::ROTL) && "Only ROTL supported"); |
| |
| // XOP has 128-bit vector variable + immediate rotates. |
| // +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL. |
| if (Subtarget.hasXOP()) { |
| // Split 256-bit integers. |
| if (VT.is256BitVector()) |
| return Lower256IntArith(Op, DAG); |
| assert(VT.is128BitVector() && "Only rotate 128-bit vectors!"); |
| |
| // Attempt to rotate by immediate. |
| if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { |
| if (auto *RotateConst = BVAmt->getConstantSplatNode()) { |
| uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue(); |
| assert(RotateAmt < EltSizeInBits && "Rotation out of range"); |
| return DAG.getNode(X86ISD::VROTLI, DL, VT, R, |
| DAG.getConstant(RotateAmt, DL, MVT::i8)); |
| } |
| } |
| |
| // Use general rotate by variable (per-element). |
| return Op; |
| } |
| |
| // Split 256-bit integers on pre-AVX2 targets. |
| if (VT.is256BitVector() && !Subtarget.hasAVX2()) |
| return Lower256IntArith(Op, DAG); |
| |
| assert((VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8 || |
| ((VT == MVT::v8i32 || VT == MVT::v16i16 || VT == MVT::v32i8) && |
| Subtarget.hasAVX2())) && |
| "Only vXi32/vXi16/vXi8 vector rotates supported"); |
| |
| // Rotate by an uniform constant - expand back to shifts. |
| // TODO - legalizers should be able to handle this. |
| if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { |
| if (auto *RotateConst = BVAmt->getConstantSplatNode()) { |
| uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue(); |
| assert(RotateAmt < EltSizeInBits && "Rotation out of range"); |
| if (RotateAmt == 0) |
| return R; |
| |
| SDValue AmtR = DAG.getConstant(EltSizeInBits - RotateAmt, DL, VT); |
| SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt); |
| SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR); |
| return DAG.getNode(ISD::OR, DL, VT, SHL, SRL); |
| } |
| } |
| |
| // Rotate by splat - expand back to shifts. |
| // TODO - legalizers should be able to handle this. |
| if ((EltSizeInBits >= 16 || Subtarget.hasBWI()) && |
| IsSplatValue(VT, Amt, DL, DAG, Subtarget, Opcode)) { |
| SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT); |
| AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt); |
| SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt); |
| SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR); |
| return DAG.getNode(ISD::OR, DL, VT, SHL, SRL); |
| } |
| |
| // v16i8/v32i8: Split rotation into rot4/rot2/rot1 stages and select by |
| // the amount bit. |
| if (EltSizeInBits == 8) { |
| if (Subtarget.hasBWI()) { |
| SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT); |
| AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt); |
| SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt); |
| SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR); |
| return DAG.getNode(ISD::OR, DL, VT, SHL, SRL); |
| } |
| |
| MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2); |
| |
| auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) { |
| if (Subtarget.hasSSE41()) { |
| // On SSE41 targets we make use of the fact that VSELECT lowers |
| // to PBLENDVB which selects bytes based just on the sign bit. |
| V0 = DAG.getBitcast(VT, V0); |
| V1 = DAG.getBitcast(VT, V1); |
| Sel = DAG.getBitcast(VT, Sel); |
| return DAG.getBitcast(SelVT, DAG.getSelect(DL, VT, Sel, V0, V1)); |
| } |
| // On pre-SSE41 targets we test for the sign bit by comparing to |
| // zero - a negative value will set all bits of the lanes to true |
| // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering. |
| SDValue Z = getZeroVector(SelVT, Subtarget, DAG, DL); |
| SDValue C = DAG.getNode(X86ISD::PCMPGT, DL, SelVT, Z, Sel); |
| return DAG.getSelect(DL, SelVT, C, V0, V1); |
| }; |
| |
| // Turn 'a' into a mask suitable for VSELECT: a = a << 5; |
| // We can safely do this using i16 shifts as we're only interested in |
| // the 3 lower bits of each byte. |
| Amt = DAG.getBitcast(ExtVT, Amt); |
| Amt = DAG.getNode(ISD::SHL, DL, ExtVT, Amt, DAG.getConstant(5, DL, ExtVT)); |
| Amt = DAG.getBitcast(VT, Amt); |
| |
| // r = VSELECT(r, rot(r, 4), a); |
| SDValue M; |
| M = DAG.getNode( |
| ISD::OR, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(4, DL, VT)), |
| DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(4, DL, VT))); |
| R = SignBitSelect(VT, Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt); |
| |
| // r = VSELECT(r, rot(r, 2), a); |
| M = DAG.getNode( |
| ISD::OR, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(2, DL, VT)), |
| DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(6, DL, VT))); |
| R = SignBitSelect(VT, Amt, M, R); |
| |
| // a += a |
| Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt); |
| |
| // return VSELECT(r, rot(r, 1), a); |
| M = DAG.getNode( |
| ISD::OR, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(1, DL, VT)), |
| DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(7, DL, VT))); |
| return SignBitSelect(VT, Amt, M, R); |
| } |
| |
| bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()); |
| bool LegalVarShifts = SupportedVectorVarShift(VT, Subtarget, ISD::SHL) && |
| SupportedVectorVarShift(VT, Subtarget, ISD::SRL); |
| |
| // Best to fallback for all supported variable shifts. |
| // AVX2 - best to fallback for non-constants as well. |
| // TODO - legalizers should be able to handle this. |
| if (LegalVarShifts || (Subtarget.hasAVX2() && !ConstantAmt)) { |
| SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT); |
| AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt); |
| SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt); |
| SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR); |
| return DAG.getNode(ISD::OR, DL, VT, SHL, SRL); |
| } |
| |
| // As with shifts, convert the rotation amount to a multiplication factor. |
| SDValue Scale = convertShiftLeftToScale(Amt, DL, Subtarget, DAG); |
| assert(Scale && "Failed to convert ROTL amount to scale"); |
| |
| // v8i16/v16i16: perform unsigned multiply hi/lo and OR the results. |
| if (EltSizeInBits == 16) { |
| SDValue Lo = DAG.getNode(ISD::MUL, DL, VT, R, Scale); |
| SDValue Hi = DAG.getNode(ISD::MULHU, DL, VT, R, Scale); |
| return DAG.getNode(ISD::OR, DL, VT, Lo, Hi); |
| } |
| |
| // v4i32: make use of the PMULUDQ instruction to multiply 2 lanes of v4i32 |
| // to v2i64 results at a time. The upper 32-bits contain the wrapped bits |
| // that can then be OR'd with the lower 32-bits. |
| assert(VT == MVT::v4i32 && "Only v4i32 vector rotate expected"); |
| static const int OddMask[] = {1, -1, 3, -1}; |
| SDValue R13 = DAG.getVectorShuffle(VT, DL, R, R, OddMask); |
| SDValue Scale13 = DAG.getVectorShuffle(VT, DL, Scale, Scale, OddMask); |
| |
| SDValue Res02 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64, |
| DAG.getBitcast(MVT::v2i64, R), |
| DAG.getBitcast(MVT::v2i64, Scale)); |
| SDValue Res13 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64, |
| DAG.getBitcast(MVT::v2i64, R13), |
| DAG.getBitcast(MVT::v2i64, Scale13)); |
| Res02 = DAG.getBitcast(VT, Res02); |
| Res13 = DAG.getBitcast(VT, Res13); |
| |
| return DAG.getNode(ISD::OR, DL, VT, |
| DAG.getVectorShuffle(VT, DL, Res02, Res13, {0, 4, 2, 6}), |
| DAG.getVectorShuffle(VT, DL, Res02, Res13, {1, 5, 3, 7})); |
| } |
| |
| static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { |
| // Lower the "add/sub/mul with overflow" instruction into a regular ins plus |
| // a "setcc" instruction that checks the overflow flag. The "brcond" lowering |
| // looks for this combo and may remove the "setcc" instruction if the "setcc" |
| // has only one use. |
| SDNode *N = Op.getNode(); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| unsigned BaseOp = 0; |
| X86::CondCode Cond; |
| SDLoc DL(Op); |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unknown ovf instruction!"); |
| case ISD::SADDO: |
| // A subtract of one will be selected as a INC. Note that INC doesn't |
| // set CF, so we can't do this for UADDO. |
| if (isOneConstant(RHS)) { |
| BaseOp = X86ISD::INC; |
| Cond = X86::COND_O; |
| break; |
| } |
| BaseOp = X86ISD::ADD; |
| Cond = X86::COND_O; |
| break; |
| case ISD::UADDO: |
| BaseOp = X86ISD::ADD; |
| Cond = X86::COND_B; |
| break; |
| case ISD::SSUBO: |
| // A subtract of one will be selected as a DEC. Note that DEC doesn't |
| // set CF, so we can't do this for USUBO. |
| if (isOneConstant(RHS)) { |
| BaseOp = X86ISD::DEC; |
| Cond = X86::COND_O; |
| break; |
| } |
| BaseOp = X86ISD::SUB; |
| Cond = X86::COND_O; |
| break; |
| case ISD::USUBO: |
| BaseOp = X86ISD::SUB; |
| Cond = X86::COND_B; |
| break; |
| case ISD::SMULO: |
| BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL; |
| Cond = X86::COND_O; |
| break; |
| case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs |
| if (N->getValueType(0) == MVT::i8) { |
| BaseOp = X86ISD::UMUL8; |
| Cond = X86::COND_O; |
| break; |
| } |
| SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), |
| MVT::i32); |
| SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); |
| |
| SDValue SetCC = getSETCC(X86::COND_O, SDValue(Sum.getNode(), 2), DL, DAG); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); |
| } |
| } |
| |
| // Also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); |
| SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); |
| |
| SDValue SetCC = getSETCC(Cond, SDValue(Sum.getNode(), 1), DL, DAG); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); |
| } |
| |
| /// Returns true if the operand type is exactly twice the native width, and |
| /// the corresponding cmpxchg8b or cmpxchg16b instruction is available. |
| /// Used to know whether to use cmpxchg8/16b when expanding atomic operations |
| /// (otherwise we leave them alone to become __sync_fetch_and_... calls). |
| bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const { |
| unsigned OpWidth = MemType->getPrimitiveSizeInBits(); |
| |
| if (OpWidth == 64) |
| return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b |
| else if (OpWidth == 128) |
| return Subtarget.hasCmpxchg16b(); |
| else |
| return false; |
| } |
| |
| bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { |
| return needsCmpXchgNb(SI->getValueOperand()->getType()); |
| } |
| |
| // Note: this turns large loads into lock cmpxchg8b/16b. |
| // FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b. |
| TargetLowering::AtomicExpansionKind |
| X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { |
| auto PTy = cast<PointerType>(LI->getPointerOperandType()); |
| return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg |
| : AtomicExpansionKind::None; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32; |
| Type *MemType = AI->getType(); |
| |
| // If the operand is too big, we must see if cmpxchg8/16b is available |
| // and default to library calls otherwise. |
| if (MemType->getPrimitiveSizeInBits() > NativeWidth) { |
| return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg |
| : AtomicExpansionKind::None; |
| } |
| |
| AtomicRMWInst::BinOp Op = AI->getOperation(); |
| switch (Op) { |
| default: |
| llvm_unreachable("Unknown atomic operation"); |
| case AtomicRMWInst::Xchg: |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: |
| // It's better to use xadd, xsub or xchg for these in all cases. |
| return AtomicExpansionKind::None; |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::Xor: |
| // If the atomicrmw's result isn't actually used, we can just add a "lock" |
| // prefix to a normal instruction for these operations. |
| return !AI->use_empty() ? AtomicExpansionKind::CmpXChg |
| : AtomicExpansionKind::None; |
| case AtomicRMWInst::Nand: |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::UMax: |
| case AtomicRMWInst::UMin: |
| // These always require a non-trivial set of data operations on x86. We must |
| // use a cmpxchg loop. |
| return AtomicExpansionKind::CmpXChg; |
| } |
| } |
| |
| LoadInst * |
| X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { |
| unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32; |
| Type *MemType = AI->getType(); |
| // Accesses larger than the native width are turned into cmpxchg/libcalls, so |
| // there is no benefit in turning such RMWs into loads, and it is actually |
| // harmful as it introduces a mfence. |
| if (MemType->getPrimitiveSizeInBits() > NativeWidth) |
| return nullptr; |
| |
| auto Builder = IRBuilder<>(AI); |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| auto SSID = AI->getSyncScopeID(); |
| // We must restrict the ordering to avoid generating loads with Release or |
| // ReleaseAcquire orderings. |
| auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering()); |
| auto Ptr = AI->getPointerOperand(); |
| |
| // Before the load we need a fence. Here is an example lifted from |
| // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence |
| // is required: |
| // Thread 0: |
| // x.store(1, relaxed); |
| // r1 = y.fetch_add(0, release); |
| // Thread 1: |
| // y.fetch_add(42, acquire); |
| // r2 = x.load(relaxed); |
| // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is |
| // lowered to just a load without a fence. A mfence flushes the store buffer, |
| // making the optimization clearly correct. |
| // FIXME: it is required if isReleaseOrStronger(Order) but it is not clear |
| // otherwise, we might be able to be more aggressive on relaxed idempotent |
| // rmw. In practice, they do not look useful, so we don't try to be |
| // especially clever. |
| if (SSID == SyncScope::SingleThread) |
| // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at |
| // the IR level, so we must wrap it in an intrinsic. |
| return nullptr; |
| |
| if (!Subtarget.hasMFence()) |
| // FIXME: it might make sense to use a locked operation here but on a |
| // different cache-line to prevent cache-line bouncing. In practice it |
| // is probably a small win, and x86 processors without mfence are rare |
| // enough that we do not bother. |
| return nullptr; |
| |
| Function *MFence = |
| llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence); |
| Builder.CreateCall(MFence, {}); |
| |
| // Finally we can emit the atomic load. |
| LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr, |
| AI->getType()->getPrimitiveSizeInBits()); |
| Loaded->setAtomic(Order, SSID); |
| AI->replaceAllUsesWith(Loaded); |
| AI->eraseFromParent(); |
| return Loaded; |
| } |
| |
| static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDLoc dl(Op); |
| AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( |
| cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); |
| SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( |
| cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); |
| |
| // The only fence that needs an instruction is a sequentially-consistent |
| // cross-thread fence. |
| if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && |
| FenceSSID == SyncScope::System) { |
| if (Subtarget.hasMFence()) |
| return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Zero = DAG.getConstant(0, dl, MVT::i32); |
| SDValue Ops[] = { |
| DAG.getRegister(X86::ESP, MVT::i32), // Base |
| DAG.getTargetConstant(1, dl, MVT::i8), // Scale |
| DAG.getRegister(0, MVT::i32), // Index |
| DAG.getTargetConstant(0, dl, MVT::i32), // Disp |
| DAG.getRegister(0, MVT::i32), // Segment. |
| Zero, |
| Chain |
| }; |
| SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); |
| return SDValue(Res, 0); |
| } |
| |
| // MEMBARRIER is a compiler barrier; it codegens to a no-op. |
| return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); |
| } |
| |
| static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT T = Op.getSimpleValueType(); |
| SDLoc DL(Op); |
| unsigned Reg = 0; |
| unsigned size = 0; |
| switch(T.SimpleTy) { |
| default: llvm_unreachable("Invalid value type!"); |
| case MVT::i8: Reg = X86::AL; size = 1; break; |
| case MVT::i16: Reg = X86::AX; size = 2; break; |
| case MVT::i32: Reg = X86::EAX; size = 4; break; |
| case MVT::i64: |
| assert(Subtarget.is64Bit() && "Node not type legal!"); |
| Reg = X86::RAX; size = 8; |
| break; |
| } |
| SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, |
| Op.getOperand(2), SDValue()); |
| SDValue Ops[] = { cpIn.getValue(0), |
| Op.getOperand(1), |
| Op.getOperand(3), |
| DAG.getTargetConstant(size, DL, MVT::i8), |
| cpIn.getValue(1) }; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); |
| SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, |
| Ops, T, MMO); |
| |
| SDValue cpOut = |
| DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); |
| SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS, |
| MVT::i32, cpOut.getValue(2)); |
| SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG); |
| |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1)); |
| return SDValue(); |
| } |
| |
| // Create MOVMSKB, taking into account whether we need to split for AVX1. |
| static SDValue getPMOVMSKB(const SDLoc &DL, SDValue V, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT InVT = V.getSimpleValueType(); |
| |
| if (InVT == MVT::v32i8 && !Subtarget.hasInt256()) { |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVector(V, DL); |
| Lo = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Lo); |
| Hi = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Hi); |
| Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, |
| DAG.getConstant(16, DL, MVT::i8)); |
| return DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi); |
| } |
| |
| return DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V); |
| } |
| |
| static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue Src = Op.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| MVT DstVT = Op.getSimpleValueType(); |
| |
| // Legalize (v64i1 (bitcast i64 (X))) by splitting the i64, bitcasting each |
| // half to v32i1 and concatenating the result. |
| if (SrcVT == MVT::i64 && DstVT == MVT::v64i1) { |
| assert(!Subtarget.is64Bit() && "Expected 32-bit mode"); |
| assert(Subtarget.hasBWI() && "Expected BWI target"); |
| SDLoc dl(Op); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src, |
| DAG.getIntPtrConstant(0, dl)); |
| Lo = DAG.getBitcast(MVT::v32i1, Lo); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src, |
| DAG.getIntPtrConstant(1, dl)); |
| Hi = DAG.getBitcast(MVT::v32i1, Hi); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi); |
| } |
| |
| // Custom splitting for BWI types when AVX512F is available but BWI isn't. |
| if ((SrcVT == MVT::v32i16 || SrcVT == MVT::v64i8) && DstVT.isVector() && |
| DAG.getTargetLoweringInfo().isTypeLegal(DstVT)) { |
| SDLoc dl(Op); |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl); |
| EVT CastVT = MVT::getVectorVT(DstVT.getVectorElementType(), |
| DstVT.getVectorNumElements() / 2); |
| Lo = DAG.getBitcast(CastVT, Lo); |
| Hi = DAG.getBitcast(CastVT, Hi); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi); |
| } |
| |
| // Use MOVMSK for vector to scalar conversion to prevent scalarization. |
| if ((SrcVT == MVT::v16i1 || SrcVT == MVT::v32i1) && DstVT.isScalarInteger()) { |
| assert(!Subtarget.hasAVX512() && "Should use K-registers with AVX512"); |
| MVT SExtVT = SrcVT == MVT::v16i1 ? MVT::v16i8 : MVT::v32i8; |
| SDLoc DL(Op); |
| SDValue V = DAG.getSExtOrTrunc(Src, DL, SExtVT); |
| V = getPMOVMSKB(DL, V, DAG, Subtarget); |
| return DAG.getZExtOrTrunc(V, DL, DstVT); |
| } |
| |
| if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 || |
| SrcVT == MVT::i64) { |
| assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); |
| if (DstVT != MVT::f64) |
| // This conversion needs to be expanded. |
| return SDValue(); |
| |
| SmallVector<SDValue, 16> Elts; |
| SDLoc dl(Op); |
| unsigned NumElts; |
| MVT SVT; |
| if (SrcVT.isVector()) { |
| NumElts = SrcVT.getVectorNumElements(); |
| SVT = SrcVT.getVectorElementType(); |
| |
| // Widen the vector in input in the case of MVT::v2i32. |
| // Example: from MVT::v2i32 to MVT::v4i32. |
| for (unsigned i = 0, e = NumElts; i != e; ++i) |
| Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, Src, |
| DAG.getIntPtrConstant(i, dl))); |
| } else { |
| assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() && |
| "Unexpected source type in LowerBITCAST"); |
| Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src, |
| DAG.getIntPtrConstant(0, dl))); |
| Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src, |
| DAG.getIntPtrConstant(1, dl))); |
| NumElts = 2; |
| SVT = MVT::i32; |
| } |
| // Explicitly mark the extra elements as Undef. |
| Elts.append(NumElts, DAG.getUNDEF(SVT)); |
| |
| EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); |
| SDValue BV = DAG.getBuildVector(NewVT, dl, Elts); |
| SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| assert(Subtarget.is64Bit() && !Subtarget.hasSSE2() && |
| Subtarget.hasMMX() && "Unexpected custom BITCAST"); |
| assert((DstVT == MVT::i64 || |
| (DstVT.isVector() && DstVT.getSizeInBits()==64)) && |
| "Unexpected custom BITCAST"); |
| // i64 <=> MMX conversions are Legal. |
| if (SrcVT==MVT::i64 && DstVT.isVector()) |
| return Op; |
| if (DstVT==MVT::i64 && SrcVT.isVector()) |
| return Op; |
| // MMX <=> MMX conversions are Legal. |
| if (SrcVT.isVector() && DstVT.isVector()) |
| return Op; |
| // All other conversions need to be expanded. |
| return SDValue(); |
| } |
| |
| /// Compute the horizontal sum of bytes in V for the elements of VT. |
| /// |
| /// Requires V to be a byte vector and VT to be an integer vector type with |
| /// wider elements than V's type. The width of the elements of VT determines |
| /// how many bytes of V are summed horizontally to produce each element of the |
| /// result. |
| static SDValue LowerHorizontalByteSum(SDValue V, MVT VT, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDLoc DL(V); |
| MVT ByteVecVT = V.getSimpleValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| assert(ByteVecVT.getVectorElementType() == MVT::i8 && |
| "Expected value to have byte element type."); |
| assert(EltVT != MVT::i8 && |
| "Horizontal byte sum only makes sense for wider elements!"); |
| unsigned VecSize = VT.getSizeInBits(); |
| assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!"); |
| |
| // PSADBW instruction horizontally add all bytes and leave the result in i64 |
| // chunks, thus directly computes the pop count for v2i64 and v4i64. |
| if (EltVT == MVT::i64) { |
| SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); |
| MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); |
| V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros); |
| return DAG.getBitcast(VT, V); |
| } |
| |
| if (EltVT == MVT::i32) { |
| // We unpack the low half and high half into i32s interleaved with zeros so |
| // that we can use PSADBW to horizontally sum them. The most useful part of |
| // this is that it lines up the results of two PSADBW instructions to be |
| // two v2i64 vectors which concatenated are the 4 population counts. We can |
| // then use PACKUSWB to shrink and concatenate them into a v4i32 again. |
| SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL); |
| SDValue V32 = DAG.getBitcast(VT, V); |
| SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V32, Zeros); |
| SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V32, Zeros); |
| |
| // Do the horizontal sums into two v2i64s. |
| Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); |
| MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); |
| Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, |
| DAG.getBitcast(ByteVecVT, Low), Zeros); |
| High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, |
| DAG.getBitcast(ByteVecVT, High), Zeros); |
| |
| // Merge them together. |
| MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16); |
| V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT, |
| DAG.getBitcast(ShortVecVT, Low), |
| DAG.getBitcast(ShortVecVT, High)); |
| |
| return DAG.getBitcast(VT, V); |
| } |
| |
| // The only element type left is i16. |
| assert(EltVT == MVT::i16 && "Unknown how to handle type"); |
| |
| // To obtain pop count for each i16 element starting from the pop count for |
| // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s |
| // right by 8. It is important to shift as i16s as i8 vector shift isn't |
| // directly supported. |
| SDValue ShifterV = DAG.getConstant(8, DL, VT); |
| SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV); |
| V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl), |
| DAG.getBitcast(ByteVecVT, V)); |
| return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV); |
| } |
| |
| static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned VecSize = VT.getSizeInBits(); |
| |
| // Implement a lookup table in register by using an algorithm based on: |
| // http://wm.ite.pl/articles/sse-popcount.html |
| // |
| // The general idea is that every lower byte nibble in the input vector is an |
| // index into a in-register pre-computed pop count table. We then split up the |
| // input vector in two new ones: (1) a vector with only the shifted-right |
| // higher nibbles for each byte and (2) a vector with the lower nibbles (and |
| // masked out higher ones) for each byte. PSHUFB is used separately with both |
| // to index the in-register table. Next, both are added and the result is a |
| // i8 vector where each element contains the pop count for input byte. |
| // |
| // To obtain the pop count for elements != i8, we follow up with the same |
| // approach and use additional tricks as described below. |
| // |
| const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2, |
| /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3, |
| /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3, |
| /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4}; |
| |
| int NumByteElts = VecSize / 8; |
| MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts); |
| SDValue In = DAG.getBitcast(ByteVecVT, Op); |
| SmallVector<SDValue, 64> LUTVec; |
| for (int i = 0; i < NumByteElts; ++i) |
| LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); |
| SDValue InRegLUT = DAG.getBuildVector(ByteVecVT, DL, LUTVec); |
| SDValue M0F = DAG.getConstant(0x0F, DL, ByteVecVT); |
| |
| // High nibbles |
| SDValue FourV = DAG.getConstant(4, DL, ByteVecVT); |
| SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV); |
| |
| // Low nibbles |
| SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F); |
| |
| // The input vector is used as the shuffle mask that index elements into the |
| // LUT. After counting low and high nibbles, add the vector to obtain the |
| // final pop count per i8 element. |
| SDValue HighPopCnt = |
| DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles); |
| SDValue LowPopCnt = |
| DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles); |
| SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt); |
| |
| if (EltVT == MVT::i8) |
| return PopCnt; |
| |
| return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG); |
| } |
| |
| static SDValue LowerVectorCTPOPBitmath(SDValue Op, const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT.is128BitVector() && |
| "Only 128-bit vector bitmath lowering supported."); |
| |
| int VecSize = VT.getSizeInBits(); |
| MVT EltVT = VT.getVectorElementType(); |
| int Len = EltVT.getSizeInBits(); |
| |
| // This is the vectorized version of the "best" algorithm from |
| // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| // with a minor tweak to use a series of adds + shifts instead of vector |
| // multiplications. Implemented for all integer vector types. We only use |
| // this when we don't have SSSE3 which allows a LUT-based lowering that is |
| // much faster, even faster than using native popcnt instructions. |
| |
| auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) { |
| MVT VT = V.getSimpleValueType(); |
| SDValue ShifterV = DAG.getConstant(Shifter, DL, VT); |
| return DAG.getNode(OpCode, DL, VT, V, ShifterV); |
| }; |
| auto GetMask = [&](SDValue V, APInt Mask) { |
| MVT VT = V.getSimpleValueType(); |
| SDValue MaskV = DAG.getConstant(Mask, DL, VT); |
| return DAG.getNode(ISD::AND, DL, VT, V, MaskV); |
| }; |
| |
| // We don't want to incur the implicit masks required to SRL vNi8 vectors on |
| // x86, so set the SRL type to have elements at least i16 wide. This is |
| // correct because all of our SRLs are followed immediately by a mask anyways |
| // that handles any bits that sneak into the high bits of the byte elements. |
| MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16); |
| |
| SDValue V = Op; |
| |
| // v = v - ((v >> 1) & 0x55555555...) |
| SDValue Srl = |
| DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1)); |
| SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55))); |
| V = DAG.getNode(ISD::SUB, DL, VT, V, And); |
| |
| // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) |
| SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33))); |
| Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2)); |
| SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33))); |
| V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS); |
| |
| // v = (v + (v >> 4)) & 0x0F0F0F0F... |
| Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4)); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl); |
| V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F))); |
| |
| // At this point, V contains the byte-wise population count, and we are |
| // merely doing a horizontal sum if necessary to get the wider element |
| // counts. |
| if (EltVT == MVT::i8) |
| return V; |
| |
| return LowerHorizontalByteSum( |
| DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget, |
| DAG); |
| } |
| |
| // Please ensure that any codegen change from LowerVectorCTPOP is reflected in |
| // updated cost models in X86TTIImpl::getIntrinsicInstrCost. |
| static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) && |
| "Unknown CTPOP type to handle"); |
| SDLoc DL(Op.getNode()); |
| SDValue Op0 = Op.getOperand(0); |
| |
| // TRUNC(CTPOP(ZEXT(X))) to make use of vXi32/vXi64 VPOPCNT instructions. |
| if (Subtarget.hasVPOPCNTDQ()) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| assert((VT.getVectorElementType() == MVT::i8 || |
| VT.getVectorElementType() == MVT::i16) && "Unexpected type"); |
| if (NumElems < 16 || (NumElems == 16 && Subtarget.canExtendTo512DQ())) { |
| MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems); |
| Op = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, Op0); |
| Op = DAG.getNode(ISD::CTPOP, DL, NewVT, Op); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| } |
| |
| if (!Subtarget.hasSSSE3()) { |
| // We can't use the fast LUT approach, so fall back on vectorized bitmath. |
| assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!"); |
| return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG); |
| } |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) |
| return Lower256IntUnary(Op, DAG); |
| |
| // Decompose 512-bit ops into smaller 256-bit ops. |
| if (VT.is512BitVector() && !Subtarget.hasBWI()) |
| return Lower512IntUnary(Op, DAG); |
| |
| return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG); |
| } |
| |
| static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Op.getSimpleValueType().isVector() && |
| "We only do custom lowering for vector population count."); |
| return LowerVectorCTPOP(Op, Subtarget, DAG); |
| } |
| |
| static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| SDValue In = Op.getOperand(0); |
| SDLoc DL(Op); |
| |
| // For scalars, its still beneficial to transfer to/from the SIMD unit to |
| // perform the BITREVERSE. |
| if (!VT.isVector()) { |
| MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits()); |
| SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In); |
| Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| int NumElts = VT.getVectorNumElements(); |
| int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector()) |
| return Lower256IntUnary(Op, DAG); |
| |
| assert(VT.is128BitVector() && |
| "Only 128-bit vector bitreverse lowering supported."); |
| |
| // VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we |
| // perform the BSWAP in the shuffle. |
| // Its best to shuffle using the second operand as this will implicitly allow |
| // memory folding for multiple vectors. |
| SmallVector<SDValue, 16> MaskElts; |
| for (int i = 0; i != NumElts; ++i) { |
| for (int j = ScalarSizeInBytes - 1; j >= 0; --j) { |
| int SourceByte = 16 + (i * ScalarSizeInBytes) + j; |
| int PermuteByte = SourceByte | (2 << 5); |
| MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8)); |
| } |
| } |
| |
| SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts); |
| SDValue Res = DAG.getBitcast(MVT::v16i8, In); |
| Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8), |
| Res, Mask); |
| return DAG.getBitcast(VT, Res); |
| } |
| |
| static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (Subtarget.hasXOP() && !VT.is512BitVector()) |
| return LowerBITREVERSE_XOP(Op, DAG); |
| |
| assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE"); |
| |
| SDValue In = Op.getOperand(0); |
| SDLoc DL(Op); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert(VT.getScalarType() == MVT::i8 && |
| "Only byte vector BITREVERSE supported"); |
| |
| // Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2. |
| if (VT.is256BitVector() && !Subtarget.hasInt256()) |
| return Lower256IntUnary(Op, DAG); |
| |
| // Perform BITREVERSE using PSHUFB lookups. Each byte is split into |
| // two nibbles and a PSHUFB lookup to find the bitreverse of each |
| // 0-15 value (moved to the other nibble). |
| SDValue NibbleMask = DAG.getConstant(0xF, DL, VT); |
| SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask); |
| SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT)); |
| |
| const int LoLUT[16] = { |
| /* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0, |
| /* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0, |
| /* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0, |
| /* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0}; |
| const int HiLUT[16] = { |
| /* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C, |
| /* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E, |
| /* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D, |
| /* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F}; |
| |
| SmallVector<SDValue, 16> LoMaskElts, HiMaskElts; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8)); |
| HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8)); |
| } |
| |
| SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts); |
| SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts); |
| Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo); |
| Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi); |
| return DAG.getNode(ISD::OR, DL, VT, Lo, Hi); |
| } |
| |
| static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| bool AllowIncDec = true) { |
| unsigned NewOpc = 0; |
| switch (N->getOpcode()) { |
| case ISD::ATOMIC_LOAD_ADD: |
| NewOpc = X86ISD::LADD; |
| break; |
| case ISD::ATOMIC_LOAD_SUB: |
| NewOpc = X86ISD::LSUB; |
| break; |
| case ISD::ATOMIC_LOAD_OR: |
| NewOpc = X86ISD::LOR; |
| break; |
| case ISD::ATOMIC_LOAD_XOR: |
| NewOpc = X86ISD::LXOR; |
| break; |
| case ISD::ATOMIC_LOAD_AND: |
| NewOpc = X86ISD::LAND; |
| break; |
| default: |
| llvm_unreachable("Unknown ATOMIC_LOAD_ opcode"); |
| } |
| |
| MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand(); |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) { |
| // Convert to inc/dec if they aren't slow or we are optimizing for size. |
| if (AllowIncDec && (!Subtarget.slowIncDec() || |
| DAG.getMachineFunction().getFunction().optForSize())) { |
| if ((NewOpc == X86ISD::LADD && C->isOne()) || |
| (NewOpc == X86ISD::LSUB && C->isAllOnesValue())) |
| return DAG.getMemIntrinsicNode(X86ISD::LINC, SDLoc(N), |
| DAG.getVTList(MVT::i32, MVT::Other), |
| {N->getOperand(0), N->getOperand(1)}, |
| /*MemVT=*/N->getSimpleValueType(0), MMO); |
| if ((NewOpc == X86ISD::LSUB && C->isOne()) || |
| (NewOpc == X86ISD::LADD && C->isAllOnesValue())) |
| return DAG.getMemIntrinsicNode(X86ISD::LDEC, SDLoc(N), |
| DAG.getVTList(MVT::i32, MVT::Other), |
| {N->getOperand(0), N->getOperand(1)}, |
| /*MemVT=*/N->getSimpleValueType(0), MMO); |
| } |
| } |
| |
| return DAG.getMemIntrinsicNode( |
| NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other), |
| {N->getOperand(0), N->getOperand(1), N->getOperand(2)}, |
| /*MemVT=*/N->getSimpleValueType(0), MMO); |
| } |
| |
| /// Lower atomic_load_ops into LOCK-prefixed operations. |
| static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue Chain = N->getOperand(0); |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| unsigned Opc = N->getOpcode(); |
| MVT VT = N->getSimpleValueType(0); |
| SDLoc DL(N); |
| |
| // We can lower atomic_load_add into LXADD. However, any other atomicrmw op |
| // can only be lowered when the result is unused. They should have already |
| // been transformed into a cmpxchg loop in AtomicExpand. |
| if (N->hasAnyUseOfValue(0)) { |
| // Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to |
| // select LXADD if LOCK_SUB can't be selected. |
| if (Opc == ISD::ATOMIC_LOAD_SUB) { |
| AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode()); |
| RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS); |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS, |
| RHS, AN->getMemOperand()); |
| } |
| assert(Opc == ISD::ATOMIC_LOAD_ADD && |
| "Used AtomicRMW ops other than Add should have been expanded!"); |
| return N; |
| } |
| |
| SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG, Subtarget); |
| // RAUW the chain, but don't worry about the result, as it's unused. |
| assert(!N->hasAnyUseOfValue(0)); |
| DAG.ReplaceAllUsesOfValueWith(N.getValue(1), LockOp.getValue(1)); |
| return SDValue(); |
| } |
| |
| static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); |
| |
| // Convert seq_cst store -> xchg |
| // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) |
| // FIXME: On 32-bit, store -> fist or movq would be more efficient |
| // (The only way to get a 16-byte store is cmpxchg16b) |
| // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. |
| if (cast<AtomicSDNode>(Node)->getOrdering() == |
| AtomicOrdering::SequentiallyConsistent || |
| !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { |
| SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, |
| cast<AtomicSDNode>(Node)->getMemoryVT(), |
| Node->getOperand(0), |
| Node->getOperand(1), Node->getOperand(2), |
| cast<AtomicSDNode>(Node)->getMemOperand()); |
| return Swap.getValue(1); |
| } |
| // Other atomic stores have a simple pattern. |
| return Op; |
| } |
| |
| static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) { |
| SDNode *N = Op.getNode(); |
| MVT VT = N->getSimpleValueType(0); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| SDLoc DL(N); |
| |
| // Set the carry flag. |
| SDValue Carry = Op.getOperand(2); |
| EVT CarryVT = Carry.getValueType(); |
| APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits()); |
| Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), |
| Carry, DAG.getConstant(NegOne, DL, CarryVT)); |
| |
| unsigned Opc = Op.getOpcode() == ISD::ADDCARRY ? X86ISD::ADC : X86ISD::SBB; |
| SDValue Sum = DAG.getNode(Opc, DL, VTs, Op.getOperand(0), |
| Op.getOperand(1), Carry.getValue(1)); |
| |
| SDValue SetCC = getSETCC(X86::COND_B, Sum.getValue(1), DL, DAG); |
| if (N->getValueType(1) == MVT::i1) |
| SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); |
| } |
| |
| static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit()); |
| |
| // For MacOSX, we want to call an alternative entry point: __sincos_stret, |
| // which returns the values as { float, float } (in XMM0) or |
| // { double, double } (which is returned in XMM0, XMM1). |
| SDLoc dl(Op); |
| SDValue Arg = Op.getOperand(0); |
| EVT ArgVT = Arg.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| |
| Entry.Node = Arg; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| bool isF64 = ArgVT == MVT::f64; |
| // Only optimize x86_64 for now. i386 is a bit messy. For f32, |
| // the small struct {f32, f32} is returned in (eax, edx). For f64, |
| // the results are returned via SRet in memory. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| RTLIB::Libcall LC = isF64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; |
| const char *LibcallName = TLI.getLibcallName(LC); |
| SDValue Callee = |
| DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = isF64 ? (Type *)StructType::get(ArgTy, ArgTy) |
| : (Type *)VectorType::get(ArgTy, 4); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); |
| |
| if (isF64) |
| // Returned in xmm0 and xmm1. |
| return CallResult.first; |
| |
| // Returned in bits 0:31 and 32:64 xmm0. |
| SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, |
| CallResult.first, DAG.getIntPtrConstant(0, dl)); |
| SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, |
| CallResult.first, DAG.getIntPtrConstant(1, dl)); |
| SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); |
| } |
| |
| /// Widen a vector input to a vector of NVT. The |
| /// input vector must have the same element type as NVT. |
| static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG, |
| bool FillWithZeroes = false) { |
| // Check if InOp already has the right width. |
| MVT InVT = InOp.getSimpleValueType(); |
| if (InVT == NVT) |
| return InOp; |
| |
| if (InOp.isUndef()) |
| return DAG.getUNDEF(NVT); |
| |
| assert(InVT.getVectorElementType() == NVT.getVectorElementType() && |
| "input and widen element type must match"); |
| |
| unsigned InNumElts = InVT.getVectorNumElements(); |
| unsigned WidenNumElts = NVT.getVectorNumElements(); |
| assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 && |
| "Unexpected request for vector widening"); |
| |
| SDLoc dl(InOp); |
| if (InOp.getOpcode() == ISD::CONCAT_VECTORS && |
| InOp.getNumOperands() == 2) { |
| SDValue N1 = InOp.getOperand(1); |
| if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) || |
| N1.isUndef()) { |
| InOp = InOp.getOperand(0); |
| InVT = InOp.getSimpleValueType(); |
| InNumElts = InVT.getVectorNumElements(); |
| } |
| } |
| if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) || |
| ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) { |
| SmallVector<SDValue, 16> Ops; |
| for (unsigned i = 0; i < InNumElts; ++i) |
| Ops.push_back(InOp.getOperand(i)); |
| |
| EVT EltVT = InOp.getOperand(0).getValueType(); |
| |
| SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) : |
| DAG.getUNDEF(EltVT); |
| for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i) |
| Ops.push_back(FillVal); |
| return DAG.getBuildVector(NVT, dl, Ops); |
| } |
| SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) : |
| DAG.getUNDEF(NVT); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal, |
| InOp, DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Subtarget.hasAVX512() && |
| "MGATHER/MSCATTER are supported on AVX-512 arch only"); |
| |
| MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode()); |
| SDValue Src = N->getValue(); |
| MVT VT = Src.getSimpleValueType(); |
| assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op"); |
| SDLoc dl(Op); |
| |
| SDValue Scale = N->getScale(); |
| SDValue Index = N->getIndex(); |
| SDValue Mask = N->getMask(); |
| SDValue Chain = N->getChain(); |
| SDValue BasePtr = N->getBasePtr(); |
| |
| if (VT == MVT::v2f32) { |
| assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type"); |
| // If the index is v2i64 and we have VLX we can use xmm for data and index. |
| if (Index.getValueType() == MVT::v2i64 && Subtarget.hasVLX()) { |
| Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src, |
| DAG.getUNDEF(MVT::v2f32)); |
| SDVTList VTs = DAG.getVTList(MVT::v2i1, MVT::Other); |
| SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale}; |
| SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>( |
| VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand()); |
| DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); |
| return SDValue(NewScatter.getNode(), 1); |
| } |
| return SDValue(); |
| } |
| |
| if (VT == MVT::v2i32) { |
| assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type"); |
| Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src, |
| DAG.getUNDEF(MVT::v2i32)); |
| // If the index is v2i64 and we have VLX we can use xmm for data and index. |
| if (Index.getValueType() == MVT::v2i64 && Subtarget.hasVLX()) { |
| SDVTList VTs = DAG.getVTList(MVT::v2i1, MVT::Other); |
| SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale}; |
| SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>( |
| VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand()); |
| DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); |
| return SDValue(NewScatter.getNode(), 1); |
| } |
| // Custom widen all the operands to avoid promotion. |
| EVT NewIndexVT = EVT::getVectorVT( |
| *DAG.getContext(), Index.getValueType().getVectorElementType(), 4); |
| Index = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewIndexVT, Index, |
| DAG.getUNDEF(Index.getValueType())); |
| Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, |
| DAG.getConstant(0, dl, MVT::v2i1)); |
| SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale}; |
| return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), N->getMemoryVT(), dl, |
| Ops, N->getMemOperand()); |
| } |
| |
| MVT IndexVT = Index.getSimpleValueType(); |
| MVT MaskVT = Mask.getSimpleValueType(); |
| |
| // If the index is v2i32, we're being called by type legalization and we |
| // should just let the default handling take care of it. |
| if (IndexVT == MVT::v2i32) |
| return SDValue(); |
| |
| // If we don't have VLX and neither the passthru or index is 512-bits, we |
| // need to widen until one is. |
| if (!Subtarget.hasVLX() && !VT.is512BitVector() && |
| !Index.getSimpleValueType().is512BitVector()) { |
| // Determine how much we need to widen by to get a 512-bit type. |
| unsigned Factor = std::min(512/VT.getSizeInBits(), |
| 512/IndexVT.getSizeInBits()); |
| unsigned NumElts = VT.getVectorNumElements() * Factor; |
| |
| VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts); |
| IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts); |
| MaskVT = MVT::getVectorVT(MVT::i1, NumElts); |
| |
| Src = ExtendToType(Src, VT, DAG); |
| Index = ExtendToType(Index, IndexVT, DAG); |
| Mask = ExtendToType(Mask, MaskVT, DAG, true); |
| } |
| |
| SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); |
| SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale}; |
| SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>( |
| VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand()); |
| DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); |
| return SDValue(NewScatter.getNode(), 1); |
| } |
| |
| static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| |
| MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode()); |
| MVT VT = Op.getSimpleValueType(); |
| MVT ScalarVT = VT.getScalarType(); |
| SDValue Mask = N->getMask(); |
| SDLoc dl(Op); |
| |
| assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) && |
| "Expanding masked load is supported on AVX-512 target only!"); |
| |
| assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) && |
| "Expanding masked load is supported for 32 and 64-bit types only!"); |
| |
| assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() && |
| "Cannot lower masked load op."); |
| |
| assert((ScalarVT.getSizeInBits() >= 32 || |
| (Subtarget.hasBWI() && |
| (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) && |
| "Unsupported masked load op."); |
| |
| // This operation is legal for targets with VLX, but without |
| // VLX the vector should be widened to 512 bit |
| unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits(); |
| MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec); |
| SDValue Src0 = N->getSrc0(); |
| Src0 = ExtendToType(Src0, WideDataVT, DAG); |
| |
| // Mask element has to be i1. |
| assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 && |
| "Unexpected mask type"); |
| |
| MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec); |
| |
| Mask = ExtendToType(Mask, WideMaskVT, DAG, true); |
| SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(), |
| N->getBasePtr(), Mask, Src0, |
| N->getMemoryVT(), N->getMemOperand(), |
| N->getExtensionType(), |
| N->isExpandingLoad()); |
| |
| SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, |
| NewLoad.getValue(0), |
| DAG.getIntPtrConstant(0, dl)); |
| SDValue RetOps[] = {Exract, NewLoad.getValue(1)}; |
| return DAG.getMergeValues(RetOps, dl); |
| } |
| |
| static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode()); |
| SDValue DataToStore = N->getValue(); |
| MVT VT = DataToStore.getSimpleValueType(); |
| MVT ScalarVT = VT.getScalarType(); |
| SDValue Mask = N->getMask(); |
| SDLoc dl(Op); |
| |
| assert((!N->isCompressingStore() || Subtarget.hasAVX512()) && |
| "Expanding masked load is supported on AVX-512 target only!"); |
| |
| assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) && |
| "Expanding masked load is supported for 32 and 64-bit types only!"); |
| |
| assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() && |
| "Cannot lower masked store op."); |
| |
| assert((ScalarVT.getSizeInBits() >= 32 || |
| (Subtarget.hasBWI() && |
| (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) && |
| "Unsupported masked store op."); |
| |
| // This operation is legal for targets with VLX, but without |
| // VLX the vector should be widened to 512 bit |
| unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits(); |
| MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec); |
| |
| // Mask element has to be i1. |
| assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 && |
| "Unexpected mask type"); |
| |
| MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec); |
| |
| DataToStore = ExtendToType(DataToStore, WideDataVT, DAG); |
| Mask = ExtendToType(Mask, WideMaskVT, DAG, true); |
| return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(), |
| Mask, N->getMemoryVT(), N->getMemOperand(), |
| N->isTruncatingStore(), N->isCompressingStore()); |
| } |
| |
| static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| assert(Subtarget.hasAVX2() && |
| "MGATHER/MSCATTER are supported on AVX-512/AVX-2 arch only"); |
| |
| MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode()); |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue Index = N->getIndex(); |
| SDValue Mask = N->getMask(); |
| SDValue Src0 = N->getValue(); |
| MVT IndexVT = Index.getSimpleValueType(); |
| MVT MaskVT = Mask.getSimpleValueType(); |
| |
| assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op"); |
| |
| // If the index is v2i32, we're being called by type legalization. |
| if (IndexVT == MVT::v2i32) |
| return SDValue(); |
| |
| // If we don't have VLX and neither the passthru or index is 512-bits, we |
| // need to widen until one is. |
| MVT OrigVT = VT; |
| if (Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() && |
| !IndexVT.is512BitVector()) { |
| // Determine how much we need to widen by to get a 512-bit type. |
| unsigned Factor = std::min(512/VT.getSizeInBits(), |
| 512/IndexVT.getSizeInBits()); |
| |
| unsigned NumElts = VT.getVectorNumElements() * Factor; |
| |
| VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts); |
| IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts); |
| MaskVT = MVT::getVectorVT(MVT::i1, NumElts); |
| |
| Src0 = ExtendToType(Src0, VT, DAG); |
| Index = ExtendToType(Index, IndexVT, DAG); |
| Mask = ExtendToType(Mask, MaskVT, DAG, true); |
| } |
| |
| SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index, |
| N->getScale() }; |
| SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( |
| DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(), |
| N->getMemOperand()); |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OrigVT, |
| NewGather, DAG.getIntPtrConstant(0, dl)); |
| return DAG.getMergeValues({Extract, NewGather.getValue(2)}, dl); |
| } |
| |
| SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op, |
| SelectionDAG &DAG) const { |
| // TODO: Eventually, the lowering of these nodes should be informed by or |
| // deferred to the GC strategy for the function in which they appear. For |
| // now, however, they must be lowered to something. Since they are logically |
| // no-ops in the case of a null GC strategy (or a GC strategy which does not |
| // require special handling for these nodes), lower them as literal NOOPs for |
| // the time being. |
| SmallVector<SDValue, 2> Ops; |
| |
| Ops.push_back(Op.getOperand(0)); |
| if (Op->getGluedNode()) |
| Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); |
| |
| SDLoc OpDL(Op); |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); |
| |
| return NOOP; |
| } |
| |
| SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op, |
| SelectionDAG &DAG) const { |
| // TODO: Eventually, the lowering of these nodes should be informed by or |
| // deferred to the GC strategy for the function in which they appear. For |
| // now, however, they must be lowered to something. Since they are logically |
| // no-ops in the case of a null GC strategy (or a GC strategy which does not |
| // require special handling for these nodes), lower them as literal NOOPs for |
| // the time being. |
| SmallVector<SDValue, 2> Ops; |
| |
| Ops.push_back(Op.getOperand(0)); |
| if (Op->getGluedNode()) |
| Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); |
| |
| SDLoc OpDL(Op); |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); |
| |
| return NOOP; |
| } |
| |
| /// Provide custom lowering hooks for some operations. |
| SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Should not custom lower this!"); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
| return LowerCMP_SWAP(Op, Subtarget, DAG); |
| case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG); |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_AND: return lowerAtomicArith(Op, DAG, Subtarget); |
| case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); |
| case ISD::BITREVERSE: return LowerBITREVERSE(Op, Subtarget, DAG); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG); |
| case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG); |
| case ISD::VSELECT: return LowerVSELECT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); |
| case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, Subtarget,DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); |
| case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG); |
| case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG); |
| case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG); |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); |
| case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); |
| case ISD::LOAD: return LowerLoad(Op, Subtarget, DAG); |
| case ISD::STORE: return LowerStore(Op, Subtarget, DAG); |
| case ISD::FABS: |
| case ISD::FNEG: return LowerFABSorFNEG(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::VAARG: return LowerVAARG(Op, DAG); |
| case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); |
| case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); |
| case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); |
| case ISD::EH_SJLJ_SETUP_DISPATCH: |
| return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); |
| case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); |
| case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, Subtarget, DAG); |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); |
| case ISD::MULHS: |
| case ISD::MULHU: return LowerMULH(Op, Subtarget, DAG); |
| case ISD::UMUL_LOHI: |
| case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG); |
| case ISD::ROTL: |
| case ISD::ROTR: return LowerRotate(Op, Subtarget, DAG); |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: return LowerShift(Op, Subtarget, DAG); |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: return LowerXALUO(Op, DAG); |
| case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); |
| case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG); |
| case ISD::ADDCARRY: |
| case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG); |
| case ISD::ADD: |
| case ISD::SUB: return LowerADD_SUB(Op, DAG); |
| case ISD::SMAX: |
| case ISD::SMIN: |
| case ISD::UMAX: |
| case ISD::UMIN: return LowerMINMAX(Op, DAG); |
| case ISD::ABS: return LowerABS(Op, DAG); |
| case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG); |
| case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG); |
| case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG); |
| case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG); |
| case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG); |
| case ISD::GC_TRANSITION_START: |
| return LowerGC_TRANSITION_START(Op, DAG); |
| case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG); |
| } |
| } |
| |
| /// Places new result values for the node in Results (their number |
| /// and types must exactly match those of the original return values of |
| /// the node), or leaves Results empty, which indicates that the node is not |
| /// to be custom lowered after all. |
| void X86TargetLowering::LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| |
| if (!Res.getNode()) |
| return; |
| |
| assert((N->getNumValues() <= Res->getNumValues()) && |
| "Lowering returned the wrong number of results!"); |
| |
| // Places new result values base on N result number. |
| // In some cases (LowerSINT_TO_FP for example) Res has more result values |
| // than original node, chain should be dropped(last value). |
| for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) |
| Results.push_back(Res.getValue(I)); |
| } |
| |
| /// Replace a node with an illegal result type with a new node built out of |
| /// custom code. |
| void X86TargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const { |
| SDLoc dl(N); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Do not know how to custom type legalize this operation!"); |
| case X86ISD::AVG: { |
| // Legalize types for X86ISD::AVG by expanding vectors. |
| assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); |
| |
| auto InVT = N->getValueType(0); |
| assert(InVT.getSizeInBits() < 128); |
| assert(128 % InVT.getSizeInBits() == 0); |
| unsigned NumConcat = 128 / InVT.getSizeInBits(); |
| |
| EVT RegVT = EVT::getVectorVT(*DAG.getContext(), |
| InVT.getVectorElementType(), |
| NumConcat * InVT.getVectorNumElements()); |
| |
| SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT)); |
| Ops[0] = N->getOperand(0); |
| SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); |
| Ops[0] = N->getOperand(1); |
| SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); |
| |
| SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1); |
| if (getTypeAction(*DAG.getContext(), InVT) != TypeWidenVector) |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back(Res); |
| return; |
| } |
| case ISD::SETCC: { |
| // Widen v2i32 (setcc v2f32). This is really needed for AVX512VL when |
| // setCC result type is v2i1 because type legalzation will end up with |
| // a v4i1 setcc plus an extend. |
| assert(N->getValueType(0) == MVT::v2i32 && "Unexpected type"); |
| if (N->getOperand(0).getValueType() != MVT::v2f32) |
| return; |
| SDValue UNDEF = DAG.getUNDEF(MVT::v2f32); |
| SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, |
| N->getOperand(0), UNDEF); |
| SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, |
| N->getOperand(1), UNDEF); |
| SDValue Res = DAG.getNode(ISD::SETCC, dl, MVT::v4i32, LHS, RHS, |
| N->getOperand(2)); |
| if (getTypeAction(*DAG.getContext(), MVT::v2i32) != TypeWidenVector) |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back(Res); |
| return; |
| } |
| // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32. |
| case X86ISD::FMINC: |
| case X86ISD::FMIN: |
| case X86ISD::FMAXC: |
| case X86ISD::FMAX: { |
| EVT VT = N->getValueType(0); |
| assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX."); |
| SDValue UNDEF = DAG.getUNDEF(VT); |
| SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, |
| N->getOperand(0), UNDEF); |
| SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, |
| N->getOperand(1), UNDEF); |
| Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS)); |
| return; |
| } |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: { |
| SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG); |
| Results.push_back(V); |
| return; |
| } |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| EVT VT = N->getValueType(0); |
| SDValue Src = N->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| if (VT == MVT::v2i32) { |
| assert((IsSigned || Subtarget.hasAVX512()) && |
| "Can only handle signed conversion without AVX512"); |
| assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); |
| if (Src.getValueType() == MVT::v2f64) { |
| MVT ResVT = MVT::v4i32; |
| unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI; |
| if (!IsSigned && !Subtarget.hasVLX()) { |
| // Widen to 512-bits. |
| ResVT = MVT::v8i32; |
| Opc = ISD::FP_TO_UINT; |
| Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64, |
| DAG.getUNDEF(MVT::v8f64), |
| Src, DAG.getIntPtrConstant(0, dl)); |
| } |
| SDValue Res = DAG.getNode(Opc, dl, ResVT, Src); |
| bool WidenType = getTypeAction(*DAG.getContext(), |
| MVT::v2i32) == TypeWidenVector; |
| ResVT = WidenType ? MVT::v4i32 : MVT::v2i32; |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, Res, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back(Res); |
| return; |
| } |
| if (SrcVT == MVT::v2f32) { |
| SDValue Idx = DAG.getIntPtrConstant(0, dl); |
| SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src, |
| DAG.getUNDEF(MVT::v2f32)); |
| Res = DAG.getNode(IsSigned ? ISD::FP_TO_SINT |
| : ISD::FP_TO_UINT, dl, MVT::v4i32, Res); |
| if (getTypeAction(*DAG.getContext(), MVT::v2i32) != TypeWidenVector) |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, Idx); |
| Results.push_back(Res); |
| return; |
| } |
| |
| // The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs, |
| // so early out here. |
| return; |
| } |
| |
| if (Subtarget.hasDQI() && VT == MVT::i64 && |
| (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { |
| assert(!Subtarget.is64Bit() && "i64 should be legal"); |
| unsigned NumElts = Subtarget.hasVLX() ? 4 : 8; |
| // Using a 256-bit input here to guarantee 128-bit input for f32 case. |
| // TODO: Use 128-bit vectors for f64 case? |
| // TODO: Use 128-bit vectors for f32 by using CVTTP2SI/CVTTP2UI. |
| MVT VecVT = MVT::getVectorVT(MVT::i64, NumElts); |
| MVT VecInVT = MVT::getVectorVT(SrcVT.getSimpleVT(), NumElts); |
| |
| SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); |
| SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecInVT, |
| DAG.getConstantFP(0.0, dl, VecInVT), Src, |
| ZeroIdx); |
| Res = DAG.getNode(N->getOpcode(), SDLoc(N), VecVT, Res); |
| Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res, ZeroIdx); |
| Results.push_back(Res); |
| return; |
| } |
| |
| std::pair<SDValue,SDValue> Vals = |
| FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| if (FIST.getNode()) { |
| // Return a load from the stack slot. |
| if (StackSlot.getNode()) |
| Results.push_back( |
| DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo())); |
| else |
| Results.push_back(FIST); |
| } |
| return; |
| } |
| case ISD::SINT_TO_FP: { |
| assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!"); |
| SDValue Src = N->getOperand(0); |
| if (N->getValueType(0) != MVT::v2f32 || Src.getValueType() != MVT::v2i64) |
| return; |
| Results.push_back(DAG.getNode(X86ISD::CVTSI2P, dl, MVT::v4f32, Src)); |
| return; |
| } |
| case ISD::UINT_TO_FP: { |
| assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::v2f32) |
| return; |
| SDValue Src = N->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) { |
| Results.push_back(DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v4f32, Src)); |
| return; |
| } |
| if (SrcVT != MVT::v2i32) |
| return; |
| SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src); |
| SDValue VBias = |
| DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64); |
| SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, |
| DAG.getBitcast(MVT::v2i64, VBias)); |
| Or = DAG.getBitcast(MVT::v2f64, Or); |
| // TODO: Are there any fast-math-flags to propagate here? |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); |
| Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); |
| return; |
| } |
| case ISD::FP_ROUND: { |
| if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) |
| return; |
| SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); |
| Results.push_back(V); |
| return; |
| } |
| case ISD::FP_EXTEND: { |
| // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND. |
| // No other ValueType for FP_EXTEND should reach this point. |
| assert(N->getValueType(0) == MVT::v2f32 && |
| "Do not know how to legalize this Node"); |
| return; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default : llvm_unreachable("Do not know how to custom type " |
| "legalize this intrinsic operation!"); |
| case Intrinsic::x86_rdtsc: |
| return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, |
| Results); |
| case Intrinsic::x86_rdtscp: |
| return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget, |
| Results); |
| case Intrinsic::x86_rdpmc: |
| return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results); |
| |
| case Intrinsic::x86_xgetbv: |
| return getExtendedControlRegister(N, dl, DAG, Subtarget, Results); |
| } |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)) |
| Results.push_back(V); |
| return; |
| } |
| case ISD::READCYCLECOUNTER: { |
| return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, |
| Results); |
| } |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { |
| EVT T = N->getValueType(0); |
| assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); |
| bool Regs64bit = T == MVT::i128; |
| MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; |
| SDValue cpInL, cpInH; |
| cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), |
| DAG.getConstant(0, dl, HalfT)); |
| cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), |
| DAG.getConstant(1, dl, HalfT)); |
| cpInL = DAG.getCopyToReg(N->getOperand(0), dl, |
| Regs64bit ? X86::RAX : X86::EAX, |
| cpInL, SDValue()); |
| cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, |
| Regs64bit ? X86::RDX : X86::EDX, |
| cpInH, cpInL.getValue(1)); |
| SDValue swapInL, swapInH; |
| swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), |
| DAG.getConstant(0, dl, HalfT)); |
| swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), |
| DAG.getConstant(1, dl, HalfT)); |
| swapInH = |
| DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX, |
| swapInH, cpInH.getValue(1)); |
| // If the current function needs the base pointer, RBX, |
| // we shouldn't use cmpxchg directly. |
| // Indeed the lowering of that instruction will clobber |
| // that register and since RBX will be a reserved register |
| // the register allocator will not make sure its value will |
| // be properly saved and restored around this live-range. |
| const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| SDValue Result; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| unsigned BasePtr = TRI->getBaseRegister(); |
| MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); |
| if (TRI->hasBasePointer(DAG.getMachineFunction()) && |
| (BasePtr == X86::RBX || BasePtr == X86::EBX)) { |
| // ISel prefers the LCMPXCHG64 variant. |
| // If that assert breaks, that means it is not the case anymore, |
| // and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX, |
| // not just EBX. This is a matter of accepting i64 input for that |
| // pseudo, and restoring into the register of the right wide |
| // in expand pseudo. Everything else should just work. |
| assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) && |
| "Saving only half of the RBX"); |
| unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG |
| : X86ISD::LCMPXCHG8_SAVE_EBX_DAG; |
| SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl, |
| Regs64bit ? X86::RBX : X86::EBX, |
| HalfT, swapInH.getValue(1)); |
| SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL, |
| RBXSave, |
| /*Glue*/ RBXSave.getValue(2)}; |
| Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); |
| } else { |
| unsigned Opcode = |
| Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG; |
| swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl, |
| Regs64bit ? X86::RBX : X86::EBX, swapInL, |
| swapInH.getValue(1)); |
| SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1), |
| swapInL.getValue(1)}; |
| Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); |
| } |
| SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, |
| Regs64bit ? X86::RAX : X86::EAX, |
| HalfT, Result.getValue(1)); |
| SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, |
| Regs64bit ? X86::RDX : X86::EDX, |
| HalfT, cpOutL.getValue(2)); |
| SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; |
| |
| SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS, |
| MVT::i32, cpOutH.getValue(2)); |
| SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG); |
| Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1)); |
| |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF)); |
| Results.push_back(Success); |
| Results.push_back(EFLAGS.getValue(1)); |
| return; |
| } |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_LOAD: { |
| // Delegate to generic TypeLegalization. Situations we can really handle |
| // should have already been dealt with by AtomicExpandPass.cpp. |
| break; |
| } |
| case ISD::BITCAST: { |
| assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); |
| EVT DstVT = N->getValueType(0); |
| EVT SrcVT = N->getOperand(0).getValueType(); |
| |
| // If this is a bitcast from a v64i1 k-register to a i64 on a 32-bit target |
| // we can split using the k-register rather than memory. |
| if (SrcVT == MVT::v64i1 && DstVT == MVT::i64 && Subtarget.hasBWI()) { |
| assert(!Subtarget.is64Bit() && "Expected 32-bit mode"); |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); |
| Lo = DAG.getBitcast(MVT::i32, Lo); |
| Hi = DAG.getBitcast(MVT::i32, Hi); |
| SDValue Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| Results.push_back(Res); |
| return; |
| } |
| |
| // Custom splitting for BWI types when AVX512F is available but BWI isn't. |
| if ((DstVT == MVT::v32i16 || DstVT == MVT::v64i8) && |
| SrcVT.isVector() && isTypeLegal(SrcVT)) { |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); |
| MVT CastVT = (DstVT == MVT::v32i16) ? MVT::v16i16 : MVT::v32i8; |
| Lo = DAG.getBitcast(CastVT, Lo); |
| Hi = DAG.getBitcast(CastVT, Hi); |
| SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi); |
| Results.push_back(Res); |
| return; |
| } |
| |
| if (SrcVT != MVT::f64 || |
| (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8)) |
| return; |
| |
| unsigned NumElts = DstVT.getVectorNumElements(); |
| EVT SVT = DstVT.getVectorElementType(); |
| EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); |
| SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| MVT::v2f64, N->getOperand(0)); |
| SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded); |
| |
| if (getTypeAction(*DAG.getContext(), DstVT) == TypeWidenVector) { |
| // If we are legalizing vectors by widening, we already have the desired |
| // legal vector type, just return it. |
| Results.push_back(ToVecInt); |
| return; |
| } |
| |
| SmallVector<SDValue, 8> Elts; |
| for (unsigned i = 0, e = NumElts; i != e; ++i) |
| Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, |
| ToVecInt, DAG.getIntPtrConstant(i, dl))); |
| |
| Results.push_back(DAG.getBuildVector(DstVT, dl, Elts)); |
| return; |
| } |
| case ISD::MGATHER: { |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::v2f32 && (Subtarget.hasVLX() || !Subtarget.hasAVX512())) { |
| auto *Gather = cast<MaskedGatherSDNode>(N); |
| SDValue Index = Gather->getIndex(); |
| if (Index.getValueType() != MVT::v2i64) |
| return; |
| SDValue Mask = Gather->getMask(); |
| assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type"); |
| SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, |
| Gather->getValue(), |
| DAG.getUNDEF(MVT::v2f32)); |
| if (!Subtarget.hasVLX()) { |
| // We need to widen the mask, but the instruction will only use 2 |
| // of its elements. So we can use undef. |
| Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, |
| DAG.getUNDEF(MVT::v2i1)); |
| Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask); |
| } |
| SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(), |
| Index, Gather->getScale() }; |
| SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( |
| DAG.getVTList(MVT::v4f32, Mask.getValueType(), MVT::Other), Ops, dl, |
| Gather->getMemoryVT(), Gather->getMemOperand()); |
| Results.push_back(Res); |
| Results.push_back(Res.getValue(2)); |
| return; |
| } |
| if (VT == MVT::v2i32) { |
| auto *Gather = cast<MaskedGatherSDNode>(N); |
| SDValue Index = Gather->getIndex(); |
| SDValue Mask = Gather->getMask(); |
| assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type"); |
| SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, |
| Gather->getValue(), |
| DAG.getUNDEF(MVT::v2i32)); |
| // If the index is v2i64 we can use it directly. |
| if (Index.getValueType() == MVT::v2i64 && |
| (Subtarget.hasVLX() || !Subtarget.hasAVX512())) { |
| if (!Subtarget.hasVLX()) { |
| // We need to widen the mask, but the instruction will only use 2 |
| // of its elements. So we can use undef. |
| Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, |
| DAG.getUNDEF(MVT::v2i1)); |
| Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask); |
| } |
| SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(), |
| Index, Gather->getScale() }; |
| SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( |
| DAG.getVTList(MVT::v4i32, Mask.getValueType(), MVT::Other), Ops, dl, |
| Gather->getMemoryVT(), Gather->getMemOperand()); |
| SDValue Chain = Res.getValue(2); |
| if (getTypeAction(*DAG.getContext(), VT) != TypeWidenVector) |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back(Res); |
| Results.push_back(Chain); |
| return; |
| } |
| EVT IndexVT = Index.getValueType(); |
| EVT NewIndexVT = EVT::getVectorVT(*DAG.getContext(), |
| IndexVT.getScalarType(), 4); |
| // Otherwise we need to custom widen everything to avoid promotion. |
| Index = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewIndexVT, Index, |
| DAG.getUNDEF(IndexVT)); |
| Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, |
| DAG.getConstant(0, dl, MVT::v2i1)); |
| SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(), |
| Index, Gather->getScale() }; |
| SDValue Res = DAG.getMaskedGather(DAG.getVTList(MVT::v4i32, MVT::Other), |
| Gather->getMemoryVT(), dl, Ops, |
| Gather->getMemOperand()); |
| SDValue Chain = Res.getValue(1); |
| if (getTypeAction(*DAG.getContext(), MVT::v2i32) != TypeWidenVector) |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back(Res); |
| Results.push_back(Chain); |
| return; |
| } |
| break; |
| } |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((X86ISD::NodeType)Opcode) { |
| case X86ISD::FIRST_NUMBER: break; |
| case X86ISD::BSF: return "X86ISD::BSF"; |
| case X86ISD::BSR: return "X86ISD::BSR"; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FANDN: return "X86ISD::FANDN"; |
| case X86ISD::FOR: return "X86ISD::FOR"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG"; |
| case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG"; |
| case X86ISD::BT: return "X86ISD::BT"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::COMI: return "X86ISD::COMI"; |
| case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| case X86ISD::CMPM: return "X86ISD::CMPM"; |
| case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; |
| case X86ISD::FSETCC: return "X86ISD::FSETCC"; |
| case X86ISD::FSETCCM: return "X86ISD::FSETCCM"; |
| case X86ISD::FSETCCM_RND: return "X86ISD::FSETCCM_RND"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::IRET: return "X86ISD::IRET"; |
| case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; |
| case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q"; |
| case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W"; |
| case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D"; |
| case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; |
| case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; |
| case X86ISD::PINSRB: return "X86ISD::PINSRB"; |
| case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; |
| case X86ISD::ANDNP: return "X86ISD::ANDNP"; |
| case X86ISD::BLENDI: return "X86ISD::BLENDI"; |
| case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND"; |
| case X86ISD::ADDUS: return "X86ISD::ADDUS"; |
| case X86ISD::SUBUS: return "X86ISD::SUBUS"; |
| case X86ISD::HADD: return "X86ISD::HADD"; |
| case X86ISD::HSUB: return "X86ISD::HSUB"; |
| case X86ISD::FHADD: return "X86ISD::FHADD"; |
| case X86ISD::FHSUB: return "X86ISD::FHSUB"; |
| case X86ISD::CONFLICT: return "X86ISD::CONFLICT"; |
| case X86ISD::FMAX: return "X86ISD::FMAX"; |
| case X86ISD::FMAXS: return "X86ISD::FMAXS"; |
| case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND"; |
| case X86ISD::FMAXS_RND: return "X86ISD::FMAX_RND"; |
| case X86ISD::FMIN: return "X86ISD::FMIN"; |
| case X86ISD::FMINS: return "X86ISD::FMINS"; |
| case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND"; |
| case X86ISD::FMINS_RND: return "X86ISD::FMINS_RND"; |
| case X86ISD::FMAXC: return "X86ISD::FMAXC"; |
| case X86ISD::FMINC: return "X86ISD::FMINC"; |
| case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; |
| case X86ISD::FRCP: return "X86ISD::FRCP"; |
| case X86ISD::EXTRQI: return "X86ISD::EXTRQI"; |
| case X86ISD::INSERTQI: return "X86ISD::INSERTQI"; |
| case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; |
| case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; |
| case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; |
| case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; |
| case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; |
| case X86ISD::EH_SJLJ_SETUP_DISPATCH: |
| return "X86ISD::EH_SJLJ_SETUP_DISPATCH"; |
| case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; |
| case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; |
| case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; |
| case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; |
| case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; |
| case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; |
| case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG"; |
| case X86ISD::LCMPXCHG8_SAVE_EBX_DAG: |
| return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG"; |
| case X86ISD::LCMPXCHG16_SAVE_RBX_DAG: |
| return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG"; |
| case X86ISD::LADD: return "X86ISD::LADD"; |
| case X86ISD::LSUB: return "X86ISD::LSUB"; |
| case X86ISD::LOR: return "X86ISD::LOR"; |
| case X86ISD::LXOR: return "X86ISD::LXOR"; |
| case X86ISD::LAND: return "X86ISD::LAND"; |
| case X86ISD::LINC: return "X86ISD::LINC"; |
| case X86ISD::LDEC: return "X86ISD::LDEC"; |
| case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; |
| case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; |
| case X86ISD::VZEXT: return "X86ISD::VZEXT"; |
| case X86ISD::VSEXT: return "X86ISD::VSEXT"; |
| case X86ISD::VTRUNC: return "X86ISD::VTRUNC"; |
| case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS"; |
| case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS"; |
| case X86ISD::VTRUNCSTORES: return "X86ISD::VTRUNCSTORES"; |
| case X86ISD::VTRUNCSTOREUS: return "X86ISD::VTRUNCSTOREUS"; |
| case X86ISD::VMTRUNCSTORES: return "X86ISD::VMTRUNCSTORES"; |
| case X86ISD::VMTRUNCSTOREUS: return "X86ISD::VMTRUNCSTOREUS"; |
| case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; |
| case X86ISD::VFPEXT_RND: return "X86ISD::VFPEXT_RND"; |
| case X86ISD::VFPEXTS_RND: return "X86ISD::VFPEXTS_RND"; |
| case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; |
| case X86ISD::VFPROUND_RND: return "X86ISD::VFPROUND_RND"; |
| case X86ISD::VFPROUNDS_RND: return "X86ISD::VFPROUNDS_RND"; |
| case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; |
| case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; |
| case X86ISD::VSHL: return "X86ISD::VSHL"; |
| case X86ISD::VSRL: return "X86ISD::VSRL"; |
| case X86ISD::VSRA: return "X86ISD::VSRA"; |
| case X86ISD::VSHLI: return "X86ISD::VSHLI"; |
| case X86ISD::VSRLI: return "X86ISD::VSRLI"; |
| case X86ISD::VSRAI: return "X86ISD::VSRAI"; |
| case X86ISD::VSRAV: return "X86ISD::VSRAV"; |
| case X86ISD::VROTLI: return "X86ISD::VROTLI"; |
| case X86ISD::VROTRI: return "X86ISD::VROTRI"; |
| case X86ISD::VPPERM: return "X86ISD::VPPERM"; |
| case X86ISD::CMPP: return "X86ISD::CMPP"; |
| case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; |
| case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; |
| case X86ISD::PHMINPOS: return "X86ISD::PHMINPOS"; |
| case X86ISD::ADD: return "X86ISD::ADD"; |
| case X86ISD::SUB: return "X86ISD::SUB"; |
| case X86ISD::ADC: return "X86ISD::ADC"; |
| case X86ISD::SBB: return "X86ISD::SBB"; |
| case X86ISD::SMUL: return "X86ISD::SMUL"; |
| case X86ISD::UMUL: return "X86ISD::UMUL"; |
| case X86ISD::SMUL8: return "X86ISD::SMUL8"; |
| case X86ISD::UMUL8: return "X86ISD::UMUL8"; |
| case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG"; |
| case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG"; |
| case X86ISD::INC: return "X86ISD::INC"; |
| case X86ISD::DEC: return "X86ISD::DEC"; |
| case X86ISD::OR: return "X86ISD::OR"; |
| case X86ISD::XOR: return "X86ISD::XOR"; |
| case X86ISD::AND: return "X86ISD::AND"; |
| case X86ISD::BEXTR: return "X86ISD::BEXTR"; |
| case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; |
| case X86ISD::MOVMSK: return "X86ISD::MOVMSK"; |
| case X86ISD::PTEST: return "X86ISD::PTEST"; |
| case X86ISD::TESTP: return "X86ISD::TESTP"; |
| case X86ISD::KORTEST: return "X86ISD::KORTEST"; |
| case X86ISD::KTEST: return "X86ISD::KTEST"; |
| case X86ISD::KADD: return "X86ISD::KADD"; |
| case X86ISD::KSHIFTL: return "X86ISD::KSHIFTL"; |
| case X86ISD::KSHIFTR: return "X86ISD::KSHIFTR"; |
| case X86ISD::PACKSS: return "X86ISD::PACKSS"; |
| case X86ISD::PACKUS: return "X86ISD::PACKUS"; |
| case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; |
| case X86ISD::VALIGN: return "X86ISD::VALIGN"; |
| case X86ISD::VSHLD: return "X86ISD::VSHLD"; |
| case X86ISD::VSHRD: return "X86ISD::VSHRD"; |
| case X86ISD::VSHLDV: return "X86ISD::VSHLDV"; |
| case X86ISD::VSHRDV: return "X86ISD::VSHRDV"; |
| case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; |
| case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; |
| case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; |
| case X86ISD::SHUFP: return "X86ISD::SHUFP"; |
| case X86ISD::SHUF128: return "X86ISD::SHUF128"; |
| case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; |
| case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; |
| case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; |
| case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; |
| case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; |
| case X86ISD::MOVSD: return "X86ISD::MOVSD"; |
| case X86ISD::MOVSS: return "X86ISD::MOVSS"; |
| case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; |
| case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; |
| case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; |
| case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM"; |
| case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST"; |
| case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV"; |
| case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI"; |
| case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; |
| case X86ISD::VPERMV: return "X86ISD::VPERMV"; |
| case X86ISD::VPERMV3: return "X86ISD::VPERMV3"; |
| case X86ISD::VPERMI: return "X86ISD::VPERMI"; |
| case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG"; |
| case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM"; |
| case X86ISD::VFIXUPIMMS: return "X86ISD::VFIXUPIMMS"; |
| case X86ISD::VRANGE: return "X86ISD::VRANGE"; |
| case X86ISD::VRANGE_RND: return "X86ISD::VRANGE_RND"; |
| case X86ISD::VRANGES: return "X86ISD::VRANGES"; |
| case X86ISD::VRANGES_RND: return "X86ISD::VRANGES_RND"; |
| case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; |
| case X86ISD::PMULDQ: return "X86ISD::PMULDQ"; |
| case X86ISD::PSADBW: return "X86ISD::PSADBW"; |
| case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW"; |
| case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; |
| case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; |
| case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; |
| case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; |
| case X86ISD::MFENCE: return "X86ISD::MFENCE"; |
| case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; |
| case X86ISD::SAHF: return "X86ISD::SAHF"; |
| case X86ISD::RDRAND: return "X86ISD::RDRAND"; |
| case X86ISD::RDSEED: return "X86ISD::RDSEED"; |
| case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW"; |
| case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD"; |
| case X86ISD::VPSHA: return "X86ISD::VPSHA"; |
| case X86ISD::VPSHL: return "X86ISD::VPSHL"; |
| case X86ISD::VPCOM: return "X86ISD::VPCOM"; |
| case X86ISD::VPCOMU: return "X86ISD::VPCOMU"; |
| case X86ISD::VPERMIL2: return "X86ISD::VPERMIL2"; |
| case X86ISD::FMSUB: return "X86ISD::FMSUB"; |
| case X86ISD::FNMADD: return "X86ISD::FNMADD"; |
| case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; |
| case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; |
| case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; |
| case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND"; |
| case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND"; |
| case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND"; |
| case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND"; |
| case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND"; |
| case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND"; |
| case X86ISD::VPMADD52H: return "X86ISD::VPMADD52H"; |
| case X86ISD::VPMADD52L: return "X86ISD::VPMADD52L"; |
| case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE"; |
| case X86ISD::VRNDSCALE_RND: return "X86ISD::VRNDSCALE_RND"; |
| case X86ISD::VRNDSCALES: return "X86ISD::VRNDSCALES"; |
| case X86ISD::VRNDSCALES_RND: return "X86ISD::VRNDSCALES_RND"; |
| case X86ISD::VREDUCE: return "X86ISD::VREDUCE"; |
| case X86ISD::VREDUCE_RND: return "X86ISD::VREDUCE_RND"; |
| case X86ISD::VREDUCES: return "X86ISD::VREDUCES"; |
| case X86ISD::VREDUCES_RND: return "X86ISD::VREDUCES_RND"; |
| case X86ISD::VGETMANT: return "X86ISD::VGETMANT"; |
| case X86ISD::VGETMANT_RND: return "X86ISD::VGETMANT_RND"; |
| case X86ISD::VGETMANTS: return "X86ISD::VGETMANTS"; |
| case X86ISD::VGETMANTS_RND: return "X86ISD::VGETMANTS_RND"; |
| case X86ISD::PCMPESTR: return "X86ISD::PCMPESTR"; |
| case X86ISD::PCMPISTR: return "X86ISD::PCMPISTR"; |
| case X86ISD::XTEST: return "X86ISD::XTEST"; |
| case X86ISD::COMPRESS: return "X86ISD::COMPRESS"; |
| case X86ISD::EXPAND: return "X86ISD::EXPAND"; |
| case X86ISD::SELECT: return "X86ISD::SELECT"; |
| case X86ISD::SELECTS: return "X86ISD::SELECTS"; |
| case X86ISD::ADDSUB: return "X86ISD::ADDSUB"; |
| case X86ISD::RCP14: return "X86ISD::RCP14"; |
| case X86ISD::RCP14S: return "X86ISD::RCP14S"; |
| case X86ISD::RCP28: return "X86ISD::RCP28"; |
| case X86ISD::RCP28S: return "X86ISD::RCP28S"; |
| case X86ISD::EXP2: return "X86ISD::EXP2"; |
| case X86ISD::RSQRT14: return "X86ISD::RSQRT14"; |
| case X86ISD::RSQRT14S: return "X86ISD::RSQRT14S"; |
| case X86ISD::RSQRT28: return "X86ISD::RSQRT28"; |
| case X86ISD::RSQRT28S: return "X86ISD::RSQRT28S"; |
| case X86ISD::FADD_RND: return "X86ISD::FADD_RND"; |
| case X86ISD::FADDS_RND: return "X86ISD::FADDS_RND"; |
| case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND"; |
| case X86ISD::FSUBS_RND: return "X86ISD::FSUBS_RND"; |
| case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND"; |
| case X86ISD::FMULS_RND: return "X86ISD::FMULS_RND"; |
| case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND"; |
| case X86ISD::FDIVS_RND: return "X86ISD::FDIVS_RND"; |
| case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND"; |
| case X86ISD::FSQRTS_RND: return "X86ISD::FSQRTS_RND"; |
| case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND"; |
| case X86ISD::FGETEXPS_RND: return "X86ISD::FGETEXPS_RND"; |
| case X86ISD::SCALEF: return "X86ISD::SCALEF"; |
| case X86ISD::SCALEFS: return "X86ISD::SCALEFS"; |
| case X86ISD::ADDS: return "X86ISD::ADDS"; |
| case X86ISD::SUBS: return "X86ISD::SUBS"; |
| case X86ISD::AVG: return "X86ISD::AVG"; |
| case X86ISD::MULHRS: return "X86ISD::MULHRS"; |
| case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND"; |
| case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND"; |
| case X86ISD::CVTTP2SI: return "X86ISD::CVTTP2SI"; |
| case X86ISD::CVTTP2UI: return "X86ISD::CVTTP2UI"; |
| case X86ISD::CVTTP2SI_RND: return "X86ISD::CVTTP2SI_RND"; |
| case X86ISD::CVTTP2UI_RND: return "X86ISD::CVTTP2UI_RND"; |
| case X86ISD::CVTTS2SI_RND: return "X86ISD::CVTTS2SI_RND"; |
| case X86ISD::CVTTS2UI_RND: return "X86ISD::CVTTS2UI_RND"; |
| case X86ISD::CVTSI2P: return "X86ISD::CVTSI2P"; |
| case X86ISD::CVTUI2P: return "X86ISD::CVTUI2P"; |
| case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS"; |
| case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS"; |
| case X86ISD::MULTISHIFT: return "X86ISD::MULTISHIFT"; |
| case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND"; |
| case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND"; |
| case X86ISD::CVTPS2PH: return "X86ISD::CVTPS2PH"; |
| case X86ISD::CVTPH2PS: return "X86ISD::CVTPH2PS"; |
| case X86ISD::CVTPH2PS_RND: return "X86ISD::CVTPH2PS_RND"; |
| case X86ISD::CVTP2SI: return "X86ISD::CVTP2SI"; |
| case X86ISD::CVTP2UI: return "X86ISD::CVTP2UI"; |
| case X86ISD::CVTP2SI_RND: return "X86ISD::CVTP2SI_RND"; |
| case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND"; |
| case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND"; |
| case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND"; |
| case X86ISD::LWPINS: return "X86ISD::LWPINS"; |
| case X86ISD::MGATHER: return "X86ISD::MGATHER"; |
| case X86ISD::MSCATTER: return "X86ISD::MSCATTER"; |
| case X86ISD::VPDPBUSD: return "X86ISD::VPDPBUSD"; |
| case X86ISD::VPDPBUSDS: return "X86ISD::VPDPBUSDS"; |
| case X86ISD::VPDPWSSD: return "X86ISD::VPDPWSSD"; |
| case X86ISD::VPDPWSSDS: return "X86ISD::VPDPWSSDS"; |
| case X86ISD::VPSHUFBITQMB: return "X86ISD::VPSHUFBITQMB"; |
| case X86ISD::GF2P8MULB: return "X86ISD::GF2P8MULB"; |
| case X86ISD::GF2P8AFFINEQB: return "X86ISD::GF2P8AFFINEQB"; |
| case X86ISD::GF2P8AFFINEINVQB: return "X86ISD::GF2P8AFFINEINVQB"; |
| case X86ISD::NT_CALL: return "X86ISD::NT_CALL"; |
| case X86ISD::NT_BRIND: return "X86ISD::NT_BRIND"; |
| case X86ISD::UMWAIT: return "X86ISD::UMWAIT"; |
| case X86ISD::TPAUSE: return "X86ISD::TPAUSE"; |
| } |
| return nullptr; |
| } |
| |
| /// Return true if the addressing mode represented by AM is legal for this |
| /// target, for a load/store of the specified type. |
| bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, |
| Instruction *I) const { |
| // X86 supports extremely general addressing modes. |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| // X86 allows a sign-extended 32-bit immediate field as a displacement. |
| if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr)) |
| return false; |
| |
| if (AM.BaseGV) { |
| unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV); |
| |
| // If a reference to this global requires an extra load, we can't fold it. |
| if (isGlobalStubReference(GVFlags)) |
| return false; |
| |
| // If BaseGV requires a register for the PIC base, we cannot also have a |
| // BaseReg specified. |
| if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) |
| return false; |
| |
| // If lower 4G is not available, then we must use rip-relative addressing. |
| if ((M != CodeModel::Small || isPositionIndependent()) && |
| Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1)) |
| return false; |
| } |
| |
| switch (AM.Scale) { |
| case 0: |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| // These scales always work. |
| break; |
| case 3: |
| case 5: |
| case 9: |
| // These scales are formed with basereg+scalereg. Only accept if there is |
| // no basereg yet. |
| if (AM.HasBaseReg) |
| return false; |
| break; |
| default: // Other stuff never works. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { |
| unsigned Bits = Ty->getScalarSizeInBits(); |
| |
| // 8-bit shifts are always expensive, but versions with a scalar amount aren't |
| // particularly cheaper than those without. |
| if (Bits == 8) |
| return false; |
| |
| // XOP has v16i8/v8i16/v4i32/v2i64 variable vector shifts. |
| if (Subtarget.hasXOP() && Ty->getPrimitiveSizeInBits() == 128 && |
| (Bits == 8 || Bits == 16 || Bits == 32 || Bits == 64)) |
| return false; |
| |
| // AVX2 has vpsllv[dq] instructions (and other shifts) that make variable |
| // shifts just as cheap as scalar ones. |
| if (Subtarget.hasAVX2() && (Bits == 32 || Bits == 64)) |
| return false; |
| |
| // AVX512BW has shifts such as vpsllvw. |
| if (Subtarget.hasBWI() && Bits == 16) |
| return false; |
| |
| // Otherwise, it's significantly cheaper to shift by a scalar amount than by a |
| // fully general vector. |
| return true; |
| } |
| |
| bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| return NumBits1 > NumBits2; |
| } |
| |
| bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| |
| if (!isTypeLegal(EVT::getEVT(Ty1))) |
| return false; |
| |
| assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); |
| |
| // Assuming the caller doesn't have a zeroext or signext return parameter, |
| // truncation all the way down to i1 is valid. |
| return true; |
| } |
| |
| bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return isInt<32>(Imm); |
| } |
| |
| bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| // Can also use sub to handle negated immediates. |
| return isInt<32>(Imm); |
| } |
| |
| bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (!VT1.isInteger() || !VT2.isInteger()) |
| return false; |
| unsigned NumBits1 = VT1.getSizeInBits(); |
| unsigned NumBits2 = VT2.getSizeInBits(); |
| return NumBits1 > NumBits2; |
| } |
| |
| bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { |
| // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. |
| return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit(); |
| } |
| |
| bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { |
| // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. |
| return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit(); |
| } |
| |
| bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| EVT VT1 = Val.getValueType(); |
| if (isZExtFree(VT1, VT2)) |
| return true; |
| |
| if (Val.getOpcode() != ISD::LOAD) |
| return false; |
| |
| if (!VT1.isSimple() || !VT1.isInteger() || |
| !VT2.isSimple() || !VT2.isInteger()) |
| return false; |
| |
| switch (VT1.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| // X86 has 8, 16, and 32-bit zero-extending loads. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool X86TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { |
| EVT SrcVT = ExtVal.getOperand(0).getValueType(); |
| |
| // There is no extending load for vXi1. |
| if (SrcVT.getScalarType() == MVT::i1) |
| return false; |
| |
| return true; |
| } |
| |
| bool |
| X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { |
| if (!Subtarget.hasAnyFMA()) |
| return false; |
| |
| VT = VT.getScalarType(); |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f32: |
| case MVT::f64: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { |
| // i16 instructions are longer (0x66 prefix) and potentially slower. |
| return !(VT1 == MVT::i32 && VT2 == MVT::i16); |
| } |
| |
| /// Targets can use this to indicate that they only support *some* |
| /// VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool X86TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { |
| if (!VT.isSimple()) |
| return false; |
| |
| // Not for i1 vectors |
| if (VT.getSimpleVT().getScalarType() == MVT::i1) |
| return false; |
| |
| // Very little shuffling can be done for 64-bit vectors right now. |
| if (VT.getSimpleVT().getSizeInBits() == 64) |
| return false; |
| |
| // We only care that the types being shuffled are legal. The lowering can |
| // handle any possible shuffle mask that results. |
| return isTypeLegal(VT.getSimpleVT()); |
| } |
| |
| bool X86TargetLowering::isVectorClearMaskLegal(ArrayRef<int> Mask, |
| EVT VT) const { |
| // Don't convert an 'and' into a shuffle that we don't directly support. |
| // vpblendw and vpshufb for 256-bit vectors are not available on AVX1. |
| if (!Subtarget.hasAVX2()) |
| if (VT == MVT::v32i8 || VT == MVT::v16i16) |
| return false; |
| |
| // Just delegate to the generic legality, clear masks aren't special. |
| return isShuffleMaskLegal(Mask, VT); |
| } |
| |
| bool X86TargetLowering::areJTsAllowed(const Function *Fn) const { |
| // If the subtarget is using retpolines, we need to not generate jump tables. |
| if (Subtarget.useRetpoline()) |
| return false; |
| |
| // Otherwise, fallback on the generic logic. |
| return TargetLowering::areJTsAllowed(Fn); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// Utility function to emit xbegin specifying the start of an RTM region. |
| static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB, |
| const TargetInstrInfo *TII) { |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = ++MBB->getIterator(); |
| |
| // For the v = xbegin(), we generate |
| // |
| // thisMBB: |
| // xbegin sinkMBB |
| // |
| // mainMBB: |
| // s0 = -1 |
| // |
| // fallBB: |
| // eax = # XABORT_DEF |
| // s1 = eax |
| // |
| // sinkMBB: |
| // v = phi(s0/mainBB, s1/fallBB) |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineFunction *MF = MBB->getParent(); |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, fallMBB); |
| MF->insert(I, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| const TargetRegisterClass *RC = MRI.getRegClass(DstReg); |
| unsigned mainDstReg = MRI.createVirtualRegister(RC); |
| unsigned fallDstReg = MRI.createVirtualRegister(RC); |
| |
| // thisMBB: |
| // xbegin fallMBB |
| // # fallthrough to mainMBB |
| // # abortion to fallMBB |
| BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(fallMBB); |
| thisMBB->addSuccessor(mainMBB); |
| thisMBB->addSuccessor(fallMBB); |
| |
| // mainMBB: |
| // mainDstReg := -1 |
| BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), mainDstReg).addImm(-1); |
| BuildMI(mainMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // fallMBB: |
| // ; pseudo instruction to model hardware's definition from XABORT |
| // EAX := XABORT_DEF |
| // fallDstReg := EAX |
| BuildMI(fallMBB, DL, TII->get(X86::XABORT_DEF)); |
| BuildMI(fallMBB, DL, TII->get(TargetOpcode::COPY), fallDstReg) |
| .addReg(X86::EAX); |
| fallMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // DstReg := phi(mainDstReg/mainBB, fallDstReg/fallBB) |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg) |
| .addReg(mainDstReg).addMBB(mainMBB) |
| .addReg(fallDstReg).addMBB(fallMBB); |
| |
| MI.eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| static MachineBasicBlock *emitWRPKRU(MachineInstr &MI, MachineBasicBlock *BB, |
| const X86Subtarget &Subtarget) { |
| DebugLoc dl = MI.getDebugLoc(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| // insert input VAL into EAX |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX) |
| .addReg(MI.getOperand(0).getReg()); |
| // insert zero to ECX |
| BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX); |
| |
| // insert zero to EDX |
| BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::EDX); |
| |
| // insert WRPKRU instruction |
| BuildMI(*BB, MI, dl, TII->get(X86::WRPKRUr)); |
| |
| MI.eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| static MachineBasicBlock *emitRDPKRU(MachineInstr &MI, MachineBasicBlock *BB, |
| const X86Subtarget &Subtarget) { |
| DebugLoc dl = MI.getDebugLoc(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| // insert zero to ECX |
| BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX); |
| |
| // insert RDPKRU instruction |
| BuildMI(*BB, MI, dl, TII->get(X86::RDPKRUr)); |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) |
| .addReg(X86::EAX); |
| |
| MI.eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| static MachineBasicBlock *emitMonitor(MachineInstr &MI, MachineBasicBlock *BB, |
| const X86Subtarget &Subtarget, |
| unsigned Opc) { |
| DebugLoc dl = MI.getDebugLoc(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| // Address into RAX/EAX, other two args into ECX, EDX. |
| unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r; |
| unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); |
| for (int i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.add(MI.getOperand(i)); |
| |
| unsigned ValOps = X86::AddrNumOperands; |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) |
| .addReg(MI.getOperand(ValOps).getReg()); |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) |
| .addReg(MI.getOperand(ValOps + 1).getReg()); |
| |
| // The instruction doesn't actually take any operands though. |
| BuildMI(*BB, MI, dl, TII->get(Opc)); |
| |
| MI.eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| static MachineBasicBlock *emitClzero(MachineInstr *MI, MachineBasicBlock *BB, |
| const X86Subtarget &Subtarget) { |
| DebugLoc dl = MI->getDebugLoc(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| // Address into RAX/EAX |
| unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r; |
| unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); |
| for (int i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.add(MI->getOperand(i)); |
| |
| // The instruction doesn't actually take any operands though. |
| BuildMI(*BB, MI, dl, TII->get(X86::CLZEROr)); |
| |
| MI->eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| // Emit va_arg instruction on X86-64. |
| |
| // Operands to this pseudo-instruction: |
| // 0 ) Output : destination address (reg) |
| // 1-5) Input : va_list address (addr, i64mem) |
| // 6 ) ArgSize : Size (in bytes) of vararg type |
| // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset |
| // 8 ) Align : Alignment of type |
| // 9 ) EFLAGS (implicit-def) |
| |
| assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); |
| static_assert(X86::AddrNumOperands == 5, |
| "VAARG_64 assumes 5 address operands"); |
| |
| unsigned DestReg = MI.getOperand(0).getReg(); |
| MachineOperand &Base = MI.getOperand(1); |
| MachineOperand &Scale = MI.getOperand(2); |
| MachineOperand &Index = MI.getOperand(3); |
| MachineOperand &Disp = MI.getOperand(4); |
| MachineOperand &Segment = MI.getOperand(5); |
| unsigned ArgSize = MI.getOperand(6).getImm(); |
| unsigned ArgMode = MI.getOperand(7).getImm(); |
| unsigned Align = MI.getOperand(8).getImm(); |
| |
| // Memory Reference |
| assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); |
| MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); |
| |
| // Machine Information |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); |
| const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| // struct va_list { |
| // i32 gp_offset |
| // i32 fp_offset |
| // i64 overflow_area (address) |
| // i64 reg_save_area (address) |
| // } |
| // sizeof(va_list) = 24 |
| // alignment(va_list) = 8 |
| |
| unsigned TotalNumIntRegs = 6; |
| unsigned TotalNumXMMRegs = 8; |
| bool UseGPOffset = (ArgMode == 1); |
| bool UseFPOffset = (ArgMode == 2); |
| unsigned MaxOffset = TotalNumIntRegs * 8 + |
| (UseFPOffset ? TotalNumXMMRegs * 16 : 0); |
| |
| /* Align ArgSize to a multiple of 8 */ |
| unsigned ArgSizeA8 = (ArgSize + 7) & ~7; |
| bool NeedsAlign = (Align > 8); |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *overflowMBB; |
| MachineBasicBlock *offsetMBB; |
| MachineBasicBlock *endMBB; |
| |
| unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB |
| unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB |
| unsigned OffsetReg = 0; |
| |
| if (!UseGPOffset && !UseFPOffset) { |
| // If we only pull from the overflow region, we don't create a branch. |
| // We don't need to alter control flow. |
| OffsetDestReg = 0; // unused |
| OverflowDestReg = DestReg; |
| |
| offsetMBB = nullptr; |
| overflowMBB = thisMBB; |
| endMBB = thisMBB; |
| } else { |
| // First emit code to check if gp_offset (or fp_offset) is below the bound. |
| // If so, pull the argument from reg_save_area. (branch to offsetMBB) |
| // If not, pull from overflow_area. (branch to overflowMBB) |
| // |
| // thisMBB |
| // | . |
| // | . |
| // offsetMBB overflowMBB |
| // | . |
| // | . |
| // endMBB |
| |
| // Registers for the PHI in endMBB |
| OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); |
| OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); |
| |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction *MF = MBB->getParent(); |
| overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| endMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineFunction::iterator MBBIter = ++MBB->getIterator(); |
| |
| // Insert the new basic blocks |
| MF->insert(MBBIter, offsetMBB); |
| MF->insert(MBBIter, overflowMBB); |
| MF->insert(MBBIter, endMBB); |
| |
| // Transfer the remainder of MBB and its successor edges to endMBB. |
| endMBB->splice(endMBB->begin(), thisMBB, |
| std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); |
| endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); |
| |
| // Make offsetMBB and overflowMBB successors of thisMBB |
| thisMBB->addSuccessor(offsetMBB); |
| thisMBB->addSuccessor(overflowMBB); |
| |
| // endMBB is a successor of both offsetMBB and overflowMBB |
| offsetMBB->addSuccessor(endMBB); |
| overflowMBB->addSuccessor(endMBB); |
| |
| // Load the offset value into a register |
| OffsetReg = MRI.createVirtualRegister(OffsetRegClass); |
| BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) |
| .add(Base) |
| .add(Scale) |
| .add(Index) |
| .addDisp(Disp, UseFPOffset ? 4 : 0) |
| .add(Segment) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // Check if there is enough room left to pull this argument. |
| BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) |
| .addReg(OffsetReg) |
| .addImm(MaxOffset + 8 - ArgSizeA8); |
| |
| // Branch to "overflowMBB" if offset >= max |
| // Fall through to "offsetMBB" otherwise |
| BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) |
| .addMBB(overflowMBB); |
| } |
| |
| // In offsetMBB, emit code to use the reg_save_area. |
| if (offsetMBB) { |
| assert(OffsetReg != 0); |
| |
| // Read the reg_save_area address. |
| unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) |
| .add(Base) |
| .add(Scale) |
| .add(Index) |
| .addDisp(Disp, 16) |
| .add(Segment) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // Zero-extend the offset |
| unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) |
| .addImm(0) |
| .addReg(OffsetReg) |
| .addImm(X86::sub_32bit); |
| |
| // Add the offset to the reg_save_area to get the final address. |
| BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) |
| .addReg(OffsetReg64) |
| .addReg(RegSaveReg); |
| |
| // Compute the offset for the next argument |
| unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); |
| BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) |
| .addReg(OffsetReg) |
| .addImm(UseFPOffset ? 16 : 8); |
| |
| // Store it back into the va_list. |
| BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) |
| .add(Base) |
| .add(Scale) |
| .add(Index) |
| .addDisp(Disp, UseFPOffset ? 4 : 0) |
| .add(Segment) |
| .addReg(NextOffsetReg) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // Jump to endMBB |
| BuildMI(offsetMBB, DL, TII->get(X86::JMP_1)) |
| .addMBB(endMBB); |
| } |
| |
| // |
| // Emit code to use overflow area |
| // |
| |
| // Load the overflow_area address into a register. |
| unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) |
| .add(Base) |
| .add(Scale) |
| .add(Index) |
| .addDisp(Disp, 8) |
| .add(Segment) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // If we need to align it, do so. Otherwise, just copy the address |
| // to OverflowDestReg. |
| if (NeedsAlign) { |
| // Align the overflow address |
| assert(isPowerOf2_32(Align) && "Alignment must be a power of 2"); |
| unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); |
| |
| // aligned_addr = (addr + (align-1)) & ~(align-1) |
| BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) |
| .addReg(OverflowAddrReg) |
| .addImm(Align-1); |
| |
| BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) |
| .addReg(TmpReg) |
| .addImm(~(uint64_t)(Align-1)); |
| } else { |
| BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) |
| .addReg(OverflowAddrReg); |
| } |
| |
| // Compute the next overflow address after this argument. |
| // (the overflow address should be kept 8-byte aligned) |
| unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) |
| .addReg(OverflowDestReg) |
| .addImm(ArgSizeA8); |
| |
| // Store the new overflow address. |
| BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) |
| .add(Base) |
| .add(Scale) |
| .add(Index) |
| .addDisp(Disp, 8) |
| .add(Segment) |
| .addReg(NextAddrReg) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // If we branched, emit the PHI to the front of endMBB. |
| if (offsetMBB) { |
| BuildMI(*endMBB, endMBB->begin(), DL, |
| TII->get(X86::PHI), DestReg) |
| .addReg(OffsetDestReg).addMBB(offsetMBB) |
| .addReg(OverflowDestReg).addMBB(overflowMBB); |
| } |
| |
| // Erase the pseudo instruction |
| MI.eraseFromParent(); |
| |
| return endMBB; |
| } |
| |
| MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( |
| MachineInstr &MI, MachineBasicBlock *MBB) const { |
| // Emit code to save XMM registers to the stack. The ABI says that the |
| // number of registers to save is given in %al, so it's theoretically |
| // possible to do an indirect jump trick to avoid saving all of them, |
| // however this code takes a simpler approach and just executes all |
| // of the stores if %al is non-zero. It's less code, and it's probably |
| // easier on the hardware branch predictor, and stores aren't all that |
| // expensive anyway. |
| |
| // Create the new basic blocks. One block contains all the XMM stores, |
| // and one block is the final destination regardless of whether any |
| // stores were performed. |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction *F = MBB->getParent(); |
| MachineFunction::iterator MBBIter = ++MBB->getIterator(); |
| MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(MBBIter, XMMSaveMBB); |
| F->insert(MBBIter, EndMBB); |
| |
| // Transfer the remainder of MBB and its successor edges to EndMBB. |
| EndMBB->splice(EndMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| EndMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // The original block will now fall through to the XMM save block. |
| MBB->addSuccessor(XMMSaveMBB); |
| // The XMMSaveMBB will fall through to the end block. |
| XMMSaveMBB->addSuccessor(EndMBB); |
| |
| // Now add the instructions. |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| unsigned CountReg = MI.getOperand(0).getReg(); |
| int64_t RegSaveFrameIndex = MI.getOperand(1).getImm(); |
| int64_t VarArgsFPOffset = MI.getOperand(2).getImm(); |
| |
| if (!Subtarget.isCallingConvWin64(F->getFunction().getCallingConv())) { |
| // If %al is 0, branch around the XMM save block. |
| BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); |
| BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB); |
| MBB->addSuccessor(EndMBB); |
| } |
| |
| // Make sure the last operand is EFLAGS, which gets clobbered by the branch |
| // that was just emitted, but clearly shouldn't be "saved". |
| assert((MI.getNumOperands() <= 3 || |
| !MI.getOperand(MI.getNumOperands() - 1).isReg() || |
| MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) && |
| "Expected last argument to be EFLAGS"); |
| unsigned MOVOpc = Subtarget.hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; |
| // In the XMM save block, save all the XMM argument registers. |
| for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) { |
| int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; |
| MachineMemOperand *MMO = F->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset), |
| MachineMemOperand::MOStore, |
| /*Size=*/16, /*Align=*/16); |
| BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) |
| .addFrameIndex(RegSaveFrameIndex) |
| .addImm(/*Scale=*/1) |
| .addReg(/*IndexReg=*/0) |
| .addImm(/*Disp=*/Offset) |
| .addReg(/*Segment=*/0) |
| .addReg(MI.getOperand(i).getReg()) |
| .addMemOperand(MMO); |
| } |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| |
| return EndMBB; |
| } |
| |
| // The EFLAGS operand of SelectItr might be missing a kill marker |
| // because there were multiple uses of EFLAGS, and ISel didn't know |
| // which to mark. Figure out whether SelectItr should have had a |
| // kill marker, and set it if it should. Returns the correct kill |
| // marker value. |
| static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, |
| MachineBasicBlock* BB, |
| const TargetRegisterInfo* TRI) { |
| // Scan forward through BB for a use/def of EFLAGS. |
| MachineBasicBlock::iterator miI(std::next(SelectItr)); |
| for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { |
| const MachineInstr& mi = *miI; |
| if (mi.readsRegister(X86::EFLAGS)) |
| return false; |
| if (mi.definesRegister(X86::EFLAGS)) |
| break; // Should have kill-flag - update below. |
| } |
| |
| // If we hit the end of the block, check whether EFLAGS is live into a |
| // successor. |
| if (miI == BB->end()) { |
| for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), |
| sEnd = BB->succ_end(); |
| sItr != sEnd; ++sItr) { |
| MachineBasicBlock* succ = *sItr; |
| if (succ->isLiveIn(X86::EFLAGS)) |
| return false; |
| } |
| } |
| |
| // We found a def, or hit the end of the basic block and EFLAGS wasn't live |
| // out. SelectMI should have a kill flag on EFLAGS. |
| SelectItr->addRegisterKilled(X86::EFLAGS, TRI); |
| return true; |
| } |
| |
| // Return true if it is OK for this CMOV pseudo-opcode to be cascaded |
| // together with other CMOV pseudo-opcodes into a single basic-block with |
| // conditional jump around it. |
| static bool isCMOVPseudo(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_GR8: |
| case X86::CMOV_GR16: |
| case X86::CMOV_GR32: |
| case X86::CMOV_RFP32: |
| case X86::CMOV_RFP64: |
| case X86::CMOV_RFP80: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V4F64: |
| case X86::CMOV_V4I64: |
| case X86::CMOV_V16F32: |
| case X86::CMOV_V8F32: |
| case X86::CMOV_V8F64: |
| case X86::CMOV_V8I64: |
| case X86::CMOV_V8I1: |
| case X86::CMOV_V16I1: |
| case X86::CMOV_V32I1: |
| case X86::CMOV_V64I1: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Helper function, which inserts PHI functions into SinkMBB: |
| // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], |
| // where %FalseValue(i) and %TrueValue(i) are taken from the consequent CMOVs |
| // in [MIItBegin, MIItEnd) range. It returns the last MachineInstrBuilder for |
| // the last PHI function inserted. |
| static MachineInstrBuilder createPHIsForCMOVsInSinkBB( |
| MachineBasicBlock::iterator MIItBegin, MachineBasicBlock::iterator MIItEnd, |
| MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, |
| MachineBasicBlock *SinkMBB) { |
| MachineFunction *MF = TrueMBB->getParent(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| DebugLoc DL = MIItBegin->getDebugLoc(); |
| |
| X86::CondCode CC = X86::CondCode(MIItBegin->getOperand(3).getImm()); |
| X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); |
| |
| MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); |
| |
| // As we are creating the PHIs, we have to be careful if there is more than |
| // one. Later CMOVs may reference the results of earlier CMOVs, but later |
| // PHIs have to reference the individual true/false inputs from earlier PHIs. |
| // That also means that PHI construction must work forward from earlier to |
| // later, and that the code must maintain a mapping from earlier PHI's |
| // destination registers, and the registers that went into the PHI. |
| DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; |
| MachineInstrBuilder MIB; |
| |
| for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { |
| unsigned DestReg = MIIt->getOperand(0).getReg(); |
| unsigned Op1Reg = MIIt->getOperand(1).getReg(); |
| unsigned Op2Reg = MIIt->getOperand(2).getReg(); |
| |
| // If this CMOV we are generating is the opposite condition from |
| // the jump we generated, then we have to swap the operands for the |
| // PHI that is going to be generated. |
| if (MIIt->getOperand(3).getImm() == OppCC) |
| std::swap(Op1Reg, Op2Reg); |
| |
| if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end()) |
| Op1Reg = RegRewriteTable[Op1Reg].first; |
| |
| if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end()) |
| Op2Reg = RegRewriteTable[Op2Reg].second; |
| |
| MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) |
| .addReg(Op1Reg) |
| .addMBB(FalseMBB) |
| .addReg(Op2Reg) |
| .addMBB(TrueMBB); |
| |
| // Add this PHI to the rewrite table. |
| RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); |
| } |
| |
| return MIB; |
| } |
| |
| // Lower cascaded selects in form of (SecondCmov (FirstCMOV F, T, cc1), T, cc2). |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredCascadedSelect(MachineInstr &FirstCMOV, |
| MachineInstr &SecondCascadedCMOV, |
| MachineBasicBlock *ThisMBB) const { |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = FirstCMOV.getDebugLoc(); |
| |
| // We lower cascaded CMOVs such as |
| // |
| // (SecondCascadedCMOV (FirstCMOV F, T, cc1), T, cc2) |
| // |
| // to two successive branches. |
| // |
| // Without this, we would add a PHI between the two jumps, which ends up |
| // creating a few copies all around. For instance, for |
| // |
| // (sitofp (zext (fcmp une))) |
| // |
| // we would generate: |
| // |
| // ucomiss %xmm1, %xmm0 |
| // movss <1.0f>, %xmm0 |
| // movaps %xmm0, %xmm1 |
| // jne .LBB5_2 |
| // xorps %xmm1, %xmm1 |
| // .LBB5_2: |
| // jp .LBB5_4 |
| // movaps %xmm1, %xmm0 |
| // .LBB5_4: |
| // retq |
| // |
| // because this custom-inserter would have generated: |
| // |
| // A |
| // | \ |
| // | B |
| // | / |
| // C |
| // | \ |
| // | D |
| // | / |
| // E |
| // |
| // A: X = ...; Y = ... |
| // B: empty |
| // C: Z = PHI [X, A], [Y, B] |
| // D: empty |
| // E: PHI [X, C], [Z, D] |
| // |
| // If we lower both CMOVs in a single step, we can instead generate: |
| // |
| // A |
| // | \ |
| // | C |
| // | /| |
| // |/ | |
| // | | |
| // | D |
| // | / |
| // E |
| // |
| // A: X = ...; Y = ... |
| // D: empty |
| // E: PHI [X, A], [X, C], [Y, D] |
| // |
| // Which, in our sitofp/fcmp example, gives us something like: |
| // |
| // ucomiss %xmm1, %xmm0 |
| // movss <1.0f>, %xmm0 |
| // jne .LBB5_4 |
| // jp .LBB5_4 |
| // xorps %xmm0, %xmm0 |
| // .LBB5_4: |
| // retq |
| // |
| |
| // We lower cascaded CMOV into two successive branches to the same block. |
| // EFLAGS is used by both, so mark it as live in the second. |
| const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); |
| MachineFunction *F = ThisMBB->getParent(); |
| MachineBasicBlock *FirstInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *SecondInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineFunction::iterator It = ++ThisMBB->getIterator(); |
| F->insert(It, FirstInsertedMBB); |
| F->insert(It, SecondInsertedMBB); |
| F->insert(It, SinkMBB); |
| |
| // For a cascaded CMOV, we lower it to two successive branches to |
| // the same block (SinkMBB). EFLAGS is used by both, so mark it as live in |
| // the FirstInsertedMBB. |
| FirstInsertedMBB->addLiveIn(X86::EFLAGS); |
| |
| // If the EFLAGS register isn't dead in the terminator, then claim that it's |
| // live into the sink and copy blocks. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| if (!SecondCascadedCMOV.killsRegister(X86::EFLAGS) && |
| !checkAndUpdateEFLAGSKill(SecondCascadedCMOV, ThisMBB, TRI)) { |
| SecondInsertedMBB->addLiveIn(X86::EFLAGS); |
| SinkMBB->addLiveIn(X86::EFLAGS); |
| } |
| |
| // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. |
| SinkMBB->splice(SinkMBB->begin(), ThisMBB, |
| std::next(MachineBasicBlock::iterator(FirstCMOV)), |
| ThisMBB->end()); |
| SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); |
| |
| // Fallthrough block for ThisMBB. |
| ThisMBB->addSuccessor(FirstInsertedMBB); |
| // The true block target of the first branch is always SinkMBB. |
| ThisMBB->addSuccessor(SinkMBB); |
| // Fallthrough block for FirstInsertedMBB. |
| FirstInsertedMBB->addSuccessor(SecondInsertedMBB); |
| // The true block for the branch of FirstInsertedMBB. |
| FirstInsertedMBB->addSuccessor(SinkMBB); |
| // This is fallthrough. |
| SecondInsertedMBB->addSuccessor(SinkMBB); |
| |
| // Create the conditional branch instructions. |
| X86::CondCode FirstCC = X86::CondCode(FirstCMOV.getOperand(3).getImm()); |
| unsigned Opc = X86::GetCondBranchFromCond(FirstCC); |
| BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB); |
| |
| X86::CondCode SecondCC = |
| X86::CondCode(SecondCascadedCMOV.getOperand(3).getImm()); |
| unsigned Opc2 = X86::GetCondBranchFromCond(SecondCC); |
| BuildMI(FirstInsertedMBB, DL, TII->get(Opc2)).addMBB(SinkMBB); |
| |
| // SinkMBB: |
| // %Result = phi [ %FalseValue, SecondInsertedMBB ], [ %TrueValue, ThisMBB ] |
| unsigned DestReg = FirstCMOV.getOperand(0).getReg(); |
| unsigned Op1Reg = FirstCMOV.getOperand(1).getReg(); |
| unsigned Op2Reg = FirstCMOV.getOperand(2).getReg(); |
| MachineInstrBuilder MIB = |
| BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(X86::PHI), DestReg) |
| .addReg(Op1Reg) |
| .addMBB(SecondInsertedMBB) |
| .addReg(Op2Reg) |
| .addMBB(ThisMBB); |
| |
| // The second SecondInsertedMBB provides the same incoming value as the |
| // FirstInsertedMBB (the True operand of the SELECT_CC/CMOV nodes). |
| MIB.addReg(FirstCMOV.getOperand(2).getReg()).addMBB(FirstInsertedMBB); |
| // Copy the PHI result to the register defined by the second CMOV. |
| BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL, |
| TII->get(TargetOpcode::COPY), |
| SecondCascadedCMOV.getOperand(0).getReg()) |
| .addReg(FirstCMOV.getOperand(0).getReg()); |
| |
| // Now remove the CMOVs. |
| FirstCMOV.eraseFromParent(); |
| SecondCascadedCMOV.eraseFromParent(); |
| |
| return SinkMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredSelect(MachineInstr &MI, |
| MachineBasicBlock *ThisMBB) const { |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between and a branch opcode to use. |
| |
| // ThisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> FalseMBB |
| |
| // This code lowers all pseudo-CMOV instructions. Generally it lowers these |
| // as described above, by inserting a BB, and then making a PHI at the join |
| // point to select the true and false operands of the CMOV in the PHI. |
| // |
| // The code also handles two different cases of multiple CMOV opcodes |
| // in a row. |
| // |
| // Case 1: |
| // In this case, there are multiple CMOVs in a row, all which are based on |
| // the same condition setting (or the exact opposite condition setting). |
| // In this case we can lower all the CMOVs using a single inserted BB, and |
| // then make a number of PHIs at the join point to model the CMOVs. The only |
| // trickiness here, is that in a case like: |
| // |
| // t2 = CMOV cond1 t1, f1 |
| // t3 = CMOV cond1 t2, f2 |
| // |
| // when rewriting this into PHIs, we have to perform some renaming on the |
| // temps since you cannot have a PHI operand refer to a PHI result earlier |
| // in the same block. The "simple" but wrong lowering would be: |
| // |
| // t2 = PHI t1(BB1), f1(BB2) |
| // t3 = PHI t2(BB1), f2(BB2) |
| // |
| // but clearly t2 is not defined in BB1, so that is incorrect. The proper |
| // renaming is to note that on the path through BB1, t2 is really just a |
| // copy of t1, and do that renaming, properly generating: |
| // |
| // t2 = PHI t1(BB1), f1(BB2) |
| // t3 = PHI t1(BB1), f2(BB2) |
| // |
| // Case 2: |
| // CMOV ((CMOV F, T, cc1), T, cc2) is checked here and handled by a separate |
| // function - EmitLoweredCascadedSelect. |
| |
| X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm()); |
| X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); |
| MachineInstr *LastCMOV = &MI; |
| MachineBasicBlock::iterator NextMIIt = |
| std::next(MachineBasicBlock::iterator(MI)); |
| |
| // Check for case 1, where there are multiple CMOVs with the same condition |
| // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the |
| // number of jumps the most. |
| |
| if (isCMOVPseudo(MI)) { |
| // See if we have a string of CMOVS with the same condition. |
| while (NextMIIt != ThisMBB->end() && isCMOVPseudo(*NextMIIt) && |
| (NextMIIt->getOperand(3).getImm() == CC || |
| NextMIIt->getOperand(3).getImm() == OppCC)) { |
| LastCMOV = &*NextMIIt; |
| ++NextMIIt; |
| } |
| } |
| |
| // This checks for case 2, but only do this if we didn't already find |
| // case 1, as indicated by LastCMOV == MI. |
| if (LastCMOV == &MI && NextMIIt != ThisMBB->end() && |
| NextMIIt->getOpcode() == MI.getOpcode() && |
| NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() && |
| NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() && |
| NextMIIt->getOperand(1).isKill()) { |
| return EmitLoweredCascadedSelect(MI, *NextMIIt, ThisMBB); |
| } |
| |
| const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); |
| MachineFunction *F = ThisMBB->getParent(); |
| MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineFunction::iterator It = ++ThisMBB->getIterator(); |
| F->insert(It, FalseMBB); |
| F->insert(It, SinkMBB); |
| |
| // If the EFLAGS register isn't dead in the terminator, then claim that it's |
| // live into the sink and copy blocks. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| if (!LastCMOV->killsRegister(X86::EFLAGS) && |
| !checkAndUpdateEFLAGSKill(LastCMOV, ThisMBB, TRI)) { |
| FalseMBB->addLiveIn(X86::EFLAGS); |
| SinkMBB->addLiveIn(X86::EFLAGS); |
| } |
| |
| // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. |
| SinkMBB->splice(SinkMBB->begin(), ThisMBB, |
| std::next(MachineBasicBlock::iterator(LastCMOV)), |
| ThisMBB->end()); |
| SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); |
| |
| // Fallthrough block for ThisMBB. |
| ThisMBB->addSuccessor(FalseMBB); |
| // The true block target of the first (or only) branch is always a SinkMBB. |
| ThisMBB->addSuccessor(SinkMBB); |
| // Fallthrough block for FalseMBB. |
| FalseMBB->addSuccessor(SinkMBB); |
| |
| // Create the conditional branch instruction. |
| unsigned Opc = X86::GetCondBranchFromCond(CC); |
| BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB); |
| |
| // SinkMBB: |
| // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, ThisMBB ] |
| // ... |
| MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); |
| MachineBasicBlock::iterator MIItEnd = |
| std::next(MachineBasicBlock::iterator(LastCMOV)); |
| createPHIsForCMOVsInSinkBB(MIItBegin, MIItEnd, ThisMBB, FalseMBB, SinkMBB); |
| |
| // Now remove the CMOV(s). |
| ThisMBB->erase(MIItBegin, MIItEnd); |
| |
| return SinkMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredAtomicFP(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| // Combine the following atomic floating-point modification pattern: |
| // a.store(reg OP a.load(acquire), release) |
| // Transform them into: |
| // OPss (%gpr), %xmm |
| // movss %xmm, (%gpr) |
| // Or sd equivalent for 64-bit operations. |
| unsigned MOp, FOp; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP"); |
| case X86::RELEASE_FADD32mr: |
| FOp = X86::ADDSSrm; |
| MOp = X86::MOVSSmr; |
| break; |
| case X86::RELEASE_FADD64mr: |
| FOp = X86::ADDSDrm; |
| MOp = X86::MOVSDmr; |
| break; |
| } |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| unsigned ValOpIdx = X86::AddrNumOperands; |
| unsigned VSrc = MI.getOperand(ValOpIdx).getReg(); |
| MachineInstrBuilder MIB = |
| BuildMI(*BB, MI, DL, TII->get(FOp), |
| MRI.createVirtualRegister(MRI.getRegClass(VSrc))) |
| .addReg(VSrc); |
| for (int i = 0; i < X86::AddrNumOperands; ++i) { |
| MachineOperand &Operand = MI.getOperand(i); |
| // Clear any kill flags on register operands as we'll create a second |
| // instruction using the same address operands. |
| if (Operand.isReg()) |
| Operand.setIsKill(false); |
| MIB.add(Operand); |
| } |
| MachineInstr *FOpMI = MIB; |
| MIB = BuildMI(*BB, MI, DL, TII->get(MOp)); |
| for (int i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.add(MI.getOperand(i)); |
| MIB.addReg(FOpMI->getOperand(0).getReg(), RegState::Kill); |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineFunction *MF = BB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| |
| assert(MF->shouldSplitStack()); |
| |
| const bool Is64Bit = Subtarget.is64Bit(); |
| const bool IsLP64 = Subtarget.isTarget64BitLP64(); |
| |
| const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; |
| const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30; |
| |
| // BB: |
| // ... [Till the alloca] |
| // If stacklet is not large enough, jump to mallocMBB |
| // |
| // bumpMBB: |
| // Allocate by subtracting from RSP |
| // Jump to continueMBB |
| // |
| // mallocMBB: |
| // Allocate by call to runtime |
| // |
| // continueMBB: |
| // ... |
| // [rest of original BB] |
| // |
| |
| MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterClass *AddrRegClass = |
| getRegClassFor(getPointerTy(MF->getDataLayout())); |
| |
| unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), |
| bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), |
| tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), |
| SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), |
| sizeVReg = MI.getOperand(1).getReg(), |
| physSPReg = |
| IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP; |
| |
| MachineFunction::iterator MBBIter = ++BB->getIterator(); |
| |
| MF->insert(MBBIter, bumpMBB); |
| MF->insert(MBBIter, mallocMBB); |
| MF->insert(MBBIter, continueMBB); |
| |
| continueMBB->splice(continueMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| continueMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Add code to the main basic block to check if the stack limit has been hit, |
| // and if so, jump to mallocMBB otherwise to bumpMBB. |
| BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); |
| BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) |
| .addReg(tmpSPVReg).addReg(sizeVReg); |
| BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr)) |
| .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) |
| .addReg(SPLimitVReg); |
| BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB); |
| |
| // bumpMBB simply decreases the stack pointer, since we know the current |
| // stacklet has enough space. |
| BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) |
| .addReg(SPLimitVReg); |
| BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) |
| .addReg(SPLimitVReg); |
| BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); |
| |
| // Calls into a routine in libgcc to allocate more space from the heap. |
| const uint32_t *RegMask = |
| Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C); |
| if (IsLP64) { |
| BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) |
| .addReg(sizeVReg); |
| BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) |
| .addExternalSymbol("__morestack_allocate_stack_space") |
| .addRegMask(RegMask) |
| .addReg(X86::RDI, RegState::Implicit) |
| .addReg(X86::RAX, RegState::ImplicitDefine); |
| } else if (Is64Bit) { |
| BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI) |
| .addReg(sizeVReg); |
| BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) |
| .addExternalSymbol("__morestack_allocate_stack_space") |
| .addRegMask(RegMask) |
| .addReg(X86::EDI, RegState::Implicit) |
| .addReg(X86::EAX, RegState::ImplicitDefine); |
| } else { |
| BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) |
| .addImm(12); |
| BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); |
| BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) |
| .addExternalSymbol("__morestack_allocate_stack_space") |
| .addRegMask(RegMask) |
| .addReg(X86::EAX, RegState::ImplicitDefine); |
| } |
| |
| if (!Is64Bit) |
| BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) |
| .addImm(16); |
| |
| BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) |
| .addReg(IsLP64 ? X86::RAX : X86::EAX); |
| BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); |
| |
| // Set up the CFG correctly. |
| BB->addSuccessor(bumpMBB); |
| BB->addSuccessor(mallocMBB); |
| mallocMBB->addSuccessor(continueMBB); |
| bumpMBB->addSuccessor(continueMBB); |
| |
| // Take care of the PHI nodes. |
| BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), |
| MI.getOperand(0).getReg()) |
| .addReg(mallocPtrVReg) |
| .addMBB(mallocMBB) |
| .addReg(bumpSPPtrVReg) |
| .addMBB(bumpMBB); |
| |
| // Delete the original pseudo instruction. |
| MI.eraseFromParent(); |
| |
| // And we're done. |
| return continueMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineFunction *MF = BB->getParent(); |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| assert(!isAsynchronousEHPersonality( |
| classifyEHPersonality(MF->getFunction().getPersonalityFn())) && |
| "SEH does not use catchret!"); |
| |
| // Only 32-bit EH needs to worry about manually restoring stack pointers. |
| if (!Subtarget.is32Bit()) |
| return BB; |
| |
| // C++ EH creates a new target block to hold the restore code, and wires up |
| // the new block to the return destination with a normal JMP_4. |
| MachineBasicBlock *RestoreMBB = |
| MF->CreateMachineBasicBlock(BB->getBasicBlock()); |
| assert(BB->succ_size() == 1); |
| MF->insert(std::next(BB->getIterator()), RestoreMBB); |
| RestoreMBB->transferSuccessorsAndUpdatePHIs(BB); |
| BB->addSuccessor(RestoreMBB); |
| MI.getOperand(0).setMBB(RestoreMBB); |
| |
| auto RestoreMBBI = RestoreMBB->begin(); |
| BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE)); |
| BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB); |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineFunction *MF = BB->getParent(); |
| const Constant *PerFn = MF->getFunction().getPersonalityFn(); |
| bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn)); |
| // Only 32-bit SEH requires special handling for catchpad. |
| if (IsSEH && Subtarget.is32Bit()) { |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE)); |
| } |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| // So, here we replace TLSADDR with the sequence: |
| // adjust_stackdown -> TLSADDR -> adjust_stackup. |
| // We need this because TLSADDR is lowered into calls |
| // inside MC, therefore without the two markers shrink-wrapping |
| // may push the prologue/epilogue pass them. |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction &MF = *BB->getParent(); |
| |
| // Emit CALLSEQ_START right before the instruction. |
| unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| MachineInstrBuilder CallseqStart = |
| BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0).addImm(0); |
| BB->insert(MachineBasicBlock::iterator(MI), CallseqStart); |
| |
| // Emit CALLSEQ_END right after the instruction. |
| // We don't call erase from parent because we want to keep the |
| // original instruction around. |
| unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| MachineInstrBuilder CallseqEnd = |
| BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0); |
| BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd); |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| // This is pretty easy. We're taking the value that we received from |
| // our load from the relocation, sticking it in either RDI (x86-64) |
| // or EAX and doing an indirect call. The return value will then |
| // be in the normal return register. |
| MachineFunction *F = BB->getParent(); |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?"); |
| assert(MI.getOperand(3).isGlobal() && "This should be a global"); |
| |
| // Get a register mask for the lowered call. |
| // FIXME: The 32-bit calls have non-standard calling conventions. Use a |
| // proper register mask. |
| const uint32_t *RegMask = |
| Subtarget.is64Bit() ? |
| Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() : |
| Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C); |
| if (Subtarget.is64Bit()) { |
| MachineInstrBuilder MIB = |
| BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI) |
| .addReg(X86::RIP) |
| .addImm(0) |
| .addReg(0) |
| .addGlobalAddress(MI.getOperand(3).getGlobal(), 0, |
| MI.getOperand(3).getTargetFlags()) |
| .addReg(0); |
| MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); |
| addDirectMem(MIB, X86::RDI); |
| MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); |
| } else if (!isPositionIndependent()) { |
| MachineInstrBuilder MIB = |
| BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) |
| .addReg(0) |
| .addImm(0) |
| .addReg(0) |
| .addGlobalAddress(MI.getOperand(3).getGlobal(), 0, |
| MI.getOperand(3).getTargetFlags()) |
| .addReg(0); |
| MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); |
| addDirectMem(MIB, X86::EAX); |
| MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); |
| } else { |
| MachineInstrBuilder MIB = |
| BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) |
| .addReg(TII->getGlobalBaseReg(F)) |
| .addImm(0) |
| .addReg(0) |
| .addGlobalAddress(MI.getOperand(3).getGlobal(), 0, |
| MI.getOperand(3).getTargetFlags()) |
| .addReg(0); |
| MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); |
| addDirectMem(MIB, X86::EAX); |
| MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); |
| } |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| static unsigned getOpcodeForRetpoline(unsigned RPOpc) { |
| switch (RPOpc) { |
| case X86::RETPOLINE_CALL32: |
| return X86::CALLpcrel32; |
| case X86::RETPOLINE_CALL64: |
| return X86::CALL64pcrel32; |
| case X86::RETPOLINE_TCRETURN32: |
| return X86::TCRETURNdi; |
| case X86::RETPOLINE_TCRETURN64: |
| return X86::TCRETURNdi64; |
| } |
| llvm_unreachable("not retpoline opcode"); |
| } |
| |
| static const char *getRetpolineSymbol(const X86Subtarget &Subtarget, |
| unsigned Reg) { |
| if (Subtarget.useRetpolineExternalThunk()) { |
| // When using an external thunk for retpolines, we pick names that match the |
| // names GCC happens to use as well. This helps simplify the implementation |
| // of the thunks for kernels where they have no easy ability to create |
| // aliases and are doing non-trivial configuration of the thunk's body. For |
| // example, the Linux kernel will do boot-time hot patching of the thunk |
| // bodies and cannot easily export aliases of these to loaded modules. |
| // |
| // Note that at any point in the future, we may need to change the semantics |
| // of how we implement retpolines and at that time will likely change the |
| // name of the called thunk. Essentially, there is no hard guarantee that |
| // LLVM will generate calls to specific thunks, we merely make a best-effort |
| // attempt to help out kernels and other systems where duplicating the |
| // thunks is costly. |
| switch (Reg) { |
| case X86::EAX: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__x86_indirect_thunk_eax"; |
| case X86::ECX: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__x86_indirect_thunk_ecx"; |
| case X86::EDX: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__x86_indirect_thunk_edx"; |
| case X86::EDI: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__x86_indirect_thunk_edi"; |
| case X86::R11: |
| assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!"); |
| return "__x86_indirect_thunk_r11"; |
| } |
| llvm_unreachable("unexpected reg for retpoline"); |
| } |
| |
| // When targeting an internal COMDAT thunk use an LLVM-specific name. |
| switch (Reg) { |
| case X86::EAX: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__llvm_retpoline_eax"; |
| case X86::ECX: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__llvm_retpoline_ecx"; |
| case X86::EDX: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__llvm_retpoline_edx"; |
| case X86::EDI: |
| assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!"); |
| return "__llvm_retpoline_edi"; |
| case X86::R11: |
| assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!"); |
| return "__llvm_retpoline_r11"; |
| } |
| llvm_unreachable("unexpected reg for retpoline"); |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredRetpoline(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| // Copy the virtual register into the R11 physical register and |
| // call the retpoline thunk. |
| DebugLoc DL = MI.getDebugLoc(); |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| unsigned CalleeVReg = MI.getOperand(0).getReg(); |
| unsigned Opc = getOpcodeForRetpoline(MI.getOpcode()); |
| |
| // Find an available scratch register to hold the callee. On 64-bit, we can |
| // just use R11, but we scan for uses anyway to ensure we don't generate |
| // incorrect code. On 32-bit, we use one of EAX, ECX, or EDX that isn't |
| // already a register use operand to the call to hold the callee. If none |
| // are available, use EDI instead. EDI is chosen because EBX is the PIC base |
| // register and ESI is the base pointer to realigned stack frames with VLAs. |
| SmallVector<unsigned, 3> AvailableRegs; |
| if (Subtarget.is64Bit()) |
| AvailableRegs.push_back(X86::R11); |
| else |
| AvailableRegs.append({X86::EAX, X86::ECX, X86::EDX, X86::EDI}); |
| |
| // Zero out any registers that are already used. |
| for (const auto &MO : MI.operands()) { |
| if (MO.isReg() && MO.isUse()) |
| for (unsigned &Reg : AvailableRegs) |
| if (Reg == MO.getReg()) |
| Reg = 0; |
| } |
| |
| // Choose the first remaining non-zero available register. |
| unsigned AvailableReg = 0; |
| for (unsigned MaybeReg : AvailableRegs) { |
| if (MaybeReg) { |
| AvailableReg = MaybeReg; |
| break; |
| } |
| } |
| if (!AvailableReg) |
| report_fatal_error("calling convention incompatible with retpoline, no " |
| "available registers"); |
| |
| const char *Symbol = getRetpolineSymbol(Subtarget, AvailableReg); |
| |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY), AvailableReg) |
| .addReg(CalleeVReg); |
| MI.getOperand(0).ChangeToES(Symbol); |
| MI.setDesc(TII->get(Opc)); |
| MachineInstrBuilder(*BB->getParent(), &MI) |
| .addReg(AvailableReg, RegState::Implicit | RegState::Kill); |
| return BB; |
| } |
| |
| /// SetJmp implies future control flow change upon calling the corresponding |
| /// LongJmp. |
| /// Instead of using the 'return' instruction, the long jump fixes the stack and |
| /// performs an indirect branch. To do so it uses the registers that were stored |
| /// in the jump buffer (when calling SetJmp). |
| /// In case the shadow stack is enabled we need to fix it as well, because some |
| /// return addresses will be skipped. |
| /// The function will save the SSP for future fixing in the function |
| /// emitLongJmpShadowStackFix. |
| /// \sa emitLongJmpShadowStackFix |
| /// \param [in] MI The temporary Machine Instruction for the builtin. |
| /// \param [in] MBB The Machine Basic Block that will be modified. |
| void X86TargetLowering::emitSetJmpShadowStackFix(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MachineInstrBuilder MIB; |
| |
| // Memory Reference. |
| MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); |
| |
| // Initialize a register with zero. |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| const TargetRegisterClass *PtrRC = getRegClassFor(PVT); |
| unsigned ZReg = MRI.createVirtualRegister(PtrRC); |
| unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr; |
| BuildMI(*MBB, MI, DL, TII->get(XorRROpc)) |
| .addDef(ZReg) |
| .addReg(ZReg, RegState::Undef) |
| .addReg(ZReg, RegState::Undef); |
| |
| // Read the current SSP Register value to the zeroed register. |
| unsigned SSPCopyReg = MRI.createVirtualRegister(PtrRC); |
| unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD; |
| BuildMI(*MBB, MI, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg); |
| |
| // Write the SSP register value to offset 3 in input memory buffer. |
| unsigned PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PtrStoreOpc)); |
| const int64_t SSPOffset = 3 * PVT.getStoreSize(); |
| const unsigned MemOpndSlot = 1; |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI.getOperand(MemOpndSlot + i), SSPOffset); |
| else |
| MIB.add(MI.getOperand(MemOpndSlot + i)); |
| } |
| MIB.addReg(SSPCopyReg); |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = ++MBB->getIterator(); |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); |
| |
| unsigned DstReg; |
| unsigned MemOpndSlot = 0; |
| |
| unsigned CurOp = 0; |
| |
| DstReg = MI.getOperand(CurOp++).getReg(); |
| const TargetRegisterClass *RC = MRI.getRegClass(DstReg); |
| assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); |
| (void)TRI; |
| unsigned mainDstReg = MRI.createVirtualRegister(RC); |
| unsigned restoreDstReg = MRI.createVirtualRegister(RC); |
| |
| MemOpndSlot = CurOp; |
| |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && |
| "Invalid Pointer Size!"); |
| |
| // For v = setjmp(buf), we generate |
| // |
| // thisMBB: |
| // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB |
| // SjLjSetup restoreMBB |
| // |
| // mainMBB: |
| // v_main = 0 |
| // |
| // sinkMBB: |
| // v = phi(main, restore) |
| // |
| // restoreMBB: |
| // if base pointer being used, load it from frame |
| // v_restore = 1 |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, sinkMBB); |
| MF->push_back(restoreMBB); |
| restoreMBB->setHasAddressTaken(); |
| |
| MachineInstrBuilder MIB; |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // thisMBB: |
| unsigned PtrStoreOpc = 0; |
| unsigned LabelReg = 0; |
| const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && |
| !isPositionIndependent(); |
| |
| // Prepare IP either in reg or imm. |
| if (!UseImmLabel) { |
| PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; |
| const TargetRegisterClass *PtrRC = getRegClassFor(PVT); |
| LabelReg = MRI.createVirtualRegister(PtrRC); |
| if (Subtarget.is64Bit()) { |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) |
| .addReg(X86::RIP) |
| .addImm(0) |
| .addReg(0) |
| .addMBB(restoreMBB) |
| .addReg(0); |
| } else { |
| const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) |
| .addReg(XII->getGlobalBaseReg(MF)) |
| .addImm(0) |
| .addReg(0) |
| .addMBB(restoreMBB, Subtarget.classifyBlockAddressReference()) |
| .addReg(0); |
| } |
| } else |
| PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; |
| // Store IP |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset); |
| else |
| MIB.add(MI.getOperand(MemOpndSlot + i)); |
| } |
| if (!UseImmLabel) |
| MIB.addReg(LabelReg); |
| else |
| MIB.addMBB(restoreMBB); |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) { |
| emitSetJmpShadowStackFix(MI, thisMBB); |
| } |
| |
| // Setup |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) |
| .addMBB(restoreMBB); |
| |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| MIB.addRegMask(RegInfo->getNoPreservedMask()); |
| thisMBB->addSuccessor(mainMBB); |
| thisMBB->addSuccessor(restoreMBB); |
| |
| // mainMBB: |
| // EAX = 0 |
| BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(X86::PHI), DstReg) |
| .addReg(mainDstReg).addMBB(mainMBB) |
| .addReg(restoreDstReg).addMBB(restoreMBB); |
| |
| // restoreMBB: |
| if (RegInfo->hasBasePointer(*MF)) { |
| const bool Uses64BitFramePtr = |
| Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64(); |
| X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); |
| X86FI->setRestoreBasePointer(MF); |
| unsigned FramePtr = RegInfo->getFrameRegister(*MF); |
| unsigned BasePtr = RegInfo->getBaseRegister(); |
| unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm; |
| addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr), |
| FramePtr, true, X86FI->getRestoreBasePointerOffset()) |
| .setMIFlag(MachineInstr::FrameSetup); |
| } |
| BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); |
| BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); |
| restoreMBB->addSuccessor(sinkMBB); |
| |
| MI.eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| /// Fix the shadow stack using the previously saved SSP pointer. |
| /// \sa emitSetJmpShadowStackFix |
| /// \param [in] MI The temporary Machine Instruction for the builtin. |
| /// \param [in] MBB The Machine Basic Block that will be modified. |
| /// \return The sink MBB that will perform the future indirect branch. |
| MachineBasicBlock * |
| X86TargetLowering::emitLongJmpShadowStackFix(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); |
| |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| const TargetRegisterClass *PtrRC = getRegClassFor(PVT); |
| |
| // checkSspMBB: |
| // xor vreg1, vreg1 |
| // rdssp vreg1 |
| // test vreg1, vreg1 |
| // je sinkMBB # Jump if Shadow Stack is not supported |
| // fallMBB: |
| // mov buf+24/12(%rip), vreg2 |
| // sub vreg1, vreg2 |
| // jbe sinkMBB # No need to fix the Shadow Stack |
| // fixShadowMBB: |
| // shr 3/2, vreg2 |
| // incssp vreg2 # fix the SSP according to the lower 8 bits |
| // shr 8, vreg2 |
| // je sinkMBB |
| // fixShadowLoopPrepareMBB: |
| // shl vreg2 |
| // mov 128, vreg3 |
| // fixShadowLoopMBB: |
| // incssp vreg3 |
| // dec vreg2 |
| // jne fixShadowLoopMBB # Iterate until you finish fixing |
| // # the Shadow Stack |
| // sinkMBB: |
| |
| MachineFunction::iterator I = ++MBB->getIterator(); |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| |
| MachineBasicBlock *checkSspMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *fixShadowMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *fixShadowLoopPrepareMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *fixShadowLoopMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, checkSspMBB); |
| MF->insert(I, fallMBB); |
| MF->insert(I, fixShadowMBB); |
| MF->insert(I, fixShadowLoopPrepareMBB); |
| MF->insert(I, fixShadowLoopMBB); |
| MF->insert(I, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, MachineBasicBlock::iterator(MI), |
| MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| MBB->addSuccessor(checkSspMBB); |
| |
| // Initialize a register with zero. |
| unsigned ZReg = MRI.createVirtualRegister(PtrRC); |
| unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr; |
| BuildMI(checkSspMBB, DL, TII->get(XorRROpc)) |
| .addDef(ZReg) |
| .addReg(ZReg, RegState::Undef) |
| .addReg(ZReg, RegState::Undef); |
| |
| // Read the current SSP Register value to the zeroed register. |
| unsigned SSPCopyReg = MRI.createVirtualRegister(PtrRC); |
| unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD; |
| BuildMI(checkSspMBB, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg); |
| |
| // Check whether the result of the SSP register is zero and jump directly |
| // to the sink. |
| unsigned TestRROpc = (PVT == MVT::i64) ? X86::TEST64rr : X86::TEST32rr; |
| BuildMI(checkSspMBB, DL, TII->get(TestRROpc)) |
| .addReg(SSPCopyReg) |
| .addReg(SSPCopyReg); |
| BuildMI(checkSspMBB, DL, TII->get(X86::JE_1)).addMBB(sinkMBB); |
| checkSspMBB->addSuccessor(sinkMBB); |
| checkSspMBB->addSuccessor(fallMBB); |
| |
| // Reload the previously saved SSP register value. |
| unsigned PrevSSPReg = MRI.createVirtualRegister(PtrRC); |
| unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; |
| const int64_t SPPOffset = 3 * PVT.getStoreSize(); |
| MachineInstrBuilder MIB = |
| BuildMI(fallMBB, DL, TII->get(PtrLoadOpc), PrevSSPReg); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI.getOperand(i), SPPOffset); |
| else |
| MIB.add(MI.getOperand(i)); |
| } |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| // Subtract the current SSP from the previous SSP. |
| unsigned SspSubReg = MRI.createVirtualRegister(PtrRC); |
| unsigned SubRROpc = (PVT == MVT::i64) ? X86::SUB64rr : X86::SUB32rr; |
| BuildMI(fallMBB, DL, TII->get(SubRROpc), SspSubReg) |
| .addReg(PrevSSPReg) |
| .addReg(SSPCopyReg); |
| |
| // Jump to sink in case PrevSSPReg <= SSPCopyReg. |
| BuildMI(fallMBB, DL, TII->get(X86::JBE_1)).addMBB(sinkMBB); |
| fallMBB->addSuccessor(sinkMBB); |
| fallMBB->addSuccessor(fixShadowMBB); |
| |
| // Shift right by 2/3 for 32/64 because incssp multiplies the argument by 4/8. |
| unsigned ShrRIOpc = (PVT == MVT::i64) ? X86::SHR64ri : X86::SHR32ri; |
| unsigned Offset = (PVT == MVT::i64) ? 3 : 2; |
| unsigned SspFirstShrReg = MRI.createVirtualRegister(PtrRC); |
| BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspFirstShrReg) |
| .addReg(SspSubReg) |
| .addImm(Offset); |
| |
| // Increase SSP when looking only on the lower 8 bits of the delta. |
| unsigned IncsspOpc = (PVT == MVT::i64) ? X86::INCSSPQ : X86::INCSSPD; |
| BuildMI(fixShadowMBB, DL, TII->get(IncsspOpc)).addReg(SspFirstShrReg); |
| |
| // Reset the lower 8 bits. |
| unsigned SspSecondShrReg = MRI.createVirtualRegister(PtrRC); |
| BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspSecondShrReg) |
| .addReg(SspFirstShrReg) |
| .addImm(8); |
| |
| // Jump if the result of the shift is zero. |
| BuildMI(fixShadowMBB, DL, TII->get(X86::JE_1)).addMBB(sinkMBB); |
| fixShadowMBB->addSuccessor(sinkMBB); |
| fixShadowMBB->addSuccessor(fixShadowLoopPrepareMBB); |
| |
| // Do a single shift left. |
| unsigned ShlR1Opc = (PVT == MVT::i64) ? X86::SHL64r1 : X86::SHL32r1; |
| unsigned SspAfterShlReg = MRI.createVirtualRegister(PtrRC); |
| BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(ShlR1Opc), SspAfterShlReg) |
| .addReg(SspSecondShrReg); |
| |
| // Save the value 128 to a register (will be used next with incssp). |
| unsigned Value128InReg = MRI.createVirtualRegister(PtrRC); |
| unsigned MovRIOpc = (PVT == MVT::i64) ? X86::MOV64ri32 : X86::MOV32ri; |
| BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(MovRIOpc), Value128InReg) |
| .addImm(128); |
| fixShadowLoopPrepareMBB->addSuccessor(fixShadowLoopMBB); |
| |
| // Since incssp only looks at the lower 8 bits, we might need to do several |
| // iterations of incssp until we finish fixing the shadow stack. |
| unsigned DecReg = MRI.createVirtualRegister(PtrRC); |
| unsigned CounterReg = MRI.createVirtualRegister(PtrRC); |
| BuildMI(fixShadowLoopMBB, DL, TII->get(X86::PHI), CounterReg) |
| .addReg(SspAfterShlReg) |
| .addMBB(fixShadowLoopPrepareMBB) |
| .addReg(DecReg) |
| .addMBB(fixShadowLoopMBB); |
| |
| // Every iteration we increase the SSP by 128. |
| BuildMI(fixShadowLoopMBB, DL, TII->get(IncsspOpc)).addReg(Value128InReg); |
| |
| // Every iteration we decrement the counter by 1. |
| unsigned DecROpc = (PVT == MVT::i64) ? X86::DEC64r : X86::DEC32r; |
| BuildMI(fixShadowLoopMBB, DL, TII->get(DecROpc), DecReg).addReg(CounterReg); |
| |
| // Jump if the counter is not zero yet. |
| BuildMI(fixShadowLoopMBB, DL, TII->get(X86::JNE_1)).addMBB(fixShadowLoopMBB); |
| fixShadowLoopMBB->addSuccessor(sinkMBB); |
| fixShadowLoopMBB->addSuccessor(fixShadowLoopMBB); |
| |
| return sinkMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); |
| |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && |
| "Invalid Pointer Size!"); |
| |
| const TargetRegisterClass *RC = |
| (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; |
| unsigned Tmp = MRI.createVirtualRegister(RC); |
| // Since FP is only updated here but NOT referenced, it's treated as GPR. |
| const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; |
| unsigned SP = RegInfo->getStackRegister(); |
| |
| MachineInstrBuilder MIB; |
| |
| const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| const int64_t SPOffset = 2 * PVT.getStoreSize(); |
| |
| unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; |
| unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; |
| |
| MachineBasicBlock *thisMBB = MBB; |
| |
| // When CET and shadow stack is enabled, we need to fix the Shadow Stack. |
| if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) { |
| thisMBB = emitLongJmpShadowStackFix(MI, thisMBB); |
| } |
| |
| // Reload FP |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), FP); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.add(MI.getOperand(i)); |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| // Reload IP |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), Tmp); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI.getOperand(i), LabelOffset); |
| else |
| MIB.add(MI.getOperand(i)); |
| } |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| // Reload SP |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), SP); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI.getOperand(i), SPOffset); |
| else |
| MIB.add(MI.getOperand(i)); |
| } |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| // Jump |
| BuildMI(*thisMBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); |
| |
| MI.eraseFromParent(); |
| return thisMBB; |
| } |
| |
| void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *DispatchBB, |
| int FI) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); |
| |
| unsigned Op = 0; |
| unsigned VR = 0; |
| |
| bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && |
| !isPositionIndependent(); |
| |
| if (UseImmLabel) { |
| Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; |
| } else { |
| const TargetRegisterClass *TRC = |
| (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; |
| VR = MRI->createVirtualRegister(TRC); |
| Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; |
| |
| if (Subtarget.is64Bit()) |
| BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR) |
| .addReg(X86::RIP) |
| .addImm(1) |
| .addReg(0) |
| .addMBB(DispatchBB) |
| .addReg(0); |
| else |
| BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR) |
| .addReg(0) /* TII->getGlobalBaseReg(MF) */ |
| .addImm(1) |
| .addReg(0) |
| .addMBB(DispatchBB, Subtarget.classifyBlockAddressReference()) |
| .addReg(0); |
| } |
| |
| MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op)); |
| addFrameReference(MIB, FI, Subtarget.is64Bit() ? 56 : 36); |
| if (UseImmLabel) |
| MIB.addMBB(DispatchBB); |
| else |
| MIB.addReg(VR); |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| int FI = MFI.getFunctionContextIndex(); |
| |
| // Get a mapping of the call site numbers to all of the landing pads they're |
| // associated with. |
| DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; |
| unsigned MaxCSNum = 0; |
| for (auto &MBB : *MF) { |
| if (!MBB.isEHPad()) |
| continue; |
| |
| MCSymbol *Sym = nullptr; |
| for (const auto &MI : MBB) { |
| if (MI.isDebugInstr()) |
| continue; |
| |
| assert(MI.isEHLabel() && "expected EH_LABEL"); |
| Sym = MI.getOperand(0).getMCSymbol(); |
| break; |
| } |
| |
| if (!MF->hasCallSiteLandingPad(Sym)) |
| continue; |
| |
| for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { |
| CallSiteNumToLPad[CSI].push_back(&MBB); |
| MaxCSNum = std::max(MaxCSNum, CSI); |
| } |
| } |
| |
| // Get an ordered list of the machine basic blocks for the jump table. |
| std::vector<MachineBasicBlock *> LPadList; |
| SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; |
| LPadList.reserve(CallSiteNumToLPad.size()); |
| |
| for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { |
| for (auto &LP : CallSiteNumToLPad[CSI]) { |
| LPadList.push_back(LP); |
| InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); |
| } |
| } |
| |
| assert(!LPadList.empty() && |
| "No landing pad destinations for the dispatch jump table!"); |
| |
| // Create the MBBs for the dispatch code. |
| |
| // Shove the dispatch's address into the return slot in the function context. |
| MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); |
| DispatchBB->setIsEHPad(true); |
| |
| MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); |
| BuildMI(TrapBB, DL, TII->get(X86::TRAP)); |
| DispatchBB->addSuccessor(TrapBB); |
| |
| MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); |
| DispatchBB->addSuccessor(DispContBB); |
| |
| // Insert MBBs. |
| MF->push_back(DispatchBB); |
| MF->push_back(DispContBB); |
| MF->push_back(TrapBB); |
| |
| // Insert code into the entry block that creates and registers the function |
| // context. |
| SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI); |
| |
| // Create the jump table and associated information |
| unsigned JTE = getJumpTableEncoding(); |
| MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); |
| unsigned MJTI = JTI->createJumpTableIndex(LPadList); |
| |
| const X86RegisterInfo &RI = TII->getRegisterInfo(); |
| // Add a register mask with no preserved registers. This results in all |
| // registers being marked as clobbered. |
| if (RI.hasBasePointer(*MF)) { |
| const bool FPIs64Bit = |
| Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64(); |
| X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>(); |
| MFI->setRestoreBasePointer(MF); |
| |
| unsigned FP = RI.getFrameRegister(*MF); |
| unsigned BP = RI.getBaseRegister(); |
| unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm; |
| addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true, |
| MFI->getRestoreBasePointerOffset()) |
| .addRegMask(RI.getNoPreservedMask()); |
| } else { |
| BuildMI(DispatchBB, DL, TII->get(X86::NOOP)) |
| .addRegMask(RI.getNoPreservedMask()); |
| } |
| |
| // IReg is used as an index in a memory operand and therefore can't be SP |
| unsigned IReg = MRI->createVirtualRegister(&X86::GR32_NOSPRegClass); |
| addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI, |
| Subtarget.is64Bit() ? 8 : 4); |
| BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri)) |
| .addReg(IReg) |
| .addImm(LPadList.size()); |
| BuildMI(DispatchBB, DL, TII->get(X86::JAE_1)).addMBB(TrapBB); |
| |
| if (Subtarget.is64Bit()) { |
| unsigned BReg = MRI->createVirtualRegister(&X86::GR64RegClass); |
| unsigned IReg64 = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass); |
| |
| // leaq .LJTI0_0(%rip), BReg |
| BuildMI(DispContBB, DL, TII->get(X86::LEA64r), BReg) |
| .addReg(X86::RIP) |
| .addImm(1) |
| .addReg(0) |
| .addJumpTableIndex(MJTI) |
| .addReg(0); |
| // movzx IReg64, IReg |
| BuildMI(DispContBB, DL, TII->get(TargetOpcode::SUBREG_TO_REG), IReg64) |
| .addImm(0) |
| .addReg(IReg) |
| .addImm(X86::sub_32bit); |
| |
| switch (JTE) { |
| case MachineJumpTableInfo::EK_BlockAddress: |
| // jmpq *(BReg,IReg64,8) |
| BuildMI(DispContBB, DL, TII->get(X86::JMP64m)) |
| .addReg(BReg) |
| .addImm(8) |
| .addReg(IReg64) |
| .addImm(0) |
| .addReg(0); |
| break; |
| case MachineJumpTableInfo::EK_LabelDifference32: { |
| unsigned OReg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| unsigned OReg64 = MRI->createVirtualRegister(&X86::GR64RegClass); |
| unsigned TReg = MRI->createVirtualRegister(&X86::GR64RegClass); |
| |
| // movl (BReg,IReg64,4), OReg |
| BuildMI(DispContBB, DL, TII->get(X86::MOV32rm), OReg) |
| .addReg(BReg) |
| .addImm(4) |
| .addReg(IReg64) |
| .addImm(0) |
| .addReg(0); |
| // movsx OReg64, OReg |
| BuildMI(DispContBB, DL, TII->get(X86::MOVSX64rr32), OReg64).addReg(OReg); |
| // addq BReg, OReg64, TReg |
| BuildMI(DispContBB, DL, TII->get(X86::ADD64rr), TReg) |
| .addReg(OReg64) |
| .addReg(BReg); |
| // jmpq *TReg |
| BuildMI(DispContBB, DL, TII->get(X86::JMP64r)).addReg(TReg); |
| break; |
| } |
| default: |
| llvm_unreachable("Unexpected jump table encoding"); |
| } |
| } else { |
| // jmpl *.LJTI0_0(,IReg,4) |
| BuildMI(DispContBB, DL, TII->get(X86::JMP32m)) |
| .addReg(0) |
| .addImm(4) |
| .addReg(IReg) |
| .addJumpTableIndex(MJTI) |
| .addReg(0); |
| } |
| |
| // Add the jump table entries as successors to the MBB. |
| SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; |
| for (auto &LP : LPadList) |
| if (SeenMBBs.insert(LP).second) |
| DispContBB->addSuccessor(LP); |
| |
| // N.B. the order the invoke BBs are processed in doesn't matter here. |
| SmallVector<MachineBasicBlock *, 64> MBBLPads; |
| const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); |
| for (MachineBasicBlock *MBB : InvokeBBs) { |
| // Remove the landing pad successor from the invoke block and replace it |
| // with the new dispatch block. |
| // Keep a copy of Successors since it's modified inside the loop. |
| SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), |
| MBB->succ_rend()); |
| // FIXME: Avoid quadratic complexity. |
| for (auto MBBS : Successors) { |
| if (MBBS->isEHPad()) { |
| MBB->removeSuccessor(MBBS); |
| MBBLPads.push_back(MBBS); |
| } |
| } |
| |
| MBB->addSuccessor(DispatchBB); |
| |
| // Find the invoke call and mark all of the callee-saved registers as |
| // 'implicit defined' so that they're spilled. This prevents code from |
| // moving instructions to before the EH block, where they will never be |
| // executed. |
| for (auto &II : reverse(*MBB)) { |
| if (!II.isCall()) |
| continue; |
| |
| DenseMap<unsigned, bool> DefRegs; |
| for (auto &MOp : II.operands()) |
| if (MOp.isReg()) |
| DefRegs[MOp.getReg()] = true; |
| |
| MachineInstrBuilder MIB(*MF, &II); |
| for (unsigned RI = 0; SavedRegs[RI]; ++RI) { |
| unsigned Reg = SavedRegs[RI]; |
| if (!DefRegs[Reg]) |
| MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); |
| } |
| |
| break; |
| } |
| } |
| |
| // Mark all former landing pads as non-landing pads. The dispatch is the only |
| // landing pad now. |
| for (auto &LP : MBBLPads) |
| LP->setIsEHPad(false); |
| |
| // The instruction is gone now. |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineFunction *MF = BB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unexpected instr type to insert"); |
| case X86::TLS_addr32: |
| case X86::TLS_addr64: |
| case X86::TLS_base_addr32: |
| case X86::TLS_base_addr64: |
| return EmitLoweredTLSAddr(MI, BB); |
| case X86::RETPOLINE_CALL32: |
| case X86::RETPOLINE_CALL64: |
| case X86::RETPOLINE_TCRETURN32: |
| case X86::RETPOLINE_TCRETURN64: |
| return EmitLoweredRetpoline(MI, BB); |
| case X86::CATCHRET: |
| return EmitLoweredCatchRet(MI, BB); |
| case X86::CATCHPAD: |
| return EmitLoweredCatchPad(MI, BB); |
| case X86::SEG_ALLOCA_32: |
| case X86::SEG_ALLOCA_64: |
| return EmitLoweredSegAlloca(MI, BB); |
| case X86::TLSCall_32: |
| case X86::TLSCall_64: |
| return EmitLoweredTLSCall(MI, BB); |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_F128: |
| case X86::CMOV_GR8: |
| case X86::CMOV_GR16: |
| case X86::CMOV_GR32: |
| case X86::CMOV_RFP32: |
| case X86::CMOV_RFP64: |
| case X86::CMOV_RFP80: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V4F64: |
| case X86::CMOV_V4I64: |
| case X86::CMOV_V16F32: |
| case X86::CMOV_V8F32: |
| case X86::CMOV_V8F64: |
| case X86::CMOV_V8I64: |
| case X86::CMOV_V8I1: |
| case X86::CMOV_V16I1: |
| case X86::CMOV_V32I1: |
| case X86::CMOV_V64I1: |
| return EmitLoweredSelect(MI, BB); |
| |
| case X86::RDFLAGS32: |
| case X86::RDFLAGS64: { |
| unsigned PushF = |
| MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64; |
| unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r; |
| MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF)); |
| // Permit reads of the EFLAGS and DF registers without them being defined. |
| // This intrinsic exists to read external processor state in flags, such as |
| // the trap flag, interrupt flag, and direction flag, none of which are |
| // modeled by the backend. |
| assert(Push->getOperand(2).getReg() == X86::EFLAGS && |
| "Unexpected register in operand!"); |
| Push->getOperand(2).setIsUndef(); |
| assert(Push->getOperand(3).getReg() == X86::DF && |
| "Unexpected register in operand!"); |
| Push->getOperand(3).setIsUndef(); |
| BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg()); |
| |
| MI.eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| case X86::WRFLAGS32: |
| case X86::WRFLAGS64: { |
| unsigned Push = |
| MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r; |
| unsigned PopF = |
| MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64; |
| BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg()); |
| BuildMI(*BB, MI, DL, TII->get(PopF)); |
| |
| MI.eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| case X86::RELEASE_FADD32mr: |
| case X86::RELEASE_FADD64mr: |
| return EmitLoweredAtomicFP(MI, BB); |
| |
| case X86::FP32_TO_INT16_IN_MEM: |
| case X86::FP32_TO_INT32_IN_MEM: |
| case X86::FP32_TO_INT64_IN_MEM: |
| case X86::FP64_TO_INT16_IN_MEM: |
| case X86::FP64_TO_INT32_IN_MEM: |
| case X86::FP64_TO_INT64_IN_MEM: |
| case X86::FP80_TO_INT16_IN_MEM: |
| case X86::FP80_TO_INT32_IN_MEM: |
| case X86::FP80_TO_INT64_IN_MEM: { |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| int CWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false); |
| addFrameReference(BuildMI(*BB, MI, DL, |
| TII->get(X86::FNSTCW16m)), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass); |
| addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), |
| CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) |
| .addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(*BB, MI, DL, |
| TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) |
| .addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("illegal opcode!"); |
| case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; |
| case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; |
| case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; |
| case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; |
| case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; |
| case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; |
| case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; |
| case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; |
| case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; |
| } |
| |
| X86AddressMode AM = getAddressFromInstr(&MI, 0); |
| addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) |
| .addReg(MI.getOperand(X86::AddrNumOperands).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(*BB, MI, DL, |
| TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| // Thread synchronization. |
| case X86::MONITOR: |
| return emitMonitor(MI, BB, Subtarget, X86::MONITORrrr); |
| case X86::MONITORX: |
| return emitMonitor(MI, BB, Subtarget, X86::MONITORXrrr); |
| |
| // Cache line zero |
| case X86::CLZERO: |
| return emitClzero(&MI, BB, Subtarget); |
| |
| // PKU feature |
| case X86::WRPKRU: |
| return emitWRPKRU(MI, BB, Subtarget); |
| case X86::RDPKRU: |
| return emitRDPKRU(MI, BB, Subtarget); |
| // xbegin |
| case X86::XBEGIN: |
| return emitXBegin(MI, BB, Subtarget.getInstrInfo()); |
| |
| case X86::VASTART_SAVE_XMM_REGS: |
| return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); |
| |
| case X86::VAARG_64: |
| return EmitVAARG64WithCustomInserter(MI, BB); |
| |
| case X86::EH_SjLj_SetJmp32: |
| case X86::EH_SjLj_SetJmp64: |
| return emitEHSjLjSetJmp(MI, BB); |
| |
| case X86::EH_SjLj_LongJmp32: |
| case X86::EH_SjLj_LongJmp64: |
| return emitEHSjLjLongJmp(MI, BB); |
| |
| case X86::Int_eh_sjlj_setup_dispatch: |
| return EmitSjLjDispatchBlock(MI, BB); |
| |
| case TargetOpcode::STATEPOINT: |
| // As an implementation detail, STATEPOINT shares the STACKMAP format at |
| // this point in the process. We diverge later. |
| return emitPatchPoint(MI, BB); |
| |
| case TargetOpcode::STACKMAP: |
| case TargetOpcode::PATCHPOINT: |
| return emitPatchPoint(MI, BB); |
| |
| case TargetOpcode::PATCHABLE_EVENT_CALL: |
| return emitXRayCustomEvent(MI, BB); |
| |
| case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: |
| return emitXRayTypedEvent(MI, BB); |
| |
| case X86::LCMPXCHG8B: { |
| const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| // In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B |
| // requires a memory operand. If it happens that current architecture is |
| // i686 and for current function we need a base pointer |
| // - which is ESI for i686 - register allocator would not be able to |
| // allocate registers for an address in form of X(%reg, %reg, Y) |
| // - there never would be enough unreserved registers during regalloc |
| // (without the need for base ptr the only option would be X(%edi, %esi, Y). |
| // We are giving a hand to register allocator by precomputing the address in |
| // a new vreg using LEA. |
| |
| // If it is not i686 or there is no base pointer - nothing to do here. |
| if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF)) |
| return BB; |
| |
| // Even though this code does not necessarily needs the base pointer to |
| // be ESI, we check for that. The reason: if this assert fails, there are |
| // some changes happened in the compiler base pointer handling, which most |
| // probably have to be addressed somehow here. |
| assert(TRI->getBaseRegister() == X86::ESI && |
| "LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a " |
| "base pointer in mind"); |
| |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MVT SPTy = getPointerTy(MF->getDataLayout()); |
| const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); |
| unsigned computedAddrVReg = MRI.createVirtualRegister(AddrRegClass); |
| |
| X86AddressMode AM = getAddressFromInstr(&MI, 0); |
| // Regalloc does not need any help when the memory operand of CMPXCHG8B |
| // does not use index register. |
| if (AM.IndexReg == X86::NoRegister) |
| return BB; |
| |
| // After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its |
| // four operand definitions that are E[ABCD] registers. We skip them and |
| // then insert the LEA. |
| MachineBasicBlock::iterator MBBI(MI); |
| while (MBBI->definesRegister(X86::EAX) || MBBI->definesRegister(X86::EBX) || |
| MBBI->definesRegister(X86::ECX) || MBBI->definesRegister(X86::EDX)) |
| --MBBI; |
| addFullAddress( |
| BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM); |
| |
| setDirectAddressInInstr(&MI, 0, computedAddrVReg); |
| |
| return BB; |
| } |
| case X86::LCMPXCHG16B: |
| return BB; |
| case X86::LCMPXCHG8B_SAVE_EBX: |
| case X86::LCMPXCHG16B_SAVE_RBX: { |
| unsigned BasePtr = |
| MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX; |
| if (!BB->isLiveIn(BasePtr)) |
| BB->addLiveIn(BasePtr); |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| bool |
| X86TargetLowering::targetShrinkDemandedConstant(SDValue Op, |
| const APInt &Demanded, |
| TargetLoweringOpt &TLO) const { |
| // Only optimize Ands to prevent shrinking a constant that could be |
| // matched by movzx. |
| if (Op.getOpcode() != ISD::AND) |
| return false; |
| |
| EVT VT = Op.getValueType(); |
| |
| // Ignore vectors. |
| if (VT.isVector()) |
| return false; |
| |
| unsigned Size = VT.getSizeInBits(); |
| |
| // Make sure the RHS really is a constant. |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!C) |
| return false; |
| |
| const APInt &Mask = C->getAPIntValue(); |
| |
| // Clear all non-demanded bits initially. |
| APInt ShrunkMask = Mask & Demanded; |
| |
| // Find the width of the shrunk mask. |
| unsigned Width = ShrunkMask.getActiveBits(); |
| |
| // If the mask is all 0s there's nothing to do here. |
| if (Width == 0) |
| return false; |
| |
| // Find the next power of 2 width, rounding up to a byte. |
| Width = PowerOf2Ceil(std::max(Width, 8U)); |
| // Truncate the width to size to handle illegal types. |
| Width = std::min(Width, Size); |
| |
| // Calculate a possible zero extend mask for this constant. |
| APInt ZeroExtendMask = APInt::getLowBitsSet(Size, Width); |
| |
| // If we aren't changing the mask, just return true to keep it and prevent |
| // the caller from optimizing. |
| if (ZeroExtendMask == Mask) |
| return true; |
| |
| // Make sure the new mask can be represented by a combination of mask bits |
| // and non-demanded bits. |
| if (!ZeroExtendMask.isSubsetOf(Mask | ~Demanded)) |
| return false; |
| |
| // Replace the constant with the zero extend mask. |
| SDLoc DL(Op); |
| SDValue NewC = TLO.DAG.getConstant(ZeroExtendMask, DL, VT); |
| SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); |
| return TLO.CombineTo(Op, NewOp); |
| } |
| |
| void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned BitWidth = Known.getBitWidth(); |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| Known.resetAll(); |
| switch (Opc) { |
| default: break; |
| case X86ISD::SETCC: |
| Known.Zero.setBitsFrom(1); |
| break; |
| case X86ISD::MOVMSK: { |
| unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements(); |
| Known.Zero.setBitsFrom(NumLoBits); |
| break; |
| } |
| case X86ISD::PEXTRB: |
| case X86ISD::PEXTRW: { |
| SDValue Src = Op.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| APInt DemandedElt = APInt::getOneBitSet(SrcVT.getVectorNumElements(), |
| Op.getConstantOperandVal(1)); |
| DAG.computeKnownBits(Src, Known, DemandedElt, Depth + 1); |
| Known = Known.zextOrTrunc(BitWidth); |
| Known.Zero.setBitsFrom(SrcVT.getScalarSizeInBits()); |
| break; |
| } |
| case X86ISD::VSHLI: |
| case X86ISD::VSRLI: { |
| if (auto *ShiftImm = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| if (ShiftImm->getAPIntValue().uge(VT.getScalarSizeInBits())) { |
| Known.setAllZero(); |
| break; |
| } |
| |
| DAG.computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); |
| unsigned ShAmt = ShiftImm->getZExtValue(); |
| if (Opc == X86ISD::VSHLI) { |
| Known.Zero <<= ShAmt; |
| Known.One <<= ShAmt; |
| // Low bits are known zero. |
| Known.Zero.setLowBits(ShAmt); |
| } else { |
| Known.Zero.lshrInPlace(ShAmt); |
| Known.One.lshrInPlace(ShAmt); |
| // High bits are known zero. |
| Known.Zero.setHighBits(ShAmt); |
| } |
| } |
| break; |
| } |
| case X86ISD::PACKUS: { |
| // PACKUS is just a truncation if the upper half is zero. |
| // TODO: Add DemandedElts support. |
| KnownBits Known2; |
| DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1); |
| DAG.computeKnownBits(Op.getOperand(1), Known2, Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| if (Known.countMinLeadingZeros() < BitWidth) |
| Known.resetAll(); |
| Known = Known.trunc(BitWidth); |
| break; |
| } |
| case X86ISD::VZEXT: { |
| // TODO: Add DemandedElts support. |
| SDValue N0 = Op.getOperand(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| EVT SrcVT = N0.getValueType(); |
| unsigned InNumElts = SrcVT.getVectorNumElements(); |
| unsigned InBitWidth = SrcVT.getScalarSizeInBits(); |
| assert(InNumElts >= NumElts && "Illegal VZEXT input"); |
| |
| Known = KnownBits(InBitWidth); |
| APInt DemandedSrcElts = APInt::getLowBitsSet(InNumElts, NumElts); |
| DAG.computeKnownBits(N0, Known, DemandedSrcElts, Depth + 1); |
| Known = Known.zext(BitWidth); |
| Known.Zero.setBitsFrom(InBitWidth); |
| break; |
| } |
| case X86ISD::CMOV: { |
| DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1); |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| KnownBits Known2; |
| DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1); |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| } |
| case X86ISD::UDIVREM8_ZEXT_HREG: |
| // TODO: Support more than just the zero extended bits? |
| if (Op.getResNo() != 1) |
| break; |
| // The remainder is zero extended. |
| Known.Zero.setBitsFrom(8); |
| break; |
| } |
| |
| // Handle target shuffles. |
| // TODO - use resolveTargetShuffleInputs once we can limit recursive depth. |
| if (isTargetShuffle(Opc)) { |
| bool IsUnary; |
| SmallVector<int, 64> Mask; |
| SmallVector<SDValue, 2> Ops; |
| if (getTargetShuffleMask(Op.getNode(), VT.getSimpleVT(), true, Ops, Mask, |
| IsUnary)) { |
| unsigned NumOps = Ops.size(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (Mask.size() == NumElts) { |
| SmallVector<APInt, 2> DemandedOps(NumOps, APInt(NumElts, 0)); |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| int M = Mask[i]; |
| if (M == SM_SentinelUndef) { |
| // For UNDEF elements, we don't know anything about the common state |
| // of the shuffle result. |
| Known.resetAll(); |
| break; |
| } else if (M == SM_SentinelZero) { |
| Known.One.clearAllBits(); |
| continue; |
| } |
| assert(0 <= M && (unsigned)M < (NumOps * NumElts) && |
| "Shuffle index out of range"); |
| |
| unsigned OpIdx = (unsigned)M / NumElts; |
| unsigned EltIdx = (unsigned)M % NumElts; |
| if (Ops[OpIdx].getValueType() != VT) { |
| // TODO - handle target shuffle ops with different value types. |
| Known.resetAll(); |
| break; |
| } |
| DemandedOps[OpIdx].setBit(EltIdx); |
| } |
| // Known bits are the values that are shared by every demanded element. |
| for (unsigned i = 0; i != NumOps && !Known.isUnknown(); ++i) { |
| if (!DemandedOps[i]) |
| continue; |
| KnownBits Known2; |
| DAG.computeKnownBits(Ops[i], Known2, DemandedOps[i], Depth + 1); |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| } |
| } |
| } |
| } |
| |
| unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode( |
| SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned VTBits = Op.getScalarValueSizeInBits(); |
| unsigned Opcode = Op.getOpcode(); |
| switch (Opcode) { |
| case X86ISD::SETCC_CARRY: |
| // SETCC_CARRY sets the dest to ~0 for true or 0 for false. |
| return VTBits; |
| |
| case X86ISD::VSEXT: { |
| // TODO: Add DemandedElts support. |
| SDValue Src = Op.getOperand(0); |
| unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1); |
| Tmp += VTBits - Src.getScalarValueSizeInBits(); |
| return Tmp; |
| } |
| |
| case X86ISD::VTRUNC: { |
| // TODO: Add DemandedElts support. |
| SDValue Src = Op.getOperand(0); |
| unsigned NumSrcBits = Src.getScalarValueSizeInBits(); |
| assert(VTBits < NumSrcBits && "Illegal truncation input type"); |
| unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1); |
| if (Tmp > (NumSrcBits - VTBits)) |
| return Tmp - (NumSrcBits - VTBits); |
| return 1; |
| } |
| |
| case X86ISD::PACKSS: { |
| // PACKSS is just a truncation if the sign bits extend to the packed size. |
| // TODO: Add DemandedElts support. |
| unsigned SrcBits = Op.getOperand(0).getScalarValueSizeInBits(); |
| unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); |
| unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth + 1); |
| unsigned Tmp = std::min(Tmp0, Tmp1); |
| if (Tmp > (SrcBits - VTBits)) |
| return Tmp - (SrcBits - VTBits); |
| return 1; |
| } |
| |
| case X86ISD::VSHLI: { |
| SDValue Src = Op.getOperand(0); |
| APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); |
| if (ShiftVal.uge(VTBits)) |
| return VTBits; // Shifted all bits out --> zero. |
| unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1); |
| if (ShiftVal.uge(Tmp)) |
| return 1; // Shifted all sign bits out --> unknown. |
| return Tmp - ShiftVal.getZExtValue(); |
| } |
| |
| case X86ISD::VSRAI: { |
| SDValue Src = Op.getOperand(0); |
| APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); |
| if (ShiftVal.uge(VTBits - 1)) |
| return VTBits; // Sign splat. |
| unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1); |
| ShiftVal += Tmp; |
| return ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); |
| } |
| |
| case X86ISD::PCMPGT: |
| case X86ISD::PCMPEQ: |
| case X86ISD::CMPP: |
| case X86ISD::VPCOM: |
| case X86ISD::VPCOMU: |
| // Vector compares return zero/all-bits result values. |
| return VTBits; |
| |
| case X86ISD::CMOV: { |
| unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp0 == 1) return 1; // Early out. |
| unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| return std::min(Tmp0, Tmp1); |
| } |
| case X86ISD::SDIVREM8_SEXT_HREG: |
| // TODO: Support more than just the sign extended bits? |
| if (Op.getResNo() != 1) |
| break; |
| // The remainder is sign extended. |
| return VTBits - 7; |
| } |
| |
| // Fallback case. |
| return 1; |
| } |
| |
| SDValue X86TargetLowering::unwrapAddress(SDValue N) const { |
| if (N->getOpcode() == X86ISD::Wrapper || N->getOpcode() == X86ISD::WrapperRIP) |
| return N->getOperand(0); |
| return N; |
| } |
| |
| /// Returns true (and the GlobalValue and the offset) if the node is a |
| /// GlobalAddress + offset. |
| bool X86TargetLowering::isGAPlusOffset(SDNode *N, |
| const GlobalValue* &GA, |
| int64_t &Offset) const { |
| if (N->getOpcode() == X86ISD::Wrapper) { |
| if (isa<GlobalAddressSDNode>(N->getOperand(0))) { |
| GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); |
| Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); |
| return true; |
| } |
| } |
| return TargetLowering::isGAPlusOffset(N, GA, Offset); |
| } |
| |
| // Attempt to match a combined shuffle mask against supported unary shuffle |
| // instructions. |
| // TODO: Investigate sharing more of this with shuffle lowering. |
| static bool matchUnaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, |
| bool AllowFloatDomain, bool AllowIntDomain, |
| SDValue &V1, const SDLoc &DL, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| unsigned &Shuffle, MVT &SrcVT, MVT &DstVT) { |
| unsigned NumMaskElts = Mask.size(); |
| unsigned MaskEltSize = MaskVT.getScalarSizeInBits(); |
| |
| // Match against a VZEXT_MOVL vXi32 zero-extending instruction. |
| if (MaskEltSize == 32 && isUndefOrEqual(Mask[0], 0) && |
| isUndefOrZero(Mask[1]) && isUndefInRange(Mask, 2, NumMaskElts - 2)) { |
| Shuffle = X86ISD::VZEXT_MOVL; |
| SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT; |
| return true; |
| } |
| |
| // Match against a ZERO_EXTEND_VECTOR_INREG/VZEXT instruction. |
| // TODO: Add 512-bit vector support (split AVX512F and AVX512BW). |
| if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE41()) || |
| (MaskVT.is256BitVector() && Subtarget.hasInt256()))) { |
| unsigned MaxScale = 64 / MaskEltSize; |
| for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) { |
| bool Match = true; |
| unsigned NumDstElts = NumMaskElts / Scale; |
| for (unsigned i = 0; i != NumDstElts && Match; ++i) { |
| Match &= isUndefOrEqual(Mask[i * Scale], (int)i); |
| Match &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1); |
| } |
| if (Match) { |
| unsigned SrcSize = std::max(128u, NumDstElts * MaskEltSize); |
| MVT ScalarTy = MaskVT.isInteger() ? MaskVT.getScalarType() : |
| MVT::getIntegerVT(MaskEltSize); |
| SrcVT = MVT::getVectorVT(ScalarTy, SrcSize / MaskEltSize); |
| |
| if (SrcVT.getSizeInBits() != MaskVT.getSizeInBits()) { |
| V1 = extractSubVector(V1, 0, DAG, DL, SrcSize); |
| Shuffle = unsigned(X86ISD::VZEXT); |
| } else |
| Shuffle = unsigned(ISD::ZERO_EXTEND_VECTOR_INREG); |
| |
| DstVT = MVT::getIntegerVT(Scale * MaskEltSize); |
| DstVT = MVT::getVectorVT(DstVT, NumDstElts); |
| return true; |
| } |
| } |
| } |
| |
| // Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS). |
| if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) && |
| isUndefOrEqual(Mask[0], 0) && |
| isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) { |
| Shuffle = X86ISD::VZEXT_MOVL; |
| SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT; |
| return true; |
| } |
| |
| // Check if we have SSE3 which will let us use MOVDDUP etc. The |
| // instructions are no slower than UNPCKLPD but has the option to |
| // fold the input operand into even an unaligned memory load. |
| if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && AllowFloatDomain) { |
| if (!Subtarget.hasAVX2() && isTargetShuffleEquivalent(Mask, {0, 0})) { |
| Shuffle = X86ISD::MOVDDUP; |
| SrcVT = DstVT = MVT::v2f64; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) { |
| Shuffle = X86ISD::MOVSLDUP; |
| SrcVT = DstVT = MVT::v4f32; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) { |
| Shuffle = X86ISD::MOVSHDUP; |
| SrcVT = DstVT = MVT::v4f32; |
| return true; |
| } |
| } |
| |
| if (MaskVT.is256BitVector() && AllowFloatDomain) { |
| assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles"); |
| if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) { |
| Shuffle = X86ISD::MOVDDUP; |
| SrcVT = DstVT = MVT::v4f64; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) { |
| Shuffle = X86ISD::MOVSLDUP; |
| SrcVT = DstVT = MVT::v8f32; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) { |
| Shuffle = X86ISD::MOVSHDUP; |
| SrcVT = DstVT = MVT::v8f32; |
| return true; |
| } |
| } |
| |
| if (MaskVT.is512BitVector() && AllowFloatDomain) { |
| assert(Subtarget.hasAVX512() && |
| "AVX512 required for 512-bit vector shuffles"); |
| if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) { |
| Shuffle = X86ISD::MOVDDUP; |
| SrcVT = DstVT = MVT::v8f64; |
| return true; |
| } |
| if (isTargetShuffleEquivalent( |
| Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) { |
| Shuffle = X86ISD::MOVSLDUP; |
| SrcVT = DstVT = MVT::v16f32; |
| return true; |
| } |
| if (isTargetShuffleEquivalent( |
| Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) { |
| Shuffle = X86ISD::MOVSHDUP; |
| SrcVT = DstVT = MVT::v16f32; |
| return true; |
| } |
| } |
| |
| // Attempt to match against broadcast-from-vector. |
| if (Subtarget.hasAVX2()) { |
| SmallVector<int, 64> BroadcastMask(NumMaskElts, 0); |
| if (isTargetShuffleEquivalent(Mask, BroadcastMask)) { |
| SrcVT = DstVT = MaskVT; |
| Shuffle = X86ISD::VBROADCAST; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Attempt to match a combined shuffle mask against supported unary immediate |
| // permute instructions. |
| // TODO: Investigate sharing more of this with shuffle lowering. |
| static bool matchUnaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, |
| const APInt &Zeroable, |
| bool AllowFloatDomain, |
| bool AllowIntDomain, |
| const X86Subtarget &Subtarget, |
| unsigned &Shuffle, MVT &ShuffleVT, |
| unsigned &PermuteImm) { |
| unsigned NumMaskElts = Mask.size(); |
| unsigned InputSizeInBits = MaskVT.getSizeInBits(); |
| unsigned MaskScalarSizeInBits = InputSizeInBits / NumMaskElts; |
| MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits); |
| |
| bool ContainsZeros = |
| llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; }); |
| |
| // Handle VPERMI/VPERMILPD vXi64/vXi64 patterns. |
| if (!ContainsZeros && MaskScalarSizeInBits == 64) { |
| // Check for lane crossing permutes. |
| if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) { |
| // PERMPD/PERMQ permutes within a 256-bit vector (AVX2+). |
| if (Subtarget.hasAVX2() && MaskVT.is256BitVector()) { |
| Shuffle = X86ISD::VPERMI; |
| ShuffleVT = (AllowFloatDomain ? MVT::v4f64 : MVT::v4i64); |
| PermuteImm = getV4X86ShuffleImm(Mask); |
| return true; |
| } |
| if (Subtarget.hasAVX512() && MaskVT.is512BitVector()) { |
| SmallVector<int, 4> RepeatedMask; |
| if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) { |
| Shuffle = X86ISD::VPERMI; |
| ShuffleVT = (AllowFloatDomain ? MVT::v8f64 : MVT::v8i64); |
| PermuteImm = getV4X86ShuffleImm(RepeatedMask); |
| return true; |
| } |
| } |
| } else if (AllowFloatDomain && Subtarget.hasAVX()) { |
| // VPERMILPD can permute with a non-repeating shuffle. |
| Shuffle = X86ISD::VPERMILPI; |
| ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size()); |
| PermuteImm = 0; |
| for (int i = 0, e = Mask.size(); i != e; ++i) { |
| int M = Mask[i]; |
| if (M == SM_SentinelUndef) |
| continue; |
| assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index"); |
| PermuteImm |= (M & 1) << i; |
| } |
| return true; |
| } |
| } |
| |
| // Handle PSHUFD/VPERMILPI vXi32/vXf32 repeated patterns. |
| // AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we |
| // had to use 2-input SHUFPD/SHUFPS shuffles (not handled here). |
| if ((MaskScalarSizeInBits == 64 || MaskScalarSizeInBits == 32) && |
| !ContainsZeros && (AllowIntDomain || Subtarget.hasAVX())) { |
| SmallVector<int, 4> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) { |
| // Narrow the repeated mask to create 32-bit element permutes. |
| SmallVector<int, 4> WordMask = RepeatedMask; |
| if (MaskScalarSizeInBits == 64) |
| scaleShuffleMask<int>(2, RepeatedMask, WordMask); |
| |
| Shuffle = (AllowIntDomain ? X86ISD::PSHUFD : X86ISD::VPERMILPI); |
| ShuffleVT = (AllowIntDomain ? MVT::i32 : MVT::f32); |
| ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32); |
| PermuteImm = getV4X86ShuffleImm(WordMask); |
| return true; |
| } |
| } |
| |
| // Handle PSHUFLW/PSHUFHW vXi16 repeated patterns. |
| if (!ContainsZeros && AllowIntDomain && MaskScalarSizeInBits == 16) { |
| SmallVector<int, 4> RepeatedMask; |
| if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) { |
| ArrayRef<int> LoMask(Mask.data() + 0, 4); |
| ArrayRef<int> HiMask(Mask.data() + 4, 4); |
| |
| // PSHUFLW: permute lower 4 elements only. |
| if (isUndefOrInRange(LoMask, 0, 4) && |
| isSequentialOrUndefInRange(HiMask, 0, 4, 4)) { |
| Shuffle = X86ISD::PSHUFLW; |
| ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16); |
| PermuteImm = getV4X86ShuffleImm(LoMask); |
| return true; |
| } |
| |
| // PSHUFHW: permute upper 4 elements only. |
| if (isUndefOrInRange(HiMask, 4, 8) && |
| isSequentialOrUndefInRange(LoMask, 0, 4, 0)) { |
| // Offset the HiMask so that we can create the shuffle immediate. |
| int OffsetHiMask[4]; |
| for (int i = 0; i != 4; ++i) |
| OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4); |
| |
| Shuffle = X86ISD::PSHUFHW; |
| ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16); |
| PermuteImm = getV4X86ShuffleImm(OffsetHiMask); |
| return true; |
| } |
| } |
| } |
| |
| // Attempt to match against byte/bit shifts. |
| // FIXME: Add 512-bit support. |
| if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) || |
| (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) { |
| int ShiftAmt = matchVectorShuffleAsShift(ShuffleVT, Shuffle, |
| MaskScalarSizeInBits, Mask, |
| 0, Zeroable, Subtarget); |
| if (0 < ShiftAmt) { |
| PermuteImm = (unsigned)ShiftAmt; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Attempt to match a combined unary shuffle mask against supported binary |
| // shuffle instructions. |
| // TODO: Investigate sharing more of this with shuffle lowering. |
| static bool matchBinaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, |
| bool AllowFloatDomain, bool AllowIntDomain, |
| SDValue &V1, SDValue &V2, const SDLoc &DL, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| unsigned &Shuffle, MVT &SrcVT, MVT &DstVT, |
| bool IsUnary) { |
| unsigned EltSizeInBits = MaskVT.getScalarSizeInBits(); |
| |
| if (MaskVT.is128BitVector()) { |
| if (isTargetShuffleEquivalent(Mask, {0, 0}) && AllowFloatDomain) { |
| V2 = V1; |
| V1 = (SM_SentinelUndef == Mask[0] ? DAG.getUNDEF(MVT::v4f32) : V1); |
| Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKL : X86ISD::MOVLHPS; |
| SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {1, 1}) && AllowFloatDomain) { |
| V2 = V1; |
| Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKH : X86ISD::MOVHLPS; |
| SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() && |
| (AllowFloatDomain || !Subtarget.hasSSE41())) { |
| std::swap(V1, V2); |
| Shuffle = X86ISD::MOVSD; |
| SrcVT = DstVT = MVT::v2f64; |
| return true; |
| } |
| if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) && |
| (AllowFloatDomain || !Subtarget.hasSSE41())) { |
| Shuffle = X86ISD::MOVSS; |
| SrcVT = DstVT = MVT::v4f32; |
| return true; |
| } |
| } |
| |
| // Attempt to match against either a unary or binary PACKSS/PACKUS shuffle. |
| // TODO add support for 256/512-bit types. |
| if ((MaskVT == MVT::v8i16 || MaskVT == MVT::v16i8) && Subtarget.hasSSE2()) { |
| if (matchVectorShuffleWithPACK(MaskVT, SrcVT, V1, V2, Shuffle, Mask, DAG, |
| Subtarget)) { |
| DstVT = MaskVT; |
| return true; |
| } |
| } |
| |
| // Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle. |
| if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) || |
| (MaskVT.is128BitVector() && Subtarget.hasSSE2()) || |
| (MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) || |
| (MaskVT.is256BitVector() && Subtarget.hasAVX2()) || |
| (MaskVT.is512BitVector() && Subtarget.hasAVX512())) { |
| if (matchVectorShuffleWithUNPCK(MaskVT, V1, V2, Shuffle, IsUnary, Mask, DL, |
| DAG, Subtarget)) { |
| SrcVT = DstVT = MaskVT; |
| if (MaskVT.is256BitVector() && !Subtarget.hasAVX2()) |
| SrcVT = DstVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool matchBinaryPermuteVectorShuffle( |
| MVT MaskVT, ArrayRef<int> Mask, const APInt &Zeroable, |
| bool AllowFloatDomain, bool AllowIntDomain, SDValue &V1, SDValue &V2, |
| const SDLoc &DL, SelectionDAG &DAG, const X86Subtarget &Subtarget, |
| unsigned &Shuffle, MVT &ShuffleVT, unsigned &PermuteImm) { |
| unsigned NumMaskElts = Mask.size(); |
| unsigned EltSizeInBits = MaskVT.getScalarSizeInBits(); |
| |
| // Attempt to match against PALIGNR byte rotate. |
| if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) || |
| (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) { |
| int ByteRotation = matchVectorShuffleAsByteRotate(MaskVT, V1, V2, Mask); |
| if (0 < ByteRotation) { |
| Shuffle = X86ISD::PALIGNR; |
| ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8); |
| PermuteImm = ByteRotation; |
| return true; |
| } |
| } |
| |
| // Attempt to combine to X86ISD::BLENDI. |
| if ((NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) || |
| (Subtarget.hasAVX() && MaskVT.is256BitVector()))) || |
| (MaskVT == MVT::v16i16 && Subtarget.hasAVX2())) { |
| uint64_t BlendMask = 0; |
| bool ForceV1Zero = false, ForceV2Zero = false; |
| SmallVector<int, 8> TargetMask(Mask.begin(), Mask.end()); |
| if (matchVectorShuffleAsBlend(V1, V2, TargetMask, ForceV1Zero, ForceV2Zero, |
| BlendMask)) { |
| if (MaskVT == MVT::v16i16) { |
| // We can only use v16i16 PBLENDW if the lanes are repeated. |
| SmallVector<int, 8> RepeatedMask; |
| if (isRepeatedTargetShuffleMask(128, MaskVT, TargetMask, |
| RepeatedMask)) { |
| assert(RepeatedMask.size() == 8 && |
| "Repeated mask size doesn't match!"); |
| PermuteImm = 0; |
| for (int i = 0; i < 8; ++i) |
| if (RepeatedMask[i] >= 8) |
| PermuteImm |= 1 << i; |
| V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1; |
| V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2; |
| Shuffle = X86ISD::BLENDI; |
| ShuffleVT = MaskVT; |
| return true; |
| } |
| } else { |
| // Determine a type compatible with X86ISD::BLENDI. |
| ShuffleVT = MaskVT; |
| if (Subtarget.hasAVX2()) { |
| if (ShuffleVT == MVT::v4i64) |
| ShuffleVT = MVT::v8i32; |
| else if (ShuffleVT == MVT::v2i64) |
| ShuffleVT = MVT::v4i32; |
| } else { |
| if (ShuffleVT == MVT::v2i64 || ShuffleVT == MVT::v4i32) |
| ShuffleVT = MVT::v8i16; |
| else if (ShuffleVT == MVT::v4i64) |
| ShuffleVT = MVT::v4f64; |
| else if (ShuffleVT == MVT::v8i32) |
| ShuffleVT = MVT::v8f32; |
| } |
| |
| if (!ShuffleVT.isFloatingPoint()) { |
| int Scale = EltSizeInBits / ShuffleVT.getScalarSizeInBits(); |
| BlendMask = |
| scaleVectorShuffleBlendMask(BlendMask, NumMaskElts, Scale); |
| ShuffleVT = MVT::getIntegerVT(EltSizeInBits / Scale); |
| ShuffleVT = MVT::getVectorVT(ShuffleVT, NumMaskElts * Scale); |
| } |
| |
| V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1; |
| V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2; |
| PermuteImm = (unsigned)BlendMask; |
| Shuffle = X86ISD::BLENDI; |
| return true; |
| } |
| } |
| } |
| |
| // Attempt to combine to INSERTPS. |
| if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() && |
| MaskVT.is128BitVector()) { |
| if (Zeroable.getBoolValue() && |
| matchVectorShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) { |
| Shuffle = X86ISD::INSERTPS; |
| ShuffleVT = MVT::v4f32; |
| return true; |
| } |
| } |
| |
| // Attempt to combine to SHUFPD. |
| if (AllowFloatDomain && EltSizeInBits == 64 && |
| ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) || |
| (MaskVT.is256BitVector() && Subtarget.hasAVX()) || |
| (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) { |
| if (matchVectorShuffleWithSHUFPD(MaskVT, V1, V2, PermuteImm, Mask)) { |
| Shuffle = X86ISD::SHUFP; |
| ShuffleVT = MVT::getVectorVT(MVT::f64, MaskVT.getSizeInBits() / 64); |
| return true; |
| } |
| } |
| |
| // Attempt to combine to SHUFPS. |
| if (AllowFloatDomain && EltSizeInBits == 32 && |
| ((MaskVT.is128BitVector() && Subtarget.hasSSE1()) || |
| (MaskVT.is256BitVector() && Subtarget.hasAVX()) || |
| (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) { |
| SmallVector<int, 4> RepeatedMask; |
| if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) { |
| // Match each half of the repeated mask, to determine if its just |
| // referencing one of the vectors, is zeroable or entirely undef. |
| auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) { |
| int M0 = RepeatedMask[Offset]; |
| int M1 = RepeatedMask[Offset + 1]; |
| |
| if (isUndefInRange(RepeatedMask, Offset, 2)) { |
| return DAG.getUNDEF(MaskVT); |
| } else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) { |
| S0 = (SM_SentinelUndef == M0 ? -1 : 0); |
| S1 = (SM_SentinelUndef == M1 ? -1 : 1); |
| return getZeroVector(MaskVT, Subtarget, DAG, DL); |
| } else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) { |
| S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3); |
| S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3); |
| return V1; |
| } else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) { |
| S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3); |
| S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3); |
| return V2; |
| } |
| |
| return SDValue(); |
| }; |
| |
| int ShufMask[4] = {-1, -1, -1, -1}; |
| SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]); |
| SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]); |
| |
| if (Lo && Hi) { |
| V1 = Lo; |
| V2 = Hi; |
| Shuffle = X86ISD::SHUFP; |
| ShuffleVT = MVT::getVectorVT(MVT::f32, MaskVT.getSizeInBits() / 32); |
| PermuteImm = getV4X86ShuffleImm(ShufMask); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Combine an arbitrary chain of shuffles into a single instruction if |
| /// possible. |
| /// |
| /// This is the leaf of the recursive combine below. When we have found some |
| /// chain of single-use x86 shuffle instructions and accumulated the combined |
| /// shuffle mask represented by them, this will try to pattern match that mask |
| /// into either a single instruction if there is a special purpose instruction |
| /// for this operation, or into a PSHUFB instruction which is a fully general |
| /// instruction but should only be used to replace chains over a certain depth. |
| static SDValue combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root, |
| ArrayRef<int> BaseMask, int Depth, |
| bool HasVariableMask, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!"); |
| assert((Inputs.size() == 1 || Inputs.size() == 2) && |
| "Unexpected number of shuffle inputs!"); |
| |
| // Find the inputs that enter the chain. Note that multiple uses are OK |
| // here, we're not going to remove the operands we find. |
| bool UnaryShuffle = (Inputs.size() == 1); |
| SDValue V1 = peekThroughBitcasts(Inputs[0]); |
| SDValue V2 = (UnaryShuffle ? DAG.getUNDEF(V1.getValueType()) |
| : peekThroughBitcasts(Inputs[1])); |
| |
| MVT VT1 = V1.getSimpleValueType(); |
| MVT VT2 = V2.getSimpleValueType(); |
| MVT RootVT = Root.getSimpleValueType(); |
| assert(VT1.getSizeInBits() == RootVT.getSizeInBits() && |
| VT2.getSizeInBits() == RootVT.getSizeInBits() && |
| "Vector size mismatch"); |
| |
| SDLoc DL(Root); |
| SDValue Res; |
| |
| unsigned NumBaseMaskElts = BaseMask.size(); |
| if (NumBaseMaskElts == 1) { |
| assert(BaseMask[0] == 0 && "Invalid shuffle index found!"); |
| return DAG.getBitcast(RootVT, V1); |
| } |
| |
| unsigned RootSizeInBits = RootVT.getSizeInBits(); |
| unsigned NumRootElts = RootVT.getVectorNumElements(); |
| unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts; |
| bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() || |
| (RootVT.isFloatingPoint() && Depth >= 2) || |
| (RootVT.is256BitVector() && !Subtarget.hasAVX2()); |
| |
| // Don't combine if we are a AVX512/EVEX target and the mask element size |
| // is different from the root element size - this would prevent writemasks |
| // from being reused. |
| // TODO - this currently prevents all lane shuffles from occurring. |
| // TODO - check for writemasks usage instead of always preventing combining. |
| // TODO - attempt to narrow Mask back to writemask size. |
| bool IsEVEXShuffle = |
| RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128); |
| |
| // TODO - handle 128/256-bit lane shuffles of 512-bit vectors. |
| |
| // Handle 128-bit lane shuffles of 256-bit vectors. |
| // If we have AVX2, prefer to use VPERMQ/VPERMPD for unary shuffles unless |
| // we need to use the zeroing feature. |
| // TODO - this should support binary shuffles. |
| if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 && |
| !(Subtarget.hasAVX2() && BaseMask[0] >= -1 && BaseMask[1] >= -1) && |
| !isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) { |
| if (Depth == 1 && Root.getOpcode() == X86ISD::VPERM2X128) |
| return SDValue(); // Nothing to do! |
| MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64); |
| unsigned PermMask = 0; |
| PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0); |
| PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4); |
| |
| Res = DAG.getBitcast(ShuffleVT, V1); |
| Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res, |
| DAG.getUNDEF(ShuffleVT), |
| DAG.getConstant(PermMask, DL, MVT::i8)); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // For masks that have been widened to 128-bit elements or more, |
| // narrow back down to 64-bit elements. |
| SmallVector<int, 64> Mask; |
| if (BaseMaskEltSizeInBits > 64) { |
| assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size"); |
| int MaskScale = BaseMaskEltSizeInBits / 64; |
| scaleShuffleMask<int>(MaskScale, BaseMask, Mask); |
| } else { |
| Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end()); |
| } |
| |
| unsigned NumMaskElts = Mask.size(); |
| unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts; |
| |
| // Determine the effective mask value type. |
| FloatDomain &= (32 <= MaskEltSizeInBits); |
| MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits) |
| : MVT::getIntegerVT(MaskEltSizeInBits); |
| MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts); |
| |
| // Only allow legal mask types. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) |
| return SDValue(); |
| |
| // Attempt to match the mask against known shuffle patterns. |
| MVT ShuffleSrcVT, ShuffleVT; |
| unsigned Shuffle, PermuteImm; |
| |
| // Which shuffle domains are permitted? |
| // Permit domain crossing at higher combine depths. |
| bool AllowFloatDomain = FloatDomain || (Depth > 3); |
| bool AllowIntDomain = (!FloatDomain || (Depth > 3)) && Subtarget.hasSSE2() && |
| (!MaskVT.is256BitVector() || Subtarget.hasAVX2()); |
| |
| // Determine zeroable mask elements. |
| APInt Zeroable(NumMaskElts, 0); |
| for (unsigned i = 0; i != NumMaskElts; ++i) |
| if (isUndefOrZero(Mask[i])) |
| Zeroable.setBit(i); |
| |
| if (UnaryShuffle) { |
| // If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load |
| // directly if we don't shuffle the lower element and we shuffle the upper |
| // (zero) elements within themselves. |
| if (V1.getOpcode() == X86ISD::VZEXT_LOAD && |
| (V1.getScalarValueSizeInBits() % MaskEltSizeInBits) == 0) { |
| unsigned Scale = V1.getScalarValueSizeInBits() / MaskEltSizeInBits; |
| ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale); |
| if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) && |
| isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) { |
| return DAG.getBitcast(RootVT, V1); |
| } |
| } |
| |
| SDValue NewV1 = V1; // Save operand in case early exit happens. |
| if (matchUnaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, |
| NewV1, DL, DAG, Subtarget, Shuffle, |
| ShuffleSrcVT, ShuffleVT) && |
| (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { |
| if (Depth == 1 && Root.getOpcode() == Shuffle) |
| return SDValue(); // Nothing to do! |
| Res = DAG.getBitcast(ShuffleSrcVT, NewV1); |
| Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| if (matchUnaryPermuteVectorShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain, |
| AllowIntDomain, Subtarget, Shuffle, |
| ShuffleVT, PermuteImm) && |
| (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { |
| if (Depth == 1 && Root.getOpcode() == Shuffle) |
| return SDValue(); // Nothing to do! |
| Res = DAG.getBitcast(ShuffleVT, V1); |
| Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res, |
| DAG.getConstant(PermuteImm, DL, MVT::i8)); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| } |
| |
| SDValue NewV1 = V1; // Save operands in case early exit happens. |
| SDValue NewV2 = V2; |
| if (matchBinaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, |
| NewV1, NewV2, DL, DAG, Subtarget, Shuffle, |
| ShuffleSrcVT, ShuffleVT, UnaryShuffle) && |
| (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { |
| if (Depth == 1 && Root.getOpcode() == Shuffle) |
| return SDValue(); // Nothing to do! |
| NewV1 = DAG.getBitcast(ShuffleSrcVT, NewV1); |
| NewV2 = DAG.getBitcast(ShuffleSrcVT, NewV2); |
| Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| NewV1 = V1; // Save operands in case early exit happens. |
| NewV2 = V2; |
| if (matchBinaryPermuteVectorShuffle( |
| MaskVT, Mask, Zeroable, AllowFloatDomain, AllowIntDomain, NewV1, |
| NewV2, DL, DAG, Subtarget, Shuffle, ShuffleVT, PermuteImm) && |
| (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { |
| if (Depth == 1 && Root.getOpcode() == Shuffle) |
| return SDValue(); // Nothing to do! |
| NewV1 = DAG.getBitcast(ShuffleVT, NewV1); |
| NewV2 = DAG.getBitcast(ShuffleVT, NewV2); |
| Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2, |
| DAG.getConstant(PermuteImm, DL, MVT::i8)); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // Typically from here on, we need an integer version of MaskVT. |
| MVT IntMaskVT = MVT::getIntegerVT(MaskEltSizeInBits); |
| IntMaskVT = MVT::getVectorVT(IntMaskVT, NumMaskElts); |
| |
| // Annoyingly, SSE4A instructions don't map into the above match helpers. |
| if (Subtarget.hasSSE4A() && AllowIntDomain && RootSizeInBits == 128) { |
| uint64_t BitLen, BitIdx; |
| if (matchVectorShuffleAsEXTRQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx, |
| Zeroable)) { |
| if (Depth == 1 && Root.getOpcode() == X86ISD::EXTRQI) |
| return SDValue(); // Nothing to do! |
| V1 = DAG.getBitcast(IntMaskVT, V1); |
| Res = DAG.getNode(X86ISD::EXTRQI, DL, IntMaskVT, V1, |
| DAG.getConstant(BitLen, DL, MVT::i8), |
| DAG.getConstant(BitIdx, DL, MVT::i8)); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| if (matchVectorShuffleAsINSERTQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx)) { |
| if (Depth == 1 && Root.getOpcode() == X86ISD::INSERTQI) |
| return SDValue(); // Nothing to do! |
| V1 = DAG.getBitcast(IntMaskVT, V1); |
| V2 = DAG.getBitcast(IntMaskVT, V2); |
| Res = DAG.getNode(X86ISD::INSERTQI, DL, IntMaskVT, V1, V2, |
| DAG.getConstant(BitLen, DL, MVT::i8), |
| DAG.getConstant(BitIdx, DL, MVT::i8)); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| } |
| |
| // Don't try to re-form single instruction chains under any circumstances now |
| // that we've done encoding canonicalization for them. |
| if (Depth < 2) |
| return SDValue(); |
| |
| // Depth threshold above which we can efficiently use variable mask shuffles. |
| int VariableShuffleDepth = Subtarget.hasFastVariableShuffle() ? 2 : 3; |
| bool AllowVariableMask = (Depth >= VariableShuffleDepth) || HasVariableMask; |
| |
| bool MaskContainsZeros = |
| any_of(Mask, [](int M) { return M == SM_SentinelZero; }); |
| |
| if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) { |
| // If we have a single input lane-crossing shuffle then lower to VPERMV. |
| if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros && |
| ((Subtarget.hasAVX2() && |
| (MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) || |
| (Subtarget.hasAVX512() && |
| (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 || |
| MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) || |
| (Subtarget.hasBWI() && MaskVT == MVT::v32i16) || |
| (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) || |
| (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) || |
| (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) { |
| SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true); |
| Res = DAG.getBitcast(MaskVT, V1); |
| Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero |
| // vector as the second source. |
| if (UnaryShuffle && AllowVariableMask && |
| ((Subtarget.hasAVX512() && |
| (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 || |
| MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) || |
| (Subtarget.hasVLX() && |
| (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 || |
| MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) || |
| (Subtarget.hasBWI() && MaskVT == MVT::v32i16) || |
| (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) || |
| (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) || |
| (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) { |
| // Adjust shuffle mask - replace SM_SentinelZero with second source index. |
| for (unsigned i = 0; i != NumMaskElts; ++i) |
| if (Mask[i] == SM_SentinelZero) |
| Mask[i] = NumMaskElts + i; |
| |
| SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true); |
| Res = DAG.getBitcast(MaskVT, V1); |
| SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL); |
| Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // If we have a dual input lane-crossing shuffle then lower to VPERMV3. |
| if (AllowVariableMask && !MaskContainsZeros && |
| ((Subtarget.hasAVX512() && |
| (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 || |
| MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) || |
| (Subtarget.hasVLX() && |
| (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 || |
| MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) || |
| (Subtarget.hasBWI() && MaskVT == MVT::v32i16) || |
| (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) || |
| (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) || |
| (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) { |
| SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true); |
| V1 = DAG.getBitcast(MaskVT, V1); |
| V2 = DAG.getBitcast(MaskVT, V2); |
| Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| return SDValue(); |
| } |
| |
| // See if we can combine a single input shuffle with zeros to a bit-mask, |
| // which is much simpler than any shuffle. |
| if (UnaryShuffle && MaskContainsZeros && AllowVariableMask && |
| isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) && |
| DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) { |
| APInt Zero = APInt::getNullValue(MaskEltSizeInBits); |
| APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits); |
| APInt UndefElts(NumMaskElts, 0); |
| SmallVector<APInt, 64> EltBits(NumMaskElts, Zero); |
| for (unsigned i = 0; i != NumMaskElts; ++i) { |
| int M = Mask[i]; |
| if (M == SM_SentinelUndef) { |
| UndefElts.setBit(i); |
| continue; |
| } |
| if (M == SM_SentinelZero) |
| continue; |
| EltBits[i] = AllOnes; |
| } |
| SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL); |
| Res = DAG.getBitcast(MaskVT, V1); |
| unsigned AndOpcode = |
| FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND); |
| Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // If we have a single input shuffle with different shuffle patterns in the |
| // the 128-bit lanes use the variable mask to VPERMILPS. |
| // TODO Combine other mask types at higher depths. |
| if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros && |
| ((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) || |
| (MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) { |
| SmallVector<SDValue, 16> VPermIdx; |
| for (int M : Mask) { |
| SDValue Idx = |
| M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32); |
| VPermIdx.push_back(Idx); |
| } |
| SDValue VPermMask = DAG.getBuildVector(IntMaskVT, DL, VPermIdx); |
| Res = DAG.getBitcast(MaskVT, V1); |
| Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // With XOP, binary shuffles of 128/256-bit floating point vectors can combine |
| // to VPERMIL2PD/VPERMIL2PS. |
| if (AllowVariableMask && Subtarget.hasXOP() && |
| (MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 || |
| MaskVT == MVT::v8f32)) { |
| // VPERMIL2 Operation. |
| // Bits[3] - Match Bit. |
| // Bits[2:1] - (Per Lane) PD Shuffle Mask. |
| // Bits[2:0] - (Per Lane) PS Shuffle Mask. |
| unsigned NumLanes = MaskVT.getSizeInBits() / 128; |
| unsigned NumEltsPerLane = NumMaskElts / NumLanes; |
| SmallVector<int, 8> VPerm2Idx; |
| unsigned M2ZImm = 0; |
| for (int M : Mask) { |
| if (M == SM_SentinelUndef) { |
| VPerm2Idx.push_back(-1); |
| continue; |
| } |
| if (M == SM_SentinelZero) { |
| M2ZImm = 2; |
| VPerm2Idx.push_back(8); |
| continue; |
| } |
| int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane); |
| Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index); |
| VPerm2Idx.push_back(Index); |
| } |
| V1 = DAG.getBitcast(MaskVT, V1); |
| V2 = DAG.getBitcast(MaskVT, V2); |
| SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, IntMaskVT, DAG, DL, true); |
| Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp, |
| DAG.getConstant(M2ZImm, DL, MVT::i8)); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // If we have 3 or more shuffle instructions or a chain involving a variable |
| // mask, we can replace them with a single PSHUFB instruction profitably. |
| // Intel's manuals suggest only using PSHUFB if doing so replacing 5 |
| // instructions, but in practice PSHUFB tends to be *very* fast so we're |
| // more aggressive. |
| if (UnaryShuffle && AllowVariableMask && |
| ((RootVT.is128BitVector() && Subtarget.hasSSSE3()) || |
| (RootVT.is256BitVector() && Subtarget.hasAVX2()) || |
| (RootVT.is512BitVector() && Subtarget.hasBWI()))) { |
| SmallVector<SDValue, 16> PSHUFBMask; |
| int NumBytes = RootVT.getSizeInBits() / 8; |
| int Ratio = NumBytes / NumMaskElts; |
| for (int i = 0; i < NumBytes; ++i) { |
| int M = Mask[i / Ratio]; |
| if (M == SM_SentinelUndef) { |
| PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8)); |
| continue; |
| } |
| if (M == SM_SentinelZero) { |
| PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8)); |
| continue; |
| } |
| M = Ratio * M + i % Ratio; |
| assert((M / 16) == (i / 16) && "Lane crossing detected"); |
| PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8)); |
| } |
| MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes); |
| Res = DAG.getBitcast(ByteVT, V1); |
| SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask); |
| Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // With XOP, if we have a 128-bit binary input shuffle we can always combine |
| // to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never |
| // slower than PSHUFB on targets that support both. |
| if (AllowVariableMask && RootVT.is128BitVector() && Subtarget.hasXOP()) { |
| // VPPERM Mask Operation |
| // Bits[4:0] - Byte Index (0 - 31) |
| // Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO) |
| SmallVector<SDValue, 16> VPPERMMask; |
| int NumBytes = 16; |
| int Ratio = NumBytes / NumMaskElts; |
| for (int i = 0; i < NumBytes; ++i) { |
| int M = Mask[i / Ratio]; |
| if (M == SM_SentinelUndef) { |
| VPPERMMask.push_back(DAG.getUNDEF(MVT::i8)); |
| continue; |
| } |
| if (M == SM_SentinelZero) { |
| VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8)); |
| continue; |
| } |
| M = Ratio * M + i % Ratio; |
| VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8)); |
| } |
| MVT ByteVT = MVT::v16i8; |
| V1 = DAG.getBitcast(ByteVT, V1); |
| V2 = DAG.getBitcast(ByteVT, V2); |
| SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask); |
| Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp); |
| return DAG.getBitcast(RootVT, Res); |
| } |
| |
| // Failed to find any combines. |
| return SDValue(); |
| } |
| |
| // Attempt to constant fold all of the constant source ops. |
| // Returns true if the entire shuffle is folded to a constant. |
| // TODO: Extend this to merge multiple constant Ops and update the mask. |
| static SDValue combineX86ShufflesConstants(ArrayRef<SDValue> Ops, |
| ArrayRef<int> Mask, SDValue Root, |
| bool HasVariableMask, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = Root.getSimpleValueType(); |
| |
| unsigned SizeInBits = VT.getSizeInBits(); |
| unsigned NumMaskElts = Mask.size(); |
| unsigned MaskSizeInBits = SizeInBits / NumMaskElts; |
| unsigned NumOps = Ops.size(); |
| |
| // Extract constant bits from each source op. |
| bool OneUseConstantOp = false; |
| SmallVector<APInt, 16> UndefEltsOps(NumOps); |
| SmallVector<SmallVector<APInt, 16>, 16> RawBitsOps(NumOps); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDValue SrcOp = Ops[i]; |
| OneUseConstantOp |= SrcOp.hasOneUse(); |
| if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i], |
| RawBitsOps[i])) |
| return SDValue(); |
| } |
| |
| // Only fold if at least one of the constants is only used once or |
| // the combined shuffle has included a variable mask shuffle, this |
| // is to avoid constant pool bloat. |
| if (!OneUseConstantOp && !HasVariableMask) |
| return SDValue(); |
| |
| // Shuffle the constant bits according to the mask. |
| APInt UndefElts(NumMaskElts, 0); |
| APInt ZeroElts(NumMaskElts, 0); |
| APInt ConstantElts(NumMaskElts, 0); |
| SmallVector<APInt, 8> ConstantBitData(NumMaskElts, |
| APInt::getNullValue(MaskSizeInBits)); |
| for (unsigned i = 0; i != NumMaskElts; ++i) { |
| int M = Mask[i]; |
| if (M == SM_SentinelUndef) { |
| UndefElts.setBit(i); |
| continue; |
| } else if (M == SM_SentinelZero) { |
| ZeroElts.setBit(i); |
| continue; |
| } |
| assert(0 <= M && M < (int)(NumMaskElts * NumOps)); |
| |
| unsigned SrcOpIdx = (unsigned)M / NumMaskElts; |
| unsigned SrcMaskIdx = (unsigned)M % NumMaskElts; |
| |
| auto &SrcUndefElts = UndefEltsOps[SrcOpIdx]; |
| if (SrcUndefElts[SrcMaskIdx]) { |
| UndefElts.setBit(i); |
| continue; |
| } |
| |
| auto &SrcEltBits = RawBitsOps[SrcOpIdx]; |
| APInt &Bits = SrcEltBits[SrcMaskIdx]; |
| if (!Bits) { |
| ZeroElts.setBit(i); |
| continue; |
| } |
| |
| ConstantElts.setBit(i); |
| ConstantBitData[i] = Bits; |
| } |
| assert((UndefElts | ZeroElts | ConstantElts).isAllOnesValue()); |
| |
| // Create the constant data. |
| MVT MaskSVT; |
| if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64)) |
| MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits); |
| else |
| MaskSVT = MVT::getIntegerVT(MaskSizeInBits); |
| |
| MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts); |
| |
| SDLoc DL(Root); |
| SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL); |
| return DAG.getBitcast(VT, CstOp); |
| } |
| |
| /// Fully generic combining of x86 shuffle instructions. |
| /// |
| /// This should be the last combine run over the x86 shuffle instructions. Once |
| /// they have been fully optimized, this will recursively consider all chains |
| /// of single-use shuffle instructions, build a generic model of the cumulative |
| /// shuffle operation, and check for simpler instructions which implement this |
| /// operation. We use this primarily for two purposes: |
| /// |
| /// 1) Collapse generic shuffles to specialized single instructions when |
| /// equivalent. In most cases, this is just an encoding size win, but |
| /// sometimes we will collapse multiple generic shuffles into a single |
| /// special-purpose shuffle. |
| /// 2) Look for sequences of shuffle instructions with 3 or more total |
| /// instructions, and replace them with the slightly more expensive SSSE3 |
| /// PSHUFB instruction if available. We do this as the last combining step |
| /// to ensure we avoid using PSHUFB if we can implement the shuffle with |
| /// a suitable short sequence of other instructions. The PSHUFB will either |
| /// use a register or have to read from memory and so is slightly (but only |
| /// slightly) more expensive than the other shuffle instructions. |
| /// |
| /// Because this is inherently a quadratic operation (for each shuffle in |
| /// a chain, we recurse up the chain), the depth is limited to 8 instructions. |
| /// This should never be an issue in practice as the shuffle lowering doesn't |
| /// produce sequences of more than 8 instructions. |
| /// |
| /// FIXME: We will currently miss some cases where the redundant shuffling |
| /// would simplify under the threshold for PSHUFB formation because of |
| /// combine-ordering. To fix this, we should do the redundant instruction |
| /// combining in this recursive walk. |
| static SDValue combineX86ShufflesRecursively( |
| ArrayRef<SDValue> SrcOps, int SrcOpIndex, SDValue Root, |
| ArrayRef<int> RootMask, ArrayRef<const SDNode *> SrcNodes, unsigned Depth, |
| bool HasVariableMask, SelectionDAG &DAG, const X86Subtarget &Subtarget) { |
| // Bound the depth of our recursive combine because this is ultimately |
| // quadratic in nature. |
| const unsigned MaxRecursionDepth = 8; |
| if (Depth > MaxRecursionDepth) |
| return SDValue(); |
| |
| // Directly rip through bitcasts to find the underlying operand. |
| SDValue Op = SrcOps[SrcOpIndex]; |
| Op = peekThroughOneUseBitcasts(Op); |
| |
| MVT VT = Op.getSimpleValueType(); |
| if (!VT.isVector()) |
| return SDValue(); // Bail if we hit a non-vector. |
| |
| assert(Root.getSimpleValueType().isVector() && |
| "Shuffles operate on vector types!"); |
| assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() && |
| "Can only combine shuffles of the same vector register size."); |
| |
| // Extract target shuffle mask and resolve sentinels and inputs. |
| SmallVector<int, 64> OpMask; |
| SmallVector<SDValue, 2> OpInputs; |
| if (!resolveTargetShuffleInputs(Op, OpInputs, OpMask, DAG)) |
| return SDValue(); |
| |
| assert(OpInputs.size() <= 2 && "Too many shuffle inputs"); |
| SDValue Input0 = (OpInputs.size() > 0 ? OpInputs[0] : SDValue()); |
| SDValue Input1 = (OpInputs.size() > 1 ? OpInputs[1] : SDValue()); |
| |
| // Add the inputs to the Ops list, avoiding duplicates. |
| SmallVector<SDValue, 16> Ops(SrcOps.begin(), SrcOps.end()); |
| |
| int InputIdx0 = -1, InputIdx1 = -1; |
| for (int i = 0, e = Ops.size(); i < e; ++i) { |
| SDValue BC = peekThroughBitcasts(Ops[i]); |
| if (Input0 && BC == peekThroughBitcasts(Input0)) |
| InputIdx0 = i; |
| if (Input1 && BC == peekThroughBitcasts(Input1)) |
| InputIdx1 = i; |
| } |
| |
| if (Input0 && InputIdx0 < 0) { |
| InputIdx0 = SrcOpIndex; |
| Ops[SrcOpIndex] = Input0; |
| } |
| if (Input1 && InputIdx1 < 0) { |
| InputIdx1 = Ops.size(); |
| Ops.push_back(Input1); |
| } |
| |
| assert(((RootMask.size() > OpMask.size() && |
| RootMask.size() % OpMask.size() == 0) || |
| (OpMask.size() > RootMask.size() && |
| OpMask.size() % RootMask.size() == 0) || |
| OpMask.size() == RootMask.size()) && |
| "The smaller number of elements must divide the larger."); |
| |
| // This function can be performance-critical, so we rely on the power-of-2 |
| // knowledge that we have about the mask sizes to replace div/rem ops with |
| // bit-masks and shifts. |
| assert(isPowerOf2_32(RootMask.size()) && "Non-power-of-2 shuffle mask sizes"); |
| assert(isPowerOf2_32(OpMask.size()) && "Non-power-of-2 shuffle mask sizes"); |
| unsigned RootMaskSizeLog2 = countTrailingZeros(RootMask.size()); |
| unsigned OpMaskSizeLog2 = countTrailingZeros(OpMask.size()); |
| |
| unsigned MaskWidth = std::max<unsigned>(OpMask.size(), RootMask.size()); |
| unsigned RootRatio = std::max<unsigned>(1, OpMask.size() >> RootMaskSizeLog2); |
| unsigned OpRatio = std::max<unsigned>(1, RootMask.size() >> OpMaskSizeLog2); |
| assert((RootRatio == 1 || OpRatio == 1) && |
| "Must not have a ratio for both incoming and op masks!"); |
| |
| assert(isPowerOf2_32(MaskWidth) && "Non-power-of-2 shuffle mask sizes"); |
| assert(isPowerOf2_32(RootRatio) && "Non-power-of-2 shuffle mask sizes"); |
| assert(isPowerOf2_32(OpRatio) && "Non-power-of-2 shuffle mask sizes"); |
| unsigned RootRatioLog2 = countTrailingZeros(RootRatio); |
| unsigned OpRatioLog2 = countTrailingZeros(OpRatio); |
| |
| SmallVector<int, 64> Mask(MaskWidth, SM_SentinelUndef); |
| |
| // Merge this shuffle operation's mask into our accumulated mask. Note that |
| // this shuffle's mask will be the first applied to the input, followed by the |
| // root mask to get us all the way to the root value arrangement. The reason |
| // for this order is that we are recursing up the operation chain. |
| for (unsigned i = 0; i < MaskWidth; ++i) { |
| unsigned RootIdx = i >> RootRatioLog2; |
| if (RootMask[RootIdx] < 0) { |
| // This is a zero or undef lane, we're done. |
| Mask[i] = RootMask[RootIdx]; |
| continue; |
| } |
| |
| unsigned RootMaskedIdx = |
| RootRatio == 1 |
| ? RootMask[RootIdx] |
| : (RootMask[RootIdx] << RootRatioLog2) + (i & (RootRatio - 1)); |
| |
| // Just insert the scaled root mask value if it references an input other |
| // than the SrcOp we're currently inserting. |
| if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) || |
| (((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) { |
| Mask[i] = RootMaskedIdx; |
| continue; |
| } |
| |
| RootMaskedIdx = RootMaskedIdx & (MaskWidth - 1); |
| unsigned OpIdx = RootMaskedIdx >> OpRatioLog2; |
| if (OpMask[OpIdx] < 0) { |
| // The incoming lanes are zero or undef, it doesn't matter which ones we |
| // are using. |
| Mask[i] = OpMask[OpIdx]; |
| continue; |
| } |
| |
| // Ok, we have non-zero lanes, map them through to one of the Op's inputs. |
| unsigned OpMaskedIdx = |
| OpRatio == 1 |
| ? OpMask[OpIdx] |
| : (OpMask[OpIdx] << OpRatioLog2) + (RootMaskedIdx & (OpRatio - 1)); |
| |
| OpMaskedIdx = OpMaskedIdx & (MaskWidth - 1); |
| if (OpMask[OpIdx] < (int)OpMask.size()) { |
| assert(0 <= InputIdx0 && "Unknown target shuffle input"); |
| OpMaskedIdx += InputIdx0 * MaskWidth; |
| } else { |
| assert(0 <= InputIdx1 && "Unknown target shuffle input"); |
| OpMaskedIdx += InputIdx1 * MaskWidth; |
| } |
| |
| Mask[i] = OpMaskedIdx; |
| } |
| |
| // Handle the all undef/zero cases early. |
| if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; })) |
| return DAG.getUNDEF(Root.getValueType()); |
| |
| // TODO - should we handle the mixed zero/undef case as well? Just returning |
| // a zero mask will lose information on undef elements possibly reducing |
| // future combine possibilities. |
| if (all_of(Mask, [](int Idx) { return Idx < 0; })) |
| return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG, |
| SDLoc(Root)); |
| |
| // Remove unused shuffle source ops. |
| resolveTargetShuffleInputsAndMask(Ops, Mask); |
| assert(!Ops.empty() && "Shuffle with no inputs detected"); |
| |
| HasVariableMask |= isTargetShuffleVariableMask(Op.getOpcode()); |
| |
| // Update the list of shuffle nodes that have been combined so far. |
| SmallVector<const SDNode *, 16> CombinedNodes(SrcNodes.begin(), |
| SrcNodes.end()); |
| CombinedNodes.push_back(Op.getNode()); |
| |
| // See if we can recurse into each shuffle source op (if it's a target |
| // shuffle). The source op should only be combined if it either has a |
| // single use (i.e. current Op) or all its users have already been combined. |
| // Don't recurse if we already have more source ops than we can combine in |
| // the remaining recursion depth. |
| if (Ops.size() < (MaxRecursionDepth - Depth)) { |
| for (int i = 0, e = Ops.size(); i < e; ++i) |
| if (Ops[i].getNode()->hasOneUse() || |
| SDNode::areOnlyUsersOf(CombinedNodes, Ops[i].getNode())) |
| if (SDValue Res = combineX86ShufflesRecursively( |
| Ops, i, Root, Mask, CombinedNodes, Depth + 1, HasVariableMask, |
| DAG, Subtarget)) |
| return Res; |
| } |
| |
| // Attempt to constant fold all of the constant source ops. |
| if (SDValue Cst = combineX86ShufflesConstants( |
| Ops, Mask, Root, HasVariableMask, DAG, Subtarget)) |
| return Cst; |
| |
| // We can only combine unary and binary shuffle mask cases. |
| if (Ops.size() > 2) |
| return SDValue(); |
| |
| // Minor canonicalization of the accumulated shuffle mask to make it easier |
| // to match below. All this does is detect masks with sequential pairs of |
| // elements, and shrink them to the half-width mask. It does this in a loop |
| // so it will reduce the size of the mask to the minimal width mask which |
| // performs an equivalent shuffle. |
| SmallVector<int, 64> WidenedMask; |
| while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) { |
| Mask = std::move(WidenedMask); |
| } |
| |
| // Canonicalization of binary shuffle masks to improve pattern matching by |
| // commuting the inputs. |
| if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) { |
| ShuffleVectorSDNode::commuteMask(Mask); |
| std::swap(Ops[0], Ops[1]); |
| } |
| |
| // Finally, try to combine into a single shuffle instruction. |
| return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask, DAG, |
| Subtarget); |
| } |
| |
| /// Get the PSHUF-style mask from PSHUF node. |
| /// |
| /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4 |
| /// PSHUF-style masks that can be reused with such instructions. |
| static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) { |
| MVT VT = N.getSimpleValueType(); |
| SmallVector<int, 4> Mask; |
| SmallVector<SDValue, 2> Ops; |
| bool IsUnary; |
| bool HaveMask = |
| getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary); |
| (void)HaveMask; |
| assert(HaveMask); |
| |
| // If we have more than 128-bits, only the low 128-bits of shuffle mask |
| // matter. Check that the upper masks are repeats and remove them. |
| if (VT.getSizeInBits() > 128) { |
| int LaneElts = 128 / VT.getScalarSizeInBits(); |
| #ifndef NDEBUG |
| for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i) |
| for (int j = 0; j < LaneElts; ++j) |
| assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) && |
| "Mask doesn't repeat in high 128-bit lanes!"); |
| #endif |
| Mask.resize(LaneElts); |
| } |
| |
| switch (N.getOpcode()) { |
| case X86ISD::PSHUFD: |
| return Mask; |
| case X86ISD::PSHUFLW: |
| Mask.resize(4); |
| return Mask; |
| case X86ISD::PSHUFHW: |
| Mask.erase(Mask.begin(), Mask.begin() + 4); |
| for (int &M : Mask) |
| M -= 4; |
| return Mask; |
| default: |
| llvm_unreachable("No valid shuffle instruction found!"); |
| } |
| } |
| |
| /// Search for a combinable shuffle across a chain ending in pshufd. |
| /// |
| /// We walk up the chain and look for a combinable shuffle, skipping over |
| /// shuffles that we could hoist this shuffle's transformation past without |
| /// altering anything. |
| static SDValue |
| combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask, |
| SelectionDAG &DAG) { |
| assert(N.getOpcode() == X86ISD::PSHUFD && |
| "Called with something other than an x86 128-bit half shuffle!"); |
| SDLoc DL(N); |
| |
| // Walk up a single-use chain looking for a combinable shuffle. Keep a stack |
| // of the shuffles in the chain so that we can form a fresh chain to replace |
| // this one. |
| SmallVector<SDValue, 8> Chain; |
| SDValue V = N.getOperand(0); |
| for (; V.hasOneUse(); V = V.getOperand(0)) { |
| switch (V.getOpcode()) { |
| default: |
| return SDValue(); // Nothing combined! |
| |
| case ISD::BITCAST: |
| // Skip bitcasts as we always know the type for the target specific |
| // instructions. |
| continue; |
| |
| case X86ISD::PSHUFD: |
| // Found another dword shuffle. |
| break; |
| |
| case X86ISD::PSHUFLW: |
| // Check that the low words (being shuffled) are the identity in the |
| // dword shuffle, and the high words are self-contained. |
| if (Mask[0] != 0 || Mask[1] != 1 || |
| !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4)) |
| return SDValue(); |
| |
| Chain.push_back(V); |
| continue; |
| |
| case X86ISD::PSHUFHW: |
| // Check that the high words (being shuffled) are the identity in the |
| // dword shuffle, and the low words are self-contained. |
| if (Mask[2] != 2 || Mask[3] != 3 || |
| !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2)) |
| return SDValue(); |
| |
| Chain.push_back(V); |
| continue; |
| |
| case X86ISD::UNPCKL: |
| case X86ISD::UNPCKH: |
| // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword |
| // shuffle into a preceding word shuffle. |
| if (V.getSimpleValueType().getVectorElementType() != MVT::i8 && |
| V.getSimpleValueType().getVectorElementType() != MVT::i16) |
| return SDValue(); |
| |
| // Search for a half-shuffle which we can combine with. |
| unsigned CombineOp = |
| V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW; |
| if (V.getOperand(0) != V.getOperand(1) || |
| !V->isOnlyUserOf(V.getOperand(0).getNode())) |
| return SDValue(); |
| Chain.push_back(V); |
| V = V.getOperand(0); |
| do { |
| switch (V.getOpcode()) { |
| default: |
| return SDValue(); // Nothing to combine. |
| |
| case X86ISD::PSHUFLW: |
| case X86ISD::PSHUFHW: |
| if (V.getOpcode() == CombineOp) |
| break; |
| |
| Chain.push_back(V); |
| |
| LLVM_FALLTHROUGH; |
| case ISD::BITCAST: |
| V = V.getOperand(0); |
| continue; |
| } |
| break; |
| } while (V.hasOneUse()); |
| break; |
| } |
| // Break out of the loop if we break out of the switch. |
| break; |
| } |
| |
| if (!V.hasOneUse()) |
| // We fell out of the loop without finding a viable combining instruction. |
| return SDValue(); |
| |
| // Merge this node's mask and our incoming mask. |
| SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); |
| for (int &M : Mask) |
| M = VMask[M]; |
| V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0), |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| |
| // Rebuild the chain around this new shuffle. |
| while (!Chain.empty()) { |
| SDValue W = Chain.pop_back_val(); |
| |
| if (V.getValueType() != W.getOperand(0).getValueType()) |
| V = DAG.getBitcast(W.getOperand(0).getValueType(), V); |
| |
| switch (W.getOpcode()) { |
| default: |
| llvm_unreachable("Only PSHUF and UNPCK instructions get here!"); |
| |
| case X86ISD::UNPCKL: |
| case X86ISD::UNPCKH: |
| V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V); |
| break; |
| |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFLW: |
| case X86ISD::PSHUFHW: |
| V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1)); |
| break; |
| } |
| } |
| if (V.getValueType() != N.getValueType()) |
| V = DAG.getBitcast(N.getValueType(), V); |
| |
| // Return the new chain to replace N. |
| return V; |
| } |
| |
| /// Search for a combinable shuffle across a chain ending in pshuflw or |
| /// pshufhw. |
| /// |
| /// We walk up the chain, skipping shuffles of the other half and looking |
| /// through shuffles which switch halves trying to find a shuffle of the same |
| /// pair of dwords. |
| static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask, |
| SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| assert( |
| (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) && |
| "Called with something other than an x86 128-bit half shuffle!"); |
| SDLoc DL(N); |
| unsigned CombineOpcode = N.getOpcode(); |
| |
| // Walk up a single-use chain looking for a combinable shuffle. |
| SDValue V = N.getOperand(0); |
| for (; V.hasOneUse(); V = V.getOperand(0)) { |
| switch (V.getOpcode()) { |
| default: |
| return false; // Nothing combined! |
| |
| case ISD::BITCAST: |
| // Skip bitcasts as we always know the type for the target specific |
| // instructions. |
| continue; |
| |
| case X86ISD::PSHUFLW: |
| case X86ISD::PSHUFHW: |
| if (V.getOpcode() == CombineOpcode) |
| break; |
| |
| // Other-half shuffles are no-ops. |
| continue; |
| } |
| // Break out of the loop if we break out of the switch. |
| break; |
| } |
| |
| if (!V.hasOneUse()) |
| // We fell out of the loop without finding a viable combining instruction. |
| return false; |
| |
| // Combine away the bottom node as its shuffle will be accumulated into |
| // a preceding shuffle. |
| DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); |
| |
| // Record the old value. |
| SDValue Old = V; |
| |
| // Merge this node's mask and our incoming mask (adjusted to account for all |
| // the pshufd instructions encountered). |
| SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); |
| for (int &M : Mask) |
| M = VMask[M]; |
| V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0), |
| getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); |
| |
| // Check that the shuffles didn't cancel each other out. If not, we need to |
| // combine to the new one. |
| if (Old != V) |
| // Replace the combinable shuffle with the combined one, updating all users |
| // so that we re-evaluate the chain here. |
| DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true); |
| |
| return true; |
| } |
| |
| /// Try to combine x86 target specific shuffles. |
| static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| MVT VT = N.getSimpleValueType(); |
| SmallVector<int, 4> Mask; |
| unsigned Opcode = N.getOpcode(); |
| |
| // Combine binary shuffle of 2 similar 'Horizontal' instructions into a |
| // single instruction. |
| if (VT.getScalarSizeInBits() == 64 && |
| (Opcode == X86ISD::MOVSD || Opcode == X86ISD::UNPCKH || |
| Opcode == X86ISD::UNPCKL)) { |
| auto BC0 = peekThroughBitcasts(N.getOperand(0)); |
| auto BC1 = peekThroughBitcasts(N.getOperand(1)); |
| EVT VT0 = BC0.getValueType(); |
| EVT VT1 = BC1.getValueType(); |
| unsigned Opcode0 = BC0.getOpcode(); |
| unsigned Opcode1 = BC1.getOpcode(); |
| if (Opcode0 == Opcode1 && VT0 == VT1 && |
| (Opcode0 == X86ISD::FHADD || Opcode0 == X86ISD::HADD || |
| Opcode0 == X86ISD::FHSUB || Opcode0 == X86ISD::HSUB || |
| Opcode0 == X86ISD::PACKSS || Opcode0 == X86ISD::PACKUS)) { |
| SDValue Lo, Hi; |
| if (Opcode == X86ISD::MOVSD) { |
| Lo = BC1.getOperand(0); |
| Hi = BC0.getOperand(1); |
| } else { |
| Lo = BC0.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0); |
| Hi = BC1.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0); |
| } |
| SDValue Horiz = DAG.getNode(Opcode0, DL, VT0, Lo, Hi); |
| return DAG.getBitcast(VT, Horiz); |
| } |
| } |
| |
| switch (Opcode) { |
| case X86ISD::VBROADCAST: { |
| // If broadcasting from another shuffle, attempt to simplify it. |
| // TODO - we really need a general SimplifyDemandedVectorElts mechanism. |
| SDValue Src = N.getOperand(0); |
| SDValue BC = peekThroughBitcasts(Src); |
| EVT SrcVT = Src.getValueType(); |
| EVT BCVT = BC.getValueType(); |
| if (isTargetShuffle(BC.getOpcode()) && |
| VT.getScalarSizeInBits() % BCVT.getScalarSizeInBits() == 0) { |
| unsigned Scale = VT.getScalarSizeInBits() / BCVT.getScalarSizeInBits(); |
| SmallVector<int, 16> DemandedMask(BCVT.getVectorNumElements(), |
| SM_SentinelUndef); |
| for (unsigned i = 0; i != Scale; ++i) |
| DemandedMask[i] = i; |
| if (SDValue Res = combineX86ShufflesRecursively( |
| {BC}, 0, BC, DemandedMask, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return DAG.getNode(X86ISD::VBROADCAST, DL, VT, |
| DAG.getBitcast(SrcVT, Res)); |
| } |
| return SDValue(); |
| } |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFLW: |
| case X86ISD::PSHUFHW: |
| Mask = getPSHUFShuffleMask(N); |
| assert(Mask.size() == 4); |
| break; |
| case X86ISD::UNPCKL: { |
| // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in |
| // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE |
| // moves upper half elements into the lower half part. For example: |
| // |
| // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1, |
| // undef:v16i8 |
| // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2 |
| // |
| // will be combined to: |
| // |
| // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1 |
| |
| // This is only for 128-bit vectors. From SSE4.1 onward this combine may not |
| // happen due to advanced instructions. |
| if (!VT.is128BitVector()) |
| return SDValue(); |
| |
| auto Op0 = N.getOperand(0); |
| auto Op1 = N.getOperand(1); |
| if (Op0.isUndef() && Op1.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask(); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| SmallVector<int, 8> ExpectedMask(NumElts, -1); |
| std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2, |
| NumElts / 2); |
| |
| auto ShufOp = Op1.getOperand(0); |
| if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask)) |
| return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp); |
| } |
| return SDValue(); |
| } |
| case X86ISD::MOVSD: |
| case X86ISD::MOVSS: { |
| SDValue N0 = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| |
| // Canonicalize scalar FPOps: |
| // MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0]))) |
| // If commutable, allow OP(N1[0], N0[0]). |
| unsigned Opcode1 = N1.getOpcode(); |
| if (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL || Opcode1 == ISD::FSUB || |
| Opcode1 == ISD::FDIV) { |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| if (N10 == N0 || |
| (N11 == N0 && (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL))) { |
| if (N10 != N0) |
| std::swap(N10, N11); |
| MVT SVT = VT.getVectorElementType(); |
| SDValue ZeroIdx = DAG.getIntPtrConstant(0, DL); |
| N10 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N10, ZeroIdx); |
| N11 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N11, ZeroIdx); |
| SDValue Scl = DAG.getNode(Opcode1, DL, SVT, N10, N11); |
| SDValue SclVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl); |
| return DAG.getNode(Opcode, DL, VT, N0, SclVec); |
| } |
| } |
| |
| return SDValue(); |
| } |
| case X86ISD::INSERTPS: { |
| assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32"); |
| SDValue Op0 = N.getOperand(0); |
| SDValue Op1 = N.getOperand(1); |
| SDValue Op2 = N.getOperand(2); |
| unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue(); |
| unsigned SrcIdx = (InsertPSMask >> 6) & 0x3; |
| unsigned DstIdx = (InsertPSMask >> 4) & 0x3; |
| unsigned ZeroMask = InsertPSMask & 0xF; |
| |
| // If we zero out all elements from Op0 then we don't need to reference it. |
| if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef()) |
| return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1, |
| DAG.getConstant(InsertPSMask, DL, MVT::i8)); |
| |
| // If we zero out the element from Op1 then we don't need to reference it. |
| if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef()) |
| return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT), |
| DAG.getConstant(InsertPSMask, DL, MVT::i8)); |
| |
| // Attempt to merge insertps Op1 with an inner target shuffle node. |
| SmallVector<int, 8> TargetMask1; |
| SmallVector<SDValue, 2> Ops1; |
| if (setTargetShuffleZeroElements(Op1, TargetMask1, Ops1)) { |
| int M = TargetMask1[SrcIdx]; |
| if (isUndefOrZero(M)) { |
| // Zero/UNDEF insertion - zero out element and remove dependency. |
| InsertPSMask |= (1u << DstIdx); |
| return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT), |
| DAG.getConstant(InsertPSMask, DL, MVT::i8)); |
| } |
| // Update insertps mask srcidx and reference the source input directly. |
| assert(0 <= M && M < 8 && "Shuffle index out of range"); |
| InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6); |
| Op1 = Ops1[M < 4 ? 0 : 1]; |
| return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1, |
| DAG.getConstant(InsertPSMask, DL, MVT::i8)); |
| } |
| |
| // Attempt to merge insertps Op0 with an inner target shuffle node. |
| SmallVector<int, 8> TargetMask0; |
| SmallVector<SDValue, 2> Ops0; |
| if (!setTargetShuffleZeroElements(Op0, TargetMask0, Ops0)) |
| return SDValue(); |
| |
| bool Updated = false; |
| bool UseInput00 = false; |
| bool UseInput01 = false; |
| for (int i = 0; i != 4; ++i) { |
| int M = TargetMask0[i]; |
| if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) { |
| // No change if element is already zero or the inserted element. |
| continue; |
| } else if (isUndefOrZero(M)) { |
| // If the target mask is undef/zero then we must zero the element. |
| InsertPSMask |= (1u << i); |
| Updated = true; |
| continue; |
| } |
| |
| // The input vector element must be inline. |
| if (M != i && M != (i + 4)) |
| return SDValue(); |
| |
| // Determine which inputs of the target shuffle we're using. |
| UseInput00 |= (0 <= M && M < 4); |
| UseInput01 |= (4 <= M); |
| } |
| |
| // If we're not using both inputs of the target shuffle then use the |
| // referenced input directly. |
| if (UseInput00 && !UseInput01) { |
| Updated = true; |
| Op0 = Ops0[0]; |
| } else if (!UseInput00 && UseInput01) { |
| Updated = true; |
| Op0 = Ops0[1]; |
| } |
| |
| if (Updated) |
| return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1, |
| DAG.getConstant(InsertPSMask, DL, MVT::i8)); |
| |
| return SDValue(); |
| } |
| default: |
| return SDValue(); |
| } |
| |
| // Nuke no-op shuffles that show up after combining. |
| if (isNoopShuffleMask(Mask)) |
| return N.getOperand(0); |
| |
| // Look for simplifications involving one or two shuffle instructions. |
| SDValue V = N.getOperand(0); |
| switch (N.getOpcode()) { |
| default: |
| break; |
| case X86ISD::PSHUFLW: |
| case X86ISD::PSHUFHW: |
| assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!"); |
| |
| if (combineRedundantHalfShuffle(N, Mask, DAG, DCI)) |
| return SDValue(); // We combined away this shuffle, so we're done. |
| |
| // See if this reduces to a PSHUFD which is no more expensive and can |
| // combine with more operations. Note that it has to at least flip the |
| // dwords as otherwise it would have been removed as a no-op. |
| if (makeArrayRef(Mask).equals({2, 3, 0, 1})) { |
| int DMask[] = {0, 1, 2, 3}; |
| int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2; |
| DMask[DOffset + 0] = DOffset + 1; |
| DMask[DOffset + 1] = DOffset + 0; |
| MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); |
| V = DAG.getBitcast(DVT, V); |
| V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V, |
| getV4X86ShuffleImm8ForMask(DMask, DL, DAG)); |
| return DAG.getBitcast(VT, V); |
| } |
| |
| // Look for shuffle patterns which can be implemented as a single unpack. |
| // FIXME: This doesn't handle the location of the PSHUFD generically, and |
| // only works when we have a PSHUFD followed by two half-shuffles. |
| if (Mask[0] == Mask[1] && Mask[2] == Mask[3] && |
| (V.getOpcode() == X86ISD::PSHUFLW || |
| V.getOpcode() == X86ISD::PSHUFHW) && |
| V.getOpcode() != N.getOpcode() && |
| V.hasOneUse()) { |
| SDValue D = peekThroughOneUseBitcasts(V.getOperand(0)); |
| if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) { |
| SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); |
| SmallVector<int, 4> DMask = getPSHUFShuffleMask(D); |
| int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; |
| int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; |
| int WordMask[8]; |
| for (int i = 0; i < 4; ++i) { |
| WordMask[i + NOffset] = Mask[i] + NOffset; |
| WordMask[i + VOffset] = VMask[i] + VOffset; |
| } |
| // Map the word mask through the DWord mask. |
| int MappedMask[8]; |
| for (int i = 0; i < 8; ++i) |
| MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2; |
| if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) || |
| makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) { |
| // We can replace all three shuffles with an unpack. |
| V = DAG.getBitcast(VT, D.getOperand(0)); |
| return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL |
| : X86ISD::UNPCKH, |
| DL, VT, V, V); |
| } |
| } |
| } |
| |
| break; |
| |
| case X86ISD::PSHUFD: |
| if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG)) |
| return NewN; |
| |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Checks if the shuffle mask takes subsequent elements |
| /// alternately from two vectors. |
| /// For example <0, 5, 2, 7> or <8, 1, 10, 3, 12, 5, 14, 7> are both correct. |
| static bool isAddSubOrSubAddMask(ArrayRef<int> Mask, bool &Op0Even) { |
| |
| int ParitySrc[2] = {-1, -1}; |
| unsigned Size = Mask.size(); |
| for (unsigned i = 0; i != Size; ++i) { |
| int M = Mask[i]; |
| if (M < 0) |
| continue; |
| |
| // Make sure we are using the matching element from the input. |
| if ((M % Size) != i) |
| return false; |
| |
| // Make sure we use the same input for all elements of the same parity. |
| int Src = M / Size; |
| if (ParitySrc[i % 2] >= 0 && ParitySrc[i % 2] != Src) |
| return false; |
| ParitySrc[i % 2] = Src; |
| } |
| |
| // Make sure each input is used. |
| if (ParitySrc[0] < 0 || ParitySrc[1] < 0 || ParitySrc[0] == ParitySrc[1]) |
| return false; |
| |
| Op0Even = ParitySrc[0] == 0; |
| return true; |
| } |
| |
| /// Returns true iff the shuffle node \p N can be replaced with ADDSUB(SUBADD) |
| /// operation. If true is returned then the operands of ADDSUB(SUBADD) operation |
| /// are written to the parameters \p Opnd0 and \p Opnd1. |
| /// |
| /// We combine shuffle to ADDSUB(SUBADD) directly on the abstract vector shuffle nodes |
| /// so it is easier to generically match. We also insert dummy vector shuffle |
| /// nodes for the operands which explicitly discard the lanes which are unused |
| /// by this operation to try to flow through the rest of the combiner |
| /// the fact that they're unused. |
| static bool isAddSubOrSubAdd(SDNode *N, const X86Subtarget &Subtarget, |
| SelectionDAG &DAG, SDValue &Opnd0, SDValue &Opnd1, |
| bool &IsSubAdd) { |
| |
| EVT VT = N->getValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!Subtarget.hasSSE3() || !TLI.isTypeLegal(VT) || |
| !VT.getSimpleVT().isFloatingPoint()) |
| return false; |
| |
| // We only handle target-independent shuffles. |
| // FIXME: It would be easy and harmless to use the target shuffle mask |
| // extraction tool to support more. |
| if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| return false; |
| |
| SDValue V1 = N->getOperand(0); |
| SDValue V2 = N->getOperand(1); |
| |
| // Make sure we have an FADD and an FSUB. |
| if ((V1.getOpcode() != ISD::FADD && V1.getOpcode() != ISD::FSUB) || |
| (V2.getOpcode() != ISD::FADD && V2.getOpcode() != ISD::FSUB) || |
| V1.getOpcode() == V2.getOpcode()) |
| return false; |
| |
| // If there are other uses of these operations we can't fold them. |
| if (!V1->hasOneUse() || !V2->hasOneUse()) |
| return false; |
| |
| // Ensure that both operations have the same operands. Note that we can |
| // commute the FADD operands. |
| SDValue LHS, RHS; |
| if (V1.getOpcode() == ISD::FSUB) { |
| LHS = V1->getOperand(0); RHS = V1->getOperand(1); |
| if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) && |
| (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS)) |
| return false; |
| } else { |
| assert(V2.getOpcode() == ISD::FSUB && "Unexpected opcode"); |
| LHS = V2->getOperand(0); RHS = V2->getOperand(1); |
| if ((V1->getOperand(0) != LHS || V1->getOperand(1) != RHS) && |
| (V1->getOperand(0) != RHS || V1->getOperand(1) != LHS)) |
| return false; |
| } |
| |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask(); |
| bool Op0Even; |
| if (!isAddSubOrSubAddMask(Mask, Op0Even)) |
| return false; |
| |
| // It's a subadd if the vector in the even parity is an FADD. |
| IsSubAdd = Op0Even ? V1->getOpcode() == ISD::FADD |
| : V2->getOpcode() == ISD::FADD; |
| |
| Opnd0 = LHS; |
| Opnd1 = RHS; |
| return true; |
| } |
| |
| /// Combine shuffle of two fma nodes into FMAddSub or FMSubAdd. |
| static SDValue combineShuffleToFMAddSub(SDNode *N, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| // We only handle target-independent shuffles. |
| // FIXME: It would be easy and harmless to use the target shuffle mask |
| // extraction tool to support more. |
| if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| return SDValue(); |
| |
| MVT VT = N->getSimpleValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!Subtarget.hasAnyFMA() || !TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // We're trying to match (shuffle fma(a, b, c), X86Fmsub(a, b, c). |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| SDValue FMAdd = Op0, FMSub = Op1; |
| if (FMSub.getOpcode() != X86ISD::FMSUB) |
| std::swap(FMAdd, FMSub); |
| |
| if (FMAdd.getOpcode() != ISD::FMA || FMSub.getOpcode() != X86ISD::FMSUB || |
| FMAdd.getOperand(0) != FMSub.getOperand(0) || !FMAdd.hasOneUse() || |
| FMAdd.getOperand(1) != FMSub.getOperand(1) || !FMSub.hasOneUse() || |
| FMAdd.getOperand(2) != FMSub.getOperand(2)) |
| return SDValue(); |
| |
| // Check for correct shuffle mask. |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask(); |
| bool Op0Even; |
| if (!isAddSubOrSubAddMask(Mask, Op0Even)) |
| return SDValue(); |
| |
| // FMAddSub takes zeroth operand from FMSub node. |
| SDLoc DL(N); |
| bool IsSubAdd = Op0Even ? Op0 == FMAdd : Op1 == FMAdd; |
| unsigned Opcode = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB; |
| return DAG.getNode(Opcode, DL, VT, FMAdd.getOperand(0), FMAdd.getOperand(1), |
| FMAdd.getOperand(2)); |
| } |
| |
| /// Try to combine a shuffle into a target-specific add-sub or |
| /// mul-add-sub node. |
| static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| if (SDValue V = combineShuffleToFMAddSub(N, Subtarget, DAG)) |
| return V; |
| |
| SDValue Opnd0, Opnd1; |
| bool IsSubAdd; |
| if (!isAddSubOrSubAdd(N, Subtarget, DAG, Opnd0, Opnd1, IsSubAdd)) |
| return SDValue(); |
| |
| MVT VT = N->getSimpleValueType(0); |
| SDLoc DL(N); |
| |
| // Try to generate X86ISD::FMADDSUB node here. |
| SDValue Opnd2; |
| if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2)) { |
| unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB; |
| return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2); |
| } |
| |
| if (IsSubAdd) |
| return SDValue(); |
| |
| // Do not generate X86ISD::ADDSUB node for 512-bit types even though |
| // the ADDSUB idiom has been successfully recognized. There are no known |
| // X86 targets with 512-bit ADDSUB instructions! |
| if (VT.is512BitVector()) |
| return SDValue(); |
| |
| return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1); |
| } |
| |
| // We are looking for a shuffle where both sources are concatenated with undef |
| // and have a width that is half of the output's width. AVX2 has VPERMD/Q, so |
| // if we can express this as a single-source shuffle, that's preferable. |
| static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N)) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // We only care about shuffles of 128/256-bit vectors of 32/64-bit values. |
| if (!VT.is128BitVector() && !VT.is256BitVector()) |
| return SDValue(); |
| |
| if (VT.getVectorElementType() != MVT::i32 && |
| VT.getVectorElementType() != MVT::i64 && |
| VT.getVectorElementType() != MVT::f32 && |
| VT.getVectorElementType() != MVT::f64) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Check that both sources are concats with undef. |
| if (N0.getOpcode() != ISD::CONCAT_VECTORS || |
| N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || |
| N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() || |
| !N1.getOperand(1).isUndef()) |
| return SDValue(); |
| |
| // Construct the new shuffle mask. Elements from the first source retain their |
| // index, but elements from the second source no longer need to skip an undef. |
| SmallVector<int, 8> Mask; |
| int NumElts = VT.getVectorNumElements(); |
| |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| for (int Elt : SVOp->getMask()) |
| Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2)); |
| |
| SDLoc DL(N); |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0), |
| N1.getOperand(0)); |
| return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask); |
| } |
| |
| /// Eliminate a redundant shuffle of a horizontal math op. |
| static SDValue foldShuffleOfHorizOp(SDNode *N) { |
| if (N->getOpcode() != ISD::VECTOR_SHUFFLE || !N->getOperand(1).isUndef()) |
| return SDValue(); |
| |
| SDValue HOp = N->getOperand(0); |
| if (HOp.getOpcode() != X86ISD::HADD && HOp.getOpcode() != X86ISD::FHADD && |
| HOp.getOpcode() != X86ISD::HSUB && HOp.getOpcode() != X86ISD::FHSUB) |
| return SDValue(); |
| |
| // 128-bit horizontal math instructions are defined to operate on adjacent |
| // lanes of each operand as: |
| // v4X32: A[0] + A[1] , A[2] + A[3] , B[0] + B[1] , B[2] + B[3] |
| // ...similarly for v2f64 and v8i16. |
| // TODO: Handle UNDEF operands. |
| if (HOp.getOperand(0) != HOp.getOperand(1)) |
| return SDValue(); |
| |
| // When the operands of a horizontal math op are identical, the low half of |
| // the result is the same as the high half. If the shuffle is also replicating |
| // low and high halves, we don't need the shuffle. |
| // shuffle (hadd X, X), undef, [low half...high half] --> hadd X, X |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask(); |
| // TODO: Other mask possibilities like {1,1} and {1,0} could be added here, |
| // but this should be tied to whatever horizontal op matching and shuffle |
| // canonicalization are producing. |
| if (HOp.getValueSizeInBits() == 128 && |
| (isTargetShuffleEquivalent(Mask, {0, 0}) || |
| isTargetShuffleEquivalent(Mask, {0, 1, 0, 1}) || |
| isTargetShuffleEquivalent(Mask, {0, 1, 2, 3, 0, 1, 2, 3}))) |
| return HOp; |
| |
| if (HOp.getValueSizeInBits() == 256 && |
| (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2}) || |
| isTargetShuffleEquivalent(Mask, {0, 1, 0, 1, 4, 5, 4, 5}) || |
| isTargetShuffleEquivalent( |
| Mask, {0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11, 8, 9, 10, 11}))) |
| return HOp; |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| // If we have legalized the vector types, look for blends of FADD and FSUB |
| // nodes that we can fuse into an ADDSUB, FMADDSUB, or FMSUBADD node. |
| if (TLI.isTypeLegal(VT)) { |
| if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG)) |
| return AddSub; |
| |
| if (SDValue HAddSub = foldShuffleOfHorizOp(N)) |
| return HAddSub; |
| } |
| |
| // During Type Legalization, when promoting illegal vector types, |
| // the backend might introduce new shuffle dag nodes and bitcasts. |
| // |
| // This code performs the following transformation: |
| // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) -> |
| // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>) |
| // |
| // We do this only if both the bitcast and the BINOP dag nodes have |
| // one use. Also, perform this transformation only if the new binary |
| // operation is legal. This is to avoid introducing dag nodes that |
| // potentially need to be further expanded (or custom lowered) into a |
| // less optimal sequence of dag nodes. |
| if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() && |
| N->getOpcode() == ISD::VECTOR_SHUFFLE && |
| N->getOperand(0).getOpcode() == ISD::BITCAST && |
| N->getOperand(1).isUndef() && N->getOperand(0).hasOneUse()) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| SDValue BC0 = N0.getOperand(0); |
| EVT SVT = BC0.getValueType(); |
| unsigned Opcode = BC0.getOpcode(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| if (BC0.hasOneUse() && SVT.isVector() && |
| SVT.getVectorNumElements() * 2 == NumElts && |
| TLI.isOperationLegal(Opcode, VT)) { |
| bool CanFold = false; |
| switch (Opcode) { |
| default : break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| // isOperationLegal lies for integer ops on floating point types. |
| CanFold = VT.isInteger(); |
| break; |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| // isOperationLegal lies for floating point ops on integer types. |
| CanFold = VT.isFloatingPoint(); |
| break; |
| } |
| |
| unsigned SVTNumElts = SVT.getVectorNumElements(); |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i) |
| CanFold = SVOp->getMaskElt(i) == (int)(i * 2); |
| for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i) |
| CanFold = SVOp->getMaskElt(i) < 0; |
| |
| if (CanFold) { |
| SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0)); |
| SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1)); |
| SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01); |
| return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, SVOp->getMask()); |
| } |
| } |
| } |
| |
| // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, |
| // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are |
| // consecutive, non-overlapping, and in the right order. |
| SmallVector<SDValue, 16> Elts; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { |
| if (SDValue Elt = getShuffleScalarElt(N, i, DAG, 0)) { |
| Elts.push_back(Elt); |
| continue; |
| } |
| Elts.clear(); |
| break; |
| } |
| |
| if (Elts.size() == VT.getVectorNumElements()) |
| if (SDValue LD = |
| EltsFromConsecutiveLoads(VT, Elts, dl, DAG, Subtarget, true)) |
| return LD; |
| |
| // For AVX2, we sometimes want to combine |
| // (vector_shuffle <mask> (concat_vectors t1, undef) |
| // (concat_vectors t2, undef)) |
| // Into: |
| // (vector_shuffle <mask> (concat_vectors t1, t2), undef) |
| // Since the latter can be efficiently lowered with VPERMD/VPERMQ |
| if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget)) |
| return ShufConcat; |
| |
| if (isTargetShuffle(N->getOpcode())) { |
| SDValue Op(N, 0); |
| if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget)) |
| return Shuffle; |
| |
| // Try recursively combining arbitrary sequences of x86 shuffle |
| // instructions into higher-order shuffles. We do this after combining |
| // specific PSHUF instruction sequences into their minimal form so that we |
| // can evaluate how many specialized shuffle instructions are involved in |
| // a particular chain. |
| if (SDValue Res = combineX86ShufflesRecursively( |
| {Op}, 0, Op, {0}, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Check if a vector extract from a target-specific shuffle of a load can be |
| /// folded into a single element load. |
| /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but |
| /// shuffles have been custom lowered so we need to handle those here. |
| static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue InVec = N->getOperand(0); |
| SDValue EltNo = N->getOperand(1); |
| EVT EltVT = N->getValueType(0); |
| |
| if (!isa<ConstantSDNode>(EltNo)) |
| return SDValue(); |
| |
| EVT OriginalVT = InVec.getValueType(); |
| |
| // Peek through bitcasts, don't duplicate a load with other uses. |
| InVec = peekThroughOneUseBitcasts(InVec); |
| |
| EVT CurrentVT = InVec.getValueType(); |
| if (!CurrentVT.isVector() || |
| CurrentVT.getVectorNumElements() != OriginalVT.getVectorNumElements()) |
| return SDValue(); |
| |
| if (!isTargetShuffle(InVec.getOpcode())) |
| return SDValue(); |
| |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| |
| SmallVector<int, 16> ShuffleMask; |
| SmallVector<SDValue, 2> ShuffleOps; |
| bool UnaryShuffle; |
| if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), true, |
| ShuffleOps, ShuffleMask, UnaryShuffle)) |
| return SDValue(); |
| |
| // Select the input vector, guarding against out of range extract vector. |
| unsigned NumElems = CurrentVT.getVectorNumElements(); |
| int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| int Idx = (Elt > (int)NumElems) ? SM_SentinelUndef : ShuffleMask[Elt]; |
| |
| if (Idx == SM_SentinelZero) |
| return EltVT.isInteger() ? DAG.getConstant(0, SDLoc(N), EltVT) |
| : DAG.getConstantFP(+0.0, SDLoc(N), EltVT); |
| if (Idx == SM_SentinelUndef) |
| return DAG.getUNDEF(EltVT); |
| |
| assert(0 <= Idx && Idx < (int)(2 * NumElems) && "Shuffle index out of range"); |
| SDValue LdNode = (Idx < (int)NumElems) ? ShuffleOps[0] |
| : ShuffleOps[1]; |
| |
| // If inputs to shuffle are the same for both ops, then allow 2 uses |
| unsigned AllowedUses = |
| (ShuffleOps.size() > 1 && ShuffleOps[0] == ShuffleOps[1]) ? 2 : 1; |
| |
| if (LdNode.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) |
| return SDValue(); |
| |
| AllowedUses = 1; // only allow 1 load use if we have a bitcast |
| LdNode = LdNode.getOperand(0); |
| } |
| |
| if (!ISD::isNormalLoad(LdNode.getNode())) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); |
| |
| if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) |
| return SDValue(); |
| |
| // If there's a bitcast before the shuffle, check if the load type and |
| // alignment is valid. |
| unsigned Align = LN0->getAlignment(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( |
| EltVT.getTypeForEVT(*DAG.getContext())); |
| |
| if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT)) |
| return SDValue(); |
| |
| // All checks match so transform back to vector_shuffle so that DAG combiner |
| // can finish the job |
| SDLoc dl(N); |
| |
| // Create shuffle node taking into account the case that its a unary shuffle |
| SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1]; |
| Shuffle = DAG.getVectorShuffle(CurrentVT, dl, ShuffleOps[0], Shuffle, |
| ShuffleMask); |
| Shuffle = DAG.getBitcast(OriginalVT, Shuffle); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, |
| EltNo); |
| } |
| |
| // Try to match patterns such as |
| // (i16 bitcast (v16i1 x)) |
| // -> |
| // (i16 movmsk (16i8 sext (v16i1 x))) |
| // before the illegal vector is scalarized on subtargets that don't have legal |
| // vxi1 types. |
| static SDValue combineBitcastvxi1(SelectionDAG &DAG, SDValue BitCast, |
| const X86Subtarget &Subtarget) { |
| EVT VT = BitCast.getValueType(); |
| SDValue N0 = BitCast.getOperand(0); |
| EVT VecVT = N0->getValueType(0); |
| |
| if (!VT.isScalarInteger() || !VecVT.isSimple()) |
| return SDValue(); |
| |
| // With AVX512 vxi1 types are legal and we prefer using k-regs. |
| // MOVMSK is supported in SSE2 or later. |
| if (Subtarget.hasAVX512() || !Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| // There are MOVMSK flavors for types v16i8, v32i8, v4f32, v8f32, v4f64 and |
| // v8f64. So all legal 128-bit and 256-bit vectors are covered except for |
| // v8i16 and v16i16. |
| // For these two cases, we can shuffle the upper element bytes to a |
| // consecutive sequence at the start of the vector and treat the results as |
| // v16i8 or v32i8, and for v16i8 this is the preferable solution. However, |
| // for v16i16 this is not the case, because the shuffle is expensive, so we |
| // avoid sign-extending to this type entirely. |
| // For example, t0 := (v8i16 sext(v8i1 x)) needs to be shuffled as: |
| // (v16i8 shuffle <0,2,4,6,8,10,12,14,u,u,...,u> (v16i8 bitcast t0), undef) |
| MVT SExtVT; |
| MVT FPCastVT = MVT::INVALID_SIMPLE_VALUE_TYPE; |
| switch (VecVT.getSimpleVT().SimpleTy) { |
| default: |
| return SDValue(); |
| case MVT::v2i1: |
| SExtVT = MVT::v2i64; |
| FPCastVT = MVT::v2f64; |
| break; |
| case MVT::v4i1: |
| SExtVT = MVT::v4i32; |
| FPCastVT = MVT::v4f32; |
| // For cases such as (i4 bitcast (v4i1 setcc v4i64 v1, v2)) |
| // sign-extend to a 256-bit operation to avoid truncation. |
| if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() && |
| N0->getOperand(0).getValueType().is256BitVector()) { |
| SExtVT = MVT::v4i64; |
| FPCastVT = MVT::v4f64; |
| } |
| break; |
| case MVT::v8i1: |
| SExtVT = MVT::v8i16; |
| // For cases such as (i8 bitcast (v8i1 setcc v8i32 v1, v2)), |
| // sign-extend to a 256-bit operation to match the compare. |
| // If the setcc operand is 128-bit, prefer sign-extending to 128-bit over |
| // 256-bit because the shuffle is cheaper than sign extending the result of |
| // the compare. |
| if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() && |
| (N0->getOperand(0).getValueType().is256BitVector() || |
| N0->getOperand(0).getValueType().is512BitVector())) { |
| SExtVT = MVT::v8i32; |
| FPCastVT = MVT::v8f32; |
| } |
| break; |
| case MVT::v16i1: |
| SExtVT = MVT::v16i8; |
| // For the case (i16 bitcast (v16i1 setcc v16i16 v1, v2)), |
| // it is not profitable to sign-extend to 256-bit because this will |
| // require an extra cross-lane shuffle which is more expensive than |
| // truncating the result of the compare to 128-bits. |
| break; |
| case MVT::v32i1: |
| SExtVT = MVT::v32i8; |
| break; |
| }; |
| |
| SDLoc DL(BitCast); |
| SDValue V = DAG.getSExtOrTrunc(N0, DL, SExtVT); |
| |
| if (SExtVT == MVT::v16i8 || SExtVT == MVT::v32i8) { |
| V = getPMOVMSKB(DL, V, DAG, Subtarget); |
| return DAG.getZExtOrTrunc(V, DL, VT); |
| } |
| |
| if (SExtVT == MVT::v8i16) { |
| assert(16 == DAG.ComputeNumSignBits(V) && "Expected all/none bit vector"); |
| V = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, V, |
| DAG.getUNDEF(MVT::v8i16)); |
| } else |
| assert(SExtVT.getScalarType() != MVT::i16 && |
| "Vectors of i16 must be packed"); |
| if (FPCastVT != MVT::INVALID_SIMPLE_VALUE_TYPE) |
| V = DAG.getBitcast(FPCastVT, V); |
| V = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V); |
| return DAG.getZExtOrTrunc(V, DL, VT); |
| } |
| |
| // Convert a vXi1 constant build vector to the same width scalar integer. |
| static SDValue combinevXi1ConstantToInteger(SDValue Op, SelectionDAG &DAG) { |
| EVT SrcVT = Op.getValueType(); |
| assert(SrcVT.getVectorElementType() == MVT::i1 && |
| "Expected a vXi1 vector"); |
| assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && |
| "Expected a constant build vector"); |
| |
| APInt Imm(SrcVT.getVectorNumElements(), 0); |
| for (unsigned Idx = 0, e = Op.getNumOperands(); Idx < e; ++Idx) { |
| SDValue In = Op.getOperand(Idx); |
| if (!In.isUndef() && (cast<ConstantSDNode>(In)->getZExtValue() & 0x1)) |
| Imm.setBit(Idx); |
| } |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), Imm.getBitWidth()); |
| return DAG.getConstant(Imm, SDLoc(Op), IntVT); |
| } |
| |
| static SDValue combineCastedMaskArithmetic(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| assert(N->getOpcode() == ISD::BITCAST && "Expected a bitcast"); |
| |
| if (!DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // Only do this if we have k-registers. |
| if (!Subtarget.hasAVX512()) |
| return SDValue(); |
| |
| EVT DstVT = N->getValueType(0); |
| SDValue Op = N->getOperand(0); |
| EVT SrcVT = Op.getValueType(); |
| |
| if (!Op.hasOneUse()) |
| return SDValue(); |
| |
| // Look for logic ops. |
| if (Op.getOpcode() != ISD::AND && |
| Op.getOpcode() != ISD::OR && |
| Op.getOpcode() != ISD::XOR) |
| return SDValue(); |
| |
| // Make sure we have a bitcast between mask registers and a scalar type. |
| if (!(SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 && |
| DstVT.isScalarInteger()) && |
| !(DstVT.isVector() && DstVT.getVectorElementType() == MVT::i1 && |
| SrcVT.isScalarInteger())) |
| return SDValue(); |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| if (LHS.hasOneUse() && LHS.getOpcode() == ISD::BITCAST && |
| LHS.getOperand(0).getValueType() == DstVT) |
| return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT, LHS.getOperand(0), |
| DAG.getBitcast(DstVT, RHS)); |
| |
| if (RHS.hasOneUse() && RHS.getOpcode() == ISD::BITCAST && |
| RHS.getOperand(0).getValueType() == DstVT) |
| return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT, |
| DAG.getBitcast(DstVT, LHS), RHS.getOperand(0)); |
| |
| // If the RHS is a vXi1 build vector, this is a good reason to flip too. |
| // Most of these have to move a constant from the scalar domain anyway. |
| if (ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) { |
| RHS = combinevXi1ConstantToInteger(RHS, DAG); |
| return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT, |
| DAG.getBitcast(DstVT, LHS), RHS); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue createMMXBuildVector(SDValue N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| unsigned NumElts = N.getNumOperands(); |
| |
| auto *BV = cast<BuildVectorSDNode>(N); |
| SDValue Splat = BV->getSplatValue(); |
| |
| // Build MMX element from integer GPR or SSE float values. |
| auto CreateMMXElement = [&](SDValue V) { |
| if (V.isUndef()) |
| return DAG.getUNDEF(MVT::x86mmx); |
| if (V.getValueType().isFloatingPoint()) { |
| if (Subtarget.hasSSE1() && !isa<ConstantFPSDNode>(V)) { |
| V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v4f32, V); |
| V = DAG.getBitcast(MVT::v2i64, V); |
| return DAG.getNode(X86ISD::MOVDQ2Q, DL, MVT::x86mmx, V); |
| } |
| V = DAG.getBitcast(MVT::i32, V); |
| } else { |
| V = DAG.getAnyExtOrTrunc(V, DL, MVT::i32); |
| } |
| return DAG.getNode(X86ISD::MMX_MOVW2D, DL, MVT::x86mmx, V); |
| }; |
| |
| // Convert build vector ops to MMX data in the bottom elements. |
| SmallVector<SDValue, 8> Ops; |
| |
| // Broadcast - use (PUNPCKL+)PSHUFW to broadcast single element. |
| if (Splat) { |
| if (Splat.isUndef()) |
| return DAG.getUNDEF(MVT::x86mmx); |
| |
| Splat = CreateMMXElement(Splat); |
| |
| if (Subtarget.hasSSE1()) { |
| // Unpack v8i8 to splat i8 elements to lowest 16-bits. |
| if (NumElts == 8) |
| Splat = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx, |
| DAG.getConstant(Intrinsic::x86_mmx_punpcklbw, DL, MVT::i32), Splat, |
| Splat); |
| |
| // Use PSHUFW to repeat 16-bit elements. |
| unsigned ShufMask = (NumElts > 2 ? 0 : 0x44); |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx, |
| DAG.getConstant(Intrinsic::x86_sse_pshuf_w, DL, MVT::i32), Splat, |
| DAG.getConstant(ShufMask, DL, MVT::i8)); |
| } |
| Ops.append(NumElts, Splat); |
| } else { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Ops.push_back(CreateMMXElement(N.getOperand(i))); |
| } |
| |
| // Use tree of PUNPCKLs to build up general MMX vector. |
| while (Ops.size() > 1) { |
| unsigned NumOps = Ops.size(); |
| unsigned IntrinOp = |
| (NumOps == 2 ? Intrinsic::x86_mmx_punpckldq |
| : (NumOps == 4 ? Intrinsic::x86_mmx_punpcklwd |
| : Intrinsic::x86_mmx_punpcklbw)); |
| SDValue Intrin = DAG.getConstant(IntrinOp, DL, MVT::i32); |
| for (unsigned i = 0; i != NumOps; i += 2) |
| Ops[i / 2] = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx, Intrin, |
| Ops[i], Ops[i + 1]); |
| Ops.resize(NumOps / 2); |
| } |
| |
| return Ops[0]; |
| } |
| |
| static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT SrcVT = N0.getValueType(); |
| |
| // Try to match patterns such as |
| // (i16 bitcast (v16i1 x)) |
| // -> |
| // (i16 movmsk (16i8 sext (v16i1 x))) |
| // before the setcc result is scalarized on subtargets that don't have legal |
| // vxi1 types. |
| if (DCI.isBeforeLegalize()) { |
| if (SDValue V = combineBitcastvxi1(DAG, SDValue(N, 0), Subtarget)) |
| return V; |
| |
| // If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer |
| // type, widen both sides to avoid a trip through memory. |
| if ((VT == MVT::v4i1 || VT == MVT::v2i1) && SrcVT.isScalarInteger() && |
| Subtarget.hasAVX512()) { |
| SDLoc dl(N); |
| N0 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, N0); |
| N0 = DAG.getBitcast(MVT::v8i1, N0); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, N0, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer |
| // type, widen both sides to avoid a trip through memory. |
| if ((SrcVT == MVT::v4i1 || SrcVT == MVT::v2i1) && VT.isScalarInteger() && |
| Subtarget.hasAVX512()) { |
| SDLoc dl(N); |
| unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); |
| SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); |
| Ops[0] = N0; |
| N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops); |
| N0 = DAG.getBitcast(MVT::i8, N0); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); |
| } |
| } |
| |
| // Since MMX types are special and don't usually play with other vector types, |
| // it's better to handle them early to be sure we emit efficient code by |
| // avoiding store-load conversions. |
| if (VT == MVT::x86mmx) { |
| // Detect MMX constant vectors. |
| APInt UndefElts; |
| SmallVector<APInt, 1> EltBits; |
| if (getTargetConstantBitsFromNode(N0, 64, UndefElts, EltBits)) { |
| SDLoc DL(N0); |
| // Handle zero-extension of i32 with MOVD. |
| if (EltBits[0].countLeadingZeros() >= 32) |
| return DAG.getNode(X86ISD::MMX_MOVW2D, DL, VT, |
| DAG.getConstant(EltBits[0].trunc(32), DL, MVT::i32)); |
| // Else, bitcast to a double. |
| // TODO - investigate supporting sext 32-bit immediates on x86_64. |
| APFloat F64(APFloat::IEEEdouble(), EltBits[0]); |
| return DAG.getBitcast(VT, DAG.getConstantFP(F64, DL, MVT::f64)); |
| } |
| |
| // Detect bitcasts to x86mmx low word. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && |
| (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) && |
| N0.getOperand(0).getValueType() == SrcVT.getScalarType()) { |
| bool LowUndef = true, AllUndefOrZero = true; |
| for (unsigned i = 1, e = SrcVT.getVectorNumElements(); i != e; ++i) { |
| SDValue Op = N0.getOperand(i); |
| LowUndef &= Op.isUndef() || (i >= e/2); |
| AllUndefOrZero &= (Op.isUndef() || isNullConstant(Op)); |
| } |
| if (AllUndefOrZero) { |
| SDValue N00 = N0.getOperand(0); |
| SDLoc dl(N00); |
| N00 = LowUndef ? DAG.getAnyExtOrTrunc(N00, dl, MVT::i32) |
| : DAG.getZExtOrTrunc(N00, dl, MVT::i32); |
| return DAG.getNode(X86ISD::MMX_MOVW2D, dl, VT, N00); |
| } |
| } |
| |
| // Detect bitcasts of 64-bit build vectors and convert to a |
| // MMX UNPCK/PSHUFW which takes MMX type inputs with the value in the |
| // lowest element. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && |
| (SrcVT == MVT::v2f32 || SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || |
| SrcVT == MVT::v8i8)) |
| return createMMXBuildVector(N0, DAG, Subtarget); |
| |
| // Detect bitcasts between element or subvector extraction to x86mmx. |
| if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) && |
| isNullConstant(N0.getOperand(1))) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getValueType().is128BitVector()) |
| return DAG.getNode(X86ISD::MOVDQ2Q, SDLoc(N00), VT, |
| DAG.getBitcast(MVT::v2i64, N00)); |
| } |
| |
| // Detect bitcasts from FP_TO_SINT to x86mmx. |
| if (SrcVT == MVT::v2i32 && N0.getOpcode() == ISD::FP_TO_SINT) { |
| SDLoc DL(N0); |
| SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0, |
| DAG.getUNDEF(MVT::v2i32)); |
| return DAG.getNode(X86ISD::MOVDQ2Q, DL, VT, |
| DAG.getBitcast(MVT::v2i64, Res)); |
| } |
| } |
| |
| // Try to remove a bitcast of constant vXi1 vector. We have to legalize |
| // most of these to scalar anyway. |
| if (Subtarget.hasAVX512() && VT.isScalarInteger() && |
| SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { |
| return combinevXi1ConstantToInteger(N0, DAG); |
| } |
| |
| if (Subtarget.hasAVX512() && SrcVT.isScalarInteger() && |
| VT.isVector() && VT.getVectorElementType() == MVT::i1 && |
| isa<ConstantSDNode>(N0)) { |
| auto *C = cast<ConstantSDNode>(N0); |
| if (C->isAllOnesValue()) |
| return DAG.getConstant(1, SDLoc(N0), VT); |
| if (C->isNullValue()) |
| return DAG.getConstant(0, SDLoc(N0), VT); |
| } |
| |
| // Try to remove bitcasts from input and output of mask arithmetic to |
| // remove GPR<->K-register crossings. |
| if (SDValue V = combineCastedMaskArithmetic(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| // Convert a bitcasted integer logic operation that has one bitcasted |
| // floating-point operand into a floating-point logic operation. This may |
| // create a load of a constant, but that is cheaper than materializing the |
| // constant in an integer register and transferring it to an SSE register or |
| // transferring the SSE operand to integer register and back. |
| unsigned FPOpcode; |
| switch (N0.getOpcode()) { |
| case ISD::AND: FPOpcode = X86ISD::FAND; break; |
| case ISD::OR: FPOpcode = X86ISD::FOR; break; |
| case ISD::XOR: FPOpcode = X86ISD::FXOR; break; |
| default: return SDValue(); |
| } |
| |
| if (!((Subtarget.hasSSE1() && VT == MVT::f32) || |
| (Subtarget.hasSSE2() && VT == MVT::f64))) |
| return SDValue(); |
| |
| SDValue LogicOp0 = N0.getOperand(0); |
| SDValue LogicOp1 = N0.getOperand(1); |
| SDLoc DL0(N0); |
| |
| // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) |
| if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST && |
| LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT && |
| !isa<ConstantSDNode>(LogicOp0.getOperand(0))) { |
| SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1); |
| return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1); |
| } |
| // bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y) |
| if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST && |
| LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT && |
| !isa<ConstantSDNode>(LogicOp1.getOperand(0))) { |
| SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0); |
| return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Match a binop + shuffle pyramid that represents a horizontal reduction over |
| // the elements of a vector. |
| // Returns the vector that is being reduced on, or SDValue() if a reduction |
| // was not matched. |
| static SDValue matchBinOpReduction(SDNode *Extract, unsigned &BinOp, |
| ArrayRef<ISD::NodeType> CandidateBinOps) { |
| // The pattern must end in an extract from index 0. |
| if ((Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) || |
| !isNullConstant(Extract->getOperand(1))) |
| return SDValue(); |
| |
| SDValue Op = Extract->getOperand(0); |
| unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); |
| |
| // Match against one of the candidate binary ops. |
| if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { |
| return Op.getOpcode() == unsigned(BinOp); |
| })) |
| return SDValue(); |
| |
| // At each stage, we're looking for something that looks like: |
| // %s = shufflevector <8 x i32> %op, <8 x i32> undef, |
| // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, |
| // i32 undef, i32 undef, i32 undef, i32 undef> |
| // %a = binop <8 x i32> %op, %s |
| // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, |
| // we expect something like: |
| // <4,5,6,7,u,u,u,u> |
| // <2,3,u,u,u,u,u,u> |
| // <1,u,u,u,u,u,u,u> |
| unsigned CandidateBinOp = Op.getOpcode(); |
| for (unsigned i = 0; i < Stages; ++i) { |
| if (Op.getOpcode() != CandidateBinOp) |
| return SDValue(); |
| |
| ShuffleVectorSDNode *Shuffle = |
| dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0).getNode()); |
| if (Shuffle) { |
| Op = Op.getOperand(1); |
| } else { |
| Shuffle = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1).getNode()); |
| Op = Op.getOperand(0); |
| } |
| |
| // The first operand of the shuffle should be the same as the other operand |
| // of the binop. |
| if (!Shuffle || Shuffle->getOperand(0) != Op) |
| return SDValue(); |
| |
| // Verify the shuffle has the expected (at this stage of the pyramid) mask. |
| for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) |
| if (Shuffle->getMaskElt(Index) != MaskEnd + Index) |
| return SDValue(); |
| } |
| |
| BinOp = CandidateBinOp; |
| return Op; |
| } |
| |
| // Given a select, detect the following pattern: |
| // 1: %2 = zext <N x i8> %0 to <N x i32> |
| // 2: %3 = zext <N x i8> %1 to <N x i32> |
| // 3: %4 = sub nsw <N x i32> %2, %3 |
| // 4: %5 = icmp sgt <N x i32> %4, [0 x N] or [-1 x N] |
| // 5: %6 = sub nsw <N x i32> zeroinitializer, %4 |
| // 6: %7 = select <N x i1> %5, <N x i32> %4, <N x i32> %6 |
| // This is useful as it is the input into a SAD pattern. |
| static bool detectZextAbsDiff(const SDValue &Select, SDValue &Op0, |
| SDValue &Op1) { |
| // Check the condition of the select instruction is greater-than. |
| SDValue SetCC = Select->getOperand(0); |
| if (SetCC.getOpcode() != ISD::SETCC) |
| return false; |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); |
| if (CC != ISD::SETGT && CC != ISD::SETLT) |
| return false; |
| |
| SDValue SelectOp1 = Select->getOperand(1); |
| SDValue SelectOp2 = Select->getOperand(2); |
| |
| // The following instructions assume SelectOp1 is the subtraction operand |
| // and SelectOp2 is the negation operand. |
| // In the case of SETLT this is the other way around. |
| if (CC == ISD::SETLT) |
| std::swap(SelectOp1, SelectOp2); |
| |
| // The second operand of the select should be the negation of the first |
| // operand, which is implemented as 0 - SelectOp1. |
| if (!(SelectOp2.getOpcode() == ISD::SUB && |
| ISD::isBuildVectorAllZeros(SelectOp2.getOperand(0).getNode()) && |
| SelectOp2.getOperand(1) == SelectOp1)) |
| return false; |
| |
| // The first operand of SetCC is the first operand of the select, which is the |
| // difference between the two input vectors. |
| if (SetCC.getOperand(0) != SelectOp1) |
| return false; |
| |
| // In SetLT case, The second operand of the comparison can be either 1 or 0. |
| APInt SplatVal; |
| if ((CC == ISD::SETLT) && |
| !((ISD::isConstantSplatVector(SetCC.getOperand(1).getNode(), SplatVal) && |
| SplatVal.isOneValue()) || |
| (ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode())))) |
| return false; |
| |
| // In SetGT case, The second operand of the comparison can be either -1 or 0. |
| if ((CC == ISD::SETGT) && |
| !(ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()) || |
| ISD::isBuildVectorAllOnes(SetCC.getOperand(1).getNode()))) |
| return false; |
| |
| // The first operand of the select is the difference between the two input |
| // vectors. |
| if (SelectOp1.getOpcode() != ISD::SUB) |
| return false; |
| |
| Op0 = SelectOp1.getOperand(0); |
| Op1 = SelectOp1.getOperand(1); |
| |
| // Check if the operands of the sub are zero-extended from vectors of i8. |
| if (Op0.getOpcode() != ISD::ZERO_EXTEND || |
| Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 || |
| Op1.getOpcode() != ISD::ZERO_EXTEND || |
| Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8) |
| return false; |
| |
| return true; |
| } |
| |
| // Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs |
| // to these zexts. |
| static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0, |
| const SDValue &Zext1, const SDLoc &DL, |
| const X86Subtarget &Subtarget) { |
| // Find the appropriate width for the PSADBW. |
| EVT InVT = Zext0.getOperand(0).getValueType(); |
| unsigned RegSize = std::max(128u, InVT.getSizeInBits()); |
| |
| // "Zero-extend" the i8 vectors. This is not a per-element zext, rather we |
| // fill in the missing vector elements with 0. |
| unsigned NumConcat = RegSize / InVT.getSizeInBits(); |
| SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT)); |
| Ops[0] = Zext0.getOperand(0); |
| MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8); |
| SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops); |
| Ops[0] = Zext1.getOperand(0); |
| SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops); |
| |
| // Actually build the SAD, split as 128/256/512 bits for SSE/AVX2/AVX512BW. |
| auto PSADBWBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| MVT VT = MVT::getVectorVT(MVT::i64, Ops[0].getValueSizeInBits() / 64); |
| return DAG.getNode(X86ISD::PSADBW, DL, VT, Ops); |
| }; |
| MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64); |
| return SplitOpsAndApply(DAG, Subtarget, DL, SadVT, { SadOp0, SadOp1 }, |
| PSADBWBuilder); |
| } |
| |
| // Attempt to replace an min/max v8i16/v16i8 horizontal reduction with |
| // PHMINPOSUW. |
| static SDValue combineHorizontalMinMaxResult(SDNode *Extract, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // Bail without SSE41. |
| if (!Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| EVT ExtractVT = Extract->getValueType(0); |
| if (ExtractVT != MVT::i16 && ExtractVT != MVT::i8) |
| return SDValue(); |
| |
| // Check for SMAX/SMIN/UMAX/UMIN horizontal reduction patterns. |
| unsigned BinOp; |
| SDValue Src = matchBinOpReduction( |
| Extract, BinOp, {ISD::SMAX, ISD::SMIN, ISD::UMAX, ISD::UMIN}); |
| if (!Src) |
| return SDValue(); |
| |
| EVT SrcVT = Src.getValueType(); |
| EVT SrcSVT = SrcVT.getScalarType(); |
| if (SrcSVT != ExtractVT || (SrcVT.getSizeInBits() % 128) != 0) |
| return SDValue(); |
| |
| SDLoc DL(Extract); |
| SDValue MinPos = Src; |
| |
| // First, reduce the source down to 128-bit, applying BinOp to lo/hi. |
| while (SrcVT.getSizeInBits() > 128) { |
| unsigned NumElts = SrcVT.getVectorNumElements(); |
| unsigned NumSubElts = NumElts / 2; |
| SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcSVT, NumSubElts); |
| unsigned SubSizeInBits = SrcVT.getSizeInBits(); |
| SDValue Lo = extractSubVector(MinPos, 0, DAG, DL, SubSizeInBits); |
| SDValue Hi = extractSubVector(MinPos, NumSubElts, DAG, DL, SubSizeInBits); |
| MinPos = DAG.getNode(BinOp, DL, SrcVT, Lo, Hi); |
| } |
| assert(((SrcVT == MVT::v8i16 && ExtractVT == MVT::i16) || |
| (SrcVT == MVT::v16i8 && ExtractVT == MVT::i8)) && |
| "Unexpected value type"); |
| |
| // PHMINPOSUW applies to UMIN(v8i16), for SMIN/SMAX/UMAX we must apply a mask |
| // to flip the value accordingly. |
| SDValue Mask; |
| unsigned MaskEltsBits = ExtractVT.getSizeInBits(); |
| if (BinOp == ISD::SMAX) |
| Mask = DAG.getConstant(APInt::getSignedMaxValue(MaskEltsBits), DL, SrcVT); |
| else if (BinOp == ISD::SMIN) |
| Mask = DAG.getConstant(APInt::getSignedMinValue(MaskEltsBits), DL, SrcVT); |
| else if (BinOp == ISD::UMAX) |
| Mask = DAG.getConstant(APInt::getAllOnesValue(MaskEltsBits), DL, SrcVT); |
| |
| if (Mask) |
| MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos); |
| |
| // For v16i8 cases we need to perform UMIN on pairs of byte elements, |
| // shuffling each upper element down and insert zeros. This means that the |
| // v16i8 UMIN will leave the upper element as zero, performing zero-extension |
| // ready for the PHMINPOS. |
| if (ExtractVT == MVT::i8) { |
| SDValue Upper = DAG.getVectorShuffle( |
| SrcVT, DL, MinPos, getZeroVector(MVT::v16i8, Subtarget, DAG, DL), |
| {1, 16, 3, 16, 5, 16, 7, 16, 9, 16, 11, 16, 13, 16, 15, 16}); |
| MinPos = DAG.getNode(ISD::UMIN, DL, SrcVT, MinPos, Upper); |
| } |
| |
| // Perform the PHMINPOS on a v8i16 vector, |
| MinPos = DAG.getBitcast(MVT::v8i16, MinPos); |
| MinPos = DAG.getNode(X86ISD::PHMINPOS, DL, MVT::v8i16, MinPos); |
| MinPos = DAG.getBitcast(SrcVT, MinPos); |
| |
| if (Mask) |
| MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos); |
| |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractVT, MinPos, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| // Attempt to replace an all_of/any_of style horizontal reduction with a MOVMSK. |
| static SDValue combineHorizontalPredicateResult(SDNode *Extract, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // Bail without SSE2 or with AVX512VL (which uses predicate registers). |
| if (!Subtarget.hasSSE2() || Subtarget.hasVLX()) |
| return SDValue(); |
| |
| EVT ExtractVT = Extract->getValueType(0); |
| unsigned BitWidth = ExtractVT.getSizeInBits(); |
| if (ExtractVT != MVT::i64 && ExtractVT != MVT::i32 && ExtractVT != MVT::i16 && |
| ExtractVT != MVT::i8) |
| return SDValue(); |
| |
| // Check for OR(any_of) and AND(all_of) horizontal reduction patterns. |
| unsigned BinOp = 0; |
| SDValue Match = matchBinOpReduction(Extract, BinOp, {ISD::OR, ISD::AND}); |
| if (!Match) |
| return SDValue(); |
| |
| // EXTRACT_VECTOR_ELT can require implicit extension of the vector element |
| // which we can't support here for now. |
| if (Match.getScalarValueSizeInBits() != BitWidth) |
| return SDValue(); |
| |
| // We require AVX2 for PMOVMSKB for v16i16/v32i8; |
| unsigned MatchSizeInBits = Match.getValueSizeInBits(); |
| if (!(MatchSizeInBits == 128 || |
| (MatchSizeInBits == 256 && |
| ((Subtarget.hasAVX() && BitWidth >= 32) || Subtarget.hasAVX2())))) |
| return SDValue(); |
| |
| // Don't bother performing this for 2-element vectors. |
| if (Match.getValueType().getVectorNumElements() <= 2) |
| return SDValue(); |
| |
| // Check that we are extracting a reduction of all sign bits. |
| if (DAG.ComputeNumSignBits(Match) != BitWidth) |
| return SDValue(); |
| |
| // For 32/64 bit comparisons use MOVMSKPS/MOVMSKPD, else PMOVMSKB. |
| MVT MaskVT; |
| if (64 == BitWidth || 32 == BitWidth) |
| MaskVT = MVT::getVectorVT(MVT::getFloatingPointVT(BitWidth), |
| MatchSizeInBits / BitWidth); |
| else |
| MaskVT = MVT::getVectorVT(MVT::i8, MatchSizeInBits / 8); |
| |
| APInt CompareBits; |
| ISD::CondCode CondCode; |
| if (BinOp == ISD::OR) { |
| // any_of -> MOVMSK != 0 |
| CompareBits = APInt::getNullValue(32); |
| CondCode = ISD::CondCode::SETNE; |
| } else { |
| // all_of -> MOVMSK == ((1 << NumElts) - 1) |
| CompareBits = APInt::getLowBitsSet(32, MaskVT.getVectorNumElements()); |
| CondCode = ISD::CondCode::SETEQ; |
| } |
| |
| // Perform the select as i32/i64 and then truncate to avoid partial register |
| // stalls. |
| unsigned ResWidth = std::max(BitWidth, 32u); |
| EVT ResVT = EVT::getIntegerVT(*DAG.getContext(), ResWidth); |
| SDLoc DL(Extract); |
| SDValue Zero = DAG.getConstant(0, DL, ResVT); |
| SDValue Ones = DAG.getAllOnesConstant(DL, ResVT); |
| SDValue Res = DAG.getBitcast(MaskVT, Match); |
| Res = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Res); |
| Res = DAG.getSelectCC(DL, Res, DAG.getConstant(CompareBits, DL, MVT::i32), |
| Ones, Zero, CondCode); |
| return DAG.getSExtOrTrunc(Res, DL, ExtractVT); |
| } |
| |
| static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // PSADBW is only supported on SSE2 and up. |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| // Verify the type we're extracting from is any integer type above i16. |
| EVT VT = Extract->getOperand(0).getValueType(); |
| if (!VT.isSimple() || !(VT.getVectorElementType().getSizeInBits() > 16)) |
| return SDValue(); |
| |
| unsigned RegSize = 128; |
| if (Subtarget.useBWIRegs()) |
| RegSize = 512; |
| else if (Subtarget.hasAVX()) |
| RegSize = 256; |
| |
| // We handle upto v16i* for SSE2 / v32i* for AVX / v64i* for AVX512. |
| // TODO: We should be able to handle larger vectors by splitting them before |
| // feeding them into several SADs, and then reducing over those. |
| if (RegSize / VT.getVectorNumElements() < 8) |
| return SDValue(); |
| |
| // Match shuffle + add pyramid. |
| unsigned BinOp = 0; |
| SDValue Root = matchBinOpReduction(Extract, BinOp, {ISD::ADD}); |
| |
| // The operand is expected to be zero extended from i8 |
| // (verified in detectZextAbsDiff). |
| // In order to convert to i64 and above, additional any/zero/sign |
| // extend is expected. |
| // The zero extend from 32 bit has no mathematical effect on the result. |
| // Also the sign extend is basically zero extend |
| // (extends the sign bit which is zero). |
| // So it is correct to skip the sign/zero extend instruction. |
| if (Root && (Root.getOpcode() == ISD::SIGN_EXTEND || |
| Root.getOpcode() == ISD::ZERO_EXTEND || |
| Root.getOpcode() == ISD::ANY_EXTEND)) |
| Root = Root.getOperand(0); |
| |
| // If there was a match, we want Root to be a select that is the root of an |
| // abs-diff pattern. |
| if (!Root || (Root.getOpcode() != ISD::VSELECT)) |
| return SDValue(); |
| |
| // Check whether we have an abs-diff pattern feeding into the select. |
| SDValue Zext0, Zext1; |
| if (!detectZextAbsDiff(Root, Zext0, Zext1)) |
| return SDValue(); |
| |
| // Create the SAD instruction. |
| SDLoc DL(Extract); |
| SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL, Subtarget); |
| |
| // If the original vector was wider than 8 elements, sum over the results |
| // in the SAD vector. |
| unsigned Stages = Log2_32(VT.getVectorNumElements()); |
| MVT SadVT = SAD.getSimpleValueType(); |
| if (Stages > 3) { |
| unsigned SadElems = SadVT.getVectorNumElements(); |
| |
| for(unsigned i = Stages - 3; i > 0; --i) { |
| SmallVector<int, 16> Mask(SadElems, -1); |
| for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j) |
| Mask[j] = MaskEnd + j; |
| |
| SDValue Shuffle = |
| DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask); |
| SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle); |
| } |
| } |
| |
| MVT Type = Extract->getSimpleValueType(0); |
| unsigned TypeSizeInBits = Type.getSizeInBits(); |
| // Return the lowest TypeSizeInBits bits. |
| MVT ResVT = MVT::getVectorVT(Type, SadVT.getSizeInBits() / TypeSizeInBits); |
| SAD = DAG.getBitcast(ResVT, SAD); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Type, SAD, |
| Extract->getOperand(1)); |
| } |
| |
| // Attempt to peek through a target shuffle and extract the scalar from the |
| // source. |
| static SDValue combineExtractWithShuffle(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue Src = N->getOperand(0); |
| SDValue Idx = N->getOperand(1); |
| |
| EVT VT = N->getValueType(0); |
| EVT SrcVT = Src.getValueType(); |
| EVT SrcSVT = SrcVT.getVectorElementType(); |
| unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| |
| // Don't attempt this for boolean mask vectors or unknown extraction indices. |
| if (SrcSVT == MVT::i1 || !isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| // Handle extract(broadcast(scalar_value)), it doesn't matter what index is. |
| if (X86ISD::VBROADCAST == Src.getOpcode() && |
| Src.getOperand(0).getValueType() == VT) |
| return Src.getOperand(0); |
| |
| // Resolve the target shuffle inputs and mask. |
| SmallVector<int, 16> Mask; |
| SmallVector<SDValue, 2> Ops; |
| if (!resolveTargetShuffleInputs(peekThroughBitcasts(Src), Ops, Mask, DAG)) |
| return SDValue(); |
| |
| // Attempt to narrow/widen the shuffle mask to the correct size. |
| if (Mask.size() != NumSrcElts) { |
| if ((NumSrcElts % Mask.size()) == 0) { |
| SmallVector<int, 16> ScaledMask; |
| int Scale = NumSrcElts / Mask.size(); |
| scaleShuffleMask<int>(Scale, Mask, ScaledMask); |
| Mask = std::move(ScaledMask); |
| } else if ((Mask.size() % NumSrcElts) == 0) { |
| SmallVector<int, 16> WidenedMask; |
| while (Mask.size() > NumSrcElts && |
| canWidenShuffleElements(Mask, WidenedMask)) |
| Mask = std::move(WidenedMask); |
| // TODO - investigate support for wider shuffle masks with known upper |
| // undef/zero elements for implicit zero-extension. |
| } |
| } |
| |
| // Check if narrowing/widening failed. |
| if (Mask.size() != NumSrcElts) |
| return SDValue(); |
| |
| int SrcIdx = Mask[N->getConstantOperandVal(1)]; |
| SDLoc dl(N); |
| |
| // If the shuffle source element is undef/zero then we can just accept it. |
| if (SrcIdx == SM_SentinelUndef) |
| return DAG.getUNDEF(VT); |
| |
| if (SrcIdx == SM_SentinelZero) |
| return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, dl, VT) |
| : DAG.getConstant(0, dl, VT); |
| |
| SDValue SrcOp = Ops[SrcIdx / Mask.size()]; |
| SrcOp = DAG.getBitcast(SrcVT, SrcOp); |
| SrcIdx = SrcIdx % Mask.size(); |
| |
| // We can only extract other elements from 128-bit vectors and in certain |
| // circumstances, depending on SSE-level. |
| // TODO: Investigate using extract_subvector for larger vectors. |
| // TODO: Investigate float/double extraction if it will be just stored. |
| if ((SrcVT == MVT::v4i32 || SrcVT == MVT::v2i64) && |
| ((SrcIdx == 0 && Subtarget.hasSSE2()) || Subtarget.hasSSE41())) { |
| assert(SrcSVT == VT && "Unexpected extraction type"); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcSVT, SrcOp, |
| DAG.getIntPtrConstant(SrcIdx, dl)); |
| } |
| |
| if ((SrcVT == MVT::v8i16 && Subtarget.hasSSE2()) || |
| (SrcVT == MVT::v16i8 && Subtarget.hasSSE41())) { |
| assert(VT.getSizeInBits() >= SrcSVT.getSizeInBits() && |
| "Unexpected extraction type"); |
| unsigned OpCode = (SrcVT == MVT::v8i16 ? X86ISD::PEXTRW : X86ISD::PEXTRB); |
| SDValue ExtOp = DAG.getNode(OpCode, dl, MVT::i32, SrcOp, |
| DAG.getIntPtrConstant(SrcIdx, dl)); |
| return DAG.getZExtOrTrunc(ExtOp, dl, VT); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Detect vector gather/scatter index generation and convert it from being a |
| /// bunch of shuffles and extracts into a somewhat faster sequence. |
| /// For i686, the best sequence is apparently storing the value and loading |
| /// scalars back, while for x64 we should use 64-bit extracts and shifts. |
| static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (SDValue NewOp = combineExtractWithShuffle(N, DAG, DCI, Subtarget)) |
| return NewOp; |
| |
| // TODO - Remove this once we can handle the implicit zero-extension of |
| // X86ISD::PEXTRW/X86ISD::PEXTRB in: |
| // XFormVExtractWithShuffleIntoLoad, combineHorizontalPredicateResult and |
| // combineBasicSADPattern. |
| if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI)) |
| return NewOp; |
| |
| SDValue InputVector = N->getOperand(0); |
| SDValue EltIdx = N->getOperand(1); |
| |
| EVT SrcVT = InputVector.getValueType(); |
| EVT VT = N->getValueType(0); |
| SDLoc dl(InputVector); |
| |
| // Detect mmx extraction of all bits as a i64. It works better as a bitcast. |
| if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && |
| VT == MVT::i64 && SrcVT == MVT::v1i64 && isNullConstant(EltIdx)) { |
| SDValue MMXSrc = InputVector.getOperand(0); |
| |
| // The bitcast source is a direct mmx result. |
| if (MMXSrc.getValueType() == MVT::x86mmx) |
| return DAG.getBitcast(VT, InputVector); |
| } |
| |
| // Detect mmx to i32 conversion through a v2i32 elt extract. |
| if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && |
| VT == MVT::i32 && SrcVT == MVT::v2i32 && isNullConstant(EltIdx)) { |
| SDValue MMXSrc = InputVector.getOperand(0); |
| |
| // The bitcast source is a direct mmx result. |
| if (MMXSrc.getValueType() == MVT::x86mmx) |
| return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc); |
| } |
| |
| if (VT == MVT::i1 && InputVector.getOpcode() == ISD::BITCAST && |
| isa<ConstantSDNode>(EltIdx) && |
| isa<ConstantSDNode>(InputVector.getOperand(0))) { |
| uint64_t ExtractedElt = N->getConstantOperandVal(1); |
| auto *InputC = cast<ConstantSDNode>(InputVector.getOperand(0)); |
| const APInt &InputValue = InputC->getAPIntValue(); |
| uint64_t Res = InputValue[ExtractedElt]; |
| return DAG.getConstant(Res, dl, MVT::i1); |
| } |
| |
| // Check whether this extract is the root of a sum of absolute differences |
| // pattern. This has to be done here because we really want it to happen |
| // pre-legalization, |
| if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget)) |
| return SAD; |
| |
| // Attempt to replace an all_of/any_of horizontal reduction with a MOVMSK. |
| if (SDValue Cmp = combineHorizontalPredicateResult(N, DAG, Subtarget)) |
| return Cmp; |
| |
| // Attempt to replace min/max v8i16/v16i8 reductions with PHMINPOSUW. |
| if (SDValue MinMax = combineHorizontalMinMaxResult(N, DAG, Subtarget)) |
| return MinMax; |
| |
| return SDValue(); |
| } |
| |
| /// If a vector select has an operand that is -1 or 0, try to simplify the |
| /// select to a bitwise logic operation. |
| /// TODO: Move to DAGCombiner, possibly using TargetLowering::hasAndNot()? |
| static SDValue |
| combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDValue Cond = N->getOperand(0); |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| EVT VT = LHS.getValueType(); |
| EVT CondVT = Cond.getValueType(); |
| SDLoc DL(N); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (N->getOpcode() != ISD::VSELECT) |
| return SDValue(); |
| |
| assert(CondVT.isVector() && "Vector select expects a vector selector!"); |
| |
| bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); |
| // Check if the first operand is all zeros and Cond type is vXi1. |
| // This situation only applies to avx512. |
| if (TValIsAllZeros && Subtarget.hasAVX512() && Cond.hasOneUse() && |
| CondVT.getVectorElementType() == MVT::i1) { |
| // Invert the cond to not(cond) : xor(op,allones)=not(op) |
| SDValue CondNew = DAG.getNOT(DL, Cond, CondVT); |
| // Vselect cond, op1, op2 = Vselect not(cond), op2, op1 |
| return DAG.getSelect(DL, VT, CondNew, RHS, LHS); |
| } |
| |
| // To use the condition operand as a bitwise mask, it must have elements that |
| // are the same size as the select elements. Ie, the condition operand must |
| // have already been promoted from the IR select condition type <N x i1>. |
| // Don't check if the types themselves are equal because that excludes |
| // vector floating-point selects. |
| if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); |
| bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); |
| |
| // Try to invert the condition if true value is not all 1s and false value is |
| // not all 0s. |
| if (!TValIsAllOnes && !FValIsAllZeros && |
| // Check if the selector will be produced by CMPP*/PCMP*. |
| Cond.getOpcode() == ISD::SETCC && |
| // Check if SETCC has already been promoted. |
| TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) == |
| CondVT) { |
| bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); |
| |
| if (TValIsAllZeros || FValIsAllOnes) { |
| SDValue CC = Cond.getOperand(2); |
| ISD::CondCode NewCC = |
| ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| Cond.getOperand(0).getValueType().isInteger()); |
| Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), |
| NewCC); |
| std::swap(LHS, RHS); |
| TValIsAllOnes = FValIsAllOnes; |
| FValIsAllZeros = TValIsAllZeros; |
| } |
| } |
| |
| // Cond value must be 'sign splat' to be converted to a logical op. |
| if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| // vselect Cond, 111..., 000... -> Cond |
| if (TValIsAllOnes && FValIsAllZeros) |
| return DAG.getBitcast(VT, Cond); |
| |
| if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(CondVT)) |
| return SDValue(); |
| |
| // vselect Cond, 111..., X -> or Cond, X |
| if (TValIsAllOnes) { |
| SDValue CastRHS = DAG.getBitcast(CondVT, RHS); |
| SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, CastRHS); |
| return DAG.getBitcast(VT, Or); |
| } |
| |
| // vselect Cond, X, 000... -> and Cond, X |
| if (FValIsAllZeros) { |
| SDValue CastLHS = DAG.getBitcast(CondVT, LHS); |
| SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, CastLHS); |
| return DAG.getBitcast(VT, And); |
| } |
| |
| // vselect Cond, 000..., X -> andn Cond, X |
| if (TValIsAllZeros) { |
| MVT AndNVT = MVT::getVectorVT(MVT::i64, CondVT.getSizeInBits() / 64); |
| SDValue CastCond = DAG.getBitcast(AndNVT, Cond); |
| SDValue CastRHS = DAG.getBitcast(AndNVT, RHS); |
| SDValue AndN = DAG.getNode(X86ISD::ANDNP, DL, AndNVT, CastCond, CastRHS); |
| return DAG.getBitcast(VT, AndN); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) { |
| SDValue Cond = N->getOperand(0); |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| SDLoc DL(N); |
| |
| auto *TrueC = dyn_cast<ConstantSDNode>(LHS); |
| auto *FalseC = dyn_cast<ConstantSDNode>(RHS); |
| if (!TrueC || !FalseC) |
| return SDValue(); |
| |
| // Don't do this for crazy integer types. |
| EVT VT = N->getValueType(0); |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| // We're going to use the condition bit in math or logic ops. We could allow |
| // this with a wider condition value (post-legalization it becomes an i8), |
| // but if nothing is creating selects that late, it doesn't matter. |
| if (Cond.getValueType() != MVT::i1) |
| return SDValue(); |
| |
| // A power-of-2 multiply is just a shift. LEA also cheaply handles multiply by |
| // 3, 5, or 9 with i32/i64, so those get transformed too. |
| // TODO: For constants that overflow or do not differ by power-of-2 or small |
| // multiplier, convert to 'and' + 'add'. |
| const APInt &TrueVal = TrueC->getAPIntValue(); |
| const APInt &FalseVal = FalseC->getAPIntValue(); |
| bool OV; |
| APInt Diff = TrueVal.ssub_ov(FalseVal, OV); |
| if (OV) |
| return SDValue(); |
| |
| APInt AbsDiff = Diff.abs(); |
| if (AbsDiff.isPowerOf2() || |
| ((VT == MVT::i32 || VT == MVT::i64) && |
| (AbsDiff == 3 || AbsDiff == 5 || AbsDiff == 9))) { |
| |
| // We need a positive multiplier constant for shift/LEA codegen. The 'not' |
| // of the condition can usually be folded into a compare predicate, but even |
| // without that, the sequence should be cheaper than a CMOV alternative. |
| if (TrueVal.slt(FalseVal)) { |
| Cond = DAG.getNOT(DL, Cond, MVT::i1); |
| std::swap(TrueC, FalseC); |
| } |
| |
| // select Cond, TC, FC --> (zext(Cond) * (TC - FC)) + FC |
| SDValue R = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); |
| |
| // Multiply condition by the difference if non-one. |
| if (!AbsDiff.isOneValue()) |
| R = DAG.getNode(ISD::MUL, DL, VT, R, DAG.getConstant(AbsDiff, DL, VT)); |
| |
| // Add the base if non-zero. |
| if (!FalseC->isNullValue()) |
| R = DAG.getNode(ISD::ADD, DL, VT, R, SDValue(FalseC, 0)); |
| |
| return R; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If this is a *dynamic* select (non-constant condition) and we can match |
| /// this node with one of the variable blend instructions, restructure the |
| /// condition so that blends can use the high (sign) bit of each element. |
| static SDValue combineVSelectToShrunkBlend(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDValue Cond = N->getOperand(0); |
| if (N->getOpcode() != ISD::VSELECT || |
| ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) |
| return SDValue(); |
| |
| // Don't optimize before the condition has been transformed to a legal type |
| // and don't ever optimize vector selects that map to AVX512 mask-registers. |
| unsigned BitWidth = Cond.getScalarValueSizeInBits(); |
| if (BitWidth < 8 || BitWidth > 64) |
| return SDValue(); |
| |
| // We can only handle the cases where VSELECT is directly legal on the |
| // subtarget. We custom lower VSELECT nodes with constant conditions and |
| // this makes it hard to see whether a dynamic VSELECT will correctly |
| // lower, so we both check the operation's status and explicitly handle the |
| // cases where a *dynamic* blend will fail even though a constant-condition |
| // blend could be custom lowered. |
| // FIXME: We should find a better way to handle this class of problems. |
| // Potentially, we should combine constant-condition vselect nodes |
| // pre-legalization into shuffles and not mark as many types as custom |
| // lowered. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = N->getValueType(0); |
| if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) |
| return SDValue(); |
| // FIXME: We don't support i16-element blends currently. We could and |
| // should support them by making *all* the bits in the condition be set |
| // rather than just the high bit and using an i8-element blend. |
| if (VT.getVectorElementType() == MVT::i16) |
| return SDValue(); |
| // Dynamic blending was only available from SSE4.1 onward. |
| if (VT.is128BitVector() && !Subtarget.hasSSE41()) |
| return SDValue(); |
| // Byte blends are only available in AVX2 |
| if (VT == MVT::v32i8 && !Subtarget.hasAVX2()) |
| return SDValue(); |
| // There are no 512-bit blend instructions that use sign bits. |
| if (VT.is512BitVector()) |
| return SDValue(); |
| |
| // TODO: Add other opcodes eventually lowered into BLEND. |
| for (SDNode::use_iterator UI = Cond->use_begin(), UE = Cond->use_end(); |
| UI != UE; ++UI) |
| if (UI->getOpcode() != ISD::VSELECT || UI.getOperandNo() != 0) |
| return SDValue(); |
| |
| APInt DemandedMask(APInt::getSignMask(BitWidth)); |
| KnownBits Known; |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| if (!TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO, 0, true)) |
| return SDValue(); |
| |
| // If we changed the computation somewhere in the DAG, this change will |
| // affect all users of Cond. Update all the nodes so that we do not use |
| // the generic VSELECT anymore. Otherwise, we may perform wrong |
| // optimizations as we messed with the actual expectation for the vector |
| // boolean values. |
| for (SDNode *U : Cond->uses()) { |
| SDValue SB = DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(U), U->getValueType(0), |
| Cond, U->getOperand(1), U->getOperand(2)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(U, 0), SB); |
| } |
| DCI.CommitTargetLoweringOpt(TLO); |
| return SDValue(N, 0); |
| } |
| |
| /// Do target-specific dag combines on SELECT and VSELECT nodes. |
| static SDValue combineSelect(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| SDValue Cond = N->getOperand(0); |
| // Get the LHS/RHS of the select. |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| EVT VT = LHS.getValueType(); |
| EVT CondVT = Cond.getValueType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Convert vselects with constant condition into shuffles. |
| if (ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()) && |
| DCI.isBeforeLegalizeOps()) { |
| SmallVector<int, 64> Mask(VT.getVectorNumElements(), -1); |
| for (int i = 0, Size = Mask.size(); i != Size; ++i) { |
| SDValue CondElt = Cond->getOperand(i); |
| Mask[i] = i; |
| // Arbitrarily choose from the 2nd operand if the select condition element |
| // is undef. |
| // TODO: Can we do better by matching patterns such as even/odd? |
| if (CondElt.isUndef() || isNullConstant(CondElt)) |
| Mask[i] += Size; |
| } |
| |
| return DAG.getVectorShuffle(VT, DL, LHS, RHS, Mask); |
| } |
| |
| // If we have SSE[12] support, try to form min/max nodes. SSE min/max |
| // instructions match the semantics of the common C idiom x<y?x:y but not |
| // x<=y?x:y, because of how they handle negative zero (which can be |
| // ignored in unsafe-math mode). |
| // We also try to create v2f32 min/max nodes, which we later widen to v4f32. |
| if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && |
| VT != MVT::f80 && VT != MVT::f128 && |
| (TLI.isTypeLegal(VT) || VT == MVT::v2f32) && |
| (Subtarget.hasSSE2() || |
| (Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| unsigned Opcode = 0; |
| // Check for x CC y ? x : y. |
| if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(1))) { |
| switch (CC) { |
| default: break; |
| case ISD::SETULT: |
| // Converting this to a min would handle NaNs incorrectly, and swapping |
| // the operands would cause it to handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZeroFloat(LHS) || |
| DAG.isKnownNeverZeroFloat(RHS))) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETOLE: |
| // Converting this to a min would handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS)) |
| break; |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETULE: |
| // Converting this to a min would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOGE: |
| // Converting this to a max would handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS)) |
| break; |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETUGT: |
| // Converting this to a max would handle NaNs incorrectly, and swapping |
| // the operands would cause it to handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZeroFloat(LHS) || |
| DAG.isKnownNeverZeroFloat(RHS))) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETUGE: |
| // Converting this to a max would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| // Check for x CC y ? y : x -- a min/max with reversed arms. |
| } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(0))) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOGE: |
| // Converting this to a min would handle comparisons between positive |
| // and negative zero incorrectly, and swapping the operands would |
| // cause it to handle NaNs incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZeroFloat(LHS) || |
| DAG.isKnownNeverZeroFloat(RHS))) { |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETUGT: |
| // Converting this to a min would handle NaNs incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) |
| break; |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETUGE: |
| // Converting this to a min would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETULT: |
| // Converting this to a max would handle NaNs incorrectly. |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) |
| break; |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETOLE: |
| // Converting this to a max would handle comparisons between positive |
| // and negative zero incorrectly, and swapping the operands would |
| // cause it to handle NaNs incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !DAG.isKnownNeverZeroFloat(LHS) && |
| !DAG.isKnownNeverZeroFloat(RHS)) { |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETULE: |
| // Converting this to a max would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } |
| |
| if (Opcode) |
| return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); |
| } |
| |
| // Some mask scalar intrinsics rely on checking if only one bit is set |
| // and implement it in C code like this: |
| // A[0] = (U & 1) ? A[0] : W[0]; |
| // This creates some redundant instructions that break pattern matching. |
| // fold (select (setcc (and (X, 1), 0, seteq), Y, Z)) -> select(and(X, 1),Z,Y) |
| if (Subtarget.hasAVX512() && N->getOpcode() == ISD::SELECT && |
| Cond.getOpcode() == ISD::SETCC && (VT == MVT::f32 || VT == MVT::f64)) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| SDValue AndNode = Cond.getOperand(0); |
| if (AndNode.getOpcode() == ISD::AND && CC == ISD::SETEQ && |
| isNullConstant(Cond.getOperand(1)) && |
| isOneConstant(AndNode.getOperand(1))) { |
| // LHS and RHS swapped due to |
| // setcc outputting 1 when AND resulted in 0 and vice versa. |
| AndNode = DAG.getZExtOrTrunc(AndNode, DL, MVT::i8); |
| return DAG.getNode(ISD::SELECT, DL, VT, AndNode, RHS, LHS); |
| } |
| } |
| |
| // v16i8 (select v16i1, v16i8, v16i8) does not have a proper |
| // lowering on KNL. In this case we convert it to |
| // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. |
| // The same situation all vectors of i8 and i16 without BWI. |
| // Make sure we extend these even before type legalization gets a chance to |
| // split wide vectors. |
| // Since SKX these selects have a proper lowering. |
| if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && CondVT.isVector() && |
| CondVT.getVectorElementType() == MVT::i1 && |
| VT.getVectorNumElements() > 4 && |
| (VT.getVectorElementType() == MVT::i8 || |
| VT.getVectorElementType() == MVT::i16)) { |
| Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); |
| return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS); |
| } |
| |
| if (SDValue V = combineSelectOfTwoConstants(N, DAG)) |
| return V; |
| |
| // Canonicalize max and min: |
| // (x > y) ? x : y -> (x >= y) ? x : y |
| // (x < y) ? x : y -> (x <= y) ? x : y |
| // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates |
| // the need for an extra compare |
| // against zero. e.g. |
| // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 |
| // subl %esi, %edi |
| // testl %edi, %edi |
| // movl $0, %eax |
| // cmovgl %edi, %eax |
| // => |
| // xorl %eax, %eax |
| // subl %esi, $edi |
| // cmovsl %eax, %edi |
| if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && |
| DAG.isEqualTo(LHS, Cond.getOperand(0)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(1))) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGT: { |
| ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; |
| Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), |
| Cond.getOperand(0), Cond.getOperand(1), NewCC); |
| return DAG.getSelect(DL, VT, Cond, LHS, RHS); |
| } |
| } |
| } |
| |
| // Early exit check |
| if (!TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| // Match VSELECTs into subs with unsigned saturation. |
| if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && |
| // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. |
| ((Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || |
| (Subtarget.hasAVX() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| // Check if one of the arms of the VSELECT is a zero vector. If it's on the |
| // left side invert the predicate to simplify logic below. |
| SDValue Other; |
| if (ISD::isBuildVectorAllZeros(LHS.getNode())) { |
| Other = RHS; |
| CC = ISD::getSetCCInverse(CC, true); |
| } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { |
| Other = LHS; |
| } |
| |
| if (Other.getNode() && Other->getNumOperands() == 2 && |
| DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { |
| SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); |
| SDValue CondRHS = Cond->getOperand(1); |
| |
| auto SUBUSBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::SUBUS, DL, Ops[0].getValueType(), Ops); |
| }; |
| |
| // Look for a general sub with unsigned saturation first. |
| // x >= y ? x-y : 0 --> subus x, y |
| // x > y ? x-y : 0 --> subus x, y |
| if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && |
| Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, { OpLHS, OpRHS }, |
| SUBUSBuilder); |
| |
| if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) |
| if (isa<BuildVectorSDNode>(CondRHS)) { |
| // If the RHS is a constant we have to reverse the const |
| // canonicalization. |
| // x > C-1 ? x+-C : 0 --> subus x, C |
| auto MatchSUBUS = [](ConstantSDNode *Op, ConstantSDNode *Cond) { |
| return Cond->getAPIntValue() == (-Op->getAPIntValue() - 1); |
| }; |
| if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && |
| ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchSUBUS)) { |
| OpRHS = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), OpRHS); |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, { OpLHS, OpRHS }, |
| SUBUSBuilder); |
| } |
| |
| // Another special case: If C was a sign bit, the sub has been |
| // canonicalized into a xor. |
| // FIXME: Would it be better to use computeKnownBits to determine |
| // whether it's safe to decanonicalize the xor? |
| // x s< 0 ? x^C : 0 --> subus x, C |
| if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) |
| if (CC == ISD::SETLT && Other.getOpcode() == ISD::XOR && |
| ISD::isBuildVectorAllZeros(CondRHS.getNode()) && |
| OpRHSConst->getAPIntValue().isSignMask()) { |
| OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT); |
| // Note that we have to rebuild the RHS constant here to ensure we |
| // don't rely on particular values of undef lanes. |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, { OpLHS, OpRHS }, |
| SUBUSBuilder); |
| } |
| } |
| } |
| } |
| |
| if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| if (SDValue V = combineVSelectToShrunkBlend(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| // Custom action for SELECT MMX |
| if (VT == MVT::x86mmx) { |
| LHS = DAG.getBitcast(MVT::i64, LHS); |
| RHS = DAG.getBitcast(MVT::i64, RHS); |
| SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::i64, Cond, LHS, RHS); |
| return DAG.getBitcast(VT, newSelect); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Combine: |
| /// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S) |
| /// to: |
| /// (brcond/cmov/setcc .., (LADD x, 1), COND_LE) |
| /// i.e., reusing the EFLAGS produced by the LOCKed instruction. |
| /// Note that this is only legal for some op/cc combinations. |
| static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // This combine only operates on CMP-like nodes. |
| if (!(Cmp.getOpcode() == X86ISD::CMP || |
| (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0)))) |
| return SDValue(); |
| |
| // Can't replace the cmp if it has more uses than the one we're looking at. |
| // FIXME: We would like to be able to handle this, but would need to make sure |
| // all uses were updated. |
| if (!Cmp.hasOneUse()) |
| return SDValue(); |
| |
| // This only applies to variations of the common case: |
| // (icmp slt x, 0) -> (icmp sle (add x, 1), 0) |
| // (icmp sge x, 0) -> (icmp sgt (add x, 1), 0) |
| // (icmp sle x, 0) -> (icmp slt (sub x, 1), 0) |
| // (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0) |
| // Using the proper condcodes (see below), overflow is checked for. |
| |
| // FIXME: We can generalize both constraints: |
| // - XOR/OR/AND (if they were made to survive AtomicExpand) |
| // - LHS != 1 |
| // if the result is compared. |
| |
| SDValue CmpLHS = Cmp.getOperand(0); |
| SDValue CmpRHS = Cmp.getOperand(1); |
| |
| if (!CmpLHS.hasOneUse()) |
| return SDValue(); |
| |
| unsigned Opc = CmpLHS.getOpcode(); |
| if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB) |
| return SDValue(); |
| |
| SDValue OpRHS = CmpLHS.getOperand(2); |
| auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS); |
| if (!OpRHSC) |
| return SDValue(); |
| |
| APInt Addend = OpRHSC->getAPIntValue(); |
| if (Opc == ISD::ATOMIC_LOAD_SUB) |
| Addend = -Addend; |
| |
| auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS); |
| if (!CmpRHSC) |
| return SDValue(); |
| |
| APInt Comparison = CmpRHSC->getAPIntValue(); |
| |
| // If the addend is the negation of the comparison value, then we can do |
| // a full comparison by emitting the atomic arithmetic as a locked sub. |
| if (Comparison == -Addend) { |
| // The CC is fine, but we need to rewrite the LHS of the comparison as an |
| // atomic sub. |
| auto *AN = cast<AtomicSDNode>(CmpLHS.getNode()); |
| auto AtomicSub = DAG.getAtomic( |
| ISD::ATOMIC_LOAD_SUB, SDLoc(CmpLHS), CmpLHS.getValueType(), |
| /*Chain*/ CmpLHS.getOperand(0), /*LHS*/ CmpLHS.getOperand(1), |
| /*RHS*/ DAG.getConstant(-Addend, SDLoc(CmpRHS), CmpRHS.getValueType()), |
| AN->getMemOperand()); |
| // If the comparision uses the CF flag we can't use INC/DEC instructions. |
| bool NeedCF = false; |
| switch (CC) { |
| default: break; |
| case X86::COND_A: case X86::COND_AE: |
| case X86::COND_B: case X86::COND_BE: |
| NeedCF = true; |
| break; |
| } |
| auto LockOp = lowerAtomicArithWithLOCK(AtomicSub, DAG, Subtarget, !NeedCF); |
| DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0), |
| DAG.getUNDEF(CmpLHS.getValueType())); |
| DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1)); |
| return LockOp; |
| } |
| |
| // We can handle comparisons with zero in a number of cases by manipulating |
| // the CC used. |
| if (!Comparison.isNullValue()) |
| return SDValue(); |
| |
| if (CC == X86::COND_S && Addend == 1) |
| CC = X86::COND_LE; |
| else if (CC == X86::COND_NS && Addend == 1) |
| CC = X86::COND_G; |
| else if (CC == X86::COND_G && Addend == -1) |
| CC = X86::COND_GE; |
| else if (CC == X86::COND_LE && Addend == -1) |
| CC = X86::COND_L; |
| else |
| return SDValue(); |
| |
| SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG, Subtarget); |
| DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0), |
| DAG.getUNDEF(CmpLHS.getValueType())); |
| DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1)); |
| return LockOp; |
| } |
| |
| // Check whether a boolean test is testing a boolean value generated by |
| // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition |
| // code. |
| // |
| // Simplify the following patterns: |
| // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or |
| // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) |
| // to (Op EFLAGS Cond) |
| // |
| // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or |
| // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) |
| // to (Op EFLAGS !Cond) |
| // |
| // where Op could be BRCOND or CMOV. |
| // |
| static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { |
| // This combine only operates on CMP-like nodes. |
| if (!(Cmp.getOpcode() == X86ISD::CMP || |
| (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0)))) |
| return SDValue(); |
| |
| // Quit if not used as a boolean value. |
| if (CC != X86::COND_E && CC != X86::COND_NE) |
| return SDValue(); |
| |
| // Check CMP operands. One of them should be 0 or 1 and the other should be |
| // an SetCC or extended from it. |
| SDValue Op1 = Cmp.getOperand(0); |
| SDValue Op2 = Cmp.getOperand(1); |
| |
| SDValue SetCC; |
| const ConstantSDNode* C = nullptr; |
| bool needOppositeCond = (CC == X86::COND_E); |
| bool checkAgainstTrue = false; // Is it a comparison against 1? |
| |
| if ((C = dyn_cast<ConstantSDNode>(Op1))) |
| SetCC = Op2; |
| else if ((C = dyn_cast<ConstantSDNode>(Op2))) |
| SetCC = Op1; |
| else // Quit if all operands are not constants. |
| return SDValue(); |
| |
| if (C->getZExtValue() == 1) { |
| needOppositeCond = !needOppositeCond; |
| checkAgainstTrue = true; |
| } else if (C->getZExtValue() != 0) |
| // Quit if the constant is neither 0 or 1. |
| return SDValue(); |
| |
| bool truncatedToBoolWithAnd = false; |
| // Skip (zext $x), (trunc $x), or (and $x, 1) node. |
| while (SetCC.getOpcode() == ISD::ZERO_EXTEND || |
| SetCC.getOpcode() == ISD::TRUNCATE || |
| SetCC.getOpcode() == ISD::AND) { |
| if (SetCC.getOpcode() == ISD::AND) { |
| int OpIdx = -1; |
| if (isOneConstant(SetCC.getOperand(0))) |
| OpIdx = 1; |
| if (isOneConstant(SetCC.getOperand(1))) |
| OpIdx = 0; |
| if (OpIdx < 0) |
| break; |
| SetCC = SetCC.getOperand(OpIdx); |
| truncatedToBoolWithAnd = true; |
| } else |
| SetCC = SetCC.getOperand(0); |
| } |
| |
| switch (SetCC.getOpcode()) { |
| case X86ISD::SETCC_CARRY: |
| // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to |
| // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, |
| // i.e. it's a comparison against true but the result of SETCC_CARRY is not |
| // truncated to i1 using 'and'. |
| if (checkAgainstTrue && !truncatedToBoolWithAnd) |
| break; |
| assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && |
| "Invalid use of SETCC_CARRY!"); |
| LLVM_FALLTHROUGH; |
| case X86ISD::SETCC: |
| // Set the condition code or opposite one if necessary. |
| CC = X86::CondCode(SetCC.getConstantOperandVal(0)); |
| if (needOppositeCond) |
| CC = X86::GetOppositeBranchCondition(CC); |
| return SetCC.getOperand(1); |
| case X86ISD::CMOV: { |
| // Check whether false/true value has canonical one, i.e. 0 or 1. |
| ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); |
| ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); |
| // Quit if true value is not a constant. |
| if (!TVal) |
| return SDValue(); |
| // Quit if false value is not a constant. |
| if (!FVal) { |
| SDValue Op = SetCC.getOperand(0); |
| // Skip 'zext' or 'trunc' node. |
| if (Op.getOpcode() == ISD::ZERO_EXTEND || |
| Op.getOpcode() == ISD::TRUNCATE) |
| Op = Op.getOperand(0); |
| // A special case for rdrand/rdseed, where 0 is set if false cond is |
| // found. |
| if ((Op.getOpcode() != X86ISD::RDRAND && |
| Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) |
| return SDValue(); |
| } |
| // Quit if false value is not the constant 0 or 1. |
| bool FValIsFalse = true; |
| if (FVal && FVal->getZExtValue() != 0) { |
| if (FVal->getZExtValue() != 1) |
| return SDValue(); |
| // If FVal is 1, opposite cond is needed. |
| needOppositeCond = !needOppositeCond; |
| FValIsFalse = false; |
| } |
| // Quit if TVal is not the constant opposite of FVal. |
| if (FValIsFalse && TVal->getZExtValue() != 1) |
| return SDValue(); |
| if (!FValIsFalse && TVal->getZExtValue() != 0) |
| return SDValue(); |
| CC = X86::CondCode(SetCC.getConstantOperandVal(2)); |
| if (needOppositeCond) |
| CC = X86::GetOppositeBranchCondition(CC); |
| return SetCC.getOperand(3); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS. |
| /// Match: |
| /// (X86or (X86setcc) (X86setcc)) |
| /// (X86cmp (and (X86setcc) (X86setcc)), 0) |
| static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0, |
| X86::CondCode &CC1, SDValue &Flags, |
| bool &isAnd) { |
| if (Cond->getOpcode() == X86ISD::CMP) { |
| if (!isNullConstant(Cond->getOperand(1))) |
| return false; |
| |
| Cond = Cond->getOperand(0); |
| } |
| |
| isAnd = false; |
| |
| SDValue SetCC0, SetCC1; |
| switch (Cond->getOpcode()) { |
| default: return false; |
| case ISD::AND: |
| case X86ISD::AND: |
| isAnd = true; |
| LLVM_FALLTHROUGH; |
| case ISD::OR: |
| case X86ISD::OR: |
| SetCC0 = Cond->getOperand(0); |
| SetCC1 = Cond->getOperand(1); |
| break; |
| }; |
| |
| // Make sure we have SETCC nodes, using the same flags value. |
| if (SetCC0.getOpcode() != X86ISD::SETCC || |
| SetCC1.getOpcode() != X86ISD::SETCC || |
| SetCC0->getOperand(1) != SetCC1->getOperand(1)) |
| return false; |
| |
| CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0); |
| CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0); |
| Flags = SetCC0->getOperand(1); |
| return true; |
| } |
| |
| // When legalizing carry, we create carries via add X, -1 |
| // If that comes from an actual carry, via setcc, we use the |
| // carry directly. |
| static SDValue combineCarryThroughADD(SDValue EFLAGS) { |
| if (EFLAGS.getOpcode() == X86ISD::ADD) { |
| if (isAllOnesConstant(EFLAGS.getOperand(1))) { |
| SDValue Carry = EFLAGS.getOperand(0); |
| while (Carry.getOpcode() == ISD::TRUNCATE || |
| Carry.getOpcode() == ISD::ZERO_EXTEND || |
| Carry.getOpcode() == ISD::SIGN_EXTEND || |
| Carry.getOpcode() == ISD::ANY_EXTEND || |
| (Carry.getOpcode() == ISD::AND && |
| isOneConstant(Carry.getOperand(1)))) |
| Carry = Carry.getOperand(0); |
| if (Carry.getOpcode() == X86ISD::SETCC || |
| Carry.getOpcode() == X86ISD::SETCC_CARRY) { |
| if (Carry.getConstantOperandVal(0) == X86::COND_B) |
| return Carry.getOperand(1); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Optimize an EFLAGS definition used according to the condition code \p CC |
| /// into a simpler EFLAGS value, potentially returning a new \p CC and replacing |
| /// uses of chain values. |
| static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (CC == X86::COND_B) |
| if (SDValue Flags = combineCarryThroughADD(EFLAGS)) |
| return Flags; |
| |
| if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC)) |
| return R; |
| return combineSetCCAtomicArith(EFLAGS, CC, DAG, Subtarget); |
| } |
| |
| /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] |
| static SDValue combineCMov(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| |
| SDValue FalseOp = N->getOperand(0); |
| SDValue TrueOp = N->getOperand(1); |
| X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); |
| SDValue Cond = N->getOperand(3); |
| |
| // Try to simplify the EFLAGS and condition code operands. |
| // We can't always do this as FCMOV only supports a subset of X86 cond. |
| if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG, Subtarget)) { |
| if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) { |
| SDValue Ops[] = {FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8), |
| Flags}; |
| return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops); |
| } |
| } |
| |
| // If this is a select between two integer constants, try to do some |
| // optimizations. Note that the operands are ordered the opposite of SELECT |
| // operands. |
| if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { |
| if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { |
| // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is |
| // larger than FalseC (the false value). |
| if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { |
| CC = X86::GetOppositeBranchCondition(CC); |
| std::swap(TrueC, FalseC); |
| std::swap(TrueOp, FalseOp); |
| } |
| |
| // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. |
| // This is efficient for any integer data type (including i8/i16) and |
| // shift amount. |
| if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { |
| Cond = getSETCC(CC, Cond, DL, DAG); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); |
| |
| unsigned ShAmt = TrueC->getAPIntValue().logBase2(); |
| Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(ShAmt, DL, MVT::i8)); |
| return Cond; |
| } |
| |
| // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient |
| // for any integer data type, including i8/i16. |
| if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { |
| Cond = getSETCC(CC, Cond, DL, DAG); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, |
| FalseC->getValueType(0), Cond); |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| return Cond; |
| } |
| |
| // Optimize cases that will turn into an LEA instruction. This requires |
| // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). |
| if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { |
| uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; |
| |
| bool isFastMultiplier = false; |
| if (Diff < 10) { |
| switch ((unsigned char)Diff) { |
| default: break; |
| case 1: // result = add base, cond |
| case 2: // result = lea base( , cond*2) |
| case 3: // result = lea base(cond, cond*2) |
| case 4: // result = lea base( , cond*4) |
| case 5: // result = lea base(cond, cond*4) |
| case 8: // result = lea base( , cond*8) |
| case 9: // result = lea base(cond, cond*8) |
| isFastMultiplier = true; |
| break; |
| } |
| } |
| |
| if (isFastMultiplier) { |
| APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); |
| Cond = getSETCC(CC, Cond, DL ,DAG); |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), |
| Cond); |
| // Scale the condition by the difference. |
| if (Diff != 1) |
| Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(Diff, DL, Cond.getValueType())); |
| |
| // Add the base if non-zero. |
| if (FalseC->getAPIntValue() != 0) |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| return Cond; |
| } |
| } |
| } |
| } |
| |
| // Handle these cases: |
| // (select (x != c), e, c) -> select (x != c), e, x), |
| // (select (x == c), c, e) -> select (x == c), x, e) |
| // where the c is an integer constant, and the "select" is the combination |
| // of CMOV and CMP. |
| // |
| // The rationale for this change is that the conditional-move from a constant |
| // needs two instructions, however, conditional-move from a register needs |
| // only one instruction. |
| // |
| // CAVEAT: By replacing a constant with a symbolic value, it may obscure |
| // some instruction-combining opportunities. This opt needs to be |
| // postponed as late as possible. |
| // |
| if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { |
| // the DCI.xxxx conditions are provided to postpone the optimization as |
| // late as possible. |
| |
| ConstantSDNode *CmpAgainst = nullptr; |
| if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && |
| (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && |
| !isa<ConstantSDNode>(Cond.getOperand(0))) { |
| |
| if (CC == X86::COND_NE && |
| CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { |
| CC = X86::GetOppositeBranchCondition(CC); |
| std::swap(TrueOp, FalseOp); |
| } |
| |
| if (CC == X86::COND_E && |
| CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { |
| SDValue Ops[] = { FalseOp, Cond.getOperand(0), |
| DAG.getConstant(CC, DL, MVT::i8), Cond }; |
| return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops); |
| } |
| } |
| } |
| |
| // Fold and/or of setcc's to double CMOV: |
| // (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2) |
| // (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2) |
| // |
| // This combine lets us generate: |
| // cmovcc1 (jcc1 if we don't have CMOV) |
| // cmovcc2 (same) |
| // instead of: |
| // setcc1 |
| // setcc2 |
| // and/or |
| // cmovne (jne if we don't have CMOV) |
| // When we can't use the CMOV instruction, it might increase branch |
| // mispredicts. |
| // When we can use CMOV, or when there is no mispredict, this improves |
| // throughput and reduces register pressure. |
| // |
| if (CC == X86::COND_NE) { |
| SDValue Flags; |
| X86::CondCode CC0, CC1; |
| bool isAndSetCC; |
| if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) { |
| if (isAndSetCC) { |
| std::swap(FalseOp, TrueOp); |
| CC0 = X86::GetOppositeBranchCondition(CC0); |
| CC1 = X86::GetOppositeBranchCondition(CC1); |
| } |
| |
| SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8), |
| Flags}; |
| SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), LOps); |
| SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags}; |
| SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops); |
| return CMOV; |
| } |
| } |
| |
| // Fold (CMOV C1, (ADD (CTTZ X), C2), (X != 0)) -> |
| // (ADD (CMOV C1-C2, (CTTZ X), (X != 0)), C2) |
| // Or (CMOV (ADD (CTTZ X), C2), C1, (X == 0)) -> |
| // (ADD (CMOV (CTTZ X), C1-C2, (X == 0)), C2) |
| if ((CC == X86::COND_NE || CC == X86::COND_E) && |
| Cond.getOpcode() == X86ISD::CMP && isNullConstant(Cond.getOperand(1))) { |
| SDValue Add = TrueOp; |
| SDValue Const = FalseOp; |
| // Canonicalize the condition code for easier matching and output. |
| if (CC == X86::COND_E) { |
| std::swap(Add, Const); |
| CC = X86::COND_NE; |
| } |
| |
| // Ok, now make sure that Add is (add (cttz X), C2) and Const is a constant. |
| if (isa<ConstantSDNode>(Const) && Add.getOpcode() == ISD::ADD && |
| Add.hasOneUse() && isa<ConstantSDNode>(Add.getOperand(1)) && |
| (Add.getOperand(0).getOpcode() == ISD::CTTZ_ZERO_UNDEF || |
| Add.getOperand(0).getOpcode() == ISD::CTTZ) && |
| Add.getOperand(0).getOperand(0) == Cond.getOperand(0)) { |
| EVT VT = N->getValueType(0); |
| // This should constant fold. |
| SDValue Diff = DAG.getNode(ISD::SUB, DL, VT, Const, Add.getOperand(1)); |
| SDValue CMov = DAG.getNode(X86ISD::CMOV, DL, VT, Diff, Add.getOperand(0), |
| DAG.getConstant(CC, DL, MVT::i8), Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, CMov, Add.getOperand(1)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Different mul shrinking modes. |
| enum ShrinkMode { MULS8, MULU8, MULS16, MULU16 }; |
| |
| static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) { |
| EVT VT = N->getOperand(0).getValueType(); |
| if (VT.getScalarSizeInBits() != 32) |
| return false; |
| |
| assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2"); |
| unsigned SignBits[2] = {1, 1}; |
| bool IsPositive[2] = {false, false}; |
| for (unsigned i = 0; i < 2; i++) { |
| SDValue Opd = N->getOperand(i); |
| |
| // DAG.ComputeNumSignBits return 1 for ISD::ANY_EXTEND, so we need to |
| // compute signbits for it separately. |
| if (Opd.getOpcode() == ISD::ANY_EXTEND) { |
| // For anyextend, it is safe to assume an appropriate number of leading |
| // sign/zero bits. |
| if (Opd.getOperand(0).getValueType().getVectorElementType() == MVT::i8) |
| SignBits[i] = 25; |
| else if (Opd.getOperand(0).getValueType().getVectorElementType() == |
| MVT::i16) |
| SignBits[i] = 17; |
| else |
| return false; |
| IsPositive[i] = true; |
| } else if (Opd.getOpcode() == ISD::BUILD_VECTOR) { |
| // All the operands of BUILD_VECTOR need to be int constant. |
| // Find the smallest value range which all the operands belong to. |
| SignBits[i] = 32; |
| IsPositive[i] = true; |
| for (const SDValue &SubOp : Opd.getNode()->op_values()) { |
| if (SubOp.isUndef()) |
| continue; |
| auto *CN = dyn_cast<ConstantSDNode>(SubOp); |
| if (!CN) |
| return false; |
| APInt IntVal = CN->getAPIntValue(); |
| if (IntVal.isNegative()) |
| IsPositive[i] = false; |
| SignBits[i] = std::min(SignBits[i], IntVal.getNumSignBits()); |
| } |
| } else { |
| SignBits[i] = DAG.ComputeNumSignBits(Opd); |
| if (Opd.getOpcode() == ISD::ZERO_EXTEND) |
| IsPositive[i] = true; |
| } |
| } |
| |
| bool AllPositive = IsPositive[0] && IsPositive[1]; |
| unsigned MinSignBits = std::min(SignBits[0], SignBits[1]); |
| // When ranges are from -128 ~ 127, use MULS8 mode. |
| if (MinSignBits >= 25) |
| Mode = MULS8; |
| // When ranges are from 0 ~ 255, use MULU8 mode. |
| else if (AllPositive && MinSignBits >= 24) |
| Mode = MULU8; |
| // When ranges are from -32768 ~ 32767, use MULS16 mode. |
| else if (MinSignBits >= 17) |
| Mode = MULS16; |
| // When ranges are from 0 ~ 65535, use MULU16 mode. |
| else if (AllPositive && MinSignBits >= 16) |
| Mode = MULU16; |
| else |
| return false; |
| return true; |
| } |
| |
| /// When the operands of vector mul are extended from smaller size values, |
| /// like i8 and i16, the type of mul may be shrinked to generate more |
| /// efficient code. Two typical patterns are handled: |
| /// Pattern1: |
| /// %2 = sext/zext <N x i8> %1 to <N x i32> |
| /// %4 = sext/zext <N x i8> %3 to <N x i32> |
| // or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants) |
| /// %5 = mul <N x i32> %2, %4 |
| /// |
| /// Pattern2: |
| /// %2 = zext/sext <N x i16> %1 to <N x i32> |
| /// %4 = zext/sext <N x i16> %3 to <N x i32> |
| /// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants) |
| /// %5 = mul <N x i32> %2, %4 |
| /// |
| /// There are four mul shrinking modes: |
| /// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is |
| /// -128 to 128, and the scalar value range of %4 is also -128 to 128, |
| /// generate pmullw+sext32 for it (MULS8 mode). |
| /// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is |
| /// 0 to 255, and the scalar value range of %4 is also 0 to 255, |
| /// generate pmullw+zext32 for it (MULU8 mode). |
| /// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is |
| /// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767, |
| /// generate pmullw+pmulhw for it (MULS16 mode). |
| /// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is |
| /// 0 to 65535, and the scalar value range of %4 is also 0 to 65535, |
| /// generate pmullw+pmulhuw for it (MULU16 mode). |
| static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // Check for legality |
| // pmullw/pmulhw are not supported by SSE. |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| // Check for profitability |
| // pmulld is supported since SSE41. It is better to use pmulld |
| // instead of pmullw+pmulhw, except for subtargets where pmulld is slower than |
| // the expansion. |
| bool OptForMinSize = DAG.getMachineFunction().getFunction().optForMinSize(); |
| if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow())) |
| return SDValue(); |
| |
| ShrinkMode Mode; |
| if (!canReduceVMulWidth(N, DAG, Mode)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getOperand(0).getValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| if ((NumElts % 2) != 0) |
| return SDValue(); |
| |
| unsigned RegSize = 128; |
| MVT OpsVT = MVT::getVectorVT(MVT::i16, RegSize / 16); |
| EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, NumElts); |
| |
| // Shrink the operands of mul. |
| SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0); |
| SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1); |
| |
| if (NumElts >= OpsVT.getVectorNumElements()) { |
| // Generate the lower part of mul: pmullw. For MULU8/MULS8, only the |
| // lower part is needed. |
| SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1); |
| if (Mode == MULU8 || Mode == MULS8) { |
| return DAG.getNode((Mode == MULU8) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND, |
| DL, VT, MulLo); |
| } else { |
| MVT ResVT = MVT::getVectorVT(MVT::i32, NumElts / 2); |
| // Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16, |
| // the higher part is also needed. |
| SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL, |
| ReducedVT, NewN0, NewN1); |
| |
| // Repack the lower part and higher part result of mul into a wider |
| // result. |
| // Generate shuffle functioning as punpcklwd. |
| SmallVector<int, 16> ShuffleMask(NumElts); |
| for (unsigned i = 0, e = NumElts / 2; i < e; i++) { |
| ShuffleMask[2 * i] = i; |
| ShuffleMask[2 * i + 1] = i + NumElts; |
| } |
| SDValue ResLo = |
| DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask); |
| ResLo = DAG.getBitcast(ResVT, ResLo); |
| // Generate shuffle functioning as punpckhwd. |
| for (unsigned i = 0, e = NumElts / 2; i < e; i++) { |
| ShuffleMask[2 * i] = i + NumElts / 2; |
| ShuffleMask[2 * i + 1] = i + NumElts * 3 / 2; |
| } |
| SDValue ResHi = |
| DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask); |
| ResHi = DAG.getBitcast(ResVT, ResHi); |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi); |
| } |
| } else { |
| // When VT.getVectorNumElements() < OpsVT.getVectorNumElements(), we want |
| // to legalize the mul explicitly because implicit legalization for type |
| // <4 x i16> to <4 x i32> sometimes involves unnecessary unpack |
| // instructions which will not exist when we explicitly legalize it by |
| // extending <4 x i16> to <8 x i16> (concatenating the <4 x i16> val with |
| // <4 x i16> undef). |
| // |
| // Legalize the operands of mul. |
| // FIXME: We may be able to handle non-concatenated vectors by insertion. |
| unsigned ReducedSizeInBits = ReducedVT.getSizeInBits(); |
| if ((RegSize % ReducedSizeInBits) != 0) |
| return SDValue(); |
| |
| SmallVector<SDValue, 16> Ops(RegSize / ReducedSizeInBits, |
| DAG.getUNDEF(ReducedVT)); |
| Ops[0] = NewN0; |
| NewN0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops); |
| Ops[0] = NewN1; |
| NewN1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops); |
| |
| if (Mode == MULU8 || Mode == MULS8) { |
| // Generate lower part of mul: pmullw. For MULU8/MULS8, only the lower |
| // part is needed. |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1); |
| |
| // convert the type of mul result to VT. |
| MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32); |
| SDValue Res = DAG.getNode(Mode == MULU8 ? ISD::ZERO_EXTEND_VECTOR_INREG |
| : ISD::SIGN_EXTEND_VECTOR_INREG, |
| DL, ResVT, Mul); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res, |
| DAG.getIntPtrConstant(0, DL)); |
| } else { |
| // Generate the lower and higher part of mul: pmulhw/pmulhuw. For |
| // MULU16/MULS16, both parts are needed. |
| SDValue MulLo = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1); |
| SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL, |
| OpsVT, NewN0, NewN1); |
| |
| // Repack the lower part and higher part result of mul into a wider |
| // result. Make sure the type of mul result is VT. |
| MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32); |
| SDValue Res = getUnpackl(DAG, DL, OpsVT, MulLo, MulHi); |
| Res = DAG.getBitcast(ResVT, Res); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| } |
| } |
| |
| static SDValue combineMulSpecial(uint64_t MulAmt, SDNode *N, SelectionDAG &DAG, |
| EVT VT, const SDLoc &DL) { |
| |
| auto combineMulShlAddOrSub = [&](int Mult, int Shift, bool isAdd) { |
| SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), |
| DAG.getConstant(Mult, DL, VT)); |
| Result = DAG.getNode(ISD::SHL, DL, VT, Result, |
| DAG.getConstant(Shift, DL, MVT::i8)); |
| Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result, |
| N->getOperand(0)); |
| return Result; |
| }; |
| |
| auto combineMulMulAddOrSub = [&](int Mul1, int Mul2, bool isAdd) { |
| SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), |
| DAG.getConstant(Mul1, DL, VT)); |
| Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, Result, |
| DAG.getConstant(Mul2, DL, VT)); |
| Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result, |
| N->getOperand(0)); |
| return Result; |
| }; |
| |
| switch (MulAmt) { |
| default: |
| break; |
| case 11: |
| // mul x, 11 => add ((shl (mul x, 5), 1), x) |
| return combineMulShlAddOrSub(5, 1, /*isAdd*/ true); |
| case 21: |
| // mul x, 21 => add ((shl (mul x, 5), 2), x) |
| return combineMulShlAddOrSub(5, 2, /*isAdd*/ true); |
| case 41: |
| // mul x, 41 => add ((shl (mul x, 5), 3), x) |
| return combineMulShlAddOrSub(5, 3, /*isAdd*/ true); |
| case 22: |
| // mul x, 22 => add (add ((shl (mul x, 5), 2), x), x) |
| return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), |
| combineMulShlAddOrSub(5, 2, /*isAdd*/ true)); |
| case 19: |
| // mul x, 19 => add ((shl (mul x, 9), 1), x) |
| return combineMulShlAddOrSub(9, 1, /*isAdd*/ true); |
| case 37: |
| // mul x, 37 => add ((shl (mul x, 9), 2), x) |
| return combineMulShlAddOrSub(9, 2, /*isAdd*/ true); |
| case 73: |
| // mul x, 73 => add ((shl (mul x, 9), 3), x) |
| return combineMulShlAddOrSub(9, 3, /*isAdd*/ true); |
| case 13: |
| // mul x, 13 => add ((shl (mul x, 3), 2), x) |
| return combineMulShlAddOrSub(3, 2, /*isAdd*/ true); |
| case 23: |
| // mul x, 23 => sub ((shl (mul x, 3), 3), x) |
| return combineMulShlAddOrSub(3, 3, /*isAdd*/ false); |
| case 26: |
| // mul x, 26 => add ((mul (mul x, 5), 5), x) |
| return combineMulMulAddOrSub(5, 5, /*isAdd*/ true); |
| case 28: |
| // mul x, 28 => add ((mul (mul x, 9), 3), x) |
| return combineMulMulAddOrSub(9, 3, /*isAdd*/ true); |
| case 29: |
| // mul x, 29 => add (add ((mul (mul x, 9), 3), x), x) |
| return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), |
| combineMulMulAddOrSub(9, 3, /*isAdd*/ true)); |
| } |
| |
| // Another trick. If this is a power 2 + 2/4/8, we can use a shift followed |
| // by a single LEA. |
| // First check if this a sum of two power of 2s because that's easy. Then |
| // count how many zeros are up to the first bit. |
| // TODO: We can do this even without LEA at a cost of two shifts and an add. |
| if (isPowerOf2_64(MulAmt & (MulAmt - 1))) { |
| unsigned ScaleShift = countTrailingZeros(MulAmt); |
| if (ScaleShift >= 1 && ScaleShift < 4) { |
| unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1))); |
| SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(ShiftAmt, DL, MVT::i8)); |
| SDValue Shift2 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(ScaleShift, DL, MVT::i8)); |
| return DAG.getNode(ISD::ADD, DL, VT, Shift1, Shift2); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // If the upper 17 bits of each element are zero then we can use PMADDWD, |
| // which is always at least as quick as PMULLD, expect on KNL. |
| static SDValue combineMulToPMADDWD(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| if (Subtarget.getProcFamily() == X86Subtarget::IntelKNL) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // Only support vXi32 vectors. |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::i32) |
| return SDValue(); |
| |
| // Make sure the vXi16 type is legal. This covers the AVX512 without BWI case. |
| MVT WVT = MVT::getVectorVT(MVT::i16, 2 * VT.getVectorNumElements()); |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(WVT)) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| APInt Mask17 = APInt::getHighBitsSet(32, 17); |
| if (!DAG.MaskedValueIsZero(N1, Mask17) || |
| !DAG.MaskedValueIsZero(N0, Mask17)) |
| return SDValue(); |
| |
| // Use SplitOpsAndApply to handle AVX splitting. |
| auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| MVT VT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32); |
| return DAG.getNode(X86ISD::VPMADDWD, DL, VT, Ops); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, |
| { DAG.getBitcast(WVT, N0), DAG.getBitcast(WVT, N1) }, |
| PMADDWDBuilder); |
| } |
| |
| static SDValue combineMulToPMULDQ(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // Only support vXi64 vectors. |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::i64 || |
| !DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // MULDQ returns the 64-bit result of the signed multiplication of the lower |
| // 32-bits. We can lower with this if the sign bits stretch that far. |
| if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(N0) > 32 && |
| DAG.ComputeNumSignBits(N1) > 32) { |
| auto PMULDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::PMULDQ, DL, Ops[0].getValueType(), Ops); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 }, |
| PMULDQBuilder, /*CheckBWI*/false); |
| } |
| |
| // If the upper bits are zero we can use a single pmuludq. |
| APInt Mask = APInt::getHighBitsSet(64, 32); |
| if (DAG.MaskedValueIsZero(N0, Mask) && DAG.MaskedValueIsZero(N1, Mask)) { |
| auto PMULUDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::PMULUDQ, DL, Ops[0].getValueType(), Ops); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 }, |
| PMULUDQBuilder, /*CheckBWI*/false); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Optimize a single multiply with constant into two operations in order to |
| /// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA. |
| static SDValue combineMul(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| EVT VT = N->getValueType(0); |
| |
| if (SDValue V = combineMulToPMADDWD(N, DAG, Subtarget)) |
| return V; |
| |
| if (SDValue V = combineMulToPMULDQ(N, DAG, Subtarget)) |
| return V; |
| |
| if (DCI.isBeforeLegalize() && VT.isVector()) |
| return reduceVMULWidth(N, DAG, Subtarget); |
| |
| if (!MulConstantOptimization) |
| return SDValue(); |
| // An imul is usually smaller than the alternative sequence. |
| if (DAG.getMachineFunction().getFunction().optForMinSize()) |
| return SDValue(); |
| |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| if (VT != MVT::i64 && VT != MVT::i32) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| if (isPowerOf2_64(C->getZExtValue())) |
| return SDValue(); |
| |
| int64_t SignMulAmt = C->getSExtValue(); |
| assert(SignMulAmt != INT64_MIN && "Int min should have been handled!"); |
| uint64_t AbsMulAmt = SignMulAmt < 0 ? -SignMulAmt : SignMulAmt; |
| |
| SDLoc DL(N); |
| if (AbsMulAmt == 3 || AbsMulAmt == 5 || AbsMulAmt == 9) { |
| SDValue NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), |
| DAG.getConstant(AbsMulAmt, DL, VT)); |
| if (SignMulAmt < 0) |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| NewMul); |
| |
| return NewMul; |
| } |
| |
| uint64_t MulAmt1 = 0; |
| uint64_t MulAmt2 = 0; |
| if ((AbsMulAmt % 9) == 0) { |
| MulAmt1 = 9; |
| MulAmt2 = AbsMulAmt / 9; |
| } else if ((AbsMulAmt % 5) == 0) { |
| MulAmt1 = 5; |
| MulAmt2 = AbsMulAmt / 5; |
| } else if ((AbsMulAmt % 3) == 0) { |
| MulAmt1 = 3; |
| MulAmt2 = AbsMulAmt / 3; |
| } |
| |
| SDValue NewMul; |
| // For negative multiply amounts, only allow MulAmt2 to be a power of 2. |
| if (MulAmt2 && |
| (isPowerOf2_64(MulAmt2) || |
| (SignMulAmt >= 0 && (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)))) { |
| |
| if (isPowerOf2_64(MulAmt2) && |
| !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) |
| // If second multiplifer is pow2, issue it first. We want the multiply by |
| // 3, 5, or 9 to be folded into the addressing mode unless the lone use |
| // is an add. |
| std::swap(MulAmt1, MulAmt2); |
| |
| if (isPowerOf2_64(MulAmt1)) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8)); |
| else |
| NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), |
| DAG.getConstant(MulAmt1, DL, VT)); |
| |
| if (isPowerOf2_64(MulAmt2)) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, |
| DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8)); |
| else |
| NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, |
| DAG.getConstant(MulAmt2, DL, VT)); |
| |
| // Negate the result. |
| if (SignMulAmt < 0) |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| NewMul); |
| } else if (!Subtarget.slowLEA()) |
| NewMul = combineMulSpecial(C->getZExtValue(), N, DAG, VT, DL); |
| |
| if (!NewMul) { |
| assert(C->getZExtValue() != 0 && |
| C->getZExtValue() != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) && |
| "Both cases that could cause potential overflows should have " |
| "already been handled."); |
| if (isPowerOf2_64(AbsMulAmt - 1)) { |
| // (mul x, 2^N + 1) => (add (shl x, N), x) |
| NewMul = DAG.getNode( |
| ISD::ADD, DL, VT, N->getOperand(0), |
| DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(AbsMulAmt - 1), DL, |
| MVT::i8))); |
| // To negate, subtract the number from zero |
| if (SignMulAmt < 0) |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), NewMul); |
| } else if (isPowerOf2_64(AbsMulAmt + 1)) { |
| // (mul x, 2^N - 1) => (sub (shl x, N), x) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(AbsMulAmt + 1), |
| DL, MVT::i8)); |
| // To negate, reverse the operands of the subtract. |
| if (SignMulAmt < 0) |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), NewMul); |
| else |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0)); |
| } else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt - 2)) { |
| // (mul x, 2^N + 2) => (add (add (shl x, N), x), x) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(AbsMulAmt - 2), |
| DL, MVT::i8)); |
| NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0)); |
| NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0)); |
| } else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt + 2)) { |
| // (mul x, 2^N - 2) => (sub (sub (shl x, N), x), x) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(AbsMulAmt + 2), |
| DL, MVT::i8)); |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0)); |
| NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0)); |
| } |
| } |
| |
| return NewMul; |
| } |
| |
| static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| EVT VT = N0.getValueType(); |
| |
| // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) |
| // since the result of setcc_c is all zero's or all ones. |
| if (VT.isInteger() && !VT.isVector() && |
| N1C && N0.getOpcode() == ISD::AND && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| SDValue N00 = N0.getOperand(0); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask <<= N1C->getAPIntValue(); |
| bool MaskOK = false; |
| // We can handle cases concerning bit-widening nodes containing setcc_c if |
| // we carefully interrogate the mask to make sure we are semantics |
| // preserving. |
| // The transform is not safe if the result of C1 << C2 exceeds the bitwidth |
| // of the underlying setcc_c operation if the setcc_c was zero extended. |
| // Consider the following example: |
| // zext(setcc_c) -> i32 0x0000FFFF |
| // c1 -> i32 0x0000FFFF |
| // c2 -> i32 0x00000001 |
| // (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE |
| // (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE |
| if (N00.getOpcode() == X86ISD::SETCC_CARRY) { |
| MaskOK = true; |
| } else if (N00.getOpcode() == ISD::SIGN_EXTEND && |
| N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { |
| MaskOK = true; |
| } else if ((N00.getOpcode() == ISD::ZERO_EXTEND || |
| N00.getOpcode() == ISD::ANY_EXTEND) && |
| N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { |
| MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits()); |
| } |
| if (MaskOK && Mask != 0) { |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT)); |
| } |
| } |
| |
| // Hardware support for vector shifts is sparse which makes us scalarize the |
| // vector operations in many cases. Also, on sandybridge ADD is faster than |
| // shl. |
| // (shl V, 1) -> add V,V |
| if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) |
| if (auto *N1SplatC = N1BV->getConstantSplatNode()) { |
| assert(N0.getValueType().isVector() && "Invalid vector shift type"); |
| // We shift all of the values by one. In many cases we do not have |
| // hardware support for this operation. This is better expressed as an ADD |
| // of two values. |
| if (N1SplatC->getAPIntValue() == 1) |
| return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineShiftRightArithmetic(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned Size = VT.getSizeInBits(); |
| |
| // fold (ashr (shl, a, [56,48,32,24,16]), SarConst) |
| // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or |
| // into (lshr, (sext (a), SarConst - [56,48,32,24,16])) |
| // depending on sign of (SarConst - [56,48,32,24,16]) |
| |
| // sexts in X86 are MOVs. The MOVs have the same code size |
| // as above SHIFTs (only SHIFT on 1 has lower code size). |
| // However the MOVs have 2 advantages to a SHIFT: |
| // 1. MOVs can write to a register that differs from source |
| // 2. MOVs accept memory operands |
| |
| if (VT.isVector() || N1.getOpcode() != ISD::Constant || |
| N0.getOpcode() != ISD::SHL || !N0.hasOneUse() || |
| N0.getOperand(1).getOpcode() != ISD::Constant) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue(); |
| APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue(); |
| EVT CVT = N1.getValueType(); |
| |
| if (SarConst.isNegative()) |
| return SDValue(); |
| |
| for (MVT SVT : { MVT::i8, MVT::i16, MVT::i32 }) { |
| unsigned ShiftSize = SVT.getSizeInBits(); |
| // skipping types without corresponding sext/zext and |
| // ShlConst that is not one of [56,48,32,24,16] |
| if (ShiftSize >= Size || ShlConst != Size - ShiftSize) |
| continue; |
| SDLoc DL(N); |
| SDValue NN = |
| DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT)); |
| SarConst = SarConst - (Size - ShiftSize); |
| if (SarConst == 0) |
| return NN; |
| else if (SarConst.isNegative()) |
| return DAG.getNode(ISD::SHL, DL, VT, NN, |
| DAG.getConstant(-SarConst, DL, CVT)); |
| else |
| return DAG.getNode(ISD::SRA, DL, VT, NN, |
| DAG.getConstant(SarConst, DL, CVT)); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue combineShiftRightLogical(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // Only do this on the last DAG combine as it can interfere with other |
| // combines. |
| if (!DCI.isAfterLegalizeDAG()) |
| return SDValue(); |
| |
| // Try to improve a sequence of srl (and X, C1), C2 by inverting the order. |
| // TODO: This is a generic DAG combine that became an x86-only combine to |
| // avoid shortcomings in other folds such as bswap, bit-test ('bt'), and |
| // and-not ('andn'). |
| if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) |
| return SDValue(); |
| |
| auto *ShiftC = dyn_cast<ConstantSDNode>(N1); |
| auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!ShiftC || !AndC) |
| return SDValue(); |
| |
| // If we can shrink the constant mask below 8-bits or 32-bits, then this |
| // transform should reduce code size. It may also enable secondary transforms |
| // from improved known-bits analysis or instruction selection. |
| APInt MaskVal = AndC->getAPIntValue(); |
| |
| // If this can be matched by a zero extend, don't optimize. |
| if (MaskVal.isMask()) { |
| unsigned TO = MaskVal.countTrailingOnes(); |
| if (TO >= 8 && isPowerOf2_32(TO)) |
| return SDValue(); |
| } |
| |
| APInt NewMaskVal = MaskVal.lshr(ShiftC->getAPIntValue()); |
| unsigned OldMaskSize = MaskVal.getMinSignedBits(); |
| unsigned NewMaskSize = NewMaskVal.getMinSignedBits(); |
| if ((OldMaskSize > 8 && NewMaskSize <= 8) || |
| (OldMaskSize > 32 && NewMaskSize <= 32)) { |
| // srl (and X, AndC), ShiftC --> and (srl X, ShiftC), (AndC >> ShiftC) |
| SDLoc DL(N); |
| SDValue NewMask = DAG.getConstant(NewMaskVal, DL, VT); |
| SDValue NewShift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1); |
| return DAG.getNode(ISD::AND, DL, VT, NewShift, NewMask); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue combineShift(SDNode* N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (N->getOpcode() == ISD::SHL) |
| if (SDValue V = combineShiftLeft(N, DAG)) |
| return V; |
| |
| if (N->getOpcode() == ISD::SRA) |
| if (SDValue V = combineShiftRightArithmetic(N, DAG)) |
| return V; |
| |
| if (N->getOpcode() == ISD::SRL) |
| if (SDValue V = combineShiftRightLogical(N, DAG, DCI)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineVectorPack(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| unsigned Opcode = N->getOpcode(); |
| assert((X86ISD::PACKSS == Opcode || X86ISD::PACKUS == Opcode) && |
| "Unexpected shift opcode"); |
| |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| unsigned DstBitsPerElt = VT.getScalarSizeInBits(); |
| unsigned SrcBitsPerElt = 2 * DstBitsPerElt; |
| assert(N0.getScalarValueSizeInBits() == SrcBitsPerElt && |
| N1.getScalarValueSizeInBits() == SrcBitsPerElt && |
| "Unexpected PACKSS/PACKUS input type"); |
| |
| // Constant Folding. |
| APInt UndefElts0, UndefElts1; |
| SmallVector<APInt, 32> EltBits0, EltBits1; |
| if ((N0->isUndef() || N->isOnlyUserOf(N0.getNode())) && |
| (N1->isUndef() || N->isOnlyUserOf(N1.getNode())) && |
| getTargetConstantBitsFromNode(N0, SrcBitsPerElt, UndefElts0, EltBits0) && |
| getTargetConstantBitsFromNode(N1, SrcBitsPerElt, UndefElts1, EltBits1)) { |
| unsigned NumLanes = VT.getSizeInBits() / 128; |
| unsigned NumDstElts = VT.getVectorNumElements(); |
| unsigned NumSrcElts = NumDstElts / 2; |
| unsigned NumDstEltsPerLane = NumDstElts / NumLanes; |
| unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; |
| bool IsSigned = (X86ISD::PACKSS == Opcode); |
| |
| APInt Undefs(NumDstElts, 0); |
| SmallVector<APInt, 32> Bits(NumDstElts, APInt::getNullValue(DstBitsPerElt)); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) { |
| unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane; |
| auto &UndefElts = (Elt >= NumSrcEltsPerLane ? UndefElts1 : UndefElts0); |
| auto &EltBits = (Elt >= NumSrcEltsPerLane ? EltBits1 : EltBits0); |
| |
| if (UndefElts[SrcIdx]) { |
| Undefs.setBit(Lane * NumDstEltsPerLane + Elt); |
| continue; |
| } |
| |
| APInt &Val = EltBits[SrcIdx]; |
| if (IsSigned) { |
| // PACKSS: Truncate signed value with signed saturation. |
| // Source values less than dst minint are saturated to minint. |
| // Source values greater than dst maxint are saturated to maxint. |
| if (Val.isSignedIntN(DstBitsPerElt)) |
| Val = Val.trunc(DstBitsPerElt); |
| else if (Val.isNegative()) |
| Val = APInt::getSignedMinValue(DstBitsPerElt); |
| else |
| Val = APInt::getSignedMaxValue(DstBitsPerElt); |
| } else { |
| // PACKUS: Truncate signed value with unsigned saturation. |
| // Source values less than zero are saturated to zero. |
| // Source values greater than dst maxuint are saturated to maxuint. |
| if (Val.isIntN(DstBitsPerElt)) |
| Val = Val.trunc(DstBitsPerElt); |
| else if (Val.isNegative()) |
| Val = APInt::getNullValue(DstBitsPerElt); |
| else |
| Val = APInt::getAllOnesValue(DstBitsPerElt); |
| } |
| Bits[Lane * NumDstEltsPerLane + Elt] = Val; |
| } |
| } |
| |
| return getConstVector(Bits, Undefs, VT.getSimpleVT(), DAG, SDLoc(N)); |
| } |
| |
| // Attempt to combine as shuffle. |
| SDValue Op(N, 0); |
| if (SDValue Res = |
| combineX86ShufflesRecursively({Op}, 0, Op, {0}, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineVectorShiftImm(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| unsigned Opcode = N->getOpcode(); |
| assert((X86ISD::VSHLI == Opcode || X86ISD::VSRAI == Opcode || |
| X86ISD::VSRLI == Opcode) && |
| "Unexpected shift opcode"); |
| bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode; |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
| assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 && |
| "Unexpected value type"); |
| |
| // Out of range logical bit shifts are guaranteed to be zero. |
| // Out of range arithmetic bit shifts splat the sign bit. |
| APInt ShiftVal = cast<ConstantSDNode>(N1)->getAPIntValue(); |
| if (ShiftVal.zextOrTrunc(8).uge(NumBitsPerElt)) { |
| if (LogicalShift) |
| return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N)); |
| else |
| ShiftVal = NumBitsPerElt - 1; |
| } |
| |
| // Shift N0 by zero -> N0. |
| if (!ShiftVal) |
| return N0; |
| |
| // Shift zero -> zero. |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N)); |
| |
| // fold (VSRLI (VSRAI X, Y), 31) -> (VSRLI X, 31). |
| // This VSRLI only looks at the sign bit, which is unmodified by VSRAI. |
| // TODO - support other sra opcodes as needed. |
| if (Opcode == X86ISD::VSRLI && (ShiftVal + 1) == NumBitsPerElt && |
| N0.getOpcode() == X86ISD::VSRAI) |
| return DAG.getNode(X86ISD::VSRLI, SDLoc(N), VT, N0.getOperand(0), N1); |
| |
| // fold (VSRAI (VSHLI X, C1), C1) --> X iff NumSignBits(X) > C1 |
| if (Opcode == X86ISD::VSRAI && N0.getOpcode() == X86ISD::VSHLI && |
| N1 == N0.getOperand(1)) { |
| SDValue N00 = N0.getOperand(0); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(N00); |
| if (ShiftVal.ult(NumSignBits)) |
| return N00; |
| } |
| |
| // We can decode 'whole byte' logical bit shifts as shuffles. |
| if (LogicalShift && (ShiftVal.getZExtValue() % 8) == 0) { |
| SDValue Op(N, 0); |
| if (SDValue Res = combineX86ShufflesRecursively( |
| {Op}, 0, Op, {0}, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return Res; |
| } |
| |
| // Constant Folding. |
| APInt UndefElts; |
| SmallVector<APInt, 32> EltBits; |
| if (N->isOnlyUserOf(N0.getNode()) && |
| getTargetConstantBitsFromNode(N0, NumBitsPerElt, UndefElts, EltBits)) { |
| assert(EltBits.size() == VT.getVectorNumElements() && |
| "Unexpected shift value type"); |
| unsigned ShiftImm = ShiftVal.getZExtValue(); |
| for (APInt &Elt : EltBits) { |
| if (X86ISD::VSHLI == Opcode) |
| Elt <<= ShiftImm; |
| else if (X86ISD::VSRAI == Opcode) |
| Elt.ashrInPlace(ShiftImm); |
| else |
| Elt.lshrInPlace(ShiftImm); |
| } |
| return getConstVector(EltBits, UndefElts, VT.getSimpleVT(), DAG, SDLoc(N)); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineVectorInsert(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| assert( |
| ((N->getOpcode() == X86ISD::PINSRB && N->getValueType(0) == MVT::v16i8) || |
| (N->getOpcode() == X86ISD::PINSRW && |
| N->getValueType(0) == MVT::v8i16)) && |
| "Unexpected vector insertion"); |
| |
| // Attempt to combine PINSRB/PINSRW patterns to a shuffle. |
| SDValue Op(N, 0); |
| if (SDValue Res = |
| combineX86ShufflesRecursively({Op}, 0, Op, {0}, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| /// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs |
| /// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for |
| /// OR -> CMPNEQSS. |
| static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| unsigned opcode; |
| |
| // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but |
| // we're requiring SSE2 for both. |
| if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CMP0 = N0->getOperand(1); |
| SDValue CMP1 = N1->getOperand(1); |
| SDLoc DL(N); |
| |
| // The SETCCs should both refer to the same CMP. |
| if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) |
| return SDValue(); |
| |
| SDValue CMP00 = CMP0->getOperand(0); |
| SDValue CMP01 = CMP0->getOperand(1); |
| EVT VT = CMP00.getValueType(); |
| |
| if (VT == MVT::f32 || VT == MVT::f64) { |
| bool ExpectingFlags = false; |
| // Check for any users that want flags: |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| !ExpectingFlags && UI != UE; ++UI) |
| switch (UI->getOpcode()) { |
| default: |
| case ISD::BR_CC: |
| case ISD::BRCOND: |
| case ISD::SELECT: |
| ExpectingFlags = true; |
| break; |
| case ISD::CopyToReg: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| break; |
| } |
| |
| if (!ExpectingFlags) { |
| enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); |
| enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); |
| |
| if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { |
| X86::CondCode tmp = cc0; |
| cc0 = cc1; |
| cc1 = tmp; |
| } |
| |
| if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || |
| (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { |
| // FIXME: need symbolic constants for these magic numbers. |
| // See X86ATTInstPrinter.cpp:printSSECC(). |
| unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; |
| if (Subtarget.hasAVX512()) { |
| SDValue FSetCC = |
| DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CMP00, CMP01, |
| DAG.getConstant(x86cc, DL, MVT::i8)); |
| // Need to fill with zeros to ensure the bitcast will produce zeroes |
| // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that. |
| SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v16i1, |
| DAG.getConstant(0, DL, MVT::v16i1), |
| FSetCC, DAG.getIntPtrConstant(0, DL)); |
| return DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Ins), DL, |
| N->getSimpleValueType(0)); |
| } |
| SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, |
| CMP00.getValueType(), CMP00, CMP01, |
| DAG.getConstant(x86cc, DL, |
| MVT::i8)); |
| |
| bool is64BitFP = (CMP00.getValueType() == MVT::f64); |
| MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; |
| |
| if (is64BitFP && !Subtarget.is64Bit()) { |
| // On a 32-bit target, we cannot bitcast the 64-bit float to a |
| // 64-bit integer, since that's not a legal type. Since |
| // OnesOrZeroesF is all ones of all zeroes, we don't need all the |
| // bits, but can do this little dance to extract the lowest 32 bits |
| // and work with those going forward. |
| SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, |
| OnesOrZeroesF); |
| SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64); |
| OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, |
| Vector32, DAG.getIntPtrConstant(0, DL)); |
| IntVT = MVT::i32; |
| } |
| |
| SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF); |
| SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, |
| DAG.getConstant(1, DL, IntVT)); |
| SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, |
| ANDed); |
| return OneBitOfTruth; |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| // Try to match (and (xor X, -1), Y) logic pattern for (andnp X, Y) combines. |
| static bool matchANDXORWithAllOnesAsANDNP(SDNode *N, SDValue &X, SDValue &Y) { |
| if (N->getOpcode() != ISD::AND) |
| return false; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (N0.getOpcode() == ISD::XOR && |
| ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) { |
| X = N0.getOperand(0); |
| Y = N1; |
| return true; |
| } |
| if (N1.getOpcode() == ISD::XOR && |
| ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) { |
| X = N1.getOperand(0); |
| Y = N0; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y). |
| static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == ISD::AND); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::v2i64 && VT != MVT::v4i64 && VT != MVT::v8i64) |
| return SDValue(); |
| |
| SDValue X, Y; |
| if (matchANDXORWithAllOnesAsANDNP(N, X, Y)) |
| return DAG.getNode(X86ISD::ANDNP, SDLoc(N), VT, X, Y); |
| |
| return SDValue(); |
| } |
| |
| // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized |
| // register. In most cases we actually compare or select YMM-sized registers |
| // and mixing the two types creates horrible code. This method optimizes |
| // some of the transition sequences. |
| // Even with AVX-512 this is still useful for removing casts around logical |
| // operations on vXi1 mask types. |
| static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT VT = N->getValueType(0); |
| assert(VT.isVector() && "Expected vector type"); |
| |
| assert((N->getOpcode() == ISD::ANY_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND || |
| N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); |
| |
| SDValue Narrow = N->getOperand(0); |
| EVT NarrowVT = Narrow.getValueType(); |
| |
| if (Narrow->getOpcode() != ISD::XOR && |
| Narrow->getOpcode() != ISD::AND && |
| Narrow->getOpcode() != ISD::OR) |
| return SDValue(); |
| |
| SDValue N0 = Narrow->getOperand(0); |
| SDValue N1 = Narrow->getOperand(1); |
| SDLoc DL(Narrow); |
| |
| // The Left side has to be a trunc. |
| if (N0.getOpcode() != ISD::TRUNCATE) |
| return SDValue(); |
| |
| // The type of the truncated inputs. |
| if (N0->getOperand(0).getValueType() != VT) |
| return SDValue(); |
| |
| // The right side has to be a 'trunc' or a constant vector. |
| bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getValueType() == VT; |
| if (!RHSTrunc && |
| !ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) |
| return SDValue(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), VT)) |
| return SDValue(); |
| |
| // Set N0 and N1 to hold the inputs to the new wide operation. |
| N0 = N0->getOperand(0); |
| if (RHSTrunc) |
| N1 = N1->getOperand(0); |
| else |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N1); |
| |
| // Generate the wide operation. |
| SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, VT, N0, N1); |
| unsigned Opcode = N->getOpcode(); |
| switch (Opcode) { |
| default: llvm_unreachable("Unexpected opcode"); |
| case ISD::ANY_EXTEND: |
| return Op; |
| case ISD::ZERO_EXTEND: |
| return DAG.getZeroExtendInReg(Op, DL, NarrowVT.getScalarType()); |
| case ISD::SIGN_EXTEND: |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, |
| Op, DAG.getValueType(NarrowVT)); |
| } |
| } |
| |
| /// If both input operands of a logic op are being cast from floating point |
| /// types, try to convert this into a floating point logic node to avoid |
| /// unnecessary moves from SSE to integer registers. |
| static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| unsigned FPOpcode = ISD::DELETED_NODE; |
| if (N->getOpcode() == ISD::AND) |
| FPOpcode = X86ISD::FAND; |
| else if (N->getOpcode() == ISD::OR) |
| FPOpcode = X86ISD::FOR; |
| else if (N->getOpcode() == ISD::XOR) |
| FPOpcode = X86ISD::FXOR; |
| |
| assert(FPOpcode != ISD::DELETED_NODE && |
| "Unexpected input node for FP logic conversion"); |
| |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDLoc DL(N); |
| if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST && |
| ((Subtarget.hasSSE1() && VT == MVT::i32) || |
| (Subtarget.hasSSE2() && VT == MVT::i64))) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N10 = N1.getOperand(0); |
| EVT N00Type = N00.getValueType(); |
| EVT N10Type = N10.getValueType(); |
| if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) { |
| SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10); |
| return DAG.getBitcast(VT, FPLogic); |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// If this is a zero/all-bits result that is bitwise-anded with a low bits |
| /// mask. (Mask == 1 for the x86 lowering of a SETCC + ZEXT), replace the 'and' |
| /// with a shift-right to eliminate loading the vector constant mask value. |
| static SDValue combineAndMaskToShift(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue Op0 = peekThroughBitcasts(N->getOperand(0)); |
| SDValue Op1 = peekThroughBitcasts(N->getOperand(1)); |
| EVT VT0 = Op0.getValueType(); |
| EVT VT1 = Op1.getValueType(); |
| |
| if (VT0 != VT1 || !VT0.isSimple() || !VT0.isInteger()) |
| return SDValue(); |
| |
| APInt SplatVal; |
| if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) || |
| !SplatVal.isMask()) |
| return SDValue(); |
| |
| if (!SupportedVectorShiftWithImm(VT0.getSimpleVT(), Subtarget, ISD::SRL)) |
| return SDValue(); |
| |
| unsigned EltBitWidth = VT0.getScalarSizeInBits(); |
| if (EltBitWidth != DAG.ComputeNumSignBits(Op0)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| unsigned ShiftVal = SplatVal.countTrailingOnes(); |
| SDValue ShAmt = DAG.getConstant(EltBitWidth - ShiftVal, DL, MVT::i8); |
| SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt); |
| return DAG.getBitcast(N->getValueType(0), Shift); |
| } |
| |
| // Get the index node from the lowered DAG of a GEP IR instruction with one |
| // indexing dimension. |
| static SDValue getIndexFromUnindexedLoad(LoadSDNode *Ld) { |
| if (Ld->isIndexed()) |
| return SDValue(); |
| |
| SDValue Base = Ld->getBasePtr(); |
| |
| if (Base.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| SDValue ShiftedIndex = Base.getOperand(0); |
| |
| if (ShiftedIndex.getOpcode() != ISD::SHL) |
| return SDValue(); |
| |
| return ShiftedIndex.getOperand(0); |
| |
| } |
| |
| static bool hasBZHI(const X86Subtarget &Subtarget, MVT VT) { |
| if (Subtarget.hasBMI2() && VT.isScalarInteger()) { |
| switch (VT.getSizeInBits()) { |
| default: return false; |
| case 64: return Subtarget.is64Bit() ? true : false; |
| case 32: return true; |
| } |
| } |
| return false; |
| } |
| |
| // This function recognizes cases where X86 bzhi instruction can replace and |
| // 'and-load' sequence. |
| // In case of loading integer value from an array of constants which is defined |
| // as follows: |
| // |
| // int array[SIZE] = {0x0, 0x1, 0x3, 0x7, 0xF ..., 2^(SIZE-1) - 1} |
| // |
| // then applying a bitwise and on the result with another input. |
| // It's equivalent to performing bzhi (zero high bits) on the input, with the |
| // same index of the load. |
| static SDValue combineAndLoadToBZHI(SDNode *Node, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = Node->getSimpleValueType(0); |
| SDLoc dl(Node); |
| |
| // Check if subtarget has BZHI instruction for the node's type |
| if (!hasBZHI(Subtarget, VT)) |
| return SDValue(); |
| |
| // Try matching the pattern for both operands. |
| for (unsigned i = 0; i < 2; i++) { |
| SDValue N = Node->getOperand(i); |
| LoadSDNode *Ld = dyn_cast<LoadSDNode>(N.getNode()); |
| |
| // continue if the operand is not a load instruction |
| if (!Ld) |
| return SDValue(); |
| |
| const Value *MemOp = Ld->getMemOperand()->getValue(); |
| |
| if (!MemOp) |
| return SDValue(); |
| |
| if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(MemOp)) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) { |
| if (GV->isConstant() && GV->hasDefinitiveInitializer()) { |
| |
| Constant *Init = GV->getInitializer(); |
| Type *Ty = Init->getType(); |
| if (!isa<ConstantDataArray>(Init) || |
| !Ty->getArrayElementType()->isIntegerTy() || |
| Ty->getArrayElementType()->getScalarSizeInBits() != |
| VT.getSizeInBits() || |
| Ty->getArrayNumElements() > |
| Ty->getArrayElementType()->getScalarSizeInBits()) |
| continue; |
| |
| // Check if the array's constant elements are suitable to our case. |
| uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); |
| bool ConstantsMatch = true; |
| for (uint64_t j = 0; j < ArrayElementCount; j++) { |
| ConstantInt *Elem = |
| dyn_cast<ConstantInt>(Init->getAggregateElement(j)); |
| if (Elem->getZExtValue() != (((uint64_t)1 << j) - 1)) { |
| ConstantsMatch = false; |
| break; |
| } |
| } |
| if (!ConstantsMatch) |
| continue; |
| |
| // Do the transformation (For 32-bit type): |
| // -> (and (load arr[idx]), inp) |
| // <- (and (srl 0xFFFFFFFF, (sub 32, idx))) |
| // that will be replaced with one bzhi instruction. |
| SDValue Inp = (i == 0) ? Node->getOperand(1) : Node->getOperand(0); |
| SDValue SizeC = DAG.getConstant(VT.getSizeInBits(), dl, MVT::i32); |
| |
| // Get the Node which indexes into the array. |
| SDValue Index = getIndexFromUnindexedLoad(Ld); |
| if (!Index) |
| return SDValue(); |
| Index = DAG.getZExtOrTrunc(Index, dl, MVT::i32); |
| |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, SizeC, Index); |
| Sub = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Sub); |
| |
| SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); |
| SDValue LShr = DAG.getNode(ISD::SRL, dl, VT, AllOnes, Sub); |
| |
| return DAG.getNode(ISD::AND, dl, VT, Inp, LShr); |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| static SDValue combineAnd(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| EVT VT = N->getValueType(0); |
| |
| // If this is SSE1 only convert to FAND to avoid scalarization. |
| if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) { |
| return DAG.getBitcast( |
| MVT::v4i32, DAG.getNode(X86ISD::FAND, SDLoc(N), MVT::v4f32, |
| DAG.getBitcast(MVT::v4f32, N->getOperand(0)), |
| DAG.getBitcast(MVT::v4f32, N->getOperand(1)))); |
| } |
| |
| // Use a 32-bit and+zext if upper bits known zero. |
| if (VT == MVT::i64 && Subtarget.is64Bit() && |
| !isa<ConstantSDNode>(N->getOperand(1))) { |
| APInt HiMask = APInt::getHighBitsSet(64, 32); |
| if (DAG.MaskedValueIsZero(N->getOperand(1), HiMask) || |
| DAG.MaskedValueIsZero(N->getOperand(0), HiMask)) { |
| SDLoc dl(N); |
| SDValue LHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(0)); |
| SDValue RHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(1)); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, |
| DAG.getNode(ISD::AND, dl, MVT::i32, LHS, RHS)); |
| } |
| } |
| |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget)) |
| return R; |
| |
| if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) |
| return FPLogic; |
| |
| if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG)) |
| return R; |
| |
| if (SDValue ShiftRight = combineAndMaskToShift(N, DAG, Subtarget)) |
| return ShiftRight; |
| |
| if (SDValue R = combineAndLoadToBZHI(N, DAG, Subtarget)) |
| return R; |
| |
| // Attempt to recursively combine a bitmask AND with shuffles. |
| if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) { |
| SDValue Op(N, 0); |
| if (SDValue Res = combineX86ShufflesRecursively( |
| {Op}, 0, Op, {0}, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return Res; |
| } |
| |
| // Attempt to combine a scalar bitmask AND with an extracted shuffle. |
| if ((VT.getScalarSizeInBits() % 8) == 0 && |
| N->getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| isa<ConstantSDNode>(N->getOperand(0).getOperand(1))) { |
| SDValue BitMask = N->getOperand(1); |
| SDValue SrcVec = N->getOperand(0).getOperand(0); |
| EVT SrcVecVT = SrcVec.getValueType(); |
| |
| // Check that the constant bitmask masks whole bytes. |
| APInt UndefElts; |
| SmallVector<APInt, 64> EltBits; |
| if (VT == SrcVecVT.getScalarType() && |
| N->getOperand(0)->isOnlyUserOf(SrcVec.getNode()) && |
| getTargetConstantBitsFromNode(BitMask, 8, UndefElts, EltBits) && |
| llvm::all_of(EltBits, [](APInt M) { |
| return M.isNullValue() || M.isAllOnesValue(); |
| })) { |
| unsigned NumElts = SrcVecVT.getVectorNumElements(); |
| unsigned Scale = SrcVecVT.getScalarSizeInBits() / 8; |
| unsigned Idx = N->getOperand(0).getConstantOperandVal(1); |
| |
| // Create a root shuffle mask from the byte mask and the extracted index. |
| SmallVector<int, 16> ShuffleMask(NumElts * Scale, SM_SentinelUndef); |
| for (unsigned i = 0; i != Scale; ++i) { |
| if (UndefElts[i]) |
| continue; |
| int VecIdx = Scale * Idx + i; |
| ShuffleMask[VecIdx] = |
| EltBits[i].isNullValue() ? SM_SentinelZero : VecIdx; |
| } |
| |
| if (SDValue Shuffle = combineX86ShufflesRecursively( |
| {SrcVec}, 0, SrcVec, ShuffleMask, {}, /*Depth*/ 2, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), VT, Shuffle, |
| N->getOperand(0).getOperand(1)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try to match OR(AND(~MASK,X),AND(MASK,Y)) logic pattern. |
| static bool matchLogicBlend(SDNode *N, SDValue &X, SDValue &Y, SDValue &Mask) { |
| if (N->getOpcode() != ISD::OR) |
| return false; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Canonicalize AND to LHS. |
| if (N1.getOpcode() == ISD::AND) |
| std::swap(N0, N1); |
| |
| // Attempt to match OR(AND(M,Y),ANDNP(M,X)). |
| if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP) |
| return false; |
| |
| Mask = N1.getOperand(0); |
| X = N1.getOperand(1); |
| |
| // Check to see if the mask appeared in both the AND and ANDNP. |
| if (N0.getOperand(0) == Mask) |
| Y = N0.getOperand(1); |
| else if (N0.getOperand(1) == Mask) |
| Y = N0.getOperand(0); |
| else |
| return false; |
| |
| // TODO: Attempt to match against AND(XOR(-1,M),Y) as well, waiting for |
| // ANDNP combine allows other combines to happen that prevent matching. |
| return true; |
| } |
| |
| // Try to fold: |
| // (or (and (m, y), (pandn m, x))) |
| // into: |
| // (vselect m, x, y) |
| // As a special case, try to fold: |
| // (or (and (m, (sub 0, x)), (pandn m, x))) |
| // into: |
| // (sub (xor X, M), M) |
| static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| assert(N->getOpcode() == ISD::OR && "Unexpected Opcode"); |
| |
| EVT VT = N->getValueType(0); |
| if (!((VT.is128BitVector() && Subtarget.hasSSE2()) || |
| (VT.is256BitVector() && Subtarget.hasInt256()))) |
| return SDValue(); |
| |
| SDValue X, Y, Mask; |
| if (!matchLogicBlend(N, X, Y, Mask)) |
| return SDValue(); |
| |
| // Validate that X, Y, and Mask are bitcasts, and see through them. |
| Mask = peekThroughBitcasts(Mask); |
| X = peekThroughBitcasts(X); |
| Y = peekThroughBitcasts(Y); |
| |
| EVT MaskVT = Mask.getValueType(); |
| unsigned EltBits = MaskVT.getScalarSizeInBits(); |
| |
| // TODO: Attempt to handle floating point cases as well? |
| if (!MaskVT.isInteger() || DAG.ComputeNumSignBits(Mask) != EltBits) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // Try to match: |
| // (or (and (M, (sub 0, X)), (pandn M, X))) |
| // which is a special case of vselect: |
| // (vselect M, (sub 0, X), X) |
| // Per: |
| // http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate |
| // We know that, if fNegate is 0 or 1: |
| // (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate) |
| // |
| // Here, we have a mask, M (all 1s or 0), and, similarly, we know that: |
| // ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1)) |
| // ( M ? -X : X) == ((X ^ M ) + (M & 1)) |
| // This lets us transform our vselect to: |
| // (add (xor X, M), (and M, 1)) |
| // And further to: |
| // (sub (xor X, M), M) |
| if (X.getValueType() == MaskVT && Y.getValueType() == MaskVT && |
| DAG.getTargetLoweringInfo().isOperationLegal(ISD::SUB, MaskVT)) { |
| auto IsNegV = [](SDNode *N, SDValue V) { |
| return N->getOpcode() == ISD::SUB && N->getOperand(1) == V && |
| ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()); |
| }; |
| SDValue V; |
| if (IsNegV(Y.getNode(), X)) |
| V = X; |
| else if (IsNegV(X.getNode(), Y)) |
| V = Y; |
| |
| if (V) { |
| SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask); |
| SDValue SubOp2 = Mask; |
| |
| // If the negate was on the false side of the select, then |
| // the operands of the SUB need to be swapped. PR 27251. |
| // This is because the pattern being matched above is |
| // (vselect M, (sub (0, X), X) -> (sub (xor X, M), M) |
| // but if the pattern matched was |
| // (vselect M, X, (sub (0, X))), that is really negation of the pattern |
| // above, -(vselect M, (sub 0, X), X), and therefore the replacement |
| // pattern also needs to be a negation of the replacement pattern above. |
| // And -(sub X, Y) is just sub (Y, X), so swapping the operands of the |
| // sub accomplishes the negation of the replacement pattern. |
| if (V == Y) |
| std::swap(SubOp1, SubOp2); |
| |
| SDValue Res = DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2); |
| return DAG.getBitcast(VT, Res); |
| } |
| } |
| |
| // PBLENDVB is only available on SSE 4.1. |
| if (!Subtarget.hasSSE41()) |
| return SDValue(); |
| |
| MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; |
| |
| X = DAG.getBitcast(BlendVT, X); |
| Y = DAG.getBitcast(BlendVT, Y); |
| Mask = DAG.getBitcast(BlendVT, Mask); |
| Mask = DAG.getSelect(DL, BlendVT, Mask, Y, X); |
| return DAG.getBitcast(VT, Mask); |
| } |
| |
| // Helper function for combineOrCmpEqZeroToCtlzSrl |
| // Transforms: |
| // seteq(cmp x, 0) |
| // into: |
| // srl(ctlz x), log2(bitsize(x)) |
| // Input pattern is checked by caller. |
| static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy, |
| SelectionDAG &DAG) { |
| SDValue Cmp = Op.getOperand(1); |
| EVT VT = Cmp.getOperand(0).getValueType(); |
| unsigned Log2b = Log2_32(VT.getSizeInBits()); |
| SDLoc dl(Op); |
| SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0)); |
| // The result of the shift is true or false, and on X86, the 32-bit |
| // encoding of shr and lzcnt is more desirable. |
| SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32); |
| SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc, |
| DAG.getConstant(Log2b, dl, MVT::i8)); |
| return DAG.getZExtOrTrunc(Scc, dl, ExtTy); |
| } |
| |
| // Try to transform: |
| // zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0)))) |
| // into: |
| // srl(or(ctlz(x), ctlz(y)), log2(bitsize(x)) |
| // Will also attempt to match more generic cases, eg: |
| // zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0))) |
| // Only applies if the target supports the FastLZCNT feature. |
| static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast()) |
| return SDValue(); |
| |
| auto isORCandidate = [](SDValue N) { |
| return (N->getOpcode() == ISD::OR && N->hasOneUse()); |
| }; |
| |
| // Check the zero extend is extending to 32-bit or more. The code generated by |
| // srl(ctlz) for 16-bit or less variants of the pattern would require extra |
| // instructions to clear the upper bits. |
| if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) || |
| !isORCandidate(N->getOperand(0))) |
| return SDValue(); |
| |
| // Check the node matches: setcc(eq, cmp 0) |
| auto isSetCCCandidate = [](SDValue N) { |
| return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() && |
| X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E && |
| N->getOperand(1).getOpcode() == X86ISD::CMP && |
| isNullConstant(N->getOperand(1).getOperand(1)) && |
| N->getOperand(1).getValueType().bitsGE(MVT::i32); |
| }; |
| |
| SDNode *OR = N->getOperand(0).getNode(); |
| SDValue LHS = OR->getOperand(0); |
| SDValue RHS = OR->getOperand(1); |
| |
| // Save nodes matching or(or, setcc(eq, cmp 0)). |
| SmallVector<SDNode *, 2> ORNodes; |
| while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) || |
| (isORCandidate(RHS) && isSetCCCandidate(LHS)))) { |
| ORNodes.push_back(OR); |
| OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode(); |
| LHS = OR->getOperand(0); |
| RHS = OR->getOperand(1); |
| } |
| |
| // The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)). |
| if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) || |
| !isORCandidate(SDValue(OR, 0))) |
| return SDValue(); |
| |
| // We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it |
| // to |
| // or(srl(ctlz),srl(ctlz)). |
| // The dag combiner can then fold it into: |
| // srl(or(ctlz, ctlz)). |
| EVT VT = OR->getValueType(0); |
| SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG); |
| SDValue Ret, NewRHS; |
| if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG))) |
| Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS); |
| |
| if (!Ret) |
| return SDValue(); |
| |
| // Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern. |
| while (ORNodes.size() > 0) { |
| OR = ORNodes.pop_back_val(); |
| LHS = OR->getOperand(0); |
| RHS = OR->getOperand(1); |
| // Swap rhs with lhs to match or(setcc(eq, cmp, 0), or). |
| if (RHS->getOpcode() == ISD::OR) |
| std::swap(LHS, RHS); |
| EVT VT = OR->getValueType(0); |
| SDValue NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG); |
| if (!NewRHS) |
| return SDValue(); |
| Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS); |
| } |
| |
| if (Ret) |
| Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret); |
| |
| return Ret; |
| } |
| |
| static SDValue combineOr(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| |
| // If this is SSE1 only convert to FOR to avoid scalarization. |
| if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) { |
| return DAG.getBitcast(MVT::v4i32, |
| DAG.getNode(X86ISD::FOR, SDLoc(N), MVT::v4f32, |
| DAG.getBitcast(MVT::v4f32, N0), |
| DAG.getBitcast(MVT::v4f32, N1))); |
| } |
| |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget)) |
| return R; |
| |
| if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) |
| return FPLogic; |
| |
| if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget)) |
| return R; |
| |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) |
| bool OptForSize = DAG.getMachineFunction().getFunction().optForSize(); |
| |
| // SHLD/SHRD instructions have lower register pressure, but on some |
| // platforms they have higher latency than the equivalent |
| // series of shifts/or that would otherwise be generated. |
| // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions |
| // have higher latencies and we are not optimizing for size. |
| if (!OptForSize && Subtarget.isSHLDSlow()) |
| return SDValue(); |
| |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| |
| SDValue ShAmt0 = N0.getOperand(1); |
| if (ShAmt0.getValueType() != MVT::i8) |
| return SDValue(); |
| SDValue ShAmt1 = N1.getOperand(1); |
| if (ShAmt1.getValueType() != MVT::i8) |
| return SDValue(); |
| if (ShAmt0.getOpcode() == ISD::TRUNCATE) |
| ShAmt0 = ShAmt0.getOperand(0); |
| if (ShAmt1.getOpcode() == ISD::TRUNCATE) |
| ShAmt1 = ShAmt1.getOperand(0); |
| |
| SDLoc DL(N); |
| unsigned Opc = X86ISD::SHLD; |
| SDValue Op0 = N0.getOperand(0); |
| SDValue Op1 = N1.getOperand(0); |
| if (ShAmt0.getOpcode() == ISD::SUB || |
| ShAmt0.getOpcode() == ISD::XOR) { |
| Opc = X86ISD::SHRD; |
| std::swap(Op0, Op1); |
| std::swap(ShAmt0, ShAmt1); |
| } |
| |
| // OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> SHLD( X, Y, C ) |
| // OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> SHRD( X, Y, C ) |
| // OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> SHLD( X, Y, C ) |
| // OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> SHRD( X, Y, C ) |
| unsigned Bits = VT.getSizeInBits(); |
| if (ShAmt1.getOpcode() == ISD::SUB) { |
| SDValue Sum = ShAmt1.getOperand(0); |
| if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { |
| SDValue ShAmt1Op1 = ShAmt1.getOperand(1); |
| if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE) |
| ShAmt1Op1 = ShAmt1Op1.getOperand(0); |
| if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) |
| return DAG.getNode(Opc, DL, VT, |
| Op0, Op1, |
| DAG.getNode(ISD::TRUNCATE, DL, |
| MVT::i8, ShAmt0)); |
| } |
| } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { |
| ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); |
| if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits) |
| return DAG.getNode(Opc, DL, VT, |
| N0.getOperand(0), N1.getOperand(0), |
| DAG.getNode(ISD::TRUNCATE, DL, |
| MVT::i8, ShAmt0)); |
| } else if (ShAmt1.getOpcode() == ISD::XOR) { |
| SDValue Mask = ShAmt1.getOperand(1); |
| if (ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask)) { |
| unsigned InnerShift = (X86ISD::SHLD == Opc ? ISD::SRL : ISD::SHL); |
| SDValue ShAmt1Op0 = ShAmt1.getOperand(0); |
| if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE) |
| ShAmt1Op0 = ShAmt1Op0.getOperand(0); |
| if (MaskC->getSExtValue() == (Bits - 1) && ShAmt1Op0 == ShAmt0) { |
| if (Op1.getOpcode() == InnerShift && |
| isa<ConstantSDNode>(Op1.getOperand(1)) && |
| Op1.getConstantOperandVal(1) == 1) { |
| return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0), |
| DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); |
| } |
| // Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ). |
| if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD && |
| Op1.getOperand(0) == Op1.getOperand(1)) { |
| return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0), |
| DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to turn tests against the signbit in the form of: |
| /// XOR(TRUNCATE(SRL(X, size(X)-1)), 1) |
| /// into: |
| /// SETGT(X, -1) |
| static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) { |
| // This is only worth doing if the output type is i8 or i1. |
| EVT ResultType = N->getValueType(0); |
| if (ResultType != MVT::i8 && ResultType != MVT::i1) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // We should be performing an xor against a truncated shift. |
| if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse()) |
| return SDValue(); |
| |
| // Make sure we are performing an xor against one. |
| if (!isOneConstant(N1)) |
| return SDValue(); |
| |
| // SetCC on x86 zero extends so only act on this if it's a logical shift. |
| SDValue Shift = N0.getOperand(0); |
| if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse()) |
| return SDValue(); |
| |
| // Make sure we are truncating from one of i16, i32 or i64. |
| EVT ShiftTy = Shift.getValueType(); |
| if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64) |
| return SDValue(); |
| |
| // Make sure the shift amount extracts the sign bit. |
| if (!isa<ConstantSDNode>(Shift.getOperand(1)) || |
| Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1) |
| return SDValue(); |
| |
| // Create a greater-than comparison against -1. |
| // N.B. Using SETGE against 0 works but we want a canonical looking |
| // comparison, using SETGT matches up with what TranslateX86CC. |
| SDLoc DL(N); |
| SDValue ShiftOp = Shift.getOperand(0); |
| EVT ShiftOpTy = ShiftOp.getValueType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), ResultType); |
| SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp, |
| DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT); |
| if (SetCCResultType != ResultType) |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond); |
| return Cond; |
| } |
| |
| /// Turn vector tests of the signbit in the form of: |
| /// xor (sra X, elt_size(X)-1), -1 |
| /// into: |
| /// pcmpgt X, -1 |
| /// |
| /// This should be called before type legalization because the pattern may not |
| /// persist after that. |
| static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (!VT.isSimple()) |
| return SDValue(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return SDValue(); |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: if (!Subtarget.hasSSE2()) return SDValue(); break; |
| case MVT::v2i64: if (!Subtarget.hasSSE42()) return SDValue(); break; |
| case MVT::v32i8: |
| case MVT::v16i16: |
| case MVT::v8i32: |
| case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break; |
| } |
| |
| // There must be a shift right algebraic before the xor, and the xor must be a |
| // 'not' operation. |
| SDValue Shift = N->getOperand(0); |
| SDValue Ones = N->getOperand(1); |
| if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() || |
| !ISD::isBuildVectorAllOnes(Ones.getNode())) |
| return SDValue(); |
| |
| // The shift should be smearing the sign bit across each vector element. |
| auto *ShiftBV = dyn_cast<BuildVectorSDNode>(Shift.getOperand(1)); |
| if (!ShiftBV) |
| return SDValue(); |
| |
| EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); |
| auto *ShiftAmt = ShiftBV->getConstantSplatNode(); |
| if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) |
| return SDValue(); |
| |
| // Create a greater-than comparison against -1. We don't use the more obvious |
| // greater-than-or-equal-to-zero because SSE/AVX don't have that instruction. |
| return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones); |
| } |
| |
| /// Check if truncation with saturation form type \p SrcVT to \p DstVT |
| /// is valid for the given \p Subtarget. |
| static bool isSATValidOnAVX512Subtarget(EVT SrcVT, EVT DstVT, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasAVX512()) |
| return false; |
| |
| // FIXME: Scalar type may be supported if we move it to vector register. |
| if (!SrcVT.isVector()) |
| return false; |
| |
| EVT SrcElVT = SrcVT.getScalarType(); |
| EVT DstElVT = DstVT.getScalarType(); |
| if (DstElVT != MVT::i8 && DstElVT != MVT::i16 && DstElVT != MVT::i32) |
| return false; |
| if (SrcVT.is512BitVector() || Subtarget.hasVLX()) |
| return SrcElVT.getSizeInBits() >= 32 || Subtarget.hasBWI(); |
| return false; |
| } |
| |
| /// Detect patterns of truncation with unsigned saturation: |
| /// |
| /// 1. (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type). |
| /// Return the source value x to be truncated or SDValue() if the pattern was |
| /// not matched. |
| /// |
| /// 2. (truncate (smin (smax (x, C1), C2)) to dest_type), |
| /// where C1 >= 0 and C2 is unsigned max of destination type. |
| /// |
| /// (truncate (smax (smin (x, C2), C1)) to dest_type) |
| /// where C1 >= 0, C2 is unsigned max of destination type and C1 <= C2. |
| /// |
| /// These two patterns are equivalent to: |
| /// (truncate (umin (smax(x, C1), unsigned_max_of_dest_type)) to dest_type) |
| /// So return the smax(x, C1) value to be truncated or SDValue() if the |
| /// pattern was not matched. |
| static SDValue detectUSatPattern(SDValue In, EVT VT, SelectionDAG &DAG, |
| const SDLoc &DL) { |
| EVT InVT = In.getValueType(); |
| |
| // Saturation with truncation. We truncate from InVT to VT. |
| assert(InVT.getScalarSizeInBits() > VT.getScalarSizeInBits() && |
| "Unexpected types for truncate operation"); |
| |
| // Match min/max and return limit value as a parameter. |
| auto MatchMinMax = [](SDValue V, unsigned Opcode, APInt &Limit) -> SDValue { |
| if (V.getOpcode() == Opcode && |
| ISD::isConstantSplatVector(V.getOperand(1).getNode(), Limit)) |
| return V.getOperand(0); |
| return SDValue(); |
| }; |
| |
| APInt C1, C2; |
| if (SDValue UMin = MatchMinMax(In, ISD::UMIN, C2)) |
| // C2 should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according |
| // the element size of the destination type. |
| if (C2.isMask(VT.getScalarSizeInBits())) |
| return UMin; |
| |
| if (SDValue SMin = MatchMinMax(In, ISD::SMIN, C2)) |
| if (MatchMinMax(SMin, ISD::SMAX, C1)) |
| if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits())) |
| return SMin; |
| |
| if (SDValue SMax = MatchMinMax(In, ISD::SMAX, C1)) |
| if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, C2)) |
| if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()) && |
| C2.uge(C1)) { |
| return DAG.getNode(ISD::SMAX, DL, InVT, SMin, In.getOperand(1)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Detect patterns of truncation with signed saturation: |
| /// (truncate (smin ((smax (x, signed_min_of_dest_type)), |
| /// signed_max_of_dest_type)) to dest_type) |
| /// or: |
| /// (truncate (smax ((smin (x, signed_max_of_dest_type)), |
| /// signed_min_of_dest_type)) to dest_type). |
| /// With MatchPackUS, the smax/smin range is [0, unsigned_max_of_dest_type]. |
| /// Return the source value to be truncated or SDValue() if the pattern was not |
| /// matched. |
| static SDValue detectSSatPattern(SDValue In, EVT VT, bool MatchPackUS = false) { |
| unsigned NumDstBits = VT.getScalarSizeInBits(); |
| unsigned NumSrcBits = In.getScalarValueSizeInBits(); |
| assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation"); |
| |
| auto MatchMinMax = [](SDValue V, unsigned Opcode, |
| const APInt &Limit) -> SDValue { |
| APInt C; |
| if (V.getOpcode() == Opcode && |
| ISD::isConstantSplatVector(V.getOperand(1).getNode(), C) && C == Limit) |
| return V.getOperand(0); |
| return SDValue(); |
| }; |
| |
| APInt SignedMax, SignedMin; |
| if (MatchPackUS) { |
| SignedMax = APInt::getAllOnesValue(NumDstBits).zext(NumSrcBits); |
| SignedMin = APInt(NumSrcBits, 0); |
| } else { |
| SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits); |
| SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits); |
| } |
| |
| if (SDValue SMin = MatchMinMax(In, ISD::SMIN, SignedMax)) |
| if (SDValue SMax = MatchMinMax(SMin, ISD::SMAX, SignedMin)) |
| return SMax; |
| |
| if (SDValue SMax = MatchMinMax(In, ISD::SMAX, SignedMin)) |
| if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, SignedMax)) |
| return SMin; |
| |
| return SDValue(); |
| } |
| |
| /// Detect a pattern of truncation with signed saturation. |
| /// The types should allow to use VPMOVSS* instruction on AVX512. |
| /// Return the source value to be truncated or SDValue() if the pattern was not |
| /// matched. |
| static SDValue detectAVX512SSatPattern(SDValue In, EVT VT, |
| const X86Subtarget &Subtarget, |
| const TargetLowering &TLI) { |
| if (!TLI.isTypeLegal(In.getValueType())) |
| return SDValue(); |
| if (!isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget)) |
| return SDValue(); |
| return detectSSatPattern(In, VT); |
| } |
| |
| /// Detect a pattern of truncation with saturation: |
| /// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type). |
| /// The types should allow to use VPMOVUS* instruction on AVX512. |
| /// Return the source value to be truncated or SDValue() if the pattern was not |
| /// matched. |
| static SDValue detectAVX512USatPattern(SDValue In, EVT VT, SelectionDAG &DAG, |
| const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| const TargetLowering &TLI) { |
| if (!TLI.isTypeLegal(In.getValueType())) |
| return SDValue(); |
| if (!isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget)) |
| return SDValue(); |
| return detectUSatPattern(In, VT, DAG, DL); |
| } |
| |
| static SDValue combineTruncateWithSat(SDValue In, EVT VT, const SDLoc &DL, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT SVT = VT.getScalarType(); |
| EVT InVT = In.getValueType(); |
| EVT InSVT = InVT.getScalarType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.isTypeLegal(InVT) && TLI.isTypeLegal(VT) && |
| isSATValidOnAVX512Subtarget(InVT, VT, Subtarget)) { |
| if (auto SSatVal = detectSSatPattern(In, VT)) |
| return DAG.getNode(X86ISD::VTRUNCS, DL, VT, SSatVal); |
| if (auto USatVal = detectUSatPattern(In, VT, DAG, DL)) |
| return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, USatVal); |
| } |
| if (VT.isVector() && isPowerOf2_32(VT.getVectorNumElements()) && |
| (SVT == MVT::i8 || SVT == MVT::i16) && |
| (InSVT == MVT::i16 || InSVT == MVT::i32)) { |
| if (auto USatVal = detectSSatPattern(In, VT, true)) { |
| // vXi32 -> vXi8 must be performed as PACKUSWB(PACKSSDW,PACKSSDW). |
| if (SVT == MVT::i8 && InSVT == MVT::i32) { |
| EVT MidVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, |
| VT.getVectorNumElements()); |
| SDValue Mid = truncateVectorWithPACK(X86ISD::PACKSS, MidVT, USatVal, DL, |
| DAG, Subtarget); |
| if (Mid) |
| return truncateVectorWithPACK(X86ISD::PACKUS, VT, Mid, DL, DAG, |
| Subtarget); |
| } else if (SVT == MVT::i8 || Subtarget.hasSSE41()) |
| return truncateVectorWithPACK(X86ISD::PACKUS, VT, USatVal, DL, DAG, |
| Subtarget); |
| } |
| if (auto SSatVal = detectSSatPattern(In, VT)) |
| return truncateVectorWithPACK(X86ISD::PACKSS, VT, SSatVal, DL, DAG, |
| Subtarget); |
| } |
| return SDValue(); |
| } |
| |
| /// This function detects the AVG pattern between vectors of unsigned i8/i16, |
| /// which is c = (a + b + 1) / 2, and replace this operation with the efficient |
| /// X86ISD::AVG instruction. |
| static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| const SDLoc &DL) { |
| if (!VT.isVector()) |
| return SDValue(); |
| EVT InVT = In.getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| EVT ScalarVT = VT.getVectorElementType(); |
| if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) && |
| isPowerOf2_32(NumElems))) |
| return SDValue(); |
| |
| // InScalarVT is the intermediate type in AVG pattern and it should be greater |
| // than the original input type (i8/i16). |
| EVT InScalarVT = InVT.getVectorElementType(); |
| if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits()) |
| return SDValue(); |
| |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| // Detect the following pattern: |
| // |
| // %1 = zext <N x i8> %a to <N x i32> |
| // %2 = zext <N x i8> %b to <N x i32> |
| // %3 = add nuw nsw <N x i32> %1, <i32 1 x N> |
| // %4 = add nuw nsw <N x i32> %3, %2 |
| // %5 = lshr <N x i32> %N, <i32 1 x N> |
| // %6 = trunc <N x i32> %5 to <N x i8> |
| // |
| // In AVX512, the last instruction can also be a trunc store. |
| if (In.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| // A lambda checking the given SDValue is a constant vector and each element |
| // is in the range [Min, Max]. |
| auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) { |
| BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V); |
| if (!BV || !BV->isConstant()) |
| return false; |
| for (SDValue Op : V->ops()) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return false; |
| const APInt &Val = C->getAPIntValue(); |
| if (Val.ult(Min) || Val.ugt(Max)) |
| return false; |
| } |
| return true; |
| }; |
| |
| // Check if each element of the vector is left-shifted by one. |
| auto LHS = In.getOperand(0); |
| auto RHS = In.getOperand(1); |
| if (!IsConstVectorInRange(RHS, 1, 1)) |
| return SDValue(); |
| if (LHS.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| // Detect a pattern of a + b + 1 where the order doesn't matter. |
| SDValue Operands[3]; |
| Operands[0] = LHS.getOperand(0); |
| Operands[1] = LHS.getOperand(1); |
| |
| auto AVGBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::AVG, DL, Ops[0].getValueType(), Ops); |
| }; |
| |
| // Take care of the case when one of the operands is a constant vector whose |
| // element is in the range [1, 256]. |
| if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) && |
| Operands[0].getOpcode() == ISD::ZERO_EXTEND && |
| Operands[0].getOperand(0).getValueType() == VT) { |
| // The pattern is detected. Subtract one from the constant vector, then |
| // demote it and emit X86ISD::AVG instruction. |
| SDValue VecOnes = DAG.getConstant(1, DL, InVT); |
| Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes); |
| Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]); |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, |
| { Operands[0].getOperand(0), Operands[1] }, |
| AVGBuilder); |
| } |
| |
| if (Operands[0].getOpcode() == ISD::ADD) |
| std::swap(Operands[0], Operands[1]); |
| else if (Operands[1].getOpcode() != ISD::ADD) |
| return SDValue(); |
| Operands[2] = Operands[1].getOperand(0); |
| Operands[1] = Operands[1].getOperand(1); |
| |
| // Now we have three operands of two additions. Check that one of them is a |
| // constant vector with ones, and the other two are promoted from i8/i16. |
| for (int i = 0; i < 3; ++i) { |
| if (!IsConstVectorInRange(Operands[i], 1, 1)) |
| continue; |
| std::swap(Operands[i], Operands[2]); |
| |
| // Check if Operands[0] and Operands[1] are results of type promotion. |
| for (int j = 0; j < 2; ++j) |
| if (Operands[j].getOpcode() != ISD::ZERO_EXTEND || |
| Operands[j].getOperand(0).getValueType() != VT) |
| return SDValue(); |
| |
| // The pattern is detected, emit X86ISD::AVG instruction(s). |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, |
| { Operands[0].getOperand(0), |
| Operands[1].getOperand(0) }, AVGBuilder); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineLoad(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| LoadSDNode *Ld = cast<LoadSDNode>(N); |
| EVT RegVT = Ld->getValueType(0); |
| EVT MemVT = Ld->getMemoryVT(); |
| SDLoc dl(Ld); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // For chips with slow 32-byte unaligned loads, break the 32-byte operation |
| // into two 16-byte operations. Also split non-temporal aligned loads on |
| // pre-AVX2 targets as 32-byte loads will lower to regular temporal loads. |
| ISD::LoadExtType Ext = Ld->getExtensionType(); |
| bool Fast; |
| unsigned AddressSpace = Ld->getAddressSpace(); |
| unsigned Alignment = Ld->getAlignment(); |
| if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() && |
| Ext == ISD::NON_EXTLOAD && |
| ((Ld->isNonTemporal() && !Subtarget.hasInt256() && Alignment >= 16) || |
| (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT, |
| AddressSpace, Alignment, &Fast) && !Fast))) { |
| unsigned NumElems = RegVT.getVectorNumElements(); |
| if (NumElems < 2) |
| return SDValue(); |
| |
| SDValue Ptr = Ld->getBasePtr(); |
| |
| EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), |
| NumElems/2); |
| SDValue Load1 = |
| DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), |
| Alignment, Ld->getMemOperand()->getFlags()); |
| |
| Ptr = DAG.getMemBasePlusOffset(Ptr, 16, dl); |
| SDValue Load2 = |
| DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, |
| Ld->getPointerInfo().getWithOffset(16), |
| MinAlign(Alignment, 16U), Ld->getMemOperand()->getFlags()); |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| Load1.getValue(1), |
| Load2.getValue(1)); |
| |
| SDValue NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Load1, Load2); |
| return DCI.CombineTo(N, NewVec, TF, true); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If V is a build vector of boolean constants and exactly one of those |
| /// constants is true, return the operand index of that true element. |
| /// Otherwise, return -1. |
| static int getOneTrueElt(SDValue V) { |
| // This needs to be a build vector of booleans. |
| // TODO: Checking for the i1 type matches the IR definition for the mask, |
| // but the mask check could be loosened to i8 or other types. That might |
| // also require checking more than 'allOnesValue'; eg, the x86 HW |
| // instructions only require that the MSB is set for each mask element. |
| // The ISD::MSTORE comments/definition do not specify how the mask operand |
| // is formatted. |
| auto *BV = dyn_cast<BuildVectorSDNode>(V); |
| if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1) |
| return -1; |
| |
| int TrueIndex = -1; |
| unsigned NumElts = BV->getValueType(0).getVectorNumElements(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| const SDValue &Op = BV->getOperand(i); |
| if (Op.isUndef()) |
| continue; |
| auto *ConstNode = dyn_cast<ConstantSDNode>(Op); |
| if (!ConstNode) |
| return -1; |
| if (ConstNode->getAPIntValue().isAllOnesValue()) { |
| // If we already found a one, this is too many. |
| if (TrueIndex >= 0) |
| return -1; |
| TrueIndex = i; |
| } |
| } |
| return TrueIndex; |
| } |
| |
| /// Given a masked memory load/store operation, return true if it has one mask |
| /// bit set. If it has one mask bit set, then also return the memory address of |
| /// the scalar element to load/store, the vector index to insert/extract that |
| /// scalar element, and the alignment for the scalar memory access. |
| static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp, |
| SelectionDAG &DAG, SDValue &Addr, |
| SDValue &Index, unsigned &Alignment) { |
| int TrueMaskElt = getOneTrueElt(MaskedOp->getMask()); |
| if (TrueMaskElt < 0) |
| return false; |
| |
| // Get the address of the one scalar element that is specified by the mask |
| // using the appropriate offset from the base pointer. |
| EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType(); |
| Addr = MaskedOp->getBasePtr(); |
| if (TrueMaskElt != 0) { |
| unsigned Offset = TrueMaskElt * EltVT.getStoreSize(); |
| Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp)); |
| } |
| |
| Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp)); |
| Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize()); |
| return true; |
| } |
| |
| /// If exactly one element of the mask is set for a non-extending masked load, |
| /// it is a scalar load and vector insert. |
| /// Note: It is expected that the degenerate cases of an all-zeros or all-ones |
| /// mask have already been optimized in IR, so we don't bother with those here. |
| static SDValue |
| reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // TODO: This is not x86-specific, so it could be lifted to DAGCombiner. |
| // However, some target hooks may need to be added to know when the transform |
| // is profitable. Endianness would also have to be considered. |
| |
| SDValue Addr, VecIndex; |
| unsigned Alignment; |
| if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment)) |
| return SDValue(); |
| |
| // Load the one scalar element that is specified by the mask using the |
| // appropriate offset from the base pointer. |
| SDLoc DL(ML); |
| EVT VT = ML->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue Load = |
| DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(), |
| Alignment, ML->getMemOperand()->getFlags()); |
| |
| // Insert the loaded element into the appropriate place in the vector. |
| SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, ML->getSrc0(), |
| Load, VecIndex); |
| return DCI.CombineTo(ML, Insert, Load.getValue(1), true); |
| } |
| |
| static SDValue |
| combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode())) |
| return SDValue(); |
| |
| SDLoc DL(ML); |
| EVT VT = ML->getValueType(0); |
| |
| // If we are loading the first and last elements of a vector, it is safe and |
| // always faster to load the whole vector. Replace the masked load with a |
| // vector load and select. |
| unsigned NumElts = VT.getVectorNumElements(); |
| BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask()); |
| bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0)); |
| bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1)); |
| if (LoadFirstElt && LoadLastElt) { |
| SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(), |
| ML->getMemOperand()); |
| SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd, ML->getSrc0()); |
| return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true); |
| } |
| |
| // Convert a masked load with a constant mask into a masked load and a select. |
| // This allows the select operation to use a faster kind of select instruction |
| // (for example, vblendvps -> vblendps). |
| |
| // Don't try this if the pass-through operand is already undefined. That would |
| // cause an infinite loop because that's what we're about to create. |
| if (ML->getSrc0().isUndef()) |
| return SDValue(); |
| |
| // The new masked load has an undef pass-through operand. The select uses the |
| // original pass-through operand. |
| SDValue NewML = DAG.getMaskedLoad(VT, DL, ML->getChain(), ML->getBasePtr(), |
| ML->getMask(), DAG.getUNDEF(VT), |
| ML->getMemoryVT(), ML->getMemOperand(), |
| ML->getExtensionType()); |
| SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML, ML->getSrc0()); |
| |
| return DCI.CombineTo(ML, Blend, NewML.getValue(1), true); |
| } |
| |
| static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N); |
| |
| // TODO: Expanding load with constant mask may be optimized as well. |
| if (Mld->isExpandingLoad()) |
| return SDValue(); |
| |
| if (Mld->getExtensionType() == ISD::NON_EXTLOAD) { |
| if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI)) |
| return ScalarLoad; |
| // TODO: Do some AVX512 subsets benefit from this transform? |
| if (!Subtarget.hasAVX512()) |
| if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI)) |
| return Blend; |
| } |
| |
| if (Mld->getExtensionType() != ISD::SEXTLOAD) |
| return SDValue(); |
| |
| // Resolve extending loads. |
| EVT VT = Mld->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT LdVT = Mld->getMemoryVT(); |
| SDLoc dl(Mld); |
| |
| assert(LdVT != VT && "Cannot extend to the same type"); |
| unsigned ToSz = VT.getScalarSizeInBits(); |
| unsigned FromSz = LdVT.getScalarSizeInBits(); |
| // From/To sizes and ElemCount must be pow of two. |
| assert (isPowerOf2_32(NumElems * FromSz * ToSz) && |
| "Unexpected size for extending masked load"); |
| |
| unsigned SizeRatio = ToSz / FromSz; |
| assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits()); |
| |
| // Create a type on which we perform the shuffle. |
| EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), |
| LdVT.getScalarType(), NumElems*SizeRatio); |
| assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| // Convert Src0 value. |
| SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0()); |
| if (!Mld->getSrc0().isUndef()) { |
| SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i] = i * SizeRatio; |
| |
| // Can't shuffle using an illegal type. |
| assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && |
| "WideVecVT should be legal"); |
| WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0, |
| DAG.getUNDEF(WideVecVT), ShuffleVec); |
| } |
| |
| // Prepare the new mask. |
| SDValue NewMask; |
| SDValue Mask = Mld->getMask(); |
| if (Mask.getValueType() == VT) { |
| // Mask and original value have the same type. |
| NewMask = DAG.getBitcast(WideVecVT, Mask); |
| SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i] = i * SizeRatio; |
| for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i) |
| ShuffleVec[i] = NumElems * SizeRatio; |
| NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, |
| DAG.getConstant(0, dl, WideVecVT), |
| ShuffleVec); |
| } else { |
| assert(Mask.getValueType().getVectorElementType() == MVT::i1); |
| unsigned WidenNumElts = NumElems*SizeRatio; |
| unsigned MaskNumElts = VT.getVectorNumElements(); |
| EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, |
| WidenNumElts); |
| |
| unsigned NumConcat = WidenNumElts / MaskNumElts; |
| SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); |
| SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal); |
| Ops[0] = Mask; |
| NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); |
| } |
| |
| SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(), |
| Mld->getBasePtr(), NewMask, WideSrc0, |
| Mld->getMemoryVT(), Mld->getMemOperand(), |
| ISD::NON_EXTLOAD); |
| SDValue NewVec = getExtendInVec(X86ISD::VSEXT, dl, VT, WideLd, DAG); |
| return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true); |
| } |
| |
| /// If exactly one element of the mask is set for a non-truncating masked store, |
| /// it is a vector extract and scalar store. |
| /// Note: It is expected that the degenerate cases of an all-zeros or all-ones |
| /// mask have already been optimized in IR, so we don't bother with those here. |
| static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS, |
| SelectionDAG &DAG) { |
| // TODO: This is not x86-specific, so it could be lifted to DAGCombiner. |
| // However, some target hooks may need to be added to know when the transform |
| // is profitable. Endianness would also have to be considered. |
| |
| SDValue Addr, VecIndex; |
| unsigned Alignment; |
| if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment)) |
| return SDValue(); |
| |
| // Extract the one scalar element that is actually being stored. |
| SDLoc DL(MS); |
| EVT VT = MS->getValue().getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, |
| MS->getValue(), VecIndex); |
| |
| // Store that element at the appropriate offset from the base pointer. |
| return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(), |
| Alignment, MS->getMemOperand()->getFlags()); |
| } |
| |
| static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N); |
| |
| if (Mst->isCompressingStore()) |
| return SDValue(); |
| |
| if (!Mst->isTruncatingStore()) { |
| if (SDValue ScalarStore = reduceMaskedStoreToScalarStore(Mst, DAG)) |
| return ScalarStore; |
| |
| // If the mask is checking (0 > X), we're creating a vector with all-zeros |
| // or all-ones elements based on the sign bits of X. AVX1 masked store only |
| // cares about the sign bit of each mask element, so eliminate the compare: |
| // mstore val, ptr, (pcmpgt 0, X) --> mstore val, ptr, X |
| // Note that by waiting to match an x86-specific PCMPGT node, we're |
| // eliminating potentially more complex matching of a setcc node which has |
| // a full range of predicates. |
| SDValue Mask = Mst->getMask(); |
| if (Mask.getOpcode() == X86ISD::PCMPGT && |
| ISD::isBuildVectorAllZeros(Mask.getOperand(0).getNode())) { |
| assert(Mask.getValueType() == Mask.getOperand(1).getValueType() && |
| "Unexpected type for PCMPGT"); |
| return DAG.getMaskedStore( |
| Mst->getChain(), SDLoc(N), Mst->getValue(), Mst->getBasePtr(), |
| Mask.getOperand(1), Mst->getMemoryVT(), Mst->getMemOperand()); |
| } |
| |
| // TODO: AVX512 targets should also be able to simplify something like the |
| // pattern above, but that pattern will be different. It will either need to |
| // match setcc more generally or match PCMPGTM later (in tablegen?). |
| |
| return SDValue(); |
| } |
| |
| // Resolve truncating stores. |
| EVT VT = Mst->getValue().getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT StVT = Mst->getMemoryVT(); |
| SDLoc dl(Mst); |
| |
| assert(StVT != VT && "Cannot truncate to the same type"); |
| unsigned FromSz = VT.getScalarSizeInBits(); |
| unsigned ToSz = StVT.getScalarSizeInBits(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // The truncating store is legal in some cases. For example |
| // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw |
| // are designated for truncate store. |
| // In this case we don't need any further transformations. |
| if (TLI.isTruncStoreLegal(VT, StVT)) |
| return SDValue(); |
| |
| // From/To sizes and ElemCount must be pow of two. |
| assert (isPowerOf2_32(NumElems * FromSz * ToSz) && |
| "Unexpected size for truncating masked store"); |
| // We are going to use the original vector elt for storing. |
| // Accumulated smaller vector elements must be a multiple of the store size. |
| assert (((NumElems * FromSz) % ToSz) == 0 && |
| "Unexpected ratio for truncating masked store"); |
| |
| unsigned SizeRatio = FromSz / ToSz; |
| assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); |
| |
| // Create a type on which we perform the shuffle. |
| EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StVT.getScalarType(), NumElems*SizeRatio); |
| |
| assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue()); |
| SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i] = i * SizeRatio; |
| |
| // Can't shuffle using an illegal type. |
| assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && |
| "WideVecVT should be legal"); |
| |
| SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec, |
| DAG.getUNDEF(WideVecVT), |
| ShuffleVec); |
| |
| SDValue NewMask; |
| SDValue Mask = Mst->getMask(); |
| if (Mask.getValueType() == VT) { |
| // Mask and original value have the same type. |
| NewMask = DAG.getBitcast(WideVecVT, Mask); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i] = i * SizeRatio; |
| for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) |
| ShuffleVec[i] = NumElems*SizeRatio; |
| NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, |
| DAG.getConstant(0, dl, WideVecVT), |
| ShuffleVec); |
| } else { |
| assert(Mask.getValueType().getVectorElementType() == MVT::i1); |
| unsigned WidenNumElts = NumElems*SizeRatio; |
| unsigned MaskNumElts = VT.getVectorNumElements(); |
| EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, |
| WidenNumElts); |
| |
| unsigned NumConcat = WidenNumElts / MaskNumElts; |
| SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); |
| SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal); |
| Ops[0] = Mask; |
| NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); |
| } |
| |
| return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, |
| Mst->getBasePtr(), NewMask, StVT, |
| Mst->getMemOperand(), false); |
| } |
| |
| static SDValue combineStore(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| StoreSDNode *St = cast<StoreSDNode>(N); |
| EVT VT = St->getValue().getValueType(); |
| EVT StVT = St->getMemoryVT(); |
| SDLoc dl(St); |
| SDValue StoredVal = St->getOperand(1); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // If this is a store of a scalar_to_vector to v1i1, just use a scalar store. |
| // This will avoid a copy to k-register. |
| if (VT == MVT::v1i1 && VT == StVT && Subtarget.hasAVX512() && |
| StoredVal.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| StoredVal.getOperand(0).getValueType() == MVT::i8) { |
| return DAG.getStore(St->getChain(), dl, StoredVal.getOperand(0), |
| St->getBasePtr(), St->getPointerInfo(), |
| St->getAlignment(), St->getMemOperand()->getFlags()); |
| } |
| |
| // Widen v2i1/v4i1 stores to v8i1. |
| if ((VT == MVT::v2i1 || VT == MVT::v4i1) && VT == StVT && |
| Subtarget.hasAVX512()) { |
| unsigned NumConcats = 8 / VT.getVectorNumElements(); |
| SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(VT)); |
| Ops[0] = StoredVal; |
| StoredVal = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops); |
| return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(), |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| } |
| |
| // Turn vXi1 stores of constants into a scalar store. |
| if ((VT == MVT::v8i1 || VT == MVT::v16i1 || VT == MVT::v32i1 || |
| VT == MVT::v64i1) && VT == StVT && TLI.isTypeLegal(VT) && |
| ISD::isBuildVectorOfConstantSDNodes(StoredVal.getNode())) { |
| // If its a v64i1 store without 64-bit support, we need two stores. |
| if (VT == MVT::v64i1 && !Subtarget.is64Bit()) { |
| SDValue Lo = DAG.getBuildVector(MVT::v32i1, dl, |
| StoredVal->ops().slice(0, 32)); |
| Lo = combinevXi1ConstantToInteger(Lo, DAG); |
| SDValue Hi = DAG.getBuildVector(MVT::v32i1, dl, |
| StoredVal->ops().slice(32, 32)); |
| Hi = combinevXi1ConstantToInteger(Hi, DAG); |
| |
| unsigned Alignment = St->getAlignment(); |
| |
| SDValue Ptr0 = St->getBasePtr(); |
| SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 4, dl); |
| |
| SDValue Ch0 = |
| DAG.getStore(St->getChain(), dl, Lo, Ptr0, St->getPointerInfo(), |
| Alignment, St->getMemOperand()->getFlags()); |
| SDValue Ch1 = |
| DAG.getStore(St->getChain(), dl, Hi, Ptr1, |
| St->getPointerInfo().getWithOffset(4), |
| MinAlign(Alignment, 4U), |
| St->getMemOperand()->getFlags()); |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); |
| } |
| |
| StoredVal = combinevXi1ConstantToInteger(StoredVal, DAG); |
| return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(), |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| } |
| |
| // If we are saving a concatenation of two XMM registers and 32-byte stores |
| // are slow, such as on Sandy Bridge, perform two 16-byte stores. |
| bool Fast; |
| unsigned AddressSpace = St->getAddressSpace(); |
| unsigned Alignment = St->getAlignment(); |
| if (VT.is256BitVector() && StVT == VT && |
| TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, |
| AddressSpace, Alignment, &Fast) && |
| !Fast) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| if (NumElems < 2) |
| return SDValue(); |
| |
| SDValue Value0 = extract128BitVector(StoredVal, 0, DAG, dl); |
| SDValue Value1 = extract128BitVector(StoredVal, NumElems / 2, DAG, dl); |
| |
| SDValue Ptr0 = St->getBasePtr(); |
| SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 16, dl); |
| |
| SDValue Ch0 = |
| DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(), |
| Alignment, St->getMemOperand()->getFlags()); |
| SDValue Ch1 = |
| DAG.getStore(St->getChain(), dl, Value1, Ptr1, |
| St->getPointerInfo().getWithOffset(16), |
| MinAlign(Alignment, 16U), St->getMemOperand()->getFlags()); |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); |
| } |
| |
| // Optimize trunc store (of multiple scalars) to shuffle and store. |
| // First, pack all of the elements in one place. Next, store to memory |
| // in fewer chunks. |
| if (St->isTruncatingStore() && VT.isVector()) { |
| // Check if we can detect an AVG pattern from the truncation. If yes, |
| // replace the trunc store by a normal store with the result of X86ISD::AVG |
| // instruction. |
| if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG, |
| Subtarget, dl)) |
| return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(), |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (SDValue Val = |
| detectAVX512SSatPattern(St->getValue(), St->getMemoryVT(), Subtarget, |
| TLI)) |
| return EmitTruncSStore(true /* Signed saturation */, St->getChain(), |
| dl, Val, St->getBasePtr(), |
| St->getMemoryVT(), St->getMemOperand(), DAG); |
| if (SDValue Val = detectAVX512USatPattern(St->getValue(), St->getMemoryVT(), |
| DAG, dl, Subtarget, TLI)) |
| return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(), |
| dl, Val, St->getBasePtr(), |
| St->getMemoryVT(), St->getMemOperand(), DAG); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| assert(StVT != VT && "Cannot truncate to the same type"); |
| unsigned FromSz = VT.getScalarSizeInBits(); |
| unsigned ToSz = StVT.getScalarSizeInBits(); |
| |
| // The truncating store is legal in some cases. For example |
| // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw |
| // are designated for truncate store. |
| // In this case we don't need any further transformations. |
| if (TLI.isTruncStoreLegalOrCustom(VT, StVT)) |
| return SDValue(); |
| |
| // From, To sizes and ElemCount must be pow of two |
| if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); |
| // We are going to use the original vector elt for storing. |
| // Accumulated smaller vector elements must be a multiple of the store size. |
| if (0 != (NumElems * FromSz) % ToSz) return SDValue(); |
| |
| unsigned SizeRatio = FromSz / ToSz; |
| |
| assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); |
| |
| // Create a type on which we perform the shuffle |
| EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StVT.getScalarType(), NumElems*SizeRatio); |
| |
| assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue()); |
| SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i] = i * SizeRatio; |
| |
| // Can't shuffle using an illegal type. |
| if (!TLI.isTypeLegal(WideVecVT)) |
| return SDValue(); |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, |
| DAG.getUNDEF(WideVecVT), |
| ShuffleVec); |
| // At this point all of the data is stored at the bottom of the |
| // register. We now need to save it to mem. |
| |
| // Find the largest store unit |
| MVT StoreType = MVT::i8; |
| for (MVT Tp : MVT::integer_valuetypes()) { |
| if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) |
| StoreType = Tp; |
| } |
| |
| // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. |
| if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && |
| (64 <= NumElems * ToSz)) |
| StoreType = MVT::f64; |
| |
| // Bitcast the original vector into a vector of store-size units |
| EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); |
| assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); |
| SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff); |
| SmallVector<SDValue, 8> Chains; |
| SDValue Ptr = St->getBasePtr(); |
| |
| // Perform one or more big stores into memory. |
| for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| StoreType, ShuffWide, |
| DAG.getIntPtrConstant(i, dl)); |
| SDValue Ch = |
| DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(), |
| St->getAlignment(), St->getMemOperand()->getFlags()); |
| Ptr = DAG.getMemBasePlusOffset(Ptr, StoreType.getStoreSize(), dl); |
| Chains.push_back(Ch); |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); |
| } |
| |
| // Turn load->store of MMX types into GPR load/stores. This avoids clobbering |
| // the FP state in cases where an emms may be missing. |
| // A preferable solution to the general problem is to figure out the right |
| // places to insert EMMS. This qualifies as a quick hack. |
| |
| // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. |
| if (VT.getSizeInBits() != 64) |
| return SDValue(); |
| |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat); |
| bool F64IsLegal = |
| !Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2(); |
| if ((VT.isVector() || |
| (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit())) && |
| isa<LoadSDNode>(St->getValue()) && |
| !cast<LoadSDNode>(St->getValue())->isVolatile() && |
| St->getChain().hasOneUse() && !St->isVolatile()) { |
| LoadSDNode *Ld = cast<LoadSDNode>(St->getValue().getNode()); |
| SmallVector<SDValue, 8> Ops; |
| |
| if (!ISD::isNormalLoad(Ld)) |
| return SDValue(); |
| |
| // If this is not the MMX case, i.e. we are just turning i64 load/store |
| // into f64 load/store, avoid the transformation if there are multiple |
| // uses of the loaded value. |
| if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) |
| return SDValue(); |
| |
| SDLoc LdDL(Ld); |
| SDLoc StDL(N); |
| // If we are a 64-bit capable x86, lower to a single movq load/store pair. |
| // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store |
| // pair instead. |
| if (Subtarget.is64Bit() || F64IsLegal) { |
| MVT LdVT = Subtarget.is64Bit() ? MVT::i64 : MVT::f64; |
| SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), |
| Ld->getMemOperand()); |
| |
| // Make sure new load is placed in same chain order. |
| DAG.makeEquivalentMemoryOrdering(Ld, NewLd); |
| return DAG.getStore(St->getChain(), StDL, NewLd, St->getBasePtr(), |
| St->getMemOperand()); |
| } |
| |
| // Otherwise, lower to two pairs of 32-bit loads / stores. |
| SDValue LoAddr = Ld->getBasePtr(); |
| SDValue HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, LdDL); |
| |
| SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, |
| Ld->getPointerInfo(), Ld->getAlignment(), |
| Ld->getMemOperand()->getFlags()); |
| SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, |
| Ld->getPointerInfo().getWithOffset(4), |
| MinAlign(Ld->getAlignment(), 4), |
| Ld->getMemOperand()->getFlags()); |
| // Make sure new loads are placed in same chain order. |
| DAG.makeEquivalentMemoryOrdering(Ld, LoLd); |
| DAG.makeEquivalentMemoryOrdering(Ld, HiLd); |
| |
| LoAddr = St->getBasePtr(); |
| HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, StDL); |
| |
| SDValue LoSt = |
| DAG.getStore(St->getChain(), StDL, LoLd, LoAddr, St->getPointerInfo(), |
| St->getAlignment(), St->getMemOperand()->getFlags()); |
| SDValue HiSt = DAG.getStore(St->getChain(), StDL, HiLd, HiAddr, |
| St->getPointerInfo().getWithOffset(4), |
| MinAlign(St->getAlignment(), 4), |
| St->getMemOperand()->getFlags()); |
| return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); |
| } |
| |
| // This is similar to the above case, but here we handle a scalar 64-bit |
| // integer store that is extracted from a vector on a 32-bit target. |
| // If we have SSE2, then we can treat it like a floating-point double |
| // to get past legalization. The execution dependencies fixup pass will |
| // choose the optimal machine instruction for the store if this really is |
| // an integer or v2f32 rather than an f64. |
| if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() && |
| St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| SDValue OldExtract = St->getOperand(1); |
| SDValue ExtOp0 = OldExtract.getOperand(0); |
| unsigned VecSize = ExtOp0.getValueSizeInBits(); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64); |
| SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0); |
| SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| BitCast, OldExtract.getOperand(1)); |
| return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(), |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Return 'true' if this vector operation is "horizontal" |
| /// and return the operands for the horizontal operation in LHS and RHS. A |
| /// horizontal operation performs the binary operation on successive elements |
| /// of its first operand, then on successive elements of its second operand, |
| /// returning the resulting values in a vector. For example, if |
| /// A = < float a0, float a1, float a2, float a3 > |
| /// and |
| /// B = < float b0, float b1, float b2, float b3 > |
| /// then the result of doing a horizontal operation on A and B is |
| /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. |
| /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form |
| /// A horizontal-op B, for some already available A and B, and if so then LHS is |
| /// set to A, RHS to B, and the routine returns 'true'. |
| /// Note that the binary operation should have the property that if one of the |
| /// operands is UNDEF then the result is UNDEF. |
| static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { |
| // Look for the following pattern: if |
| // A = < float a0, float a1, float a2, float a3 > |
| // B = < float b0, float b1, float b2, float b3 > |
| // and |
| // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> |
| // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> |
| // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > |
| // which is A horizontal-op B. |
| |
| // At least one of the operands should be a vector shuffle. |
| if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && |
| RHS.getOpcode() != ISD::VECTOR_SHUFFLE) |
| return false; |
| |
| MVT VT = LHS.getSimpleValueType(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for horizontal add/sub"); |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to |
| // operate independently on 128-bit lanes. |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| assert((NumLaneElts % 2 == 0) && |
| "Vector type should have an even number of elements in each lane"); |
| unsigned HalfLaneElts = NumLaneElts/2; |
| |
| // View LHS in the form |
| // LHS = VECTOR_SHUFFLE A, B, LMask |
| // If LHS is not a shuffle then pretend it is the shuffle |
| // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> |
| // NOTE: in what follows a default initialized SDValue represents an UNDEF of |
| // type VT. |
| SDValue A, B; |
| SmallVector<int, 16> LMask(NumElts); |
| if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| if (!LHS.getOperand(0).isUndef()) |
| A = LHS.getOperand(0); |
| if (!LHS.getOperand(1).isUndef()) |
| B = LHS.getOperand(1); |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); |
| std::copy(Mask.begin(), Mask.end(), LMask.begin()); |
| } else { |
| if (!LHS.isUndef()) |
| A = LHS; |
| for (unsigned i = 0; i != NumElts; ++i) |
| LMask[i] = i; |
| } |
| |
| // Likewise, view RHS in the form |
| // RHS = VECTOR_SHUFFLE C, D, RMask |
| SDValue C, D; |
| SmallVector<int, 16> RMask(NumElts); |
| if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| if (!RHS.getOperand(0).isUndef()) |
| C = RHS.getOperand(0); |
| if (!RHS.getOperand(1).isUndef()) |
| D = RHS.getOperand(1); |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); |
| std::copy(Mask.begin(), Mask.end(), RMask.begin()); |
| } else { |
| if (!RHS.isUndef()) |
| C = RHS; |
| for (unsigned i = 0; i != NumElts; ++i) |
| RMask[i] = i; |
| } |
| |
| // Check that the shuffles are both shuffling the same vectors. |
| if (!(A == C && B == D) && !(A == D && B == C)) |
| return false; |
| |
| // If everything is UNDEF then bail out: it would be better to fold to UNDEF. |
| if (!A.getNode() && !B.getNode()) |
| return false; |
| |
| // If A and B occur in reverse order in RHS, then "swap" them (which means |
| // rewriting the mask). |
| if (A != C) |
| ShuffleVectorSDNode::commuteMask(RMask); |
| |
| // At this point LHS and RHS are equivalent to |
| // LHS = VECTOR_SHUFFLE A, B, LMask |
| // RHS = VECTOR_SHUFFLE A, B, RMask |
| // Check that the masks correspond to performing a horizontal operation. |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| int LIdx = LMask[i+l], RIdx = RMask[i+l]; |
| |
| // Ignore any UNDEF components. |
| if (LIdx < 0 || RIdx < 0 || |
| (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || |
| (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) |
| continue; |
| |
| // Check that successive elements are being operated on. If not, this is |
| // not a horizontal operation. |
| unsigned Src = (i/HalfLaneElts); // each lane is split between srcs |
| int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; |
| if (!(LIdx == Index && RIdx == Index + 1) && |
| !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) |
| return false; |
| } |
| } |
| |
| LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. |
| RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. |
| return true; |
| } |
| |
| /// Do target-specific dag combines on floating-point adds/subs. |
| static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| bool IsFadd = N->getOpcode() == ISD::FADD; |
| assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode"); |
| |
| // Try to synthesize horizontal add/sub from adds/subs of shuffles. |
| if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || |
| (Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && |
| isHorizontalBinOp(LHS, RHS, IsFadd)) { |
| auto NewOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB; |
| return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); |
| } |
| return SDValue(); |
| } |
| |
| /// Attempt to pre-truncate inputs to arithmetic ops if it will simplify |
| /// the codegen. |
| /// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) ) |
| static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| const SDLoc &DL) { |
| assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode"); |
| SDValue Src = N->getOperand(0); |
| unsigned Opcode = Src.getOpcode(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| EVT VT = N->getValueType(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| auto IsRepeatedOpOrFreeTruncation = [VT](SDValue Op0, SDValue Op1) { |
| unsigned TruncSizeInBits = VT.getScalarSizeInBits(); |
| |
| // Repeated operand, so we are only trading one output truncation for |
| // one input truncation. |
| if (Op0 == Op1) |
| return true; |
| |
| // See if either operand has been extended from a smaller/equal size to |
| // the truncation size, allowing a truncation to combine with the extend. |
| unsigned Opcode0 = Op0.getOpcode(); |
| if ((Opcode0 == ISD::ANY_EXTEND || Opcode0 == ISD::SIGN_EXTEND || |
| Opcode0 == ISD::ZERO_EXTEND) && |
| Op0.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits) |
| return true; |
| |
| unsigned Opcode1 = Op1.getOpcode(); |
| if ((Opcode1 == ISD::ANY_EXTEND || Opcode1 == ISD::SIGN_EXTEND || |
| Opcode1 == ISD::ZERO_EXTEND) && |
| Op1.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits) |
| return true; |
| |
| // See if either operand is a single use constant which can be constant |
| // folded. |
| SDValue BC0 = peekThroughOneUseBitcasts(Op0); |
| SDValue BC1 = peekThroughOneUseBitcasts(Op1); |
| return ISD::isBuildVectorOfConstantSDNodes(BC0.getNode()) || |
| ISD::isBuildVectorOfConstantSDNodes(BC1.getNode()); |
| }; |
| |
| auto TruncateArithmetic = [&](SDValue N0, SDValue N1) { |
| SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0); |
| SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| return DAG.getNode(Opcode, DL, VT, Trunc0, Trunc1); |
| }; |
| |
| // Don't combine if the operation has other uses. |
| if (!N->isOnlyUserOf(Src.getNode())) |
| return SDValue(); |
| |
| // Only support vector truncation for now. |
| // TODO: i64 scalar math would benefit as well. |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| // In most cases its only worth pre-truncating if we're only facing the cost |
| // of one truncation. |
| // i.e. if one of the inputs will constant fold or the input is repeated. |
| switch (Opcode) { |
| case ISD::AND: |
| case ISD::XOR: |
| case ISD::OR: { |
| SDValue Op0 = Src.getOperand(0); |
| SDValue Op1 = Src.getOperand(1); |
| if (TLI.isOperationLegalOrPromote(Opcode, VT) && |
| IsRepeatedOpOrFreeTruncation(Op0, Op1)) |
| return TruncateArithmetic(Op0, Op1); |
| break; |
| } |
| |
| case ISD::MUL: |
| // X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its |
| // better to truncate if we have the chance. |
| if (SrcVT.getScalarType() == MVT::i64 && TLI.isOperationLegal(Opcode, VT) && |
| !TLI.isOperationLegal(Opcode, SrcVT)) |
| return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1)); |
| LLVM_FALLTHROUGH; |
| case ISD::ADD: { |
| // TODO: ISD::SUB should be here but interferes with combineSubToSubus. |
| SDValue Op0 = Src.getOperand(0); |
| SDValue Op1 = Src.getOperand(1); |
| if (TLI.isOperationLegal(Opcode, VT) && |
| IsRepeatedOpOrFreeTruncation(Op0, Op1)) |
| return TruncateArithmetic(Op0, Op1); |
| break; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Truncate using ISD::AND mask and X86ISD::PACKUS. |
| static SDValue combineVectorTruncationWithPACKUS(SDNode *N, const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue In = N->getOperand(0); |
| EVT InVT = In.getValueType(); |
| EVT InSVT = InVT.getVectorElementType(); |
| EVT OutVT = N->getValueType(0); |
| EVT OutSVT = OutVT.getVectorElementType(); |
| |
| // Split a long vector into vectors of legal type and mask to unset all bits |
| // that won't appear in the result to prevent saturation. |
| // TODO - we should be doing this at the maximum legal size but this is |
| // causing regressions where we're concatenating back to max width just to |
| // perform the AND and then extracting back again..... |
| unsigned NumSubRegs = InVT.getSizeInBits() / 128; |
| unsigned NumSubRegElts = 128 / InSVT.getSizeInBits(); |
| EVT SubRegVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubRegElts); |
| SmallVector<SDValue, 8> SubVecs(NumSubRegs); |
| |
| APInt Mask = |
| APInt::getLowBitsSet(InSVT.getSizeInBits(), OutSVT.getSizeInBits()); |
| SDValue MaskVal = DAG.getConstant(Mask, DL, SubRegVT); |
| |
| for (unsigned i = 0; i < NumSubRegs; i++) { |
| SDValue Sub = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubRegVT, In, |
| DAG.getIntPtrConstant(i * NumSubRegElts, DL)); |
| SubVecs[i] = DAG.getNode(ISD::AND, DL, SubRegVT, Sub, MaskVal); |
| } |
| In = DAG.getNode(ISD::CONCAT_VECTORS, DL, InVT, SubVecs); |
| |
| return truncateVectorWithPACK(X86ISD::PACKUS, OutVT, In, DL, DAG, Subtarget); |
| } |
| |
| /// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS. |
| static SDValue combineVectorTruncationWithPACKSS(SDNode *N, const SDLoc &DL, |
| const X86Subtarget &Subtarget, |
| SelectionDAG &DAG) { |
| SDValue In = N->getOperand(0); |
| EVT InVT = In.getValueType(); |
| EVT OutVT = N->getValueType(0); |
| In = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, InVT, In, |
| DAG.getValueType(OutVT)); |
| return truncateVectorWithPACK(X86ISD::PACKSS, OutVT, In, DL, DAG, Subtarget); |
| } |
| |
| /// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into |
| /// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type |
| /// legalization the truncation will be translated into a BUILD_VECTOR with each |
| /// element that is extracted from a vector and then truncated, and it is |
| /// difficult to do this optimization based on them. |
| static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT OutVT = N->getValueType(0); |
| if (!OutVT.isVector()) |
| return SDValue(); |
| |
| SDValue In = N->getOperand(0); |
| if (!In.getValueType().isSimple()) |
| return SDValue(); |
| |
| EVT InVT = In.getValueType(); |
| unsigned NumElems = OutVT.getVectorNumElements(); |
| |
| // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on |
| // SSE2, and we need to take care of it specially. |
| // AVX512 provides vpmovdb. |
| if (!Subtarget.hasSSE2() || Subtarget.hasAVX2()) |
| return SDValue(); |
| |
| EVT OutSVT = OutVT.getVectorElementType(); |
| EVT InSVT = InVT.getVectorElementType(); |
| if (!((InSVT == MVT::i32 || InSVT == MVT::i64) && |
| (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) && |
| NumElems >= 8)) |
| return SDValue(); |
| |
| // SSSE3's pshufb results in less instructions in the cases below. |
| if (Subtarget.hasSSSE3() && NumElems == 8 && |
| ((OutSVT == MVT::i8 && InSVT != MVT::i64) || |
| (InSVT == MVT::i32 && OutSVT == MVT::i16))) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS |
| // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to |
| // truncate 2 x v4i32 to v8i16. |
| if (Subtarget.hasSSE41() || OutSVT == MVT::i8) |
| return combineVectorTruncationWithPACKUS(N, DL, Subtarget, DAG); |
| if (InSVT == MVT::i32) |
| return combineVectorTruncationWithPACKSS(N, DL, Subtarget, DAG); |
| |
| return SDValue(); |
| } |
| |
| /// This function transforms vector truncation of 'extended sign-bits' or |
| /// 'extended zero-bits' values. |
| /// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS/PACKUS operations. |
| static SDValue combineVectorSignBitsTruncation(SDNode *N, const SDLoc &DL, |
| SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // Requires SSE2 but AVX512 has fast truncate. |
| if (!Subtarget.hasSSE2() || Subtarget.hasAVX512()) |
| return SDValue(); |
| |
| if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple()) |
| return SDValue(); |
| |
| SDValue In = N->getOperand(0); |
| if (!In.getValueType().isSimple()) |
| return SDValue(); |
| |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| MVT SVT = VT.getScalarType(); |
| |
| MVT InVT = In.getValueType().getSimpleVT(); |
| MVT InSVT = InVT.getScalarType(); |
| |
| // Check we have a truncation suited for PACKSS/PACKUS. |
| if (!VT.is128BitVector() && !VT.is256BitVector()) |
| return SDValue(); |
| if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32) |
| return SDValue(); |
| if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64) |
| return SDValue(); |
| |
| unsigned NumPackedSignBits = std::min<unsigned>(SVT.getSizeInBits(), 16); |
| unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8; |
| |
| // Use PACKUS if the input has zero-bits that extend all the way to the |
| // packed/truncated value. e.g. masks, zext_in_reg, etc. |
| KnownBits Known; |
| DAG.computeKnownBits(In, Known); |
| unsigned NumLeadingZeroBits = Known.countMinLeadingZeros(); |
| if (NumLeadingZeroBits >= (InSVT.getSizeInBits() - NumPackedZeroBits)) |
| return truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget); |
| |
| // Use PACKSS if the input has sign-bits that extend all the way to the |
| // packed/truncated value. e.g. Comparison result, sext_in_reg, etc. |
| unsigned NumSignBits = DAG.ComputeNumSignBits(In); |
| if (NumSignBits > (InSVT.getSizeInBits() - NumPackedSignBits)) |
| return truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget); |
| |
| return SDValue(); |
| } |
| |
| // Try to form a MULHU or MULHS node by looking for |
| // (trunc (srl (mul ext, ext), 16)) |
| // TODO: This is X86 specific because we want to be able to handle wide types |
| // before type legalization. But we can only do it if the vector will be |
| // legalized via widening/splitting. Type legalization can't handle promotion |
| // of a MULHU/MULHS. There isn't a way to convey this to the generic DAG |
| // combiner. |
| static SDValue combinePMULH(SDValue Src, EVT VT, const SDLoc &DL, |
| SelectionDAG &DAG, const X86Subtarget &Subtarget) { |
| // First instruction should be a right shift of a multiply. |
| if (Src.getOpcode() != ISD::SRL || |
| Src.getOperand(0).getOpcode() != ISD::MUL) |
| return SDValue(); |
| |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| // Only handle vXi16 types that are at least 128-bits. |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::i16 || |
| VT.getVectorNumElements() < 8) |
| return SDValue(); |
| |
| // Input type should be vXi32. |
| EVT InVT = Src.getValueType(); |
| if (InVT.getVectorElementType() != MVT::i32) |
| return SDValue(); |
| |
| // Need a shift by 16. |
| APInt ShiftAmt; |
| if (!ISD::isConstantSplatVector(Src.getOperand(1).getNode(), ShiftAmt) || |
| ShiftAmt != 16) |
| return SDValue(); |
| |
| SDValue LHS = Src.getOperand(0).getOperand(0); |
| SDValue RHS = Src.getOperand(0).getOperand(1); |
| |
| unsigned ExtOpc = LHS.getOpcode(); |
| if ((ExtOpc != ISD::SIGN_EXTEND && ExtOpc != ISD::ZERO_EXTEND) || |
| RHS.getOpcode() != ExtOpc) |
| return SDValue(); |
| |
| // Peek through the extends. |
| LHS = LHS.getOperand(0); |
| RHS = RHS.getOperand(0); |
| |
| // Ensure the input types match. |
| if (LHS.getValueType() != VT || RHS.getValueType() != VT) |
| return SDValue(); |
| |
| unsigned Opc = ExtOpc == ISD::SIGN_EXTEND ? ISD::MULHS : ISD::MULHU; |
| return DAG.getNode(Opc, DL, VT, LHS, RHS); |
| } |
| |
| // Attempt to match PMADDUBSW, which multiplies corresponding unsigned bytes |
| // from one vector with signed bytes from another vector, adds together |
| // adjacent pairs of 16-bit products, and saturates the result before |
| // truncating to 16-bits. |
| // |
| // Which looks something like this: |
| // (i16 (ssat (add (mul (zext (even elts (i8 A))), (sext (even elts (i8 B)))), |
| // (mul (zext (odd elts (i8 A)), (sext (odd elts (i8 B)))))))) |
| static SDValue detectPMADDUBSW(SDValue In, EVT VT, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| const SDLoc &DL) { |
| if (!VT.isVector() || !Subtarget.hasSSSE3()) |
| return SDValue(); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT ScalarVT = VT.getVectorElementType(); |
| if (ScalarVT != MVT::i16 || NumElems < 8 || !isPowerOf2_32(NumElems)) |
| return SDValue(); |
| |
| SDValue SSatVal = detectSSatPattern(In, VT); |
| if (!SSatVal || SSatVal.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| // Ok this is a signed saturation of an ADD. See if this ADD is adding pairs |
| // of multiplies from even/odd elements. |
| SDValue N0 = SSatVal.getOperand(0); |
| SDValue N1 = SSatVal.getOperand(1); |
| |
| if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| |
| // TODO: Handle constant vectors and use knownbits/computenumsignbits? |
| // Canonicalize zero_extend to LHS. |
| if (N01.getOpcode() == ISD::ZERO_EXTEND) |
| std::swap(N00, N01); |
| if (N11.getOpcode() == ISD::ZERO_EXTEND) |
| std::swap(N10, N11); |
| |
| // Ensure we have a zero_extend and a sign_extend. |
| if (N00.getOpcode() != ISD::ZERO_EXTEND || |
| N01.getOpcode() != ISD::SIGN_EXTEND || |
| N10.getOpcode() != ISD::ZERO_EXTEND || |
| N11.getOpcode() != ISD::SIGN_EXTEND) |
| return SDValue(); |
| |
| // Peek through the extends. |
| N00 = N00.getOperand(0); |
| N01 = N01.getOperand(0); |
| N10 = N10.getOperand(0); |
| N11 = N11.getOperand(0); |
| |
| // Ensure the extend is from vXi8. |
| if (N00.getValueType().getVectorElementType() != MVT::i8 || |
| N01.getValueType().getVectorElementType() != MVT::i8 || |
| N10.getValueType().getVectorElementType() != MVT::i8 || |
| N11.getValueType().getVectorElementType() != MVT::i8) |
| return SDValue(); |
| |
| // All inputs should be build_vectors. |
| if (N00.getOpcode() != ISD::BUILD_VECTOR || |
| N01.getOpcode() != ISD::BUILD_VECTOR || |
| N10.getOpcode() != ISD::BUILD_VECTOR || |
| N11.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| // N00/N10 are zero extended. N01/N11 are sign extended. |
| |
| // For each element, we need to ensure we have an odd element from one vector |
| // multiplied by the odd element of another vector and the even element from |
| // one of the same vectors being multiplied by the even element from the |
| // other vector. So we need to make sure for each element i, this operator |
| // is being performed: |
| // A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1] |
| SDValue ZExtIn, SExtIn; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDValue N00Elt = N00.getOperand(i); |
| SDValue N01Elt = N01.getOperand(i); |
| SDValue N10Elt = N10.getOperand(i); |
| SDValue N11Elt = N11.getOperand(i); |
| // TODO: Be more tolerant to undefs. |
| if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1)); |
| auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1)); |
| auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1)); |
| auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1)); |
| if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt) |
| return SDValue(); |
| unsigned IdxN00 = ConstN00Elt->getZExtValue(); |
| unsigned IdxN01 = ConstN01Elt->getZExtValue(); |
| unsigned IdxN10 = ConstN10Elt->getZExtValue(); |
| unsigned IdxN11 = ConstN11Elt->getZExtValue(); |
| // Add is commutative so indices can be reordered. |
| if (IdxN00 > IdxN10) { |
| std::swap(IdxN00, IdxN10); |
| std::swap(IdxN01, IdxN11); |
| } |
| // N0 indices be the even element. N1 indices must be the next odd element. |
| if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 || |
| IdxN01 != 2 * i || IdxN11 != 2 * i + 1) |
| return SDValue(); |
| SDValue N00In = N00Elt.getOperand(0); |
| SDValue N01In = N01Elt.getOperand(0); |
| SDValue N10In = N10Elt.getOperand(0); |
| SDValue N11In = N11Elt.getOperand(0); |
| // First time we find an input capture it. |
| if (!ZExtIn) { |
| ZExtIn = N00In; |
| SExtIn = N01In; |
| } |
| if (ZExtIn != N00In || SExtIn != N01In || |
| ZExtIn != N10In || SExtIn != N11In) |
| return SDValue(); |
| } |
| |
| auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| // Shrink by adding truncate nodes and let DAGCombine fold with the |
| // sources. |
| EVT InVT = Ops[0].getValueType(); |
| assert(InVT.getScalarType() == MVT::i8 && |
| "Unexpected scalar element type"); |
| assert(InVT == Ops[1].getValueType() && "Operands' types mismatch"); |
| EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, |
| InVT.getVectorNumElements() / 2); |
| return DAG.getNode(X86ISD::VPMADDUBSW, DL, ResVT, Ops[0], Ops[1]); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, { ZExtIn, SExtIn }, |
| PMADDBuilder); |
| } |
| |
| static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT VT = N->getValueType(0); |
| SDValue Src = N->getOperand(0); |
| SDLoc DL(N); |
| |
| // Attempt to pre-truncate inputs to arithmetic ops instead. |
| if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL)) |
| return V; |
| |
| // Try to detect AVG pattern first. |
| if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL)) |
| return Avg; |
| |
| // Try to detect PMADD |
| if (SDValue PMAdd = detectPMADDUBSW(Src, VT, DAG, Subtarget, DL)) |
| return PMAdd; |
| |
| // Try to combine truncation with signed/unsigned saturation. |
| if (SDValue Val = combineTruncateWithSat(Src, VT, DL, DAG, Subtarget)) |
| return Val; |
| |
| // Try to combine PMULHUW/PMULHW for vXi16. |
| if (SDValue V = combinePMULH(Src, VT, DL, DAG, Subtarget)) |
| return V; |
| |
| // The bitcast source is a direct mmx result. |
| // Detect bitcasts between i32 to x86mmx |
| if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) { |
| SDValue BCSrc = Src.getOperand(0); |
| if (BCSrc.getValueType() == MVT::x86mmx) |
| return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc); |
| } |
| |
| // Try to truncate extended sign/zero bits with PACKSS/PACKUS. |
| if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget)) |
| return V; |
| |
| return combineVectorTruncation(N, DAG, Subtarget); |
| } |
| |
| /// Returns the negated value if the node \p N flips sign of FP value. |
| /// |
| /// FP-negation node may have different forms: FNEG(x) or FXOR (x, 0x80000000). |
| /// AVX512F does not have FXOR, so FNEG is lowered as |
| /// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))). |
| /// In this case we go though all bitcasts. |
| static SDValue isFNEG(SDNode *N) { |
| if (N->getOpcode() == ISD::FNEG) |
| return N->getOperand(0); |
| |
| SDValue Op = peekThroughBitcasts(SDValue(N, 0)); |
| if (Op.getOpcode() != X86ISD::FXOR && Op.getOpcode() != ISD::XOR) |
| return SDValue(); |
| |
| SDValue Op1 = peekThroughBitcasts(Op.getOperand(1)); |
| if (!Op1.getValueType().isFloatingPoint()) |
| return SDValue(); |
| |
| // Extract constant bits and see if they are all sign bit masks. |
| APInt UndefElts; |
| SmallVector<APInt, 16> EltBits; |
| if (getTargetConstantBitsFromNode(Op1, Op1.getScalarValueSizeInBits(), |
| UndefElts, EltBits, false, false)) |
| if (llvm::all_of(EltBits, [](APInt &I) { return I.isSignMask(); })) |
| return peekThroughBitcasts(Op.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| /// Do target-specific dag combines on floating point negations. |
| static SDValue combineFneg(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| EVT OrigVT = N->getValueType(0); |
| SDValue Arg = isFNEG(N); |
| assert(Arg.getNode() && "N is expected to be an FNEG node"); |
| |
| EVT VT = Arg.getValueType(); |
| EVT SVT = VT.getScalarType(); |
| SDLoc DL(N); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| // If we're negating a FMUL node on a target with FMA, then we can avoid the |
| // use of a constant by performing (-0 - A*B) instead. |
| // FIXME: Check rounding control flags as well once it becomes available. |
| if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) && |
| Arg->getFlags().hasNoSignedZeros() && Subtarget.hasAnyFMA()) { |
| SDValue Zero = DAG.getConstantFP(0.0, DL, VT); |
| SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0), |
| Arg.getOperand(1), Zero); |
| return DAG.getBitcast(OrigVT, NewNode); |
| } |
| |
| // If we're negating an FMA node, then we can adjust the |
| // instruction to include the extra negation. |
| unsigned NewOpcode = 0; |
| if (Arg.hasOneUse() && Subtarget.hasAnyFMA()) { |
| switch (Arg.getOpcode()) { |
| case ISD::FMA: NewOpcode = X86ISD::FNMSUB; break; |
| case X86ISD::FMSUB: NewOpcode = X86ISD::FNMADD; break; |
| case X86ISD::FNMADD: NewOpcode = X86ISD::FMSUB; break; |
| case X86ISD::FNMSUB: NewOpcode = ISD::FMA; break; |
| case X86ISD::FMADD_RND: NewOpcode = X86ISD::FNMSUB_RND; break; |
| case X86ISD::FMSUB_RND: NewOpcode = X86ISD::FNMADD_RND; break; |
| case X86ISD::FNMADD_RND: NewOpcode = X86ISD::FMSUB_RND; break; |
| case X86ISD::FNMSUB_RND: NewOpcode = X86ISD::FMADD_RND; break; |
| // We can't handle scalar intrinsic node here because it would only |
| // invert one element and not the whole vector. But we could try to handle |
| // a negation of the lower element only. |
| } |
| } |
| if (NewOpcode) |
| return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT, |
| Arg.getNode()->ops())); |
| |
| return SDValue(); |
| } |
| |
| static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = N->getSimpleValueType(0); |
| // If we have integer vector types available, use the integer opcodes. |
| if (VT.isVector() && Subtarget.hasSSE2()) { |
| SDLoc dl(N); |
| |
| MVT IntVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); |
| |
| SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0)); |
| SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1)); |
| unsigned IntOpcode; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("Unexpected FP logic op"); |
| case X86ISD::FOR: IntOpcode = ISD::OR; break; |
| case X86ISD::FXOR: IntOpcode = ISD::XOR; break; |
| case X86ISD::FAND: IntOpcode = ISD::AND; break; |
| case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break; |
| } |
| SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1); |
| return DAG.getBitcast(VT, IntOp); |
| } |
| return SDValue(); |
| } |
| |
| |
| /// Fold a xor(setcc cond, val), 1 --> setcc (inverted(cond), val) |
| static SDValue foldXor1SetCC(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() != ISD::XOR) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(0); |
| auto *RHSC = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!RHSC || RHSC->getZExtValue() != 1 || LHS->getOpcode() != X86ISD::SETCC) |
| return SDValue(); |
| |
| X86::CondCode NewCC = X86::GetOppositeBranchCondition( |
| X86::CondCode(LHS->getConstantOperandVal(0))); |
| SDLoc DL(N); |
| return getSETCC(NewCC, LHS->getOperand(1), DL, DAG); |
| } |
| |
| static SDValue combineXor(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| // If this is SSE1 only convert to FXOR to avoid scalarization. |
| if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && |
| N->getValueType(0) == MVT::v4i32) { |
| return DAG.getBitcast( |
| MVT::v4i32, DAG.getNode(X86ISD::FXOR, SDLoc(N), MVT::v4f32, |
| DAG.getBitcast(MVT::v4f32, N->getOperand(0)), |
| DAG.getBitcast(MVT::v4f32, N->getOperand(1)))); |
| } |
| |
| if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) |
| return Cmp; |
| |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (SDValue SetCC = foldXor1SetCC(N, DAG)) |
| return SetCC; |
| |
| if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG)) |
| return RV; |
| |
| if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) |
| return FPLogic; |
| |
| if (isFNEG(N)) |
| return combineFneg(N, DAG, Subtarget); |
| return SDValue(); |
| } |
| |
| static SDValue combineBEXTR(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| unsigned NumBits = VT.getSizeInBits(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| |
| // TODO - Constant Folding. |
| if (auto *Cst1 = dyn_cast<ConstantSDNode>(Op1)) { |
| // Reduce Cst1 to the bottom 16-bits. |
| // NOTE: SimplifyDemandedBits won't do this for constants. |
| const APInt &Val1 = Cst1->getAPIntValue(); |
| APInt MaskedVal1 = Val1 & 0xFFFF; |
| if (MaskedVal1 != Val1) |
| return DAG.getNode(X86ISD::BEXTR, SDLoc(N), VT, Op0, |
| DAG.getConstant(MaskedVal1, SDLoc(N), VT)); |
| } |
| |
| // Only bottom 16-bits of the control bits are required. |
| KnownBits Known; |
| APInt DemandedMask(APInt::getLowBitsSet(NumBits, 16)); |
| if (TLI.SimplifyDemandedBits(Op1, DemandedMask, Known, TLO)) { |
| DCI.CommitTargetLoweringOpt(TLO); |
| return SDValue(N, 0); |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool isNullFPScalarOrVectorConst(SDValue V) { |
| return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode()); |
| } |
| |
| /// If a value is a scalar FP zero or a vector FP zero (potentially including |
| /// undefined elements), return a zero constant that may be used to fold away |
| /// that value. In the case of a vector, the returned constant will not contain |
| /// undefined elements even if the input parameter does. This makes it suitable |
| /// to be used as a replacement operand with operations (eg, bitwise-and) where |
| /// an undef should not propagate. |
| static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (!isNullFPScalarOrVectorConst(V)) |
| return SDValue(); |
| |
| if (V.getValueType().isVector()) |
| return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V)); |
| |
| return V; |
| } |
| |
| static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // Vector types are handled in combineANDXORWithAllOnesIntoANDNP(). |
| if (!((VT == MVT::f32 && Subtarget.hasSSE1()) || |
| (VT == MVT::f64 && Subtarget.hasSSE2()) || |
| (VT == MVT::v4f32 && Subtarget.hasSSE1() && !Subtarget.hasSSE2()))) |
| return SDValue(); |
| |
| auto isAllOnesConstantFP = [](SDValue V) { |
| if (V.getSimpleValueType().isVector()) |
| return ISD::isBuildVectorAllOnes(V.getNode()); |
| auto *C = dyn_cast<ConstantFPSDNode>(V); |
| return C && C->getConstantFPValue()->isAllOnesValue(); |
| }; |
| |
| // fand (fxor X, -1), Y --> fandn X, Y |
| if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1))) |
| return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1); |
| |
| // fand X, (fxor Y, -1) --> fandn Y, X |
| if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1))) |
| return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0); |
| |
| return SDValue(); |
| } |
| |
| /// Do target-specific dag combines on X86ISD::FAND nodes. |
| static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // FAND(0.0, x) -> 0.0 |
| if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget)) |
| return V; |
| |
| // FAND(x, 0.0) -> 0.0 |
| if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget)) |
| return V; |
| |
| if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget)) |
| return V; |
| |
| return lowerX86FPLogicOp(N, DAG, Subtarget); |
| } |
| |
| /// Do target-specific dag combines on X86ISD::FANDN nodes. |
| static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // FANDN(0.0, x) -> x |
| if (isNullFPScalarOrVectorConst(N->getOperand(0))) |
| return N->getOperand(1); |
| |
| // FANDN(x, 0.0) -> 0.0 |
| if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget)) |
| return V; |
| |
| return lowerX86FPLogicOp(N, DAG, Subtarget); |
| } |
| |
| /// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes. |
| static SDValue combineFOr(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); |
| |
| // F[X]OR(0.0, x) -> x |
| if (isNullFPScalarOrVectorConst(N->getOperand(0))) |
| return N->getOperand(1); |
| |
| // F[X]OR(x, 0.0) -> x |
| if (isNullFPScalarOrVectorConst(N->getOperand(1))) |
| return N->getOperand(0); |
| |
| if (isFNEG(N)) |
| if (SDValue NewVal = combineFneg(N, DAG, Subtarget)) |
| return NewVal; |
| |
| return lowerX86FPLogicOp(N, DAG, Subtarget); |
| } |
| |
| /// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes. |
| static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); |
| |
| // Only perform optimizations if UnsafeMath is used. |
| if (!DAG.getTarget().Options.UnsafeFPMath) |
| return SDValue(); |
| |
| // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes |
| // into FMINC and FMAXC, which are Commutative operations. |
| unsigned NewOp = 0; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unknown opcode"); |
| case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; |
| case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; |
| } |
| |
| return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), |
| N->getOperand(0), N->getOperand(1)); |
| } |
| |
| static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (Subtarget.useSoftFloat()) |
| return SDValue(); |
| |
| // TODO: If an operand is already known to be a NaN or not a NaN, this |
| // should be an optional swap and FMAX/FMIN. |
| |
| EVT VT = N->getValueType(0); |
| if (!((Subtarget.hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) || |
| (Subtarget.hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) || |
| (Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64)))) |
| return SDValue(); |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| SDLoc DL(N); |
| auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN; |
| |
| // If we don't have to respect NaN inputs, this is a direct translation to x86 |
| // min/max instructions. |
| if (DAG.getTarget().Options.NoNaNsFPMath || N->getFlags().hasNoNaNs()) |
| return DAG.getNode(MinMaxOp, DL, VT, Op0, Op1, N->getFlags()); |
| |
| // If we have to respect NaN inputs, this takes at least 3 instructions. |
| // Favor a library call when operating on a scalar and minimizing code size. |
| if (!VT.isVector() && DAG.getMachineFunction().getFunction().optForMinSize()) |
| return SDValue(); |
| |
| EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType( |
| DAG.getDataLayout(), *DAG.getContext(), VT); |
| |
| // There are 4 possibilities involving NaN inputs, and these are the required |
| // outputs: |
| // Op1 |
| // Num NaN |
| // ---------------- |
| // Num | Max | Op0 | |
| // Op0 ---------------- |
| // NaN | Op1 | NaN | |
| // ---------------- |
| // |
| // The SSE FP max/min instructions were not designed for this case, but rather |
| // to implement: |
| // Min = Op1 < Op0 ? Op1 : Op0 |
| // Max = Op1 > Op0 ? Op1 : Op0 |
| // |
| // So they always return Op0 if either input is a NaN. However, we can still |
| // use those instructions for fmaxnum by selecting away a NaN input. |
| |
| // If either operand is NaN, the 2nd source operand (Op0) is passed through. |
| SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0); |
| SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType, Op0, Op0, ISD::SETUO); |
| |
| // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands |
| // are NaN, the NaN value of Op1 is the result. |
| return DAG.getSelect(DL, VT, IsOp0Nan, Op1, MinOrMax); |
| } |
| |
| /// Do target-specific dag combines on X86ISD::ANDNP nodes. |
| static SDValue combineAndnp(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| // ANDNP(0, x) -> x |
| if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode())) |
| return N->getOperand(1); |
| |
| // ANDNP(x, 0) -> 0 |
| if (ISD::isBuildVectorAllZeros(N->getOperand(1).getNode())) |
| return getZeroVector(N->getSimpleValueType(0), Subtarget, DAG, SDLoc(N)); |
| |
| EVT VT = N->getValueType(0); |
| |
| // Attempt to recursively combine a bitmask ANDNP with shuffles. |
| if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) { |
| SDValue Op(N, 0); |
| if (SDValue Res = combineX86ShufflesRecursively( |
| {Op}, 0, Op, {0}, {}, /*Depth*/ 1, |
| /*HasVarMask*/ false, DAG, Subtarget)) |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineBT(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // BT ignores high bits in the bit index operand. |
| unsigned BitWidth = N1.getValueSizeInBits(); |
| APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); |
| if (SDValue DemandedN1 = DAG.GetDemandedBits(N1, DemandedMask)) |
| return DAG.getNode(X86ISD::BT, SDLoc(N), MVT::i32, N0, DemandedN1); |
| |
| return SDValue(); |
| } |
| |
| // Try to combine sext_in_reg of a cmov of constants by extending the constants. |
| static SDValue combineSextInRegCmov(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); |
| |
| if (ExtraVT != MVT::i16) |
| return SDValue(); |
| |
| // Look through single use any_extends. |
| if (N0.getOpcode() == ISD::ANY_EXTEND && N0.hasOneUse()) |
| N0 = N0.getOperand(0); |
| |
| // See if we have a single use cmov. |
| if (N0.getOpcode() != X86ISD::CMOV || !N0.hasOneUse()) |
| return SDValue(); |
| |
| SDValue CMovOp0 = N0.getOperand(0); |
| SDValue CMovOp1 = N0.getOperand(1); |
| |
| // Make sure both operands are constants. |
| if (!isa<ConstantSDNode>(CMovOp0.getNode()) || |
| !isa<ConstantSDNode>(CMovOp1.getNode())) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // If we looked through an any_extend above, add one to the constants. |
| if (N0.getValueType() != VT) { |
| CMovOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, VT, CMovOp0); |
| CMovOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, VT, CMovOp1); |
| } |
| |
| CMovOp0 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, CMovOp0, N1); |
| CMovOp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, CMovOp1, N1); |
| |
| return DAG.getNode(X86ISD::CMOV, DL, VT, CMovOp0, CMovOp1, |
| N0.getOperand(2), N0.getOperand(3)); |
| } |
| |
| static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (SDValue V = combineSextInRegCmov(N, DAG)) |
| return V; |
| |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); |
| SDLoc dl(N); |
| |
| // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the |
| // both SSE and AVX2 since there is no sign-extended shift right |
| // operation on a vector with 64-bit elements. |
| //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> |
| // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) |
| if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND)) { |
| SDValue N00 = N0.getOperand(0); |
| |
| // EXTLOAD has a better solution on AVX2, |
| // it may be replaced with X86ISD::VSEXT node. |
| if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256()) |
| if (!ISD::isNormalLoad(N00.getNode())) |
| return SDValue(); |
| |
| if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { |
| SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, |
| N00, N1); |
| return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// sext(add_nsw(x, C)) --> add(sext(x), C_sext) |
| /// zext(add_nuw(x, C)) --> add(zext(x), C_zext) |
| /// Promoting a sign/zero extension ahead of a no overflow 'add' exposes |
| /// opportunities to combine math ops, use an LEA, or use a complex addressing |
| /// mode. This can eliminate extend, add, and shift instructions. |
| static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (Ext->getOpcode() != ISD::SIGN_EXTEND && |
| Ext->getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| |
| // TODO: This should be valid for other integer types. |
| EVT VT = Ext->getValueType(0); |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| SDValue Add = Ext->getOperand(0); |
| if (Add.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND; |
| bool NSW = Add->getFlags().hasNoSignedWrap(); |
| bool NUW = Add->getFlags().hasNoUnsignedWrap(); |
| |
| // We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding |
| // into the 'zext' |
| if ((Sext && !NSW) || (!Sext && !NUW)) |
| return SDValue(); |
| |
| // Having a constant operand to the 'add' ensures that we are not increasing |
| // the instruction count because the constant is extended for free below. |
| // A constant operand can also become the displacement field of an LEA. |
| auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1)); |
| if (!AddOp1) |
| return SDValue(); |
| |
| // Don't make the 'add' bigger if there's no hope of combining it with some |
| // other 'add' or 'shl' instruction. |
| // TODO: It may be profitable to generate simpler LEA instructions in place |
| // of single 'add' instructions, but the cost model for selecting an LEA |
| // currently has a high threshold. |
| bool HasLEAPotential = false; |
| for (auto *User : Ext->uses()) { |
| if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) { |
| HasLEAPotential = true; |
| break; |
| } |
| } |
| if (!HasLEAPotential) |
| return SDValue(); |
| |
| // Everything looks good, so pull the '{s|z}ext' ahead of the 'add'. |
| int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue(); |
| SDValue AddOp0 = Add.getOperand(0); |
| SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0); |
| SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT); |
| |
| // The wider add is guaranteed to not wrap because both operands are |
| // sign-extended. |
| SDNodeFlags Flags; |
| Flags.setNoSignedWrap(NSW); |
| Flags.setNoUnsignedWrap(NUW); |
| return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, Flags); |
| } |
| |
| /// (i8,i32 {s/z}ext ({s/u}divrem (i8 x, i8 y)) -> |
| /// (i8,i32 ({s/u}divrem_sext_hreg (i8 x, i8 y) |
| /// This exposes the {s/z}ext to the sdivrem lowering, so that it directly |
| /// extends from AH (which we otherwise need to do contortions to access). |
| static SDValue getDivRem8(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| auto OpcodeN = N->getOpcode(); |
| auto OpcodeN0 = N0.getOpcode(); |
| if (!((OpcodeN == ISD::SIGN_EXTEND && OpcodeN0 == ISD::SDIVREM) || |
| (OpcodeN == ISD::ZERO_EXTEND && OpcodeN0 == ISD::UDIVREM))) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| EVT InVT = N0.getValueType(); |
| if (N0.getResNo() != 1 || InVT != MVT::i8 || |
| !(VT == MVT::i32 || VT == MVT::i64)) |
| return SDValue(); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::i8, MVT::i32); |
| auto DivRemOpcode = OpcodeN0 == ISD::SDIVREM ? X86ISD::SDIVREM8_SEXT_HREG |
| : X86ISD::UDIVREM8_ZEXT_HREG; |
| SDValue R = DAG.getNode(DivRemOpcode, SDLoc(N), NodeTys, N0.getOperand(0), |
| N0.getOperand(1)); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); |
| // If this was a 64-bit extend, complete it. |
| if (VT == MVT::i64) |
| return DAG.getNode(OpcodeN, SDLoc(N), VT, R.getValue(1)); |
| return R.getValue(1); |
| } |
| |
| // If we face {ANY,SIGN,ZERO}_EXTEND that is applied to a CMOV with constant |
| // operands and the result of CMOV is not used anywhere else - promote CMOV |
| // itself instead of promoting its result. This could be beneficial, because: |
| // 1) X86TargetLowering::EmitLoweredSelect later can do merging of two |
| // (or more) pseudo-CMOVs only when they go one-after-another and |
| // getting rid of result extension code after CMOV will help that. |
| // 2) Promotion of constant CMOV arguments is free, hence the |
| // {ANY,SIGN,ZERO}_EXTEND will just be deleted. |
| // 3) 16-bit CMOV encoding is 4 bytes, 32-bit CMOV is 3-byte, so this |
| // promotion is also good in terms of code-size. |
| // (64-bit CMOV is 4-bytes, that's why we don't do 32-bit => 64-bit |
| // promotion). |
| static SDValue combineToExtendCMOV(SDNode *Extend, SelectionDAG &DAG) { |
| SDValue CMovN = Extend->getOperand(0); |
| if (CMovN.getOpcode() != X86ISD::CMOV || !CMovN.hasOneUse()) |
| return SDValue(); |
| |
| EVT TargetVT = Extend->getValueType(0); |
| unsigned ExtendOpcode = Extend->getOpcode(); |
| SDLoc DL(Extend); |
| |
| EVT VT = CMovN.getValueType(); |
| SDValue CMovOp0 = CMovN.getOperand(0); |
| SDValue CMovOp1 = CMovN.getOperand(1); |
| |
| if (!isa<ConstantSDNode>(CMovOp0.getNode()) || |
| !isa<ConstantSDNode>(CMovOp1.getNode())) |
| return SDValue(); |
| |
| // Only extend to i32 or i64. |
| if (TargetVT != MVT::i32 && TargetVT != MVT::i64) |
| return SDValue(); |
| |
| // Only extend from i16 unless its a sign_extend from i32. Zext/aext from i32 |
| // are free. |
| if (VT != MVT::i16 && !(ExtendOpcode == ISD::SIGN_EXTEND && VT == MVT::i32)) |
| return SDValue(); |
| |
| // If this a zero extend to i64, we should only extend to i32 and use a free |
| // zero extend to finish. |
| EVT ExtendVT = TargetVT; |
| if (TargetVT == MVT::i64 && ExtendOpcode != ISD::SIGN_EXTEND) |
| ExtendVT = MVT::i32; |
| |
| CMovOp0 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp0); |
| CMovOp1 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp1); |
| |
| SDValue Res = DAG.getNode(X86ISD::CMOV, DL, ExtendVT, CMovOp0, CMovOp1, |
| CMovN.getOperand(2), CMovN.getOperand(3)); |
| |
| // Finish extending if needed. |
| if (ExtendVT != TargetVT) |
| Res = DAG.getNode(ExtendOpcode, DL, TargetVT, Res); |
| |
| return Res; |
| } |
| |
| // Convert (vXiY *ext(vXi1 bitcast(iX))) to extend_in_reg(broadcast(iX)). |
| // This is more or less the reverse of combineBitcastvxi1. |
| static SDValue |
| combineToExtendBoolVectorInReg(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND && |
| Opcode != ISD::ANY_EXTEND) |
| return SDValue(); |
| if (!DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| if (!Subtarget.hasSSE2() || Subtarget.hasAVX512()) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT SVT = VT.getScalarType(); |
| EVT InSVT = N0.getValueType().getScalarType(); |
| unsigned EltSizeInBits = SVT.getSizeInBits(); |
| |
| // Input type must be extending a bool vector (bit-casted from a scalar |
| // integer) to legal integer types. |
| if (!VT.isVector()) |
| return SDValue(); |
| if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16 && SVT != MVT::i8) |
| return SDValue(); |
| if (InSVT != MVT::i1 || N0.getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| EVT SclVT = N0.getOperand(0).getValueType(); |
| if (!SclVT.isScalarInteger()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue Vec; |
| SmallVector<int, 32> ShuffleMask; |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert(NumElts == SclVT.getSizeInBits() && "Unexpected bool vector size"); |
| |
| // Broadcast the scalar integer to the vector elements. |
| if (NumElts > EltSizeInBits) { |
| // If the scalar integer is greater than the vector element size, then we |
| // must split it down into sub-sections for broadcasting. For example: |
| // i16 -> v16i8 (i16 -> v8i16 -> v16i8) with 2 sub-sections. |
| // i32 -> v32i8 (i32 -> v8i32 -> v32i8) with 4 sub-sections. |
| assert((NumElts % EltSizeInBits) == 0 && "Unexpected integer scale"); |
| unsigned Scale = NumElts / EltSizeInBits; |
| EVT BroadcastVT = |
| EVT::getVectorVT(*DAG.getContext(), SclVT, EltSizeInBits); |
| Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, BroadcastVT, N00); |
| Vec = DAG.getBitcast(VT, Vec); |
| |
| for (unsigned i = 0; i != Scale; ++i) |
| ShuffleMask.append(EltSizeInBits, i); |
| } else { |
| // For smaller scalar integers, we can simply any-extend it to the vector |
| // element size (we don't care about the upper bits) and broadcast it to all |
| // elements. |
| SDValue Scl = DAG.getAnyExtOrTrunc(N00, DL, SVT); |
| Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl); |
| ShuffleMask.append(NumElts, 0); |
| } |
| Vec = DAG.getVectorShuffle(VT, DL, Vec, Vec, ShuffleMask); |
| |
| // Now, mask the relevant bit in each element. |
| SmallVector<SDValue, 32> Bits; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int BitIdx = (i % EltSizeInBits); |
| APInt Bit = APInt::getBitsSet(EltSizeInBits, BitIdx, BitIdx + 1); |
| Bits.push_back(DAG.getConstant(Bit, DL, SVT)); |
| } |
| SDValue BitMask = DAG.getBuildVector(VT, DL, Bits); |
| Vec = DAG.getNode(ISD::AND, DL, VT, Vec, BitMask); |
| |
| // Compare against the bitmask and extend the result. |
| EVT CCVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts); |
| Vec = DAG.getSetCC(DL, CCVT, Vec, BitMask, ISD::SETEQ); |
| Vec = DAG.getSExtOrTrunc(Vec, DL, VT); |
| |
| // For SEXT, this is now done, otherwise shift the result down for |
| // zero-extension. |
| if (Opcode == ISD::SIGN_EXTEND) |
| return Vec; |
| return DAG.getNode(ISD::SRL, DL, VT, Vec, |
| DAG.getConstant(EltSizeInBits - 1, DL, VT)); |
| } |
| |
| /// Convert a SEXT or ZEXT of a vector to a SIGN_EXTEND_VECTOR_INREG or |
| /// ZERO_EXTEND_VECTOR_INREG, this requires the splitting (or concatenating |
| /// with UNDEFs) of the input to vectors of the same size as the target type |
| /// which then extends the lowest elements. |
| static SDValue combineToExtendVectorInReg(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND) |
| return SDValue(); |
| if (!DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT SVT = VT.getScalarType(); |
| EVT InVT = N0.getValueType(); |
| EVT InSVT = InVT.getScalarType(); |
| |
| // Input type must be a vector and we must be extending legal integer types. |
| if (!VT.isVector()) |
| return SDValue(); |
| if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16) |
| return SDValue(); |
| if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) |
| return SDValue(); |
| |
| // On AVX2+ targets, if the input/output types are both legal then we will be |
| // able to use SIGN_EXTEND/ZERO_EXTEND directly. |
| if (Subtarget.hasInt256() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && |
| DAG.getTargetLoweringInfo().isTypeLegal(InVT)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| auto ExtendVecSize = [&DAG](const SDLoc &DL, SDValue N, unsigned Size) { |
| EVT InVT = N.getValueType(); |
| EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(), |
| Size / InVT.getScalarSizeInBits()); |
| SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(), |
| DAG.getUNDEF(InVT)); |
| Opnds[0] = N; |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds); |
| }; |
| |
| // If target-size is less than 128-bits, extend to a type that would extend |
| // to 128 bits, extend that and extract the original target vector. |
| if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits())) { |
| unsigned Scale = 128 / VT.getSizeInBits(); |
| EVT ExVT = |
| EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits()); |
| SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits()); |
| SDValue SExt = DAG.getNode(Opcode, DL, ExVT, Ex); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| // If target-size is 128-bits (or 256-bits on AVX2 target), then convert to |
| // ISD::*_EXTEND_VECTOR_INREG which ensures lowering to X86ISD::V*EXT. |
| // Also use this if we don't have SSE41 to allow the legalizer do its job. |
| if (!Subtarget.hasSSE41() || VT.is128BitVector() || |
| (VT.is256BitVector() && Subtarget.hasInt256()) || |
| (VT.is512BitVector() && Subtarget.useAVX512Regs())) { |
| SDValue ExOp = ExtendVecSize(DL, N0, VT.getSizeInBits()); |
| return Opcode == ISD::SIGN_EXTEND |
| ? DAG.getSignExtendVectorInReg(ExOp, DL, VT) |
| : DAG.getZeroExtendVectorInReg(ExOp, DL, VT); |
| } |
| |
| auto SplitAndExtendInReg = [&](unsigned SplitSize) { |
| unsigned NumVecs = VT.getSizeInBits() / SplitSize; |
| unsigned NumSubElts = SplitSize / SVT.getSizeInBits(); |
| EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts); |
| EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts); |
| |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) { |
| SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0, |
| DAG.getIntPtrConstant(Offset, DL)); |
| SrcVec = ExtendVecSize(DL, SrcVec, SplitSize); |
| SrcVec = Opcode == ISD::SIGN_EXTEND |
| ? DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT) |
| : DAG.getZeroExtendVectorInReg(SrcVec, DL, SubVT); |
| Opnds.push_back(SrcVec); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds); |
| }; |
| |
| // On pre-AVX2 targets, split into 128-bit nodes of |
| // ISD::*_EXTEND_VECTOR_INREG. |
| if (!Subtarget.hasInt256() && !(VT.getSizeInBits() % 128)) |
| return SplitAndExtendInReg(128); |
| |
| // On pre-AVX512 targets, split into 256-bit nodes of |
| // ISD::*_EXTEND_VECTOR_INREG. |
| if (!Subtarget.useAVX512Regs() && !(VT.getSizeInBits() % 256)) |
| return SplitAndExtendInReg(256); |
| |
| return SDValue(); |
| } |
| |
| // Attempt to combine a (sext/zext (setcc)) to a setcc with a xmm/ymm/zmm |
| // result type. |
| static SDValue combineExtSetcc(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| |
| // Only do this combine with AVX512 for vector extends. |
| if (!Subtarget.hasAVX512() || !VT.isVector() || N0->getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| // Only combine legal element types. |
| EVT SVT = VT.getVectorElementType(); |
| if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32 && |
| SVT != MVT::i64 && SVT != MVT::f32 && SVT != MVT::f64) |
| return SDValue(); |
| |
| // We can only do this if the vector size in 256 bits or less. |
| unsigned Size = VT.getSizeInBits(); |
| if (Size > 256) |
| return SDValue(); |
| |
| // Don't fold if the condition code can't be handled by PCMPEQ/PCMPGT since |
| // that's the only integer compares with we have. |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0->getOperand(2))->get(); |
| if (ISD::isUnsignedIntSetCC(CC)) |
| return SDValue(); |
| |
| // Only do this combine if the extension will be fully consumed by the setcc. |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); |
| if (Size != MatchingVecType.getSizeInBits()) |
| return SDValue(); |
| |
| SDValue Res = DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); |
| |
| if (N->getOpcode() == ISD::ZERO_EXTEND) |
| Res = DAG.getZeroExtendInReg(Res, dl, N0.getValueType().getScalarType()); |
| |
| return Res; |
| } |
| |
| static SDValue combineSext(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT InVT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| if (SDValue DivRem8 = getDivRem8(N, DAG)) |
| return DivRem8; |
| |
| if (SDValue NewCMov = combineToExtendCMOV(N, DAG)) |
| return NewCMov; |
| |
| if (!DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (SDValue V = combineExtSetcc(N, DAG, Subtarget)) |
| return V; |
| |
| if (InVT == MVT::i1 && N0.getOpcode() == ISD::XOR && |
| isAllOnesConstant(N0.getOperand(1)) && N0.hasOneUse()) { |
| // Invert and sign-extend a boolean is the same as zero-extend and subtract |
| // 1 because 0 becomes -1 and 1 becomes 0. The subtract is efficiently |
| // lowered with an LEA or a DEC. This is the same as: select Bool, 0, -1. |
| // sext (xor Bool, -1) --> sub (zext Bool), 1 |
| SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); |
| return DAG.getNode(ISD::SUB, DL, VT, Zext, DAG.getConstant(1, DL, VT)); |
| } |
| |
| if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| if (VT.isVector()) |
| if (SDValue R = WidenMaskArithmetic(N, DAG, Subtarget)) |
| return R; |
| |
| if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget)) |
| return NewAdd; |
| |
| return SDValue(); |
| } |
| |
| static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) { |
| if (NegMul) { |
| switch (Opcode) { |
| default: llvm_unreachable("Unexpected opcode"); |
| case ISD::FMA: Opcode = X86ISD::FNMADD; break; |
| case X86ISD::FMADD_RND: Opcode = X86ISD::FNMADD_RND; break; |
| case X86ISD::FMSUB: Opcode = X86ISD::FNMSUB; break; |
| case X86ISD::FMSUB_RND: Opcode = X86ISD::FNMSUB_RND; break; |
| case X86ISD::FNMADD: Opcode = ISD::FMA; break; |
| case X86ISD::FNMADD_RND: Opcode = X86ISD::FMADD_RND; break; |
| case X86ISD::FNMSUB: Opcode = X86ISD::FMSUB; break; |
| case X86ISD::FNMSUB_RND: Opcode = X86ISD::FMSUB_RND; break; |
| } |
| } |
| |
| if (NegAcc) { |
| switch (Opcode) { |
| default: llvm_unreachable("Unexpected opcode"); |
| case ISD::FMA: Opcode = X86ISD::FMSUB; break; |
| case X86ISD::FMADD_RND: Opcode = X86ISD::FMSUB_RND; break; |
| case X86ISD::FMSUB: Opcode = ISD::FMA; break; |
| case X86ISD::FMSUB_RND: Opcode = X86ISD::FMADD_RND; break; |
| case X86ISD::FNMADD: Opcode = X86ISD::FNMSUB; break; |
| case X86ISD::FNMADD_RND: Opcode = X86ISD::FNMSUB_RND; break; |
| case X86ISD::FNMSUB: Opcode = X86ISD::FNMADD; break; |
| case X86ISD::FNMSUB_RND: Opcode = X86ISD::FNMADD_RND; break; |
| } |
| } |
| |
| return Opcode; |
| } |
| |
| static SDValue combineFMA(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| EVT ScalarVT = VT.getScalarType(); |
| if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA()) |
| return SDValue(); |
| |
| SDValue A = N->getOperand(0); |
| SDValue B = N->getOperand(1); |
| SDValue C = N->getOperand(2); |
| |
| auto invertIfNegative = [&DAG](SDValue &V) { |
| if (SDValue NegVal = isFNEG(V.getNode())) { |
| V = DAG.getBitcast(V.getValueType(), NegVal); |
| return true; |
| } |
| // Look through extract_vector_elts. If it comes from an FNEG, create a |
| // new extract from the FNEG input. |
| if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| isNullConstant(V.getOperand(1))) { |
| if (SDValue NegVal = isFNEG(V.getOperand(0).getNode())) { |
| NegVal = DAG.getBitcast(V.getOperand(0).getValueType(), NegVal); |
| V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), V.getValueType(), |
| NegVal, V.getOperand(1)); |
| return true; |
| } |
| } |
| |
| return false; |
| }; |
| |
| // Do not convert the passthru input of scalar intrinsics. |
| // FIXME: We could allow negations of the lower element only. |
| bool NegA = invertIfNegative(A); |
| bool NegB = invertIfNegative(B); |
| bool NegC = invertIfNegative(C); |
| |
| if (!NegA && !NegB && !NegC) |
| return SDValue(); |
| |
| unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC); |
| |
| if (N->getNumOperands() == 4) |
| return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3)); |
| return DAG.getNode(NewOpcode, dl, VT, A, B, C); |
| } |
| |
| // Combine FMADDSUB(A, B, FNEG(C)) -> FMSUBADD(A, B, C) |
| static SDValue combineFMADDSUB(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| |
| SDValue NegVal = isFNEG(N->getOperand(2).getNode()); |
| if (!NegVal) |
| return SDValue(); |
| |
| unsigned NewOpcode; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("Unexpected opcode!"); |
| case X86ISD::FMADDSUB: NewOpcode = X86ISD::FMSUBADD; break; |
| case X86ISD::FMADDSUB_RND: NewOpcode = X86ISD::FMSUBADD_RND; break; |
| case X86ISD::FMSUBADD: NewOpcode = X86ISD::FMADDSUB; break; |
| case X86ISD::FMSUBADD_RND: NewOpcode = X86ISD::FMADDSUB_RND; break; |
| } |
| |
| if (N->getNumOperands() == 4) |
| return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1), |
| NegVal, N->getOperand(3)); |
| return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1), |
| NegVal); |
| } |
| |
| static SDValue combineZext(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> |
| // (and (i32 x86isd::setcc_carry), 1) |
| // This eliminates the zext. This transformation is necessary because |
| // ISD::SETCC is always legalized to i8. |
| SDLoc dl(N); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.getOpcode() == ISD::AND && |
| N0.hasOneUse() && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == X86ISD::SETCC_CARRY) { |
| if (!isOneConstant(N0.getOperand(1))) |
| return SDValue(); |
| return DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, |
| N00.getOperand(0), N00.getOperand(1)), |
| DAG.getConstant(1, dl, VT)); |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::TRUNCATE && |
| N0.hasOneUse() && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == X86ISD::SETCC_CARRY) { |
| return DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, |
| N00.getOperand(0), N00.getOperand(1)), |
| DAG.getConstant(1, dl, VT)); |
| } |
| } |
| |
| if (SDValue NewCMov = combineToExtendCMOV(N, DAG)) |
| return NewCMov; |
| |
| if (DCI.isBeforeLegalizeOps()) |
| if (SDValue V = combineExtSetcc(N, DAG, Subtarget)) |
| return V; |
| |
| if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget)) |
| return V; |
| |
| if (VT.isVector()) |
| if (SDValue R = WidenMaskArithmetic(N, DAG, Subtarget)) |
| return R; |
| |
| if (SDValue DivRem8 = getDivRem8(N, DAG)) |
| return DivRem8; |
| |
| if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget)) |
| return NewAdd; |
| |
| if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget)) |
| return R; |
| |
| return SDValue(); |
| } |
| |
| /// Try to map a 128-bit or larger integer comparison to vector instructions |
| /// before type legalization splits it up into chunks. |
| static SDValue combineVectorSizedSetCCEquality(SDNode *SetCC, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); |
| assert((CC == ISD::SETNE || CC == ISD::SETEQ) && "Bad comparison predicate"); |
| |
| // We're looking for an oversized integer equality comparison. |
| SDValue X = SetCC->getOperand(0); |
| SDValue Y = SetCC->getOperand(1); |
| EVT OpVT = X.getValueType(); |
| unsigned OpSize = OpVT.getSizeInBits(); |
| if (!OpVT.isScalarInteger() || OpSize < 128) |
| return SDValue(); |
| |
| // Ignore a comparison with zero because that gets special treatment in |
| // EmitTest(). But make an exception for the special case of a pair of |
| // logically-combined vector-sized operands compared to zero. This pattern may |
| // be generated by the memcmp expansion pass with oversized integer compares |
| // (see PR33325). |
| bool IsOrXorXorCCZero = isNullConstant(Y) && X.getOpcode() == ISD::OR && |
| X.getOperand(0).getOpcode() == ISD::XOR && |
| X.getOperand(1).getOpcode() == ISD::XOR; |
| if (isNullConstant(Y) && !IsOrXorXorCCZero) |
| return SDValue(); |
| |
| // Bail out if we know that this is not really just an oversized integer. |
| if (peekThroughBitcasts(X).getValueType() == MVT::f128 || |
| peekThroughBitcasts(Y).getValueType() == MVT::f128) |
| return SDValue(); |
| |
| // TODO: Use PXOR + PTEST for SSE4.1 or later? |
| // TODO: Add support for AVX-512. |
| EVT VT = SetCC->getValueType(0); |
| SDLoc DL(SetCC); |
| if ((OpSize == 128 && Subtarget.hasSSE2()) || |
| (OpSize == 256 && Subtarget.hasAVX2())) { |
| EVT VecVT = OpSize == 128 ? MVT::v16i8 : MVT::v32i8; |
| SDValue Cmp; |
| if (IsOrXorXorCCZero) { |
| // This is a bitwise-combined equality comparison of 2 pairs of vectors: |
| // setcc i128 (or (xor A, B), (xor C, D)), 0, eq|ne |
| // Use 2 vector equality compares and 'and' the results before doing a |
| // MOVMSK. |
| SDValue A = DAG.getBitcast(VecVT, X.getOperand(0).getOperand(0)); |
| SDValue B = DAG.getBitcast(VecVT, X.getOperand(0).getOperand(1)); |
| SDValue C = DAG.getBitcast(VecVT, X.getOperand(1).getOperand(0)); |
| SDValue D = DAG.getBitcast(VecVT, X.getOperand(1).getOperand(1)); |
| SDValue Cmp1 = DAG.getSetCC(DL, VecVT, A, B, ISD::SETEQ); |
| SDValue Cmp2 = DAG.getSetCC(DL, VecVT, C, D, ISD::SETEQ); |
| Cmp = DAG.getNode(ISD::AND, DL, VecVT, Cmp1, Cmp2); |
| } else { |
| SDValue VecX = DAG.getBitcast(VecVT, X); |
| SDValue VecY = DAG.getBitcast(VecVT, Y); |
| Cmp = DAG.getSetCC(DL, VecVT, VecX, VecY, ISD::SETEQ); |
| } |
| // If all bytes match (bitmask is 0x(FFFF)FFFF), that's equality. |
| // setcc i128 X, Y, eq --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, eq |
| // setcc i128 X, Y, ne --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, ne |
| // setcc i256 X, Y, eq --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, eq |
| // setcc i256 X, Y, ne --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, ne |
| SDValue MovMsk = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Cmp); |
| SDValue FFFFs = DAG.getConstant(OpSize == 128 ? 0xFFFF : 0xFFFFFFFF, DL, |
| MVT::i32); |
| return DAG.getSetCC(DL, VT, MovMsk, FFFFs, CC); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT OpVT = LHS.getValueType(); |
| SDLoc DL(N); |
| |
| if (CC == ISD::SETNE || CC == ISD::SETEQ) { |
| // 0-x == y --> x+y == 0 |
| // 0-x != y --> x+y != 0 |
| if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && |
| LHS.hasOneUse()) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, RHS, LHS.getOperand(1)); |
| return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); |
| } |
| // x == 0-y --> x+y == 0 |
| // x != 0-y --> x+y != 0 |
| if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && |
| RHS.hasOneUse()) { |
| SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); |
| return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); |
| } |
| |
| if (SDValue V = combineVectorSizedSetCCEquality(N, DAG, Subtarget)) |
| return V; |
| } |
| |
| if (VT.isVector() && VT.getVectorElementType() == MVT::i1 && |
| (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) { |
| // Put build_vectors on the right. |
| if (LHS.getOpcode() == ISD::BUILD_VECTOR) { |
| std::swap(LHS, RHS); |
| CC = ISD::getSetCCSwappedOperands(CC); |
| } |
| |
| bool IsSEXT0 = |
| (LHS.getOpcode() == ISD::SIGN_EXTEND) && |
| (LHS.getOperand(0).getValueType().getVectorElementType() == MVT::i1); |
| bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); |
| |
| if (IsSEXT0 && IsVZero1) { |
| assert(VT == LHS.getOperand(0).getValueType() && |
| "Uexpected operand type"); |
| if (CC == ISD::SETGT) |
| return DAG.getConstant(0, DL, VT); |
| if (CC == ISD::SETLE) |
| return DAG.getConstant(1, DL, VT); |
| if (CC == ISD::SETEQ || CC == ISD::SETGE) |
| return DAG.getNOT(DL, LHS.getOperand(0), VT); |
| |
| assert((CC == ISD::SETNE || CC == ISD::SETLT) && |
| "Unexpected condition code!"); |
| return LHS.getOperand(0); |
| } |
| } |
| |
| // If we have AVX512, but not BWI and this is a vXi16/vXi8 setcc, just |
| // pre-promote its result type since vXi1 vectors don't get promoted |
| // during type legalization. |
| // NOTE: The element count check is to ignore operand types that need to |
| // go through type promotion to a 128-bit vector. |
| if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && VT.isVector() && |
| VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() > 4 && |
| (OpVT.getVectorElementType() == MVT::i8 || |
| OpVT.getVectorElementType() == MVT::i16)) { |
| SDValue Setcc = DAG.getNode(ISD::SETCC, DL, OpVT, LHS, RHS, |
| N->getOperand(2)); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, Setcc); |
| } |
| |
| // For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early |
| // to avoid scalarization via legalization because v4i32 is not a legal type. |
| if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 && |
| LHS.getValueType() == MVT::v4f32) |
| return LowerVSETCC(SDValue(N, 0), Subtarget, DAG); |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineMOVMSK(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue Src = N->getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| |
| // Perform constant folding. |
| if (ISD::isBuildVectorOfConstantSDNodes(Src.getNode())) { |
| assert(N->getValueType(0) == MVT::i32 && "Unexpected result type"); |
| APInt Imm(32, 0); |
| for (unsigned Idx = 0, e = Src.getNumOperands(); Idx < e; ++Idx) { |
| SDValue In = Src.getOperand(Idx); |
| if (!In.isUndef() && |
| cast<ConstantSDNode>(In)->getAPIntValue().isNegative()) |
| Imm.setBit(Idx); |
| } |
| return DAG.getConstant(Imm, SDLoc(N), N->getValueType(0)); |
| } |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| |
| // MOVMSK only uses the MSB from each vector element. |
| KnownBits Known; |
| APInt DemandedMask(APInt::getSignMask(SrcVT.getScalarSizeInBits())); |
| if (TLI.SimplifyDemandedBits(Src, DemandedMask, Known, TLO)) { |
| DCI.AddToWorklist(Src.getNode()); |
| DCI.CommitTargetLoweringOpt(TLO); |
| return SDValue(N, 0); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| |
| if (DCI.isBeforeLegalizeOps()) { |
| SDValue Index = N->getOperand(4); |
| // Remove any sign extends from 32 or smaller to larger than 32. |
| // Only do this before LegalizeOps in case we need the sign extend for |
| // legalization. |
| if (Index.getOpcode() == ISD::SIGN_EXTEND) { |
| if (Index.getScalarValueSizeInBits() > 32 && |
| Index.getOperand(0).getScalarValueSizeInBits() <= 32) { |
| SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); |
| NewOps[4] = Index.getOperand(0); |
| SDNode *Res = DAG.UpdateNodeOperands(N, NewOps); |
| if (Res == N) { |
| // The original sign extend has less users, add back to worklist in |
| // case it needs to be removed |
| DCI.AddToWorklist(Index.getNode()); |
| DCI.AddToWorklist(N); |
| } |
| return SDValue(Res, 0); |
| } |
| } |
| |
| // Make sure the index is either i32 or i64 |
| unsigned ScalarSize = Index.getScalarValueSizeInBits(); |
| if (ScalarSize != 32 && ScalarSize != 64) { |
| MVT EltVT = ScalarSize > 32 ? MVT::i64 : MVT::i32; |
| EVT IndexVT = EVT::getVectorVT(*DAG.getContext(), EltVT, |
| Index.getValueType().getVectorNumElements()); |
| Index = DAG.getSExtOrTrunc(Index, DL, IndexVT); |
| SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); |
| NewOps[4] = Index; |
| SDNode *Res = DAG.UpdateNodeOperands(N, NewOps); |
| if (Res == N) |
| DCI.AddToWorklist(N); |
| return SDValue(Res, 0); |
| } |
| |
| // Try to remove zero extends from 32->64 if we know the sign bit of |
| // the input is zero. |
| if (Index.getOpcode() == ISD::ZERO_EXTEND && |
| Index.getScalarValueSizeInBits() == 64 && |
| Index.getOperand(0).getScalarValueSizeInBits() == 32) { |
| if (DAG.SignBitIsZero(Index.getOperand(0))) { |
| SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); |
| NewOps[4] = Index.getOperand(0); |
| SDNode *Res = DAG.UpdateNodeOperands(N, NewOps); |
| if (Res == N) { |
| // The original sign extend has less users, add back to worklist in |
| // case it needs to be removed |
| DCI.AddToWorklist(Index.getNode()); |
| DCI.AddToWorklist(N); |
| } |
| return SDValue(Res, 0); |
| } |
| } |
| } |
| |
| // With AVX2 we only demand the upper bit of the mask. |
| if (!Subtarget.hasAVX512()) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| SDValue Mask = N->getOperand(2); |
| KnownBits Known; |
| APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits())); |
| if (TLI.SimplifyDemandedBits(Mask, DemandedMask, Known, TLO)) { |
| DCI.AddToWorklist(Mask.getNode()); |
| DCI.CommitTargetLoweringOpt(TLO); |
| return SDValue(N, 0); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT |
| static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); |
| SDValue EFLAGS = N->getOperand(1); |
| |
| // Try to simplify the EFLAGS and condition code operands. |
| if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) |
| return getSETCC(CC, Flags, DL, DAG); |
| |
| return SDValue(); |
| } |
| |
| /// Optimize branch condition evaluation. |
| static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDLoc DL(N); |
| SDValue EFLAGS = N->getOperand(3); |
| X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); |
| |
| // Try to simplify the EFLAGS and condition code operands. |
| // Make sure to not keep references to operands, as combineSetCCEFLAGS can |
| // RAUW them under us. |
| if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) { |
| SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); |
| return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0), |
| N->getOperand(1), Cond, Flags); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N, |
| SelectionDAG &DAG) { |
| // Take advantage of vector comparisons producing 0 or -1 in each lane to |
| // optimize away operation when it's from a constant. |
| // |
| // The general transformation is: |
| // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> |
| // AND(VECTOR_CMP(x,y), constant2) |
| // constant2 = UNARYOP(constant) |
| |
| // Early exit if this isn't a vector operation, the operand of the |
| // unary operation isn't a bitwise AND, or if the sizes of the operations |
| // aren't the same. |
| EVT VT = N->getValueType(0); |
| if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || |
| N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || |
| VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) |
| return SDValue(); |
| |
| // Now check that the other operand of the AND is a constant. We could |
| // make the transformation for non-constant splats as well, but it's unclear |
| // that would be a benefit as it would not eliminate any operations, just |
| // perform one more step in scalar code before moving to the vector unit. |
| if (BuildVectorSDNode *BV = |
| dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { |
| // Bail out if the vector isn't a constant. |
| if (!BV->isConstant()) |
| return SDValue(); |
| |
| // Everything checks out. Build up the new and improved node. |
| SDLoc DL(N); |
| EVT IntVT = BV->getValueType(0); |
| // Create a new constant of the appropriate type for the transformed |
| // DAG. |
| SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); |
| // The AND node needs bitcasts to/from an integer vector type around it. |
| SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst); |
| SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, |
| N->getOperand(0)->getOperand(0), MaskConst); |
| SDValue Res = DAG.getBitcast(VT, NewAnd); |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue Op0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT InVT = Op0.getValueType(); |
| |
| // UINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32)) |
| // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32)) |
| // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32)) |
| if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) { |
| SDLoc dl(N); |
| EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| InVT.getVectorNumElements()); |
| SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0); |
| |
| // UINT_TO_FP isn't legal without AVX512 so use SINT_TO_FP. |
| return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); |
| } |
| |
| // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't |
| // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform |
| // the optimization here. |
| if (DAG.SignBitIsZero(Op0)) |
| return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| // First try to optimize away the conversion entirely when it's |
| // conditionally from a constant. Vectors only. |
| if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG)) |
| return Res; |
| |
| // Now move on to more general possibilities. |
| SDValue Op0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT InVT = Op0.getValueType(); |
| |
| // SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32)) |
| // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32)) |
| // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32)) |
| if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) { |
| SDLoc dl(N); |
| EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| InVT.getVectorNumElements()); |
| SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); |
| } |
| |
| // Without AVX512DQ we only support i64 to float scalar conversion. For both |
| // vectors and scalars, see if we know that the upper bits are all the sign |
| // bit, in which case we can truncate the input to i32 and convert from that. |
| if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) { |
| unsigned BitWidth = InVT.getScalarSizeInBits(); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(Op0); |
| if (NumSignBits >= (BitWidth - 31)) { |
| EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), 32); |
| if (InVT.isVector()) |
| TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT, |
| InVT.getVectorNumElements()); |
| SDLoc dl(N); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc); |
| } |
| } |
| |
| // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have |
| // a 32-bit target where SSE doesn't support i64->FP operations. |
| if (!Subtarget.useSoftFloat() && Op0.getOpcode() == ISD::LOAD) { |
| LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); |
| EVT LdVT = Ld->getValueType(0); |
| |
| // This transformation is not supported if the result type is f16 or f128. |
| if (VT == MVT::f16 || VT == MVT::f128) |
| return SDValue(); |
| |
| // If we have AVX512DQ we can use packed conversion instructions unless |
| // the VT is f80. |
| if (Subtarget.hasDQI() && VT != MVT::f80) |
| return SDValue(); |
| |
| if (!Ld->isVolatile() && !VT.isVector() && |
| ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && |
| !Subtarget.is64Bit() && LdVT == MVT::i64) { |
| SDValue FILDChain = Subtarget.getTargetLowering()->BuildFILD( |
| SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG); |
| DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); |
| return FILDChain; |
| } |
| } |
| return SDValue(); |
| } |
| |
| static SDValue combineSBB(SDNode *N, SelectionDAG &DAG) { |
| if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) { |
| MVT VT = N->getSimpleValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| return DAG.getNode(X86ISD::SBB, SDLoc(N), VTs, |
| N->getOperand(0), N->getOperand(1), |
| Flags); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS |
| static SDValue combineADC(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // If the LHS and RHS of the ADC node are zero, then it can't overflow and |
| // the result is either zero or one (depending on the input carry bit). |
| // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. |
| if (X86::isZeroNode(N->getOperand(0)) && |
| X86::isZeroNode(N->getOperand(1)) && |
| // We don't have a good way to replace an EFLAGS use, so only do this when |
| // dead right now. |
| SDValue(N, 1).use_empty()) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1)); |
| SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, |
| DAG.getConstant(X86::COND_B, DL, |
| MVT::i8), |
| N->getOperand(2)), |
| DAG.getConstant(1, DL, VT)); |
| return DCI.CombineTo(N, Res1, CarryOut); |
| } |
| |
| if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) { |
| MVT VT = N->getSimpleValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| return DAG.getNode(X86ISD::ADC, SDLoc(N), VTs, |
| N->getOperand(0), N->getOperand(1), |
| Flags); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Materialize "setb reg" as "sbb reg,reg", since it produces an all-ones bit |
| /// which is more useful than 0/1 in some cases. |
| static SDValue materializeSBB(SDNode *N, SDValue EFLAGS, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| // "Condition code B" is also known as "the carry flag" (CF). |
| SDValue CF = DAG.getConstant(X86::COND_B, DL, MVT::i8); |
| SDValue SBB = DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, CF, EFLAGS); |
| MVT VT = N->getSimpleValueType(0); |
| if (VT == MVT::i8) |
| return DAG.getNode(ISD::AND, DL, VT, SBB, DAG.getConstant(1, DL, VT)); |
| |
| assert(VT == MVT::i1 && "Unexpected type for SETCC node"); |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SBB); |
| } |
| |
| /// If this is an add or subtract where one operand is produced by a cmp+setcc, |
| /// then try to convert it to an ADC or SBB. This replaces TEST+SET+{ADD/SUB} |
| /// with CMP+{ADC, SBB}. |
| static SDValue combineAddOrSubToADCOrSBB(SDNode *N, SelectionDAG &DAG) { |
| bool IsSub = N->getOpcode() == ISD::SUB; |
| SDValue X = N->getOperand(0); |
| SDValue Y = N->getOperand(1); |
| |
| // If this is an add, canonicalize a zext operand to the RHS. |
| // TODO: Incomplete? What if both sides are zexts? |
| if (!IsSub && X.getOpcode() == ISD::ZERO_EXTEND && |
| Y.getOpcode() != ISD::ZERO_EXTEND) |
| std::swap(X, Y); |
| |
| // Look through a one-use zext. |
| bool PeekedThroughZext = false; |
| if (Y.getOpcode() == ISD::ZERO_EXTEND && Y.hasOneUse()) { |
| Y = Y.getOperand(0); |
| PeekedThroughZext = true; |
| } |
| |
| // If this is an add, canonicalize a setcc operand to the RHS. |
| // TODO: Incomplete? What if both sides are setcc? |
| // TODO: Should we allow peeking through a zext of the other operand? |
| if (!IsSub && !PeekedThroughZext && X.getOpcode() == X86ISD::SETCC && |
| Y.getOpcode() != X86ISD::SETCC) |
| std::swap(X, Y); |
| |
| if (Y.getOpcode() != X86ISD::SETCC || !Y.hasOneUse()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| X86::CondCode CC = (X86::CondCode)Y.getConstantOperandVal(0); |
| |
| // If X is -1 or 0, then we have an opportunity to avoid constants required in |
| // the general case below. |
| auto *ConstantX = dyn_cast<ConstantSDNode>(X); |
| if (ConstantX) { |
| if ((!IsSub && CC == X86::COND_AE && ConstantX->isAllOnesValue()) || |
| (IsSub && CC == X86::COND_B && ConstantX->isNullValue())) { |
| // This is a complicated way to get -1 or 0 from the carry flag: |
| // -1 + SETAE --> -1 + (!CF) --> CF ? -1 : 0 --> SBB %eax, %eax |
| // 0 - SETB --> 0 - (CF) --> CF ? -1 : 0 --> SBB %eax, %eax |
| return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), |
| Y.getOperand(1)); |
| } |
| |
| if ((!IsSub && CC == X86::COND_BE && ConstantX->isAllOnesValue()) || |
| (IsSub && CC == X86::COND_A && ConstantX->isNullValue())) { |
| SDValue EFLAGS = Y->getOperand(1); |
| if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && |
| EFLAGS.getValueType().isInteger() && |
| !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { |
| // Swap the operands of a SUB, and we have the same pattern as above. |
| // -1 + SETBE (SUB A, B) --> -1 + SETAE (SUB B, A) --> SUB + SBB |
| // 0 - SETA (SUB A, B) --> 0 - SETB (SUB B, A) --> SUB + SBB |
| SDValue NewSub = DAG.getNode( |
| X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(), |
| EFLAGS.getOperand(1), EFLAGS.getOperand(0)); |
| SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); |
| return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), |
| NewEFLAGS); |
| } |
| } |
| } |
| |
| if (CC == X86::COND_B) { |
| // X + SETB Z --> X + (mask SBB Z, Z) |
| // X - SETB Z --> X - (mask SBB Z, Z) |
| // TODO: Produce ADC/SBB here directly and avoid SETCC_CARRY? |
| SDValue SBB = materializeSBB(Y.getNode(), Y.getOperand(1), DAG); |
| if (SBB.getValueSizeInBits() != VT.getSizeInBits()) |
| SBB = DAG.getZExtOrTrunc(SBB, DL, VT); |
| return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB); |
| } |
| |
| if (CC == X86::COND_A) { |
| SDValue EFLAGS = Y->getOperand(1); |
| // Try to convert COND_A into COND_B in an attempt to facilitate |
| // materializing "setb reg". |
| // |
| // Do not flip "e > c", where "c" is a constant, because Cmp instruction |
| // cannot take an immediate as its first operand. |
| // |
| if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && |
| EFLAGS.getValueType().isInteger() && |
| !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { |
| SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), |
| EFLAGS.getNode()->getVTList(), |
| EFLAGS.getOperand(1), EFLAGS.getOperand(0)); |
| SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); |
| SDValue SBB = materializeSBB(Y.getNode(), NewEFLAGS, DAG); |
| if (SBB.getValueSizeInBits() != VT.getSizeInBits()) |
| SBB = DAG.getZExtOrTrunc(SBB, DL, VT); |
| return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB); |
| } |
| } |
| |
| if (CC != X86::COND_E && CC != X86::COND_NE) |
| return SDValue(); |
| |
| SDValue Cmp = Y.getOperand(1); |
| if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || |
| !X86::isZeroNode(Cmp.getOperand(1)) || |
| !Cmp.getOperand(0).getValueType().isInteger()) |
| return SDValue(); |
| |
| SDValue Z = Cmp.getOperand(0); |
| EVT ZVT = Z.getValueType(); |
| |
| // If X is -1 or 0, then we have an opportunity to avoid constants required in |
| // the general case below. |
| if (ConstantX) { |
| // 'neg' sets the carry flag when Z != 0, so create 0 or -1 using 'sbb' with |
| // fake operands: |
| // 0 - (Z != 0) --> sbb %eax, %eax, (neg Z) |
| // -1 + (Z == 0) --> sbb %eax, %eax, (neg Z) |
| if ((IsSub && CC == X86::COND_NE && ConstantX->isNullValue()) || |
| (!IsSub && CC == X86::COND_E && ConstantX->isAllOnesValue())) { |
| SDValue Zero = DAG.getConstant(0, DL, ZVT); |
| SDVTList X86SubVTs = DAG.getVTList(ZVT, MVT::i32); |
| SDValue Neg = DAG.getNode(X86ISD::SUB, DL, X86SubVTs, Zero, Z); |
| return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), |
| SDValue(Neg.getNode(), 1)); |
| } |
| |
| // cmp with 1 sets the carry flag when Z == 0, so create 0 or -1 using 'sbb' |
| // with fake operands: |
| // 0 - (Z == 0) --> sbb %eax, %eax, (cmp Z, 1) |
| // -1 + (Z != 0) --> sbb %eax, %eax, (cmp Z, 1) |
| if ((IsSub && CC == X86::COND_E && ConstantX->isNullValue()) || |
| (!IsSub && CC == X86::COND_NE && ConstantX->isAllOnesValue())) { |
| SDValue One = DAG.getConstant(1, DL, ZVT); |
| SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One); |
| return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, |
| DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp1); |
| } |
| } |
| |
| // (cmp Z, 1) sets the carry flag if Z is 0. |
| SDValue One = DAG.getConstant(1, DL, ZVT); |
| SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One); |
| |
| // Add the flags type for ADC/SBB nodes. |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| |
| // X - (Z != 0) --> sub X, (zext(setne Z, 0)) --> adc X, -1, (cmp Z, 1) |
| // X + (Z != 0) --> add X, (zext(setne Z, 0)) --> sbb X, -1, (cmp Z, 1) |
| if (CC == X86::COND_NE) |
| return DAG.getNode(IsSub ? X86ISD::ADC : X86ISD::SBB, DL, VTs, X, |
| DAG.getConstant(-1ULL, DL, VT), Cmp1); |
| |
| // X - (Z == 0) --> sub X, (zext(sete Z, 0)) --> sbb X, 0, (cmp Z, 1) |
| // X + (Z == 0) --> add X, (zext(sete Z, 0)) --> adc X, 0, (cmp Z, 1) |
| return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL, VTs, X, |
| DAG.getConstant(0, DL, VT), Cmp1); |
| } |
| |
| static SDValue combineLoopMAddPattern(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| SDValue MulOp = N->getOperand(0); |
| SDValue Phi = N->getOperand(1); |
| |
| if (MulOp.getOpcode() != ISD::MUL) |
| std::swap(MulOp, Phi); |
| if (MulOp.getOpcode() != ISD::MUL) |
| return SDValue(); |
| |
| ShrinkMode Mode; |
| if (!canReduceVMulWidth(MulOp.getNode(), DAG, Mode) || Mode == MULU16) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // If the vector size is less than 128, or greater than the supported RegSize, |
| // do not use PMADD. |
| if (VT.getVectorNumElements() < 8) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, |
| VT.getVectorNumElements()); |
| EVT MAddVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| VT.getVectorNumElements() / 2); |
| |
| // Shrink the operands of mul. |
| SDValue N0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(0)); |
| SDValue N1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(1)); |
| |
| // Madd vector size is half of the original vector size |
| auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| MVT VT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32); |
| return DAG.getNode(X86ISD::VPMADDWD, DL, VT, Ops); |
| }; |
| SDValue Madd = SplitOpsAndApply(DAG, Subtarget, DL, MAddVT, { N0, N1 }, |
| PMADDWDBuilder); |
| // Fill the rest of the output with 0 |
| SDValue Zero = getZeroVector(Madd.getSimpleValueType(), Subtarget, DAG, DL); |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Madd, Zero); |
| return DAG.getNode(ISD::ADD, DL, VT, Concat, Phi); |
| } |
| |
| static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // TODO: There's nothing special about i32, any integer type above i16 should |
| // work just as well. |
| if (!VT.isVector() || !VT.isSimple() || |
| !(VT.getVectorElementType() == MVT::i32)) |
| return SDValue(); |
| |
| unsigned RegSize = 128; |
| if (Subtarget.useBWIRegs()) |
| RegSize = 512; |
| else if (Subtarget.hasAVX()) |
| RegSize = 256; |
| |
| // We only handle v16i32 for SSE2 / v32i32 for AVX / v64i32 for AVX512. |
| // TODO: We should be able to handle larger vectors by splitting them before |
| // feeding them into several SADs, and then reducing over those. |
| if (VT.getSizeInBits() / 4 > RegSize) |
| return SDValue(); |
| |
| // We know N is a reduction add, which means one of its operands is a phi. |
| // To match SAD, we need the other operand to be a vector select. |
| SDValue SelectOp, Phi; |
| if (Op0.getOpcode() == ISD::VSELECT) { |
| SelectOp = Op0; |
| Phi = Op1; |
| } else if (Op1.getOpcode() == ISD::VSELECT) { |
| SelectOp = Op1; |
| Phi = Op0; |
| } else |
| return SDValue(); |
| |
| // Check whether we have an abs-diff pattern feeding into the select. |
| if(!detectZextAbsDiff(SelectOp, Op0, Op1)) |
| return SDValue(); |
| |
| // SAD pattern detected. Now build a SAD instruction and an addition for |
| // reduction. Note that the number of elements of the result of SAD is less |
| // than the number of elements of its input. Therefore, we could only update |
| // part of elements in the reduction vector. |
| SDValue Sad = createPSADBW(DAG, Op0, Op1, DL, Subtarget); |
| |
| // The output of PSADBW is a vector of i64. |
| // We need to turn the vector of i64 into a vector of i32. |
| // If the reduction vector is at least as wide as the psadbw result, just |
| // bitcast. If it's narrower, truncate - the high i32 of each i64 is zero |
| // anyway. |
| MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32); |
| if (VT.getSizeInBits() >= ResVT.getSizeInBits()) |
| Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad); |
| else |
| Sad = DAG.getNode(ISD::TRUNCATE, DL, VT, Sad); |
| |
| if (VT.getSizeInBits() > ResVT.getSizeInBits()) { |
| // Fill the upper elements with zero to match the add width. |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| Sad = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Zero, Sad, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| return DAG.getNode(ISD::ADD, DL, VT, Sad, Phi); |
| } |
| |
| /// Convert vector increment or decrement to sub/add with an all-ones constant: |
| /// add X, <1, 1...> --> sub X, <-1, -1...> |
| /// sub X, <1, 1...> --> add X, <-1, -1...> |
| /// The all-ones vector constant can be materialized using a pcmpeq instruction |
| /// that is commonly recognized as an idiom (has no register dependency), so |
| /// that's better/smaller than loading a splat 1 constant. |
| static SDValue combineIncDecVector(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Unexpected opcode for increment/decrement transform"); |
| |
| // Pseudo-legality check: getOnesVector() expects one of these types, so bail |
| // out and wait for legalization if we have an unsupported vector length. |
| EVT VT = N->getValueType(0); |
| if (!VT.is128BitVector() && !VT.is256BitVector() && !VT.is512BitVector()) |
| return SDValue(); |
| |
| SDNode *N1 = N->getOperand(1).getNode(); |
| APInt SplatVal; |
| if (!ISD::isConstantSplatVector(N1, SplatVal) || |
| !SplatVal.isOneValue()) |
| return SDValue(); |
| |
| SDValue AllOnesVec = getOnesVector(VT, DAG, SDLoc(N)); |
| unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD; |
| return DAG.getNode(NewOpcode, SDLoc(N), VT, N->getOperand(0), AllOnesVec); |
| } |
| |
| static SDValue matchPMADDWD(SelectionDAG &DAG, SDValue Op0, SDValue Op1, |
| const SDLoc &DL, EVT VT, |
| const X86Subtarget &Subtarget) { |
| // Example of pattern we try to detect: |
| // t := (v8i32 mul (sext (v8i16 x0), (sext (v8i16 x1)))) |
| //(add (build_vector (extract_elt t, 0), |
| // (extract_elt t, 2), |
| // (extract_elt t, 4), |
| // (extract_elt t, 6)), |
| // (build_vector (extract_elt t, 1), |
| // (extract_elt t, 3), |
| // (extract_elt t, 5), |
| // (extract_elt t, 7))) |
| |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| if (Op0.getOpcode() != ISD::BUILD_VECTOR || |
| Op1.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 || |
| VT.getVectorNumElements() < 4 || |
| !isPowerOf2_32(VT.getVectorNumElements())) |
| return SDValue(); |
| |
| // Check if one of Op0,Op1 is of the form: |
| // (build_vector (extract_elt Mul, 0), |
| // (extract_elt Mul, 2), |
| // (extract_elt Mul, 4), |
| // ... |
| // the other is of the form: |
| // (build_vector (extract_elt Mul, 1), |
| // (extract_elt Mul, 3), |
| // (extract_elt Mul, 5), |
| // ... |
| // and identify Mul. |
| SDValue Mul; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; i += 2) { |
| SDValue Op0L = Op0->getOperand(i), Op1L = Op1->getOperand(i), |
| Op0H = Op0->getOperand(i + 1), Op1H = Op1->getOperand(i + 1); |
| // TODO: Be more tolerant to undefs. |
| if (Op0L.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Op1L.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Op0H.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Op1H.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| auto *Const0L = dyn_cast<ConstantSDNode>(Op0L->getOperand(1)); |
| auto *Const1L = dyn_cast<ConstantSDNode>(Op1L->getOperand(1)); |
| auto *Const0H = dyn_cast<ConstantSDNode>(Op0H->getOperand(1)); |
| auto *Const1H = dyn_cast<ConstantSDNode>(Op1H->getOperand(1)); |
| if (!Const0L || !Const1L || !Const0H || !Const1H) |
| return SDValue(); |
| unsigned Idx0L = Const0L->getZExtValue(), Idx1L = Const1L->getZExtValue(), |
| Idx0H = Const0H->getZExtValue(), Idx1H = Const1H->getZExtValue(); |
| // Commutativity of mul allows factors of a product to reorder. |
| if (Idx0L > Idx1L) |
| std::swap(Idx0L, Idx1L); |
| if (Idx0H > Idx1H) |
| std::swap(Idx0H, Idx1H); |
| // Commutativity of add allows pairs of factors to reorder. |
| if (Idx0L > Idx0H) { |
| std::swap(Idx0L, Idx0H); |
| std::swap(Idx1L, Idx1H); |
| } |
| if (Idx0L != 2 * i || Idx1L != 2 * i + 1 || Idx0H != 2 * i + 2 || |
| Idx1H != 2 * i + 3) |
| return SDValue(); |
| if (!Mul) { |
| // First time an extract_elt's source vector is visited. Must be a MUL |
| // with 2X number of vector elements than the BUILD_VECTOR. |
| // Both extracts must be from same MUL. |
| Mul = Op0L->getOperand(0); |
| if (Mul->getOpcode() != ISD::MUL || |
| Mul.getValueType().getVectorNumElements() != 2 * e) |
| return SDValue(); |
| } |
| // Check that the extract is from the same MUL previously seen. |
| if (Mul != Op0L->getOperand(0) || Mul != Op1L->getOperand(0) || |
| Mul != Op0H->getOperand(0) || Mul != Op1H->getOperand(0)) |
| return SDValue(); |
| } |
| |
| // Check if the Mul source can be safely shrunk. |
| ShrinkMode Mode; |
| if (!canReduceVMulWidth(Mul.getNode(), DAG, Mode) || Mode == MULU16) |
| return SDValue(); |
| |
| auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| // Shrink by adding truncate nodes and let DAGCombine fold with the |
| // sources. |
| EVT InVT = Ops[0].getValueType(); |
| assert(InVT.getScalarType() == MVT::i32 && |
| "Unexpected scalar element type"); |
| assert(InVT == Ops[1].getValueType() && "Operands' types mismatch"); |
| EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| InVT.getVectorNumElements() / 2); |
| EVT TruncVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, |
| InVT.getVectorNumElements()); |
| return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT, |
| DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[0]), |
| DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[1])); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, |
| { Mul.getOperand(0), Mul.getOperand(1) }, |
| PMADDBuilder); |
| } |
| |
| // Attempt to turn this pattern into PMADDWD. |
| // (mul (add (zext (build_vector)), (zext (build_vector))), |
| // (add (zext (build_vector)), (zext (build_vector))) |
| static SDValue matchPMADDWD_2(SelectionDAG &DAG, SDValue N0, SDValue N1, |
| const SDLoc &DL, EVT VT, |
| const X86Subtarget &Subtarget) { |
| if (!Subtarget.hasSSE2()) |
| return SDValue(); |
| |
| if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL) |
| return SDValue(); |
| |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 || |
| VT.getVectorNumElements() < 4 || |
| !isPowerOf2_32(VT.getVectorNumElements())) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| |
| // All inputs need to be sign extends. |
| // TODO: Support ZERO_EXTEND from known positive? |
| if (N00.getOpcode() != ISD::SIGN_EXTEND || |
| N01.getOpcode() != ISD::SIGN_EXTEND || |
| N10.getOpcode() != ISD::SIGN_EXTEND || |
| N11.getOpcode() != ISD::SIGN_EXTEND) |
| return SDValue(); |
| |
| // Peek through the extends. |
| N00 = N00.getOperand(0); |
| N01 = N01.getOperand(0); |
| N10 = N10.getOperand(0); |
| N11 = N11.getOperand(0); |
| |
| // Must be extending from vXi16. |
| EVT InVT = N00.getValueType(); |
| if (InVT.getVectorElementType() != MVT::i16 || N01.getValueType() != InVT || |
| N10.getValueType() != InVT || N11.getValueType() != InVT) |
| return SDValue(); |
| |
| // All inputs should be build_vectors. |
| if (N00.getOpcode() != ISD::BUILD_VECTOR || |
| N01.getOpcode() != ISD::BUILD_VECTOR || |
| N10.getOpcode() != ISD::BUILD_VECTOR || |
| N11.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| // For each element, we need to ensure we have an odd element from one vector |
| // multiplied by the odd element of another vector and the even element from |
| // one of the same vectors being multiplied by the even element from the |
| // other vector. So we need to make sure for each element i, this operator |
| // is being performed: |
| // A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1] |
| SDValue In0, In1; |
| for (unsigned i = 0; i != N00.getNumOperands(); ++i) { |
| SDValue N00Elt = N00.getOperand(i); |
| SDValue N01Elt = N01.getOperand(i); |
| SDValue N10Elt = N10.getOperand(i); |
| SDValue N11Elt = N11.getOperand(i); |
| // TODO: Be more tolerant to undefs. |
| if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1)); |
| auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1)); |
| auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1)); |
| auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1)); |
| if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt) |
| return SDValue(); |
| unsigned IdxN00 = ConstN00Elt->getZExtValue(); |
| unsigned IdxN01 = ConstN01Elt->getZExtValue(); |
| unsigned IdxN10 = ConstN10Elt->getZExtValue(); |
| unsigned IdxN11 = ConstN11Elt->getZExtValue(); |
| // Add is commutative so indices can be reordered. |
| if (IdxN00 > IdxN10) { |
| std::swap(IdxN00, IdxN10); |
| std::swap(IdxN01, IdxN11); |
| } |
| // N0 indices be the even element. N1 indices must be the next odd element. |
| if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 || |
| IdxN01 != 2 * i || IdxN11 != 2 * i + 1) |
| return SDValue(); |
| SDValue N00In = N00Elt.getOperand(0); |
| SDValue N01In = N01Elt.getOperand(0); |
| SDValue N10In = N10Elt.getOperand(0); |
| SDValue N11In = N11Elt.getOperand(0); |
| // First time we find an input capture it. |
| if (!In0) { |
| In0 = N00In; |
| In1 = N01In; |
| } |
| // Mul is commutative so the input vectors can be in any order. |
| // Canonicalize to make the compares easier. |
| if (In0 != N00In) |
| std::swap(N00In, N01In); |
| if (In0 != N10In) |
| std::swap(N10In, N11In); |
| if (In0 != N00In || In1 != N01In || In0 != N10In || In1 != N11In) |
| return SDValue(); |
| } |
| |
| auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| // Shrink by adding truncate nodes and let DAGCombine fold with the |
| // sources. |
| EVT InVT = Ops[0].getValueType(); |
| assert(InVT.getScalarType() == MVT::i16 && |
| "Unexpected scalar element type"); |
| assert(InVT == Ops[1].getValueType() && "Operands' types mismatch"); |
| EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| InVT.getVectorNumElements() / 2); |
| return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT, Ops[0], Ops[1]); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, DL, VT, { In0, In1 }, |
| PMADDBuilder); |
| } |
| |
| static SDValue combineAdd(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| const SDNodeFlags Flags = N->getFlags(); |
| if (Flags.hasVectorReduction()) { |
| if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget)) |
| return Sad; |
| if (SDValue MAdd = combineLoopMAddPattern(N, DAG, Subtarget)) |
| return MAdd; |
| } |
| EVT VT = N->getValueType(0); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| if (SDValue MAdd = matchPMADDWD(DAG, Op0, Op1, SDLoc(N), VT, Subtarget)) |
| return MAdd; |
| if (SDValue MAdd = matchPMADDWD_2(DAG, Op0, Op1, SDLoc(N), VT, Subtarget)) |
| return MAdd; |
| |
| // Try to synthesize horizontal adds from adds of shuffles. |
| if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 || |
| VT == MVT::v8i32) && |
| Subtarget.hasSSSE3() && isHorizontalBinOp(Op0, Op1, true)) { |
| auto HADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::HADD, DL, Ops[0].getValueType(), Ops); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1}, |
| HADDBuilder); |
| } |
| |
| if (SDValue V = combineIncDecVector(N, DAG)) |
| return V; |
| |
| return combineAddOrSubToADCOrSBB(N, DAG); |
| } |
| |
| static SDValue combineSubToSubus(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| |
| // PSUBUS is supported, starting from SSE2, but truncation for v8i32 |
| // is only worth it with SSSE3 (PSHUFB). |
| if (!(Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) && |
| !(Subtarget.hasSSSE3() && (VT == MVT::v8i32 || VT == MVT::v8i64)) && |
| !(Subtarget.hasAVX() && (VT == MVT::v32i8 || VT == MVT::v16i16)) && |
| !(Subtarget.useBWIRegs() && (VT == MVT::v64i8 || VT == MVT::v32i16 || |
| VT == MVT::v16i32 || VT == MVT::v8i64))) |
| return SDValue(); |
| |
| SDValue SubusLHS, SubusRHS; |
| // Try to find umax(a,b) - b or a - umin(a,b) patterns |
| // they may be converted to subus(a,b). |
| // TODO: Need to add IR canonicalization for this code. |
| if (Op0.getOpcode() == ISD::UMAX) { |
| SubusRHS = Op1; |
| SDValue MaxLHS = Op0.getOperand(0); |
| SDValue MaxRHS = Op0.getOperand(1); |
| if (MaxLHS == Op1) |
| SubusLHS = MaxRHS; |
| else if (MaxRHS == Op1) |
| SubusLHS = MaxLHS; |
| else |
| return SDValue(); |
| } else if (Op1.getOpcode() == ISD::UMIN) { |
| SubusLHS = Op0; |
| SDValue MinLHS = Op1.getOperand(0); |
| SDValue MinRHS = Op1.getOperand(1); |
| if (MinLHS == Op0) |
| SubusRHS = MinRHS; |
| else if (MinRHS == Op0) |
| SubusRHS = MinLHS; |
| else |
| return SDValue(); |
| } else |
| return SDValue(); |
| |
| auto SUBUSBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::SUBUS, DL, Ops[0].getValueType(), Ops); |
| }; |
| |
| // PSUBUS doesn't support v8i32/v8i64/v16i32, but it can be enabled with |
| // special preprocessing in some cases. |
| if (VT != MVT::v8i32 && VT != MVT::v16i32 && VT != MVT::v8i64) |
| return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, |
| { SubusLHS, SubusRHS }, SUBUSBuilder); |
| |
| // Special preprocessing case can be only applied |
| // if the value was zero extended from 16 bit, |
| // so we require first 16 bits to be zeros for 32 bit |
| // values, or first 48 bits for 64 bit values. |
| KnownBits Known; |
| DAG.computeKnownBits(SubusLHS, Known); |
| unsigned NumZeros = Known.countMinLeadingZeros(); |
| if ((VT == MVT::v8i64 && NumZeros < 48) || NumZeros < 16) |
| return SDValue(); |
| |
| EVT ExtType = SubusLHS.getValueType(); |
| EVT ShrinkedType; |
| if (VT == MVT::v8i32 || VT == MVT::v8i64) |
| ShrinkedType = MVT::v8i16; |
| else |
| ShrinkedType = NumZeros >= 24 ? MVT::v16i8 : MVT::v16i16; |
| |
| // If SubusLHS is zeroextended - truncate SubusRHS to it's |
| // size SubusRHS = umin(0xFFF.., SubusRHS). |
| SDValue SaturationConst = |
| DAG.getConstant(APInt::getLowBitsSet(ExtType.getScalarSizeInBits(), |
| ShrinkedType.getScalarSizeInBits()), |
| SDLoc(SubusLHS), ExtType); |
| SDValue UMin = DAG.getNode(ISD::UMIN, SDLoc(SubusLHS), ExtType, SubusRHS, |
| SaturationConst); |
| SDValue NewSubusLHS = |
| DAG.getZExtOrTrunc(SubusLHS, SDLoc(SubusLHS), ShrinkedType); |
| SDValue NewSubusRHS = DAG.getZExtOrTrunc(UMin, SDLoc(SubusRHS), ShrinkedType); |
| SDValue Psubus = |
| SplitOpsAndApply(DAG, Subtarget, SDLoc(N), ShrinkedType, |
| { NewSubusLHS, NewSubusRHS }, SUBUSBuilder); |
| // Zero extend the result, it may be used somewhere as 32 bit, |
| // if not zext and following trunc will shrink. |
| return DAG.getZExtOrTrunc(Psubus, SDLoc(N), ExtType); |
| } |
| |
| static SDValue combineSub(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // X86 can't encode an immediate LHS of a sub. See if we can push the |
| // negation into a preceding instruction. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { |
| // If the RHS of the sub is a XOR with one use and a constant, invert the |
| // immediate. Then add one to the LHS of the sub so we can turn |
| // X-Y -> X+~Y+1, saving one register. |
| if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && |
| isa<ConstantSDNode>(Op1.getOperand(1))) { |
| APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); |
| EVT VT = Op0.getValueType(); |
| SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, |
| Op1.getOperand(0), |
| DAG.getConstant(~XorC, SDLoc(Op1), VT)); |
| return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, |
| DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT)); |
| } |
| } |
| |
| // Try to synthesize horizontal subs from subs of shuffles. |
| EVT VT = N->getValueType(0); |
| if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 || |
| VT == MVT::v8i32) && |
| Subtarget.hasSSSE3() && isHorizontalBinOp(Op0, Op1, false)) { |
| auto HSUBBuilder = [](SelectionDAG &DAG, const SDLoc &DL, |
| ArrayRef<SDValue> Ops) { |
| return DAG.getNode(X86ISD::HSUB, DL, Ops[0].getValueType(), Ops); |
| }; |
| return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1}, |
| HSUBBuilder); |
| } |
| |
| if (SDValue V = combineIncDecVector(N, DAG)) |
| return V; |
| |
| // Try to create PSUBUS if SUB's argument is max/min |
| if (SDValue V = combineSubToSubus(N, DAG, Subtarget)) |
| return V; |
| |
| return combineAddOrSubToADCOrSBB(N, DAG); |
| } |
| |
| static SDValue combineVSZext(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| unsigned Opcode = N->getOpcode(); |
| MVT VT = N->getSimpleValueType(0); |
| MVT SVT = VT.getVectorElementType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned EltSizeInBits = SVT.getSizeInBits(); |
| |
| SDValue Op = N->getOperand(0); |
| MVT OpVT = Op.getSimpleValueType(); |
| MVT OpEltVT = OpVT.getVectorElementType(); |
| unsigned OpEltSizeInBits = OpEltVT.getSizeInBits(); |
| unsigned InputBits = OpEltSizeInBits * NumElts; |
| |
| // Perform any constant folding. |
| // FIXME: Reduce constant pool usage and don't fold when OptSize is enabled. |
| APInt UndefElts; |
| SmallVector<APInt, 64> EltBits; |
| if (getTargetConstantBitsFromNode(Op, OpEltSizeInBits, UndefElts, EltBits)) { |
| APInt Undefs(NumElts, 0); |
| SmallVector<APInt, 4> Vals(NumElts, APInt(EltSizeInBits, 0)); |
| bool IsZEXT = |
| (Opcode == X86ISD::VZEXT) || (Opcode == ISD::ZERO_EXTEND_VECTOR_INREG); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (UndefElts[i]) { |
| Undefs.setBit(i); |
| continue; |
| } |
| Vals[i] = IsZEXT ? EltBits[i].zextOrTrunc(EltSizeInBits) |
| : EltBits[i].sextOrTrunc(EltSizeInBits); |
| } |
| return getConstVector(Vals, Undefs, VT, DAG, DL); |
| } |
| |
| // (vzext (bitcast (vzext (x)) -> (vzext x) |
| // TODO: (vsext (bitcast (vsext (x)) -> (vsext x) |
| SDValue V = peekThroughBitcasts(Op); |
| if (Opcode == X86ISD::VZEXT && V != Op && V.getOpcode() == X86ISD::VZEXT) { |
| MVT InnerVT = V.getSimpleValueType(); |
| MVT InnerEltVT = InnerVT.getVectorElementType(); |
| |
| // If the element sizes match exactly, we can just do one larger vzext. This |
| // is always an exact type match as vzext operates on integer types. |
| if (OpEltVT == InnerEltVT) { |
| assert(OpVT == InnerVT && "Types must match for vzext!"); |
| return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0)); |
| } |
| |
| // The only other way we can combine them is if only a single element of the |
| // inner vzext is used in the input to the outer vzext. |
| if (InnerEltVT.getSizeInBits() < InputBits) |
| return SDValue(); |
| |
| // In this case, the inner vzext is completely dead because we're going to |
| // only look at bits inside of the low element. Just do the outer vzext on |
| // a bitcast of the input to the inner. |
| return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V)); |
| } |
| |
| // Check if we can bypass extracting and re-inserting an element of an input |
| // vector. Essentially: |
| // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) |
| // TODO: Add X86ISD::VSEXT support |
| if (Opcode == X86ISD::VZEXT && |
| V.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) { |
| SDValue ExtractedV = V.getOperand(0); |
| SDValue OrigV = ExtractedV.getOperand(0); |
| if (isNullConstant(ExtractedV.getOperand(1))) { |
| MVT OrigVT = OrigV.getSimpleValueType(); |
| // Extract a subvector if necessary... |
| if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) { |
| int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits(); |
| OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(), |
| OrigVT.getVectorNumElements() / Ratio); |
| OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| Op = DAG.getBitcast(OpVT, OrigV); |
| return DAG.getNode(X86ISD::VZEXT, DL, VT, Op); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget &Subtarget) { |
| MVT VT = N->getSimpleValueType(0); |
| SDLoc DL(N); |
| |
| if (N->getOperand(0) == N->getOperand(1)) { |
| if (N->getOpcode() == X86ISD::PCMPEQ) |
| return getOnesVector(VT, DAG, DL); |
| if (N->getOpcode() == X86ISD::PCMPGT) |
| return getZeroVector(VT, Subtarget, DAG, DL); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| MVT OpVT = N->getSimpleValueType(0); |
| |
| bool IsI1Vector = OpVT.getVectorElementType() == MVT::i1; |
| |
| SDLoc dl(N); |
| SDValue Vec = N->getOperand(0); |
| SDValue SubVec = N->getOperand(1); |
| |
| unsigned IdxVal = N->getConstantOperandVal(2); |
| MVT SubVecVT = SubVec.getSimpleValueType(); |
| |
| if (ISD::isBuildVectorAllZeros(Vec.getNode())) { |
| // Inserting zeros into zeros is a nop. |
| if (ISD::isBuildVectorAllZeros(SubVec.getNode())) |
| return getZeroVector(OpVT, Subtarget, DAG, dl); |
| |
| // If we're inserting into a zero vector and then into a larger zero vector, |
| // just insert into the larger zero vector directly. |
| if (SubVec.getOpcode() == ISD::INSERT_SUBVECTOR && |
| ISD::isBuildVectorAllZeros(SubVec.getOperand(0).getNode())) { |
| unsigned Idx2Val = SubVec.getConstantOperandVal(2); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, |
| getZeroVector(OpVT, Subtarget, DAG, dl), |
| SubVec.getOperand(1), |
| DAG.getIntPtrConstant(IdxVal + Idx2Val, dl)); |
| } |
| |
| // If we're inserting into a zero vector and our input was extracted from an |
| // insert into a zero vector of the same type and the extraction was at |
| // least as large as the original insertion. Just insert the original |
| // subvector into a zero vector. |
| if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && IdxVal == 0 && |
| SubVec.getConstantOperandVal(1) == 0 && |
| SubVec.getOperand(0).getOpcode() == ISD::INSERT_SUBVECTOR) { |
| SDValue Ins = SubVec.getOperand(0); |
| if (Ins.getConstantOperandVal(2) == 0 && |
| ISD::isBuildVectorAllZeros(Ins.getOperand(0).getNode()) && |
| Ins.getOperand(1).getValueSizeInBits() <= SubVecVT.getSizeInBits()) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, |
| getZeroVector(OpVT, Subtarget, DAG, dl), |
| Ins.getOperand(1), N->getOperand(2)); |
| } |
| |
| // If we're inserting a bitcast into zeros, rewrite the insert and move the |
| // bitcast to the other side. This helps with detecting zero extending |
| // during isel. |
| // TODO: Is this useful for other indices than 0? |
| if (!IsI1Vector && SubVec.getOpcode() == ISD::BITCAST && IdxVal == 0) { |
| MVT CastVT = SubVec.getOperand(0).getSimpleValueType(); |
| unsigned NumElems = OpVT.getSizeInBits() / CastVT.getScalarSizeInBits(); |
| MVT NewVT = MVT::getVectorVT(CastVT.getVectorElementType(), NumElems); |
| SDValue Insert = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT, |
| DAG.getBitcast(NewVT, Vec), |
| SubVec.getOperand(0), N->getOperand(2)); |
| return DAG.getBitcast(OpVT, Insert); |
| } |
| } |
| |
| // Stop here if this is an i1 vector. |
| if (IsI1Vector) |
| return SDValue(); |
| |
| // If this is an insert of an extract, combine to a shuffle. Don't do this |
| // if the insert or extract can be represented with a subregister operation. |
| if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| SubVec.getOperand(0).getSimpleValueType() == OpVT && |
| (IdxVal != 0 || !Vec.isUndef())) { |
| int ExtIdxVal = SubVec.getConstantOperandVal(1); |
| if (ExtIdxVal != 0) { |
| int VecNumElts = OpVT.getVectorNumElements(); |
| int SubVecNumElts = SubVecVT.getVectorNumElements(); |
| SmallVector<int, 64> Mask(VecNumElts); |
| // First create an identity shuffle mask. |
| for (int i = 0; i != VecNumElts; ++i) |
| Mask[i] = i; |
| // Now insert the extracted portion. |
| for (int i = 0; i != SubVecNumElts; ++i) |
| Mask[i + IdxVal] = i + ExtIdxVal + VecNumElts; |
| |
| return DAG.getVectorShuffle(OpVT, dl, Vec, SubVec.getOperand(0), Mask); |
| } |
| } |
| |
| // Fold two 16-byte or 32-byte subvector loads into one 32-byte or 64-byte |
| // load: |
| // (insert_subvector (insert_subvector undef, (load16 addr), 0), |
| // (load16 addr + 16), Elts/2) |
| // --> load32 addr |
| // or: |
| // (insert_subvector (insert_subvector undef, (load32 addr), 0), |
| // (load32 addr + 32), Elts/2) |
| // --> load64 addr |
| // or a 16-byte or 32-byte broadcast: |
| // (insert_subvector (insert_subvector undef, (load16 addr), 0), |
| // (load16 addr), Elts/2) |
| // --> X86SubVBroadcast(load16 addr) |
| // or: |
| // (insert_subvector (insert_subvector undef, (load32 addr), 0), |
| // (load32 addr), Elts/2) |
| // --> X86SubVBroadcast(load32 addr) |
| if ((IdxVal == OpVT.getVectorNumElements() / 2) && |
| Vec.getOpcode() == ISD::INSERT_SUBVECTOR && |
| OpVT.getSizeInBits() == SubVecVT.getSizeInBits() * 2) { |
| if (isNullConstant(Vec.getOperand(2))) { |
| SDValue SubVec2 = Vec.getOperand(1); |
| // If needed, look through bitcasts to get to the load. |
| if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(SubVec2))) { |
| bool Fast; |
| unsigned Alignment = FirstLd->getAlignment(); |
| unsigned AS = FirstLd->getAddressSpace(); |
| const X86TargetLowering *TLI = Subtarget.getTargetLowering(); |
| if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), |
| OpVT, AS, Alignment, &Fast) && Fast) { |
| SDValue Ops[] = {SubVec2, SubVec}; |
| if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, |
| Subtarget, false)) |
| return Ld; |
| } |
| } |
| // If lower/upper loads are the same and the only users of the load, then |
| // lower to a VBROADCASTF128/VBROADCASTI128/etc. |
| if (auto *Ld = dyn_cast<LoadSDNode>(peekThroughOneUseBitcasts(SubVec2))) |
| if (SubVec2 == SubVec && ISD::isNormalLoad(Ld) && |
| SDNode::areOnlyUsersOf({N, Vec.getNode()}, SubVec2.getNode())) |
| return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, SubVec); |
| |
| // If this is subv_broadcast insert into both halves, use a larger |
| // subv_broadcast. |
| if (SubVec.getOpcode() == X86ISD::SUBV_BROADCAST && SubVec == SubVec2) |
| return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, |
| SubVec.getOperand(0)); |
| |
| // If we're inserting all zeros into the upper half, change this to |
| // an insert into an all zeros vector. We will match this to a move |
| // with implicit upper bit zeroing during isel. |
| if (ISD::isBuildVectorAllZeros(SubVec.getNode())) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, |
| getZeroVector(OpVT, Subtarget, DAG, dl), SubVec2, |
| Vec.getOperand(2)); |
| |
| // If we are inserting into both halves of the vector, the starting |
| // vector should be undef. If it isn't, make it so. Only do this if the |
| // the early insert has no other uses. |
| // TODO: Should this be a generic DAG combine? |
| if (!Vec.getOperand(0).isUndef() && Vec.hasOneUse()) { |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, DAG.getUNDEF(OpVT), |
| SubVec2, Vec.getOperand(2)); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Vec, SubVec, |
| N->getOperand(2)); |
| |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| MVT OpVT = N->getSimpleValueType(0); |
| SDValue InVec = N->getOperand(0); |
| unsigned IdxVal = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| |
| if (ISD::isBuildVectorAllZeros(InVec.getNode())) |
| return getZeroVector(OpVT, Subtarget, DAG, SDLoc(N)); |
| |
| if (ISD::isBuildVectorAllOnes(InVec.getNode())) { |
| if (OpVT.getScalarType() == MVT::i1) |
| return DAG.getConstant(1, SDLoc(N), OpVT); |
| return getOnesVector(OpVT, DAG, SDLoc(N)); |
| } |
| |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR) |
| return DAG.getBuildVector( |
| OpVT, SDLoc(N), |
| InVec.getNode()->ops().slice(IdxVal, OpVT.getVectorNumElements())); |
| |
| // If we're extracting the lowest subvector and we're the only user, |
| // we may be able to perform this with a smaller vector width. |
| if (IdxVal == 0 && InVec.hasOneUse()) { |
| unsigned InOpcode = InVec.getOpcode(); |
| if (OpVT == MVT::v2f64 && InVec.getValueType() == MVT::v4f64) { |
| // v2f64 CVTDQ2PD(v4i32). |
| if (InOpcode == ISD::SINT_TO_FP && |
| InVec.getOperand(0).getValueType() == MVT::v4i32) { |
| return DAG.getNode(X86ISD::CVTSI2P, SDLoc(N), OpVT, InVec.getOperand(0)); |
| } |
| // v2f64 CVTPS2PD(v4f32). |
| if (InOpcode == ISD::FP_EXTEND && |
| InVec.getOperand(0).getValueType() == MVT::v4f32) { |
| return DAG.getNode(X86ISD::VFPEXT, SDLoc(N), OpVT, InVec.getOperand(0)); |
| } |
| } |
| if ((InOpcode == X86ISD::VZEXT || InOpcode == X86ISD::VSEXT) && |
| OpVT.is128BitVector() && |
| InVec.getOperand(0).getSimpleValueType().is128BitVector()) { |
| unsigned ExtOp = InOpcode == X86ISD::VZEXT ? ISD::ZERO_EXTEND_VECTOR_INREG |
| : ISD::SIGN_EXTEND_VECTOR_INREG; |
| return DAG.getNode(ExtOp, SDLoc(N), OpVT, InVec.getOperand(0)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineScalarToVector(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| SDValue Src = N->getOperand(0); |
| |
| // If this is a scalar to vector to v1i1 from an AND with 1, bypass the and. |
| // This occurs frequently in our masked scalar intrinsic code and our |
| // floating point select lowering with AVX512. |
| // TODO: SimplifyDemandedBits instead? |
| if (VT == MVT::v1i1 && Src.getOpcode() == ISD::AND && Src.hasOneUse()) |
| if (auto *C = dyn_cast<ConstantSDNode>(Src.getOperand(1))) |
| if (C->getAPIntValue().isOneValue()) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), MVT::v1i1, |
| Src.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| // Simplify PMULDQ and PMULUDQ operations. |
| static SDValue combinePMULDQ(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| APInt DemandedMask(APInt::getLowBitsSet(64, 32)); |
| |
| // PMULQDQ/PMULUDQ only uses lower 32 bits from each vector element. |
| KnownBits LHSKnown; |
| if (TLI.SimplifyDemandedBits(LHS, DemandedMask, LHSKnown, TLO)) { |
| DCI.CommitTargetLoweringOpt(TLO); |
| return SDValue(N, 0); |
| } |
| |
| KnownBits RHSKnown; |
| if (TLI.SimplifyDemandedBits(RHS, DemandedMask, RHSKnown, TLO)) { |
| DCI.CommitTargetLoweringOpt(TLO); |
| return SDValue(N, 0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::SCALAR_TO_VECTOR: |
| return combineScalarToVector(N, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| case X86ISD::PEXTRW: |
| case X86ISD::PEXTRB: |
| return combineExtractVectorElt(N, DAG, DCI, Subtarget); |
| case ISD::INSERT_SUBVECTOR: |
| return combineInsertSubvector(N, DAG, DCI, Subtarget); |
| case ISD::EXTRACT_SUBVECTOR: |
| return combineExtractSubvector(N, DAG, DCI, Subtarget); |
| case ISD::VSELECT: |
| case ISD::SELECT: |
| case X86ISD::SHRUNKBLEND: return combineSelect(N, DAG, DCI, Subtarget); |
| case ISD::BITCAST: return combineBitcast(N, DAG, DCI, Subtarget); |
| case X86ISD::CMOV: return combineCMov(N, DAG, DCI, Subtarget); |
| case ISD::ADD: return combineAdd(N, DAG, Subtarget); |
| case ISD::SUB: return combineSub(N, DAG, Subtarget); |
| case X86ISD::SBB: return combineSBB(N, DAG); |
| case X86ISD::ADC: return combineADC(N, DAG, DCI); |
| case ISD::MUL: return combineMul(N, DAG, DCI, Subtarget); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: return combineShift(N, DAG, DCI, Subtarget); |
| case ISD::AND: return combineAnd(N, DAG, DCI, Subtarget); |
| case ISD::OR: return combineOr(N, DAG, DCI, Subtarget); |
| case ISD::XOR: return combineXor(N, DAG, DCI, Subtarget); |
| case X86ISD::BEXTR: return combineBEXTR(N, DAG, DCI, Subtarget); |
| case ISD::LOAD: return combineLoad(N, DAG, DCI, Subtarget); |
| case ISD::MLOAD: return combineMaskedLoad(N, DAG, DCI, Subtarget); |
| case ISD::STORE: return combineStore(N, DAG, Subtarget); |
| case ISD::MSTORE: return combineMaskedStore(N, DAG, Subtarget); |
| case ISD::SINT_TO_FP: return combineSIntToFP(N, DAG, Subtarget); |
| case ISD::UINT_TO_FP: return combineUIntToFP(N, DAG, Subtarget); |
| case ISD::FADD: |
| case ISD::FSUB: return combineFaddFsub(N, DAG, Subtarget); |
| case ISD::FNEG: return combineFneg(N, DAG, Subtarget); |
| case ISD::TRUNCATE: return combineTruncate(N, DAG, Subtarget); |
| case X86ISD::ANDNP: return combineAndnp(N, DAG, DCI, Subtarget); |
| case X86ISD::FAND: return combineFAnd(N, DAG, Subtarget); |
| case X86ISD::FANDN: return combineFAndn(N, DAG, Subtarget); |
| case X86ISD::FXOR: |
| case X86ISD::FOR: return combineFOr(N, DAG, Subtarget); |
| case X86ISD::FMIN: |
| case X86ISD::FMAX: return combineFMinFMax(N, DAG); |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: return combineFMinNumFMaxNum(N, DAG, Subtarget); |
| case X86ISD::BT: return combineBT(N, DAG, DCI); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: return combineZext(N, DAG, DCI, Subtarget); |
| case ISD::SIGN_EXTEND: return combineSext(N, DAG, DCI, Subtarget); |
| case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget); |
| case ISD::SETCC: return combineSetCC(N, DAG, Subtarget); |
| case X86ISD::SETCC: return combineX86SetCC(N, DAG, Subtarget); |
| case X86ISD::BRCOND: return combineBrCond(N, DAG, Subtarget); |
| case X86ISD::PACKSS: |
| case X86ISD::PACKUS: return combineVectorPack(N, DAG, DCI, Subtarget); |
| case X86ISD::VSHLI: |
| case X86ISD::VSRAI: |
| case X86ISD::VSRLI: |
| return combineVectorShiftImm(N, DAG, DCI, Subtarget); |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| case X86ISD::VSEXT: |
| case X86ISD::VZEXT: return combineVSZext(N, DAG, DCI, Subtarget); |
| case X86ISD::PINSRB: |
| case X86ISD::PINSRW: return combineVectorInsert(N, DAG, DCI, Subtarget); |
| case X86ISD::SHUFP: // Handle all target specific shuffles |
| case X86ISD::INSERTPS: |
| case X86ISD::EXTRQI: |
| case X86ISD::INSERTQI: |
| case X86ISD::PALIGNR: |
| case X86ISD::VSHLDQ: |
| case X86ISD::VSRLDQ: |
| case X86ISD::BLENDI: |
| case X86ISD::UNPCKH: |
| case X86ISD::UNPCKL: |
| case X86ISD::MOVHLPS: |
| case X86ISD::MOVLHPS: |
| case X86ISD::PSHUFB: |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFHW: |
| case X86ISD::PSHUFLW: |
| case X86ISD::MOVSHDUP: |
| case X86ISD::MOVSLDUP: |
| case X86ISD::MOVDDUP: |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: |
| case X86ISD::VBROADCAST: |
| case X86ISD::VPPERM: |
| case X86ISD::VPERMI: |
| case X86ISD::VPERMV: |
| case X86ISD::VPERMV3: |
| case X86ISD::VPERMIL2: |
| case X86ISD::VPERMILPI: |
| case X86ISD::VPERMILPV: |
| case X86ISD::VPERM2X128: |
| case X86ISD::SHUF128: |
| case X86ISD::VZEXT_MOVL: |
| case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget); |
| case X86ISD::FMADD_RND: |
| case X86ISD::FMSUB: |
| case X86ISD::FMSUB_RND: |
| case X86ISD::FNMADD: |
| case X86ISD::FNMADD_RND: |
| case X86ISD::FNMSUB: |
| case X86ISD::FNMSUB_RND: |
| case ISD::FMA: return combineFMA(N, DAG, Subtarget); |
| case X86ISD::FMADDSUB_RND: |
| case X86ISD::FMSUBADD_RND: |
| case X86ISD::FMADDSUB: |
| case X86ISD::FMSUBADD: return combineFMADDSUB(N, DAG, Subtarget); |
| case X86ISD::MOVMSK: return combineMOVMSK(N, DAG, DCI); |
| case X86ISD::MGATHER: |
| case X86ISD::MSCATTER: |
| case ISD::MGATHER: |
| case ISD::MSCATTER: return combineGatherScatter(N, DAG, DCI, Subtarget); |
| case X86ISD::PCMPEQ: |
| case X86ISD::PCMPGT: return combineVectorCompare(N, DAG, Subtarget); |
| case X86ISD::PMULDQ: |
| case X86ISD::PMULUDQ: return combinePMULDQ(N, DAG, DCI); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Return true if the target has native support for the specified value type |
| /// and it is 'desirable' to use the type for the given node type. e.g. On x86 |
| /// i16 is legal, but undesirable since i16 instruction encodings are longer and |
| /// some i16 instructions are slow. |
| bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { |
| if (!isTypeLegal(VT)) |
| return false; |
| |
| // There are no vXi8 shifts. |
| if (Opc == ISD::SHL && VT.isVector() && VT.getVectorElementType() == MVT::i8) |
| return false; |
| |
| if (VT != MVT::i16) |
| return true; |
| |
| switch (Opc) { |
| default: |
| return true; |
| case ISD::LOAD: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SUB: |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| return false; |
| } |
| } |
| |
| SDValue X86TargetLowering::expandIndirectJTBranch(const SDLoc& dl, |
| SDValue Value, SDValue Addr, |
| SelectionDAG &DAG) const { |
| const Module *M = DAG.getMachineFunction().getMMI().getModule(); |
| Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch"); |
| if (IsCFProtectionSupported) { |
| // In case control-flow branch protection is enabled, we need to add |
| // notrack prefix to the indirect branch. |
| // In order to do that we create NT_BRIND SDNode. |
| // Upon ISEL, the pattern will convert it to jmp with NoTrack prefix. |
| return DAG.getNode(X86ISD::NT_BRIND, dl, MVT::Other, Value, Addr); |
| } |
| |
| return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, DAG); |
| } |
| |
| /// This method query the target whether it is beneficial for dag combiner to |
| /// promote the specified node. If true, it should return the desired promotion |
| /// type by reference. |
| bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { |
| EVT VT = Op.getValueType(); |
| if (VT != MVT::i16) |
| return false; |
| |
| auto IsFoldableRMW = [](SDValue Load, SDValue Op) { |
| if (!Op.hasOneUse()) |
| return false; |
| SDNode *User = *Op->use_begin(); |
| if (!ISD::isNormalStore(User)) |
| return false; |
| auto *Ld = cast<LoadSDNode>(Load); |
| auto *St = cast<StoreSDNode>(User); |
| return Ld->getBasePtr() == St->getBasePtr(); |
| }; |
| |
| bool Commute = false; |
| switch (Op.getOpcode()) { |
| default: return false; |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| break; |
| case ISD::SHL: |
| case ISD::SRL: { |
| SDValue N0 = Op.getOperand(0); |
| // Look out for (store (shl (load), x)). |
| if (MayFoldLoad(N0) && IsFoldableRMW(N0, Op)) |
| return false; |
| break; |
| } |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| Commute = true; |
| LLVM_FALLTHROUGH; |
| case ISD::SUB: { |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| // Avoid disabling potential load folding opportunities. |
| if (MayFoldLoad(N1) && |
| (!Commute || !isa<ConstantSDNode>(N0) || |
| (Op.getOpcode() != ISD::MUL && IsFoldableRMW(N1, Op)))) |
| return false; |
| if (MayFoldLoad(N0) && |
| ((Commute && !isa<ConstantSDNode>(N1)) || |
| (Op.getOpcode() != ISD::MUL && IsFoldableRMW(N0, Op)))) |
| return false; |
| } |
| } |
| |
| PVT = MVT::i32; |
| return true; |
| } |
| |
| bool X86TargetLowering:: |
| isDesirableToCombineBuildVectorToShuffleTruncate( |
| ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const { |
| |
| assert(SrcVT.getVectorNumElements() == ShuffleMask.size() && |
| "Element count mismatch"); |
| assert( |
| Subtarget.getTargetLowering()->isShuffleMaskLegal(ShuffleMask, SrcVT) && |
| "Shuffle Mask expected to be legal"); |
| |
| // For 32-bit elements VPERMD is better than shuffle+truncate. |
| // TODO: After we improve lowerBuildVector, add execption for VPERMW. |
| if (SrcVT.getScalarSizeInBits() == 32 || !Subtarget.hasAVX2()) |
| return false; |
| |
| if (is128BitLaneCrossingShuffleMask(SrcVT.getSimpleVT(), ShuffleMask)) |
| return false; |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| // Helper to match a string separated by whitespace. |
| static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) { |
| S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace. |
| |
| for (StringRef Piece : Pieces) { |
| if (!S.startswith(Piece)) // Check if the piece matches. |
| return false; |
| |
| S = S.substr(Piece.size()); |
| StringRef::size_type Pos = S.find_first_not_of(" \t"); |
| if (Pos == 0) // We matched a prefix. |
| return false; |
| |
| S = S.substr(Pos); |
| } |
| |
| return S.empty(); |
| } |
| |
| static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) { |
| |
| if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { |
| if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && |
| std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && |
| std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { |
| |
| if (AsmPieces.size() == 3) |
| return true; |
| else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { |
| InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); |
| |
| const std::string &AsmStr = IA->getAsmString(); |
| |
| IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); |
| if (!Ty || Ty->getBitWidth() % 16 != 0) |
| return false; |
| |
| // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" |
| SmallVector<StringRef, 4> AsmPieces; |
| SplitString(AsmStr, AsmPieces, ";\n"); |
| |
| switch (AsmPieces.size()) { |
| default: return false; |
| case 1: |
| // FIXME: this should verify that we are targeting a 486 or better. If not, |
| // we will turn this bswap into something that will be lowered to logical |
| // ops instead of emitting the bswap asm. For now, we don't support 486 or |
| // lower so don't worry about this. |
| // bswap $0 |
| if (matchAsm(AsmPieces[0], {"bswap", "$0"}) || |
| matchAsm(AsmPieces[0], {"bswapl", "$0"}) || |
| matchAsm(AsmPieces[0], {"bswapq", "$0"}) || |
| matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) || |
| matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) || |
| matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) { |
| // No need to check constraints, nothing other than the equivalent of |
| // "=r,0" would be valid here. |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| |
| // rorw $$8, ${0:w} --> llvm.bswap.i16 |
| if (CI->getType()->isIntegerTy(16) && |
| IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && |
| (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) || |
| matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) { |
| AsmPieces.clear(); |
| StringRef ConstraintsStr = IA->getConstraintString(); |
| SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); |
| array_pod_sort(AsmPieces.begin(), AsmPieces.end()); |
| if (clobbersFlagRegisters(AsmPieces)) |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| break; |
| case 3: |
| if (CI->getType()->isIntegerTy(32) && |
| IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && |
| matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) && |
| matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) && |
| matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) { |
| AsmPieces.clear(); |
| StringRef ConstraintsStr = IA->getConstraintString(); |
| SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); |
| array_pod_sort(AsmPieces.begin(), AsmPieces.end()); |
| if (clobbersFlagRegisters(AsmPieces)) |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| |
| if (CI->getType()->isIntegerTy(64)) { |
| InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); |
| if (Constraints.size() >= 2 && |
| Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && |
| Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { |
| // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 |
| if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) && |
| matchAsm(AsmPieces[1], {"bswap", "%edx"}) && |
| matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"})) |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| } |
| break; |
| } |
| return false; |
| } |
| |
| /// Given a constraint letter, return the type of constraint for this target. |
| X86TargetLowering::ConstraintType |
| X86TargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'R': |
| case 'q': |
| case 'Q': |
| case 'f': |
| case 't': |
| case 'u': |
| case 'y': |
| case 'x': |
| case 'v': |
| case 'Y': |
| case 'l': |
| case 'k': // AVX512 masking registers. |
| return C_RegisterClass; |
| case 'a': |
| case 'b': |
| case 'c': |
| case 'd': |
| case 'S': |
| case 'D': |
| case 'A': |
| return C_Register; |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'G': |
| case 'C': |
| case 'e': |
| case 'Z': |
| return C_Other; |
| default: |
| break; |
| } |
| } |
| else if (Constraint.size() == 2) { |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'Y': |
| switch (Constraint[1]) { |
| default: |
| break; |
| case 'z': |
| case '0': |
| return C_Register; |
| case 'i': |
| case 'm': |
| case 'k': |
| case 't': |
| case '2': |
| return C_RegisterClass; |
| } |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| X86TargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| LLVM_FALLTHROUGH; |
| case 'R': |
| case 'q': |
| case 'Q': |
| case 'a': |
| case 'b': |
| case 'c': |
| case 'd': |
| case 'S': |
| case 'D': |
| case 'A': |
| if (CallOperandVal->getType()->isIntegerTy()) |
| weight = CW_SpecificReg; |
| break; |
| case 'f': |
| case 't': |
| case 'u': |
| if (type->isFloatingPointTy()) |
| weight = CW_SpecificReg; |
| break; |
| case 'y': |
| if (type->isX86_MMXTy() && Subtarget.hasMMX()) |
| weight = CW_SpecificReg; |
| break; |
| case 'Y': { |
| unsigned Size = StringRef(constraint).size(); |
| // Pick 'i' as the next char as 'Yi' and 'Y' are synonymous, when matching 'Y' |
| char NextChar = Size == 2 ? constraint[1] : 'i'; |
| if (Size > 2) |
| break; |
| switch (NextChar) { |
| default: |
| return CW_Invalid; |
| // XMM0 |
| case 'z': |
| case '0': |
| if ((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) |
| return CW_SpecificReg; |
| return CW_Invalid; |
| // Conditional OpMask regs (AVX512) |
| case 'k': |
| if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512()) |
| return CW_Register; |
| return CW_Invalid; |
| // Any MMX reg |
| case 'm': |
| if (type->isX86_MMXTy() && Subtarget.hasMMX()) |
| return weight; |
| return CW_Invalid; |
| // Any SSE reg when ISA >= SSE2, same as 'Y' |
| case 'i': |
| case 't': |
| case '2': |
| if (!Subtarget.hasSSE2()) |
| return CW_Invalid; |
| break; |
| } |
| // Fall through (handle "Y" constraint). |
| LLVM_FALLTHROUGH; |
| } |
| case 'v': |
| if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512()) |
| weight = CW_Register; |
| LLVM_FALLTHROUGH; |
| case 'x': |
| if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) || |
| ((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasAVX())) |
| weight = CW_Register; |
| break; |
| case 'k': |
| // Enable conditional vector operations using %k<#> registers. |
| if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512()) |
| weight = CW_Register; |
| break; |
| case 'I': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { |
| if (C->getZExtValue() <= 31) |
| weight = CW_Constant; |
| } |
| break; |
| case 'J': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 63) |
| weight = CW_Constant; |
| } |
| break; |
| case 'K': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) |
| weight = CW_Constant; |
| } |
| break; |
| case 'L': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) |
| weight = CW_Constant; |
| } |
| break; |
| case 'M': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 3) |
| weight = CW_Constant; |
| } |
| break; |
| case 'N': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 0xff) |
| weight = CW_Constant; |
| } |
| break; |
| case 'G': |
| case 'C': |
| if (isa<ConstantFP>(CallOperandVal)) { |
| weight = CW_Constant; |
| } |
| break; |
| case 'e': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -0x80000000LL) && |
| (C->getSExtValue() <= 0x7fffffffLL)) |
| weight = CW_Constant; |
| } |
| break; |
| case 'Z': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 0xffffffff) |
| weight = CW_Constant; |
| } |
| break; |
| } |
| return weight; |
| } |
| |
| /// Try to replace an X constraint, which matches anything, with another that |
| /// has more specific requirements based on the type of the corresponding |
| /// operand. |
| const char *X86TargetLowering:: |
| LowerXConstraint(EVT ConstraintVT) const { |
| // FP X constraints get lowered to SSE1/2 registers if available, otherwise |
| // 'f' like normal targets. |
| if (ConstraintVT.isFloatingPoint()) { |
| if (Subtarget.hasSSE2()) |
| return "Y"; |
| if (Subtarget.hasSSE1()) |
| return "x"; |
| } |
| |
| return TargetLowering::LowerXConstraint(ConstraintVT); |
| } |
| |
| /// Lower the specified operand into the Ops vector. |
| /// If it is invalid, don't add anything to Ops. |
| void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| |
| // Only support length 1 constraints for now. |
| if (Constraint.length() > 1) return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; |
| case 'I': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 31) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'J': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 63) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'K': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (isInt<8>(C->getSExtValue())) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'L': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff || |
| (Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) { |
| Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'M': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 3) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'N': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 255) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'O': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 127) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'e': { |
| // 32-bit signed value |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), |
| C->getSExtValue())) { |
| // Widen to 64 bits here to get it sign extended. |
| Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64); |
| break; |
| } |
| // FIXME gcc accepts some relocatable values here too, but only in certain |
| // memory models; it's complicated. |
| } |
| return; |
| } |
| case 'Z': { |
| // 32-bit unsigned value |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), |
| C->getZExtValue())) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType()); |
| break; |
| } |
| } |
| // FIXME gcc accepts some relocatable values here too, but only in certain |
| // memory models; it's complicated. |
| return; |
| } |
| case 'i': { |
| // Literal immediates are always ok. |
| if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { |
| // Widen to 64 bits here to get it sign extended. |
| Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64); |
| break; |
| } |
| |
| // In any sort of PIC mode addresses need to be computed at runtime by |
| // adding in a register or some sort of table lookup. These can't |
| // be used as immediates. |
| if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC()) |
| return; |
| |
| // If we are in non-pic codegen mode, we allow the address of a global (with |
| // an optional displacement) to be used with 'i'. |
| GlobalAddressSDNode *GA = nullptr; |
| int64_t Offset = 0; |
| |
| // Match either (GA), (GA+C), (GA+C1+C2), etc. |
| while (1) { |
| if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { |
| Offset += GA->getOffset(); |
| break; |
| } else if (Op.getOpcode() == ISD::ADD) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Offset += C->getZExtValue(); |
| Op = Op.getOperand(0); |
| continue; |
| } |
| } else if (Op.getOpcode() == ISD::SUB) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Offset += -C->getZExtValue(); |
| Op = Op.getOperand(0); |
| continue; |
| } |
| } |
| |
| // Otherwise, this isn't something we can handle, reject it. |
| return; |
| } |
| |
| const GlobalValue *GV = GA->getGlobal(); |
| // If we require an extra load to get this address, as in PIC mode, we |
| // can't accept it. |
| if (isGlobalStubReference(Subtarget.classifyGlobalReference(GV))) |
| return; |
| |
| Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), |
| GA->getValueType(0), Offset); |
| break; |
| } |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| /// Check if \p RC is a general purpose register class. |
| /// I.e., GR* or one of their variant. |
| static bool isGRClass(const TargetRegisterClass &RC) { |
| return RC.hasSuperClassEq(&X86::GR8RegClass) || |
| RC.hasSuperClassEq(&X86::GR16RegClass) || |
| RC.hasSuperClassEq(&X86::GR32RegClass) || |
| RC.hasSuperClassEq(&X86::GR64RegClass) || |
| RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass); |
| } |
| |
| /// Check if \p RC is a vector register class. |
| /// I.e., FR* / VR* or one of their variant. |
| static bool isFRClass(const TargetRegisterClass &RC) { |
| return RC.hasSuperClassEq(&X86::FR32XRegClass) || |
| RC.hasSuperClassEq(&X86::FR64XRegClass) || |
| RC.hasSuperClassEq(&X86::VR128XRegClass) || |
| RC.hasSuperClassEq(&X86::VR256XRegClass) || |
| RC.hasSuperClassEq(&X86::VR512RegClass); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| // First, see if this is a constraint that directly corresponds to an LLVM |
| // register class. |
| if (Constraint.size() == 1) { |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| default: break; |
| // TODO: Slight differences here in allocation order and leaving |
| // RIP in the class. Do they matter any more here than they do |
| // in the normal allocation? |
| case 'k': |
| if (Subtarget.hasAVX512()) { |
| // Only supported in AVX512 or later. |
| switch (VT.SimpleTy) { |
| default: break; |
| case MVT::i32: |
| return std::make_pair(0U, &X86::VK32RegClass); |
| case MVT::i16: |
| return std::make_pair(0U, &X86::VK16RegClass); |
| case MVT::i8: |
| return std::make_pair(0U, &X86::VK8RegClass); |
| case MVT::i1: |
| return std::make_pair(0U, &X86::VK1RegClass); |
| case MVT::i64: |
| return std::make_pair(0U, &X86::VK64RegClass); |
| } |
| } |
| break; |
| case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. |
| if (Subtarget.is64Bit()) { |
| if (VT == MVT::i32 || VT == MVT::f32) |
| return std::make_pair(0U, &X86::GR32RegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16RegClass); |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8RegClass); |
| if (VT == MVT::i64 || VT == MVT::f64) |
| return std::make_pair(0U, &X86::GR64RegClass); |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| // 32-bit fallthrough |
| case 'Q': // Q_REGS |
| if (VT == MVT::i32 || VT == MVT::f32) |
| return std::make_pair(0U, &X86::GR32_ABCDRegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16_ABCDRegClass); |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); |
| if (VT == MVT::i64) |
| return std::make_pair(0U, &X86::GR64_ABCDRegClass); |
| break; |
| case 'r': // GENERAL_REGS |
| case 'l': // INDEX_REGS |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8RegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16RegClass); |
| if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit()) |
| return std::make_pair(0U, &X86::GR32RegClass); |
| return std::make_pair(0U, &X86::GR64RegClass); |
| case 'R': // LEGACY_REGS |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8_NOREXRegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16_NOREXRegClass); |
| if (VT == MVT::i32 || !Subtarget.is64Bit()) |
| return std::make_pair(0U, &X86::GR32_NOREXRegClass); |
| return std::make_pair(0U, &X86::GR64_NOREXRegClass); |
| case 'f': // FP Stack registers. |
| // If SSE is enabled for this VT, use f80 to ensure the isel moves the |
| // value to the correct fpstack register class. |
| if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) |
| return std::make_pair(0U, &X86::RFP32RegClass); |
| if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) |
| return std::make_pair(0U, &X86::RFP64RegClass); |
| return std::make_pair(0U, &X86::RFP80RegClass); |
| case 'y': // MMX_REGS if MMX allowed. |
| if (!Subtarget.hasMMX()) break; |
| return std::make_pair(0U, &X86::VR64RegClass); |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (!Subtarget.hasSSE2()) break; |
| LLVM_FALLTHROUGH; |
| case 'v': |
| case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed |
| if (!Subtarget.hasSSE1()) break; |
| bool VConstraint = (Constraint[0] == 'v'); |
| |
| switch (VT.SimpleTy) { |
| default: break; |
| // Scalar SSE types. |
| case MVT::f32: |
| case MVT::i32: |
| if (VConstraint && Subtarget.hasAVX512() && Subtarget.hasVLX()) |
| return std::make_pair(0U, &X86::FR32XRegClass); |
| return std::make_pair(0U, &X86::FR32RegClass); |
| case MVT::f64: |
| case MVT::i64: |
| if (VConstraint && Subtarget.hasVLX()) |
| return std::make_pair(0U, &X86::FR64XRegClass); |
| return std::make_pair(0U, &X86::FR64RegClass); |
| // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. |
| // Vector types. |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (VConstraint && Subtarget.hasVLX()) |
| return std::make_pair(0U, &X86::VR128XRegClass); |
| return std::make_pair(0U, &X86::VR128RegClass); |
| // AVX types. |
| case MVT::v32i8: |
| case MVT::v16i16: |
| case MVT::v8i32: |
| case MVT::v4i64: |
| case MVT::v8f32: |
| case MVT::v4f64: |
| if (VConstraint && Subtarget.hasVLX()) |
| return std::make_pair(0U, &X86::VR256XRegClass); |
| return std::make_pair(0U, &X86::VR256RegClass); |
| case MVT::v8f64: |
| case MVT::v16f32: |
| case MVT::v16i32: |
| case MVT::v8i64: |
| return std::make_pair(0U, &X86::VR512RegClass); |
| } |
| break; |
| } |
| } else if (Constraint.size() == 2 && Constraint[0] == 'Y') { |
| switch (Constraint[1]) { |
| default: |
| break; |
| case 'i': |
| case 't': |
| case '2': |
| return getRegForInlineAsmConstraint(TRI, "Y", VT); |
| case 'm': |
| if (!Subtarget.hasMMX()) break; |
| return std::make_pair(0U, &X86::VR64RegClass); |
| case 'z': |
| case '0': |
| if (!Subtarget.hasSSE1()) break; |
| return std::make_pair(X86::XMM0, &X86::VR128RegClass); |
| case 'k': |
| // This register class doesn't allocate k0 for masked vector operation. |
| if (Subtarget.hasAVX512()) { // Only supported in AVX512. |
| switch (VT.SimpleTy) { |
| default: break; |
| case MVT::i32: |
| return std::make_pair(0U, &X86::VK32WMRegClass); |
| case MVT::i16: |
| return std::make_pair(0U, &X86::VK16WMRegClass); |
| case MVT::i8: |
| return std::make_pair(0U, &X86::VK8WMRegClass); |
| case MVT::i1: |
| return std::make_pair(0U, &X86::VK1WMRegClass); |
| case MVT::i64: |
| return std::make_pair(0U, &X86::VK64WMRegClass); |
| } |
| } |
| break; |
| } |
| } |
| |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| std::pair<unsigned, const TargetRegisterClass*> Res; |
| Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| |
| // Not found as a standard register? |
| if (!Res.second) { |
| // Map st(0) -> st(7) -> ST0 |
| if (Constraint.size() == 7 && Constraint[0] == '{' && |
| tolower(Constraint[1]) == 's' && |
| tolower(Constraint[2]) == 't' && |
| Constraint[3] == '(' && |
| (Constraint[4] >= '0' && Constraint[4] <= '7') && |
| Constraint[5] == ')' && |
| Constraint[6] == '}') { |
| |
| Res.first = X86::FP0+Constraint[4]-'0'; |
| Res.second = &X86::RFP80RegClass; |
| return Res; |
| } |
| |
| // GCC allows "st(0)" to be called just plain "st". |
| if (StringRef("{st}").equals_lower(Constraint)) { |
| Res.first = X86::FP0; |
| Res.second = &X86::RFP80RegClass; |
| return Res; |
| } |
| |
| // flags -> EFLAGS |
| if (StringRef("{flags}").equals_lower(Constraint)) { |
| Res.first = X86::EFLAGS; |
| Res.second = &X86::CCRRegClass; |
| return Res; |
| } |
| |
| // 'A' means [ER]AX + [ER]DX. |
| if (Constraint == "A") { |
| if (Subtarget.is64Bit()) { |
| Res.first = X86::RAX; |
| Res.second = &X86::GR64_ADRegClass; |
| } else { |
| assert((Subtarget.is32Bit() || Subtarget.is16Bit()) && |
| "Expecting 64, 32 or 16 bit subtarget"); |
| Res.first = X86::EAX; |
| Res.second = &X86::GR32_ADRegClass; |
| } |
| return Res; |
| } |
| return Res; |
| } |
| |
| // Make sure it isn't a register that requires 64-bit mode. |
| if (!Subtarget.is64Bit() && |
| (isFRClass(*Res.second) || isGRClass(*Res.second)) && |
| TRI->getEncodingValue(Res.first) >= 8) { |
| // Register requires REX prefix, but we're in 32-bit mode. |
| Res.first = 0; |
| Res.second = nullptr; |
| return Res; |
| } |
| |
| // Make sure it isn't a register that requires AVX512. |
| if (!Subtarget.hasAVX512() && isFRClass(*Res.second) && |
| TRI->getEncodingValue(Res.first) & 0x10) { |
| // Register requires EVEX prefix. |
| Res.first = 0; |
| Res.second = nullptr; |
| return Res; |
| } |
| |
| // Otherwise, check to see if this is a register class of the wrong value |
| // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to |
| // turn into {ax},{dx}. |
| // MVT::Other is used to specify clobber names. |
| if (TRI->isTypeLegalForClass(*Res.second, VT) || VT == MVT::Other) |
| return Res; // Correct type already, nothing to do. |
| |
| // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should |
| // return "eax". This should even work for things like getting 64bit integer |
| // registers when given an f64 type. |
| const TargetRegisterClass *Class = Res.second; |
| // The generic code will match the first register class that contains the |
| // given register. Thus, based on the ordering of the tablegened file, |
| // the "plain" GR classes might not come first. |
| // Therefore, use a helper method. |
| if (isGRClass(*Class)) { |
| unsigned Size = VT.getSizeInBits(); |
| if (Size == 1) Size = 8; |
| unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size); |
| if (DestReg > 0) { |
| bool is64Bit = Subtarget.is64Bit(); |
| const TargetRegisterClass *RC = |
| Size == 8 ? (is64Bit ? &X86::GR8RegClass : &X86::GR8_NOREXRegClass) |
| : Size == 16 ? (is64Bit ? &X86::GR16RegClass : &X86::GR16_NOREXRegClass) |
| : Size == 32 ? (is64Bit ? &X86::GR32RegClass : &X86::GR32_NOREXRegClass) |
| : &X86::GR64RegClass; |
| if (RC->contains(DestReg)) |
| Res = std::make_pair(DestReg, RC); |
| } else { |
| // No register found/type mismatch. |
| Res.first = 0; |
| Res.second = nullptr; |
| } |
| } else if (isFRClass(*Class)) { |
| // Handle references to XMM physical registers that got mapped into the |
| // wrong class. This can happen with constraints like {xmm0} where the |
| // target independent register mapper will just pick the first match it can |
| // find, ignoring the required type. |
| |
| // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. |
| if (VT == MVT::f32 || VT == MVT::i32) |
| Res.second = &X86::FR32RegClass; |
| else if (VT == MVT::f64 || VT == MVT::i64) |
| Res.second = &X86::FR64RegClass; |
| else if (TRI->isTypeLegalForClass(X86::VR128RegClass, VT)) |
| Res.second = &X86::VR128RegClass; |
| else if (TRI->isTypeLegalForClass(X86::VR256RegClass, VT)) |
| Res.second = &X86::VR256RegClass; |
| else if (TRI->isTypeLegalForClass(X86::VR512RegClass, VT)) |
| Res.second = &X86::VR512RegClass; |
| else { |
| // Type mismatch and not a clobber: Return an error; |
| Res.first = 0; |
| Res.second = nullptr; |
| } |
| } |
| |
| return Res; |
| } |
| |
| int X86TargetLowering::getScalingFactorCost(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS) const { |
| // Scaling factors are not free at all. |
| // An indexed folded instruction, i.e., inst (reg1, reg2, scale), |
| // will take 2 allocations in the out of order engine instead of 1 |
| // for plain addressing mode, i.e. inst (reg1). |
| // E.g., |
| // vaddps (%rsi,%rdx), %ymm0, %ymm1 |
| // Requires two allocations (one for the load, one for the computation) |
| // whereas: |
| // vaddps (%rsi), %ymm0, %ymm1 |
| // Requires just 1 allocation, i.e., freeing allocations for other operations |
| // and having less micro operations to execute. |
| // |
| // For some X86 architectures, this is even worse because for instance for |
| // stores, the complex addressing mode forces the instruction to use the |
| // "load" ports instead of the dedicated "store" port. |
| // E.g., on Haswell: |
| // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3. |
| // vmovaps %ymm1, (%r8) can use port 2, 3, or 7. |
| if (isLegalAddressingMode(DL, AM, Ty, AS)) |
| // Scale represents reg2 * scale, thus account for 1 |
| // as soon as we use a second register. |
| return AM.Scale != 0; |
| return -1; |
| } |
| |
| bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { |
| // Integer division on x86 is expensive. However, when aggressively optimizing |
| // for code size, we prefer to use a div instruction, as it is usually smaller |
| // than the alternative sequence. |
| // The exception to this is vector division. Since x86 doesn't have vector |
| // integer division, leaving the division as-is is a loss even in terms of |
| // size, because it will have to be scalarized, while the alternative code |
| // sequence can be performed in vector form. |
| bool OptSize = |
| Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize); |
| return OptSize && !VT.isVector(); |
| } |
| |
| void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { |
| if (!Subtarget.is64Bit()) |
| return; |
| |
| // Update IsSplitCSR in X86MachineFunctionInfo. |
| X86MachineFunctionInfo *AFI = |
| Entry->getParent()->getInfo<X86MachineFunctionInfo>(); |
| AFI->setIsSplitCSR(true); |
| } |
| |
| void X86TargetLowering::insertCopiesSplitCSR( |
| MachineBasicBlock *Entry, |
| const SmallVectorImpl<MachineBasicBlock *> &Exits) const { |
| const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); |
| if (!IStart) |
| return; |
| |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); |
| MachineBasicBlock::iterator MBBI = Entry->begin(); |
| for (const MCPhysReg *I = IStart; *I; ++I) { |
| const TargetRegisterClass *RC = nullptr; |
| if (X86::GR64RegClass.contains(*I)) |
| RC = &X86::GR64RegClass; |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| |
| unsigned NewVR = MRI->createVirtualRegister(RC); |
| // Create copy from CSR to a virtual register. |
| // FIXME: this currently does not emit CFI pseudo-instructions, it works |
| // fine for CXX_FAST_TLS since the C++-style TLS access functions should be |
| // nounwind. If we want to generalize this later, we may need to emit |
| // CFI pseudo-instructions. |
| assert(Entry->getParent()->getFunction().hasFnAttribute( |
| Attribute::NoUnwind) && |
| "Function should be nounwind in insertCopiesSplitCSR!"); |
| Entry->addLiveIn(*I); |
| BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) |
| .addReg(*I); |
| |
| // Insert the copy-back instructions right before the terminator. |
| for (auto *Exit : Exits) |
| BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), |
| TII->get(TargetOpcode::COPY), *I) |
| .addReg(NewVR); |
| } |
| } |
| |
| bool X86TargetLowering::supportSwiftError() const { |
| return Subtarget.is64Bit(); |
| } |
| |
| /// Returns the name of the symbol used to emit stack probes or the empty |
| /// string if not applicable. |
| StringRef X86TargetLowering::getStackProbeSymbolName(MachineFunction &MF) const { |
| // If the function specifically requests stack probes, emit them. |
| if (MF.getFunction().hasFnAttribute("probe-stack")) |
| return MF.getFunction().getFnAttribute("probe-stack").getValueAsString(); |
| |
| // Generally, if we aren't on Windows, the platform ABI does not include |
| // support for stack probes, so don't emit them. |
| if (!Subtarget.isOSWindows() || Subtarget.isTargetMachO() || |
| MF.getFunction().hasFnAttribute("no-stack-arg-probe")) |
| return ""; |
| |
| // We need a stack probe to conform to the Windows ABI. Choose the right |
| // symbol. |
| if (Subtarget.is64Bit()) |
| return Subtarget.isTargetCygMing() ? "___chkstk_ms" : "__chkstk"; |
| return Subtarget.isTargetCygMing() ? "_alloca" : "_chkstk"; |
| } |