| //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for DWARF4 hashing of DIEs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DIEHash.h" |
| #include "ByteStreamer.h" |
| #include "DwarfDebug.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/DIE.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dwarfdebug" |
| |
| /// Grabs the string in whichever attribute is passed in and returns |
| /// a reference to it. |
| static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) { |
| // Iterate through all the attributes until we find the one we're |
| // looking for, if we can't find it return an empty string. |
| for (const auto &V : Die.values()) |
| if (V.getAttribute() == Attr) |
| return V.getDIEString().getString(); |
| |
| return StringRef(""); |
| } |
| |
| /// Adds the string in \p Str to the hash. This also hashes |
| /// a trailing NULL with the string. |
| void DIEHash::addString(StringRef Str) { |
| LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); |
| Hash.update(Str); |
| Hash.update(makeArrayRef((uint8_t)'\0')); |
| } |
| |
| // FIXME: The LEB128 routines are copied and only slightly modified out of |
| // LEB128.h. |
| |
| /// Adds the unsigned in \p Value to the hash encoded as a ULEB128. |
| void DIEHash::addULEB128(uint64_t Value) { |
| LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); |
| do { |
| uint8_t Byte = Value & 0x7f; |
| Value >>= 7; |
| if (Value != 0) |
| Byte |= 0x80; // Mark this byte to show that more bytes will follow. |
| Hash.update(Byte); |
| } while (Value != 0); |
| } |
| |
| void DIEHash::addSLEB128(int64_t Value) { |
| LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); |
| bool More; |
| do { |
| uint8_t Byte = Value & 0x7f; |
| Value >>= 7; |
| More = !((((Value == 0) && ((Byte & 0x40) == 0)) || |
| ((Value == -1) && ((Byte & 0x40) != 0)))); |
| if (More) |
| Byte |= 0x80; // Mark this byte to show that more bytes will follow. |
| Hash.update(Byte); |
| } while (More); |
| } |
| |
| /// Including \p Parent adds the context of Parent to the hash.. |
| void DIEHash::addParentContext(const DIE &Parent) { |
| |
| LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n"); |
| |
| // [7.27.2] For each surrounding type or namespace beginning with the |
| // outermost such construct... |
| SmallVector<const DIE *, 1> Parents; |
| const DIE *Cur = &Parent; |
| while (Cur->getParent()) { |
| Parents.push_back(Cur); |
| Cur = Cur->getParent(); |
| } |
| assert(Cur->getTag() == dwarf::DW_TAG_compile_unit || |
| Cur->getTag() == dwarf::DW_TAG_type_unit); |
| |
| // Reverse iterate over our list to go from the outermost construct to the |
| // innermost. |
| for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(), |
| E = Parents.rend(); |
| I != E; ++I) { |
| const DIE &Die = **I; |
| |
| // ... Append the letter "C" to the sequence... |
| addULEB128('C'); |
| |
| // ... Followed by the DWARF tag of the construct... |
| addULEB128(Die.getTag()); |
| |
| // ... Then the name, taken from the DW_AT_name attribute. |
| StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); |
| LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n"); |
| if (!Name.empty()) |
| addString(Name); |
| } |
| } |
| |
| // Collect all of the attributes for a particular DIE in single structure. |
| void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) { |
| |
| for (const auto &V : Die.values()) { |
| LLVM_DEBUG(dbgs() << "Attribute: " |
| << dwarf::AttributeString(V.getAttribute()) |
| << " added.\n"); |
| switch (V.getAttribute()) { |
| #define HANDLE_DIE_HASH_ATTR(NAME) \ |
| case dwarf::NAME: \ |
| Attrs.NAME = V; \ |
| break; |
| #include "DIEHashAttributes.def" |
| default: |
| break; |
| } |
| } |
| } |
| |
| void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute, |
| const DIE &Entry, StringRef Name) { |
| // append the letter 'N' |
| addULEB128('N'); |
| |
| // the DWARF attribute code (DW_AT_type or DW_AT_friend), |
| addULEB128(Attribute); |
| |
| // the context of the tag, |
| if (const DIE *Parent = Entry.getParent()) |
| addParentContext(*Parent); |
| |
| // the letter 'E', |
| addULEB128('E'); |
| |
| // and the name of the type. |
| addString(Name); |
| |
| // Currently DW_TAG_friends are not used by Clang, but if they do become so, |
| // here's the relevant spec text to implement: |
| // |
| // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, |
| // the context is omitted and the name to be used is the ABI-specific name |
| // of the subprogram (e.g., the mangled linker name). |
| } |
| |
| void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute, |
| unsigned DieNumber) { |
| // a) If T is in the list of [previously hashed types], use the letter |
| // 'R' as the marker |
| addULEB128('R'); |
| |
| addULEB128(Attribute); |
| |
| // and use the unsigned LEB128 encoding of [the index of T in the |
| // list] as the attribute value; |
| addULEB128(DieNumber); |
| } |
| |
| void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag, |
| const DIE &Entry) { |
| assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend " |
| "tags. Add support here when there's " |
| "a use case"); |
| // Step 5 |
| // If the tag in Step 3 is one of [the below tags] |
| if ((Tag == dwarf::DW_TAG_pointer_type || |
| Tag == dwarf::DW_TAG_reference_type || |
| Tag == dwarf::DW_TAG_rvalue_reference_type || |
| Tag == dwarf::DW_TAG_ptr_to_member_type) && |
| // and the referenced type (via the [below attributes]) |
| // FIXME: This seems overly restrictive, and causes hash mismatches |
| // there's a decl/def difference in the containing type of a |
| // ptr_to_member_type, but it's what DWARF says, for some reason. |
| Attribute == dwarf::DW_AT_type) { |
| // ... has a DW_AT_name attribute, |
| StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name); |
| if (!Name.empty()) { |
| hashShallowTypeReference(Attribute, Entry, Name); |
| return; |
| } |
| } |
| |
| unsigned &DieNumber = Numbering[&Entry]; |
| if (DieNumber) { |
| hashRepeatedTypeReference(Attribute, DieNumber); |
| return; |
| } |
| |
| // otherwise, b) use the letter 'T' as the marker, ... |
| addULEB128('T'); |
| |
| addULEB128(Attribute); |
| |
| // ... process the type T recursively by performing Steps 2 through 7, and |
| // use the result as the attribute value. |
| DieNumber = Numbering.size(); |
| computeHash(Entry); |
| } |
| |
| // Hash all of the values in a block like set of values. This assumes that |
| // all of the data is going to be added as integers. |
| void DIEHash::hashBlockData(const DIE::const_value_range &Values) { |
| for (const auto &V : Values) |
| Hash.update((uint64_t)V.getDIEInteger().getValue()); |
| } |
| |
| // Hash the contents of a loclistptr class. |
| void DIEHash::hashLocList(const DIELocList &LocList) { |
| HashingByteStreamer Streamer(*this); |
| DwarfDebug &DD = *AP->getDwarfDebug(); |
| const DebugLocStream &Locs = DD.getDebugLocs(); |
| for (const auto &Entry : Locs.getEntries(Locs.getList(LocList.getValue()))) |
| DD.emitDebugLocEntry(Streamer, Entry); |
| } |
| |
| // Hash an individual attribute \param Attr based on the type of attribute and |
| // the form. |
| void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) { |
| dwarf::Attribute Attribute = Value.getAttribute(); |
| |
| // Other attribute values use the letter 'A' as the marker, and the value |
| // consists of the form code (encoded as an unsigned LEB128 value) followed by |
| // the encoding of the value according to the form code. To ensure |
| // reproducibility of the signature, the set of forms used in the signature |
| // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag, |
| // DW_FORM_string, and DW_FORM_block. |
| |
| switch (Value.getType()) { |
| case DIEValue::isNone: |
| llvm_unreachable("Expected valid DIEValue"); |
| |
| // 7.27 Step 3 |
| // ... An attribute that refers to another type entry T is processed as |
| // follows: |
| case DIEValue::isEntry: |
| hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry()); |
| break; |
| case DIEValue::isInteger: { |
| addULEB128('A'); |
| addULEB128(Attribute); |
| switch (Value.getForm()) { |
| case dwarf::DW_FORM_data1: |
| case dwarf::DW_FORM_data2: |
| case dwarf::DW_FORM_data4: |
| case dwarf::DW_FORM_data8: |
| case dwarf::DW_FORM_udata: |
| case dwarf::DW_FORM_sdata: |
| addULEB128(dwarf::DW_FORM_sdata); |
| addSLEB128((int64_t)Value.getDIEInteger().getValue()); |
| break; |
| // DW_FORM_flag_present is just flag with a value of one. We still give it a |
| // value so just use the value. |
| case dwarf::DW_FORM_flag_present: |
| case dwarf::DW_FORM_flag: |
| addULEB128(dwarf::DW_FORM_flag); |
| addULEB128((int64_t)Value.getDIEInteger().getValue()); |
| break; |
| default: |
| llvm_unreachable("Unknown integer form!"); |
| } |
| break; |
| } |
| case DIEValue::isString: |
| addULEB128('A'); |
| addULEB128(Attribute); |
| addULEB128(dwarf::DW_FORM_string); |
| addString(Value.getDIEString().getString()); |
| break; |
| case DIEValue::isInlineString: |
| addULEB128('A'); |
| addULEB128(Attribute); |
| addULEB128(dwarf::DW_FORM_string); |
| addString(Value.getDIEInlineString().getString()); |
| break; |
| case DIEValue::isBlock: |
| case DIEValue::isLoc: |
| case DIEValue::isLocList: |
| addULEB128('A'); |
| addULEB128(Attribute); |
| addULEB128(dwarf::DW_FORM_block); |
| if (Value.getType() == DIEValue::isBlock) { |
| addULEB128(Value.getDIEBlock().ComputeSize(AP)); |
| hashBlockData(Value.getDIEBlock().values()); |
| } else if (Value.getType() == DIEValue::isLoc) { |
| addULEB128(Value.getDIELoc().ComputeSize(AP)); |
| hashBlockData(Value.getDIELoc().values()); |
| } else { |
| // We could add the block length, but that would take |
| // a bit of work and not add a lot of uniqueness |
| // to the hash in some way we could test. |
| hashLocList(Value.getDIELocList()); |
| } |
| break; |
| // FIXME: It's uncertain whether or not we should handle this at the moment. |
| case DIEValue::isExpr: |
| case DIEValue::isLabel: |
| case DIEValue::isDelta: |
| llvm_unreachable("Add support for additional value types."); |
| } |
| } |
| |
| // Go through the attributes from \param Attrs in the order specified in 7.27.4 |
| // and hash them. |
| void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { |
| #define HANDLE_DIE_HASH_ATTR(NAME) \ |
| { \ |
| if (Attrs.NAME) \ |
| hashAttribute(Attrs.NAME, Tag); \ |
| } |
| #include "DIEHashAttributes.def" |
| // FIXME: Add the extended attributes. |
| } |
| |
| // Add all of the attributes for \param Die to the hash. |
| void DIEHash::addAttributes(const DIE &Die) { |
| DIEAttrs Attrs = {}; |
| collectAttributes(Die, Attrs); |
| hashAttributes(Attrs, Die.getTag()); |
| } |
| |
| void DIEHash::hashNestedType(const DIE &Die, StringRef Name) { |
| // 7.27 Step 7 |
| // ... append the letter 'S', |
| addULEB128('S'); |
| |
| // the tag of C, |
| addULEB128(Die.getTag()); |
| |
| // and the name. |
| addString(Name); |
| } |
| |
| // Compute the hash of a DIE. This is based on the type signature computation |
| // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a |
| // flattened description of the DIE. |
| void DIEHash::computeHash(const DIE &Die) { |
| // Append the letter 'D', followed by the DWARF tag of the DIE. |
| addULEB128('D'); |
| addULEB128(Die.getTag()); |
| |
| // Add each of the attributes of the DIE. |
| addAttributes(Die); |
| |
| // Then hash each of the children of the DIE. |
| for (auto &C : Die.children()) { |
| // 7.27 Step 7 |
| // If C is a nested type entry or a member function entry, ... |
| if (isType(C.getTag()) || C.getTag() == dwarf::DW_TAG_subprogram) { |
| StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name); |
| // ... and has a DW_AT_name attribute |
| if (!Name.empty()) { |
| hashNestedType(C, Name); |
| continue; |
| } |
| } |
| computeHash(C); |
| } |
| |
| // Following the last (or if there are no children), append a zero byte. |
| Hash.update(makeArrayRef((uint8_t)'\0')); |
| } |
| |
| /// This is based on the type signature computation given in section 7.27 of the |
| /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE |
| /// with the inclusion of the full CU and all top level CU entities. |
| // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. |
| uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) { |
| Numbering.clear(); |
| Numbering[&Die] = 1; |
| |
| if (!DWOName.empty()) |
| Hash.update(DWOName); |
| // Hash the DIE. |
| computeHash(Die); |
| |
| // Now return the result. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, so we actually |
| // need the "high" word. |
| return Result.high(); |
| } |
| |
| /// This is based on the type signature computation given in section 7.27 of the |
| /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE |
| /// with the inclusion of additional forms not specifically called out in the |
| /// standard. |
| uint64_t DIEHash::computeTypeSignature(const DIE &Die) { |
| Numbering.clear(); |
| Numbering[&Die] = 1; |
| |
| if (const DIE *Parent = Die.getParent()) |
| addParentContext(*Parent); |
| |
| // Hash the DIE. |
| computeHash(Die); |
| |
| // Now return the result. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, so we actually |
| // need the "high" word. |
| return Result.high(); |
| } |