|  | //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the DefaultJITMemoryManager class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "jit" | 
|  | #include "llvm/ExecutionEngine/JITMemoryManager.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/Memory.h" | 
|  | #include <vector> | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstring> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); | 
|  |  | 
|  | JITMemoryManager::~JITMemoryManager() {} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Memory Block Implementation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// MemoryRangeHeader - For a range of memory, this is the header that we put | 
|  | /// on the block of memory.  It is carefully crafted to be one word of memory. | 
|  | /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader | 
|  | /// which starts with this. | 
|  | struct FreeRangeHeader; | 
|  | struct MemoryRangeHeader { | 
|  | /// ThisAllocated - This is true if this block is currently allocated.  If | 
|  | /// not, this can be converted to a FreeRangeHeader. | 
|  | unsigned ThisAllocated : 1; | 
|  |  | 
|  | /// PrevAllocated - Keep track of whether the block immediately before us is | 
|  | /// allocated.  If not, the word immediately before this header is the size | 
|  | /// of the previous block. | 
|  | unsigned PrevAllocated : 1; | 
|  |  | 
|  | /// BlockSize - This is the size in bytes of this memory block, | 
|  | /// including this header. | 
|  | uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2); | 
|  |  | 
|  |  | 
|  | /// getBlockAfter - Return the memory block immediately after this one. | 
|  | /// | 
|  | MemoryRangeHeader &getBlockAfter() const { | 
|  | return *(MemoryRangeHeader*)((char*)this+BlockSize); | 
|  | } | 
|  |  | 
|  | /// getFreeBlockBefore - If the block before this one is free, return it, | 
|  | /// otherwise return null. | 
|  | FreeRangeHeader *getFreeBlockBefore() const { | 
|  | if (PrevAllocated) return 0; | 
|  | intptr_t PrevSize = ((intptr_t *)this)[-1]; | 
|  | return (FreeRangeHeader*)((char*)this-PrevSize); | 
|  | } | 
|  |  | 
|  | /// FreeBlock - Turn an allocated block into a free block, adjusting | 
|  | /// bits in the object headers, and adding an end of region memory block. | 
|  | FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); | 
|  |  | 
|  | /// TrimAllocationToSize - If this allocated block is significantly larger | 
|  | /// than NewSize, split it into two pieces (where the former is NewSize | 
|  | /// bytes, including the header), and add the new block to the free list. | 
|  | FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, | 
|  | uint64_t NewSize); | 
|  | }; | 
|  |  | 
|  | /// FreeRangeHeader - For a memory block that isn't already allocated, this | 
|  | /// keeps track of the current block and has a pointer to the next free block. | 
|  | /// Free blocks are kept on a circularly linked list. | 
|  | struct FreeRangeHeader : public MemoryRangeHeader { | 
|  | FreeRangeHeader *Prev; | 
|  | FreeRangeHeader *Next; | 
|  |  | 
|  | /// getMinBlockSize - Get the minimum size for a memory block.  Blocks | 
|  | /// smaller than this size cannot be created. | 
|  | static unsigned getMinBlockSize() { | 
|  | return sizeof(FreeRangeHeader)+sizeof(intptr_t); | 
|  | } | 
|  |  | 
|  | /// SetEndOfBlockSizeMarker - The word at the end of every free block is | 
|  | /// known to be the size of the free block.  Set it for this block. | 
|  | void SetEndOfBlockSizeMarker() { | 
|  | void *EndOfBlock = (char*)this + BlockSize; | 
|  | ((intptr_t *)EndOfBlock)[-1] = BlockSize; | 
|  | } | 
|  |  | 
|  | FreeRangeHeader *RemoveFromFreeList() { | 
|  | assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); | 
|  | Next->Prev = Prev; | 
|  | return Prev->Next = Next; | 
|  | } | 
|  |  | 
|  | void AddToFreeList(FreeRangeHeader *FreeList) { | 
|  | Next = FreeList; | 
|  | Prev = FreeList->Prev; | 
|  | Prev->Next = this; | 
|  | Next->Prev = this; | 
|  | } | 
|  |  | 
|  | /// GrowBlock - The block after this block just got deallocated.  Merge it | 
|  | /// into the current block. | 
|  | void GrowBlock(uintptr_t NewSize); | 
|  |  | 
|  | /// AllocateBlock - Mark this entire block allocated, updating freelists | 
|  | /// etc.  This returns a pointer to the circular free-list. | 
|  | FreeRangeHeader *AllocateBlock(); | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AllocateBlock - Mark this entire block allocated, updating freelists | 
|  | /// etc.  This returns a pointer to the circular free-list. | 
|  | FreeRangeHeader *FreeRangeHeader::AllocateBlock() { | 
|  | assert(!ThisAllocated && !getBlockAfter().PrevAllocated && | 
|  | "Cannot allocate an allocated block!"); | 
|  | // Mark this block allocated. | 
|  | ThisAllocated = 1; | 
|  | getBlockAfter().PrevAllocated = 1; | 
|  |  | 
|  | // Remove it from the free list. | 
|  | return RemoveFromFreeList(); | 
|  | } | 
|  |  | 
|  | /// FreeBlock - Turn an allocated block into a free block, adjusting | 
|  | /// bits in the object headers, and adding an end of region memory block. | 
|  | /// If possible, coalesce this block with neighboring blocks.  Return the | 
|  | /// FreeRangeHeader to allocate from. | 
|  | FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { | 
|  | MemoryRangeHeader *FollowingBlock = &getBlockAfter(); | 
|  | assert(ThisAllocated && "This block is already free!"); | 
|  | assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); | 
|  |  | 
|  | FreeRangeHeader *FreeListToReturn = FreeList; | 
|  |  | 
|  | // If the block after this one is free, merge it into this block. | 
|  | if (!FollowingBlock->ThisAllocated) { | 
|  | FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; | 
|  | // "FreeList" always needs to be a valid free block.  If we're about to | 
|  | // coalesce with it, update our notion of what the free list is. | 
|  | if (&FollowingFreeBlock == FreeList) { | 
|  | FreeList = FollowingFreeBlock.Next; | 
|  | FreeListToReturn = 0; | 
|  | assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); | 
|  | } | 
|  | FollowingFreeBlock.RemoveFromFreeList(); | 
|  |  | 
|  | // Include the following block into this one. | 
|  | BlockSize += FollowingFreeBlock.BlockSize; | 
|  | FollowingBlock = &FollowingFreeBlock.getBlockAfter(); | 
|  |  | 
|  | // Tell the block after the block we are coalescing that this block is | 
|  | // allocated. | 
|  | FollowingBlock->PrevAllocated = 1; | 
|  | } | 
|  |  | 
|  | assert(FollowingBlock->ThisAllocated && "Missed coalescing?"); | 
|  |  | 
|  | if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { | 
|  | PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); | 
|  | return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; | 
|  | } | 
|  |  | 
|  | // Otherwise, mark this block free. | 
|  | FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; | 
|  | FollowingBlock->PrevAllocated = 0; | 
|  | FreeBlock.ThisAllocated = 0; | 
|  |  | 
|  | // Link this into the linked list of free blocks. | 
|  | FreeBlock.AddToFreeList(FreeList); | 
|  |  | 
|  | // Add a marker at the end of the block, indicating the size of this free | 
|  | // block. | 
|  | FreeBlock.SetEndOfBlockSizeMarker(); | 
|  | return FreeListToReturn ? FreeListToReturn : &FreeBlock; | 
|  | } | 
|  |  | 
|  | /// GrowBlock - The block after this block just got deallocated.  Merge it | 
|  | /// into the current block. | 
|  | void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { | 
|  | assert(NewSize > BlockSize && "Not growing block?"); | 
|  | BlockSize = NewSize; | 
|  | SetEndOfBlockSizeMarker(); | 
|  | getBlockAfter().PrevAllocated = 0; | 
|  | } | 
|  |  | 
|  | /// TrimAllocationToSize - If this allocated block is significantly larger | 
|  | /// than NewSize, split it into two pieces (where the former is NewSize | 
|  | /// bytes, including the header), and add the new block to the free list. | 
|  | FreeRangeHeader *MemoryRangeHeader:: | 
|  | TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { | 
|  | assert(ThisAllocated && getBlockAfter().PrevAllocated && | 
|  | "Cannot deallocate part of an allocated block!"); | 
|  |  | 
|  | // Don't allow blocks to be trimmed below minimum required size | 
|  | NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize); | 
|  |  | 
|  | // Round up size for alignment of header. | 
|  | unsigned HeaderAlign = __alignof(FreeRangeHeader); | 
|  | NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); | 
|  |  | 
|  | // Size is now the size of the block we will remove from the start of the | 
|  | // current block. | 
|  | assert(NewSize <= BlockSize && | 
|  | "Allocating more space from this block than exists!"); | 
|  |  | 
|  | // If splitting this block will cause the remainder to be too small, do not | 
|  | // split the block. | 
|  | if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) | 
|  | return FreeList; | 
|  |  | 
|  | // Otherwise, we splice the required number of bytes out of this block, form | 
|  | // a new block immediately after it, then mark this block allocated. | 
|  | MemoryRangeHeader &FormerNextBlock = getBlockAfter(); | 
|  |  | 
|  | // Change the size of this block. | 
|  | BlockSize = NewSize; | 
|  |  | 
|  | // Get the new block we just sliced out and turn it into a free block. | 
|  | FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); | 
|  | NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; | 
|  | NewNextBlock.ThisAllocated = 0; | 
|  | NewNextBlock.PrevAllocated = 1; | 
|  | NewNextBlock.SetEndOfBlockSizeMarker(); | 
|  | FormerNextBlock.PrevAllocated = 0; | 
|  | NewNextBlock.AddToFreeList(FreeList); | 
|  | return &NewNextBlock; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Memory Block Implementation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class DefaultJITMemoryManager; | 
|  |  | 
|  | class JITSlabAllocator : public SlabAllocator { | 
|  | DefaultJITMemoryManager &JMM; | 
|  | public: | 
|  | JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } | 
|  | virtual ~JITSlabAllocator() { } | 
|  | virtual MemSlab *Allocate(size_t Size); | 
|  | virtual void Deallocate(MemSlab *Slab); | 
|  | }; | 
|  |  | 
|  | /// DefaultJITMemoryManager - Manage memory for the JIT code generation. | 
|  | /// This splits a large block of MAP_NORESERVE'd memory into two | 
|  | /// sections, one for function stubs, one for the functions themselves.  We | 
|  | /// have to do this because we may need to emit a function stub while in the | 
|  | /// middle of emitting a function, and we don't know how large the function we | 
|  | /// are emitting is. | 
|  | class DefaultJITMemoryManager : public JITMemoryManager { | 
|  |  | 
|  | // Whether to poison freed memory. | 
|  | bool PoisonMemory; | 
|  |  | 
|  | /// LastSlab - This points to the last slab allocated and is used as the | 
|  | /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all | 
|  | /// stubs, data, and code contiguously in memory.  In general, however, this | 
|  | /// is not possible because the NearBlock parameter is ignored on Windows | 
|  | /// platforms and even on Unix it works on a best-effort pasis. | 
|  | sys::MemoryBlock LastSlab; | 
|  |  | 
|  | // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't | 
|  | // confuse them with the blocks of memory described above. | 
|  | std::vector<sys::MemoryBlock> CodeSlabs; | 
|  | JITSlabAllocator BumpSlabAllocator; | 
|  | BumpPtrAllocator StubAllocator; | 
|  | BumpPtrAllocator DataAllocator; | 
|  |  | 
|  | // Circular list of free blocks. | 
|  | FreeRangeHeader *FreeMemoryList; | 
|  |  | 
|  | // When emitting code into a memory block, this is the block. | 
|  | MemoryRangeHeader *CurBlock; | 
|  |  | 
|  | uint8_t *GOTBase;     // Target Specific reserved memory | 
|  | public: | 
|  | DefaultJITMemoryManager(); | 
|  | ~DefaultJITMemoryManager(); | 
|  |  | 
|  | /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the | 
|  | /// last slab it allocated, so that subsequent allocations follow it. | 
|  | sys::MemoryBlock allocateNewSlab(size_t size); | 
|  |  | 
|  | /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at | 
|  | /// least this much unless more is requested. | 
|  | static const size_t DefaultCodeSlabSize; | 
|  |  | 
|  | /// DefaultSlabSize - Allocate data into slabs of this size unless we get | 
|  | /// an allocation above SizeThreshold. | 
|  | static const size_t DefaultSlabSize; | 
|  |  | 
|  | /// DefaultSizeThreshold - For any allocation larger than this threshold, we | 
|  | /// should allocate a separate slab. | 
|  | static const size_t DefaultSizeThreshold; | 
|  |  | 
|  | void AllocateGOT(); | 
|  |  | 
|  | // Testing methods. | 
|  | virtual bool CheckInvariants(std::string &ErrorStr); | 
|  | size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; } | 
|  | size_t GetDefaultDataSlabSize() { return DefaultSlabSize; } | 
|  | size_t GetDefaultStubSlabSize() { return DefaultSlabSize; } | 
|  | unsigned GetNumCodeSlabs() { return CodeSlabs.size(); } | 
|  | unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); } | 
|  | unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); } | 
|  |  | 
|  | /// startFunctionBody - When a function starts, allocate a block of free | 
|  | /// executable memory, returning a pointer to it and its actual size. | 
|  | uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { | 
|  |  | 
|  | FreeRangeHeader* candidateBlock = FreeMemoryList; | 
|  | FreeRangeHeader* head = FreeMemoryList; | 
|  | FreeRangeHeader* iter = head->Next; | 
|  |  | 
|  | uintptr_t largest = candidateBlock->BlockSize; | 
|  |  | 
|  | // Search for the largest free block | 
|  | while (iter != head) { | 
|  | if (iter->BlockSize > largest) { | 
|  | largest = iter->BlockSize; | 
|  | candidateBlock = iter; | 
|  | } | 
|  | iter = iter->Next; | 
|  | } | 
|  |  | 
|  | largest = largest - sizeof(MemoryRangeHeader); | 
|  |  | 
|  | // If this block isn't big enough for the allocation desired, allocate | 
|  | // another block of memory and add it to the free list. | 
|  | if (largest < ActualSize || | 
|  | largest <= FreeRangeHeader::getMinBlockSize()) { | 
|  | DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); | 
|  | candidateBlock = allocateNewCodeSlab((size_t)ActualSize); | 
|  | } | 
|  |  | 
|  | // Select this candidate block for allocation | 
|  | CurBlock = candidateBlock; | 
|  |  | 
|  | // Allocate the entire memory block. | 
|  | FreeMemoryList = candidateBlock->AllocateBlock(); | 
|  | ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader); | 
|  | return (uint8_t *)(CurBlock + 1); | 
|  | } | 
|  |  | 
|  | /// allocateNewCodeSlab - Helper method to allocate a new slab of code | 
|  | /// memory from the OS and add it to the free list.  Returns the new | 
|  | /// FreeRangeHeader at the base of the slab. | 
|  | FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) { | 
|  | // If the user needs at least MinSize free memory, then we account for | 
|  | // two MemoryRangeHeaders: the one in the user's block, and the one at the | 
|  | // end of the slab. | 
|  | size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader); | 
|  | size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin); | 
|  | sys::MemoryBlock B = allocateNewSlab(SlabSize); | 
|  | CodeSlabs.push_back(B); | 
|  | char *MemBase = (char*)(B.base()); | 
|  |  | 
|  | // Put a tiny allocated block at the end of the memory chunk, so when | 
|  | // FreeBlock calls getBlockAfter it doesn't fall off the end. | 
|  | MemoryRangeHeader *EndBlock = | 
|  | (MemoryRangeHeader*)(MemBase + B.size()) - 1; | 
|  | EndBlock->ThisAllocated = 1; | 
|  | EndBlock->PrevAllocated = 0; | 
|  | EndBlock->BlockSize = sizeof(MemoryRangeHeader); | 
|  |  | 
|  | // Start out with a vast new block of free memory. | 
|  | FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase; | 
|  | NewBlock->ThisAllocated = 0; | 
|  | // Make sure getFreeBlockBefore doesn't look into unmapped memory. | 
|  | NewBlock->PrevAllocated = 1; | 
|  | NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock; | 
|  | NewBlock->SetEndOfBlockSizeMarker(); | 
|  | NewBlock->AddToFreeList(FreeMemoryList); | 
|  |  | 
|  | assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize && | 
|  | "The block was too small!"); | 
|  | return NewBlock; | 
|  | } | 
|  |  | 
|  | /// endFunctionBody - The function F is now allocated, and takes the memory | 
|  | /// in the range [FunctionStart,FunctionEnd). | 
|  | void endFunctionBody(const Function *F, uint8_t *FunctionStart, | 
|  | uint8_t *FunctionEnd) { | 
|  | assert(FunctionEnd > FunctionStart); | 
|  | assert(FunctionStart == (uint8_t *)(CurBlock+1) && | 
|  | "Mismatched function start/end!"); | 
|  |  | 
|  | uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock; | 
|  |  | 
|  | // Release the memory at the end of this block that isn't needed. | 
|  | FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); | 
|  | } | 
|  |  | 
|  | /// allocateSpace - Allocate a memory block of the given size.  This method | 
|  | /// cannot be called between calls to startFunctionBody and endFunctionBody. | 
|  | uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { | 
|  | CurBlock = FreeMemoryList; | 
|  | FreeMemoryList = FreeMemoryList->AllocateBlock(); | 
|  |  | 
|  | uint8_t *result = (uint8_t *)(CurBlock + 1); | 
|  |  | 
|  | if (Alignment == 0) Alignment = 1; | 
|  | result = (uint8_t*)(((intptr_t)result+Alignment-1) & | 
|  | ~(intptr_t)(Alignment-1)); | 
|  |  | 
|  | uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock; | 
|  | FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// allocateStub - Allocate memory for a function stub. | 
|  | uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, | 
|  | unsigned Alignment) { | 
|  | return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); | 
|  | } | 
|  |  | 
|  | /// allocateGlobal - Allocate memory for a global. | 
|  | uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { | 
|  | return (uint8_t*)DataAllocator.Allocate(Size, Alignment); | 
|  | } | 
|  |  | 
|  | /// startExceptionTable - Use startFunctionBody to allocate memory for the | 
|  | /// function's exception table. | 
|  | uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) { | 
|  | return startFunctionBody(F, ActualSize); | 
|  | } | 
|  |  | 
|  | /// endExceptionTable - The exception table of F is now allocated, | 
|  | /// and takes the memory in the range [TableStart,TableEnd). | 
|  | void endExceptionTable(const Function *F, uint8_t *TableStart, | 
|  | uint8_t *TableEnd, uint8_t* FrameRegister) { | 
|  | assert(TableEnd > TableStart); | 
|  | assert(TableStart == (uint8_t *)(CurBlock+1) && | 
|  | "Mismatched table start/end!"); | 
|  |  | 
|  | uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock; | 
|  |  | 
|  | // Release the memory at the end of this block that isn't needed. | 
|  | FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); | 
|  | } | 
|  |  | 
|  | uint8_t *getGOTBase() const { | 
|  | return GOTBase; | 
|  | } | 
|  |  | 
|  | void deallocateBlock(void *Block) { | 
|  | // Find the block that is allocated for this function. | 
|  | MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1; | 
|  | assert(MemRange->ThisAllocated && "Block isn't allocated!"); | 
|  |  | 
|  | // Fill the buffer with garbage! | 
|  | if (PoisonMemory) { | 
|  | memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)); | 
|  | } | 
|  |  | 
|  | // Free the memory. | 
|  | FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); | 
|  | } | 
|  |  | 
|  | /// deallocateFunctionBody - Deallocate all memory for the specified | 
|  | /// function body. | 
|  | void deallocateFunctionBody(void *Body) { | 
|  | if (Body) deallocateBlock(Body); | 
|  | } | 
|  |  | 
|  | /// deallocateExceptionTable - Deallocate memory for the specified | 
|  | /// exception table. | 
|  | void deallocateExceptionTable(void *ET) { | 
|  | if (ET) deallocateBlock(ET); | 
|  | } | 
|  |  | 
|  | /// setMemoryWritable - When code generation is in progress, | 
|  | /// the code pages may need permissions changed. | 
|  | void setMemoryWritable() | 
|  | { | 
|  | for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) | 
|  | sys::Memory::setWritable(CodeSlabs[i]); | 
|  | } | 
|  | /// setMemoryExecutable - When code generation is done and we're ready to | 
|  | /// start execution, the code pages may need permissions changed. | 
|  | void setMemoryExecutable() | 
|  | { | 
|  | for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) | 
|  | sys::Memory::setExecutable(CodeSlabs[i]); | 
|  | } | 
|  |  | 
|  | /// setPoisonMemory - Controls whether we write garbage over freed memory. | 
|  | /// | 
|  | void setPoisonMemory(bool poison) { | 
|  | PoisonMemory = poison; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | MemSlab *JITSlabAllocator::Allocate(size_t Size) { | 
|  | sys::MemoryBlock B = JMM.allocateNewSlab(Size); | 
|  | MemSlab *Slab = (MemSlab*)B.base(); | 
|  | Slab->Size = B.size(); | 
|  | Slab->NextPtr = 0; | 
|  | return Slab; | 
|  | } | 
|  |  | 
|  | void JITSlabAllocator::Deallocate(MemSlab *Slab) { | 
|  | sys::MemoryBlock B(Slab, Slab->Size); | 
|  | sys::Memory::ReleaseRWX(B); | 
|  | } | 
|  |  | 
|  | DefaultJITMemoryManager::DefaultJITMemoryManager() | 
|  | : | 
|  | #ifdef NDEBUG | 
|  | PoisonMemory(false), | 
|  | #else | 
|  | PoisonMemory(true), | 
|  | #endif | 
|  | LastSlab(0, 0), | 
|  | BumpSlabAllocator(*this), | 
|  | StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator), | 
|  | DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) { | 
|  |  | 
|  | // Allocate space for code. | 
|  | sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); | 
|  | CodeSlabs.push_back(MemBlock); | 
|  | uint8_t *MemBase = (uint8_t*)MemBlock.base(); | 
|  |  | 
|  | // We set up the memory chunk with 4 mem regions, like this: | 
|  | //  [ START | 
|  | //    [ Free      #0 ] -> Large space to allocate functions from. | 
|  | //    [ Allocated #1 ] -> Tiny space to separate regions. | 
|  | //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block. | 
|  | //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block. | 
|  | //  END ] | 
|  | // | 
|  | // The last three blocks are never deallocated or touched. | 
|  |  | 
|  | // Add MemoryRangeHeader to the end of the memory region, indicating that | 
|  | // the space after the block of memory is allocated.  This is block #3. | 
|  | MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; | 
|  | Mem3->ThisAllocated = 1; | 
|  | Mem3->PrevAllocated = 0; | 
|  | Mem3->BlockSize     = sizeof(MemoryRangeHeader); | 
|  |  | 
|  | /// Add a tiny free region so that the free list always has one entry. | 
|  | FreeRangeHeader *Mem2 = | 
|  | (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); | 
|  | Mem2->ThisAllocated = 0; | 
|  | Mem2->PrevAllocated = 1; | 
|  | Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize(); | 
|  | Mem2->SetEndOfBlockSizeMarker(); | 
|  | Mem2->Prev = Mem2;   // Mem2 *is* the free list for now. | 
|  | Mem2->Next = Mem2; | 
|  |  | 
|  | /// Add a tiny allocated region so that Mem2 is never coalesced away. | 
|  | MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; | 
|  | Mem1->ThisAllocated = 1; | 
|  | Mem1->PrevAllocated = 0; | 
|  | Mem1->BlockSize     = sizeof(MemoryRangeHeader); | 
|  |  | 
|  | // Add a FreeRangeHeader to the start of the function body region, indicating | 
|  | // that the space is free.  Mark the previous block allocated so we never look | 
|  | // at it. | 
|  | FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase; | 
|  | Mem0->ThisAllocated = 0; | 
|  | Mem0->PrevAllocated = 1; | 
|  | Mem0->BlockSize = (char*)Mem1-(char*)Mem0; | 
|  | Mem0->SetEndOfBlockSizeMarker(); | 
|  | Mem0->AddToFreeList(Mem2); | 
|  |  | 
|  | // Start out with the freelist pointing to Mem0. | 
|  | FreeMemoryList = Mem0; | 
|  |  | 
|  | GOTBase = NULL; | 
|  | } | 
|  |  | 
|  | void DefaultJITMemoryManager::AllocateGOT() { | 
|  | assert(GOTBase == 0 && "Cannot allocate the got multiple times"); | 
|  | GOTBase = new uint8_t[sizeof(void*) * 8192]; | 
|  | HasGOT = true; | 
|  | } | 
|  |  | 
|  | DefaultJITMemoryManager::~DefaultJITMemoryManager() { | 
|  | for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) | 
|  | sys::Memory::ReleaseRWX(CodeSlabs[i]); | 
|  |  | 
|  | delete[] GOTBase; | 
|  | } | 
|  |  | 
|  | sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { | 
|  | // Allocate a new block close to the last one. | 
|  | std::string ErrMsg; | 
|  | sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0; | 
|  | sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); | 
|  | if (B.base() == 0) { | 
|  | report_fatal_error("Allocation failed when allocating new memory in the" | 
|  | " JIT\n" + Twine(ErrMsg)); | 
|  | } | 
|  | LastSlab = B; | 
|  | ++NumSlabs; | 
|  | // Initialize the slab to garbage when debugging. | 
|  | if (PoisonMemory) { | 
|  | memset(B.base(), 0xCD, B.size()); | 
|  | } | 
|  | return B; | 
|  | } | 
|  |  | 
|  | /// CheckInvariants - For testing only.  Return "" if all internal invariants | 
|  | /// are preserved, and a helpful error message otherwise.  For free and | 
|  | /// allocated blocks, make sure that adding BlockSize gives a valid block. | 
|  | /// For free blocks, make sure they're in the free list and that their end of | 
|  | /// block size marker is correct.  This function should return an error before | 
|  | /// accessing bad memory.  This function is defined here instead of in | 
|  | /// JITMemoryManagerTest.cpp so that we don't have to expose all of the | 
|  | /// implementation details of DefaultJITMemoryManager. | 
|  | bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { | 
|  | raw_string_ostream Err(ErrorStr); | 
|  |  | 
|  | // Construct a the set of FreeRangeHeader pointers so we can query it | 
|  | // efficiently. | 
|  | llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet; | 
|  | FreeRangeHeader* FreeHead = FreeMemoryList; | 
|  | FreeRangeHeader* FreeRange = FreeHead; | 
|  |  | 
|  | do { | 
|  | // Check that the free range pointer is in the blocks we've allocated. | 
|  | bool Found = false; | 
|  | for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), | 
|  | E = CodeSlabs.end(); I != E && !Found; ++I) { | 
|  | char *Start = (char*)I->base(); | 
|  | char *End = Start + I->size(); | 
|  | Found = (Start <= (char*)FreeRange && (char*)FreeRange < End); | 
|  | } | 
|  | if (!Found) { | 
|  | Err << "Corrupt free list; points to " << FreeRange; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FreeRange->Next->Prev != FreeRange) { | 
|  | Err << "Next and Prev pointers do not match."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, add it to the set. | 
|  | FreeHdrSet.insert(FreeRange); | 
|  | FreeRange = FreeRange->Next; | 
|  | } while (FreeRange != FreeHead); | 
|  |  | 
|  | // Go over each block, and look at each MemoryRangeHeader. | 
|  | for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), | 
|  | E = CodeSlabs.end(); I != E; ++I) { | 
|  | char *Start = (char*)I->base(); | 
|  | char *End = Start + I->size(); | 
|  |  | 
|  | // Check each memory range. | 
|  | for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL; | 
|  | Start <= (char*)Hdr && (char*)Hdr < End; | 
|  | Hdr = &Hdr->getBlockAfter()) { | 
|  | if (Hdr->ThisAllocated == 0) { | 
|  | // Check that this range is in the free list. | 
|  | if (!FreeHdrSet.count(Hdr)) { | 
|  | Err << "Found free header at " << Hdr << " that is not in free list."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now make sure the size marker at the end of the block is correct. | 
|  | uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1; | 
|  | if (!(Start <= (char*)Marker && (char*)Marker < End)) { | 
|  | Err << "Block size in header points out of current MemoryBlock."; | 
|  | return false; | 
|  | } | 
|  | if (Hdr->BlockSize != *Marker) { | 
|  | Err << "End of block size marker (" << *Marker << ") " | 
|  | << "and BlockSize (" << Hdr->BlockSize << ") don't match."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) { | 
|  | Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != " | 
|  | << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")"; | 
|  | return false; | 
|  | } else if (!LastHdr && !Hdr->PrevAllocated) { | 
|  | Err << "The first header should have PrevAllocated true."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remember the last header. | 
|  | LastHdr = Hdr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All invariants are preserved. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { | 
|  | return new DefaultJITMemoryManager(); | 
|  | } | 
|  |  | 
|  | // Allocate memory for code in 512K slabs. | 
|  | const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024; | 
|  |  | 
|  | // Allocate globals and stubs in slabs of 64K.  (probably 16 pages) | 
|  | const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024; | 
|  |  | 
|  | // Waste at most 16K at the end of each bump slab.  (probably 4 pages) | 
|  | const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024; |