| //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass mutates the form of VSX FMA instructions to avoid unnecessary |
| // copies. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCInstrInfo.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| // Temporarily disable FMA mutation by default, since it doesn't handle |
| // cross-basic-block intervals well. |
| // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html |
| // http://reviews.llvm.org/D17087 |
| static cl::opt<bool> DisableVSXFMAMutate( |
| "disable-ppc-vsx-fma-mutation", |
| cl::desc("Disable VSX FMA instruction mutation"), cl::init(true), |
| cl::Hidden); |
| |
| #define DEBUG_TYPE "ppc-vsx-fma-mutate" |
| |
| namespace llvm { namespace PPC { |
| int getAltVSXFMAOpcode(uint16_t Opcode); |
| } } |
| |
| namespace { |
| // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers |
| // (Altivec and scalar floating-point registers), we need to transform the |
| // copies into subregister copies with other restrictions. |
| struct PPCVSXFMAMutate : public MachineFunctionPass { |
| static char ID; |
| PPCVSXFMAMutate() : MachineFunctionPass(ID) { |
| initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| LiveIntervals *LIS; |
| const PPCInstrInfo *TII; |
| |
| protected: |
| bool processBlock(MachineBasicBlock &MBB) { |
| bool Changed = false; |
| |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
| for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); |
| I != IE; ++I) { |
| MachineInstr &MI = *I; |
| |
| // The default (A-type) VSX FMA form kills the addend (it is taken from |
| // the target register, which is then updated to reflect the result of |
| // the FMA). If the instruction, however, kills one of the registers |
| // used for the product, then we can use the M-form instruction (which |
| // will take that value from the to-be-defined register). |
| |
| int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); |
| if (AltOpc == -1) |
| continue; |
| |
| // This pass is run after register coalescing, and so we're looking for |
| // a situation like this: |
| // ... |
| // %5 = COPY %9; VSLRC:%5,%9 |
| // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16, |
| // implicit %rm; VSLRC:%5,%17,%16 |
| // ... |
| // %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19, |
| // implicit %rm; VSLRC:%9,%17,%19 |
| // ... |
| // Where we can eliminate the copy by changing from the A-type to the |
| // M-type instruction. Specifically, for this example, this means: |
| // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16, |
| // implicit %rm; VSLRC:%5,%17,%16 |
| // is replaced by: |
| // %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9, |
| // implicit %rm; VSLRC:%16,%18,%9 |
| // and we remove: %5 = COPY %9; VSLRC:%5,%9 |
| |
| SlotIndex FMAIdx = LIS->getInstructionIndex(MI); |
| |
| VNInfo *AddendValNo = |
| LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn(); |
| |
| // This can be null if the register is undef. |
| if (!AddendValNo) |
| continue; |
| |
| MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); |
| |
| // The addend and this instruction must be in the same block. |
| |
| if (!AddendMI || AddendMI->getParent() != MI.getParent()) |
| continue; |
| |
| // The addend must be a full copy within the same register class. |
| |
| if (!AddendMI->isFullCopy()) |
| continue; |
| |
| Register AddendSrcReg = AddendMI->getOperand(1).getReg(); |
| if (Register::isVirtualRegister(AddendSrcReg)) { |
| if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != |
| MRI.getRegClass(AddendSrcReg)) |
| continue; |
| } else { |
| // If AddendSrcReg is a physical register, make sure the destination |
| // register class contains it. |
| if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) |
| ->contains(AddendSrcReg)) |
| continue; |
| } |
| |
| // In theory, there could be other uses of the addend copy before this |
| // fma. We could deal with this, but that would require additional |
| // logic below and I suspect it will not occur in any relevant |
| // situations. Additionally, check whether the copy source is killed |
| // prior to the fma. In order to replace the addend here with the |
| // source of the copy, it must still be live here. We can't use |
| // interval testing for a physical register, so as long as we're |
| // walking the MIs we may as well test liveness here. |
| // |
| // FIXME: There is a case that occurs in practice, like this: |
| // %9 = COPY %f1; VSSRC:%9 |
| // ... |
| // %6 = COPY %9; VSSRC:%6,%9 |
| // %7 = COPY %9; VSSRC:%7,%9 |
| // %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC: |
| // %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC: |
| // %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC: |
| // which prevents an otherwise-profitable transformation. |
| bool OtherUsers = false, KillsAddendSrc = false; |
| for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); |
| J != JE; --J) { |
| if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { |
| OtherUsers = true; |
| break; |
| } |
| if (J->modifiesRegister(AddendSrcReg, TRI) || |
| J->killsRegister(AddendSrcReg, TRI)) { |
| KillsAddendSrc = true; |
| break; |
| } |
| } |
| |
| if (OtherUsers || KillsAddendSrc) |
| continue; |
| |
| |
| // The transformation doesn't work well with things like: |
| // %5 = A-form-op %5, %11, %5; |
| // unless %11 is also a kill, so skip when it is not, |
| // and check operand 3 to see it is also a kill to handle the case: |
| // %5 = A-form-op %5, %5, %11; |
| // where %5 and %11 are both kills. This case would be skipped |
| // otherwise. |
| Register OldFMAReg = MI.getOperand(0).getReg(); |
| |
| // Find one of the product operands that is killed by this instruction. |
| unsigned KilledProdOp = 0, OtherProdOp = 0; |
| Register Reg2 = MI.getOperand(2).getReg(); |
| Register Reg3 = MI.getOperand(3).getReg(); |
| if (LIS->getInterval(Reg2).Query(FMAIdx).isKill() |
| && Reg2 != OldFMAReg) { |
| KilledProdOp = 2; |
| OtherProdOp = 3; |
| } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill() |
| && Reg3 != OldFMAReg) { |
| KilledProdOp = 3; |
| OtherProdOp = 2; |
| } |
| |
| // If there are no usable killed product operands, then this |
| // transformation is likely not profitable. |
| if (!KilledProdOp) |
| continue; |
| |
| // If the addend copy is used only by this MI, then the addend source |
| // register is likely not live here. This could be fixed (based on the |
| // legality checks above, the live range for the addend source register |
| // could be extended), but it seems likely that such a trivial copy can |
| // be coalesced away later, and thus is not worth the effort. |
| if (Register::isVirtualRegister(AddendSrcReg) && |
| !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) |
| continue; |
| |
| // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. |
| |
| Register KilledProdReg = MI.getOperand(KilledProdOp).getReg(); |
| Register OtherProdReg = MI.getOperand(OtherProdOp).getReg(); |
| |
| unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); |
| unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg(); |
| unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg(); |
| |
| bool AddRegKill = AddendMI->getOperand(1).isKill(); |
| bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill(); |
| bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill(); |
| |
| bool AddRegUndef = AddendMI->getOperand(1).isUndef(); |
| bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef(); |
| bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef(); |
| |
| // If there isn't a class that fits, we can't perform the transform. |
| // This is needed for correctness with a mixture of VSX and Altivec |
| // instructions to make sure that a low VSX register is not assigned to |
| // the Altivec instruction. |
| if (!MRI.constrainRegClass(KilledProdReg, |
| MRI.getRegClass(OldFMAReg))) |
| continue; |
| |
| assert(OldFMAReg == AddendMI->getOperand(0).getReg() && |
| "Addend copy not tied to old FMA output!"); |
| |
| LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI); |
| |
| MI.getOperand(0).setReg(KilledProdReg); |
| MI.getOperand(1).setReg(KilledProdReg); |
| MI.getOperand(3).setReg(AddendSrcReg); |
| |
| MI.getOperand(0).setSubReg(KilledProdSubReg); |
| MI.getOperand(1).setSubReg(KilledProdSubReg); |
| MI.getOperand(3).setSubReg(AddSubReg); |
| |
| MI.getOperand(1).setIsKill(KilledProdRegKill); |
| MI.getOperand(3).setIsKill(AddRegKill); |
| |
| MI.getOperand(1).setIsUndef(KilledProdRegUndef); |
| MI.getOperand(3).setIsUndef(AddRegUndef); |
| |
| MI.setDesc(TII->get(AltOpc)); |
| |
| // If the addend is also a multiplicand, replace it with the addend |
| // source in both places. |
| if (OtherProdReg == AddendMI->getOperand(0).getReg()) { |
| MI.getOperand(2).setReg(AddendSrcReg); |
| MI.getOperand(2).setSubReg(AddSubReg); |
| MI.getOperand(2).setIsKill(AddRegKill); |
| MI.getOperand(2).setIsUndef(AddRegUndef); |
| } else { |
| MI.getOperand(2).setReg(OtherProdReg); |
| MI.getOperand(2).setSubReg(OtherProdSubReg); |
| MI.getOperand(2).setIsKill(OtherProdRegKill); |
| MI.getOperand(2).setIsUndef(OtherProdRegUndef); |
| } |
| |
| LLVM_DEBUG(dbgs() << " -> " << MI); |
| |
| // The killed product operand was killed here, so we can reuse it now |
| // for the result of the fma. |
| |
| LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); |
| VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); |
| for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); |
| UI != UE;) { |
| MachineOperand &UseMO = *UI; |
| MachineInstr *UseMI = UseMO.getParent(); |
| ++UI; |
| |
| // Don't replace the result register of the copy we're about to erase. |
| if (UseMI == AddendMI) |
| continue; |
| |
| UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI); |
| } |
| |
| // Extend the live intervals of the killed product operand to hold the |
| // fma result. |
| |
| LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); |
| for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); |
| AI != AE; ++AI) { |
| // Don't add the segment that corresponds to the original copy. |
| if (AI->valno == AddendValNo) |
| continue; |
| |
| VNInfo *NewFMAValNo = |
| NewFMAInt.getNextValue(AI->start, |
| LIS->getVNInfoAllocator()); |
| |
| NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, |
| NewFMAValNo)); |
| } |
| LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); |
| |
| // Extend the live interval of the addend source (it might end at the |
| // copy to be removed, or somewhere in between there and here). This |
| // is necessary only if it is a physical register. |
| if (!Register::isVirtualRegister(AddendSrcReg)) |
| for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid(); |
| ++Units) { |
| unsigned Unit = *Units; |
| |
| LiveRange &AddendSrcRange = LIS->getRegUnit(Unit); |
| AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB), |
| FMAIdx.getRegSlot()); |
| LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n'); |
| } |
| |
| FMAInt.removeValNo(FMAValNo); |
| LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); |
| |
| // Remove the (now unused) copy. |
| |
| LLVM_DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); |
| LIS->RemoveMachineInstrFromMaps(*AddendMI); |
| AddendMI->eraseFromParent(); |
| |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| public: |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| // If we don't have VSX then go ahead and return without doing |
| // anything. |
| const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
| if (!STI.hasVSX()) |
| return false; |
| |
| LIS = &getAnalysis<LiveIntervals>(); |
| |
| TII = STI.getInstrInfo(); |
| |
| bool Changed = false; |
| |
| if (DisableVSXFMAMutate) |
| return Changed; |
| |
| for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { |
| MachineBasicBlock &B = *I++; |
| if (processBlock(B)) |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addRequired<SlotIndexes>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| } |
| |
| INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, |
| "PowerPC VSX FMA Mutation", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, |
| "PowerPC VSX FMA Mutation", false, false) |
| |
| char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; |
| |
| char PPCVSXFMAMutate::ID = 0; |
| FunctionPass *llvm::createPPCVSXFMAMutatePass() { |
| return new PPCVSXFMAMutate(); |
| } |