| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for PowerPC, |
| // converting from a legalized dag to a PPC dag. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/PPCMCTargetDesc.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCISelLowering.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCSubtarget.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <new> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppc-codegen" |
| |
| STATISTIC(NumSextSetcc, |
| "Number of (sext(setcc)) nodes expanded into GPR sequence."); |
| STATISTIC(NumZextSetcc, |
| "Number of (zext(setcc)) nodes expanded into GPR sequence."); |
| STATISTIC(SignExtensionsAdded, |
| "Number of sign extensions for compare inputs added."); |
| STATISTIC(ZeroExtensionsAdded, |
| "Number of zero extensions for compare inputs added."); |
| STATISTIC(NumLogicOpsOnComparison, |
| "Number of logical ops on i1 values calculated in GPR."); |
| STATISTIC(OmittedForNonExtendUses, |
| "Number of compares not eliminated as they have non-extending uses."); |
| STATISTIC(NumP9Setb, |
| "Number of compares lowered to setb."); |
| |
| // FIXME: Remove this once the bug has been fixed! |
| cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", |
| cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); |
| |
| static cl::opt<bool> |
| UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), |
| cl::desc("use aggressive ppc isel for bit permutations"), |
| cl::Hidden); |
| static cl::opt<bool> BPermRewriterNoMasking( |
| "ppc-bit-perm-rewriter-stress-rotates", |
| cl::desc("stress rotate selection in aggressive ppc isel for " |
| "bit permutations"), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableBranchHint( |
| "ppc-use-branch-hint", cl::init(true), |
| cl::desc("Enable static hinting of branches on ppc"), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableTLSOpt( |
| "ppc-tls-opt", cl::init(true), |
| cl::desc("Enable tls optimization peephole"), |
| cl::Hidden); |
| |
| enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, |
| ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, |
| ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; |
| |
| static cl::opt<ICmpInGPRType> CmpInGPR( |
| "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), |
| cl::desc("Specify the types of comparisons to emit GPR-only code for."), |
| cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), |
| clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), |
| clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), |
| clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), |
| clEnumValN(ICGPR_NonExtIn, "nonextin", |
| "Only comparisons where inputs don't need [sz]ext."), |
| clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), |
| clEnumValN(ICGPR_ZextI32, "zexti32", |
| "Only i32 comparisons with zext result."), |
| clEnumValN(ICGPR_ZextI64, "zexti64", |
| "Only i64 comparisons with zext result."), |
| clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), |
| clEnumValN(ICGPR_SextI32, "sexti32", |
| "Only i32 comparisons with sext result."), |
| clEnumValN(ICGPR_SextI64, "sexti64", |
| "Only i64 comparisons with sext result."))); |
| namespace { |
| |
| //===--------------------------------------------------------------------===// |
| /// PPCDAGToDAGISel - PPC specific code to select PPC machine |
| /// instructions for SelectionDAG operations. |
| /// |
| class PPCDAGToDAGISel : public SelectionDAGISel { |
| const PPCTargetMachine &TM; |
| const PPCSubtarget *PPCSubTarget = nullptr; |
| const PPCTargetLowering *PPCLowering = nullptr; |
| unsigned GlobalBaseReg = 0; |
| |
| public: |
| explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(tm, OptLevel), TM(tm) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseReg = 0; |
| PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); |
| PPCLowering = PPCSubTarget->getTargetLowering(); |
| SelectionDAGISel::runOnMachineFunction(MF); |
| |
| if (!PPCSubTarget->isSVR4ABI()) |
| InsertVRSaveCode(MF); |
| |
| return true; |
| } |
| |
| void PreprocessISelDAG() override; |
| void PostprocessISelDAG() override; |
| |
| /// getI16Imm - Return a target constant with the specified value, of type |
| /// i16. |
| inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i16); |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| } |
| |
| /// getI64Imm - Return a target constant with the specified value, of type |
| /// i64. |
| inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i64); |
| } |
| |
| /// getSmallIPtrImm - Return a target constant of pointer type. |
| inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { |
| return CurDAG->getTargetConstant( |
| Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); |
| } |
| |
| /// isRotateAndMask - Returns true if Mask and Shift can be folded into a |
| /// rotate and mask opcode and mask operation. |
| static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, |
| unsigned &SH, unsigned &MB, unsigned &ME); |
| |
| /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC |
| /// base register. Return the virtual register that holds this value. |
| SDNode *getGlobalBaseReg(); |
| |
| void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| void Select(SDNode *N) override; |
| |
| bool tryBitfieldInsert(SDNode *N); |
| bool tryBitPermutation(SDNode *N); |
| bool tryIntCompareInGPR(SDNode *N); |
| bool tryAndWithMask(SDNode *N); |
| |
| // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into |
| // an X-Form load instruction with the offset being a relocation coming from |
| // the PPCISD::ADD_TLS. |
| bool tryTLSXFormLoad(LoadSDNode *N); |
| // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into |
| // an X-Form store instruction with the offset being a relocation coming from |
| // the PPCISD::ADD_TLS. |
| bool tryTLSXFormStore(StoreSDNode *N); |
| /// SelectCC - Select a comparison of the specified values with the |
| /// specified condition code, returning the CR# of the expression. |
| SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| const SDLoc &dl); |
| |
| /// SelectAddrImmOffs - Return true if the operand is valid for a preinc |
| /// immediate field. Note that the operand at this point is already the |
| /// result of a prior SelectAddressRegImm call. |
| bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { |
| if (N.getOpcode() == ISD::TargetConstant || |
| N.getOpcode() == ISD::TargetGlobalAddress) { |
| Out = N; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// SelectAddrIdx - Given the specified address, check to see if it can be |
| /// represented as an indexed [r+r] operation. |
| /// This is for xform instructions whose associated displacement form is D. |
| /// The last parameter \p 0 means associated D form has no requirment for 16 |
| /// bit signed displacement. |
| /// Returns false if it can be represented by [r+imm], which are preferred. |
| bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { |
| return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0); |
| } |
| |
| /// SelectAddrIdx4 - Given the specified address, check to see if it can be |
| /// represented as an indexed [r+r] operation. |
| /// This is for xform instructions whose associated displacement form is DS. |
| /// The last parameter \p 4 means associated DS form 16 bit signed |
| /// displacement must be a multiple of 4. |
| /// Returns false if it can be represented by [r+imm], which are preferred. |
| bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { |
| return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4); |
| } |
| |
| /// SelectAddrIdx16 - Given the specified address, check to see if it can be |
| /// represented as an indexed [r+r] operation. |
| /// This is for xform instructions whose associated displacement form is DQ. |
| /// The last parameter \p 16 means associated DQ form 16 bit signed |
| /// displacement must be a multiple of 16. |
| /// Returns false if it can be represented by [r+imm], which are preferred. |
| bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { |
| return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16); |
| } |
| |
| /// SelectAddrIdxOnly - Given the specified address, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { |
| return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); |
| } |
| |
| /// SelectAddrImm - Returns true if the address N can be represented by |
| /// a base register plus a signed 16-bit displacement [r+imm]. |
| /// The last parameter \p 0 means D form has no requirment for 16 bit signed |
| /// displacement. |
| bool SelectAddrImm(SDValue N, SDValue &Disp, |
| SDValue &Base) { |
| return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0); |
| } |
| |
| /// SelectAddrImmX4 - Returns true if the address N can be represented by |
| /// a base register plus a signed 16-bit displacement that is a multiple of |
| /// 4 (last parameter). Suitable for use by STD and friends. |
| bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { |
| return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4); |
| } |
| |
| /// SelectAddrImmX16 - Returns true if the address N can be represented by |
| /// a base register plus a signed 16-bit displacement that is a multiple of |
| /// 16(last parameter). Suitable for use by STXV and friends. |
| bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { |
| return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16); |
| } |
| |
| // Select an address into a single register. |
| bool SelectAddr(SDValue N, SDValue &Base) { |
| Base = N; |
| return true; |
| } |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. It is always correct to compute the value into |
| /// a register. The case of adding a (possibly relocatable) constant to a |
| /// register can be improved, but it is wrong to substitute Reg+Reg for |
| /// Reg in an asm, because the load or store opcode would have to change. |
| bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) override { |
| switch(ConstraintID) { |
| default: |
| errs() << "ConstraintID: " << ConstraintID << "\n"; |
| llvm_unreachable("Unexpected asm memory constraint"); |
| case InlineAsm::Constraint_es: |
| case InlineAsm::Constraint_m: |
| case InlineAsm::Constraint_o: |
| case InlineAsm::Constraint_Q: |
| case InlineAsm::Constraint_Z: |
| case InlineAsm::Constraint_Zy: |
| // We need to make sure that this one operand does not end up in r0 |
| // (because we might end up lowering this as 0(%op)). |
| const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); |
| const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); |
| SDLoc dl(Op); |
| SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); |
| SDValue NewOp = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, |
| dl, Op.getValueType(), |
| Op, RC), 0); |
| |
| OutOps.push_back(NewOp); |
| return false; |
| } |
| return true; |
| } |
| |
| void InsertVRSaveCode(MachineFunction &MF); |
| |
| StringRef getPassName() const override { |
| return "PowerPC DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "PPCGenDAGISel.inc" |
| |
| private: |
| bool trySETCC(SDNode *N); |
| |
| void PeepholePPC64(); |
| void PeepholePPC64ZExt(); |
| void PeepholeCROps(); |
| |
| SDValue combineToCMPB(SDNode *N); |
| void foldBoolExts(SDValue &Res, SDNode *&N); |
| |
| bool AllUsersSelectZero(SDNode *N); |
| void SwapAllSelectUsers(SDNode *N); |
| |
| bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; |
| void transferMemOperands(SDNode *N, SDNode *Result); |
| }; |
| |
| } // end anonymous namespace |
| |
| /// InsertVRSaveCode - Once the entire function has been instruction selected, |
| /// all virtual registers are created and all machine instructions are built, |
| /// check to see if we need to save/restore VRSAVE. If so, do it. |
| void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { |
| // Check to see if this function uses vector registers, which means we have to |
| // save and restore the VRSAVE register and update it with the regs we use. |
| // |
| // In this case, there will be virtual registers of vector type created |
| // by the scheduler. Detect them now. |
| bool HasVectorVReg = false; |
| for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = Register::index2VirtReg(i); |
| if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { |
| HasVectorVReg = true; |
| break; |
| } |
| } |
| if (!HasVectorVReg) return; // nothing to do. |
| |
| // If we have a vector register, we want to emit code into the entry and exit |
| // blocks to save and restore the VRSAVE register. We do this here (instead |
| // of marking all vector instructions as clobbering VRSAVE) for two reasons: |
| // |
| // 1. This (trivially) reduces the load on the register allocator, by not |
| // having to represent the live range of the VRSAVE register. |
| // 2. This (more significantly) allows us to create a temporary virtual |
| // register to hold the saved VRSAVE value, allowing this temporary to be |
| // register allocated, instead of forcing it to be spilled to the stack. |
| |
| // Create two vregs - one to hold the VRSAVE register that is live-in to the |
| // function and one for the value after having bits or'd into it. |
| Register InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| Register UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| |
| const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); |
| MachineBasicBlock &EntryBB = *Fn.begin(); |
| DebugLoc dl; |
| // Emit the following code into the entry block: |
| // InVRSAVE = MFVRSAVE |
| // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE |
| // MTVRSAVE UpdatedVRSAVE |
| MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point |
| BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); |
| BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), |
| UpdatedVRSAVE).addReg(InVRSAVE); |
| BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); |
| |
| // Find all return blocks, outputting a restore in each epilog. |
| for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { |
| if (BB->isReturnBlock()) { |
| IP = BB->end(); --IP; |
| |
| // Skip over all terminator instructions, which are part of the return |
| // sequence. |
| MachineBasicBlock::iterator I2 = IP; |
| while (I2 != BB->begin() && (--I2)->isTerminator()) |
| IP = I2; |
| |
| // Emit: MTVRSAVE InVRSave |
| BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); |
| } |
| } |
| } |
| |
| /// getGlobalBaseReg - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { |
| if (!GlobalBaseReg) { |
| const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = MF->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| const Module *M = MF->getFunction().getParent(); |
| DebugLoc dl; |
| |
| if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { |
| if (PPCSubTarget->isTargetELF()) { |
| GlobalBaseReg = PPC::R30; |
| if (!PPCSubTarget->isSecurePlt() && |
| M->getPICLevel() == PICLevel::SmallPIC) { |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); |
| } else { |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| BuildMI(FirstMBB, MBBI, dl, |
| TII.get(PPC::UpdateGBR), GlobalBaseReg) |
| .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); |
| MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); |
| } |
| } else { |
| GlobalBaseReg = |
| RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| } |
| } else { |
| // We must ensure that this sequence is dominated by the prologue. |
| // FIXME: This is a bit of a big hammer since we don't get the benefits |
| // of shrink-wrapping whenever we emit this instruction. Considering |
| // this is used in any function where we emit a jump table, this may be |
| // a significant limitation. We should consider inserting this in the |
| // block where it is used and then commoning this sequence up if it |
| // appears in multiple places. |
| // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of |
| // MovePCtoLR8. |
| MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); |
| GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); |
| } |
| } |
| return CurDAG->getRegister(GlobalBaseReg, |
| PPCLowering->getPointerTy(CurDAG->getDataLayout())) |
| .getNode(); |
| } |
| |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
| /// operand. If so Imm will receive the 32-bit value. |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
| if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { |
| Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// isInt64Immediate - This method tests to see if the node is a 64-bit constant |
| /// operand. If so Imm will receive the 64-bit value. |
| static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { |
| if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { |
| Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| // isInt32Immediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
| return isInt32Immediate(N.getNode(), Imm); |
| } |
| |
| /// isInt64Immediate - This method tests to see if the value is a 64-bit |
| /// constant operand. If so Imm will receive the 64-bit value. |
| static bool isInt64Immediate(SDValue N, uint64_t &Imm) { |
| return isInt64Immediate(N.getNode(), Imm); |
| } |
| |
| static unsigned getBranchHint(unsigned PCC, |
| const FunctionLoweringInfo &FuncInfo, |
| const SDValue &DestMBB) { |
| assert(isa<BasicBlockSDNode>(DestMBB)); |
| |
| if (!FuncInfo.BPI) return PPC::BR_NO_HINT; |
| |
| const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); |
| const Instruction *BBTerm = BB->getTerminator(); |
| |
| if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; |
| |
| const BasicBlock *TBB = BBTerm->getSuccessor(0); |
| const BasicBlock *FBB = BBTerm->getSuccessor(1); |
| |
| auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); |
| auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); |
| |
| // We only want to handle cases which are easy to predict at static time, e.g. |
| // C++ throw statement, that is very likely not taken, or calling never |
| // returned function, e.g. stdlib exit(). So we set Threshold to filter |
| // unwanted cases. |
| // |
| // Below is LLVM branch weight table, we only want to handle case 1, 2 |
| // |
| // Case Taken:Nontaken Example |
| // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), |
| // 2. Invoke-terminating 1:1048575 |
| // 3. Coldblock 4:64 __builtin_expect |
| // 4. Loop Branch 124:4 For loop |
| // 5. PH/ZH/FPH 20:12 |
| const uint32_t Threshold = 10000; |
| |
| if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) |
| return PPC::BR_NO_HINT; |
| |
| LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() |
| << "::" << BB->getName() << "'\n" |
| << " -> " << TBB->getName() << ": " << TProb << "\n" |
| << " -> " << FBB->getName() << ": " << FProb << "\n"); |
| |
| const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); |
| |
| // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, |
| // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock |
| if (BBDN->getBasicBlock()->getBasicBlock() != TBB) |
| std::swap(TProb, FProb); |
| |
| return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; |
| } |
| |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| // opcode and that it has a immediate integer right operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| return N->getOpcode() == Opc |
| && isInt32Immediate(N->getOperand(1).getNode(), Imm); |
| } |
| |
| void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { |
| SDLoc dl(SN); |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); |
| unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; |
| if (SN->hasOneUse()) |
| CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, |
| getSmallIPtrImm(Offset, dl)); |
| else |
| ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, |
| getSmallIPtrImm(Offset, dl))); |
| } |
| |
| bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, |
| bool isShiftMask, unsigned &SH, |
| unsigned &MB, unsigned &ME) { |
| // Don't even go down this path for i64, since different logic will be |
| // necessary for rldicl/rldicr/rldimi. |
| if (N->getValueType(0) != MVT::i32) |
| return false; |
| |
| unsigned Shift = 32; |
| unsigned Indeterminant = ~0; // bit mask marking indeterminant results |
| unsigned Opcode = N->getOpcode(); |
| if (N->getNumOperands() != 2 || |
| !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) |
| return false; |
| |
| if (Opcode == ISD::SHL) { |
| // apply shift left to mask if it comes first |
| if (isShiftMask) Mask = Mask << Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu << Shift); |
| } else if (Opcode == ISD::SRL) { |
| // apply shift right to mask if it comes first |
| if (isShiftMask) Mask = Mask >> Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu >> Shift); |
| // adjust for the left rotate |
| Shift = 32 - Shift; |
| } else if (Opcode == ISD::ROTL) { |
| Indeterminant = 0; |
| } else { |
| return false; |
| } |
| |
| // if the mask doesn't intersect any Indeterminant bits |
| if (Mask && !(Mask & Indeterminant)) { |
| SH = Shift & 31; |
| // make sure the mask is still a mask (wrap arounds may not be) |
| return isRunOfOnes(Mask, MB, ME); |
| } |
| return false; |
| } |
| |
| bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { |
| SDValue Base = ST->getBasePtr(); |
| if (Base.getOpcode() != PPCISD::ADD_TLS) |
| return false; |
| SDValue Offset = ST->getOffset(); |
| if (!Offset.isUndef()) |
| return false; |
| |
| SDLoc dl(ST); |
| EVT MemVT = ST->getMemoryVT(); |
| EVT RegVT = ST->getValue().getValueType(); |
| |
| unsigned Opcode; |
| switch (MemVT.getSimpleVT().SimpleTy) { |
| default: |
| return false; |
| case MVT::i8: { |
| Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; |
| break; |
| } |
| case MVT::i16: { |
| Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; |
| break; |
| } |
| case MVT::i32: { |
| Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; |
| break; |
| } |
| case MVT::i64: { |
| Opcode = PPC::STDXTLS; |
| break; |
| } |
| } |
| SDValue Chain = ST->getChain(); |
| SDVTList VTs = ST->getVTList(); |
| SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), |
| Chain}; |
| SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
| transferMemOperands(ST, MN); |
| ReplaceNode(ST, MN); |
| return true; |
| } |
| |
| bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { |
| SDValue Base = LD->getBasePtr(); |
| if (Base.getOpcode() != PPCISD::ADD_TLS) |
| return false; |
| SDValue Offset = LD->getOffset(); |
| if (!Offset.isUndef()) |
| return false; |
| |
| SDLoc dl(LD); |
| EVT MemVT = LD->getMemoryVT(); |
| EVT RegVT = LD->getValueType(0); |
| unsigned Opcode; |
| switch (MemVT.getSimpleVT().SimpleTy) { |
| default: |
| return false; |
| case MVT::i8: { |
| Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; |
| break; |
| } |
| case MVT::i16: { |
| Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; |
| break; |
| } |
| case MVT::i32: { |
| Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; |
| break; |
| } |
| case MVT::i64: { |
| Opcode = PPC::LDXTLS; |
| break; |
| } |
| } |
| SDValue Chain = LD->getChain(); |
| SDVTList VTs = LD->getVTList(); |
| SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; |
| SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
| transferMemOperands(LD, MN); |
| ReplaceNode(LD, MN); |
| return true; |
| } |
| |
| /// Turn an or of two masked values into the rotate left word immediate then |
| /// mask insert (rlwimi) instruction. |
| bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| SDLoc dl(N); |
| |
| KnownBits LKnown = CurDAG->computeKnownBits(Op0); |
| KnownBits RKnown = CurDAG->computeKnownBits(Op1); |
| |
| unsigned TargetMask = LKnown.Zero.getZExtValue(); |
| unsigned InsertMask = RKnown.Zero.getZExtValue(); |
| |
| if ((TargetMask | InsertMask) == 0xFFFFFFFF) { |
| unsigned Op0Opc = Op0.getOpcode(); |
| unsigned Op1Opc = Op1.getOpcode(); |
| unsigned Value, SH = 0; |
| TargetMask = ~TargetMask; |
| InsertMask = ~InsertMask; |
| |
| // If the LHS has a foldable shift and the RHS does not, then swap it to the |
| // RHS so that we can fold the shift into the insert. |
| if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { |
| if (Op0.getOperand(0).getOpcode() == ISD::SHL || |
| Op0.getOperand(0).getOpcode() == ISD::SRL) { |
| if (Op1.getOperand(0).getOpcode() != ISD::SHL && |
| Op1.getOperand(0).getOpcode() != ISD::SRL) { |
| std::swap(Op0, Op1); |
| std::swap(Op0Opc, Op1Opc); |
| std::swap(TargetMask, InsertMask); |
| } |
| } |
| } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { |
| if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && |
| Op1.getOperand(0).getOpcode() != ISD::SRL) { |
| std::swap(Op0, Op1); |
| std::swap(Op0Opc, Op1Opc); |
| std::swap(TargetMask, InsertMask); |
| } |
| } |
| |
| unsigned MB, ME; |
| if (isRunOfOnes(InsertMask, MB, ME)) { |
| if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && |
| isInt32Immediate(Op1.getOperand(1), Value)) { |
| Op1 = Op1.getOperand(0); |
| SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; |
| } |
| if (Op1Opc == ISD::AND) { |
| // The AND mask might not be a constant, and we need to make sure that |
| // if we're going to fold the masking with the insert, all bits not |
| // know to be zero in the mask are known to be one. |
| KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); |
| bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); |
| |
| unsigned SHOpc = Op1.getOperand(0).getOpcode(); |
| if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && |
| isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { |
| // Note that Value must be in range here (less than 32) because |
| // otherwise there would not be any bits set in InsertMask. |
| Op1 = Op1.getOperand(0).getOperand(0); |
| SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; |
| } |
| } |
| |
| SH &= 31; |
| SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), |
| getI32Imm(ME, dl) }; |
| ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Predict the number of instructions that would be generated by calling |
| // selectI64Imm(N). |
| static unsigned selectI64ImmInstrCountDirect(int64_t Imm) { |
| // Assume no remaining bits. |
| unsigned Remainder = 0; |
| // Assume no shift required. |
| unsigned Shift = 0; |
| |
| // If it can't be represented as a 32 bit value. |
| if (!isInt<32>(Imm)) { |
| Shift = countTrailingZeros<uint64_t>(Imm); |
| int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; |
| |
| // If the shifted value fits 32 bits. |
| if (isInt<32>(ImmSh)) { |
| // Go with the shifted value. |
| Imm = ImmSh; |
| } else { |
| // Still stuck with a 64 bit value. |
| Remainder = Imm; |
| Shift = 32; |
| Imm >>= 32; |
| } |
| } |
| |
| // Intermediate operand. |
| unsigned Result = 0; |
| |
| // Handle first 32 bits. |
| unsigned Lo = Imm & 0xFFFF; |
| |
| // Simple value. |
| if (isInt<16>(Imm)) { |
| // Just the Lo bits. |
| ++Result; |
| } else if (Lo) { |
| // Handle the Hi bits and Lo bits. |
| Result += 2; |
| } else { |
| // Just the Hi bits. |
| ++Result; |
| } |
| |
| // If no shift, we're done. |
| if (!Shift) return Result; |
| |
| // If Hi word == Lo word, |
| // we can use rldimi to insert the Lo word into Hi word. |
| if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { |
| ++Result; |
| return Result; |
| } |
| |
| // Shift for next step if the upper 32-bits were not zero. |
| if (Imm) |
| ++Result; |
| |
| // Add in the last bits as required. |
| if ((Remainder >> 16) & 0xFFFF) |
| ++Result; |
| if (Remainder & 0xFFFF) |
| ++Result; |
| |
| return Result; |
| } |
| |
| static uint64_t Rot64(uint64_t Imm, unsigned R) { |
| return (Imm << R) | (Imm >> (64 - R)); |
| } |
| |
| static unsigned selectI64ImmInstrCount(int64_t Imm) { |
| unsigned Count = selectI64ImmInstrCountDirect(Imm); |
| |
| // If the instruction count is 1 or 2, we do not need further analysis |
| // since rotate + load constant requires at least 2 instructions. |
| if (Count <= 2) |
| return Count; |
| |
| for (unsigned r = 1; r < 63; ++r) { |
| uint64_t RImm = Rot64(Imm, r); |
| unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; |
| Count = std::min(Count, RCount); |
| |
| // See comments in selectI64Imm for an explanation of the logic below. |
| unsigned LS = findLastSet(RImm); |
| if (LS != r-1) |
| continue; |
| |
| uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); |
| uint64_t RImmWithOnes = RImm | OnesMask; |
| |
| RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; |
| Count = std::min(Count, RCount); |
| } |
| |
| return Count; |
| } |
| |
| // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount |
| // (above) needs to be kept in sync with this function. |
| static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, |
| int64_t Imm) { |
| // Assume no remaining bits. |
| unsigned Remainder = 0; |
| // Assume no shift required. |
| unsigned Shift = 0; |
| |
| // If it can't be represented as a 32 bit value. |
| if (!isInt<32>(Imm)) { |
| Shift = countTrailingZeros<uint64_t>(Imm); |
| int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; |
| |
| // If the shifted value fits 32 bits. |
| if (isInt<32>(ImmSh)) { |
| // Go with the shifted value. |
| Imm = ImmSh; |
| } else { |
| // Still stuck with a 64 bit value. |
| Remainder = Imm; |
| Shift = 32; |
| Imm >>= 32; |
| } |
| } |
| |
| // Intermediate operand. |
| SDNode *Result; |
| |
| // Handle first 32 bits. |
| unsigned Lo = Imm & 0xFFFF; |
| unsigned Hi = (Imm >> 16) & 0xFFFF; |
| |
| auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| }; |
| |
| // Simple value. |
| if (isInt<16>(Imm)) { |
| uint64_t SextImm = SignExtend64(Lo, 16); |
| SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); |
| // Just the Lo bits. |
| Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); |
| } else if (Lo) { |
| // Handle the Hi bits. |
| unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; |
| Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); |
| // And Lo bits. |
| Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| SDValue(Result, 0), getI32Imm(Lo)); |
| } else { |
| // Just the Hi bits. |
| Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); |
| } |
| |
| // If no shift, we're done. |
| if (!Shift) return Result; |
| |
| // If Hi word == Lo word, |
| // we can use rldimi to insert the Lo word into Hi word. |
| if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { |
| SDValue Ops[] = |
| { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; |
| return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); |
| } |
| |
| // Shift for next step if the upper 32-bits were not zero. |
| if (Imm) { |
| Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, |
| SDValue(Result, 0), |
| getI32Imm(Shift), |
| getI32Imm(63 - Shift)); |
| } |
| |
| // Add in the last bits as required. |
| if ((Hi = (Remainder >> 16) & 0xFFFF)) { |
| Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, |
| SDValue(Result, 0), getI32Imm(Hi)); |
| } |
| if ((Lo = Remainder & 0xFFFF)) { |
| Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| SDValue(Result, 0), getI32Imm(Lo)); |
| } |
| |
| return Result; |
| } |
| |
| static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, |
| int64_t Imm) { |
| unsigned Count = selectI64ImmInstrCountDirect(Imm); |
| |
| // If the instruction count is 1 or 2, we do not need further analysis |
| // since rotate + load constant requires at least 2 instructions. |
| if (Count <= 2) |
| return selectI64ImmDirect(CurDAG, dl, Imm); |
| |
| unsigned RMin = 0; |
| |
| int64_t MatImm; |
| unsigned MaskEnd; |
| |
| for (unsigned r = 1; r < 63; ++r) { |
| uint64_t RImm = Rot64(Imm, r); |
| unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; |
| if (RCount < Count) { |
| Count = RCount; |
| RMin = r; |
| MatImm = RImm; |
| MaskEnd = 63; |
| } |
| |
| // If the immediate to generate has many trailing zeros, it might be |
| // worthwhile to generate a rotated value with too many leading ones |
| // (because that's free with li/lis's sign-extension semantics), and then |
| // mask them off after rotation. |
| |
| unsigned LS = findLastSet(RImm); |
| // We're adding (63-LS) higher-order ones, and we expect to mask them off |
| // after performing the inverse rotation by (64-r). So we need that: |
| // 63-LS == 64-r => LS == r-1 |
| if (LS != r-1) |
| continue; |
| |
| uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); |
| uint64_t RImmWithOnes = RImm | OnesMask; |
| |
| RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; |
| if (RCount < Count) { |
| Count = RCount; |
| RMin = r; |
| MatImm = RImmWithOnes; |
| MaskEnd = LS; |
| } |
| } |
| |
| if (!RMin) |
| return selectI64ImmDirect(CurDAG, dl, Imm); |
| |
| auto getI32Imm = [CurDAG, dl](unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| }; |
| |
| SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0); |
| return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, |
| getI32Imm(64 - RMin), getI32Imm(MaskEnd)); |
| } |
| |
| static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { |
| unsigned MaxTruncation = 0; |
| // Cannot use range-based for loop here as we need the actual use (i.e. we |
| // need the operand number corresponding to the use). A range-based for |
| // will unbox the use and provide an SDNode*. |
| for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); |
| Use != UseEnd; ++Use) { |
| unsigned Opc = |
| Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); |
| switch (Opc) { |
| default: return 0; |
| case ISD::TRUNCATE: |
| if (Use->isMachineOpcode()) |
| return 0; |
| MaxTruncation = |
| std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); |
| continue; |
| case ISD::STORE: { |
| if (Use->isMachineOpcode()) |
| return 0; |
| StoreSDNode *STN = cast<StoreSDNode>(*Use); |
| unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); |
| if (MemVTSize == 64 || Use.getOperandNo() != 0) |
| return 0; |
| MaxTruncation = std::max(MaxTruncation, MemVTSize); |
| continue; |
| } |
| case PPC::STW8: |
| case PPC::STWX8: |
| case PPC::STWU8: |
| case PPC::STWUX8: |
| if (Use.getOperandNo() != 0) |
| return 0; |
| MaxTruncation = std::max(MaxTruncation, 32u); |
| continue; |
| case PPC::STH8: |
| case PPC::STHX8: |
| case PPC::STHU8: |
| case PPC::STHUX8: |
| if (Use.getOperandNo() != 0) |
| return 0; |
| MaxTruncation = std::max(MaxTruncation, 16u); |
| continue; |
| case PPC::STB8: |
| case PPC::STBX8: |
| case PPC::STBU8: |
| case PPC::STBUX8: |
| if (Use.getOperandNo() != 0) |
| return 0; |
| MaxTruncation = std::max(MaxTruncation, 8u); |
| continue; |
| } |
| } |
| return MaxTruncation; |
| } |
| |
| // Select a 64-bit constant. |
| static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { |
| SDLoc dl(N); |
| |
| // Get 64 bit value. |
| int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { |
| uint64_t SextImm = SignExtend64(Imm, MinSize); |
| SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); |
| if (isInt<16>(SextImm)) |
| return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); |
| } |
| return selectI64Imm(CurDAG, dl, Imm); |
| } |
| |
| namespace { |
| |
| class BitPermutationSelector { |
| struct ValueBit { |
| SDValue V; |
| |
| // The bit number in the value, using a convention where bit 0 is the |
| // lowest-order bit. |
| unsigned Idx; |
| |
| // ConstZero means a bit we need to mask off. |
| // Variable is a bit comes from an input variable. |
| // VariableKnownToBeZero is also a bit comes from an input variable, |
| // but it is known to be already zero. So we do not need to mask them. |
| enum Kind { |
| ConstZero, |
| Variable, |
| VariableKnownToBeZero |
| } K; |
| |
| ValueBit(SDValue V, unsigned I, Kind K = Variable) |
| : V(V), Idx(I), K(K) {} |
| ValueBit(Kind K = Variable) |
| : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} |
| |
| bool isZero() const { |
| return K == ConstZero || K == VariableKnownToBeZero; |
| } |
| |
| bool hasValue() const { |
| return K == Variable || K == VariableKnownToBeZero; |
| } |
| |
| SDValue getValue() const { |
| assert(hasValue() && "Cannot get the value of a constant bit"); |
| return V; |
| } |
| |
| unsigned getValueBitIndex() const { |
| assert(hasValue() && "Cannot get the value bit index of a constant bit"); |
| return Idx; |
| } |
| }; |
| |
| // A bit group has the same underlying value and the same rotate factor. |
| struct BitGroup { |
| SDValue V; |
| unsigned RLAmt; |
| unsigned StartIdx, EndIdx; |
| |
| // This rotation amount assumes that the lower 32 bits of the quantity are |
| // replicated in the high 32 bits by the rotation operator (which is done |
| // by rlwinm and friends in 64-bit mode). |
| bool Repl32; |
| // Did converting to Repl32 == true change the rotation factor? If it did, |
| // it decreased it by 32. |
| bool Repl32CR; |
| // Was this group coalesced after setting Repl32 to true? |
| bool Repl32Coalesced; |
| |
| BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) |
| : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), |
| Repl32Coalesced(false) { |
| LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R |
| << " [" << S << ", " << E << "]\n"); |
| } |
| }; |
| |
| // Information on each (Value, RLAmt) pair (like the number of groups |
| // associated with each) used to choose the lowering method. |
| struct ValueRotInfo { |
| SDValue V; |
| unsigned RLAmt = std::numeric_limits<unsigned>::max(); |
| unsigned NumGroups = 0; |
| unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); |
| bool Repl32 = false; |
| |
| ValueRotInfo() = default; |
| |
| // For sorting (in reverse order) by NumGroups, and then by |
| // FirstGroupStartIdx. |
| bool operator < (const ValueRotInfo &Other) const { |
| // We need to sort so that the non-Repl32 come first because, when we're |
| // doing masking, the Repl32 bit groups might be subsumed into the 64-bit |
| // masking operation. |
| if (Repl32 < Other.Repl32) |
| return true; |
| else if (Repl32 > Other.Repl32) |
| return false; |
| else if (NumGroups > Other.NumGroups) |
| return true; |
| else if (NumGroups < Other.NumGroups) |
| return false; |
| else if (RLAmt == 0 && Other.RLAmt != 0) |
| return true; |
| else if (RLAmt != 0 && Other.RLAmt == 0) |
| return false; |
| else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) |
| return true; |
| return false; |
| } |
| }; |
| |
| using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; |
| using ValueBitsMemoizer = |
| DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; |
| ValueBitsMemoizer Memoizer; |
| |
| // Return a pair of bool and a SmallVector pointer to a memoization entry. |
| // The bool is true if something interesting was deduced, otherwise if we're |
| // providing only a generic representation of V (or something else likewise |
| // uninteresting for instruction selection) through the SmallVector. |
| std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, |
| unsigned NumBits) { |
| auto &ValueEntry = Memoizer[V]; |
| if (ValueEntry) |
| return std::make_pair(ValueEntry->first, &ValueEntry->second); |
| ValueEntry.reset(new ValueBitsMemoizedValue()); |
| bool &Interesting = ValueEntry->first; |
| SmallVector<ValueBit, 64> &Bits = ValueEntry->second; |
| Bits.resize(NumBits); |
| |
| switch (V.getOpcode()) { |
| default: break; |
| case ISD::ROTL: |
| if (isa<ConstantSDNode>(V.getOperand(1))) { |
| unsigned RotAmt = V.getConstantOperandVal(1); |
| |
| const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| |
| for (unsigned i = 0; i < NumBits; ++i) |
| Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; |
| |
| return std::make_pair(Interesting = true, &Bits); |
| } |
| break; |
| case ISD::SHL: |
| if (isa<ConstantSDNode>(V.getOperand(1))) { |
| unsigned ShiftAmt = V.getConstantOperandVal(1); |
| |
| const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| |
| for (unsigned i = ShiftAmt; i < NumBits; ++i) |
| Bits[i] = LHSBits[i - ShiftAmt]; |
| |
| for (unsigned i = 0; i < ShiftAmt; ++i) |
| Bits[i] = ValueBit(ValueBit::ConstZero); |
| |
| return std::make_pair(Interesting = true, &Bits); |
| } |
| break; |
| case ISD::SRL: |
| if (isa<ConstantSDNode>(V.getOperand(1))) { |
| unsigned ShiftAmt = V.getConstantOperandVal(1); |
| |
| const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| |
| for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) |
| Bits[i] = LHSBits[i + ShiftAmt]; |
| |
| for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) |
| Bits[i] = ValueBit(ValueBit::ConstZero); |
| |
| return std::make_pair(Interesting = true, &Bits); |
| } |
| break; |
| case ISD::AND: |
| if (isa<ConstantSDNode>(V.getOperand(1))) { |
| uint64_t Mask = V.getConstantOperandVal(1); |
| |
| const SmallVector<ValueBit, 64> *LHSBits; |
| // Mark this as interesting, only if the LHS was also interesting. This |
| // prevents the overall procedure from matching a single immediate 'and' |
| // (which is non-optimal because such an and might be folded with other |
| // things if we don't select it here). |
| std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); |
| |
| for (unsigned i = 0; i < NumBits; ++i) |
| if (((Mask >> i) & 1) == 1) |
| Bits[i] = (*LHSBits)[i]; |
| else { |
| // AND instruction masks this bit. If the input is already zero, |
| // we have nothing to do here. Otherwise, make the bit ConstZero. |
| if ((*LHSBits)[i].isZero()) |
| Bits[i] = (*LHSBits)[i]; |
| else |
| Bits[i] = ValueBit(ValueBit::ConstZero); |
| } |
| |
| return std::make_pair(Interesting, &Bits); |
| } |
| break; |
| case ISD::OR: { |
| const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; |
| const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; |
| |
| bool AllDisjoint = true; |
| SDValue LastVal = SDValue(); |
| unsigned LastIdx = 0; |
| for (unsigned i = 0; i < NumBits; ++i) { |
| if (LHSBits[i].isZero() && RHSBits[i].isZero()) { |
| // If both inputs are known to be zero and one is ConstZero and |
| // another is VariableKnownToBeZero, we can select whichever |
| // we like. To minimize the number of bit groups, we select |
| // VariableKnownToBeZero if this bit is the next bit of the same |
| // input variable from the previous bit. Otherwise, we select |
| // ConstZero. |
| if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && |
| LHSBits[i].getValueBitIndex() == LastIdx + 1) |
| Bits[i] = LHSBits[i]; |
| else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && |
| RHSBits[i].getValueBitIndex() == LastIdx + 1) |
| Bits[i] = RHSBits[i]; |
| else |
| Bits[i] = ValueBit(ValueBit::ConstZero); |
| } |
| else if (LHSBits[i].isZero()) |
| Bits[i] = RHSBits[i]; |
| else if (RHSBits[i].isZero()) |
| Bits[i] = LHSBits[i]; |
| else { |
| AllDisjoint = false; |
| break; |
| } |
| // We remember the value and bit index of this bit. |
| if (Bits[i].hasValue()) { |
| LastVal = Bits[i].getValue(); |
| LastIdx = Bits[i].getValueBitIndex(); |
| } |
| else { |
| if (LastVal) LastVal = SDValue(); |
| LastIdx = 0; |
| } |
| } |
| |
| if (!AllDisjoint) |
| break; |
| |
| return std::make_pair(Interesting = true, &Bits); |
| } |
| case ISD::ZERO_EXTEND: { |
| // We support only the case with zero extension from i32 to i64 so far. |
| if (V.getValueType() != MVT::i64 || |
| V.getOperand(0).getValueType() != MVT::i32) |
| break; |
| |
| const SmallVector<ValueBit, 64> *LHSBits; |
| const unsigned NumOperandBits = 32; |
| std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), |
| NumOperandBits); |
| |
| for (unsigned i = 0; i < NumOperandBits; ++i) |
| Bits[i] = (*LHSBits)[i]; |
| |
| for (unsigned i = NumOperandBits; i < NumBits; ++i) |
| Bits[i] = ValueBit(ValueBit::ConstZero); |
| |
| return std::make_pair(Interesting, &Bits); |
| } |
| case ISD::TRUNCATE: { |
| EVT FromType = V.getOperand(0).getValueType(); |
| EVT ToType = V.getValueType(); |
| // We support only the case with truncate from i64 to i32. |
| if (FromType != MVT::i64 || ToType != MVT::i32) |
| break; |
| const unsigned NumAllBits = FromType.getSizeInBits(); |
| SmallVector<ValueBit, 64> *InBits; |
| std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), |
| NumAllBits); |
| const unsigned NumValidBits = ToType.getSizeInBits(); |
| |
| // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. |
| // So, we cannot include this truncate. |
| bool UseUpper32bit = false; |
| for (unsigned i = 0; i < NumValidBits; ++i) |
| if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { |
| UseUpper32bit = true; |
| break; |
| } |
| if (UseUpper32bit) |
| break; |
| |
| for (unsigned i = 0; i < NumValidBits; ++i) |
| Bits[i] = (*InBits)[i]; |
| |
| return std::make_pair(Interesting, &Bits); |
| } |
| case ISD::AssertZext: { |
| // For AssertZext, we look through the operand and |
| // mark the bits known to be zero. |
| const SmallVector<ValueBit, 64> *LHSBits; |
| std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), |
| NumBits); |
| |
| EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); |
| const unsigned NumValidBits = FromType.getSizeInBits(); |
| for (unsigned i = 0; i < NumValidBits; ++i) |
| Bits[i] = (*LHSBits)[i]; |
| |
| // These bits are known to be zero but the AssertZext may be from a value |
| // that already has some constant zero bits (i.e. from a masking and). |
| for (unsigned i = NumValidBits; i < NumBits; ++i) |
| Bits[i] = (*LHSBits)[i].hasValue() |
| ? ValueBit((*LHSBits)[i].getValue(), |
| (*LHSBits)[i].getValueBitIndex(), |
| ValueBit::VariableKnownToBeZero) |
| : ValueBit(ValueBit::ConstZero); |
| |
| return std::make_pair(Interesting, &Bits); |
| } |
| case ISD::LOAD: |
| LoadSDNode *LD = cast<LoadSDNode>(V); |
| if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { |
| EVT VT = LD->getMemoryVT(); |
| const unsigned NumValidBits = VT.getSizeInBits(); |
| |
| for (unsigned i = 0; i < NumValidBits; ++i) |
| Bits[i] = ValueBit(V, i); |
| |
| // These bits are known to be zero. |
| for (unsigned i = NumValidBits; i < NumBits; ++i) |
| Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); |
| |
| // Zero-extending load itself cannot be optimized. So, it is not |
| // interesting by itself though it gives useful information. |
| return std::make_pair(Interesting = false, &Bits); |
| } |
| break; |
| } |
| |
| for (unsigned i = 0; i < NumBits; ++i) |
| Bits[i] = ValueBit(V, i); |
| |
| return std::make_pair(Interesting = false, &Bits); |
| } |
| |
| // For each value (except the constant ones), compute the left-rotate amount |
| // to get it from its original to final position. |
| void computeRotationAmounts() { |
| NeedMask = false; |
| RLAmt.resize(Bits.size()); |
| for (unsigned i = 0; i < Bits.size(); ++i) |
| if (Bits[i].hasValue()) { |
| unsigned VBI = Bits[i].getValueBitIndex(); |
| if (i >= VBI) |
| RLAmt[i] = i - VBI; |
| else |
| RLAmt[i] = Bits.size() - (VBI - i); |
| } else if (Bits[i].isZero()) { |
| NeedMask = true; |
| RLAmt[i] = UINT32_MAX; |
| } else { |
| llvm_unreachable("Unknown value bit type"); |
| } |
| } |
| |
| // Collect groups of consecutive bits with the same underlying value and |
| // rotation factor. If we're doing late masking, we ignore zeros, otherwise |
| // they break up groups. |
| void collectBitGroups(bool LateMask) { |
| BitGroups.clear(); |
| |
| unsigned LastRLAmt = RLAmt[0]; |
| SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); |
| unsigned LastGroupStartIdx = 0; |
| bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); |
| for (unsigned i = 1; i < Bits.size(); ++i) { |
| unsigned ThisRLAmt = RLAmt[i]; |
| SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); |
| if (LateMask && !ThisValue) { |
| ThisValue = LastValue; |
| ThisRLAmt = LastRLAmt; |
| // If we're doing late masking, then the first bit group always starts |
| // at zero (even if the first bits were zero). |
| if (BitGroups.empty()) |
| LastGroupStartIdx = 0; |
| } |
| |
| // If this bit is known to be zero and the current group is a bit group |
| // of zeros, we do not need to terminate the current bit group even the |
| // Value or RLAmt does not match here. Instead, we terminate this group |
| // when the first non-zero bit appears later. |
| if (IsGroupOfZeros && Bits[i].isZero()) |
| continue; |
| |
| // If this bit has the same underlying value and the same rotate factor as |
| // the last one, then they're part of the same group. |
| if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) |
| // We cannot continue the current group if this bits is not known to |
| // be zero in a bit group of zeros. |
| if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) |
| continue; |
| |
| if (LastValue.getNode()) |
| BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, |
| i-1)); |
| LastRLAmt = ThisRLAmt; |
| LastValue = ThisValue; |
| LastGroupStartIdx = i; |
| IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); |
| } |
| if (LastValue.getNode()) |
| BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, |
| Bits.size()-1)); |
| |
| if (BitGroups.empty()) |
| return; |
| |
| // We might be able to combine the first and last groups. |
| if (BitGroups.size() > 1) { |
| // If the first and last groups are the same, then remove the first group |
| // in favor of the last group, making the ending index of the last group |
| // equal to the ending index of the to-be-removed first group. |
| if (BitGroups[0].StartIdx == 0 && |
| BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && |
| BitGroups[0].V == BitGroups[BitGroups.size()-1].V && |
| BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { |
| LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); |
| BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; |
| BitGroups.erase(BitGroups.begin()); |
| } |
| } |
| } |
| |
| // Take all (SDValue, RLAmt) pairs and sort them by the number of groups |
| // associated with each. If the number of groups are same, we prefer a group |
| // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate |
| // instruction. If there is a degeneracy, pick the one that occurs |
| // first (in the final value). |
| void collectValueRotInfo() { |
| ValueRots.clear(); |
| |
| for (auto &BG : BitGroups) { |
| unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); |
| ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; |
| VRI.V = BG.V; |
| VRI.RLAmt = BG.RLAmt; |
| VRI.Repl32 = BG.Repl32; |
| VRI.NumGroups += 1; |
| VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); |
| } |
| |
| // Now that we've collected the various ValueRotInfo instances, we need to |
| // sort them. |
| ValueRotsVec.clear(); |
| for (auto &I : ValueRots) { |
| ValueRotsVec.push_back(I.second); |
| } |
| llvm::sort(ValueRotsVec); |
| } |
| |
| // In 64-bit mode, rlwinm and friends have a rotation operator that |
| // replicates the low-order 32 bits into the high-order 32-bits. The mask |
| // indices of these instructions can only be in the lower 32 bits, so they |
| // can only represent some 64-bit bit groups. However, when they can be used, |
| // the 32-bit replication can be used to represent, as a single bit group, |
| // otherwise separate bit groups. We'll convert to replicated-32-bit bit |
| // groups when possible. Returns true if any of the bit groups were |
| // converted. |
| void assignRepl32BitGroups() { |
| // If we have bits like this: |
| // |
| // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 |
| // Groups: | RLAmt = 8 | RLAmt = 40 | |
| // |
| // But, making use of a 32-bit operation that replicates the low-order 32 |
| // bits into the high-order 32 bits, this can be one bit group with a RLAmt |
| // of 8. |
| |
| auto IsAllLow32 = [this](BitGroup & BG) { |
| if (BG.StartIdx <= BG.EndIdx) { |
| for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { |
| if (!Bits[i].hasValue()) |
| continue; |
| if (Bits[i].getValueBitIndex() >= 32) |
| return false; |
| } |
| } else { |
| for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { |
| if (!Bits[i].hasValue()) |
| continue; |
| if (Bits[i].getValueBitIndex() >= 32) |
| return false; |
| } |
| for (unsigned i = 0; i <= BG.EndIdx; ++i) { |
| if (!Bits[i].hasValue()) |
| continue; |
| if (Bits[i].getValueBitIndex() >= 32) |
| return false; |
| } |
| } |
| |
| return true; |
| }; |
| |
| for (auto &BG : BitGroups) { |
| // If this bit group has RLAmt of 0 and will not be merged with |
| // another bit group, we don't benefit from Repl32. We don't mark |
| // such group to give more freedom for later instruction selection. |
| if (BG.RLAmt == 0) { |
| auto PotentiallyMerged = [this](BitGroup & BG) { |
| for (auto &BG2 : BitGroups) |
| if (&BG != &BG2 && BG.V == BG2.V && |
| (BG2.RLAmt == 0 || BG2.RLAmt == 32)) |
| return true; |
| return false; |
| }; |
| if (!PotentiallyMerged(BG)) |
| continue; |
| } |
| if (BG.StartIdx < 32 && BG.EndIdx < 32) { |
| if (IsAllLow32(BG)) { |
| if (BG.RLAmt >= 32) { |
| BG.RLAmt -= 32; |
| BG.Repl32CR = true; |
| } |
| |
| BG.Repl32 = true; |
| |
| LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " |
| << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" |
| << BG.StartIdx << ", " << BG.EndIdx << "]\n"); |
| } |
| } |
| } |
| |
| // Now walk through the bit groups, consolidating where possible. |
| for (auto I = BitGroups.begin(); I != BitGroups.end();) { |
| // We might want to remove this bit group by merging it with the previous |
| // group (which might be the ending group). |
| auto IP = (I == BitGroups.begin()) ? |
| std::prev(BitGroups.end()) : std::prev(I); |
| if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && |
| I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { |
| |
| LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " |
| << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" |
| << I->StartIdx << ", " << I->EndIdx |
| << "] with group with range [" << IP->StartIdx << ", " |
| << IP->EndIdx << "]\n"); |
| |
| IP->EndIdx = I->EndIdx; |
| IP->Repl32CR = IP->Repl32CR || I->Repl32CR; |
| IP->Repl32Coalesced = true; |
| I = BitGroups.erase(I); |
| continue; |
| } else { |
| // There is a special case worth handling: If there is a single group |
| // covering the entire upper 32 bits, and it can be merged with both |
| // the next and previous groups (which might be the same group), then |
| // do so. If it is the same group (so there will be only one group in |
| // total), then we need to reverse the order of the range so that it |
| // covers the entire 64 bits. |
| if (I->StartIdx == 32 && I->EndIdx == 63) { |
| assert(std::next(I) == BitGroups.end() && |
| "bit group ends at index 63 but there is another?"); |
| auto IN = BitGroups.begin(); |
| |
| if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && |
| (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && |
| IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && |
| IsAllLow32(*I)) { |
| |
| LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() |
| << " RLAmt = " << I->RLAmt << " [" << I->StartIdx |
| << ", " << I->EndIdx |
| << "] with 32-bit replicated groups with ranges [" |
| << IP->StartIdx << ", " << IP->EndIdx << "] and [" |
| << IN->StartIdx << ", " << IN->EndIdx << "]\n"); |
| |
| if (IP == IN) { |
| // There is only one other group; change it to cover the whole |
| // range (backward, so that it can still be Repl32 but cover the |
| // whole 64-bit range). |
| IP->StartIdx = 31; |
| IP->EndIdx = 30; |
| IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; |
| IP->Repl32Coalesced = true; |
| I = BitGroups.erase(I); |
| } else { |
| // There are two separate groups, one before this group and one |
| // after us (at the beginning). We're going to remove this group, |
| // but also the group at the very beginning. |
| IP->EndIdx = IN->EndIdx; |
| IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; |
| IP->Repl32Coalesced = true; |
| I = BitGroups.erase(I); |
| BitGroups.erase(BitGroups.begin()); |
| } |
| |
| // This must be the last group in the vector (and we might have |
| // just invalidated the iterator above), so break here. |
| break; |
| } |
| } |
| } |
| |
| ++I; |
| } |
| } |
| |
| SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| } |
| |
| uint64_t getZerosMask() { |
| uint64_t Mask = 0; |
| for (unsigned i = 0; i < Bits.size(); ++i) { |
| if (Bits[i].hasValue()) |
| continue; |
| Mask |= (UINT64_C(1) << i); |
| } |
| |
| return ~Mask; |
| } |
| |
| // This method extends an input value to 64 bit if input is 32-bit integer. |
| // While selecting instructions in BitPermutationSelector in 64-bit mode, |
| // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. |
| // In such case, we extend it to 64 bit to be consistent with other values. |
| SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { |
| if (V.getValueSizeInBits() == 64) |
| return V; |
| |
| assert(V.getValueSizeInBits() == 32); |
| SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, |
| MVT::i64), 0); |
| SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, |
| MVT::i64, ImDef, V, |
| SubRegIdx), 0); |
| return ExtVal; |
| } |
| |
| SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { |
| if (V.getValueSizeInBits() == 32) |
| return V; |
| |
| assert(V.getValueSizeInBits() == 64); |
| SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, |
| MVT::i32, V, SubRegIdx), 0); |
| return SubVal; |
| } |
| |
| // Depending on the number of groups for a particular value, it might be |
| // better to rotate, mask explicitly (using andi/andis), and then or the |
| // result. Select this part of the result first. |
| void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { |
| if (BPermRewriterNoMasking) |
| return; |
| |
| for (ValueRotInfo &VRI : ValueRotsVec) { |
| unsigned Mask = 0; |
| for (unsigned i = 0; i < Bits.size(); ++i) { |
| if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) |
| continue; |
| if (RLAmt[i] != VRI.RLAmt) |
| continue; |
| Mask |= (1u << i); |
| } |
| |
| // Compute the masks for andi/andis that would be necessary. |
| unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; |
| assert((ANDIMask != 0 || ANDISMask != 0) && |
| "No set bits in mask for value bit groups"); |
| bool NeedsRotate = VRI.RLAmt != 0; |
| |
| // We're trying to minimize the number of instructions. If we have one |
| // group, using one of andi/andis can break even. If we have three |
| // groups, we can use both andi and andis and break even (to use both |
| // andi and andis we also need to or the results together). We need four |
| // groups if we also need to rotate. To use andi/andis we need to do more |
| // than break even because rotate-and-mask instructions tend to be easier |
| // to schedule. |
| |
| // FIXME: We've biased here against using andi/andis, which is right for |
| // POWER cores, but not optimal everywhere. For example, on the A2, |
| // andi/andis have single-cycle latency whereas the rotate-and-mask |
| // instructions take two cycles, and it would be better to bias toward |
| // andi/andis in break-even cases. |
| |
| unsigned NumAndInsts = (unsigned) NeedsRotate + |
| (unsigned) (ANDIMask != 0) + |
| (unsigned) (ANDISMask != 0) + |
| (unsigned) (ANDIMask != 0 && ANDISMask != 0) + |
| (unsigned) (bool) Res; |
| |
| LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() |
| << " RL: " << VRI.RLAmt << ":" |
| << "\n\t\t\tisel using masking: " << NumAndInsts |
| << " using rotates: " << VRI.NumGroups << "\n"); |
| |
| if (NumAndInsts >= VRI.NumGroups) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); |
| |
| if (InstCnt) *InstCnt += NumAndInsts; |
| |
| SDValue VRot; |
| if (VRI.RLAmt) { |
| SDValue Ops[] = |
| { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), |
| getI32Imm(0, dl), getI32Imm(31, dl) }; |
| VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| Ops), 0); |
| } else { |
| VRot = TruncateToInt32(VRI.V, dl); |
| } |
| |
| SDValue ANDIVal, ANDISVal; |
| if (ANDIMask != 0) |
| ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, |
| VRot, getI32Imm(ANDIMask, dl)), |
| 0); |
| if (ANDISMask != 0) |
| ANDISVal = |
| SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, |
| getI32Imm(ANDISMask, dl)), |
| 0); |
| |
| SDValue TotalVal; |
| if (!ANDIVal) |
| TotalVal = ANDISVal; |
| else if (!ANDISVal) |
| TotalVal = ANDIVal; |
| else |
| TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
| ANDIVal, ANDISVal), 0); |
| |
| if (!Res) |
| Res = TotalVal; |
| else |
| Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
| Res, TotalVal), 0); |
| |
| // Now, remove all groups with this underlying value and rotation |
| // factor. |
| eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
| return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; |
| }); |
| } |
| } |
| |
| // Instruction selection for the 32-bit case. |
| SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { |
| SDLoc dl(N); |
| SDValue Res; |
| |
| if (InstCnt) *InstCnt = 0; |
| |
| // Take care of cases that should use andi/andis first. |
| SelectAndParts32(dl, Res, InstCnt); |
| |
| // If we've not yet selected a 'starting' instruction, and we have no zeros |
| // to fill in, select the (Value, RLAmt) with the highest priority (largest |
| // number of groups), and start with this rotated value. |
| if ((!NeedMask || LateMask) && !Res) { |
| ValueRotInfo &VRI = ValueRotsVec[0]; |
| if (VRI.RLAmt) { |
| if (InstCnt) *InstCnt += 1; |
| SDValue Ops[] = |
| { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), |
| getI32Imm(0, dl), getI32Imm(31, dl) }; |
| Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), |
| 0); |
| } else { |
| Res = TruncateToInt32(VRI.V, dl); |
| } |
| |
| // Now, remove all groups with this underlying value and rotation factor. |
| eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
| return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; |
| }); |
| } |
| |
| if (InstCnt) *InstCnt += BitGroups.size(); |
| |
| // Insert the other groups (one at a time). |
| for (auto &BG : BitGroups) { |
| if (!Res) { |
| SDValue Ops[] = |
| { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), |
| getI32Imm(Bits.size() - BG.EndIdx - 1, dl), |
| getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; |
| Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| } else { |
| SDValue Ops[] = |
| { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), |
| getI32Imm(Bits.size() - BG.EndIdx - 1, dl), |
| getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; |
| Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); |
| } |
| } |
| |
| if (LateMask) { |
| unsigned Mask = (unsigned) getZerosMask(); |
| |
| unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; |
| assert((ANDIMask != 0 || ANDISMask != 0) && |
| "No set bits in zeros mask?"); |
| |
| if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + |
| (unsigned) (ANDISMask != 0) + |
| (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
| |
| SDValue ANDIVal, ANDISVal; |
| if (ANDIMask != 0) |
| ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, |
| Res, getI32Imm(ANDIMask, dl)), |
| 0); |
| if (ANDISMask != 0) |
| ANDISVal = |
| SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, |
| getI32Imm(ANDISMask, dl)), |
| 0); |
| |
| if (!ANDIVal) |
| Res = ANDISVal; |
| else if (!ANDISVal) |
| Res = ANDIVal; |
| else |
| Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, |
| ANDIVal, ANDISVal), 0); |
| } |
| |
| return Res.getNode(); |
| } |
| |
| unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, |
| unsigned MaskStart, unsigned MaskEnd, |
| bool IsIns) { |
| // In the notation used by the instructions, 'start' and 'end' are reversed |
| // because bits are counted from high to low order. |
| unsigned InstMaskStart = 64 - MaskEnd - 1, |
| InstMaskEnd = 64 - MaskStart - 1; |
| |
| if (Repl32) |
| return 1; |
| |
| if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || |
| InstMaskEnd == 63 - RLAmt) |
| return 1; |
| |
| return 2; |
| } |
| |
| // For 64-bit values, not all combinations of rotates and masks are |
| // available. Produce one if it is available. |
| SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, |
| bool Repl32, unsigned MaskStart, unsigned MaskEnd, |
| unsigned *InstCnt = nullptr) { |
| // In the notation used by the instructions, 'start' and 'end' are reversed |
| // because bits are counted from high to low order. |
| unsigned InstMaskStart = 64 - MaskEnd - 1, |
| InstMaskEnd = 64 - MaskStart - 1; |
| |
| if (InstCnt) *InstCnt += 1; |
| |
| if (Repl32) { |
| // This rotation amount assumes that the lower 32 bits of the quantity |
| // are replicated in the high 32 bits by the rotation operator (which is |
| // done by rlwinm and friends). |
| assert(InstMaskStart >= 32 && "Mask cannot start out of range"); |
| assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); |
| SDValue Ops[] = |
| { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, |
| Ops), 0); |
| } |
| |
| if (InstMaskEnd == 63) { |
| SDValue Ops[] = |
| { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| getI32Imm(InstMaskStart, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); |
| } |
| |
| if (InstMaskStart == 0) { |
| SDValue Ops[] = |
| { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| getI32Imm(InstMaskEnd, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); |
| } |
| |
| if (InstMaskEnd == 63 - RLAmt) { |
| SDValue Ops[] = |
| { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| getI32Imm(InstMaskStart, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); |
| } |
| |
| // We cannot do this with a single instruction, so we'll use two. The |
| // problem is that we're not free to choose both a rotation amount and mask |
| // start and end independently. We can choose an arbitrary mask start and |
| // end, but then the rotation amount is fixed. Rotation, however, can be |
| // inverted, and so by applying an "inverse" rotation first, we can get the |
| // desired result. |
| if (InstCnt) *InstCnt += 1; |
| |
| // The rotation mask for the second instruction must be MaskStart. |
| unsigned RLAmt2 = MaskStart; |
| // The first instruction must rotate V so that the overall rotation amount |
| // is RLAmt. |
| unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; |
| if (RLAmt1) |
| V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); |
| return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); |
| } |
| |
| // For 64-bit values, not all combinations of rotates and masks are |
| // available. Produce a rotate-mask-and-insert if one is available. |
| SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, |
| unsigned RLAmt, bool Repl32, unsigned MaskStart, |
| unsigned MaskEnd, unsigned *InstCnt = nullptr) { |
| // In the notation used by the instructions, 'start' and 'end' are reversed |
| // because bits are counted from high to low order. |
| unsigned InstMaskStart = 64 - MaskEnd - 1, |
| InstMaskEnd = 64 - MaskStart - 1; |
| |
| if (InstCnt) *InstCnt += 1; |
| |
| if (Repl32) { |
| // This rotation amount assumes that the lower 32 bits of the quantity |
| // are replicated in the high 32 bits by the rotation operator (which is |
| // done by rlwinm and friends). |
| assert(InstMaskStart >= 32 && "Mask cannot start out of range"); |
| assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); |
| SDValue Ops[] = |
| { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, |
| Ops), 0); |
| } |
| |
| if (InstMaskEnd == 63 - RLAmt) { |
| SDValue Ops[] = |
| { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), |
| getI32Imm(InstMaskStart, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); |
| } |
| |
| // We cannot do this with a single instruction, so we'll use two. The |
| // problem is that we're not free to choose both a rotation amount and mask |
| // start and end independently. We can choose an arbitrary mask start and |
| // end, but then the rotation amount is fixed. Rotation, however, can be |
| // inverted, and so by applying an "inverse" rotation first, we can get the |
| // desired result. |
| if (InstCnt) *InstCnt += 1; |
| |
| // The rotation mask for the second instruction must be MaskStart. |
| unsigned RLAmt2 = MaskStart; |
| // The first instruction must rotate V so that the overall rotation amount |
| // is RLAmt. |
| unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; |
| if (RLAmt1) |
| V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); |
| return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); |
| } |
| |
| void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { |
| if (BPermRewriterNoMasking) |
| return; |
| |
| // The idea here is the same as in the 32-bit version, but with additional |
| // complications from the fact that Repl32 might be true. Because we |
| // aggressively convert bit groups to Repl32 form (which, for small |
| // rotation factors, involves no other change), and then coalesce, it might |
| // be the case that a single 64-bit masking operation could handle both |
| // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 |
| // form allowed coalescing, then we must use a 32-bit rotaton in order to |
| // completely capture the new combined bit group. |
| |
| for (ValueRotInfo &VRI : ValueRotsVec) { |
| uint64_t Mask = 0; |
| |
| // We need to add to the mask all bits from the associated bit groups. |
| // If Repl32 is false, we need to add bits from bit groups that have |
| // Repl32 true, but are trivially convertable to Repl32 false. Such a |
| // group is trivially convertable if it overlaps only with the lower 32 |
| // bits, and the group has not been coalesced. |
| auto MatchingBG = [VRI](const BitGroup &BG) { |
| if (VRI.V != BG.V) |
| return false; |
| |
| unsigned EffRLAmt = BG.RLAmt; |
| if (!VRI.Repl32 && BG.Repl32) { |
| if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && |
| !BG.Repl32Coalesced) { |
| if (BG.Repl32CR) |
| EffRLAmt += 32; |
| } else { |
| return false; |
| } |
| } else if (VRI.Repl32 != BG.Repl32) { |
| return false; |
| } |
| |
| return VRI.RLAmt == EffRLAmt; |
| }; |
| |
| for (auto &BG : BitGroups) { |
| if (!MatchingBG(BG)) |
| continue; |
| |
| if (BG.StartIdx <= BG.EndIdx) { |
| for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) |
| Mask |= (UINT64_C(1) << i); |
| } else { |
| for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) |
| Mask |= (UINT64_C(1) << i); |
| for (unsigned i = 0; i <= BG.EndIdx; ++i) |
| Mask |= (UINT64_C(1) << i); |
| } |
| } |
| |
| // We can use the 32-bit andi/andis technique if the mask does not |
| // require any higher-order bits. This can save an instruction compared |
| // to always using the general 64-bit technique. |
| bool Use32BitInsts = isUInt<32>(Mask); |
| // Compute the masks for andi/andis that would be necessary. |
| unsigned ANDIMask = (Mask & UINT16_MAX), |
| ANDISMask = (Mask >> 16) & UINT16_MAX; |
| |
| bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); |
| |
| unsigned NumAndInsts = (unsigned) NeedsRotate + |
| (unsigned) (bool) Res; |
| if (Use32BitInsts) |
| NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + |
| (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
| else |
| NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1; |
| |
| unsigned NumRLInsts = 0; |
| bool FirstBG = true; |
| bool MoreBG = false; |
| for (auto &BG : BitGroups) { |
| if (!MatchingBG(BG)) { |
| MoreBG = true; |
| continue; |
| } |
| NumRLInsts += |
| SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, |
| !FirstBG); |
| FirstBG = false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() |
| << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") |
| << "\n\t\t\tisel using masking: " << NumAndInsts |
| << " using rotates: " << NumRLInsts << "\n"); |
| |
| // When we'd use andi/andis, we bias toward using the rotates (andi only |
| // has a record form, and is cracked on POWER cores). However, when using |
| // general 64-bit constant formation, bias toward the constant form, |
| // because that exposes more opportunities for CSE. |
| if (NumAndInsts > NumRLInsts) |
| continue; |
| // When merging multiple bit groups, instruction or is used. |
| // But when rotate is used, rldimi can inert the rotated value into any |
| // register, so instruction or can be avoided. |
| if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); |
| |
| if (InstCnt) *InstCnt += NumAndInsts; |
| |
| SDValue VRot; |
| // We actually need to generate a rotation if we have a non-zero rotation |
| // factor or, in the Repl32 case, if we care about any of the |
| // higher-order replicated bits. In the latter case, we generate a mask |
| // backward so that it actually includes the entire 64 bits. |
| if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) |
| VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, |
| VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); |
| else |
| VRot = VRI.V; |
| |
| SDValue TotalVal; |
| if (Use32BitInsts) { |
| assert((ANDIMask != 0 || ANDISMask != 0) && |
| "No set bits in mask when using 32-bit ands for 64-bit value"); |
| |
| SDValue ANDIVal, ANDISVal; |
| if (ANDIMask != 0) |
| ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, |
| ExtendToInt64(VRot, dl), |
| getI32Imm(ANDIMask, dl)), |
| 0); |
| if (ANDISMask != 0) |
| ANDISVal = |
| SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, |
| ExtendToInt64(VRot, dl), |
| getI32Imm(ANDISMask, dl)), |
| 0); |
| |
| if (!ANDIVal) |
| TotalVal = ANDISVal; |
| else if (!ANDISVal) |
| TotalVal = ANDIVal; |
| else |
| TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| ExtendToInt64(ANDIVal, dl), ANDISVal), 0); |
| } else { |
| TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); |
| TotalVal = |
| SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, |
| ExtendToInt64(VRot, dl), TotalVal), |
| 0); |
| } |
| |
| if (!Res) |
| Res = TotalVal; |
| else |
| Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| ExtendToInt64(Res, dl), TotalVal), |
| 0); |
| |
| // Now, remove all groups with this underlying value and rotation |
| // factor. |
| eraseMatchingBitGroups(MatchingBG); |
| } |
| } |
| |
| // Instruction selection for the 64-bit case. |
| SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { |
| SDLoc dl(N); |
| SDValue Res; |
| |
| if (InstCnt) *InstCnt = 0; |
| |
| // Take care of cases that should use andi/andis first. |
| SelectAndParts64(dl, Res, InstCnt); |
| |
| // If we've not yet selected a 'starting' instruction, and we have no zeros |
| // to fill in, select the (Value, RLAmt) with the highest priority (largest |
| // number of groups), and start with this rotated value. |
| if ((!NeedMask || LateMask) && !Res) { |
| // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 |
| // groups will come first, and so the VRI representing the largest number |
| // of groups might not be first (it might be the first Repl32 groups). |
| unsigned MaxGroupsIdx = 0; |
| if (!ValueRotsVec[0].Repl32) { |
| for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) |
| if (ValueRotsVec[i].Repl32) { |
| if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) |
| MaxGroupsIdx = i; |
| break; |
| } |
| } |
| |
| ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; |
| bool NeedsRotate = false; |
| if (VRI.RLAmt) { |
| NeedsRotate = true; |
| } else if (VRI.Repl32) { |
| for (auto &BG : BitGroups) { |
| if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || |
| BG.Repl32 != VRI.Repl32) |
| continue; |
| |
| // We don't need a rotate if the bit group is confined to the lower |
| // 32 bits. |
| if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) |
| continue; |
| |
| NeedsRotate = true; |
| break; |
| } |
| } |
| |
| if (NeedsRotate) |
| Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, |
| VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, |
| InstCnt); |
| else |
| Res = VRI.V; |
| |
| // Now, remove all groups with this underlying value and rotation factor. |
| if (Res) |
| eraseMatchingBitGroups([VRI](const BitGroup &BG) { |
| return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && |
| BG.Repl32 == VRI.Repl32; |
| }); |
| } |
| |
| // Because 64-bit rotates are more flexible than inserts, we might have a |
| // preference regarding which one we do first (to save one instruction). |
| if (!Res) |
| for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { |
| if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, |
| false) < |
| SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, |
| true)) { |
| if (I != BitGroups.begin()) { |
| BitGroup BG = *I; |
| BitGroups.erase(I); |
| BitGroups.insert(BitGroups.begin(), BG); |
| } |
| |
| break; |
| } |
| } |
| |
| // Insert the other groups (one at a time). |
| for (auto &BG : BitGroups) { |
| if (!Res) |
| Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, |
| BG.EndIdx, InstCnt); |
| else |
| Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, |
| BG.StartIdx, BG.EndIdx, InstCnt); |
| } |
| |
| if (LateMask) { |
| uint64_t Mask = getZerosMask(); |
| |
| // We can use the 32-bit andi/andis technique if the mask does not |
| // require any higher-order bits. This can save an instruction compared |
| // to always using the general 64-bit technique. |
| bool Use32BitInsts = isUInt<32>(Mask); |
| // Compute the masks for andi/andis that would be necessary. |
| unsigned ANDIMask = (Mask & UINT16_MAX), |
| ANDISMask = (Mask >> 16) & UINT16_MAX; |
| |
| if (Use32BitInsts) { |
| assert((ANDIMask != 0 || ANDISMask != 0) && |
| "No set bits in mask when using 32-bit ands for 64-bit value"); |
| |
| if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + |
| (unsigned) (ANDISMask != 0) + |
| (unsigned) (ANDIMask != 0 && ANDISMask != 0); |
| |
| SDValue ANDIVal, ANDISVal; |
| if (ANDIMask != 0) |
| ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, |
| ExtendToInt64(Res, dl), |
| getI32Imm(ANDIMask, dl)), |
| 0); |
| if (ANDISMask != 0) |
| ANDISVal = |
| SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, |
| ExtendToInt64(Res, dl), |
| getI32Imm(ANDISMask, dl)), |
| 0); |
| |
| if (!ANDIVal) |
| Res = ANDISVal; |
| else if (!ANDISVal) |
| Res = ANDIVal; |
| else |
| Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| ExtendToInt64(ANDIVal, dl), ANDISVal), 0); |
| } else { |
| if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1; |
| |
| SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); |
| Res = |
| SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, |
| ExtendToInt64(Res, dl), MaskVal), 0); |
| } |
| } |
| |
| return Res.getNode(); |
| } |
| |
| SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { |
| // Fill in BitGroups. |
| collectBitGroups(LateMask); |
| if (BitGroups.empty()) |
| return nullptr; |
| |
| // For 64-bit values, figure out when we can use 32-bit instructions. |
| if (Bits.size() == 64) |
| assignRepl32BitGroups(); |
| |
| // Fill in ValueRotsVec. |
| collectValueRotInfo(); |
| |
| if (Bits.size() == 32) { |
| return Select32(N, LateMask, InstCnt); |
| } else { |
| assert(Bits.size() == 64 && "Not 64 bits here?"); |
| return Select64(N, LateMask, InstCnt); |
| } |
| |
| return nullptr; |
| } |
| |
| void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { |
| BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); |
| } |
| |
| SmallVector<ValueBit, 64> Bits; |
| |
| bool NeedMask = false; |
| SmallVector<unsigned, 64> RLAmt; |
| |
| SmallVector<BitGroup, 16> BitGroups; |
| |
| DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; |
| SmallVector<ValueRotInfo, 16> ValueRotsVec; |
| |
| SelectionDAG *CurDAG = nullptr; |
| |
| public: |
| BitPermutationSelector(SelectionDAG *DAG) |
| : CurDAG(DAG) {} |
| |
| // Here we try to match complex bit permutations into a set of |
| // rotate-and-shift/shift/and/or instructions, using a set of heuristics |
| // known to produce optimal code for common cases (like i32 byte swapping). |
| SDNode *Select(SDNode *N) { |
| Memoizer.clear(); |
| auto Result = |
| getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); |
| if (!Result.first) |
| return nullptr; |
| Bits = std::move(*Result.second); |
| |
| LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" |
| " selection for: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| |
| // Fill it RLAmt and set NeedMask. |
| computeRotationAmounts(); |
| |
| if (!NeedMask) |
| return Select(N, false); |
| |
| // We currently have two techniques for handling results with zeros: early |
| // masking (the default) and late masking. Late masking is sometimes more |
| // efficient, but because the structure of the bit groups is different, it |
| // is hard to tell without generating both and comparing the results. With |
| // late masking, we ignore zeros in the resulting value when inserting each |
| // set of bit groups, and then mask in the zeros at the end. With early |
| // masking, we only insert the non-zero parts of the result at every step. |
| |
| unsigned InstCnt = 0, InstCntLateMask = 0; |
| LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); |
| SDNode *RN = Select(N, false, &InstCnt); |
| LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); |
| |
| LLVM_DEBUG(dbgs() << "\tLate masking:\n"); |
| SDNode *RNLM = Select(N, true, &InstCntLateMask); |
| LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask |
| << " instructions\n"); |
| |
| if (InstCnt <= InstCntLateMask) { |
| LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); |
| return RN; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); |
| return RNLM; |
| } |
| }; |
| |
| class IntegerCompareEliminator { |
| SelectionDAG *CurDAG; |
| PPCDAGToDAGISel *S; |
| // Conversion type for interpreting results of a 32-bit instruction as |
| // a 64-bit value or vice versa. |
| enum ExtOrTruncConversion { Ext, Trunc }; |
| |
| // Modifiers to guide how an ISD::SETCC node's result is to be computed |
| // in a GPR. |
| // ZExtOrig - use the original condition code, zero-extend value |
| // ZExtInvert - invert the condition code, zero-extend value |
| // SExtOrig - use the original condition code, sign-extend value |
| // SExtInvert - invert the condition code, sign-extend value |
| enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; |
| |
| // Comparisons against zero to emit GPR code sequences for. Each of these |
| // sequences may need to be emitted for two or more equivalent patterns. |
| // For example (a >= 0) == (a > -1). The direction of the comparison (</>) |
| // matters as well as the extension type: sext (-1/0), zext (1/0). |
| // GEZExt - (zext (LHS >= 0)) |
| // GESExt - (sext (LHS >= 0)) |
| // LEZExt - (zext (LHS <= 0)) |
| // LESExt - (sext (LHS <= 0)) |
| enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; |
| |
| SDNode *tryEXTEND(SDNode *N); |
| SDNode *tryLogicOpOfCompares(SDNode *N); |
| SDValue computeLogicOpInGPR(SDValue LogicOp); |
| SDValue signExtendInputIfNeeded(SDValue Input); |
| SDValue zeroExtendInputIfNeeded(SDValue Input); |
| SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); |
| SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, |
| ZeroCompare CmpTy); |
| SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl); |
| SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl); |
| SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl); |
| SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl); |
| SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); |
| |
| public: |
| IntegerCompareEliminator(SelectionDAG *DAG, |
| PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { |
| assert(CurDAG->getTargetLoweringInfo() |
| .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && |
| "Only expecting to use this on 64 bit targets."); |
| } |
| SDNode *Select(SDNode *N) { |
| if (CmpInGPR == ICGPR_None) |
| return nullptr; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ZERO_EXTEND: |
| if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || |
| CmpInGPR == ICGPR_SextI64) |
| return nullptr; |
| LLVM_FALLTHROUGH; |
| case ISD::SIGN_EXTEND: |
| if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || |
| CmpInGPR == ICGPR_ZextI64) |
| return nullptr; |
| return tryEXTEND(N); |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| return tryLogicOpOfCompares(N); |
| } |
| return nullptr; |
| } |
| }; |
| |
| static bool isLogicOp(unsigned Opc) { |
| return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; |
| } |
| // The obvious case for wanting to keep the value in a GPR. Namely, the |
| // result of the comparison is actually needed in a GPR. |
| SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { |
| assert((N->getOpcode() == ISD::ZERO_EXTEND || |
| N->getOpcode() == ISD::SIGN_EXTEND) && |
| "Expecting a zero/sign extend node!"); |
| SDValue WideRes; |
| // If we are zero-extending the result of a logical operation on i1 |
| // values, we can keep the values in GPRs. |
| if (isLogicOp(N->getOperand(0).getOpcode()) && |
| N->getOperand(0).getValueType() == MVT::i1 && |
| N->getOpcode() == ISD::ZERO_EXTEND) |
| WideRes = computeLogicOpInGPR(N->getOperand(0)); |
| else if (N->getOperand(0).getOpcode() != ISD::SETCC) |
| return nullptr; |
| else |
| WideRes = |
| getSETCCInGPR(N->getOperand(0), |
| N->getOpcode() == ISD::SIGN_EXTEND ? |
| SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); |
| |
| if (!WideRes) |
| return nullptr; |
| |
| SDLoc dl(N); |
| bool Input32Bit = WideRes.getValueType() == MVT::i32; |
| bool Output32Bit = N->getValueType(0) == MVT::i32; |
| |
| NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; |
| NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; |
| |
| SDValue ConvOp = WideRes; |
| if (Input32Bit != Output32Bit) |
| ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : |
| ExtOrTruncConversion::Trunc); |
| return ConvOp.getNode(); |
| } |
| |
| // Attempt to perform logical operations on the results of comparisons while |
| // keeping the values in GPRs. Without doing so, these would end up being |
| // lowered to CR-logical operations which suffer from significant latency and |
| // low ILP. |
| SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { |
| if (N->getValueType(0) != MVT::i1) |
| return nullptr; |
| assert(isLogicOp(N->getOpcode()) && |
| "Expected a logic operation on setcc results."); |
| SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); |
| if (!LoweredLogical) |
| return nullptr; |
| |
| SDLoc dl(N); |
| bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; |
| unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; |
| SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); |
| SDValue LHS = LoweredLogical.getOperand(0); |
| SDValue RHS = LoweredLogical.getOperand(1); |
| SDValue WideOp; |
| SDValue OpToConvToRecForm; |
| |
| // Look through any 32-bit to 64-bit implicit extend nodes to find the |
| // opcode that is input to the XORI. |
| if (IsBitwiseNegate && |
| LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) |
| OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); |
| else if (IsBitwiseNegate) |
| // If the input to the XORI isn't an extension, that's what we're after. |
| OpToConvToRecForm = LoweredLogical.getOperand(0); |
| else |
| // If this is not an XORI, it is a reg-reg logical op and we can convert |
| // it to record-form. |
| OpToConvToRecForm = LoweredLogical; |
| |
| // Get the record-form version of the node we're looking to use to get the |
| // CR result from. |
| uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); |
| int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); |
| |
| // Convert the right node to record-form. This is either the logical we're |
| // looking at or it is the input node to the negation (if we're looking at |
| // a bitwise negation). |
| if (NewOpc != -1 && IsBitwiseNegate) { |
| // The input to the XORI has a record-form. Use it. |
| assert(LoweredLogical.getConstantOperandVal(1) == 1 && |
| "Expected a PPC::XORI8 only for bitwise negation."); |
| // Emit the record-form instruction. |
| std::vector<SDValue> Ops; |
| for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) |
| Ops.push_back(OpToConvToRecForm.getOperand(i)); |
| |
| WideOp = |
| SDValue(CurDAG->getMachineNode(NewOpc, dl, |
| OpToConvToRecForm.getValueType(), |
| MVT::Glue, Ops), 0); |
| } else { |
| assert((NewOpc != -1 || !IsBitwiseNegate) && |
| "No record form available for AND8/OR8/XOR8?"); |
| WideOp = |
| SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, |
| dl, MVT::i64, MVT::Glue, LHS, RHS), |
| 0); |
| } |
| |
| // Select this node to a single bit from CR0 set by the record-form node |
| // just created. For bitwise negation, use the EQ bit which is the equivalent |
| // of negating the result (i.e. it is a bit set when the result of the |
| // operation is zero). |
| SDValue SRIdxVal = |
| CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); |
| SDValue CRBit = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, |
| MVT::i1, CR0Reg, SRIdxVal, |
| WideOp.getValue(1)), 0); |
| return CRBit.getNode(); |
| } |
| |
| // Lower a logical operation on i1 values into a GPR sequence if possible. |
| // The result can be kept in a GPR if requested. |
| // Three types of inputs can be handled: |
| // - SETCC |
| // - TRUNCATE |
| // - Logical operation (AND/OR/XOR) |
| // There is also a special case that is handled (namely a complement operation |
| // achieved with xor %a, -1). |
| SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { |
| assert(isLogicOp(LogicOp.getOpcode()) && |
| "Can only handle logic operations here."); |
| assert(LogicOp.getValueType() == MVT::i1 && |
| "Can only handle logic operations on i1 values here."); |
| SDLoc dl(LogicOp); |
| SDValue LHS, RHS; |
| |
| // Special case: xor %a, -1 |
| bool IsBitwiseNegation = isBitwiseNot(LogicOp); |
| |
| // Produces a GPR sequence for each operand of the binary logic operation. |
| // For SETCC, it produces the respective comparison, for TRUNCATE it truncates |
| // the value in a GPR and for logic operations, it will recursively produce |
| // a GPR sequence for the operation. |
| auto getLogicOperand = [&] (SDValue Operand) -> SDValue { |
| unsigned OperandOpcode = Operand.getOpcode(); |
| if (OperandOpcode == ISD::SETCC) |
| return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); |
| else if (OperandOpcode == ISD::TRUNCATE) { |
| SDValue InputOp = Operand.getOperand(0); |
| EVT InVT = InputOp.getValueType(); |
| return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : |
| PPC::RLDICL, dl, InVT, InputOp, |
| S->getI64Imm(0, dl), |
| S->getI64Imm(63, dl)), 0); |
| } else if (isLogicOp(OperandOpcode)) |
| return computeLogicOpInGPR(Operand); |
| return SDValue(); |
| }; |
| LHS = getLogicOperand(LogicOp.getOperand(0)); |
| RHS = getLogicOperand(LogicOp.getOperand(1)); |
| |
| // If a GPR sequence can't be produced for the LHS we can't proceed. |
| // Not producing a GPR sequence for the RHS is only a problem if this isn't |
| // a bitwise negation operation. |
| if (!LHS || (!RHS && !IsBitwiseNegation)) |
| return SDValue(); |
| |
| NumLogicOpsOnComparison++; |
| |
| // We will use the inputs as 64-bit values. |
| if (LHS.getValueType() == MVT::i32) |
| LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); |
| if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) |
| RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); |
| |
| unsigned NewOpc; |
| switch (LogicOp.getOpcode()) { |
| default: llvm_unreachable("Unknown logic operation."); |
| case ISD::AND: NewOpc = PPC::AND8; break; |
| case ISD::OR: NewOpc = PPC::OR8; break; |
| case ISD::XOR: NewOpc = PPC::XOR8; break; |
| } |
| |
| if (IsBitwiseNegation) { |
| RHS = S->getI64Imm(1, dl); |
| NewOpc = PPC::XORI8; |
| } |
| |
| return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); |
| |
| } |
| |
| /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. |
| /// Otherwise just reinterpret it as a 64-bit value. |
| /// Useful when emitting comparison code for 32-bit values without using |
| /// the compare instruction (which only considers the lower 32-bits). |
| SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { |
| assert(Input.getValueType() == MVT::i32 && |
| "Can only sign-extend 32-bit values here."); |
| unsigned Opc = Input.getOpcode(); |
| |
| // The value was sign extended and then truncated to 32-bits. No need to |
| // sign extend it again. |
| if (Opc == ISD::TRUNCATE && |
| (Input.getOperand(0).getOpcode() == ISD::AssertSext || |
| Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) |
| return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| |
| LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); |
| // The input is a sign-extending load. All ppc sign-extending loads |
| // sign-extend to the full 64-bits. |
| if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) |
| return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| |
| ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); |
| // We don't sign-extend constants. |
| if (InputConst) |
| return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| |
| SDLoc dl(Input); |
| SignExtensionsAdded++; |
| return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, |
| MVT::i64, Input), 0); |
| } |
| |
| /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. |
| /// Otherwise just reinterpret it as a 64-bit value. |
| /// Useful when emitting comparison code for 32-bit values without using |
| /// the compare instruction (which only considers the lower 32-bits). |
| SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { |
| assert(Input.getValueType() == MVT::i32 && |
| "Can only zero-extend 32-bit values here."); |
| unsigned Opc = Input.getOpcode(); |
| |
| // The only condition under which we can omit the actual extend instruction: |
| // - The value is a positive constant |
| // - The value comes from a load that isn't a sign-extending load |
| // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. |
| bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && |
| (Input.getOperand(0).getOpcode() == ISD::AssertZext || |
| Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); |
| if (IsTruncateOfZExt) |
| return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| |
| ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); |
| if (InputConst && InputConst->getSExtValue() >= 0) |
| return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| |
| LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); |
| // The input is a load that doesn't sign-extend (it will be zero-extended). |
| if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) |
| return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); |
| |
| // None of the above, need to zero-extend. |
| SDLoc dl(Input); |
| ZeroExtensionsAdded++; |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, |
| S->getI64Imm(0, dl), |
| S->getI64Imm(32, dl)), 0); |
| } |
| |
| // Handle a 32-bit value in a 64-bit register and vice-versa. These are of |
| // course not actual zero/sign extensions that will generate machine code, |
| // they're just a way to reinterpret a 32 bit value in a register as a |
| // 64 bit value and vice-versa. |
| SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, |
| ExtOrTruncConversion Conv) { |
| SDLoc dl(NatWidthRes); |
| |
| // For reinterpreting 32-bit values as 64 bit values, we generate |
| // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> |
| if (Conv == ExtOrTruncConversion::Ext) { |
| SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); |
| SDValue SubRegIdx = |
| CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, |
| ImDef, NatWidthRes, SubRegIdx), 0); |
| } |
| |
| assert(Conv == ExtOrTruncConversion::Trunc && |
| "Unknown convertion between 32 and 64 bit values."); |
| // For reinterpreting 64-bit values as 32-bit values, we just need to |
| // EXTRACT_SUBREG (i.e. extract the low word). |
| SDValue SubRegIdx = |
| CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); |
| return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, |
| NatWidthRes, SubRegIdx), 0); |
| } |
| |
| // Produce a GPR sequence for compound comparisons (<=, >=) against zero. |
| // Handle both zero-extensions and sign-extensions. |
| SDValue |
| IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, |
| ZeroCompare CmpTy) { |
| EVT InVT = LHS.getValueType(); |
| bool Is32Bit = InVT == MVT::i32; |
| SDValue ToExtend; |
| |
| // Produce the value that needs to be either zero or sign extended. |
| switch (CmpTy) { |
| case ZeroCompare::GEZExt: |
| case ZeroCompare::GESExt: |
| ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, |
| dl, InVT, LHS, LHS), 0); |
| break; |
| case ZeroCompare::LEZExt: |
| case ZeroCompare::LESExt: { |
| if (Is32Bit) { |
| // Upper 32 bits cannot be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| SDValue Neg = |
| SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
| ToExtend = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| Neg, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| } else { |
| SDValue Addi = |
| SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
| S->getI64Imm(~0ULL, dl)), 0); |
| ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, |
| Addi, LHS), 0); |
| } |
| break; |
| } |
| } |
| |
| // For 64-bit sequences, the extensions are the same for the GE/LE cases. |
| if (!Is32Bit && |
| (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| ToExtend, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| if (!Is32Bit && |
| (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) |
| return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, |
| S->getI64Imm(63, dl)), 0); |
| |
| assert(Is32Bit && "Should have handled the 32-bit sequences above."); |
| // For 32-bit sequences, the extensions differ between GE/LE cases. |
| switch (CmpTy) { |
| case ZeroCompare::GEZExt: { |
| SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), |
| S->getI32Imm(31, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| ShiftOps), 0); |
| } |
| case ZeroCompare::GESExt: |
| return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, |
| S->getI32Imm(31, dl)), 0); |
| case ZeroCompare::LEZExt: |
| return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, |
| S->getI32Imm(1, dl)), 0); |
| case ZeroCompare::LESExt: |
| return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, |
| S->getI32Imm(-1, dl)), 0); |
| } |
| |
| // The above case covers all the enumerators so it can't have a default clause |
| // to avoid compiler warnings. |
| llvm_unreachable("Unknown zero-comparison type."); |
| } |
| |
| /// Produces a zero-extended result of comparing two 32-bit values according to |
| /// the passed condition code. |
| SDValue |
| IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl) { |
| if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || |
| CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) |
| return SDValue(); |
| bool IsRHSZero = RHSValue == 0; |
| bool IsRHSOne = RHSValue == 1; |
| bool IsRHSNegOne = RHSValue == -1LL; |
| switch (CC) { |
| default: return SDValue(); |
| case ISD::SETEQ: { |
| // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) |
| // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) |
| SDValue Xor = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| SDValue Clz = |
| SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
| SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), |
| S->getI32Imm(31, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| ShiftOps), 0); |
| } |
| case ISD::SETNE: { |
| // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) |
| // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) |
| SDValue Xor = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| SDValue Clz = |
| SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
| SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), |
| S->getI32Imm(31, dl) }; |
| SDValue Shift = |
| SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, |
| S->getI32Imm(1, dl)), 0); |
| } |
| case ISD::SETGE: { |
| // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) |
| // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) |
| if(IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| |
| // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) |
| // by swapping inputs and falling through. |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLE: { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) |
| // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) |
| if(IsRHSZero) { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| } |
| |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| RHS = signExtendInputIfNeeded(RHS); |
| SDValue Sub = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue Shift = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, |
| S->getI64Imm(1, dl), S->getI64Imm(63, dl)), |
| 0); |
| return |
| SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, |
| MVT::i64, Shift, S->getI32Imm(1, dl)), 0); |
| } |
| case ISD::SETGT: { |
| // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) |
| // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) |
| // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) |
| // Handle SETLT -1 (which is equivalent to SETGE 0). |
| if (IsRHSNegOne) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| |
| if (IsRHSZero) { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| RHS = signExtendInputIfNeeded(RHS); |
| SDValue Neg = |
| SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); |
| } |
| // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as |
| // (%b < %a) by swapping inputs and falling through. |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLT: { |
| // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) |
| // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) |
| // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) |
| // Handle SETLT 1 (which is equivalent to SETLE 0). |
| if (IsRHSOne) { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| } |
| |
| if (IsRHSZero) { |
| SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), |
| S->getI32Imm(31, dl) }; |
| return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, |
| ShiftOps), 0); |
| } |
| |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| RHS = signExtendInputIfNeeded(RHS); |
| SDValue SUBFNode = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| SUBFNode, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| } |
| case ISD::SETUGE: |
| // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) |
| // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULE: { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = zeroExtendInputIfNeeded(LHS); |
| RHS = zeroExtendInputIfNeeded(RHS); |
| SDValue Subtract = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue SrdiNode = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| Subtract, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, |
| S->getI32Imm(1, dl)), 0); |
| } |
| case ISD::SETUGT: |
| // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) |
| // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULT: { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = zeroExtendInputIfNeeded(LHS); |
| RHS = zeroExtendInputIfNeeded(RHS); |
| SDValue Subtract = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| Subtract, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| } |
| } |
| } |
| |
| /// Produces a sign-extended result of comparing two 32-bit values according to |
| /// the passed condition code. |
| SDValue |
| IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl) { |
| if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || |
| CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) |
| return SDValue(); |
| bool IsRHSZero = RHSValue == 0; |
| bool IsRHSOne = RHSValue == 1; |
| bool IsRHSNegOne = RHSValue == -1LL; |
| |
| switch (CC) { |
| default: return SDValue(); |
| case ISD::SETEQ: { |
| // (sext (setcc %a, %b, seteq)) -> |
| // (ashr (shl (ctlz (xor %a, %b)), 58), 63) |
| // (sext (setcc %a, 0, seteq)) -> |
| // (ashr (shl (ctlz %a), 58), 63) |
| SDValue CountInput = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| SDValue Cntlzw = |
| SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); |
| SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), |
| S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; |
| SDValue Slwi = |
| SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); |
| } |
| case ISD::SETNE: { |
| // Bitwise xor the operands, count leading zeros, shift right by 5 bits and |
| // flip the bit, finally take 2's complement. |
| // (sext (setcc %a, %b, setne)) -> |
| // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) |
| // Same as above, but the first xor is not needed. |
| // (sext (setcc %a, 0, setne)) -> |
| // (neg (xor (lshr (ctlz %a), 5), 1)) |
| SDValue Xor = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); |
| SDValue Clz = |
| SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); |
| SDValue ShiftOps[] = |
| { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; |
| SDValue Shift = |
| SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); |
| SDValue Xori = |
| SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, |
| S->getI32Imm(1, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); |
| } |
| case ISD::SETGE: { |
| // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) |
| // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) |
| if (IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| |
| // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) |
| // by swapping inputs and falling through. |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLE: { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) |
| // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) |
| if (IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| RHS = signExtendInputIfNeeded(RHS); |
| SDValue SUBFNode = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, |
| LHS, RHS), 0); |
| SDValue Srdi = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| SUBFNode, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, |
| S->getI32Imm(-1, dl)), 0); |
| } |
| case ISD::SETGT: { |
| // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) |
| // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) |
| // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) |
| if (IsRHSNegOne) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| if (IsRHSZero) { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| RHS = signExtendInputIfNeeded(RHS); |
| SDValue Neg = |
| SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, |
| S->getI64Imm(63, dl)), 0); |
| } |
| // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as |
| // (%b < %a) by swapping inputs and falling through. |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLT: { |
| // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) |
| // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) |
| // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) |
| if (IsRHSOne) { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| } |
| if (IsRHSZero) |
| return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, |
| S->getI32Imm(31, dl)), 0); |
| |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = signExtendInputIfNeeded(LHS); |
| RHS = signExtendInputIfNeeded(RHS); |
| SDValue SUBFNode = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| SUBFNode, S->getI64Imm(63, dl)), 0); |
| } |
| case ISD::SETUGE: |
| // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) |
| // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULE: { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = zeroExtendInputIfNeeded(LHS); |
| RHS = zeroExtendInputIfNeeded(RHS); |
| SDValue Subtract = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue Shift = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, |
| S->getI32Imm(1, dl), S->getI32Imm(63,dl)), |
| 0); |
| return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, |
| S->getI32Imm(-1, dl)), 0); |
| } |
| case ISD::SETUGT: |
| // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) |
| // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULT: { |
| if (CmpInGPR == ICGPR_NonExtIn) |
| return SDValue(); |
| // The upper 32-bits of the register can't be undefined for this sequence. |
| LHS = zeroExtendInputIfNeeded(LHS); |
| RHS = zeroExtendInputIfNeeded(RHS); |
| SDValue Subtract = |
| SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| Subtract, S->getI64Imm(63, dl)), 0); |
| } |
| } |
| } |
| |
| /// Produces a zero-extended result of comparing two 64-bit values according to |
| /// the passed condition code. |
| SDValue |
| IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl) { |
| if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || |
| CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) |
| return SDValue(); |
| bool IsRHSZero = RHSValue == 0; |
| bool IsRHSOne = RHSValue == 1; |
| bool IsRHSNegOne = RHSValue == -1LL; |
| switch (CC) { |
| default: return SDValue(); |
| case ISD::SETEQ: { |
| // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) |
| // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) |
| SDValue Xor = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue Clz = |
| SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, |
| S->getI64Imm(58, dl), |
| S->getI64Imm(63, dl)), 0); |
| } |
| case ISD::SETNE: { |
| // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) |
| // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) |
| // {addcz.reg, addcz.CA} = (addcarry %a, -1) |
| // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) |
| SDValue Xor = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue AC = |
| SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, |
| Xor, S->getI32Imm(~0U, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, |
| Xor, AC.getValue(1)), 0); |
| } |
| case ISD::SETGE: { |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (zext (setcc %a, %b, setge)) -> |
| // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) |
| // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) |
| if (IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLE: { |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (zext (setcc %a, %b, setge)) -> |
| // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) |
| // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) |
| if (IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| SDValue ShiftL = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
| S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| SDValue ShiftR = |
| SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, |
| S->getI64Imm(63, dl)), 0); |
| SDValue SubtractCarry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| LHS, RHS), 1); |
| return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
| ShiftR, ShiftL, SubtractCarry), 0); |
| } |
| case ISD::SETGT: { |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (zext (setcc %a, %b, setgt)) -> |
| // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) |
| // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) |
| if (IsRHSNegOne) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); |
| if (IsRHSZero) { |
| SDValue Addi = |
| SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
| S->getI64Imm(~0ULL, dl)), 0); |
| SDValue Nor = |
| SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, |
| S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| } |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLT: { |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (zext (setcc %a, %b, setlt)) -> |
| // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) |
| // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) |
| if (IsRHSOne) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); |
| if (IsRHSZero) |
| return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
| S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| SDValue SRADINode = |
| SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| LHS, S->getI64Imm(63, dl)), 0); |
| SDValue SRDINode = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| RHS, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| SDValue SUBFC8Carry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| RHS, LHS), 1); |
| SDValue ADDE8Node = |
| SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
| SRDINode, SRADINode, SUBFC8Carry), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
| ADDE8Node, S->getI64Imm(1, dl)), 0); |
| } |
| case ISD::SETUGE: |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULE: { |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) |
| SDValue SUBFC8Carry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| LHS, RHS), 1); |
| SDValue SUBFE8Node = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, |
| LHS, LHS, SUBFC8Carry), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, |
| SUBFE8Node, S->getI64Imm(1, dl)), 0); |
| } |
| case ISD::SETUGT: |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULT: { |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) |
| SDValue SubtractCarry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| RHS, LHS), 1); |
| SDValue ExtSub = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, |
| LHS, LHS, SubtractCarry), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, |
| ExtSub), 0); |
| } |
| } |
| } |
| |
| /// Produces a sign-extended result of comparing two 64-bit values according to |
| /// the passed condition code. |
| SDValue |
| IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, |
| int64_t RHSValue, SDLoc dl) { |
| if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || |
| CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) |
| return SDValue(); |
| bool IsRHSZero = RHSValue == 0; |
| bool IsRHSOne = RHSValue == 1; |
| bool IsRHSNegOne = RHSValue == -1LL; |
| switch (CC) { |
| default: return SDValue(); |
| case ISD::SETEQ: { |
| // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) |
| // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) |
| // {addcz.reg, addcz.CA} = (addcarry %a, -1) |
| // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) |
| SDValue AddInput = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue Addic = |
| SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, |
| AddInput, S->getI32Imm(~0U, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, |
| Addic, Addic.getValue(1)), 0); |
| } |
| case ISD::SETNE: { |
| // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) |
| // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) |
| // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) |
| // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) |
| SDValue Xor = IsRHSZero ? LHS : |
| SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); |
| SDValue SC = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, |
| Xor, S->getI32Imm(0, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, |
| SC, SC.getValue(1)), 0); |
| } |
| case ISD::SETGE: { |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (zext (setcc %a, %b, setge)) -> |
| // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) |
| // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) |
| if (IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLE: { |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (zext (setcc %a, %b, setge)) -> |
| // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) |
| // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) |
| if (IsRHSZero) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| SDValue ShiftR = |
| SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, |
| S->getI64Imm(63, dl)), 0); |
| SDValue ShiftL = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, |
| S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| SDValue SubtractCarry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| LHS, RHS), 1); |
| SDValue Adde = |
| SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, |
| ShiftR, ShiftL, SubtractCarry), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); |
| } |
| case ISD::SETGT: { |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (zext (setcc %a, %b, setgt)) -> |
| // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) |
| // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) |
| if (IsRHSNegOne) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); |
| if (IsRHSZero) { |
| SDValue Add = |
| SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, |
| S->getI64Imm(-1, dl)), 0); |
| SDValue Nor = |
| SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, |
| S->getI64Imm(63, dl)), 0); |
| } |
| std::swap(LHS, RHS); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| IsRHSZero = RHSConst && RHSConst->isNullValue(); |
| IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::SETLT: { |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (zext (setcc %a, %b, setlt)) -> |
| // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) |
| // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) |
| if (IsRHSOne) |
| return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); |
| if (IsRHSZero) { |
| return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, |
| S->getI64Imm(63, dl)), 0); |
| } |
| SDValue SRADINode = |
| SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, |
| LHS, S->getI64Imm(63, dl)), 0); |
| SDValue SRDINode = |
| SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, |
| RHS, S->getI64Imm(1, dl), |
| S->getI64Imm(63, dl)), 0); |
| SDValue SUBFC8Carry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| RHS, LHS), 1); |
| SDValue ADDE8Node = |
| SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, |
| SRDINode, SRADINode, SUBFC8Carry), 0); |
| SDValue XORI8Node = |
| SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
| ADDE8Node, S->getI64Imm(1, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, |
| XORI8Node), 0); |
| } |
| case ISD::SETUGE: |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULE: { |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) |
| SDValue SubtractCarry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| LHS, RHS), 1); |
| SDValue ExtSub = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, |
| LHS, SubtractCarry), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, |
| ExtSub, ExtSub), 0); |
| } |
| case ISD::SETUGT: |
| // {subc.reg, subc.CA} = (subcarry %b, %a) |
| // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) |
| std::swap(LHS, RHS); |
| LLVM_FALLTHROUGH; |
| case ISD::SETULT: { |
| // {subc.reg, subc.CA} = (subcarry %a, %b) |
| // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) |
| SDValue SubCarry = |
| SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, |
| RHS, LHS), 1); |
| return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, |
| LHS, LHS, SubCarry), 0); |
| } |
| } |
| } |
| |
| /// Do all uses of this SDValue need the result in a GPR? |
| /// This is meant to be used on values that have type i1 since |
| /// it is somewhat meaningless to ask if values of other types |
| /// should be kept in GPR's. |
| static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { |
| assert(Compare.getOpcode() == ISD::SETCC && |
| "An ISD::SETCC node required here."); |
| |
| // For values that have a single use, the caller should obviously already have |
| // checked if that use is an extending use. We check the other uses here. |
| if (Compare.hasOneUse()) |
| return true; |
| // We want the value in a GPR if it is being extended, used for a select, or |
| // used in logical operations. |
| for (auto CompareUse : Compare.getNode()->uses()) |
| if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && |
| CompareUse->getOpcode() != ISD::ZERO_EXTEND && |
| CompareUse->getOpcode() != ISD::SELECT && |
| !isLogicOp(CompareUse->getOpcode())) { |
| OmittedForNonExtendUses++; |
| return false; |
| } |
| return true; |
| } |
| |
| /// Returns an equivalent of a SETCC node but with the result the same width as |
| /// the inputs. This can also be used for SELECT_CC if either the true or false |
| /// values is a power of two while the other is zero. |
| SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, |
| SetccInGPROpts ConvOpts) { |
| assert((Compare.getOpcode() == ISD::SETCC || |
| Compare.getOpcode() == ISD::SELECT_CC) && |
| "An ISD::SETCC node required here."); |
| |
| // Don't convert this comparison to a GPR sequence because there are uses |
| // of the i1 result (i.e. uses that require the result in the CR). |
| if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) |
| return SDValue(); |
| |
| SDValue LHS = Compare.getOperand(0); |
| SDValue RHS = Compare.getOperand(1); |
| |
| // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. |
| int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; |
| ISD::CondCode CC = |
| cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); |
| EVT InputVT = LHS.getValueType(); |
| if (InputVT != MVT::i32 && InputVT != MVT::i64) |
| return SDValue(); |
| |
| if (ConvOpts == SetccInGPROpts::ZExtInvert || |
| ConvOpts == SetccInGPROpts::SExtInvert) |
| CC = ISD::getSetCCInverse(CC, InputVT); |
| |
| bool Inputs32Bit = InputVT == MVT::i32; |
| |
| SDLoc dl(Compare); |
| ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); |
| int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; |
| bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || |
| ConvOpts == SetccInGPROpts::SExtInvert; |
| |
| if (IsSext && Inputs32Bit) |
| return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); |
| else if (Inputs32Bit) |
| return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); |
| else if (IsSext) |
| return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); |
| return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); |
| } |
| |
| } // end anonymous namespace |
| |
| bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { |
| if (N->getValueType(0) != MVT::i32 && |
| N->getValueType(0) != MVT::i64) |
| return false; |
| |
| // This optimization will emit code that assumes 64-bit registers |
| // so we don't want to run it in 32-bit mode. Also don't run it |
| // on functions that are not to be optimized. |
| if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) |
| return false; |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| IntegerCompareEliminator ICmpElim(CurDAG, this); |
| if (SDNode *New = ICmpElim.Select(N)) { |
| ReplaceNode(N, New); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { |
| if (N->getValueType(0) != MVT::i32 && |
| N->getValueType(0) != MVT::i64) |
| return false; |
| |
| if (!UseBitPermRewriter) |
| return false; |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ROTL: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::AND: |
| case ISD::OR: { |
| BitPermutationSelector BPS(CurDAG); |
| if (SDNode *New = BPS.Select(N)) { |
| ReplaceNode(N, New); |
| return true; |
| } |
| return false; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// SelectCC - Select a comparison of the specified values with the specified |
| /// condition code, returning the CR# of the expression. |
| SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| const SDLoc &dl) { |
| // Always select the LHS. |
| unsigned Opc; |
| |
| if (LHS.getValueType() == MVT::i32) { |
| unsigned Imm; |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
| if (isInt32Immediate(RHS, Imm)) { |
| // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
| if (isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
| getI32Imm(Imm & 0xFFFF, dl)), |
| 0); |
| // If this is a 16-bit signed immediate, fold it. |
| if (isInt<16>((int)Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
| getI32Imm(Imm & 0xFFFF, dl)), |
| 0); |
| |
| // For non-equality comparisons, the default code would materialize the |
| // constant, then compare against it, like this: |
| // lis r2, 4660 |
| // ori r2, r2, 22136 |
| // cmpw cr0, r3, r2 |
| // Since we are just comparing for equality, we can emit this instead: |
| // xoris r0,r3,0x1234 |
| // cmplwi cr0,r0,0x5678 |
| // beq cr0,L6 |
| SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, |
| getI32Imm(Imm >> 16, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, |
| getI32Imm(Imm & 0xFFFF, dl)), 0); |
| } |
| Opc = PPC::CMPLW; |
| } else if (ISD::isUnsignedIntSetCC(CC)) { |
| if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
| getI32Imm(Imm & 0xFFFF, dl)), 0); |
| Opc = PPC::CMPLW; |
| } else { |
| int16_t SImm; |
| if (isIntS16Immediate(RHS, SImm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
| getI32Imm((int)SImm & 0xFFFF, |
| dl)), |
| 0); |
| Opc = PPC::CMPW; |
| } |
| } else if (LHS.getValueType() == MVT::i64) { |
| uint64_t Imm; |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
| if (isInt64Immediate(RHS.getNode(), Imm)) { |
| // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
| if (isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
| getI32Imm(Imm & 0xFFFF, dl)), |
| 0); |
| // If this is a 16-bit signed immediate, fold it. |
| if (isInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
| getI32Imm(Imm & 0xFFFF, dl)), |
| 0); |
| |
| // For non-equality comparisons, the default code would materialize the |
| // constant, then compare against it, like this: |
| // lis r2, 4660 |
| // ori r2, r2, 22136 |
| // cmpd cr0, r3, r2 |
| // Since we are just comparing for equality, we can emit this instead: |
| // xoris r0,r3,0x1234 |
| // cmpldi cr0,r0,0x5678 |
| // beq cr0,L6 |
| if (isUInt<32>(Imm)) { |
| SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, |
| getI64Imm(Imm >> 16, dl)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, |
| getI64Imm(Imm & 0xFFFF, dl)), |
| 0); |
| } |
| } |
| Opc = PPC::CMPLD; |
| } else if (ISD::isUnsignedIntSetCC(CC)) { |
| if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
| getI64Imm(Imm & 0xFFFF, dl)), 0); |
| Opc = PPC::CMPLD; |
| } else { |
| int16_t SImm; |
| if (isIntS16Immediate(RHS, SImm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
| getI64Imm(SImm & 0xFFFF, dl)), |
| 0); |
| Opc = PPC::CMPD; |
| } |
| } else if (LHS.getValueType() == MVT::f32) { |
| if (PPCSubTarget->hasSPE()) { |
| switch (CC) { |
| default: |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| Opc = PPC::EFSCMPEQ; |
| break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| case ISD::SETOLT: |
| case ISD::SETOGE: |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| Opc = PPC::EFSCMPLT; |
| break; |
| case ISD::SETGT: |
| case ISD::SETLE: |
| case ISD::SETOGT: |
| case ISD::SETOLE: |
| case ISD::SETUGT: |
| case ISD::SETULE: |
| Opc = PPC::EFSCMPGT; |
| break; |
| } |
| } else |
| Opc = PPC::FCMPUS; |
| } else if (LHS.getValueType() == MVT::f64) { |
| if (PPCSubTarget->hasSPE()) { |
| switch (CC) { |
| default: |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| Opc = PPC::EFDCMPEQ; |
| break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| case ISD::SETOLT: |
| case ISD::SETOGE: |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| Opc = PPC::EFDCMPLT; |
| break; |
| case ISD::SETGT: |
| case ISD::SETLE: |
| case ISD::SETOGT: |
| case ISD::SETOLE: |
| case ISD::SETUGT: |
| case ISD::SETULE: |
| Opc = PPC::EFDCMPGT; |
| break; |
| } |
| } else |
| Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; |
| } else { |
| assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); |
| assert(PPCSubTarget->hasVSX() && "__float128 requires VSX"); |
| Opc = PPC::XSCMPUQP; |
| } |
| return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); |
| } |
| |
| static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, |
| const PPCSubtarget *Subtarget) { |
| // For SPE instructions, the result is in GT bit of the CR |
| bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); |
| |
| switch (CC) { |
| case ISD::SETUEQ: |
| case ISD::SETONE: |
| case ISD::SETOLE: |
| case ISD::SETOGE: |
| llvm_unreachable("Should be lowered by legalize!"); |
| default: llvm_unreachable("Unknown condition!"); |
| case ISD::SETOEQ: |
| case ISD::SETEQ: |
| return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; |
| case ISD::SETUNE: |
| case ISD::SETNE: |
| return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; |
| case ISD::SETULE: |
| case ISD::SETLE: |
| return UseSPE ? PPC::PRED_LE : PPC::PRED_LE; |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| return UseSPE ? PPC::PRED_GT : PPC::PRED_GT; |
| case ISD::SETUGE: |
| case ISD::SETGE: |
| return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; |
| case ISD::SETO: return PPC::PRED_NU; |
| case ISD::SETUO: return PPC::PRED_UN; |
| // These two are invalid for floating point. Assume we have int. |
| case ISD::SETULT: return PPC::PRED_LT; |
| case ISD::SETUGT: return PPC::PRED_GT; |
| } |
| } |
| |
| /// getCRIdxForSetCC - Return the index of the condition register field |
| /// associated with the SetCC condition, and whether or not the field is |
| /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { |
| Invert = false; |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition!"); |
| case ISD::SETOLT: |
| case ISD::SETLT: return 0; // Bit #0 = SETOLT |
| case ISD::SETOGT: |
| case ISD::SETGT: return 1; // Bit #1 = SETOGT |
| case ISD::SETOEQ: |
| case ISD::SETEQ: return 2; // Bit #2 = SETOEQ |
| case ISD::SETUO: return 3; // Bit #3 = SETUO |
| case ISD::SETUGE: |
| case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE |
| case ISD::SETULE: |
| case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE |
| case ISD::SETUNE: |
| case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE |
| case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO |
| case ISD::SETUEQ: |
| case ISD::SETOGE: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| llvm_unreachable("Invalid branch code: should be expanded by legalize"); |
| // These are invalid for floating point. Assume integer. |
| case ISD::SETULT: return 0; |
| case ISD::SETUGT: return 1; |
| } |
| } |
| |
| // getVCmpInst: return the vector compare instruction for the specified |
| // vector type and condition code. Since this is for altivec specific code, |
| // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). |
| static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, |
| bool HasVSX, bool &Swap, bool &Negate) { |
| Swap = false; |
| Negate = false; |
| |
| if (VecVT.isFloatingPoint()) { |
| /* Handle some cases by swapping input operands. */ |
| switch (CC) { |
| case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; |
| case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; |
| case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; |
| case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; |
| case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; |
| case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; |
| default: break; |
| } |
| /* Handle some cases by negating the result. */ |
| switch (CC) { |
| case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; |
| case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; |
| case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; |
| case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; |
| default: break; |
| } |
| /* We have instructions implementing the remaining cases. */ |
| switch (CC) { |
| case ISD::SETEQ: |
| case ISD::SETOEQ: |
| if (VecVT == MVT::v4f32) |
| return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; |
| else if (VecVT == MVT::v2f64) |
| return PPC::XVCMPEQDP; |
| break; |
| case ISD::SETGT: |
| case ISD::SETOGT: |
| if (VecVT == MVT::v4f32) |
| return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; |
| else if (VecVT == MVT::v2f64) |
| return PPC::XVCMPGTDP; |
| break; |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| if (VecVT == MVT::v4f32) |
| return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; |
| else if (VecVT == MVT::v2f64) |
| return PPC::XVCMPGEDP; |
| break; |
| default: |
| break; |
| } |
| llvm_unreachable("Invalid floating-point vector compare condition"); |
| } else { |
| /* Handle some cases by swapping input operands. */ |
| switch (CC) { |
| case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; |
| case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; |
| case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; |
| case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; |
| default: break; |
| } |
| /* Handle some cases by negating the result. */ |
| switch (CC) { |
| case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; |
| case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; |
| case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; |
| case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; |
| default: break; |
| } |
| /* We have instructions implementing the remaining cases. */ |
| switch (CC) { |
| case ISD::SETEQ: |
| case ISD::SETUEQ: |
| if (VecVT == MVT::v16i8) |
| return PPC::VCMPEQUB; |
| else if (VecVT == MVT::v8i16) |
| return PPC::VCMPEQUH; |
| else if (VecVT == MVT::v4i32) |
| return PPC::VCMPEQUW; |
| else if (VecVT == MVT::v2i64) |
| return PPC::VCMPEQUD; |
| break; |
| case ISD::SETGT: |
| if (VecVT == MVT::v16i8) |
| return PPC::VCMPGTSB; |
| else if (VecVT == MVT::v8i16) |
| return PPC::VCMPGTSH; |
| else if (VecVT == MVT::v4i32) |
| return PPC::VCMPGTSW; |
| else if (VecVT == MVT::v2i64) |
| return PPC::VCMPGTSD; |
| break; |
| case ISD::SETUGT: |
| if (VecVT == MVT::v16i8) |
| return PPC::VCMPGTUB; |
| else if (VecVT == MVT::v8i16) |
| return PPC::VCMPGTUH; |
| else if (VecVT == MVT::v4i32) |
| return PPC::VCMPGTUW; |
| else if (VecVT == MVT::v2i64) |
| return PPC::VCMPGTUD; |
| break; |
| default: |
| break; |
| } |
| llvm_unreachable("Invalid integer vector compare condition"); |
| } |
| } |
| |
| bool PPCDAGToDAGISel::trySETCC(SDNode *N) { |
| SDLoc dl(N); |
| unsigned Imm; |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| EVT PtrVT = |
| CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); |
| bool isPPC64 = (PtrVT == MVT::i64); |
| |
| if (!PPCSubTarget->useCRBits() && |
| isInt32Immediate(N->getOperand(1), Imm)) { |
| // We can codegen setcc op, imm very efficiently compared to a brcond. |
| // Check for those cases here. |
| // setcc op, 0 |
| if (Imm == 0) { |
| SDValue Op = N->getOperand(0); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: { |
| Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); |
| SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), |
| getI32Imm(31, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| case ISD::SETNE: { |
| if (isPPC64) break; |
| SDValue AD = |
| SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| Op, getI32Imm(~0U, dl)), 0); |
| CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); |
| return true; |
| } |
| case ISD::SETLT: { |
| SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), |
| getI32Imm(31, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| case ISD::SETGT: { |
| SDValue T = |
| SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); |
| T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); |
| SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), |
| getI32Imm(31, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| } |
| } else if (Imm == ~0U) { // setcc op, -1 |
| SDValue Op = N->getOperand(0); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: |
| if (isPPC64) break; |
| Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| Op, getI32Imm(1, dl)), 0); |
| CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| SDValue(CurDAG->getMachineNode(PPC::LI, dl, |
| MVT::i32, |
| getI32Imm(0, dl)), |
| 0), Op.getValue(1)); |
| return true; |
| case ISD::SETNE: { |
| if (isPPC64) break; |
| Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); |
| SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| Op, getI32Imm(~0U, dl)); |
| CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, |
| SDValue(AD, 1)); |
| return true; |
| } |
| case ISD::SETLT: { |
| SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, |
| getI32Imm(1, dl)), 0); |
| SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, |
| Op), 0); |
| SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), |
| getI32Imm(31, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| case ISD::SETGT: { |
| SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), |
| getI32Imm(31, dl) }; |
| Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); |
| return true; |
| } |
| } |
| } |
| } |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // Altivec Vector compare instructions do not set any CR register by default and |
| // vector compare operations return the same type as the operands. |
| if (LHS.getValueType().isVector()) { |
| if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE()) |
| return false; |
| |
| EVT VecVT = LHS.getValueType(); |
| bool Swap, Negate; |
| unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, |
| PPCSubTarget->hasVSX(), Swap, Negate); |
| if (Swap) |
| std::swap(LHS, RHS); |
| |
| EVT ResVT = VecVT.changeVectorElementTypeToInteger(); |
| if (Negate) { |
| SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); |
| CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, |
| ResVT, VCmp, VCmp); |
| return true; |
| } |
| |
| CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); |
| return true; |
| } |
| |
| if (PPCSubTarget->useCRBits()) |
| return false; |
| |
| bool Inv; |
| unsigned Idx = getCRIdxForSetCC(CC, Inv); |
| SDValue CCReg = SelectCC(LHS, RHS, CC, dl); |
| SDValue IntCR; |
| |
| // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that |
| // The correct compare instruction is already set by SelectCC() |
| if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { |
| Idx = 1; |
| } |
| |
| // Force the ccreg into CR7. |
| SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); |
| |
| SDValue InFlag(nullptr, 0); // Null incoming flag value. |
| CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, |
| InFlag).getValue(1); |
| |
| IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, |
| CCReg), 0); |
| |
| SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), |
| getI32Imm(31, dl), getI32Imm(31, dl) }; |
| if (!Inv) { |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| |
| // Get the specified bit. |
| SDValue Tmp = |
| SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); |
| CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); |
| return true; |
| } |
| |
| /// Does this node represent a load/store node whose address can be represented |
| /// with a register plus an immediate that's a multiple of \p Val: |
| bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { |
| LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); |
| StoreSDNode *STN = dyn_cast<StoreSDNode>(N); |
| SDValue AddrOp; |
| if (LDN) |
| AddrOp = LDN->getOperand(1); |
| else if (STN) |
| AddrOp = STN->getOperand(2); |
| |
| // If the address points a frame object or a frame object with an offset, |
| // we need to check the object alignment. |
| short Imm = 0; |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( |
| AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : |
| AddrOp)) { |
| // If op0 is a frame index that is under aligned, we can't do it either, |
| // because it is translated to r31 or r1 + slot + offset. We won't know the |
| // slot number until the stack frame is finalized. |
| const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); |
| unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex()); |
| if ((SlotAlign % Val) != 0) |
| return false; |
| |
| // If we have an offset, we need further check on the offset. |
| if (AddrOp.getOpcode() != ISD::ADD) |
| return true; |
| } |
| |
| if (AddrOp.getOpcode() == ISD::ADD) |
| return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); |
| |
| // If the address comes from the outside, the offset will be zero. |
| return AddrOp.getOpcode() == ISD::CopyFromReg; |
| } |
| |
| void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { |
| // Transfer memoperands. |
| MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); |
| CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); |
| } |
| |
| static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, |
| bool &NeedSwapOps, bool &IsUnCmp) { |
| |
| assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue TrueRes = N->getOperand(2); |
| SDValue FalseRes = N->getOperand(3); |
| ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); |
| if (!TrueConst) |
| return false; |
| |
| assert((N->getSimpleValueType(0) == MVT::i64 || |
| N->getSimpleValueType(0) == MVT::i32) && |
| "Expecting either i64 or i32 here."); |
| |
| // We are looking for any of: |
| // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) |
| // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) |
| // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) |
| // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) |
| int64_t TrueResVal = TrueConst->getSExtValue(); |
| if ((TrueResVal < -1 || TrueResVal > 1) || |
| (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || |
| (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || |
| (TrueResVal == 0 && |
| (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) |
| return false; |
| |
| bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC; |
| SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0); |
| if (SetOrSelCC.getOpcode() != ISD::SETCC && |
| SetOrSelCC.getOpcode() != ISD::SELECT_CC) |
| return false; |
| |
| // Without this setb optimization, the outer SELECT_CC will be manually |
| // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass |
| // transforms pseudo instruction to isel instruction. When there are more than |
| // one use for result like zext/sext, with current optimization we only see |
| // isel is replaced by setb but can't see any significant gain. Since |
| // setb has longer latency than original isel, we should avoid this. Another |
| // point is that setb requires comparison always kept, it can break the |
| // opportunity to get the comparison away if we have in future. |
| if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) |
| return false; |
| |
| SDValue InnerLHS = SetOrSelCC.getOperand(0); |
| SDValue InnerRHS = SetOrSelCC.getOperand(1); |
| ISD::CondCode InnerCC = |
| cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); |
| // If the inner comparison is a select_cc, make sure the true/false values are |
| // 1/-1 and canonicalize it if needed. |
| if (InnerIsSel) { |
| ConstantSDNode *SelCCTrueConst = |
| dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); |
| ConstantSDNode *SelCCFalseConst = |
| dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); |
| if (!SelCCTrueConst || !SelCCFalseConst) |
| return false; |
| int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); |
| int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); |
| // The values must be -1/1 (requiring a swap) or 1/-1. |
| if (SelCCTVal == -1 && SelCCFVal == 1) { |
| std::swap(InnerLHS, InnerRHS); |
| } else if (SelCCTVal != 1 || SelCCFVal != -1) |
| return false; |
| } |
| |
| // Canonicalize unsigned case |
| if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { |
| IsUnCmp = true; |
| InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; |
| } |
| |
| bool InnerSwapped = false; |
| if (LHS == InnerRHS && RHS == InnerLHS) |
| InnerSwapped = true; |
| else if (LHS != InnerLHS || RHS != InnerRHS) |
| return false; |
| |
| switch (CC) { |
| // (select_cc lhs, rhs, 0, \ |
| // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) |
| case ISD::SETEQ: |
| if (!InnerIsSel) |
| return false; |
| if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) |
| return false; |
| NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; |
| break; |
| |
| // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) |
| // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) |
| // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) |
| // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) |
| // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) |
| // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) |
| case ISD::SETULT: |
| if (!IsUnCmp && InnerCC != ISD::SETNE) |
| return false; |
| IsUnCmp = true; |
| LLVM_FALLTHROUGH; |
| case ISD::SETLT: |
| if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || |
| (InnerCC == ISD::SETLT && InnerSwapped)) |
| NeedSwapOps = (TrueResVal == 1); |
| else |
| return false; |
| break; |
| |
| // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) |
| // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) |
| // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) |
| // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) |
| // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) |
| // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) |
| case ISD::SETUGT: |
| if (!IsUnCmp && InnerCC != ISD::SETNE) |
| return false; |
| IsUnCmp = true; |
| LLVM_FALLTHROUGH; |
| case ISD::SETGT: |
| if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || |
| (InnerCC == ISD::SETGT && InnerSwapped)) |
| NeedSwapOps = (TrueResVal == -1); |
| else |
| return false; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); |
| LLVM_DEBUG(N->dump()); |
| |
| return true; |
| } |
| |
| bool PPCDAGToDAGISel::tryAndWithMask(SDNode *N) { |
| if (N->getOpcode() != ISD::AND) |
| return false; |
| |
| SDLoc dl(N); |
| SDValue Val = N->getOperand(0); |
| unsigned Imm, Imm2, SH, MB, ME; |
| uint64_t Imm64; |
| |
| // If this is an and of a value rotated between 0 and 31 bits and then and'd |
| // with a mask, emit rlwinm |
| if (isInt32Immediate(N->getOperand(1), Imm) && |
| isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { |
| SDValue Val = N->getOperand(0).getOperand(0); |
| SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), |
| getI32Imm(ME, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| |
| // If this is just a masked value where the input is not handled, and |
| // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm |
| if (isInt32Immediate(N->getOperand(1), Imm)) { |
| if (isRunOfOnes(Imm, MB, ME) && |
| N->getOperand(0).getOpcode() != ISD::ROTL) { |
| SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), |
| getI32Imm(ME, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return true; |
| } |
| // AND X, 0 -> 0, not "rlwinm 32". |
| if (Imm == 0) { |
| ReplaceUses(SDValue(N, 0), N->getOperand(1)); |
| return true; |
| } |
| |
| // ISD::OR doesn't get all the bitfield insertion fun. |
| // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a |
| // bitfield insert. |
| if (N->getOperand(0).getOpcode() == ISD::OR && |
| isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { |
| // The idea here is to check whether this is equivalent to: |
| // (c1 & m) | (x & ~m) |
| // where m is a run-of-ones mask. The logic here is that, for each bit in |
| // c1 and c2: |
| // - if both are 1, then the output will be 1. |
| // - if both are 0, then the output will be 0. |
| // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will |
| // come from x. |
| // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will |
| // be 0. |
| // If that last condition is never the case, then we can form m from the |
| // bits that are the same between c1 and c2. |
| unsigned MB, ME; |
| if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| N->getOperand(0).getOperand(1), |
| getI32Imm(0, dl), getI32Imm(MB, dl), |
| getI32Imm(ME, dl) }; |
| ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); |
| return true; |
| } |
| } |
| } else if (isInt64Immediate(N->getOperand(1).getNode(), Imm64)) { |
| // If this is a 64-bit zero-extension mask, emit rldicl. |
| if (isMask_64(Imm64)) { |
| MB = 64 - countTrailingOnes(Imm64); |
| SH = 0; |
| |
| if (Val.getOpcode() == ISD::ANY_EXTEND) { |
| auto Op0 = Val.getOperand(0); |
| if ( Op0.getOpcode() == ISD::SRL && |
| isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { |
| |
| auto ResultType = Val.getNode()->getValueType(0); |
| auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, |
| ResultType); |
| SDValue IDVal (ImDef, 0); |
| |
| Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, |
| ResultType, IDVal, Op0.getOperand(0), |
| getI32Imm(1, dl)), 0); |
| SH = 64 - Imm; |
| } |
| } |
| |
| // If the operand is a logical right shift, we can fold it into this |
| // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) |
| // for n <= mb. The right shift is really a left rotate followed by a |
| // mask, and this mask is a more-restrictive sub-mask of the mask implied |
| // by the shift. |
| if (Val.getOpcode() == ISD::SRL && |
| isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { |
| assert(Imm < 64 && "Illegal shift amount"); |
| Val = Val.getOperand(0); |
| SH = 64 - Imm; |
| } |
| |
| SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); |
| return true; |
| } else if (isMask_64(~Imm64)) { |
| // If this is a negated 64-bit zero-extension mask, |
| // i.e. the immediate is a sequence of ones from most significant side |
| // and all zero for reminder, we should use rldicr. |
| MB = 63 - countTrailingOnes(~Imm64); |
| SH = 0; |
| SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); |
| return true; |
| } |
| |
| // It is not 16-bit imm that means we need two instructions at least if |
| // using "and" instruction. Try to exploit it with rotate mask instructions. |
| if (isRunOfOnes64(Imm64, MB, ME)) { |
| if (MB >= 32 && MB <= ME) { |
| // MB ME |
| // +----------------------+ |
| // |xxxxxxxxxxx00011111000| |
| // +----------------------+ |
| // 0 32 64 |
| // We can only do it if the MB is larger than 32 and MB <= ME |
| // as RLWINM will replace the content of [0 - 32) with [32 - 64) even |
| // we didn't rotate it. |
| SDValue Ops[] = { Val, getI64Imm(0, dl), getI64Imm(MB - 32, dl), |
| getI64Imm(ME - 32, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); |
| return true; |
| } |
| // TODO - handle it with rldicl + rldicl |
| } |
| } |
| |
| return false; |
| } |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| void PPCDAGToDAGISel::Select(SDNode *N) { |
| SDLoc dl(N); |
| if (N->isMachineOpcode()) { |
| N->setNodeId(-1); |
| return; // Already selected. |
| } |
| |
| // In case any misguided DAG-level optimizations form an ADD with a |
| // TargetConstant operand, crash here instead of miscompiling (by selecting |
| // an r+r add instead of some kind of r+i add). |
| if (N->getOpcode() == ISD::ADD && |
| N->getOperand(1).getOpcode() == ISD::TargetConstant) |
| llvm_unreachable("Invalid ADD with TargetConstant operand"); |
| |
| // Try matching complex bit permutations before doing anything else. |
| if (tryBitPermutation(N)) |
| return; |
| |
| // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). |
| if (tryIntCompareInGPR(N)) |
| return; |
| |
| switch (N->getOpcode()) { |
| default: break; |
| |
| case ISD::Constant: |
| if (N->getValueType(0) == MVT::i64) { |
| ReplaceNode(N, selectI64Imm(CurDAG, N)); |
| return; |
| } |
| break; |
| |
| case ISD::SETCC: |
| if (trySETCC(N)) |
| return; |
| break; |
| // These nodes will be transformed into GETtlsADDR32 node, which |
| // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT |
| case PPCISD::ADDI_TLSLD_L_ADDR: |
| case PPCISD::ADDI_TLSGD_L_ADDR: { |
| const Module *Mod = MF->getFunction().getParent(); |
| if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || |
| !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() || |
| Mod->getPICLevel() == PICLevel::SmallPIC) |
| break; |
| // Attach global base pointer on GETtlsADDR32 node in order to |
| // generate secure plt code for TLS symbols. |
| getGlobalBaseReg(); |
| } break; |
| case PPCISD::CALL: { |
| if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || |
| !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() || |
| !PPCSubTarget->isTargetELF()) |
| break; |
| |
| SDValue Op = N->getOperand(1); |
| |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| if (GA->getTargetFlags() == PPCII::MO_PLT) |
| getGlobalBaseReg(); |
| } |
| else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { |
| if (ES->getTargetFlags() == PPCII::MO_PLT) |
| getGlobalBaseReg(); |
| } |
| } |
| break; |
| |
| case PPCISD::GlobalBaseReg: |
| ReplaceNode(N, getGlobalBaseReg()); |
| return; |
| |
| case ISD::FrameIndex: |
| selectFrameIndex(N, N); |
| return; |
| |
| case PPCISD::MFOCRF: { |
| SDValue InFlag = N->getOperand(1); |
| ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, |
| N->getOperand(0), InFlag)); |
| return; |
| } |
| |
| case PPCISD::READ_TIME_BASE: |
| ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, |
| MVT::Other, N->getOperand(0))); |
| return; |
| |
| case PPCISD::SRA_ADDZE: { |
| SDValue N0 = N->getOperand(0); |
| SDValue ShiftAmt = |
| CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> |
| getConstantIntValue(), dl, |
| N->getValueType(0)); |
| if (N->getValueType(0) == MVT::i64) { |
| SDNode *Op = |
| CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, |
| N0, ShiftAmt); |
| CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), |
| SDValue(Op, 1)); |
| return; |
| } else { |
| assert(N->getValueType(0) == MVT::i32 && |
| "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); |
| SDNode *Op = |
| CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, |
| N0, ShiftAmt); |
| CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), |
| SDValue(Op, 1)); |
| return; |
| } |
| } |
| |
| case ISD::STORE: { |
| // Change TLS initial-exec D-form stores to X-form stores. |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() && |
| ST->getAddressingMode() != ISD::PRE_INC) |
| if (tryTLSXFormStore(ST)) |
| return; |
| break; |
| } |
| case ISD::LOAD: { |
| // Handle preincrement loads. |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT LoadedVT = LD->getMemoryVT(); |
| |
| // Normal loads are handled by code generated from the .td file. |
| if (LD->getAddressingMode() != ISD::PRE_INC) { |
| // Change TLS initial-exec D-form loads to X-form loads. |
| if (EnableTLSOpt && PPCSubTarget->isELFv2ABI()) |
| if (tryTLSXFormLoad(LD)) |
| return; |
| break; |
| } |
| |
| SDValue Offset = LD->getOffset(); |
| if (Offset.getOpcode() == ISD::TargetConstant || |
| Offset.getOpcode() == ISD::TargetGlobalAddress) { |
| |
| unsigned Opcode; |
| bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
| if (LD->getValueType(0) != MVT::i64) { |
| // Handle PPC32 integer and normal FP loads. |
| assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid PPC load type!"); |
| case MVT::f64: Opcode = PPC::LFDU; break; |
| case MVT::f32: Opcode = PPC::LFSU; break; |
| case MVT::i32: Opcode = PPC::LWZU; break; |
| case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; |
| case MVT::i1: |
| case MVT::i8: Opcode = PPC::LBZU; break; |
| } |
| } else { |
| assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); |
| assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid PPC load type!"); |
| case MVT::i64: Opcode = PPC::LDU; break; |
| case MVT::i32: Opcode = PPC::LWZU8; break; |
| case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; |
| case MVT::i1: |
| case MVT::i8: Opcode = PPC::LBZU8; break; |
| } |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[] = { Offset, Base, Chain }; |
| SDNode *MN = CurDAG->getMachineNode( |
| Opcode, dl, LD->getValueType(0), |
| PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); |
| transferMemOperands(N, MN); |
| ReplaceNode(N, MN); |
| return; |
| } else { |
| unsigned Opcode; |
| bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
| if (LD->getValueType(0) != MVT::i64) { |
| // Handle PPC32 integer and normal FP loads. |
| assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid PPC load type!"); |
| case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX |
| case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX |
| case MVT::f64: Opcode = PPC::LFDUX; break; |
| case MVT::f32: Opcode = PPC::LFSUX; break; |
| case MVT::i32: Opcode = PPC::LWZUX; break; |
| case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; |
| case MVT::i1: |
| case MVT::i8: Opcode = PPC::LBZUX; break; |
| } |
| } else { |
| assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); |
| assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && |
| "Invalid sext update load"); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid PPC load type!"); |
| case MVT::i64: Opcode = PPC::LDUX; break; |
| case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; |
| case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; |
| case MVT::i1: |
| case MVT::i8: Opcode = PPC::LBZUX8; break; |
| } |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[] = { Base, Offset, Chain }; |
| SDNode *MN = CurDAG->getMachineNode( |
| Opcode, dl, LD->getValueType(0), |
| PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); |
| transferMemOperands(N, MN); |
| ReplaceNode(N, MN); |
| return; |
| } |
| } |
| |
| case ISD::AND: |
| // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr |
| if (tryAndWithMask(N)) |
| return; |
| |
| // Other cases are autogenerated. |
| break; |
| case ISD::OR: { |
| if (N->getValueType(0) == MVT::i32) |
| if (tryBitfieldInsert(N)) |
| return; |
| |
| int16_t Imm; |
| if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && |
| isIntS16Immediate(N->getOperand(1), Imm)) { |
| KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); |
| |
| // If this is equivalent to an add, then we can fold it with the |
| // FrameIndex calculation. |
| if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { |
| selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); |
| return; |
| } |
| } |
| |
| // OR with a 32-bit immediate can be handled by ori + oris |
| // without creating an immediate in a GPR. |
| uint64_t Imm64 = 0; |
| bool IsPPC64 = PPCSubTarget->isPPC64(); |
| if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && |
| (Imm64 & ~0xFFFFFFFFuLL) == 0) { |
| // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. |
| uint64_t ImmHi = Imm64 >> 16; |
| uint64_t ImmLo = Imm64 & 0xFFFF; |
| if (ImmHi != 0 && ImmLo != 0) { |
| SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| N->getOperand(0), |
| getI16Imm(ImmLo, dl)); |
| SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; |
| CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); |
| return; |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::XOR: { |
| // XOR with a 32-bit immediate can be handled by xori + xoris |
| // without creating an immediate in a GPR. |
| uint64_t Imm64 = 0; |
| bool IsPPC64 = PPCSubTarget->isPPC64(); |
| if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && |
| (Imm64 & ~0xFFFFFFFFuLL) == 0) { |
| // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. |
| uint64_t ImmHi = Imm64 >> 16; |
| uint64_t ImmLo = Imm64 & 0xFFFF; |
| if (ImmHi != 0 && ImmLo != 0) { |
| SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, |
| N->getOperand(0), |
| getI16Imm(ImmLo, dl)); |
| SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; |
| CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); |
| return; |
| } |
| } |
| |
| break; |
| } |
| case ISD::ADD: { |
| int16_t Imm; |
| if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && |
| isIntS16Immediate(N->getOperand(1), Imm)) { |
| selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); |
| return; |
| } |
| |
| break; |
| } |
| case ISD::SHL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| getI32Imm(SH, dl), getI32Imm(MB, dl), |
| getI32Imm(ME, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SRL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| getI32Imm(SH, dl), getI32Imm(MB, dl), |
| getI32Imm(ME, dl) }; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| // FIXME: Remove this once the ANDI glue bug is fixed: |
| case PPCISD::ANDI_rec_1_EQ_BIT: |
| case PPCISD::ANDI_rec_1_GT_BIT: { |
| if (!ANDIGlueBug) |
| break; |
| |
| EVT InVT = N->getOperand(0).getValueType(); |
| assert((InVT == MVT::i64 || InVT == MVT::i32) && |
| "Invalid input type for ANDI_rec_1_EQ_BIT"); |
| |
| unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; |
| SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, |
| N->getOperand(0), |
| CurDAG->getTargetConstant(1, dl, InVT)), |
| 0); |
| SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); |
| SDValue SRIdxVal = CurDAG->getTargetConstant( |
| N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, |
| dl, MVT::i32); |
| |
| CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, |
| SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); |
| return; |
| } |
| case ISD::SELECT_CC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| EVT PtrVT = |
| CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); |
| bool isPPC64 = (PtrVT == MVT::i64); |
| |
| // If this is a select of i1 operands, we'll pattern match it. |
| if (PPCSubTarget->useCRBits() && |
| N->getOperand(0).getValueType() == MVT::i1) |
| break; |
| |
| if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) { |
| bool NeedSwapOps = false; |
| bool IsUnCmp = false; |
| if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| if (NeedSwapOps) |
| std::swap(LHS, RHS); |
| |
| // Make use of SelectCC to generate the comparison to set CR bits, for |
| // equality comparisons having one literal operand, SelectCC probably |
| // doesn't need to materialize the whole literal and just use xoris to |
| // check it first, it leads the following comparison result can't |
| // exactly represent GT/LT relationship. So to avoid this we specify |
| // SETGT/SETUGT here instead of SETEQ. |
| SDValue GenCC = |
| SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); |
| CurDAG->SelectNodeTo( |
| N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, |
| N->getValueType(0), GenCC); |
| NumP9Setb++; |
| return; |
| } |
| } |
| |
| // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc |
| if (!isPPC64) |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) |
| if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) |
| if (N1C->isNullValue() && N3C->isNullValue() && |
| N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && |
| // FIXME: Implement this optzn for PPC64. |
| N->getValueType(0) == MVT::i32) { |
| SDNode *Tmp = |
| CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| N->getOperand(0), getI32Imm(~0U, dl)); |
| CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), |
| N->getOperand(0), SDValue(Tmp, 1)); |
| return; |
| } |
| |
| SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); |
| |
| if (N->getValueType(0) == MVT::i1) { |
| // An i1 select is: (c & t) | (!c & f). |
| bool Inv; |
| unsigned Idx = getCRIdxForSetCC(CC, Inv); |
| |
| unsigned SRI; |
| switch (Idx) { |
| default: llvm_unreachable("Invalid CC index"); |
| case 0: SRI = PPC::sub_lt; break; |
| case 1: SRI = PPC::sub_gt; break; |
| case 2: SRI = PPC::sub_eq; break; |
| case 3: SRI = PPC::sub_un; break; |
| } |
| |
| SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); |
| |
| SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, |
| CCBit, CCBit), 0); |
| SDValue C = Inv ? NotCCBit : CCBit, |
| NotC = Inv ? CCBit : NotCCBit; |
| |
| SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, |
| C, N->getOperand(2)), 0); |
| SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, |
| NotC, N->getOperand(3)), 0); |
| |
| CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); |
| return; |
| } |
| |
| unsigned BROpc = |
| getPredicateForSetCC(CC, N->getOperand(0).getValueType(), PPCSubTarget); |
| |
| unsigned SelectCCOp; |
| if (N->getValueType(0) == MVT::i32) |
| SelectCCOp = PPC::SELECT_CC_I4; |
| else if (N->getValueType(0) == MVT::i64) |
| SelectCCOp = PPC::SELECT_CC_I8; |
| else if (N->getValueType(0) == MVT::f32) { |
| if (PPCSubTarget->hasP8Vector()) |
| SelectCCOp = PPC::SELECT_CC_VSSRC; |
| else if (PPCSubTarget->hasSPE()) |
| SelectCCOp = PPC::SELECT_CC_SPE4; |
| else |
| SelectCCOp = PPC::SELECT_CC_F4; |
| } else if (N->getValueType(0) == MVT::f64) { |
| if (PPCSubTarget->hasVSX()) |
| SelectCCOp = PPC::SELECT_CC_VSFRC; |
| else if (PPCSubTarget->hasSPE()) |
| SelectCCOp = PPC::SELECT_CC_SPE; |
| else |
| SelectCCOp = PPC::SELECT_CC_F8; |
| } else if (N->getValueType(0) == MVT::f128) |
| SelectCCOp = PPC::SELECT_CC_F16; |
| else if (PPCSubTarget->hasSPE()) |
| SelectCCOp = PPC::SELECT_CC_SPE; |
| else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) |
| SelectCCOp = PPC::SELECT_CC_QFRC; |
| else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) |
| SelectCCOp = PPC::SELECT_CC_QSRC; |
| else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) |
| SelectCCOp = PPC::SELECT_CC_QBRC; |
| else if (N->getValueType(0) == MVT::v2f64 || |
| N->getValueType(0) == MVT::v2i64) |
| SelectCCOp = PPC::SELECT_CC_VSRC; |
| else |
| SelectCCOp = PPC::SELECT_CC_VRRC; |
| |
| SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), |
| getI32Imm(BROpc, dl) }; |
| CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); |
| return; |
| } |
| case ISD::VECTOR_SHUFFLE: |
| if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || |
| N->getValueType(0) == MVT::v2i64)) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| |
| SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), |
| Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); |
| unsigned DM[2]; |
| |
| for (int i = 0; i < 2; ++i) |
| if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) |
| DM[i] = 0; |
| else |
| DM[i] = 1; |
| |
| if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && |
| Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| isa<LoadSDNode>(Op1.getOperand(0))) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); |
| SDValue Base, Offset; |
| |
| if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && |
| (LD->getMemoryVT() == MVT::f64 || |
| LD->getMemoryVT() == MVT::i64) && |
| SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { |
| SDValue Chain = LD->getChain(); |
| SDValue Ops[] = { Base, Offset, Chain }; |
| MachineMemOperand *MemOp = LD->getMemOperand(); |
| SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, |
| N->getValueType(0), Ops); |
| CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); |
| return; |
| } |
| } |
| |
| // For little endian, we must swap the input operands and adjust |
| // the mask elements (reverse and invert them). |
| if (PPCSubTarget->isLittleEndian()) { |
| std::swap(Op1, Op2); |
| unsigned tmp = DM[0]; |
| DM[0] = 1 - DM[1]; |
| DM[1] = 1 - tmp; |
| } |
| |
| SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, |
| MVT::i32); |
| SDValue Ops[] = { Op1, Op2, DMV }; |
| CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); |
| return; |
| } |
| |
| break; |
| case PPCISD::BDNZ: |
| case PPCISD::BDZ: { |
| bool IsPPC64 = PPCSubTarget->isPPC64(); |
| SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; |
| CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ |
| ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) |
| : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), |
| MVT::Other, Ops); |
| return; |
| } |
| case PPCISD::COND_BRANCH: { |
| // Op #0 is the Chain. |
| // Op #1 is the PPC::PRED_* number. |
| // Op #2 is the CR# |
| // Op #3 is the Dest MBB |
| // Op #4 is the Flag. |
| // Prevent PPC::PRED_* from being selected into LI. |
| unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| if (EnableBranchHint) |
| PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); |
| |
| SDValue Pred = getI32Imm(PCC, dl); |
| SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), |
| N->getOperand(0), N->getOperand(4) }; |
| CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); |
| return; |
| } |
| case ISD::BR_CC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| unsigned PCC = |
| getPredicateForSetCC(CC, N->getOperand(2).getValueType(), PPCSubTarget); |
| |
| if (N->getOperand(2).getValueType() == MVT::i1) { |
| unsigned Opc; |
| bool Swap; |
| switch (PCC) { |
| default: llvm_unreachable("Unexpected Boolean-operand predicate"); |
| case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; |
| case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; |
| case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; |
| case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; |
| case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; |
| case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; |
| } |
| |
| // A signed comparison of i1 values produces the opposite result to an |
| // unsigned one if the condition code includes less-than or greater-than. |
| // This is because 1 is the most negative signed i1 number and the most |
| // positive unsigned i1 number. The CR-logical operations used for such |
| // comparisons are non-commutative so for signed comparisons vs. unsigned |
| // ones, the input operands just need to be swapped. |
| if (ISD::isSignedIntSetCC(CC)) |
| Swap = !Swap; |
| |
| SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, |
| N->getOperand(Swap ? 3 : 2), |
| N->getOperand(Swap ? 2 : 3)), 0); |
| CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), |
| N->getOperand(0)); |
| return; |
| } |
| |
| if (EnableBranchHint) |
| PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); |
| |
| SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); |
| SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, |
| N->getOperand(4), N->getOperand(0) }; |
| CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); |
| return; |
| } |
| case ISD::BRIND: { |
| // FIXME: Should custom lower this. |
| SDValue Chain = N->getOperand(0); |
| SDValue Target = N->getOperand(1); |
| unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; |
| unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; |
| Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, |
| Chain), 0); |
| CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); |
| return; |
| } |
| case PPCISD::TOC_ENTRY: { |
| const bool isPPC64 = PPCSubTarget->isPPC64(); |
| const bool isELFABI = PPCSubTarget->isSVR4ABI(); |
| const bool isAIXABI = PPCSubTarget->isAIXABI(); |
| |
| assert(!PPCSubTarget->isDarwin() && "TOC is an ELF/XCOFF construct"); |
| |
| // PowerPC only support small, medium and large code model. |
| const CodeModel::Model CModel = TM.getCodeModel(); |
| assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && |
| "PowerPC doesn't support tiny or kernel code models."); |
| |
| if (isAIXABI && CModel == CodeModel::Medium) |
| report_fatal_error("Medium code model is not supported on AIX."); |
| |
| // For 64-bit small code model, we allow SelectCodeCommon to handle this, |
| // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. |
| if (isPPC64 && CModel == CodeModel::Small) |
| break; |
| |
| // Handle 32-bit small code model. |
| if (!isPPC64) { |
| // Transforms the ISD::TOC_ENTRY node to a PPCISD::LWZtoc. |
| auto replaceWithLWZtoc = [this, &dl](SDNode *TocEntry) { |
| SDValue GA = TocEntry->getOperand(0); |
| SDValue TocBase = TocEntry->getOperand(1); |
| SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, |
| TocBase); |
| transferMemOperands(TocEntry, MN); |
| ReplaceNode(TocEntry, MN); |
| }; |
| |
| if (isELFABI) { |
| assert(TM.isPositionIndependent() && |
| "32-bit ELF can only have TOC entries in position independent" |
| " code."); |
| // 32-bit ELF always uses a small code model toc access. |
| replaceWithLWZtoc(N); |
| return; |
| } |
| |
| if (isAIXABI && CModel == CodeModel::Small) { |
| replaceWithLWZtoc(N); |
| return; |
| } |
| } |
| |
| assert(CModel != CodeModel::Small && "All small code models handled."); |
| |
| assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" |
| " ELF/AIX or 32-bit AIX in the following."); |
| |
| // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode |
| // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We |
| // generate two instructions as described below. The first source operand |
| // is a symbol reference. If it must be toc-referenced according to |
| // PPCSubTarget, we generate: |
| // [32-bit AIX] |
| // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) |
| // [64-bit ELF/AIX] |
| // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) |
| // Otherwise we generate: |
| // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) |
| SDValue GA = N->getOperand(0); |
| SDValue TOCbase = N->getOperand(1); |
| |
| EVT VT = isPPC64 ? MVT::i64 : MVT::i32; |
| SDNode *Tmp = CurDAG->getMachineNode( |
| isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); |
| |
| if (PPCLowering->isAccessedAsGotIndirect(GA)) { |
| // If it is accessed as got-indirect, we need an extra LWZ/LD to load |
| // the address. |
| SDNode *MN = CurDAG->getMachineNode( |
| isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); |
| |
| transferMemOperands(N, MN); |
| ReplaceNode(N, MN); |
| return; |
| } |
| |
| // Build the address relative to the TOC-pointer. |
| ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, |
| SDValue(Tmp, 0), GA)); |
| return; |
| } |
| case PPCISD::PPC32_PICGOT: |
| // Generate a PIC-safe GOT reference. |
| assert(PPCSubTarget->is32BitELFABI() && |
| "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); |
| CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, |
| PPCLowering->getPointerTy(CurDAG->getDataLayout()), |
| MVT::i32); |
| return; |
| |
| case PPCISD::VADD_SPLAT: { |
| // This expands into one of three sequences, depending on whether |
| // the first operand is odd or even, positive or negative. |
| assert(isa<ConstantSDNode>(N->getOperand(0)) && |
| isa<ConstantSDNode>(N->getOperand(1)) && |
| "Invalid operand on VADD_SPLAT!"); |
| |
| int Elt = N->getConstantOperandVal(0); |
| int EltSize = N->getConstantOperandVal(1); |
| unsigned Opc1, Opc2, Opc3; |
| EVT VT; |
| |
| if (EltSize == 1) { |
| Opc1 = PPC::VSPLTISB; |
| Opc2 = PPC::VADDUBM; |
| Opc3 = PPC::VSUBUBM; |
| VT = MVT::v16i8; |
| } else if (EltSize == 2) { |
| Opc1 = PPC::VSPLTISH; |
| Opc2 = PPC::VADDUHM; |
| Opc3 = PPC::VSUBUHM; |
| VT = MVT::v8i16; |
| } else { |
| assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); |
| Opc1 = PPC::VSPLTISW; |
| Opc2 = PPC::VADDUWM; |
| Opc3 = PPC::VSUBUWM; |
| VT = MVT::v4i32; |
| } |
| |
| if ((Elt & 1) == 0) { |
| // Elt is even, in the range [-32,-18] + [16,30]. |
| // |
| // Convert: VADD_SPLAT elt, size |
| // Into: tmp = VSPLTIS[BHW] elt |
| // VADDU[BHW]M tmp, tmp |
| // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 |
| SDValue EltVal = getI32Imm(Elt >> 1, dl); |
| SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| SDValue TmpVal = SDValue(Tmp, 0); |
| ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); |
| return; |
| } else if (Elt > 0) { |
| // Elt is odd and positive, in the range [17,31]. |
| // |
| // Convert: VADD_SPLAT elt, size |
| // Into: tmp1 = VSPLTIS[BHW] elt-16 |
| // tmp2 = VSPLTIS[BHW] -16 |
| // VSUBU[BHW]M tmp1, tmp2 |
| SDValue EltVal = getI32Imm(Elt - 16, dl); |
| SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| EltVal = getI32Imm(-16, dl); |
| SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), |
| SDValue(Tmp2, 0))); |
| return; |
| } else { |
| // Elt is odd and negative, in the range [-31,-17]. |
| // |
| // Convert: VADD_SPLAT elt, size |
| // Into: tmp1 = VSPLTIS[BHW] elt+16 |
| // tmp2 = VSPLTIS[BHW] -16 |
| // VADDU[BHW]M tmp1, tmp2 |
| SDValue EltVal = getI32Imm(Elt + 16, dl); |
| SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| EltVal = getI32Imm(-16, dl); |
| SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); |
| ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), |
| SDValue(Tmp2, 0))); |
| return; |
| } |
| } |
| } |
| |
| SelectCode(N); |
| } |
| |
| // If the target supports the cmpb instruction, do the idiom recognition here. |
| // We don't do this as a DAG combine because we don't want to do it as nodes |
| // are being combined (because we might miss part of the eventual idiom). We |
| // don't want to do it during instruction selection because we want to reuse |
| // the logic for lowering the masking operations already part of the |
| // instruction selector. |
| SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { |
| SDLoc dl(N); |
| |
| assert(N->getOpcode() == ISD::OR && |
| "Only OR nodes are supported for CMPB"); |
| |
| SDValue Res; |
| if (!PPCSubTarget->hasCMPB()) |
| return Res; |
| |
| if (N->getValueType(0) != MVT::i32 && |
| N->getValueType(0) != MVT::i64) |
| return Res; |
| |
| EVT VT = N->getValueType(0); |
| |
| SDValue RHS, LHS; |
| bool BytesFound[8] = {false, false, false, false, false, false, false, false}; |
| uint64_t Mask = 0, Alt = 0; |
| |
| auto IsByteSelectCC = [this](SDValue O, unsigned &b, |
| uint64_t &Mask, uint64_t &Alt, |
| SDValue &LHS, SDValue &RHS) { |
| if (O.getOpcode() != ISD::SELECT_CC) |
| return false; |
| ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); |
| |
| if (!isa<ConstantSDNode>(O.getOperand(2)) || |
| !isa<ConstantSDNode>(O.getOperand(3))) |
| return false; |
| |
| uint64_t PM = O.getConstantOperandVal(2); |
| uint64_t PAlt = O.getConstantOperandVal(3); |
| for (b = 0; b < 8; ++b) { |
| uint64_t Mask = UINT64_C(0xFF) << (8*b); |
| if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) |
| break; |
| } |
| |
| if (b == 8) |
| return false; |
| Mask |= PM; |
| Alt |= PAlt; |
| |
| if (!isa<ConstantSDNode>(O.getOperand(1)) || |
| O.getConstantOperandVal(1) != 0) { |
| SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); |
| if (Op0.getOpcode() == ISD::TRUNCATE) |
| Op0 = Op0.getOperand(0); |
| if (Op1.getOpcode() == ISD::TRUNCATE) |
| Op1 = Op1.getOperand(0); |
| |
| if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && |
| Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && |
| isa<ConstantSDNode>(Op0.getOperand(1))) { |
| |
| unsigned Bits = Op0.getValueSizeInBits(); |
| if (b != Bits/8-1) |
| return false; |
| if (Op0.getConstantOperandVal(1) != Bits-8) |
| return false; |
| |
| LHS = Op0.getOperand(0); |
| RHS = Op1.getOperand(0); |
| return true; |
| } |
| |
| // When we have small integers (i16 to be specific), the form present |
| // post-legalization uses SETULT in the SELECT_CC for the |
| // higher-order byte, depending on the fact that the |
| // even-higher-order bytes are known to all be zero, for example: |
| // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult |
| // (so when the second byte is the same, because all higher-order |
| // bits from bytes 3 and 4 are known to be zero, the result of the |
| // xor can be at most 255) |
| if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && |
| isa<ConstantSDNode>(O.getOperand(1))) { |
| |
| uint64_t ULim = O.getConstantOperandVal(1); |
| if (ULim != (UINT64_C(1) << b*8)) |
| return false; |
| |
| // Now we need to make sure that the upper bytes are known to be |
| // zero. |
| unsigned Bits = Op0.getValueSizeInBits(); |
| if (!CurDAG->MaskedValueIsZero( |
| Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) |
| return false; |
| |
| LHS = Op0.getOperand(0); |
| RHS = Op0.getOperand(1); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| if (CC != ISD::SETEQ) |
| return false; |
| |
| SDValue Op = O.getOperand(0); |
| if (Op.getOpcode() == ISD::AND) { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return false; |
| if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) |
| return false; |
| |
| SDValue XOR = Op.getOperand(0); |
| if (XOR.getOpcode() == ISD::TRUNCATE) |
| XOR = XOR.getOperand(0); |
| if (XOR.getOpcode() != ISD::XOR) |
| return false; |
| |
| LHS = XOR.getOperand(0); |
| RHS = XOR.getOperand(1); |
| return true; |
| } else if (Op.getOpcode() == ISD::SRL) { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return false; |
| unsigned Bits = Op.getValueSizeInBits(); |
| if (b != Bits/8-1) |
| return false; |
| if (Op.getConstantOperandVal(1) != Bits-8) |
| return false; |
| |
| SDValue XOR = Op.getOperand(0); |
| if (XOR.getOpcode() == ISD::TRUNCATE) |
| XOR = XOR.getOperand(0); |
| if (XOR.getOpcode() != ISD::XOR) |
| return false; |
| |
| LHS = XOR.getOperand(0); |
| RHS = XOR.getOperand(1); |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); |
| while (!Queue.empty()) { |
| SDValue V = Queue.pop_back_val(); |
| |
| for (const SDValue &O : V.getNode()->ops()) { |
| unsigned b = 0; |
| uint64_t M = 0, A = 0; |
| SDValue OLHS, ORHS; |
| if (O.getOpcode() == ISD::OR) { |
| Queue.push_back(O); |
| } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { |
| if (!LHS) { |
| LHS = OLHS; |
| RHS = ORHS; |
| BytesFound[b] = true; |
| Mask |= M; |
| Alt |= A; |
| } else if ((LHS == ORHS && RHS == OLHS) || |
| (RHS == ORHS && LHS == OLHS)) { |
| BytesFound[b] = true; |
| Mask |= M; |
| Alt |= A; |
| } else { |
| return Res; |
| } |
| } else { |
| return Res; |
| } |
| } |
| } |
| |
| unsigned LastB = 0, BCnt = 0; |
| for (unsigned i = 0; i < 8; ++i) |
| if (BytesFound[LastB]) { |
| ++BCnt; |
| LastB = i; |
| } |
| |
| if (!LastB || BCnt < 2) |
| return Res; |
| |
| // Because we'll be zero-extending the output anyway if don't have a specific |
| // value for each input byte (via the Mask), we can 'anyext' the inputs. |
| if (LHS.getValueType() != VT) { |
| LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); |
| RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); |
| } |
| |
| Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); |
| |
| bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); |
| if (NonTrivialMask && !Alt) { |
| // Res = Mask & CMPB |
| Res = CurDAG->getNode(ISD::AND, dl, VT, Res, |
| CurDAG->getConstant(Mask, dl, VT)); |
| } else if (Alt) { |
| // Res = (CMPB & Mask) | (~CMPB & Alt) |
| // Which, as suggested here: |
| // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge |
| // can be written as: |
| // Res = Alt ^ ((Alt ^ Mask) & CMPB) |
| // useful because the (Alt ^ Mask) can be pre-computed. |
| Res = CurDAG->getNode(ISD::AND, dl, VT, Res, |
| CurDAG->getConstant(Mask ^ Alt, dl, VT)); |
| Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, |
| CurDAG->getConstant(Alt, dl, VT)); |
| } |
| |
| return Res; |
| } |
| |
| // When CR bit registers are enabled, an extension of an i1 variable to a i32 |
| // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus |
| // involves constant materialization of a 0 or a 1 or both. If the result of |
| // the extension is then operated upon by some operator that can be constant |
| // folded with a constant 0 or 1, and that constant can be materialized using |
| // only one instruction (like a zero or one), then we should fold in those |
| // operations with the select. |
| void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { |
| if (!PPCSubTarget->useCRBits()) |
| return; |
| |
| if (N->getOpcode() != ISD::ZERO_EXTEND && |
| N->getOpcode() != ISD::SIGN_EXTEND && |
| N->getOpcode() != ISD::ANY_EXTEND) |
| return; |
| |
| if (N->getOperand(0).getValueType() != MVT::i1) |
| return; |
| |
| if (!N->hasOneUse()) |
| return; |
| |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| SDValue Cond = N->getOperand(0); |
| SDValue ConstTrue = |
| CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); |
| SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); |
| |
| do { |
| SDNode *User = *N->use_begin(); |
| if (User->getNumOperands() != 2) |
| break; |
| |
| auto TryFold = [this, N, User, dl](SDValue Val) { |
| SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); |
| SDValue O0 = UserO0.getNode() == N ? Val : UserO0; |
| SDValue O1 = UserO1.getNode() == N ? Val : UserO1; |
| |
| return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, |
| User->getValueType(0), |
| O0.getNode(), O1.getNode()); |
| }; |
| |
| // FIXME: When the semantics of the interaction between select and undef |
| // are clearly defined, it may turn out to be unnecessary to break here. |
| SDValue TrueRes = TryFold(ConstTrue); |
| if (!TrueRes || TrueRes.isUndef()) |
| break; |
| SDValue FalseRes = TryFold(ConstFalse); |
| if (!FalseRes || FalseRes.isUndef()) |
| break; |
| |
| // For us to materialize these using one instruction, we must be able to |
| // represent them as signed 16-bit integers. |
| uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), |
| False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); |
| if (!isInt<16>(True) || !isInt<16>(False)) |
| break; |
| |
| // We can replace User with a new SELECT node, and try again to see if we |
| // can fold the select with its user. |
| Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); |
| N = User; |
| ConstTrue = TrueRes; |
| ConstFalse = FalseRes; |
| } while (N->hasOneUse()); |
| } |
| |
| void PPCDAGToDAGISel::PreprocessISelDAG() { |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| bool MadeChange = false; |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| if (N->use_empty()) |
| continue; |
| |
| SDValue Res; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::OR: |
| Res = combineToCMPB(N); |
| break; |
| } |
| |
| if (!Res) |
| foldBoolExts(Res, N); |
| |
| if (Res) { |
| LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(Res.getNode()->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); |
| MadeChange = true; |
| } |
| } |
| |
| if (MadeChange) |
| CurDAG->RemoveDeadNodes(); |
| } |
| |
| /// PostprocessISelDAG - Perform some late peephole optimizations |
| /// on the DAG representation. |
| void PPCDAGToDAGISel::PostprocessISelDAG() { |
| // Skip peepholes at -O0. |
| if (TM.getOptLevel() == CodeGenOpt::None) |
| return; |
| |
| PeepholePPC64(); |
| PeepholeCROps(); |
| PeepholePPC64ZExt(); |
| } |
| |
| // Check if all users of this node will become isel where the second operand |
| // is the constant zero. If this is so, and if we can negate the condition, |
| // then we can flip the true and false operands. This will allow the zero to |
| // be folded with the isel so that we don't need to materialize a register |
| // containing zero. |
| bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (!User->isMachineOpcode()) |
| return false; |
| if (User->getMachineOpcode() != PPC::SELECT_I4 && |
| User->getMachineOpcode() != PPC::SELECT_I8) |
| return false; |
| |
| SDNode *Op2 = User->getOperand(2).getNode(); |
| if (!Op2->isMachineOpcode()) |
| return false; |
| |
| if (Op2->getMachineOpcode() != PPC::LI && |
| Op2->getMachineOpcode() != PPC::LI8) |
| return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); |
| if (!C) |
| return false; |
| |
| if (!C->isNullValue()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { |
| SmallVector<SDNode *, 4> ToReplace; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| assert((User->getMachineOpcode() == PPC::SELECT_I4 || |
| User->getMachineOpcode() == PPC::SELECT_I8) && |
| "Must have all select users"); |
| ToReplace.push_back(User); |
| } |
| |
| for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), |
| UE = ToReplace.end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| SDNode *ResNode = |
| CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), |
| User->getValueType(0), User->getOperand(0), |
| User->getOperand(2), |
| User->getOperand(1)); |
| |
| LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); |
| LLVM_DEBUG(User->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(ResNode->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| ReplaceUses(User, ResNode); |
| } |
| } |
| |
| void PPCDAGToDAGISel::PeepholeCROps() { |
| bool IsModified; |
| do { |
| IsModified = false; |
| for (SDNode &Node : CurDAG->allnodes()) { |
| MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); |
| if (!MachineNode || MachineNode->use_empty()) |
| continue; |
| SDNode *ResNode = MachineNode; |
| |
| bool Op1Set = false, Op1Unset = false, |
| Op1Not = false, |
| Op2Set = false, Op2Unset = false, |
| Op2Not = false; |
| |
| unsigned Opcode = MachineNode->getMachineOpcode(); |
| switch (Opcode) { |
| default: break; |
| case PPC::CRAND: |
| case PPC::CRNAND: |
| case PPC::CROR: |
| case PPC::CRXOR: |
| case PPC::CRNOR: |
| case PPC::CREQV: |
| case PPC::CRANDC: |
| case PPC::CRORC: { |
| SDValue Op = MachineNode->getOperand(1); |
| if (Op.isMachineOpcode()) { |
| if (Op.getMachineOpcode() == PPC::CRSET) |
| Op2Set = true; |
| else if (Op.getMachineOpcode() == PPC::CRUNSET) |
| Op2Unset = true; |
| else if (Op.getMachineOpcode() == PPC::CRNOR && |
| Op.getOperand(0) == Op.getOperand(1)) |
| Op2Not = true; |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case PPC::BC: |
| case PPC::BCn: |
| case PPC::SELECT_I4: |
| case PPC::SELECT_I8: |
| case PPC::SELECT_F4: |
| case PPC::SELECT_F8: |
| case PPC::SELECT_QFRC: |
| case PPC::SELECT_QSRC: |
| case PPC::SELECT_QBRC: |
| case PPC::SELECT_SPE: |
| case PPC::SELECT_SPE4: |
| case PPC::SELECT_VRRC: |
| case PPC::SELECT_VSFRC: |
| case PPC::SELECT_VSSRC: |
| case PPC::SELECT_VSRC: { |
| SDValue Op = MachineNode->getOperand(0); |
| if (Op.isMachineOpcode()) { |
| if (Op.getMachineOpcode() == PPC::CRSET) |
| Op1Set = true; |
| else if (Op.getMachineOpcode() == PPC::CRUNSET) |
| Op1Unset = true; |
| else if (Op.getMachineOpcode() == PPC::CRNOR && |
| Op.getOperand(0) == Op.getOperand(1)) |
| Op1Not = true; |
| } |
| } |
| break; |
| } |
| |
| bool SelectSwap = false; |
| switch (Opcode) { |
| default: break; |
| case PPC::CRAND: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // x & x = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Set) |
| // 1 & y = y |
| ResNode = MachineNode->getOperand(1).getNode(); |
| else if (Op2Set) |
| // x & 1 = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Unset || Op2Unset) |
| // x & 0 = 0 & y = 0 |
| ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Not) |
| // ~x & y = andc(y, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(0). |
| getOperand(0)); |
| else if (Op2Not) |
| // x & ~y = andc(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1). |
| getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CRNAND: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // nand(x, x) -> nor(x, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (Op1Set) |
| // nand(1, y) -> nor(y, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(1)); |
| else if (Op2Set) |
| // nand(x, 1) -> nor(x, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (Op1Unset || Op2Unset) |
| // nand(x, 0) = nand(0, y) = 1 |
| ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Not) |
| // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1)); |
| else if (Op2Not) |
| // nand(x, ~y) = ~x | y = orc(y, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1). |
| getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CROR: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // x | x = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Set || Op2Set) |
| // x | 1 = 1 | y = 1 |
| ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Unset) |
| // 0 | y = y |
| ResNode = MachineNode->getOperand(1).getNode(); |
| else if (Op2Unset) |
| // x | 0 = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Not) |
| // ~x | y = orc(y, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(0). |
| getOperand(0)); |
| else if (Op2Not) |
| // x | ~y = orc(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1). |
| getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CRXOR: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // xor(x, x) = 0 |
| ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Set) |
| // xor(1, y) -> nor(y, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(1)); |
| else if (Op2Set) |
| // xor(x, 1) -> nor(x, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (Op1Unset) |
| // xor(0, y) = y |
| ResNode = MachineNode->getOperand(1).getNode(); |
| else if (Op2Unset) |
| // xor(x, 0) = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Not) |
| // xor(~x, y) = eqv(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1)); |
| else if (Op2Not) |
| // xor(x, ~y) = eqv(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1). |
| getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CRNOR: |
| if (Op1Set || Op2Set) |
| // nor(1, y) -> 0 |
| ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Unset) |
| // nor(0, y) = ~y -> nor(y, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(1)); |
| else if (Op2Unset) |
| // nor(x, 0) = ~x |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (Op1Not) |
| // nor(~x, y) = andc(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1)); |
| else if (Op2Not) |
| // nor(x, ~y) = andc(y, x) |
| ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1). |
| getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CREQV: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // eqv(x, x) = 1 |
| ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Set) |
| // eqv(1, y) = y |
| ResNode = MachineNode->getOperand(1).getNode(); |
| else if (Op2Set) |
| // eqv(x, 1) = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Unset) |
| // eqv(0, y) = ~y -> nor(y, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(1)); |
| else if (Op2Unset) |
| // eqv(x, 0) = ~x |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(0)); |
| else if (Op1Not) |
| // eqv(~x, y) = xor(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1)); |
| else if (Op2Not) |
| // eqv(x, ~y) = xor(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1). |
| getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CRANDC: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // andc(x, x) = 0 |
| ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Set) |
| // andc(1, y) = ~y |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(1)); |
| else if (Op1Unset || Op2Set) |
| // andc(0, y) = andc(x, 1) = 0 |
| ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op2Unset) |
| // andc(x, 0) = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Not) |
| // andc(~x, y) = ~(x | y) = nor(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1)); |
| else if (Op2Not) |
| // andc(x, ~y) = x & y |
| ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1). |
| getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(0)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::CRORC: |
| if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) |
| // orc(x, x) = 1 |
| ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op1Set || Op2Unset) |
| // orc(1, y) = orc(x, 0) = 1 |
| ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), |
| MVT::i1); |
| else if (Op2Set) |
| // orc(x, 1) = x |
| ResNode = MachineNode->getOperand(0).getNode(); |
| else if (Op1Unset) |
| // orc(0, y) = ~y |
| ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(1)); |
| else if (Op1Not) |
| // orc(~x, y) = ~(x & y) = nand(x, y) |
| ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1)); |
| else if (Op2Not) |
| // orc(x, ~y) = x | y |
| ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(0), |
| MachineNode->getOperand(1). |
| getOperand(0)); |
| else if (AllUsersSelectZero(MachineNode)) { |
| ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), |
| MVT::i1, MachineNode->getOperand(1), |
| MachineNode->getOperand(0)); |
| SelectSwap = true; |
| } |
| break; |
| case PPC::SELECT_I4: |
| case PPC::SELECT_I8: |
| case PPC::SELECT_F4: |
| case PPC::SELECT_F8: |
| case PPC::SELECT_QFRC: |
| case PPC::SELECT_QSRC: |
| case PPC::SELECT_QBRC: |
| case PPC::SELECT_SPE: |
| case PPC::SELECT_SPE4: |
| case PPC::SELECT_VRRC: |
| case PPC::SELECT_VSFRC: |
| case PPC::SELECT_VSSRC: |
| case PPC::SELECT_VSRC: |
| if (Op1Set) |
| ResNode = MachineNode->getOperand(1).getNode(); |
| else if (Op1Unset) |
| ResNode = MachineNode->getOperand(2).getNode(); |
| else if (Op1Not) |
| ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), |
| SDLoc(MachineNode), |
| MachineNode->getValueType(0), |
| MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(2), |
| MachineNode->getOperand(1)); |
| break; |
| case PPC::BC: |
| case PPC::BCn: |
| if (Op1Not) |
| ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : |
| PPC::BC, |
| SDLoc(MachineNode), |
| MVT::Other, |
| MachineNode->getOperand(0). |
| getOperand(0), |
| MachineNode->getOperand(1), |
| MachineNode->getOperand(2)); |
| // FIXME: Handle Op1Set, Op1Unset here too. |
| break; |
| } |
| |
| // If we're inverting this node because it is used only by selects that |
| // we'd like to swap, then swap the selects before the node replacement. |
| if (SelectSwap) |
| SwapAllSelectUsers(MachineNode); |
| |
| if (ResNode != MachineNode) { |
| LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); |
| LLVM_DEBUG(MachineNode->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(ResNode->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| ReplaceUses(MachineNode, ResNode); |
| IsModified = true; |
| } |
| } |
| if (IsModified) |
| CurDAG->RemoveDeadNodes(); |
| } while (IsModified); |
| } |
| |
| // Gather the set of 32-bit operations that are known to have their |
| // higher-order 32 bits zero, where ToPromote contains all such operations. |
| static bool PeepholePPC64ZExtGather(SDValue Op32, |
| SmallPtrSetImpl<SDNode *> &ToPromote) { |
| if (!Op32.isMachineOpcode()) |
| return false; |
| |
| // First, check for the "frontier" instructions (those that will clear the |
| // higher-order 32 bits. |
| |
| // For RLWINM and RLWNM, we need to make sure that the mask does not wrap |
| // around. If it does not, then these instructions will clear the |
| // higher-order bits. |
| if ((Op32.getMachineOpcode() == PPC::RLWINM || |
| Op32.getMachineOpcode() == PPC::RLWNM) && |
| Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { |
| ToPromote.insert(Op32.getNode()); |
| return true; |
| } |
| |
| // SLW and SRW always clear the higher-order bits. |
| if (Op32.getMachineOpcode() == PPC::SLW || |
| Op32.getMachineOpcode() == PPC::SRW) { |
| ToPromote.insert(Op32.getNode()); |
| return true; |
| } |
| |
| // For LI and LIS, we need the immediate to be positive (so that it is not |
| // sign extended). |
| if (Op32.getMachineOpcode() == PPC::LI || |
| Op32.getMachineOpcode() == PPC::LIS) { |
| if (!isUInt<15>(Op32.getConstantOperandVal(0))) |
| return false; |
| |
| ToPromote.insert(Op32.getNode()); |
| return true; |
| } |
| |
| // LHBRX and LWBRX always clear the higher-order bits. |
| if (Op32.getMachineOpcode() == PPC::LHBRX || |
| Op32.getMachineOpcode() == PPC::LWBRX) { |
| ToPromote.insert(Op32.getNode()); |
| return true; |
| } |
| |
| // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. |
| if (Op32.getMachineOpcode() == PPC::CNTLZW || |
| Op32.getMachineOpcode() == PPC::CNTTZW) { |
| ToPromote.insert(Op32.getNode()); |
| return true; |
| } |
| |
| // Next, check for those instructions we can look through. |
| |
| // Assuming the mask does not wrap around, then the higher-order bits are |
| // taken directly from the first operand. |
| if (Op32.getMachineOpcode() == PPC::RLWIMI && |
| Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { |
| SmallPtrSet<SDNode *, 16> ToPromote1; |
| if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) |
| return false; |
| |
| ToPromote.insert(Op32.getNode()); |
| ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| return true; |
| } |
| |
| // For OR, the higher-order bits are zero if that is true for both operands. |
| // For SELECT_I4, the same is true (but the relevant operand numbers are |
| // shifted by 1). |
| if (Op32.getMachineOpcode() == PPC::OR || |
| Op32.getMachineOpcode() == PPC::SELECT_I4) { |
| unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; |
| SmallPtrSet<SDNode *, 16> ToPromote1; |
| if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) |
| return false; |
| if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) |
| return false; |
| |
| ToPromote.insert(Op32.getNode()); |
| ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| return true; |
| } |
| |
| // For ORI and ORIS, we need the higher-order bits of the first operand to be |
| // zero, and also for the constant to be positive (so that it is not sign |
| // extended). |
| if (Op32.getMachineOpcode() == PPC::ORI || |
| Op32.getMachineOpcode() == PPC::ORIS) { |
| SmallPtrSet<SDNode *, 16> ToPromote1; |
| if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) |
| return false; |
| if (!isUInt<15>(Op32.getConstantOperandVal(1))) |
| return false; |
| |
| ToPromote.insert(Op32.getNode()); |
| ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| return true; |
| } |
| |
| // The higher-order bits of AND are zero if that is true for at least one of |
| // the operands. |
| if (Op32.getMachineOpcode() == PPC::AND) { |
| SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; |
| bool Op0OK = |
| PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); |
| bool Op1OK = |
| PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); |
| if (!Op0OK && !Op1OK) |
| return false; |
| |
| ToPromote.insert(Op32.getNode()); |
| |
| if (Op0OK) |
| ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| |
| if (Op1OK) |
| ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); |
| |
| return true; |
| } |
| |
| // For ANDI and ANDIS, the higher-order bits are zero if either that is true |
| // of the first operand, or if the second operand is positive (so that it is |
| // not sign extended). |
| if (Op32.getMachineOpcode() == PPC::ANDI_rec || |
| Op32.getMachineOpcode() == PPC::ANDIS_rec) { |
| SmallPtrSet<SDNode *, 16> ToPromote1; |
| bool Op0OK = |
| PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); |
| bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); |
| if (!Op0OK && !Op1OK) |
| return false; |
| |
| ToPromote.insert(Op32.getNode()); |
| |
| if (Op0OK) |
| ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void PPCDAGToDAGISel::PeepholePPC64ZExt() { |
| if (!PPCSubTarget->isPPC64()) |
| return; |
| |
| // When we zero-extend from i32 to i64, we use a pattern like this: |
| // def : Pat<(i64 (zext i32:$in)), |
| // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), |
| // 0, 32)>; |
| // There are several 32-bit shift/rotate instructions, however, that will |
| // clear the higher-order bits of their output, rendering the RLDICL |
| // unnecessary. When that happens, we remove it here, and redefine the |
| // relevant 32-bit operation to be a 64-bit operation. |
| |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| bool MadeChange = false; |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| // Skip dead nodes and any non-machine opcodes. |
| if (N->use_empty() || !N->isMachineOpcode()) |
| continue; |
| |
| if (N->getMachineOpcode() != PPC::RLDICL) |
| continue; |
| |
| if (N->getConstantOperandVal(1) != 0 || |
| N->getConstantOperandVal(2) != 32) |
| continue; |
| |
| SDValue ISR = N->getOperand(0); |
| if (!ISR.isMachineOpcode() || |
| ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) |
| continue; |
| |
| if (!ISR.hasOneUse()) |
| continue; |
| |
| if (ISR.getConstantOperandVal(2) != PPC::sub_32) |
| continue; |
| |
| SDValue IDef = ISR.getOperand(0); |
| if (!IDef.isMachineOpcode() || |
| IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) |
| continue; |
| |
| // We now know that we're looking at a canonical i32 -> i64 zext. See if we |
| // can get rid of it. |
| |
| SDValue Op32 = ISR->getOperand(1); |
| if (!Op32.isMachineOpcode()) |
| continue; |
| |
| // There are some 32-bit instructions that always clear the high-order 32 |
| // bits, there are also some instructions (like AND) that we can look |
| // through. |
| SmallPtrSet<SDNode *, 16> ToPromote; |
| if (!PeepholePPC64ZExtGather(Op32, ToPromote)) |
| continue; |
| |
| // If the ToPromote set contains nodes that have uses outside of the set |
| // (except for the original INSERT_SUBREG), then abort the transformation. |
| bool OutsideUse = false; |
| for (SDNode *PN : ToPromote) { |
| for (SDNode *UN : PN->uses()) { |
| if (!ToPromote.count(UN) && UN != ISR.getNode()) { |
| OutsideUse = true; |
| break; |
| } |
| } |
| |
| if (OutsideUse) |
| break; |
| } |
| if (OutsideUse) |
| continue; |
| |
| MadeChange = true; |
| |
| // We now know that this zero extension can be removed by promoting to |
| // nodes in ToPromote to 64-bit operations, where for operations in the |
| // frontier of the set, we need to insert INSERT_SUBREGs for their |
| // operands. |
| for (SDNode *PN : ToPromote) { |
| unsigned NewOpcode; |
| switch (PN->getMachineOpcode()) { |
| default: |
| llvm_unreachable("Don't know the 64-bit variant of this instruction"); |
| case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; |
| case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; |
| case PPC::SLW: NewOpcode = PPC::SLW8; break; |
| case PPC::SRW: NewOpcode = PPC::SRW8; break; |
| case PPC::LI: NewOpcode = PPC::LI8; break; |
| case PPC::LIS: NewOpcode = PPC::LIS8; break; |
| case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; |
| case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; |
| case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; |
| case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; |
| case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; |
| case PPC::OR: NewOpcode = PPC::OR8; break; |
| case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; |
| case PPC::ORI: NewOpcode = PPC::ORI8; break; |
| case PPC::ORIS: NewOpcode = PPC::ORIS8; break; |
| case PPC::AND: NewOpcode = PPC::AND8; break; |
| case PPC::ANDI_rec: |
| NewOpcode = PPC::ANDI8_rec; |
| break; |
| case PPC::ANDIS_rec: |
| NewOpcode = PPC::ANDIS8_rec; |
| break; |
| } |
| |
| // Note: During the replacement process, the nodes will be in an |
| // inconsistent state (some instructions will have operands with values |
| // of the wrong type). Once done, however, everything should be right |
| // again. |
| |
| SmallVector<SDValue, 4> Ops; |
| for (const SDValue &V : PN->ops()) { |
| if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && |
| !isa<ConstantSDNode>(V)) { |
| SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; |
| SDNode *ReplOp = |
| CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), |
| ISR.getNode()->getVTList(), ReplOpOps); |
| Ops.push_back(SDValue(ReplOp, 0)); |
| } else { |
| Ops.push_back(V); |
| } |
| } |
| |
| // Because all to-be-promoted nodes only have users that are other |
| // promoted nodes (or the original INSERT_SUBREG), we can safely replace |
| // the i32 result value type with i64. |
| |
| SmallVector<EVT, 2> NewVTs; |
| SDVTList VTs = PN->getVTList(); |
| for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) |
| if (VTs.VTs[i] == MVT::i32) |
| NewVTs.push_back(MVT::i64); |
| else |
| NewVTs.push_back(VTs.VTs[i]); |
| |
| LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); |
| LLVM_DEBUG(PN->dump(CurDAG)); |
| |
| CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); |
| |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(PN->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| } |
| |
| // Now we replace the original zero extend and its associated INSERT_SUBREG |
| // with the value feeding the INSERT_SUBREG (which has now been promoted to |
| // return an i64). |
| |
| LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| ReplaceUses(N, Op32.getNode()); |
| } |
| |
| if (MadeChange) |
| CurDAG->RemoveDeadNodes(); |
| } |
| |
| void PPCDAGToDAGISel::PeepholePPC64() { |
| // These optimizations are currently supported only for 64-bit SVR4. |
| if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) |
| return; |
| |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| // Skip dead nodes and any non-machine opcodes. |
| if (N->use_empty() || !N->isMachineOpcode()) |
| continue; |
| |
| unsigned FirstOp; |
| unsigned StorageOpcode = N->getMachineOpcode(); |
| bool RequiresMod4Offset = false; |
| |
| switch (StorageOpcode) { |
| default: continue; |
| |
| case PPC::LWA: |
| case PPC::LD: |
| case PPC::DFLOADf64: |
| case PPC::DFLOADf32: |
| RequiresMod4Offset = true; |
| LLVM_FALLTHROUGH; |
| case PPC::LBZ: |
| case PPC::LBZ8: |
| case PPC::LFD: |
| case PPC::LFS: |
| case PPC::LHA: |
| case PPC::LHA8: |
| case PPC::LHZ: |
| case PPC::LHZ8: |
| case PPC::LWZ: |
| case PPC::LWZ8: |
| FirstOp = 0; |
| break; |
| |
| case PPC::STD: |
| case PPC::DFSTOREf64: |
| case PPC::DFSTOREf32: |
| RequiresMod4Offset = true; |
| LLVM_FALLTHROUGH; |
| case PPC::STB: |
| case PPC::STB8: |
| case PPC::STFD: |
| case PPC::STFS: |
| case PPC::STH: |
| case PPC::STH8: |
| case PPC::STW: |
| case PPC::STW8: |
| FirstOp = 1; |
| break; |
| } |
| |
| // If this is a load or store with a zero offset, or within the alignment, |
| // we may be able to fold an add-immediate into the memory operation. |
| // The check against alignment is below, as it can't occur until we check |
| // the arguments to N |
| if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) |
| continue; |
| |
| SDValue Base = N->getOperand(FirstOp + 1); |
| if (!Base.isMachineOpcode()) |
| continue; |
| |
| unsigned Flags = 0; |
| bool ReplaceFlags = true; |
| |
| // When the feeding operation is an add-immediate of some sort, |
| // determine whether we need to add relocation information to the |
| // target flags on the immediate operand when we fold it into the |
| // load instruction. |
| // |
| // For something like ADDItocL, the relocation information is |
| // inferred from the opcode; when we process it in the AsmPrinter, |
| // we add the necessary relocation there. A load, though, can receive |
| // relocation from various flavors of ADDIxxx, so we need to carry |
| // the relocation information in the target flags. |
| switch (Base.getMachineOpcode()) { |
| default: continue; |
| |
| case PPC::ADDI8: |
| case PPC::ADDI: |
| // In some cases (such as TLS) the relocation information |
| // is already in place on the operand, so copying the operand |
| // is sufficient. |
| ReplaceFlags = false; |
| // For these cases, the immediate may not be divisible by 4, in |
| // which case the fold is illegal for DS-form instructions. (The |
| // other cases provide aligned addresses and are always safe.) |
| if (RequiresMod4Offset && |
| (!isa<ConstantSDNode>(Base.getOperand(1)) || |
| Base.getConstantOperandVal(1) % 4 != 0)) |
| continue; |
| break; |
| case PPC::ADDIdtprelL: |
| Flags = PPCII::MO_DTPREL_LO; |
| break; |
| case PPC::ADDItlsldL: |
| Flags = PPCII::MO_TLSLD_LO; |
| break; |
| case PPC::ADDItocL: |
| Flags = PPCII::MO_TOC_LO; |
| break; |
| } |
| |
| SDValue ImmOpnd = Base.getOperand(1); |
| |
| // On PPC64, the TOC base pointer is guaranteed by the ABI only to have |
| // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, |
| // we might have needed different @ha relocation values for the offset |
| // pointers). |
| int MaxDisplacement = 7; |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { |
| const GlobalValue *GV = GA->getGlobal(); |
| MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); |
| } |
| |
| bool UpdateHBase = false; |
| SDValue HBase = Base.getOperand(0); |
| |
| int Offset = N->getConstantOperandVal(FirstOp); |
| if (ReplaceFlags) { |
| if (Offset < 0 || Offset > MaxDisplacement) { |
| // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only |
| // one use, then we can do this for any offset, we just need to also |
| // update the offset (i.e. the symbol addend) on the addis also. |
| if (Base.getMachineOpcode() != PPC::ADDItocL) |
| continue; |
| |
| if (!HBase.isMachineOpcode() || |
| HBase.getMachineOpcode() != PPC::ADDIStocHA8) |
| continue; |
| |
| if (!Base.hasOneUse() || !HBase.hasOneUse()) |
| continue; |
| |
| SDValue HImmOpnd = HBase.getOperand(1); |
| if (HImmOpnd != ImmOpnd) |
| continue; |
| |
| UpdateHBase = true; |
| } |
| } else { |
| // If we're directly folding the addend from an addi instruction, then: |
| // 1. In general, the offset on the memory access must be zero. |
| // 2. If the addend is a constant, then it can be combined with a |
| // non-zero offset, but only if the result meets the encoding |
| // requirements. |
| if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { |
| Offset += C->getSExtValue(); |
| |
| if (RequiresMod4Offset && (Offset % 4) != 0) |
| continue; |
| |
| if (!isInt<16>(Offset)) |
| continue; |
| |
| ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), |
| ImmOpnd.getValueType()); |
| } else if (Offset != 0) { |
| continue; |
| } |
| } |
| |
| // We found an opportunity. Reverse the operands from the add |
| // immediate and substitute them into the load or store. If |
| // needed, update the target flags for the immediate operand to |
| // reflect the necessary relocation information. |
| LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); |
| LLVM_DEBUG(Base->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nN: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| // If the relocation information isn't already present on the |
| // immediate operand, add it now. |
| if (ReplaceFlags) { |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { |
| SDLoc dl(GA); |
| const GlobalValue *GV = GA->getGlobal(); |
| // We can't perform this optimization for data whose alignment |
| // is insufficient for the instruction encoding. |
| if (GV->getAlignment() < 4 && |
| (RequiresMod4Offset || (Offset % 4) != 0)) { |
| LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); |
| continue; |
| } |
| ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); |
| } else if (ConstantPoolSDNode *CP = |
| dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { |
| const Constant *C = CP->getConstVal(); |
| ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, |
| CP->getAlignment(), |
| Offset, Flags); |
| } |
| } |
| |
| if (FirstOp == 1) // Store |
| (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, |
| Base.getOperand(0), N->getOperand(3)); |
| else // Load |
| (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), |
| N->getOperand(2)); |
| |
| if (UpdateHBase) |
| (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), |
| ImmOpnd); |
| |
| // The add-immediate may now be dead, in which case remove it. |
| if (Base.getNode()->use_empty()) |
| CurDAG->RemoveDeadNode(Base.getNode()); |
| } |
| } |
| |
| /// createPPCISelDag - This pass converts a legalized DAG into a |
| /// PowerPC-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new PPCDAGToDAGISel(TM, OptLevel); |
| } |