| //===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| /// The pass tries to use the 32-bit encoding for instructions when possible. |
| //===----------------------------------------------------------------------===// |
| // |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #define DEBUG_TYPE "si-shrink-instructions" |
| |
| STATISTIC(NumInstructionsShrunk, |
| "Number of 64-bit instruction reduced to 32-bit."); |
| STATISTIC(NumLiteralConstantsFolded, |
| "Number of literal constants folded into 32-bit instructions."); |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| class SIShrinkInstructions : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| void shrinkMIMG(MachineInstr &MI); |
| |
| public: |
| SIShrinkInstructions() : MachineFunctionPass(ID) { |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| StringRef getPassName() const override { return "SI Shrink Instructions"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| } // End anonymous namespace. |
| |
| INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE, |
| "SI Shrink Instructions", false, false) |
| |
| char SIShrinkInstructions::ID = 0; |
| |
| FunctionPass *llvm::createSIShrinkInstructionsPass() { |
| return new SIShrinkInstructions(); |
| } |
| |
| /// This function checks \p MI for operands defined by a move immediate |
| /// instruction and then folds the literal constant into the instruction if it |
| /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions. |
| static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII, |
| MachineRegisterInfo &MRI, bool TryToCommute = true) { |
| assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI)); |
| |
| int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); |
| |
| // Try to fold Src0 |
| MachineOperand &Src0 = MI.getOperand(Src0Idx); |
| if (Src0.isReg()) { |
| Register Reg = Src0.getReg(); |
| if (Register::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) { |
| MachineInstr *Def = MRI.getUniqueVRegDef(Reg); |
| if (Def && Def->isMoveImmediate()) { |
| MachineOperand &MovSrc = Def->getOperand(1); |
| bool ConstantFolded = false; |
| |
| if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) || |
| isUInt<32>(MovSrc.getImm()))) { |
| // It's possible to have only one component of a super-reg defined by |
| // a single mov, so we need to clear any subregister flag. |
| Src0.setSubReg(0); |
| Src0.ChangeToImmediate(MovSrc.getImm()); |
| ConstantFolded = true; |
| } else if (MovSrc.isFI()) { |
| Src0.setSubReg(0); |
| Src0.ChangeToFrameIndex(MovSrc.getIndex()); |
| ConstantFolded = true; |
| } else if (MovSrc.isGlobal()) { |
| Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(), |
| MovSrc.getTargetFlags()); |
| ConstantFolded = true; |
| } |
| |
| if (ConstantFolded) { |
| assert(MRI.use_empty(Reg)); |
| Def->eraseFromParent(); |
| ++NumLiteralConstantsFolded; |
| return true; |
| } |
| } |
| } |
| } |
| |
| // We have failed to fold src0, so commute the instruction and try again. |
| if (TryToCommute && MI.isCommutable()) { |
| if (TII->commuteInstruction(MI)) { |
| if (foldImmediates(MI, TII, MRI, false)) |
| return true; |
| |
| // Commute back. |
| TII->commuteInstruction(MI); |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { |
| return isInt<16>(Src.getImm()) && |
| !TII->isInlineConstant(*Src.getParent(), |
| Src.getParent()->getOperandNo(&Src)); |
| } |
| |
| static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { |
| return isUInt<16>(Src.getImm()) && |
| !TII->isInlineConstant(*Src.getParent(), |
| Src.getParent()->getOperandNo(&Src)); |
| } |
| |
| static bool isKImmOrKUImmOperand(const SIInstrInfo *TII, |
| const MachineOperand &Src, |
| bool &IsUnsigned) { |
| if (isInt<16>(Src.getImm())) { |
| IsUnsigned = false; |
| return !TII->isInlineConstant(Src); |
| } |
| |
| if (isUInt<16>(Src.getImm())) { |
| IsUnsigned = true; |
| return !TII->isInlineConstant(Src); |
| } |
| |
| return false; |
| } |
| |
| /// \returns true if the constant in \p Src should be replaced with a bitreverse |
| /// of an inline immediate. |
| static bool isReverseInlineImm(const SIInstrInfo *TII, |
| const MachineOperand &Src, |
| int32_t &ReverseImm) { |
| if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src)) |
| return false; |
| |
| ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm())); |
| return ReverseImm >= -16 && ReverseImm <= 64; |
| } |
| |
| /// Copy implicit register operands from specified instruction to this |
| /// instruction that are not part of the instruction definition. |
| static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF, |
| const MachineInstr &MI) { |
| for (unsigned i = MI.getDesc().getNumOperands() + |
| MI.getDesc().getNumImplicitUses() + |
| MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands(); |
| i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) |
| NewMI.addOperand(MF, MO); |
| } |
| } |
| |
| static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) { |
| // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to |
| // get constants on the RHS. |
| if (!MI.getOperand(0).isReg()) |
| TII->commuteInstruction(MI, false, 0, 1); |
| |
| const MachineOperand &Src1 = MI.getOperand(1); |
| if (!Src1.isImm()) |
| return; |
| |
| int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode()); |
| if (SOPKOpc == -1) |
| return; |
| |
| // eq/ne is special because the imm16 can be treated as signed or unsigned, |
| // and initially selectd to the unsigned versions. |
| if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) { |
| bool HasUImm; |
| if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) { |
| if (!HasUImm) { |
| SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ? |
| AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32; |
| } |
| |
| MI.setDesc(TII->get(SOPKOpc)); |
| } |
| |
| return; |
| } |
| |
| const MCInstrDesc &NewDesc = TII->get(SOPKOpc); |
| |
| if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) || |
| (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) { |
| MI.setDesc(NewDesc); |
| } |
| } |
| |
| // Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding. |
| void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) { |
| const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); |
| if (Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA) |
| return; |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| int VAddr0Idx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); |
| unsigned NewAddrDwords = Info->VAddrDwords; |
| const TargetRegisterClass *RC; |
| |
| if (Info->VAddrDwords == 2) { |
| RC = &AMDGPU::VReg_64RegClass; |
| } else if (Info->VAddrDwords == 3) { |
| RC = &AMDGPU::VReg_96RegClass; |
| } else if (Info->VAddrDwords == 4) { |
| RC = &AMDGPU::VReg_128RegClass; |
| } else if (Info->VAddrDwords <= 8) { |
| RC = &AMDGPU::VReg_256RegClass; |
| NewAddrDwords = 8; |
| } else { |
| RC = &AMDGPU::VReg_512RegClass; |
| NewAddrDwords = 16; |
| } |
| |
| unsigned VgprBase = 0; |
| bool IsUndef = true; |
| bool IsKill = NewAddrDwords == Info->VAddrDwords; |
| for (unsigned i = 0; i < Info->VAddrDwords; ++i) { |
| const MachineOperand &Op = MI.getOperand(VAddr0Idx + i); |
| unsigned Vgpr = TRI.getHWRegIndex(Op.getReg()); |
| |
| if (i == 0) { |
| VgprBase = Vgpr; |
| } else if (VgprBase + i != Vgpr) |
| return; |
| |
| if (!Op.isUndef()) |
| IsUndef = false; |
| if (!Op.isKill()) |
| IsKill = false; |
| } |
| |
| if (VgprBase + NewAddrDwords > 256) |
| return; |
| |
| // Further check for implicit tied operands - this may be present if TFE is |
| // enabled |
| int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); |
| int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe); |
| unsigned TFEVal = MI.getOperand(TFEIdx).getImm(); |
| unsigned LWEVal = MI.getOperand(LWEIdx).getImm(); |
| int ToUntie = -1; |
| if (TFEVal || LWEVal) { |
| // TFE/LWE is enabled so we need to deal with an implicit tied operand |
| for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) { |
| if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() && |
| MI.getOperand(i).isImplicit()) { |
| // This is the tied operand |
| assert( |
| ToUntie == -1 && |
| "found more than one tied implicit operand when expecting only 1"); |
| ToUntie = i; |
| MI.untieRegOperand(ToUntie); |
| } |
| } |
| } |
| |
| unsigned NewOpcode = |
| AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default, |
| Info->VDataDwords, NewAddrDwords); |
| MI.setDesc(TII->get(NewOpcode)); |
| MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase)); |
| MI.getOperand(VAddr0Idx).setIsUndef(IsUndef); |
| MI.getOperand(VAddr0Idx).setIsKill(IsKill); |
| |
| for (unsigned i = 1; i < Info->VAddrDwords; ++i) |
| MI.RemoveOperand(VAddr0Idx + 1); |
| |
| if (ToUntie >= 0) { |
| MI.tieOperands( |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata), |
| ToUntie - (Info->VAddrDwords - 1)); |
| } |
| } |
| |
| /// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals. |
| /// For AND or OR, try using S_BITSET{0,1} to clear or set bits. |
| /// If the inverse of the immediate is legal, use ANDN2, ORN2 or |
| /// XNOR (as a ^ b == ~(a ^ ~b)). |
| /// \returns true if the caller should continue the machine function iterator |
| static bool shrinkScalarLogicOp(const GCNSubtarget &ST, |
| MachineRegisterInfo &MRI, |
| const SIInstrInfo *TII, |
| MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| const MachineOperand *Dest = &MI.getOperand(0); |
| MachineOperand *Src0 = &MI.getOperand(1); |
| MachineOperand *Src1 = &MI.getOperand(2); |
| MachineOperand *SrcReg = Src0; |
| MachineOperand *SrcImm = Src1; |
| |
| if (SrcImm->isImm() && |
| !AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm())) { |
| uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm()); |
| uint32_t NewImm = 0; |
| |
| if (Opc == AMDGPU::S_AND_B32) { |
| if (isPowerOf2_32(~Imm)) { |
| NewImm = countTrailingOnes(Imm); |
| Opc = AMDGPU::S_BITSET0_B32; |
| } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { |
| NewImm = ~Imm; |
| Opc = AMDGPU::S_ANDN2_B32; |
| } |
| } else if (Opc == AMDGPU::S_OR_B32) { |
| if (isPowerOf2_32(Imm)) { |
| NewImm = countTrailingZeros(Imm); |
| Opc = AMDGPU::S_BITSET1_B32; |
| } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { |
| NewImm = ~Imm; |
| Opc = AMDGPU::S_ORN2_B32; |
| } |
| } else if (Opc == AMDGPU::S_XOR_B32) { |
| if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { |
| NewImm = ~Imm; |
| Opc = AMDGPU::S_XNOR_B32; |
| } |
| } else { |
| llvm_unreachable("unexpected opcode"); |
| } |
| |
| if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) && |
| SrcImm == Src0) { |
| if (!TII->commuteInstruction(MI, false, 1, 2)) |
| NewImm = 0; |
| } |
| |
| if (NewImm != 0) { |
| if (Register::isVirtualRegister(Dest->getReg()) && SrcReg->isReg()) { |
| MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg()); |
| MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg()); |
| return true; |
| } |
| |
| if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) { |
| MI.setDesc(TII->get(Opc)); |
| if (Opc == AMDGPU::S_BITSET0_B32 || |
| Opc == AMDGPU::S_BITSET1_B32) { |
| Src0->ChangeToImmediate(NewImm); |
| // Remove the immediate and add the tied input. |
| MI.getOperand(2).ChangeToRegister(Dest->getReg(), false); |
| MI.tieOperands(0, 2); |
| } else { |
| SrcImm->setImm(NewImm); |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // This is the same as MachineInstr::readsRegister/modifiesRegister except |
| // it takes subregs into account. |
| static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R, |
| unsigned Reg, unsigned SubReg, |
| const SIRegisterInfo &TRI) { |
| for (const MachineOperand &MO : R) { |
| if (!MO.isReg()) |
| continue; |
| |
| if (Register::isPhysicalRegister(Reg) && |
| Register::isPhysicalRegister(MO.getReg())) { |
| if (TRI.regsOverlap(Reg, MO.getReg())) |
| return true; |
| } else if (MO.getReg() == Reg && Register::isVirtualRegister(Reg)) { |
| LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) & |
| TRI.getSubRegIndexLaneMask(MO.getSubReg()); |
| if (Overlap.any()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool instReadsReg(const MachineInstr *MI, |
| unsigned Reg, unsigned SubReg, |
| const SIRegisterInfo &TRI) { |
| return instAccessReg(MI->uses(), Reg, SubReg, TRI); |
| } |
| |
| static bool instModifiesReg(const MachineInstr *MI, |
| unsigned Reg, unsigned SubReg, |
| const SIRegisterInfo &TRI) { |
| return instAccessReg(MI->defs(), Reg, SubReg, TRI); |
| } |
| |
| static TargetInstrInfo::RegSubRegPair |
| getSubRegForIndex(unsigned Reg, unsigned Sub, unsigned I, |
| const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { |
| if (TRI.getRegSizeInBits(Reg, MRI) != 32) { |
| if (Register::isPhysicalRegister(Reg)) { |
| Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I)); |
| } else { |
| LaneBitmask LM = TRI.getSubRegIndexLaneMask(Sub); |
| Sub = TRI.getSubRegFromChannel(I + countTrailingZeros(LM.getAsInteger())); |
| } |
| } |
| return TargetInstrInfo::RegSubRegPair(Reg, Sub); |
| } |
| |
| // Match: |
| // mov t, x |
| // mov x, y |
| // mov y, t |
| // |
| // => |
| // |
| // mov t, x (t is potentially dead and move eliminated) |
| // v_swap_b32 x, y |
| // |
| // Returns next valid instruction pointer if was able to create v_swap_b32. |
| // |
| // This shall not be done too early not to prevent possible folding which may |
| // remove matched moves, and this should prefereably be done before RA to |
| // release saved registers and also possibly after RA which can insert copies |
| // too. |
| // |
| // This is really just a generic peephole that is not a canocical shrinking, |
| // although requirements match the pass placement and it reduces code size too. |
| static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI, |
| const SIInstrInfo *TII) { |
| assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 || |
| MovT.getOpcode() == AMDGPU::COPY); |
| |
| Register T = MovT.getOperand(0).getReg(); |
| unsigned Tsub = MovT.getOperand(0).getSubReg(); |
| MachineOperand &Xop = MovT.getOperand(1); |
| |
| if (!Xop.isReg()) |
| return nullptr; |
| Register X = Xop.getReg(); |
| unsigned Xsub = Xop.getSubReg(); |
| |
| unsigned Size = TII->getOpSize(MovT, 0) / 4; |
| |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| if (!TRI.isVGPR(MRI, X)) |
| return nullptr; |
| |
| for (MachineOperand &YTop : MRI.use_nodbg_operands(T)) { |
| if (YTop.getSubReg() != Tsub) |
| continue; |
| |
| MachineInstr &MovY = *YTop.getParent(); |
| if ((MovY.getOpcode() != AMDGPU::V_MOV_B32_e32 && |
| MovY.getOpcode() != AMDGPU::COPY) || |
| MovY.getOperand(1).getSubReg() != Tsub) |
| continue; |
| |
| Register Y = MovY.getOperand(0).getReg(); |
| unsigned Ysub = MovY.getOperand(0).getSubReg(); |
| |
| if (!TRI.isVGPR(MRI, Y) || MovT.getParent() != MovY.getParent()) |
| continue; |
| |
| MachineInstr *MovX = nullptr; |
| auto I = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end(); |
| for (auto IY = MovY.getIterator(); I != E && I != IY; ++I) { |
| if (instReadsReg(&*I, X, Xsub, TRI) || |
| instModifiesReg(&*I, Y, Ysub, TRI) || |
| instModifiesReg(&*I, T, Tsub, TRI) || |
| (MovX && instModifiesReg(&*I, X, Xsub, TRI))) { |
| MovX = nullptr; |
| break; |
| } |
| if (!instReadsReg(&*I, Y, Ysub, TRI)) { |
| if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) { |
| MovX = nullptr; |
| break; |
| } |
| continue; |
| } |
| if (MovX || |
| (I->getOpcode() != AMDGPU::V_MOV_B32_e32 && |
| I->getOpcode() != AMDGPU::COPY) || |
| I->getOperand(0).getReg() != X || |
| I->getOperand(0).getSubReg() != Xsub) { |
| MovX = nullptr; |
| break; |
| } |
| MovX = &*I; |
| } |
| |
| if (!MovX || I == E) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY); |
| |
| for (unsigned I = 0; I < Size; ++I) { |
| TargetInstrInfo::RegSubRegPair X1, Y1; |
| X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI); |
| Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI); |
| BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(), |
| TII->get(AMDGPU::V_SWAP_B32)) |
| .addDef(X1.Reg, 0, X1.SubReg) |
| .addDef(Y1.Reg, 0, Y1.SubReg) |
| .addReg(Y1.Reg, 0, Y1.SubReg) |
| .addReg(X1.Reg, 0, X1.SubReg).getInstr(); |
| } |
| MovX->eraseFromParent(); |
| MovY.eraseFromParent(); |
| MachineInstr *Next = &*std::next(MovT.getIterator()); |
| if (MRI.use_nodbg_empty(T)) |
| MovT.eraseFromParent(); |
| else |
| Xop.setIsKill(false); |
| |
| return Next; |
| } |
| |
| return nullptr; |
| } |
| |
| bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| unsigned VCCReg = ST.isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; |
| |
| std::vector<unsigned> I1Defs; |
| |
| for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); |
| BI != BE; ++BI) { |
| |
| MachineBasicBlock &MBB = *BI; |
| MachineBasicBlock::iterator I, Next; |
| for (I = MBB.begin(); I != MBB.end(); I = Next) { |
| Next = std::next(I); |
| MachineInstr &MI = *I; |
| |
| if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) { |
| // If this has a literal constant source that is the same as the |
| // reversed bits of an inline immediate, replace with a bitreverse of |
| // that constant. This saves 4 bytes in the common case of materializing |
| // sign bits. |
| |
| // Test if we are after regalloc. We only want to do this after any |
| // optimizations happen because this will confuse them. |
| // XXX - not exactly a check for post-regalloc run. |
| MachineOperand &Src = MI.getOperand(1); |
| if (Src.isImm() && |
| Register::isPhysicalRegister(MI.getOperand(0).getReg())) { |
| int32_t ReverseImm; |
| if (isReverseInlineImm(TII, Src, ReverseImm)) { |
| MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32)); |
| Src.setImm(ReverseImm); |
| continue; |
| } |
| } |
| } |
| |
| if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 || |
| MI.getOpcode() == AMDGPU::COPY)) { |
| if (auto *NextMI = matchSwap(MI, MRI, TII)) { |
| Next = NextMI->getIterator(); |
| continue; |
| } |
| } |
| |
| // Combine adjacent s_nops to use the immediate operand encoding how long |
| // to wait. |
| // |
| // s_nop N |
| // s_nop M |
| // => |
| // s_nop (N + M) |
| if (MI.getOpcode() == AMDGPU::S_NOP && |
| MI.getNumOperands() == 1 && // Don't merge with implicit operands |
| Next != MBB.end() && |
| (*Next).getOpcode() == AMDGPU::S_NOP && |
| (*Next).getNumOperands() == 1) { |
| |
| MachineInstr &NextMI = *Next; |
| // The instruction encodes the amount to wait with an offset of 1, |
| // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back |
| // after adding. |
| uint8_t Nop0 = MI.getOperand(0).getImm() + 1; |
| uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1; |
| |
| // Make sure we don't overflow the bounds. |
| if (Nop0 + Nop1 <= 8) { |
| NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1); |
| MI.eraseFromParent(); |
| } |
| |
| continue; |
| } |
| |
| // FIXME: We also need to consider movs of constant operands since |
| // immediate operands are not folded if they have more than one use, and |
| // the operand folding pass is unaware if the immediate will be free since |
| // it won't know if the src == dest constraint will end up being |
| // satisfied. |
| if (MI.getOpcode() == AMDGPU::S_ADD_I32 || |
| MI.getOpcode() == AMDGPU::S_MUL_I32) { |
| const MachineOperand *Dest = &MI.getOperand(0); |
| MachineOperand *Src0 = &MI.getOperand(1); |
| MachineOperand *Src1 = &MI.getOperand(2); |
| |
| if (!Src0->isReg() && Src1->isReg()) { |
| if (TII->commuteInstruction(MI, false, 1, 2)) |
| std::swap(Src0, Src1); |
| } |
| |
| // FIXME: This could work better if hints worked with subregisters. If |
| // we have a vector add of a constant, we usually don't get the correct |
| // allocation due to the subregister usage. |
| if (Register::isVirtualRegister(Dest->getReg()) && Src0->isReg()) { |
| MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg()); |
| MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg()); |
| continue; |
| } |
| |
| if (Src0->isReg() && Src0->getReg() == Dest->getReg()) { |
| if (Src1->isImm() && isKImmOperand(TII, *Src1)) { |
| unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ? |
| AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32; |
| |
| MI.setDesc(TII->get(Opc)); |
| MI.tieOperands(0, 1); |
| } |
| } |
| } |
| |
| // Try to use s_cmpk_* |
| if (MI.isCompare() && TII->isSOPC(MI)) { |
| shrinkScalarCompare(TII, MI); |
| continue; |
| } |
| |
| // Try to use S_MOVK_I32, which will save 4 bytes for small immediates. |
| if (MI.getOpcode() == AMDGPU::S_MOV_B32) { |
| const MachineOperand &Dst = MI.getOperand(0); |
| MachineOperand &Src = MI.getOperand(1); |
| |
| if (Src.isImm() && Register::isPhysicalRegister(Dst.getReg())) { |
| int32_t ReverseImm; |
| if (isKImmOperand(TII, Src)) |
| MI.setDesc(TII->get(AMDGPU::S_MOVK_I32)); |
| else if (isReverseInlineImm(TII, Src, ReverseImm)) { |
| MI.setDesc(TII->get(AMDGPU::S_BREV_B32)); |
| Src.setImm(ReverseImm); |
| } |
| } |
| |
| continue; |
| } |
| |
| // Shrink scalar logic operations. |
| if (MI.getOpcode() == AMDGPU::S_AND_B32 || |
| MI.getOpcode() == AMDGPU::S_OR_B32 || |
| MI.getOpcode() == AMDGPU::S_XOR_B32) { |
| if (shrinkScalarLogicOp(ST, MRI, TII, MI)) |
| continue; |
| } |
| |
| if (TII->isMIMG(MI.getOpcode()) && |
| ST.getGeneration() >= AMDGPUSubtarget::GFX10 && |
| MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoVRegs)) { |
| shrinkMIMG(MI); |
| continue; |
| } |
| |
| if (!TII->hasVALU32BitEncoding(MI.getOpcode())) |
| continue; |
| |
| if (!TII->canShrink(MI, MRI)) { |
| // Try commuting the instruction and see if that enables us to shrink |
| // it. |
| if (!MI.isCommutable() || !TII->commuteInstruction(MI) || |
| !TII->canShrink(MI, MRI)) |
| continue; |
| } |
| |
| // getVOPe32 could be -1 here if we started with an instruction that had |
| // a 32-bit encoding and then commuted it to an instruction that did not. |
| if (!TII->hasVALU32BitEncoding(MI.getOpcode())) |
| continue; |
| |
| int Op32 = AMDGPU::getVOPe32(MI.getOpcode()); |
| |
| if (TII->isVOPC(Op32)) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| if (Register::isVirtualRegister(DstReg)) { |
| // VOPC instructions can only write to the VCC register. We can't |
| // force them to use VCC here, because this is only one register and |
| // cannot deal with sequences which would require multiple copies of |
| // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...) |
| // |
| // So, instead of forcing the instruction to write to VCC, we provide |
| // a hint to the register allocator to use VCC and then we will run |
| // this pass again after RA and shrink it if it outputs to VCC. |
| MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, VCCReg); |
| continue; |
| } |
| if (DstReg != VCCReg) |
| continue; |
| } |
| |
| if (Op32 == AMDGPU::V_CNDMASK_B32_e32) { |
| // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC |
| // instructions. |
| const MachineOperand *Src2 = |
| TII->getNamedOperand(MI, AMDGPU::OpName::src2); |
| if (!Src2->isReg()) |
| continue; |
| Register SReg = Src2->getReg(); |
| if (Register::isVirtualRegister(SReg)) { |
| MRI.setRegAllocationHint(SReg, 0, VCCReg); |
| continue; |
| } |
| if (SReg != VCCReg) |
| continue; |
| } |
| |
| // Check for the bool flag output for instructions like V_ADD_I32_e64. |
| const MachineOperand *SDst = TII->getNamedOperand(MI, |
| AMDGPU::OpName::sdst); |
| |
| // Check the carry-in operand for v_addc_u32_e64. |
| const MachineOperand *Src2 = TII->getNamedOperand(MI, |
| AMDGPU::OpName::src2); |
| |
| if (SDst) { |
| bool Next = false; |
| |
| if (SDst->getReg() != VCCReg) { |
| if (Register::isVirtualRegister(SDst->getReg())) |
| MRI.setRegAllocationHint(SDst->getReg(), 0, VCCReg); |
| Next = true; |
| } |
| |
| // All of the instructions with carry outs also have an SGPR input in |
| // src2. |
| if (Src2 && Src2->getReg() != VCCReg) { |
| if (Register::isVirtualRegister(Src2->getReg())) |
| MRI.setRegAllocationHint(Src2->getReg(), 0, VCCReg); |
| Next = true; |
| } |
| |
| if (Next) |
| continue; |
| } |
| |
| // We can shrink this instruction |
| LLVM_DEBUG(dbgs() << "Shrinking " << MI); |
| |
| MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32); |
| ++NumInstructionsShrunk; |
| |
| // Copy extra operands not present in the instruction definition. |
| copyExtraImplicitOps(*Inst32, MF, MI); |
| |
| MI.eraseFromParent(); |
| foldImmediates(*Inst32, TII, MRI); |
| |
| LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n'); |
| } |
| } |
| return false; |
| } |