| //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| /// \file |
| //===----------------------------------------------------------------------===// |
| // |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #define DEBUG_TYPE "si-fold-operands" |
| using namespace llvm; |
| |
| namespace { |
| |
| struct FoldCandidate { |
| MachineInstr *UseMI; |
| union { |
| MachineOperand *OpToFold; |
| uint64_t ImmToFold; |
| int FrameIndexToFold; |
| }; |
| int ShrinkOpcode; |
| unsigned char UseOpNo; |
| MachineOperand::MachineOperandType Kind; |
| bool Commuted; |
| |
| FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, |
| bool Commuted_ = false, |
| int ShrinkOp = -1) : |
| UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), |
| Kind(FoldOp->getType()), |
| Commuted(Commuted_) { |
| if (FoldOp->isImm()) { |
| ImmToFold = FoldOp->getImm(); |
| } else if (FoldOp->isFI()) { |
| FrameIndexToFold = FoldOp->getIndex(); |
| } else { |
| assert(FoldOp->isReg() || FoldOp->isGlobal()); |
| OpToFold = FoldOp; |
| } |
| } |
| |
| bool isFI() const { |
| return Kind == MachineOperand::MO_FrameIndex; |
| } |
| |
| bool isImm() const { |
| return Kind == MachineOperand::MO_Immediate; |
| } |
| |
| bool isReg() const { |
| return Kind == MachineOperand::MO_Register; |
| } |
| |
| bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } |
| |
| bool isCommuted() const { |
| return Commuted; |
| } |
| |
| bool needsShrink() const { |
| return ShrinkOpcode != -1; |
| } |
| |
| int getShrinkOpcode() const { |
| return ShrinkOpcode; |
| } |
| }; |
| |
| class SIFoldOperands : public MachineFunctionPass { |
| public: |
| static char ID; |
| MachineRegisterInfo *MRI; |
| const SIInstrInfo *TII; |
| const SIRegisterInfo *TRI; |
| const GCNSubtarget *ST; |
| const SIMachineFunctionInfo *MFI; |
| |
| void foldOperand(MachineOperand &OpToFold, |
| MachineInstr *UseMI, |
| int UseOpIdx, |
| SmallVectorImpl<FoldCandidate> &FoldList, |
| SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; |
| |
| void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; |
| |
| const MachineOperand *isClamp(const MachineInstr &MI) const; |
| bool tryFoldClamp(MachineInstr &MI); |
| |
| std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; |
| bool tryFoldOMod(MachineInstr &MI); |
| |
| public: |
| SIFoldOperands() : MachineFunctionPass(ID) { |
| initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| StringRef getPassName() const override { return "SI Fold Operands"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| } // End anonymous namespace. |
| |
| INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, |
| "SI Fold Operands", false, false) |
| |
| char SIFoldOperands::ID = 0; |
| |
| char &llvm::SIFoldOperandsID = SIFoldOperands::ID; |
| |
| // Wrapper around isInlineConstant that understands special cases when |
| // instruction types are replaced during operand folding. |
| static bool isInlineConstantIfFolded(const SIInstrInfo *TII, |
| const MachineInstr &UseMI, |
| unsigned OpNo, |
| const MachineOperand &OpToFold) { |
| if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) |
| return true; |
| |
| unsigned Opc = UseMI.getOpcode(); |
| switch (Opc) { |
| case AMDGPU::V_MAC_F32_e64: |
| case AMDGPU::V_MAC_F16_e64: |
| case AMDGPU::V_FMAC_F32_e64: |
| case AMDGPU::V_FMAC_F16_e64: { |
| // Special case for mac. Since this is replaced with mad when folded into |
| // src2, we need to check the legality for the final instruction. |
| int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); |
| if (static_cast<int>(OpNo) == Src2Idx) { |
| bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || |
| Opc == AMDGPU::V_FMAC_F16_e64; |
| bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || |
| Opc == AMDGPU::V_FMAC_F32_e64; |
| |
| unsigned Opc = IsFMA ? |
| (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : |
| (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); |
| const MCInstrDesc &MadDesc = TII->get(Opc); |
| return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); |
| } |
| return false; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| // TODO: Add heuristic that the frame index might not fit in the addressing mode |
| // immediate offset to avoid materializing in loops. |
| static bool frameIndexMayFold(const SIInstrInfo *TII, |
| const MachineInstr &UseMI, |
| int OpNo, |
| const MachineOperand &OpToFold) { |
| return OpToFold.isFI() && |
| (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && |
| OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); |
| } |
| |
| FunctionPass *llvm::createSIFoldOperandsPass() { |
| return new SIFoldOperands(); |
| } |
| |
| static bool updateOperand(FoldCandidate &Fold, |
| const SIInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| const GCNSubtarget &ST) { |
| MachineInstr *MI = Fold.UseMI; |
| MachineOperand &Old = MI->getOperand(Fold.UseOpNo); |
| assert(Old.isReg()); |
| |
| if (Fold.isImm()) { |
| if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && |
| !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && |
| AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), |
| ST.hasInv2PiInlineImm())) { |
| // Set op_sel/op_sel_hi on this operand or bail out if op_sel is |
| // already set. |
| unsigned Opcode = MI->getOpcode(); |
| int OpNo = MI->getOperandNo(&Old); |
| int ModIdx = -1; |
| if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) |
| ModIdx = AMDGPU::OpName::src0_modifiers; |
| else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) |
| ModIdx = AMDGPU::OpName::src1_modifiers; |
| else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) |
| ModIdx = AMDGPU::OpName::src2_modifiers; |
| assert(ModIdx != -1); |
| ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); |
| MachineOperand &Mod = MI->getOperand(ModIdx); |
| unsigned Val = Mod.getImm(); |
| if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) |
| return false; |
| // Only apply the following transformation if that operand requries |
| // a packed immediate. |
| switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { |
| case AMDGPU::OPERAND_REG_IMM_V2FP16: |
| case AMDGPU::OPERAND_REG_IMM_V2INT16: |
| case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: |
| case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: |
| // If upper part is all zero we do not need op_sel_hi. |
| if (!isUInt<16>(Fold.ImmToFold)) { |
| if (!(Fold.ImmToFold & 0xffff)) { |
| Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); |
| Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); |
| Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); |
| return true; |
| } |
| Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); |
| Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { |
| MachineBasicBlock *MBB = MI->getParent(); |
| auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); |
| if (Liveness != MachineBasicBlock::LQR_Dead) { |
| LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); |
| return false; |
| } |
| |
| MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| int Op32 = Fold.getShrinkOpcode(); |
| MachineOperand &Dst0 = MI->getOperand(0); |
| MachineOperand &Dst1 = MI->getOperand(1); |
| assert(Dst0.isDef() && Dst1.isDef()); |
| |
| bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); |
| |
| const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); |
| Register NewReg0 = MRI.createVirtualRegister(Dst0RC); |
| |
| MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); |
| |
| if (HaveNonDbgCarryUse) { |
| BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) |
| .addReg(AMDGPU::VCC, RegState::Kill); |
| } |
| |
| // Keep the old instruction around to avoid breaking iterators, but |
| // replace it with a dummy instruction to remove uses. |
| // |
| // FIXME: We should not invert how this pass looks at operands to avoid |
| // this. Should track set of foldable movs instead of looking for uses |
| // when looking at a use. |
| Dst0.setReg(NewReg0); |
| for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) |
| MI->RemoveOperand(I); |
| MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); |
| |
| if (Fold.isCommuted()) |
| TII.commuteInstruction(*Inst32, false); |
| return true; |
| } |
| |
| assert(!Fold.needsShrink() && "not handled"); |
| |
| if (Fold.isImm()) { |
| Old.ChangeToImmediate(Fold.ImmToFold); |
| return true; |
| } |
| |
| if (Fold.isGlobal()) { |
| Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), |
| Fold.OpToFold->getTargetFlags()); |
| return true; |
| } |
| |
| if (Fold.isFI()) { |
| Old.ChangeToFrameIndex(Fold.FrameIndexToFold); |
| return true; |
| } |
| |
| MachineOperand *New = Fold.OpToFold; |
| Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); |
| Old.setIsUndef(New->isUndef()); |
| return true; |
| } |
| |
| static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, |
| const MachineInstr *MI) { |
| for (auto Candidate : FoldList) { |
| if (Candidate.UseMI == MI) |
| return true; |
| } |
| return false; |
| } |
| |
| static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, |
| MachineInstr *MI, unsigned OpNo, |
| MachineOperand *FoldOp, bool Commuted = false, |
| int ShrinkOp = -1) { |
| // Skip additional folding on the same operand. |
| for (FoldCandidate &Fold : FoldList) |
| if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) |
| return; |
| LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") |
| << " operand " << OpNo << "\n " << *MI << '\n'); |
| FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); |
| } |
| |
| static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, |
| MachineInstr *MI, unsigned OpNo, |
| MachineOperand *OpToFold, |
| const SIInstrInfo *TII) { |
| if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { |
| // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 |
| unsigned Opc = MI->getOpcode(); |
| if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || |
| Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && |
| (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { |
| bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || |
| Opc == AMDGPU::V_FMAC_F16_e64; |
| bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || |
| Opc == AMDGPU::V_FMAC_F32_e64; |
| unsigned NewOpc = IsFMA ? |
| (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : |
| (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); |
| |
| // Check if changing this to a v_mad_{f16, f32} instruction will allow us |
| // to fold the operand. |
| MI->setDesc(TII->get(NewOpc)); |
| bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); |
| if (FoldAsMAD) { |
| MI->untieRegOperand(OpNo); |
| return true; |
| } |
| MI->setDesc(TII->get(Opc)); |
| } |
| |
| // Special case for s_setreg_b32 |
| if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { |
| MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); |
| appendFoldCandidate(FoldList, MI, OpNo, OpToFold); |
| return true; |
| } |
| |
| // If we are already folding into another operand of MI, then |
| // we can't commute the instruction, otherwise we risk making the |
| // other fold illegal. |
| if (isUseMIInFoldList(FoldList, MI)) |
| return false; |
| |
| unsigned CommuteOpNo = OpNo; |
| |
| // Operand is not legal, so try to commute the instruction to |
| // see if this makes it possible to fold. |
| unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; |
| unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; |
| bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); |
| |
| if (CanCommute) { |
| if (CommuteIdx0 == OpNo) |
| CommuteOpNo = CommuteIdx1; |
| else if (CommuteIdx1 == OpNo) |
| CommuteOpNo = CommuteIdx0; |
| } |
| |
| |
| // One of operands might be an Imm operand, and OpNo may refer to it after |
| // the call of commuteInstruction() below. Such situations are avoided |
| // here explicitly as OpNo must be a register operand to be a candidate |
| // for memory folding. |
| if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || |
| !MI->getOperand(CommuteIdx1).isReg())) |
| return false; |
| |
| if (!CanCommute || |
| !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) |
| return false; |
| |
| if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { |
| if ((Opc == AMDGPU::V_ADD_I32_e64 || |
| Opc == AMDGPU::V_SUB_I32_e64 || |
| Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME |
| (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { |
| MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); |
| |
| // Verify the other operand is a VGPR, otherwise we would violate the |
| // constant bus restriction. |
| unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; |
| MachineOperand &OtherOp = MI->getOperand(OtherIdx); |
| if (!OtherOp.isReg() || |
| !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) |
| return false; |
| |
| assert(MI->getOperand(1).isDef()); |
| |
| // Make sure to get the 32-bit version of the commuted opcode. |
| unsigned MaybeCommutedOpc = MI->getOpcode(); |
| int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); |
| |
| appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); |
| return true; |
| } |
| |
| TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); |
| return false; |
| } |
| |
| appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); |
| return true; |
| } |
| |
| // Check the case where we might introduce a second constant operand to a |
| // scalar instruction |
| if (TII->isSALU(MI->getOpcode())) { |
| const MCInstrDesc &InstDesc = MI->getDesc(); |
| const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; |
| const SIRegisterInfo &SRI = TII->getRegisterInfo(); |
| |
| // Fine if the operand can be encoded as an inline constant |
| if (OpToFold->isImm()) { |
| if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || |
| !TII->isInlineConstant(*OpToFold, OpInfo)) { |
| // Otherwise check for another constant |
| for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { |
| auto &Op = MI->getOperand(i); |
| if (OpNo != i && |
| TII->isLiteralConstantLike(Op, OpInfo)) { |
| return false; |
| } |
| } |
| } |
| } |
| } |
| |
| appendFoldCandidate(FoldList, MI, OpNo, OpToFold); |
| return true; |
| } |
| |
| // If the use operand doesn't care about the value, this may be an operand only |
| // used for register indexing, in which case it is unsafe to fold. |
| static bool isUseSafeToFold(const SIInstrInfo *TII, |
| const MachineInstr &MI, |
| const MachineOperand &UseMO) { |
| return !UseMO.isUndef() && !TII->isSDWA(MI); |
| //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); |
| } |
| |
| // Find a def of the UseReg, check if it is a reg_seqence and find initializers |
| // for each subreg, tracking it to foldable inline immediate if possible. |
| // Returns true on success. |
| static bool getRegSeqInit( |
| SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, |
| Register UseReg, uint8_t OpTy, |
| const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { |
| MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); |
| if (!Def || !Def->isRegSequence()) |
| return false; |
| |
| for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { |
| MachineOperand *Sub = &Def->getOperand(I); |
| assert (Sub->isReg()); |
| |
| for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); |
| SubDef && Sub->isReg() && !Sub->getSubReg() && |
| TII->isFoldableCopy(*SubDef); |
| SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { |
| MachineOperand *Op = &SubDef->getOperand(1); |
| if (Op->isImm()) { |
| if (TII->isInlineConstant(*Op, OpTy)) |
| Sub = Op; |
| break; |
| } |
| if (!Op->isReg()) |
| break; |
| Sub = Op; |
| } |
| |
| Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); |
| } |
| |
| return true; |
| } |
| |
| static bool tryToFoldACImm(const SIInstrInfo *TII, |
| const MachineOperand &OpToFold, |
| MachineInstr *UseMI, |
| unsigned UseOpIdx, |
| SmallVectorImpl<FoldCandidate> &FoldList) { |
| const MCInstrDesc &Desc = UseMI->getDesc(); |
| const MCOperandInfo *OpInfo = Desc.OpInfo; |
| if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) |
| return false; |
| |
| uint8_t OpTy = OpInfo[UseOpIdx].OperandType; |
| if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || |
| OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) |
| return false; |
| |
| if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && |
| TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { |
| UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); |
| return true; |
| } |
| |
| if (!OpToFold.isReg()) |
| return false; |
| |
| Register UseReg = OpToFold.getReg(); |
| if (!Register::isVirtualRegister(UseReg)) |
| return false; |
| |
| if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { |
| return FC.UseMI == UseMI; }) != FoldList.end()) |
| return false; |
| |
| MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); |
| SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; |
| if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) |
| return false; |
| |
| int32_t Imm; |
| for (unsigned I = 0, E = Defs.size(); I != E; ++I) { |
| const MachineOperand *Op = Defs[I].first; |
| if (!Op->isImm()) |
| return false; |
| |
| auto SubImm = Op->getImm(); |
| if (!I) { |
| Imm = SubImm; |
| if (!TII->isInlineConstant(*Op, OpTy) || |
| !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) |
| return false; |
| |
| continue; |
| } |
| if (Imm != SubImm) |
| return false; // Can only fold splat constants |
| } |
| |
| appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); |
| return true; |
| } |
| |
| void SIFoldOperands::foldOperand( |
| MachineOperand &OpToFold, |
| MachineInstr *UseMI, |
| int UseOpIdx, |
| SmallVectorImpl<FoldCandidate> &FoldList, |
| SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { |
| const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); |
| |
| if (!isUseSafeToFold(TII, *UseMI, UseOp)) |
| return; |
| |
| // FIXME: Fold operands with subregs. |
| if (UseOp.isReg() && OpToFold.isReg()) { |
| if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) |
| return; |
| } |
| |
| // Special case for REG_SEQUENCE: We can't fold literals into |
| // REG_SEQUENCE instructions, so we have to fold them into the |
| // uses of REG_SEQUENCE. |
| if (UseMI->isRegSequence()) { |
| Register RegSeqDstReg = UseMI->getOperand(0).getReg(); |
| unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); |
| |
| MachineRegisterInfo::use_iterator Next; |
| for (MachineRegisterInfo::use_iterator |
| RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); |
| RSUse != RSE; RSUse = Next) { |
| Next = std::next(RSUse); |
| |
| MachineInstr *RSUseMI = RSUse->getParent(); |
| |
| if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, |
| RSUse.getOperandNo(), FoldList)) |
| continue; |
| |
| if (RSUse->getSubReg() != RegSeqDstSubReg) |
| continue; |
| |
| foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, |
| CopiesToReplace); |
| } |
| |
| return; |
| } |
| |
| if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) |
| return; |
| |
| if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { |
| // Sanity check that this is a stack access. |
| // FIXME: Should probably use stack pseudos before frame lowering. |
| MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); |
| if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && |
| SOff->getReg() != MFI->getStackPtrOffsetReg())) |
| return; |
| |
| if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != |
| MFI->getScratchRSrcReg()) |
| return; |
| |
| // A frame index will resolve to a positive constant, so it should always be |
| // safe to fold the addressing mode, even pre-GFX9. |
| UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); |
| SOff->setReg(MFI->getStackPtrOffsetReg()); |
| return; |
| } |
| |
| bool FoldingImmLike = |
| OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
| |
| if (FoldingImmLike && UseMI->isCopy()) { |
| Register DestReg = UseMI->getOperand(0).getReg(); |
| |
| // Don't fold into a copy to a physical register. Doing so would interfere |
| // with the register coalescer's logic which would avoid redundant |
| // initalizations. |
| if (DestReg.isPhysical()) |
| return; |
| |
| const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg); |
| |
| Register SrcReg = UseMI->getOperand(1).getReg(); |
| if (SrcReg.isVirtual()) { // XXX - This can be an assert? |
| const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); |
| if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { |
| MachineRegisterInfo::use_iterator NextUse; |
| SmallVector<FoldCandidate, 4> CopyUses; |
| for (MachineRegisterInfo::use_iterator |
| Use = MRI->use_begin(DestReg), E = MRI->use_end(); |
| Use != E; Use = NextUse) { |
| NextUse = std::next(Use); |
| FoldCandidate FC = FoldCandidate(Use->getParent(), |
| Use.getOperandNo(), &UseMI->getOperand(1)); |
| CopyUses.push_back(FC); |
| } |
| for (auto & F : CopyUses) { |
| foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, |
| FoldList, CopiesToReplace); |
| } |
| } |
| } |
| |
| if (DestRC == &AMDGPU::AGPR_32RegClass && |
| TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { |
| UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); |
| UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); |
| CopiesToReplace.push_back(UseMI); |
| return; |
| } |
| |
| // In order to fold immediates into copies, we need to change the |
| // copy to a MOV. |
| |
| unsigned MovOp = TII->getMovOpcode(DestRC); |
| if (MovOp == AMDGPU::COPY) |
| return; |
| |
| UseMI->setDesc(TII->get(MovOp)); |
| MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); |
| MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); |
| while (ImpOpI != ImpOpE) { |
| MachineInstr::mop_iterator Tmp = ImpOpI; |
| ImpOpI++; |
| UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); |
| } |
| CopiesToReplace.push_back(UseMI); |
| } else { |
| if (UseMI->isCopy() && OpToFold.isReg() && |
| UseMI->getOperand(0).getReg().isVirtual() && |
| !UseMI->getOperand(1).getSubReg()) { |
| LLVM_DEBUG(dbgs() << "Folding " << OpToFold |
| << "\n into " << *UseMI << '\n'); |
| unsigned Size = TII->getOpSize(*UseMI, 1); |
| Register UseReg = OpToFold.getReg(); |
| UseMI->getOperand(1).setReg(UseReg); |
| UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); |
| UseMI->getOperand(1).setIsKill(false); |
| CopiesToReplace.push_back(UseMI); |
| OpToFold.setIsKill(false); |
| |
| // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 |
| // can only accept VGPR or inline immediate. Recreate a reg_sequence with |
| // its initializers right here, so we will rematerialize immediates and |
| // avoid copies via different reg classes. |
| SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; |
| if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && |
| getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, |
| *MRI)) { |
| const DebugLoc &DL = UseMI->getDebugLoc(); |
| MachineBasicBlock &MBB = *UseMI->getParent(); |
| |
| UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); |
| for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) |
| UseMI->RemoveOperand(I); |
| |
| MachineInstrBuilder B(*MBB.getParent(), UseMI); |
| DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; |
| SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; |
| for (unsigned I = 0; I < Size / 4; ++I) { |
| MachineOperand *Def = Defs[I].first; |
| TargetInstrInfo::RegSubRegPair CopyToVGPR; |
| if (Def->isImm() && |
| TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { |
| int64_t Imm = Def->getImm(); |
| |
| auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); |
| BuildMI(MBB, UseMI, DL, |
| TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm); |
| B.addReg(Tmp); |
| } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { |
| auto Src = getRegSubRegPair(*Def); |
| Def->setIsKill(false); |
| if (!SeenAGPRs.insert(Src)) { |
| // We cannot build a reg_sequence out of the same registers, they |
| // must be copied. Better do it here before copyPhysReg() created |
| // several reads to do the AGPR->VGPR->AGPR copy. |
| CopyToVGPR = Src; |
| } else { |
| B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, |
| Src.SubReg); |
| } |
| } else { |
| assert(Def->isReg()); |
| Def->setIsKill(false); |
| auto Src = getRegSubRegPair(*Def); |
| |
| // Direct copy from SGPR to AGPR is not possible. To avoid creation |
| // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, |
| // create a copy here and track if we already have such a copy. |
| if (TRI->isSGPRReg(*MRI, Src.Reg)) { |
| CopyToVGPR = Src; |
| } else { |
| auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); |
| BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); |
| B.addReg(Tmp); |
| } |
| } |
| |
| if (CopyToVGPR.Reg) { |
| Register Vgpr; |
| if (VGPRCopies.count(CopyToVGPR)) { |
| Vgpr = VGPRCopies[CopyToVGPR]; |
| } else { |
| Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); |
| VGPRCopies[CopyToVGPR] = Vgpr; |
| } |
| auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); |
| BuildMI(MBB, UseMI, DL, |
| TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr); |
| B.addReg(Tmp); |
| } |
| |
| B.addImm(Defs[I].second); |
| } |
| LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); |
| return; |
| } |
| |
| if (Size != 4) |
| return; |
| if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && |
| TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) |
| UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); |
| else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && |
| TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) |
| UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); |
| return; |
| } |
| |
| unsigned UseOpc = UseMI->getOpcode(); |
| if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || |
| (UseOpc == AMDGPU::V_READLANE_B32 && |
| (int)UseOpIdx == |
| AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { |
| // %vgpr = V_MOV_B32 imm |
| // %sgpr = V_READFIRSTLANE_B32 %vgpr |
| // => |
| // %sgpr = S_MOV_B32 imm |
| if (FoldingImmLike) { |
| if (execMayBeModifiedBeforeUse(*MRI, |
| UseMI->getOperand(UseOpIdx).getReg(), |
| *OpToFold.getParent(), |
| *UseMI)) |
| return; |
| |
| UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); |
| |
| // FIXME: ChangeToImmediate should clear subreg |
| UseMI->getOperand(1).setSubReg(0); |
| if (OpToFold.isImm()) |
| UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); |
| else |
| UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); |
| UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) |
| return; |
| } |
| |
| if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { |
| if (execMayBeModifiedBeforeUse(*MRI, |
| UseMI->getOperand(UseOpIdx).getReg(), |
| *OpToFold.getParent(), |
| *UseMI)) |
| return; |
| |
| // %vgpr = COPY %sgpr0 |
| // %sgpr1 = V_READFIRSTLANE_B32 %vgpr |
| // => |
| // %sgpr1 = COPY %sgpr0 |
| UseMI->setDesc(TII->get(AMDGPU::COPY)); |
| UseMI->getOperand(1).setReg(OpToFold.getReg()); |
| UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); |
| UseMI->getOperand(1).setIsKill(false); |
| UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) |
| return; |
| } |
| } |
| |
| const MCInstrDesc &UseDesc = UseMI->getDesc(); |
| |
| // Don't fold into target independent nodes. Target independent opcodes |
| // don't have defined register classes. |
| if (UseDesc.isVariadic() || |
| UseOp.isImplicit() || |
| UseDesc.OpInfo[UseOpIdx].RegClass == -1) |
| return; |
| } |
| |
| if (!FoldingImmLike) { |
| tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); |
| |
| // FIXME: We could try to change the instruction from 64-bit to 32-bit |
| // to enable more folding opportunites. The shrink operands pass |
| // already does this. |
| return; |
| } |
| |
| |
| const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); |
| const TargetRegisterClass *FoldRC = |
| TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); |
| |
| // Split 64-bit constants into 32-bits for folding. |
| if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { |
| Register UseReg = UseOp.getReg(); |
| const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); |
| |
| if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) |
| return; |
| |
| APInt Imm(64, OpToFold.getImm()); |
| if (UseOp.getSubReg() == AMDGPU::sub0) { |
| Imm = Imm.getLoBits(32); |
| } else { |
| assert(UseOp.getSubReg() == AMDGPU::sub1); |
| Imm = Imm.getHiBits(32); |
| } |
| |
| MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); |
| tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); |
| return; |
| } |
| |
| |
| |
| tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); |
| } |
| |
| static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, |
| uint32_t LHS, uint32_t RHS) { |
| switch (Opcode) { |
| case AMDGPU::V_AND_B32_e64: |
| case AMDGPU::V_AND_B32_e32: |
| case AMDGPU::S_AND_B32: |
| Result = LHS & RHS; |
| return true; |
| case AMDGPU::V_OR_B32_e64: |
| case AMDGPU::V_OR_B32_e32: |
| case AMDGPU::S_OR_B32: |
| Result = LHS | RHS; |
| return true; |
| case AMDGPU::V_XOR_B32_e64: |
| case AMDGPU::V_XOR_B32_e32: |
| case AMDGPU::S_XOR_B32: |
| Result = LHS ^ RHS; |
| return true; |
| case AMDGPU::V_LSHL_B32_e64: |
| case AMDGPU::V_LSHL_B32_e32: |
| case AMDGPU::S_LSHL_B32: |
| // The instruction ignores the high bits for out of bounds shifts. |
| Result = LHS << (RHS & 31); |
| return true; |
| case AMDGPU::V_LSHLREV_B32_e64: |
| case AMDGPU::V_LSHLREV_B32_e32: |
| Result = RHS << (LHS & 31); |
| return true; |
| case AMDGPU::V_LSHR_B32_e64: |
| case AMDGPU::V_LSHR_B32_e32: |
| case AMDGPU::S_LSHR_B32: |
| Result = LHS >> (RHS & 31); |
| return true; |
| case AMDGPU::V_LSHRREV_B32_e64: |
| case AMDGPU::V_LSHRREV_B32_e32: |
| Result = RHS >> (LHS & 31); |
| return true; |
| case AMDGPU::V_ASHR_I32_e64: |
| case AMDGPU::V_ASHR_I32_e32: |
| case AMDGPU::S_ASHR_I32: |
| Result = static_cast<int32_t>(LHS) >> (RHS & 31); |
| return true; |
| case AMDGPU::V_ASHRREV_I32_e64: |
| case AMDGPU::V_ASHRREV_I32_e32: |
| Result = static_cast<int32_t>(RHS) >> (LHS & 31); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned getMovOpc(bool IsScalar) { |
| return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; |
| } |
| |
| /// Remove any leftover implicit operands from mutating the instruction. e.g. |
| /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def |
| /// anymore. |
| static void stripExtraCopyOperands(MachineInstr &MI) { |
| const MCInstrDesc &Desc = MI.getDesc(); |
| unsigned NumOps = Desc.getNumOperands() + |
| Desc.getNumImplicitUses() + |
| Desc.getNumImplicitDefs(); |
| |
| for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) |
| MI.RemoveOperand(I); |
| } |
| |
| static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { |
| MI.setDesc(NewDesc); |
| stripExtraCopyOperands(MI); |
| } |
| |
| static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, |
| MachineOperand &Op) { |
| if (Op.isReg()) { |
| // If this has a subregister, it obviously is a register source. |
| if (Op.getSubReg() != AMDGPU::NoSubRegister || |
| !Register::isVirtualRegister(Op.getReg())) |
| return &Op; |
| |
| MachineInstr *Def = MRI.getVRegDef(Op.getReg()); |
| if (Def && Def->isMoveImmediate()) { |
| MachineOperand &ImmSrc = Def->getOperand(1); |
| if (ImmSrc.isImm()) |
| return &ImmSrc; |
| } |
| } |
| |
| return &Op; |
| } |
| |
| // Try to simplify operations with a constant that may appear after instruction |
| // selection. |
| // TODO: See if a frame index with a fixed offset can fold. |
| static bool tryConstantFoldOp(MachineRegisterInfo &MRI, |
| const SIInstrInfo *TII, |
| MachineInstr *MI, |
| MachineOperand *ImmOp) { |
| unsigned Opc = MI->getOpcode(); |
| if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || |
| Opc == AMDGPU::S_NOT_B32) { |
| MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); |
| mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); |
| return true; |
| } |
| |
| int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); |
| if (Src1Idx == -1) |
| return false; |
| |
| int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); |
| MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); |
| MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); |
| |
| if (!Src0->isImm() && !Src1->isImm()) |
| return false; |
| |
| if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { |
| if (Src0->isImm() && Src0->getImm() == 0) { |
| // v_lshl_or_b32 0, X, Y -> copy Y |
| // v_lshl_or_b32 0, X, K -> v_mov_b32 K |
| bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); |
| MI->RemoveOperand(Src1Idx); |
| MI->RemoveOperand(Src0Idx); |
| |
| MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); |
| return true; |
| } |
| } |
| |
| // and k0, k1 -> v_mov_b32 (k0 & k1) |
| // or k0, k1 -> v_mov_b32 (k0 | k1) |
| // xor k0, k1 -> v_mov_b32 (k0 ^ k1) |
| if (Src0->isImm() && Src1->isImm()) { |
| int32_t NewImm; |
| if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) |
| return false; |
| |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); |
| |
| // Be careful to change the right operand, src0 may belong to a different |
| // instruction. |
| MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); |
| return true; |
| } |
| |
| if (!MI->isCommutable()) |
| return false; |
| |
| if (Src0->isImm() && !Src1->isImm()) { |
| std::swap(Src0, Src1); |
| std::swap(Src0Idx, Src1Idx); |
| } |
| |
| int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); |
| if (Opc == AMDGPU::V_OR_B32_e64 || |
| Opc == AMDGPU::V_OR_B32_e32 || |
| Opc == AMDGPU::S_OR_B32) { |
| if (Src1Val == 0) { |
| // y = or x, 0 => y = copy x |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); |
| } else if (Src1Val == -1) { |
| // y = or x, -1 => y = v_mov_b32 -1 |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); |
| } else |
| return false; |
| |
| return true; |
| } |
| |
| if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || |
| MI->getOpcode() == AMDGPU::V_AND_B32_e32 || |
| MI->getOpcode() == AMDGPU::S_AND_B32) { |
| if (Src1Val == 0) { |
| // y = and x, 0 => y = v_mov_b32 0 |
| MI->RemoveOperand(Src0Idx); |
| mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); |
| } else if (Src1Val == -1) { |
| // y = and x, -1 => y = copy x |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); |
| stripExtraCopyOperands(*MI); |
| } else |
| return false; |
| |
| return true; |
| } |
| |
| if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || |
| MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || |
| MI->getOpcode() == AMDGPU::S_XOR_B32) { |
| if (Src1Val == 0) { |
| // y = xor x, 0 => y = copy x |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Try to fold an instruction into a simpler one |
| static bool tryFoldInst(const SIInstrInfo *TII, |
| MachineInstr *MI) { |
| unsigned Opc = MI->getOpcode(); |
| |
| if (Opc == AMDGPU::V_CNDMASK_B32_e32 || |
| Opc == AMDGPU::V_CNDMASK_B32_e64 || |
| Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { |
| const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); |
| int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); |
| int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); |
| if (Src1->isIdenticalTo(*Src0) && |
| (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && |
| (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { |
| LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); |
| auto &NewDesc = |
| TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); |
| int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); |
| if (Src2Idx != -1) |
| MI->RemoveOperand(Src2Idx); |
| MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); |
| if (Src1ModIdx != -1) |
| MI->RemoveOperand(Src1ModIdx); |
| if (Src0ModIdx != -1) |
| MI->RemoveOperand(Src0ModIdx); |
| mutateCopyOp(*MI, NewDesc); |
| LLVM_DEBUG(dbgs() << *MI << '\n'); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void SIFoldOperands::foldInstOperand(MachineInstr &MI, |
| MachineOperand &OpToFold) const { |
| // We need mutate the operands of new mov instructions to add implicit |
| // uses of EXEC, but adding them invalidates the use_iterator, so defer |
| // this. |
| SmallVector<MachineInstr *, 4> CopiesToReplace; |
| SmallVector<FoldCandidate, 4> FoldList; |
| MachineOperand &Dst = MI.getOperand(0); |
| |
| bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
| if (FoldingImm) { |
| unsigned NumLiteralUses = 0; |
| MachineOperand *NonInlineUse = nullptr; |
| int NonInlineUseOpNo = -1; |
| |
| MachineRegisterInfo::use_iterator NextUse; |
| for (MachineRegisterInfo::use_iterator |
| Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); |
| Use != E; Use = NextUse) { |
| NextUse = std::next(Use); |
| MachineInstr *UseMI = Use->getParent(); |
| unsigned OpNo = Use.getOperandNo(); |
| |
| // Folding the immediate may reveal operations that can be constant |
| // folded or replaced with a copy. This can happen for example after |
| // frame indices are lowered to constants or from splitting 64-bit |
| // constants. |
| // |
| // We may also encounter cases where one or both operands are |
| // immediates materialized into a register, which would ordinarily not |
| // be folded due to multiple uses or operand constraints. |
| |
| if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { |
| LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); |
| |
| // Some constant folding cases change the same immediate's use to a new |
| // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user |
| // again. The same constant folded instruction could also have a second |
| // use operand. |
| NextUse = MRI->use_begin(Dst.getReg()); |
| FoldList.clear(); |
| continue; |
| } |
| |
| // Try to fold any inline immediate uses, and then only fold other |
| // constants if they have one use. |
| // |
| // The legality of the inline immediate must be checked based on the use |
| // operand, not the defining instruction, because 32-bit instructions |
| // with 32-bit inline immediate sources may be used to materialize |
| // constants used in 16-bit operands. |
| // |
| // e.g. it is unsafe to fold: |
| // s_mov_b32 s0, 1.0 // materializes 0x3f800000 |
| // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 |
| |
| // Folding immediates with more than one use will increase program size. |
| // FIXME: This will also reduce register usage, which may be better |
| // in some cases. A better heuristic is needed. |
| if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { |
| foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); |
| } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { |
| foldOperand(OpToFold, UseMI, OpNo, FoldList, |
| CopiesToReplace); |
| } else { |
| if (++NumLiteralUses == 1) { |
| NonInlineUse = &*Use; |
| NonInlineUseOpNo = OpNo; |
| } |
| } |
| } |
| |
| if (NumLiteralUses == 1) { |
| MachineInstr *UseMI = NonInlineUse->getParent(); |
| foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); |
| } |
| } else { |
| // Folding register. |
| SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; |
| for (MachineRegisterInfo::use_iterator |
| Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); |
| Use != E; ++Use) { |
| UsesToProcess.push_back(Use); |
| } |
| for (auto U : UsesToProcess) { |
| MachineInstr *UseMI = U->getParent(); |
| |
| foldOperand(OpToFold, UseMI, U.getOperandNo(), |
| FoldList, CopiesToReplace); |
| } |
| } |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| // Make sure we add EXEC uses to any new v_mov instructions created. |
| for (MachineInstr *Copy : CopiesToReplace) |
| Copy->addImplicitDefUseOperands(*MF); |
| |
| for (FoldCandidate &Fold : FoldList) { |
| assert(!Fold.isReg() || Fold.OpToFold); |
| if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) { |
| Register Reg = Fold.OpToFold->getReg(); |
| MachineInstr *DefMI = Fold.OpToFold->getParent(); |
| if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && |
| execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) |
| continue; |
| } |
| if (updateOperand(Fold, *TII, *TRI, *ST)) { |
| // Clear kill flags. |
| if (Fold.isReg()) { |
| assert(Fold.OpToFold && Fold.OpToFold->isReg()); |
| // FIXME: Probably shouldn't bother trying to fold if not an |
| // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR |
| // copies. |
| MRI->clearKillFlags(Fold.OpToFold->getReg()); |
| } |
| LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " |
| << static_cast<int>(Fold.UseOpNo) << " of " |
| << *Fold.UseMI << '\n'); |
| tryFoldInst(TII, Fold.UseMI); |
| } else if (Fold.isCommuted()) { |
| // Restoring instruction's original operand order if fold has failed. |
| TII->commuteInstruction(*Fold.UseMI, false); |
| } |
| } |
| } |
| |
| // Clamp patterns are canonically selected to v_max_* instructions, so only |
| // handle them. |
| const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { |
| unsigned Op = MI.getOpcode(); |
| switch (Op) { |
| case AMDGPU::V_MAX_F32_e64: |
| case AMDGPU::V_MAX_F16_e64: |
| case AMDGPU::V_MAX_F64: |
| case AMDGPU::V_PK_MAX_F16: { |
| if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) |
| return nullptr; |
| |
| // Make sure sources are identical. |
| const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); |
| if (!Src0->isReg() || !Src1->isReg() || |
| Src0->getReg() != Src1->getReg() || |
| Src0->getSubReg() != Src1->getSubReg() || |
| Src0->getSubReg() != AMDGPU::NoSubRegister) |
| return nullptr; |
| |
| // Can't fold up if we have modifiers. |
| if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) |
| return nullptr; |
| |
| unsigned Src0Mods |
| = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); |
| unsigned Src1Mods |
| = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); |
| |
| // Having a 0 op_sel_hi would require swizzling the output in the source |
| // instruction, which we can't do. |
| unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 |
| : 0u; |
| if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) |
| return nullptr; |
| return Src0; |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| // We obviously have multiple uses in a clamp since the register is used twice |
| // in the same instruction. |
| static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { |
| int Count = 0; |
| for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); |
| I != E; ++I) { |
| if (++Count > 1) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. |
| bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { |
| const MachineOperand *ClampSrc = isClamp(MI); |
| if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) |
| return false; |
| |
| MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); |
| |
| // The type of clamp must be compatible. |
| if (TII->getClampMask(*Def) != TII->getClampMask(MI)) |
| return false; |
| |
| MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); |
| if (!DefClamp) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def |
| << '\n'); |
| |
| // Clamp is applied after omod, so it is OK if omod is set. |
| DefClamp->setImm(1); |
| MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| static int getOModValue(unsigned Opc, int64_t Val) { |
| switch (Opc) { |
| case AMDGPU::V_MUL_F32_e64: { |
| switch (static_cast<uint32_t>(Val)) { |
| case 0x3f000000: // 0.5 |
| return SIOutMods::DIV2; |
| case 0x40000000: // 2.0 |
| return SIOutMods::MUL2; |
| case 0x40800000: // 4.0 |
| return SIOutMods::MUL4; |
| default: |
| return SIOutMods::NONE; |
| } |
| } |
| case AMDGPU::V_MUL_F16_e64: { |
| switch (static_cast<uint16_t>(Val)) { |
| case 0x3800: // 0.5 |
| return SIOutMods::DIV2; |
| case 0x4000: // 2.0 |
| return SIOutMods::MUL2; |
| case 0x4400: // 4.0 |
| return SIOutMods::MUL4; |
| default: |
| return SIOutMods::NONE; |
| } |
| } |
| default: |
| llvm_unreachable("invalid mul opcode"); |
| } |
| } |
| |
| // FIXME: Does this really not support denormals with f16? |
| // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not |
| // handled, so will anything other than that break? |
| std::pair<const MachineOperand *, int> |
| SIFoldOperands::isOMod(const MachineInstr &MI) const { |
| unsigned Op = MI.getOpcode(); |
| switch (Op) { |
| case AMDGPU::V_MUL_F32_e64: |
| case AMDGPU::V_MUL_F16_e64: { |
| // If output denormals are enabled, omod is ignored. |
| if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32Denormals) || |
| (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16Denormals)) |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| const MachineOperand *RegOp = nullptr; |
| const MachineOperand *ImmOp = nullptr; |
| const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); |
| if (Src0->isImm()) { |
| ImmOp = Src0; |
| RegOp = Src1; |
| } else if (Src1->isImm()) { |
| ImmOp = Src1; |
| RegOp = Src0; |
| } else |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| int OMod = getOModValue(Op, ImmOp->getImm()); |
| if (OMod == SIOutMods::NONE || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| return std::make_pair(RegOp, OMod); |
| } |
| case AMDGPU::V_ADD_F32_e64: |
| case AMDGPU::V_ADD_F16_e64: { |
| // If output denormals are enabled, omod is ignored. |
| if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32Denormals) || |
| (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16Denormals)) |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x |
| const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); |
| |
| if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && |
| Src0->getSubReg() == Src1->getSubReg() && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) |
| return std::make_pair(Src0, SIOutMods::MUL2); |
| |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| } |
| default: |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| } |
| } |
| |
| // FIXME: Does this need to check IEEE bit on function? |
| bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { |
| const MachineOperand *RegOp; |
| int OMod; |
| std::tie(RegOp, OMod) = isOMod(MI); |
| if (OMod == SIOutMods::NONE || !RegOp->isReg() || |
| RegOp->getSubReg() != AMDGPU::NoSubRegister || |
| !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) |
| return false; |
| |
| MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); |
| MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); |
| if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) |
| return false; |
| |
| // Clamp is applied after omod. If the source already has clamp set, don't |
| // fold it. |
| if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); |
| |
| DefOMod->setImm(OMod); |
| MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| MRI = &MF.getRegInfo(); |
| ST = &MF.getSubtarget<GCNSubtarget>(); |
| TII = ST->getInstrInfo(); |
| TRI = &TII->getRegisterInfo(); |
| MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // omod is ignored by hardware if IEEE bit is enabled. omod also does not |
| // correctly handle signed zeros. |
| // |
| // FIXME: Also need to check strictfp |
| bool IsIEEEMode = MFI->getMode().IEEE; |
| bool HasNSZ = MFI->hasNoSignedZerosFPMath(); |
| |
| for (MachineBasicBlock *MBB : depth_first(&MF)) { |
| MachineBasicBlock::iterator I, Next; |
| |
| MachineOperand *CurrentKnownM0Val = nullptr; |
| for (I = MBB->begin(); I != MBB->end(); I = Next) { |
| Next = std::next(I); |
| MachineInstr &MI = *I; |
| |
| tryFoldInst(TII, &MI); |
| |
| if (!TII->isFoldableCopy(MI)) { |
| // Saw an unknown clobber of m0, so we no longer know what it is. |
| if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) |
| CurrentKnownM0Val = nullptr; |
| |
| // TODO: Omod might be OK if there is NSZ only on the source |
| // instruction, and not the omod multiply. |
| if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || |
| !tryFoldOMod(MI)) |
| tryFoldClamp(MI); |
| |
| continue; |
| } |
| |
| // Specially track simple redefs of m0 to the same value in a block, so we |
| // can erase the later ones. |
| if (MI.getOperand(0).getReg() == AMDGPU::M0) { |
| MachineOperand &NewM0Val = MI.getOperand(1); |
| if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { |
| MI.eraseFromParent(); |
| continue; |
| } |
| |
| // We aren't tracking other physical registers |
| CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? |
| nullptr : &NewM0Val; |
| continue; |
| } |
| |
| MachineOperand &OpToFold = MI.getOperand(1); |
| bool FoldingImm = |
| OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
| |
| // FIXME: We could also be folding things like TargetIndexes. |
| if (!FoldingImm && !OpToFold.isReg()) |
| continue; |
| |
| if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg())) |
| continue; |
| |
| // Prevent folding operands backwards in the function. For example, |
| // the COPY opcode must not be replaced by 1 in this example: |
| // |
| // %3 = COPY %vgpr0; VGPR_32:%3 |
| // ... |
| // %vgpr0 = V_MOV_B32_e32 1, implicit %exec |
| MachineOperand &Dst = MI.getOperand(0); |
| if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg())) |
| continue; |
| |
| foldInstOperand(MI, OpToFold); |
| } |
| } |
| return true; |
| } |