blob: c8dc6f6e3bf4c701b8bf4cd877d5f7b2b46e95a8 [file] [log] [blame]
//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The AMDGPU target machine contains all of the hardware specific
/// information needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "AMDGPUAliasAnalysis.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUMacroFusion.h"
#include "AMDGPUTargetObjectFile.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNIterativeScheduler.h"
#include "GCNSchedStrategy.h"
#include "R600MachineScheduler.h"
#include "SIMachineFunctionInfo.h"
#include "SIMachineScheduler.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"
#include <memory>
using namespace llvm;
static cl::opt<bool> EnableR600StructurizeCFG(
"r600-ir-structurize",
cl::desc("Use StructurizeCFG IR pass"),
cl::init(true));
static cl::opt<bool> EnableSROA(
"amdgpu-sroa",
cl::desc("Run SROA after promote alloca pass"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool>
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
cl::desc("Run early if-conversion"),
cl::init(false));
static cl::opt<bool>
OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
cl::desc("Run pre-RA exec mask optimizations"),
cl::init(true));
static cl::opt<bool> EnableR600IfConvert(
"r600-if-convert",
cl::desc("Use if conversion pass"),
cl::ReallyHidden,
cl::init(true));
// Option to disable vectorizer for tests.
static cl::opt<bool> EnableLoadStoreVectorizer(
"amdgpu-load-store-vectorizer",
cl::desc("Enable load store vectorizer"),
cl::init(true),
cl::Hidden);
// Option to control global loads scalarization
static cl::opt<bool> ScalarizeGlobal(
"amdgpu-scalarize-global-loads",
cl::desc("Enable global load scalarization"),
cl::init(true),
cl::Hidden);
// Option to run internalize pass.
static cl::opt<bool> InternalizeSymbols(
"amdgpu-internalize-symbols",
cl::desc("Enable elimination of non-kernel functions and unused globals"),
cl::init(false),
cl::Hidden);
// Option to inline all early.
static cl::opt<bool> EarlyInlineAll(
"amdgpu-early-inline-all",
cl::desc("Inline all functions early"),
cl::init(false),
cl::Hidden);
static cl::opt<bool> EnableSDWAPeephole(
"amdgpu-sdwa-peephole",
cl::desc("Enable SDWA peepholer"),
cl::init(true));
static cl::opt<bool> EnableDPPCombine(
"amdgpu-dpp-combine",
cl::desc("Enable DPP combiner"),
cl::init(true));
// Enable address space based alias analysis
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
cl::desc("Enable AMDGPU Alias Analysis"),
cl::init(true));
// Option to run late CFG structurizer
static cl::opt<bool, true> LateCFGStructurize(
"amdgpu-late-structurize",
cl::desc("Enable late CFG structurization"),
cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
cl::Hidden);
static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
"amdgpu-function-calls",
cl::desc("Enable AMDGPU function call support"),
cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
cl::init(true),
cl::Hidden);
// Enable lib calls simplifications
static cl::opt<bool> EnableLibCallSimplify(
"amdgpu-simplify-libcall",
cl::desc("Enable amdgpu library simplifications"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableLowerKernelArguments(
"amdgpu-ir-lower-kernel-arguments",
cl::desc("Lower kernel argument loads in IR pass"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableRegReassign(
"amdgpu-reassign-regs",
cl::desc("Enable register reassign optimizations on gfx10+"),
cl::init(true),
cl::Hidden);
// Enable atomic optimization
static cl::opt<bool> EnableAtomicOptimizations(
"amdgpu-atomic-optimizations",
cl::desc("Enable atomic optimizations"),
cl::init(false),
cl::Hidden);
// Enable Mode register optimization
static cl::opt<bool> EnableSIModeRegisterPass(
"amdgpu-mode-register",
cl::desc("Enable mode register pass"),
cl::init(true),
cl::Hidden);
// Option is used in lit tests to prevent deadcoding of patterns inspected.
static cl::opt<bool>
EnableDCEInRA("amdgpu-dce-in-ra",
cl::init(true), cl::Hidden,
cl::desc("Enable machine DCE inside regalloc"));
static cl::opt<bool> EnableScalarIRPasses(
"amdgpu-scalar-ir-passes",
cl::desc("Enable scalar IR passes"),
cl::init(true),
cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
// Register the target
RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
PassRegistry *PR = PassRegistry::getPassRegistry();
initializeR600ClauseMergePassPass(*PR);
initializeR600ControlFlowFinalizerPass(*PR);
initializeR600PacketizerPass(*PR);
initializeR600ExpandSpecialInstrsPassPass(*PR);
initializeR600VectorRegMergerPass(*PR);
initializeGlobalISel(*PR);
initializeAMDGPUDAGToDAGISelPass(*PR);
initializeGCNDPPCombinePass(*PR);
initializeSILowerI1CopiesPass(*PR);
initializeSILowerSGPRSpillsPass(*PR);
initializeSIFixSGPRCopiesPass(*PR);
initializeSIFixVGPRCopiesPass(*PR);
initializeSIFixupVectorISelPass(*PR);
initializeSIFoldOperandsPass(*PR);
initializeSIPeepholeSDWAPass(*PR);
initializeSIShrinkInstructionsPass(*PR);
initializeSIOptimizeExecMaskingPreRAPass(*PR);
initializeSILoadStoreOptimizerPass(*PR);
initializeAMDGPUFixFunctionBitcastsPass(*PR);
initializeAMDGPUAlwaysInlinePass(*PR);
initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
initializeAMDGPUAnnotateUniformValuesPass(*PR);
initializeAMDGPUArgumentUsageInfoPass(*PR);
initializeAMDGPUAtomicOptimizerPass(*PR);
initializeAMDGPULowerKernelArgumentsPass(*PR);
initializeAMDGPULowerKernelAttributesPass(*PR);
initializeAMDGPULowerIntrinsicsPass(*PR);
initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
initializeAMDGPUPromoteAllocaPass(*PR);
initializeAMDGPUCodeGenPreparePass(*PR);
initializeAMDGPUPropagateAttributesEarlyPass(*PR);
initializeAMDGPUPropagateAttributesLatePass(*PR);
initializeAMDGPURewriteOutArgumentsPass(*PR);
initializeAMDGPUUnifyMetadataPass(*PR);
initializeSIAnnotateControlFlowPass(*PR);
initializeSIInsertWaitcntsPass(*PR);
initializeSIModeRegisterPass(*PR);
initializeSIWholeQuadModePass(*PR);
initializeSILowerControlFlowPass(*PR);
initializeSIInsertSkipsPass(*PR);
initializeSIMemoryLegalizerPass(*PR);
initializeSIOptimizeExecMaskingPass(*PR);
initializeSIPreAllocateWWMRegsPass(*PR);
initializeSIFormMemoryClausesPass(*PR);
initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
initializeAMDGPUAAWrapperPassPass(*PR);
initializeAMDGPUExternalAAWrapperPass(*PR);
initializeAMDGPUUseNativeCallsPass(*PR);
initializeAMDGPUSimplifyLibCallsPass(*PR);
initializeAMDGPUInlinerPass(*PR);
initializeAMDGPUPrintfRuntimeBindingPass(*PR);
initializeGCNRegBankReassignPass(*PR);
initializeGCNNSAReassignPass(*PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
return std::make_unique<AMDGPUTargetObjectFile>();
}
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
}
static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
return new SIScheduleDAGMI(C);
}
static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
ScheduleDAGMILive *DAG =
new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
return DAG;
}
static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
auto DAG = new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
return new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
}
static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext *C) {
auto DAG = new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_ILP);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
return DAG;
}
static MachineSchedRegistry
R600SchedRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
static MachineSchedRegistry
SISchedRegistry("si", "Run SI's custom scheduler",
createSIMachineScheduler);
static MachineSchedRegistry
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
"Run GCN scheduler to maximize occupancy",
createGCNMaxOccupancyMachineScheduler);
static MachineSchedRegistry
IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
"Run GCN scheduler to maximize occupancy (experimental)",
createIterativeGCNMaxOccupancyMachineScheduler);
static MachineSchedRegistry
GCNMinRegSchedRegistry("gcn-minreg",
"Run GCN iterative scheduler for minimal register usage (experimental)",
createMinRegScheduler);
static MachineSchedRegistry
GCNILPSchedRegistry("gcn-ilp",
"Run GCN iterative scheduler for ILP scheduling (experimental)",
createIterativeILPMachineScheduler);
static StringRef computeDataLayout(const Triple &TT) {
if (TT.getArch() == Triple::r600) {
// 32-bit pointers.
return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
}
// 32-bit private, local, and region pointers. 64-bit global, constant and
// flat, non-integral buffer fat pointers.
return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
"-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"
"-ni:7";
}
LLVM_READNONE
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
if (!GPU.empty())
return GPU;
// Need to default to a target with flat support for HSA.
if (TT.getArch() == Triple::amdgcn)
return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
return "r600";
}
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
// The AMDGPU toolchain only supports generating shared objects, so we
// must always use PIC.
return Reloc::PIC_;
}
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OptLevel)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
FS, Options, getEffectiveRelocModel(RM),
getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
TLOF(createTLOF(getTargetTriple())) {
initAsmInfo();
}
bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
bool AMDGPUTargetMachine::EnableFunctionCalls = false;
AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
Attribute GPUAttr = F.getFnAttribute("target-cpu");
return GPUAttr.hasAttribute(Attribute::None) ?
getTargetCPU() : GPUAttr.getValueAsString();
}
StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
Attribute FSAttr = F.getFnAttribute("target-features");
return FSAttr.hasAttribute(Attribute::None) ?
getTargetFeatureString() :
FSAttr.getValueAsString();
}
/// Predicate for Internalize pass.
static bool mustPreserveGV(const GlobalValue &GV) {
if (const Function *F = dyn_cast<Function>(&GV))
return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
return !GV.use_empty();
}
void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
Builder.DivergentTarget = true;
bool EnableOpt = getOptLevel() > CodeGenOpt::None;
bool Internalize = InternalizeSymbols;
bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
if (EnableFunctionCalls) {
delete Builder.Inliner;
Builder.Inliner = createAMDGPUFunctionInliningPass();
}
Builder.addExtension(
PassManagerBuilder::EP_ModuleOptimizerEarly,
[Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
if (AMDGPUAA) {
PM.add(createAMDGPUAAWrapperPass());
PM.add(createAMDGPUExternalAAWrapperPass());
}
PM.add(createAMDGPUUnifyMetadataPass());
PM.add(createAMDGPUPrintfRuntimeBinding());
PM.add(createAMDGPUPropagateAttributesLatePass(this));
if (Internalize) {
PM.add(createInternalizePass(mustPreserveGV));
PM.add(createGlobalDCEPass());
}
if (EarlyInline)
PM.add(createAMDGPUAlwaysInlinePass(false));
});
const auto &Opt = Options;
Builder.addExtension(
PassManagerBuilder::EP_EarlyAsPossible,
[AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
if (AMDGPUAA) {
PM.add(createAMDGPUAAWrapperPass());
PM.add(createAMDGPUExternalAAWrapperPass());
}
PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
PM.add(llvm::createAMDGPUUseNativeCallsPass());
if (LibCallSimplify)
PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this));
});
Builder.addExtension(
PassManagerBuilder::EP_CGSCCOptimizerLate,
[](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
// Add infer address spaces pass to the opt pipeline after inlining
// but before SROA to increase SROA opportunities.
PM.add(createInferAddressSpacesPass());
// This should run after inlining to have any chance of doing anything,
// and before other cleanup optimizations.
PM.add(createAMDGPULowerKernelAttributesPass());
});
}
//===----------------------------------------------------------------------===//
// R600 Target Machine (R600 -> Cayman)
//===----------------------------------------------------------------------===//
R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
setRequiresStructuredCFG(true);
// Override the default since calls aren't supported for r600.
if (EnableFunctionCalls &&
EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
EnableFunctionCalls = false;
}
const R600Subtarget *R600TargetMachine::getSubtargetImpl(
const Function &F) const {
StringRef GPU = getGPUName(F);
StringRef FS = getFeatureString(F);
SmallString<128> SubtargetKey(GPU);
SubtargetKey.append(FS);
auto &I = SubtargetMap[SubtargetKey];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
}
return I.get();
}
TargetTransformInfo
R600TargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(R600TTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// GCN Target Machine (SI+)
//===----------------------------------------------------------------------===//
GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
StringRef GPU = getGPUName(F);
StringRef FS = getFeatureString(F);
SmallString<128> SubtargetKey(GPU);
SubtargetKey.append(FS);
auto &I = SubtargetMap[SubtargetKey];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
}
I->setScalarizeGlobalBehavior(ScalarizeGlobal);
return I.get();
}
TargetTransformInfo
GCNTargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(GCNTTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// AMDGPU Pass Setup
//===----------------------------------------------------------------------===//
namespace {
class AMDGPUPassConfig : public TargetPassConfig {
public:
AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {
// Exceptions and StackMaps are not supported, so these passes will never do
// anything.
disablePass(&StackMapLivenessID);
disablePass(&FuncletLayoutID);
}
AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
return getTM<AMDGPUTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
void addEarlyCSEOrGVNPass();
void addStraightLineScalarOptimizationPasses();
void addIRPasses() override;
void addCodeGenPrepare() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addGCPasses() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};
std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}
class R600PassConfig final : public AMDGPUPassConfig {
public:
R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) {}
ScheduleDAGInstrs *createMachineScheduler(
MachineSchedContext *C) const override {
return createR600MachineScheduler(C);
}
bool addPreISel() override;
bool addInstSelector() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
class GCNPassConfig final : public AMDGPUPassConfig {
public:
GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) {
// It is necessary to know the register usage of the entire call graph. We
// allow calls without EnableAMDGPUFunctionCalls if they are marked
// noinline, so this is always required.
setRequiresCodeGenSCCOrder(true);
}
GCNTargetMachine &getGCNTargetMachine() const {
return getTM<GCNTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override;
bool addPreISel() override;
void addMachineSSAOptimization() override;
bool addILPOpts() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addFastRegAlloc() override;
void addOptimizedRegAlloc() override;
void addPreRegAlloc() override;
bool addPreRewrite() override;
void addPostRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // end anonymous namespace
void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
if (getOptLevel() == CodeGenOpt::Aggressive)
addPass(createGVNPass());
else
addPass(createEarlyCSEPass());
}
void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
addPass(createLICMPass());
addPass(createSeparateConstOffsetFromGEPPass());
addPass(createSpeculativeExecutionPass());
// ReassociateGEPs exposes more opportunites for SLSR. See
// the example in reassociate-geps-and-slsr.ll.
addPass(createStraightLineStrengthReducePass());
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
// EarlyCSE can reuse.
addEarlyCSEOrGVNPass();
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
addPass(createNaryReassociatePass());
// NaryReassociate on GEPs creates redundant common expressions, so run
// EarlyCSE after it.
addPass(createEarlyCSEPass());
}
void AMDGPUPassConfig::addIRPasses() {
const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
// There is no reason to run these.
disablePass(&StackMapLivenessID);
disablePass(&FuncletLayoutID);
disablePass(&PatchableFunctionID);
addPass(createAMDGPUPrintfRuntimeBinding());
// This must occur before inlining, as the inliner will not look through
// bitcast calls.
addPass(createAMDGPUFixFunctionBitcastsPass());
// A call to propagate attributes pass in the backend in case opt was not run.
addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
addPass(createAtomicExpandPass());
addPass(createAMDGPULowerIntrinsicsPass());
// Function calls are not supported, so make sure we inline everything.
addPass(createAMDGPUAlwaysInlinePass());
addPass(createAlwaysInlinerLegacyPass());
// We need to add the barrier noop pass, otherwise adding the function
// inlining pass will cause all of the PassConfigs passes to be run
// one function at a time, which means if we have a nodule with two
// functions, then we will generate code for the first function
// without ever running any passes on the second.
addPass(createBarrierNoopPass());
// Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
if (TM.getTargetTriple().getArch() == Triple::r600)
addPass(createR600OpenCLImageTypeLoweringPass());
// Replace OpenCL enqueued block function pointers with global variables.
addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
if (TM.getOptLevel() > CodeGenOpt::None) {
addPass(createInferAddressSpacesPass());
addPass(createAMDGPUPromoteAlloca());
if (EnableSROA)
addPass(createSROAPass());
if (EnableScalarIRPasses)
addStraightLineScalarOptimizationPasses();
if (EnableAMDGPUAliasAnalysis) {
addPass(createAMDGPUAAWrapperPass());
addPass(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
}
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
// TODO: May want to move later or split into an early and late one.
addPass(createAMDGPUCodeGenPreparePass());
}
TargetPassConfig::addIRPasses();
// EarlyCSE is not always strong enough to clean up what LSR produces. For
// example, GVN can combine
//
// %0 = add %a, %b
// %1 = add %b, %a
//
// and
//
// %0 = shl nsw %a, 2
// %1 = shl %a, 2
//
// but EarlyCSE can do neither of them.
if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
addEarlyCSEOrGVNPass();
}
void AMDGPUPassConfig::addCodeGenPrepare() {
if (TM->getTargetTriple().getArch() == Triple::amdgcn)
addPass(createAMDGPUAnnotateKernelFeaturesPass());
if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
EnableLowerKernelArguments)
addPass(createAMDGPULowerKernelArgumentsPass());
addPass(&AMDGPUPerfHintAnalysisID);
TargetPassConfig::addCodeGenPrepare();
if (EnableLoadStoreVectorizer)
addPass(createLoadStoreVectorizerPass());
}
bool AMDGPUPassConfig::addPreISel() {
addPass(createLowerSwitchPass());
addPass(createFlattenCFGPass());
return false;
}
bool AMDGPUPassConfig::addInstSelector() {
// Defer the verifier until FinalizeISel.
addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
return false;
}
bool AMDGPUPassConfig::addGCPasses() {
// Do nothing. GC is not supported.
return false;
}
//===----------------------------------------------------------------------===//
// R600 Pass Setup
//===----------------------------------------------------------------------===//
bool R600PassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
if (EnableR600StructurizeCFG)
addPass(createStructurizeCFGPass());
return false;
}
bool R600PassConfig::addInstSelector() {
addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
return false;
}
void R600PassConfig::addPreRegAlloc() {
addPass(createR600VectorRegMerger());
}
void R600PassConfig::addPreSched2() {
addPass(createR600EmitClauseMarkers(), false);
if (EnableR600IfConvert)
addPass(&IfConverterID, false);
addPass(createR600ClauseMergePass(), false);
}
void R600PassConfig::addPreEmitPass() {
addPass(createAMDGPUCFGStructurizerPass(), false);
addPass(createR600ExpandSpecialInstrsPass(), false);
addPass(&FinalizeMachineBundlesID, false);
addPass(createR600Packetizer(), false);
addPass(createR600ControlFlowFinalizer(), false);
}
TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
return new R600PassConfig(*this, PM);
}
//===----------------------------------------------------------------------===//
// GCN Pass Setup
//===----------------------------------------------------------------------===//
ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
MachineSchedContext *C) const {
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
if (ST.enableSIScheduler())
return createSIMachineScheduler(C);
return createGCNMaxOccupancyMachineScheduler(C);
}
bool GCNPassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
if (EnableAtomicOptimizations) {
addPass(createAMDGPUAtomicOptimizerPass());
}
// FIXME: We need to run a pass to propagate the attributes when calls are
// supported.
// Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
// regions formed by them.
addPass(&AMDGPUUnifyDivergentExitNodesID);
if (!LateCFGStructurize) {
addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
}
addPass(createSinkingPass());
addPass(createAMDGPUAnnotateUniformValues());
if (!LateCFGStructurize) {
addPass(createSIAnnotateControlFlowPass());
}
addPass(createLCSSAPass());
return false;
}
void GCNPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
// We want to fold operands after PeepholeOptimizer has run (or as part of
// it), because it will eliminate extra copies making it easier to fold the
// real source operand. We want to eliminate dead instructions after, so that
// we see fewer uses of the copies. We then need to clean up the dead
// instructions leftover after the operands are folded as well.
//
// XXX - Can we get away without running DeadMachineInstructionElim again?
addPass(&SIFoldOperandsID);
if (EnableDPPCombine)
addPass(&GCNDPPCombineID);
addPass(&DeadMachineInstructionElimID);
addPass(&SILoadStoreOptimizerID);
if (EnableSDWAPeephole) {
addPass(&SIPeepholeSDWAID);
addPass(&EarlyMachineLICMID);
addPass(&MachineCSEID);
addPass(&SIFoldOperandsID);
addPass(&DeadMachineInstructionElimID);
}
addPass(createSIShrinkInstructionsPass());
}
bool GCNPassConfig::addILPOpts() {
if (EnableEarlyIfConversion)
addPass(&EarlyIfConverterID);
TargetPassConfig::addILPOpts();
return false;
}
bool GCNPassConfig::addInstSelector() {
AMDGPUPassConfig::addInstSelector();
addPass(&SIFixSGPRCopiesID);
addPass(createSILowerI1CopiesPass());
addPass(createSIFixupVectorISelPass());
addPass(createSIAddIMGInitPass());
return false;
}
bool GCNPassConfig::addIRTranslator() {
addPass(new IRTranslator());
return false;
}
bool GCNPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool GCNPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool GCNPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect());
return false;
}
void GCNPassConfig::addPreRegAlloc() {
if (LateCFGStructurize) {
addPass(createAMDGPUMachineCFGStructurizerPass());
}
addPass(createSIWholeQuadModePass());
}
void GCNPassConfig::addFastRegAlloc() {
// FIXME: We have to disable the verifier here because of PHIElimination +
// TwoAddressInstructions disabling it.
// This must be run immediately after phi elimination and before
// TwoAddressInstructions, otherwise the processing of the tied operand of
// SI_ELSE will introduce a copy of the tied operand source after the else.
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
// This must be run just after RegisterCoalescing.
insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
TargetPassConfig::addFastRegAlloc();
}
void GCNPassConfig::addOptimizedRegAlloc() {
if (OptExecMaskPreRA) {
insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID);
} else {
insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
}
// This must be run immediately after phi elimination and before
// TwoAddressInstructions, otherwise the processing of the tied operand of
// SI_ELSE will introduce a copy of the tied operand source after the else.
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
// This must be run just after RegisterCoalescing.
insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
if (EnableDCEInRA)
insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
TargetPassConfig::addOptimizedRegAlloc();
}
bool GCNPassConfig::addPreRewrite() {
if (EnableRegReassign) {
addPass(&GCNNSAReassignID);
addPass(&GCNRegBankReassignID);
}
return true;
}
void GCNPassConfig::addPostRegAlloc() {
addPass(&SIFixVGPRCopiesID);
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIOptimizeExecMaskingID);
TargetPassConfig::addPostRegAlloc();
// Equivalent of PEI for SGPRs.
addPass(&SILowerSGPRSpillsID);
}
void GCNPassConfig::addPreSched2() {
}
void GCNPassConfig::addPreEmitPass() {
addPass(createSIMemoryLegalizerPass());
addPass(createSIInsertWaitcntsPass());
addPass(createSIShrinkInstructionsPass());
addPass(createSIModeRegisterPass());
// The hazard recognizer that runs as part of the post-ra scheduler does not
// guarantee to be able handle all hazards correctly. This is because if there
// are multiple scheduling regions in a basic block, the regions are scheduled
// bottom up, so when we begin to schedule a region we don't know what
// instructions were emitted directly before it.
//
// Here we add a stand-alone hazard recognizer pass which can handle all
// cases.
//
// FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would
// be better for it to emit S_NOP <N> when possible.
addPass(&PostRAHazardRecognizerID);
addPass(&SIInsertSkipsPassID);
addPass(&BranchRelaxationPassID);
}
TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
return new GCNPassConfig(*this, PM);
}
yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::SIMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return new yaml::SIMachineFunctionInfo(*MFI,
*MF.getSubtarget().getRegisterInfo());
}
bool GCNTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const yaml::SIMachineFunctionInfo &YamlMFI =
reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
MachineFunction &MF = PFS.MF;
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MFI->initializeBaseYamlFields(YamlMFI);
auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) {
if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) {
SourceRange = RegName.SourceRange;
return true;
}
return false;
};
auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
// Create a diagnostic for a the register string literal.
const MemoryBuffer &Buffer =
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
RegName.Value.size(), SourceMgr::DK_Error,
"incorrect register class for field", RegName.Value,
None, None);
SourceRange = RegName.SourceRange;
return true;
};
if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) ||
parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
return true;
if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
!AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
}
if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg);
}
if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
}
if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
}
auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
const TargetRegisterClass &RC,
ArgDescriptor &Arg, unsigned UserSGPRs,
unsigned SystemSGPRs) {
// Skip parsing if it's not present.
if (!A)
return false;
if (A->IsRegister) {
unsigned Reg;
if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
SourceRange = A->RegisterName.SourceRange;
return true;
}
if (!RC.contains(Reg))
return diagnoseRegisterClass(A->RegisterName);
Arg = ArgDescriptor::createRegister(Reg);
} else
Arg = ArgDescriptor::createStack(A->StackOffset);
// Check and apply the optional mask.
if (A->Mask)
Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
MFI->NumUserSGPRs += UserSGPRs;
MFI->NumSystemSGPRs += SystemSGPRs;
return false;
};
if (YamlMFI.ArgInfo &&
(parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
AMDGPU::SGPR_128RegClass,
MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
MFI->ArgInfo.QueuePtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.FlatScratchInit, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDX, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDY, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDZ, 0, 0)))
return true;
MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
MFI->Mode.FP32Denormals = YamlMFI.Mode.FP32Denormals;
MFI->Mode.FP64FP16Denormals = YamlMFI.Mode.FP64FP16Denormals;
return false;
}