|  | //===-- Execution.cpp - Implement code to simulate the program ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file contains the actual instruction interpreter. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "interpreter" | 
|  | #include "Interpreter.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/CodeGen/IntrinsicLowering.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); | 
|  |  | 
|  | static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, | 
|  | cl::desc("make the interpreter print every volatile load and store")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     Various Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { | 
|  | SF.Values[V] = Val; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    Binary Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ | 
|  | case Type::TY##TyID: \ | 
|  | Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ | 
|  | break | 
|  |  | 
|  | static void executeFAddInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(+, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(+, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFSubInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(-, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(-, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFMulInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(*, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(*, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFDivInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(/, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(/, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFRemInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::FloatTyID: | 
|  | Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); | 
|  | break; | 
|  | default: | 
|  | dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ | 
|  | case Type::IntegerTyID:  \ | 
|  | Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ | 
|  | break; | 
|  |  | 
|  | // Handle pointers specially because they must be compared with only as much | 
|  | // width as the host has.  We _do not_ want to be comparing 64 bit values when | 
|  | // running on a 32-bit target, otherwise the upper 32 bits might mess up | 
|  | // comparisons if they contain garbage. | 
|  | #define IMPLEMENT_POINTER_ICMP(OP) \ | 
|  | case Type::PointerTyID: \ | 
|  | Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ | 
|  | (void*)(intptr_t)Src2.PointerVal); \ | 
|  | break; | 
|  |  | 
|  | static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(eq,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(==); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ne,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(!=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ult,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(slt,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ugt,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(sgt,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ule,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(sle,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(uge,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(sge,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitICmpInst(ICmpInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty    = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue R;   // Result | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break; | 
|  | case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break; | 
|  | case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_FCMP(OP, TY) \ | 
|  | case Type::TY##TyID: \ | 
|  | Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ | 
|  | break | 
|  |  | 
|  | static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(==, Float); | 
|  | IMPLEMENT_FCMP(==, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(!=, Float); | 
|  | IMPLEMENT_FCMP(!=, Double); | 
|  |  | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(<=, Float); | 
|  | IMPLEMENT_FCMP(<=, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(>=, Float); | 
|  | IMPLEMENT_FCMP(>=, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(<, Float); | 
|  | IMPLEMENT_FCMP(<, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(>, Float); | 
|  | IMPLEMENT_FCMP(>, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \ | 
|  | if (TY->isFloatTy()) {                                                 \ | 
|  | if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \ | 
|  | Dest.IntVal = APInt(1,true);                                       \ | 
|  | return Dest;                                                       \ | 
|  | }                                                                    \ | 
|  | } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ | 
|  | Dest.IntVal = APInt(1,true);                                         \ | 
|  | return Dest;                                                         \ | 
|  | } | 
|  |  | 
|  |  | 
|  | static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | return executeFCMP_OEQ(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | return executeFCMP_ONE(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | return executeFCMP_OLE(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | return executeFCMP_OGE(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | return executeFCMP_OLT(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | return executeFCMP_OGT(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | if (Ty->isFloatTy()) | 
|  | Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && | 
|  | Src2.FloatVal == Src2.FloatVal)); | 
|  | else | 
|  | Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && | 
|  | Src2.DoubleVal == Src2.DoubleVal)); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | if (Ty->isFloatTy()) | 
|  | Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || | 
|  | Src2.FloatVal != Src2.FloatVal)); | 
|  | else | 
|  | Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || | 
|  | Src2.DoubleVal != Src2.DoubleVal)); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFCmpInst(FCmpInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty    = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue R;   // Result | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; | 
|  | case FCmpInst::FCMP_TRUE:  R.IntVal = APInt(1,true); break; | 
|  | case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break; | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | GenericValue Result; | 
|  | switch (predicate) { | 
|  | case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_FALSE: { | 
|  | GenericValue Result; | 
|  | Result.IntVal = APInt(1, false); | 
|  | return Result; | 
|  | } | 
|  | case FCmpInst::FCMP_TRUE: { | 
|  | GenericValue Result; | 
|  | Result.IntVal = APInt(1, true); | 
|  | return Result; | 
|  | } | 
|  | default: | 
|  | dbgs() << "Unhandled Cmp predicate\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Interpreter::visitBinaryOperator(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty    = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue R;   // Result | 
|  |  | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break; | 
|  | case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break; | 
|  | case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break; | 
|  | case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; | 
|  | case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; | 
|  | case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; | 
|  | case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; | 
|  | case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break; | 
|  | case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break; | 
|  | case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break; | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this binary operator!\n-->" << I; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, | 
|  | GenericValue Src3) { | 
|  | return Src1.IntVal == 0 ? Src3 : Src2; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSelectInst(SelectInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Src3 = getOperandValue(I.getOperand(2), SF); | 
|  | GenericValue R = executeSelectInst(Src1, Src2, Src3); | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     Terminator Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Interpreter::exitCalled(GenericValue GV) { | 
|  | // runAtExitHandlers() assumes there are no stack frames, but | 
|  | // if exit() was called, then it had a stack frame. Blow away | 
|  | // the stack before interpreting atexit handlers. | 
|  | ECStack.clear(); | 
|  | runAtExitHandlers(); | 
|  | exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); | 
|  | } | 
|  |  | 
|  | /// Pop the last stack frame off of ECStack and then copy the result | 
|  | /// back into the result variable if we are not returning void. The | 
|  | /// result variable may be the ExitValue, or the Value of the calling | 
|  | /// CallInst if there was a previous stack frame. This method may | 
|  | /// invalidate any ECStack iterators you have. This method also takes | 
|  | /// care of switching to the normal destination BB, if we are returning | 
|  | /// from an invoke. | 
|  | /// | 
|  | void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, | 
|  | GenericValue Result) { | 
|  | // Pop the current stack frame. | 
|  | ECStack.pop_back(); | 
|  |  | 
|  | if (ECStack.empty()) {  // Finished main.  Put result into exit code... | 
|  | if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type? | 
|  | ExitValue = Result;   // Capture the exit value of the program | 
|  | } else { | 
|  | memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); | 
|  | } | 
|  | } else { | 
|  | // If we have a previous stack frame, and we have a previous call, | 
|  | // fill in the return value... | 
|  | ExecutionContext &CallingSF = ECStack.back(); | 
|  | if (Instruction *I = CallingSF.Caller.getInstruction()) { | 
|  | // Save result... | 
|  | if (!CallingSF.Caller.getType()->isVoidTy()) | 
|  | SetValue(I, Result, CallingSF); | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst> (I)) | 
|  | SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); | 
|  | CallingSF.Caller = CallSite();          // We returned from the call... | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Interpreter::visitReturnInst(ReturnInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *RetTy = Type::getVoidTy(I.getContext()); | 
|  | GenericValue Result; | 
|  |  | 
|  | // Save away the return value... (if we are not 'ret void') | 
|  | if (I.getNumOperands()) { | 
|  | RetTy  = I.getReturnValue()->getType(); | 
|  | Result = getOperandValue(I.getReturnValue(), SF); | 
|  | } | 
|  |  | 
|  | popStackAndReturnValueToCaller(RetTy, Result); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitUnwindInst(UnwindInst &I) { | 
|  | // Unwind stack | 
|  | Instruction *Inst; | 
|  | do { | 
|  | ECStack.pop_back(); | 
|  | if (ECStack.empty()) | 
|  | report_fatal_error("Empty stack during unwind!"); | 
|  | Inst = ECStack.back().Caller.getInstruction(); | 
|  | } while (!(Inst && isa<InvokeInst>(Inst))); | 
|  |  | 
|  | // Return from invoke | 
|  | ExecutionContext &InvokingSF = ECStack.back(); | 
|  | InvokingSF.Caller = CallSite(); | 
|  |  | 
|  | // Go to exceptional destination BB of invoke instruction | 
|  | SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitUnreachableInst(UnreachableInst &I) { | 
|  | report_fatal_error("Program executed an 'unreachable' instruction!"); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitBranchInst(BranchInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | BasicBlock *Dest; | 
|  |  | 
|  | Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest... | 
|  | if (!I.isUnconditional()) { | 
|  | Value *Cond = I.getCondition(); | 
|  | if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... | 
|  | Dest = I.getSuccessor(1); | 
|  | } | 
|  | SwitchToNewBasicBlock(Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSwitchInst(SwitchInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Value* Cond = I.getCondition(); | 
|  | Type *ElTy = Cond->getType(); | 
|  | GenericValue CondVal = getOperandValue(Cond, SF); | 
|  |  | 
|  | // Check to see if any of the cases match... | 
|  | BasicBlock *Dest = 0; | 
|  | unsigned NumCases = I.getNumCases(); | 
|  | // Skip the first item since that's the default case. | 
|  | for (unsigned i = 1; i < NumCases; ++i) { | 
|  | GenericValue CaseVal = getOperandValue(I.getCaseValue(i), SF); | 
|  | if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { | 
|  | Dest = cast<BasicBlock>(I.getSuccessor(i)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default | 
|  | SwitchToNewBasicBlock(Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); | 
|  | SwitchToNewBasicBlock((BasicBlock*)Dest, SF); | 
|  | } | 
|  |  | 
|  |  | 
|  | // SwitchToNewBasicBlock - This method is used to jump to a new basic block. | 
|  | // This function handles the actual updating of block and instruction iterators | 
|  | // as well as execution of all of the PHI nodes in the destination block. | 
|  | // | 
|  | // This method does this because all of the PHI nodes must be executed | 
|  | // atomically, reading their inputs before any of the results are updated.  Not | 
|  | // doing this can cause problems if the PHI nodes depend on other PHI nodes for | 
|  | // their inputs.  If the input PHI node is updated before it is read, incorrect | 
|  | // results can happen.  Thus we use a two phase approach. | 
|  | // | 
|  | void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ | 
|  | BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from... | 
|  | SF.CurBB   = Dest;                  // Update CurBB to branch destination | 
|  | SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr... | 
|  |  | 
|  | if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do | 
|  |  | 
|  | // Loop over all of the PHI nodes in the current block, reading their inputs. | 
|  | std::vector<GenericValue> ResultValues; | 
|  |  | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { | 
|  | // Search for the value corresponding to this previous bb... | 
|  | int i = PN->getBasicBlockIndex(PrevBB); | 
|  | assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); | 
|  | Value *IncomingValue = PN->getIncomingValue(i); | 
|  |  | 
|  | // Save the incoming value for this PHI node... | 
|  | ResultValues.push_back(getOperandValue(IncomingValue, SF)); | 
|  | } | 
|  |  | 
|  | // Now loop over all of the PHI nodes setting their values... | 
|  | SF.CurInst = SF.CurBB->begin(); | 
|  | for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { | 
|  | PHINode *PN = cast<PHINode>(SF.CurInst); | 
|  | SetValue(PN, ResultValues[i], SF); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     Memory Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Interpreter::visitAllocaInst(AllocaInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | Type *Ty = I.getType()->getElementType();  // Type to be allocated | 
|  |  | 
|  | // Get the number of elements being allocated by the array... | 
|  | unsigned NumElements = | 
|  | getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); | 
|  |  | 
|  | unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty); | 
|  |  | 
|  | // Avoid malloc-ing zero bytes, use max()... | 
|  | unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); | 
|  |  | 
|  | // Allocate enough memory to hold the type... | 
|  | void *Memory = malloc(MemToAlloc); | 
|  |  | 
|  | DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " | 
|  | << NumElements << " (Total: " << MemToAlloc << ") at " | 
|  | << uintptr_t(Memory) << '\n'); | 
|  |  | 
|  | GenericValue Result = PTOGV(Memory); | 
|  | assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); | 
|  | SetValue(&I, Result, SF); | 
|  |  | 
|  | if (I.getOpcode() == Instruction::Alloca) | 
|  | ECStack.back().Allocas.add(Memory); | 
|  | } | 
|  |  | 
|  | // getElementOffset - The workhorse for getelementptr. | 
|  | // | 
|  | GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, | 
|  | gep_type_iterator E, | 
|  | ExecutionContext &SF) { | 
|  | assert(Ptr->getType()->isPointerTy() && | 
|  | "Cannot getElementOffset of a nonpointer type!"); | 
|  |  | 
|  | uint64_t Total = 0; | 
|  |  | 
|  | for (; I != E; ++I) { | 
|  | if (StructType *STy = dyn_cast<StructType>(*I)) { | 
|  | const StructLayout *SLO = TD.getStructLayout(STy); | 
|  |  | 
|  | const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); | 
|  | unsigned Index = unsigned(CPU->getZExtValue()); | 
|  |  | 
|  | Total += SLO->getElementOffset(Index); | 
|  | } else { | 
|  | SequentialType *ST = cast<SequentialType>(*I); | 
|  | // Get the index number for the array... which must be long type... | 
|  | GenericValue IdxGV = getOperandValue(I.getOperand(), SF); | 
|  |  | 
|  | int64_t Idx; | 
|  | unsigned BitWidth = | 
|  | cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); | 
|  | if (BitWidth == 32) | 
|  | Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); | 
|  | else { | 
|  | assert(BitWidth == 64 && "Invalid index type for getelementptr"); | 
|  | Idx = (int64_t)IdxGV.IntVal.getZExtValue(); | 
|  | } | 
|  | Total += TD.getTypeAllocSize(ST->getElementType())*Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | GenericValue Result; | 
|  | Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; | 
|  | DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeGEPOperation(I.getPointerOperand(), | 
|  | gep_type_begin(I), gep_type_end(I), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitLoadInst(LoadInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); | 
|  | GenericValue *Ptr = (GenericValue*)GVTOP(SRC); | 
|  | GenericValue Result; | 
|  | LoadValueFromMemory(Result, Ptr, I.getType()); | 
|  | SetValue(&I, Result, SF); | 
|  | if (I.isVolatile() && PrintVolatile) | 
|  | dbgs() << "Volatile load " << I; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitStoreInst(StoreInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Val = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); | 
|  | StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), | 
|  | I.getOperand(0)->getType()); | 
|  | if (I.isVolatile() && PrintVolatile) | 
|  | dbgs() << "Volatile store: " << I; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                 Miscellaneous Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Interpreter::visitCallSite(CallSite CS) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | // Check to see if this is an intrinsic function call... | 
|  | Function *F = CS.getCalledFunction(); | 
|  | if (F && F->isDeclaration()) | 
|  | switch (F->getIntrinsicID()) { | 
|  | case Intrinsic::not_intrinsic: | 
|  | break; | 
|  | case Intrinsic::vastart: { // va_start | 
|  | GenericValue ArgIndex; | 
|  | ArgIndex.UIntPairVal.first = ECStack.size() - 1; | 
|  | ArgIndex.UIntPairVal.second = 0; | 
|  | SetValue(CS.getInstruction(), ArgIndex, SF); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::vaend:    // va_end is a noop for the interpreter | 
|  | return; | 
|  | case Intrinsic::vacopy:   // va_copy: dest = src | 
|  | SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); | 
|  | return; | 
|  | default: | 
|  | // If it is an unknown intrinsic function, use the intrinsic lowering | 
|  | // class to transform it into hopefully tasty LLVM code. | 
|  | // | 
|  | BasicBlock::iterator me(CS.getInstruction()); | 
|  | BasicBlock *Parent = CS.getInstruction()->getParent(); | 
|  | bool atBegin(Parent->begin() == me); | 
|  | if (!atBegin) | 
|  | --me; | 
|  | IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); | 
|  |  | 
|  | // Restore the CurInst pointer to the first instruction newly inserted, if | 
|  | // any. | 
|  | if (atBegin) { | 
|  | SF.CurInst = Parent->begin(); | 
|  | } else { | 
|  | SF.CurInst = me; | 
|  | ++SF.CurInst; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | SF.Caller = CS; | 
|  | std::vector<GenericValue> ArgVals; | 
|  | const unsigned NumArgs = SF.Caller.arg_size(); | 
|  | ArgVals.reserve(NumArgs); | 
|  | uint16_t pNum = 1; | 
|  | for (CallSite::arg_iterator i = SF.Caller.arg_begin(), | 
|  | e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { | 
|  | Value *V = *i; | 
|  | ArgVals.push_back(getOperandValue(V, SF)); | 
|  | } | 
|  |  | 
|  | // To handle indirect calls, we must get the pointer value from the argument | 
|  | // and treat it as a function pointer. | 
|  | GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); | 
|  | callFunction((Function*)GVTOP(SRC), ArgVals); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitShl(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) | 
|  | Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); | 
|  | else | 
|  | Dest.IntVal = Src1.IntVal; | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitLShr(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) | 
|  | Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); | 
|  | else | 
|  | Dest.IntVal = Src1.IntVal; | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitAShr(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) | 
|  | Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); | 
|  | else | 
|  | Dest.IntVal = Src1.IntVal; | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | IntegerType *DITy = cast<IntegerType>(DstTy); | 
|  | unsigned DBitWidth = DITy->getBitWidth(); | 
|  | Dest.IntVal = Src.IntVal.trunc(DBitWidth); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | IntegerType *DITy = cast<IntegerType>(DstTy); | 
|  | unsigned DBitWidth = DITy->getBitWidth(); | 
|  | Dest.IntVal = Src.IntVal.sext(DBitWidth); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | IntegerType *DITy = cast<IntegerType>(DstTy); | 
|  | unsigned DBitWidth = DITy->getBitWidth(); | 
|  | Dest.IntVal = Src.IntVal.zext(DBitWidth); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && | 
|  | "Invalid FPTrunc instruction"); | 
|  | Dest.FloatVal = (float) Src.DoubleVal; | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && | 
|  | "Invalid FPTrunc instruction"); | 
|  | Dest.DoubleVal = (double) Src.FloatVal; | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); | 
|  | else | 
|  | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); | 
|  | else | 
|  | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); | 
|  |  | 
|  | if (DstTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); | 
|  | else | 
|  | Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); | 
|  |  | 
|  | if (DstTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); | 
|  | else | 
|  | Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); | 
|  | return Dest; | 
|  |  | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); | 
|  |  | 
|  | Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); | 
|  |  | 
|  | uint32_t PtrSize = TD.getPointerSizeInBits(); | 
|  | if (PtrSize != Src.IntVal.getBitWidth()) | 
|  | Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); | 
|  |  | 
|  | Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  |  | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | if (DstTy->isPointerTy()) { | 
|  | assert(SrcTy->isPointerTy() && "Invalid BitCast"); | 
|  | Dest.PointerVal = Src.PointerVal; | 
|  | } else if (DstTy->isIntegerTy()) { | 
|  | if (SrcTy->isFloatTy()) { | 
|  | Dest.IntVal = APInt::floatToBits(Src.FloatVal); | 
|  | } else if (SrcTy->isDoubleTy()) { | 
|  | Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); | 
|  | } else if (SrcTy->isIntegerTy()) { | 
|  | Dest.IntVal = Src.IntVal; | 
|  | } else | 
|  | llvm_unreachable("Invalid BitCast"); | 
|  | } else if (DstTy->isFloatTy()) { | 
|  | if (SrcTy->isIntegerTy()) | 
|  | Dest.FloatVal = Src.IntVal.bitsToFloat(); | 
|  | else | 
|  | Dest.FloatVal = Src.FloatVal; | 
|  | } else if (DstTy->isDoubleTy()) { | 
|  | if (SrcTy->isIntegerTy()) | 
|  | Dest.DoubleVal = Src.IntVal.bitsToDouble(); | 
|  | else | 
|  | Dest.DoubleVal = Src.DoubleVal; | 
|  | } else | 
|  | llvm_unreachable("Invalid Bitcast"); | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitTruncInst(TruncInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSExtInst(SExtInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitZExtInst(ZExtInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPTruncInst(FPTruncInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPExtInst(FPExtInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitUIToFPInst(UIToFPInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSIToFPInst(SIToFPInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPToUIInst(FPToUIInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPToSIInst(FPToSIInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitBitCastInst(BitCastInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_VAARG(TY) \ | 
|  | case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break | 
|  |  | 
|  | void Interpreter::visitVAArgInst(VAArgInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | // Get the incoming valist parameter.  LLI treats the valist as a | 
|  | // (ec-stack-depth var-arg-index) pair. | 
|  | GenericValue VAList = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Dest; | 
|  | GenericValue Src = ECStack[VAList.UIntPairVal.first] | 
|  | .VarArgs[VAList.UIntPairVal.second]; | 
|  | Type *Ty = I.getType(); | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::IntegerTyID: Dest.IntVal = Src.IntVal; | 
|  | IMPLEMENT_VAARG(Pointer); | 
|  | IMPLEMENT_VAARG(Float); | 
|  | IMPLEMENT_VAARG(Double); | 
|  | default: | 
|  | dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | // Set the Value of this Instruction. | 
|  | SetValue(&I, Dest, SF); | 
|  |  | 
|  | // Move the pointer to the next vararg. | 
|  | ++VAList.UIntPairVal.second; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, | 
|  | ExecutionContext &SF) { | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | return executeTruncInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::ZExt: | 
|  | return executeZExtInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::SExt: | 
|  | return executeSExtInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPTrunc: | 
|  | return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPExt: | 
|  | return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::UIToFP: | 
|  | return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::SIToFP: | 
|  | return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPToUI: | 
|  | return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPToSI: | 
|  | return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::PtrToInt: | 
|  | return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::IntToPtr: | 
|  | return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::BitCast: | 
|  | return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::GetElementPtr: | 
|  | return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), | 
|  | gep_type_end(CE), SF); | 
|  | case Instruction::FCmp: | 
|  | case Instruction::ICmp: | 
|  | return executeCmpInst(CE->getPredicate(), | 
|  | getOperandValue(CE->getOperand(0), SF), | 
|  | getOperandValue(CE->getOperand(1), SF), | 
|  | CE->getOperand(0)->getType()); | 
|  | case Instruction::Select: | 
|  | return executeSelectInst(getOperandValue(CE->getOperand(0), SF), | 
|  | getOperandValue(CE->getOperand(1), SF), | 
|  | getOperandValue(CE->getOperand(2), SF)); | 
|  | default : | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The cases below here require a GenericValue parameter for the result | 
|  | // so we initialize one, compute it and then return it. | 
|  | GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); | 
|  | GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | Type * Ty = CE->getOperand(0)->getType(); | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break; | 
|  | case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break; | 
|  | case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break; | 
|  | case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; | 
|  | case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; | 
|  | case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; | 
|  | case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; | 
|  | case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break; | 
|  | case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break; | 
|  | case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; | 
|  | case Instruction::Shl: | 
|  | Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); | 
|  | break; | 
|  | default: | 
|  | dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; | 
|  | llvm_unreachable(0); | 
|  | return GenericValue(); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | return getConstantExprValue(CE, SF); | 
|  | } else if (Constant *CPV = dyn_cast<Constant>(V)) { | 
|  | return getConstantValue(CPV); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | return PTOGV(getPointerToGlobal(GV)); | 
|  | } else { | 
|  | return SF.Values[V]; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Dispatch and Execution Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // callFunction - Execute the specified function... | 
|  | // | 
|  | void Interpreter::callFunction(Function *F, | 
|  | const std::vector<GenericValue> &ArgVals) { | 
|  | assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || | 
|  | ECStack.back().Caller.arg_size() == ArgVals.size()) && | 
|  | "Incorrect number of arguments passed into function call!"); | 
|  | // Make a new stack frame... and fill it in. | 
|  | ECStack.push_back(ExecutionContext()); | 
|  | ExecutionContext &StackFrame = ECStack.back(); | 
|  | StackFrame.CurFunction = F; | 
|  |  | 
|  | // Special handling for external functions. | 
|  | if (F->isDeclaration()) { | 
|  | GenericValue Result = callExternalFunction (F, ArgVals); | 
|  | // Simulate a 'ret' instruction of the appropriate type. | 
|  | popStackAndReturnValueToCaller (F->getReturnType (), Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get pointers to first LLVM BB & Instruction in function. | 
|  | StackFrame.CurBB     = F->begin(); | 
|  | StackFrame.CurInst   = StackFrame.CurBB->begin(); | 
|  |  | 
|  | // Run through the function arguments and initialize their values... | 
|  | assert((ArgVals.size() == F->arg_size() || | 
|  | (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& | 
|  | "Invalid number of values passed to function invocation!"); | 
|  |  | 
|  | // Handle non-varargs arguments... | 
|  | unsigned i = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
|  | AI != E; ++AI, ++i) | 
|  | SetValue(AI, ArgVals[i], StackFrame); | 
|  |  | 
|  | // Handle varargs arguments... | 
|  | StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Interpreter::run() { | 
|  | while (!ECStack.empty()) { | 
|  | // Interpret a single instruction & increment the "PC". | 
|  | ExecutionContext &SF = ECStack.back();  // Current stack frame | 
|  | Instruction &I = *SF.CurInst++;         // Increment before execute | 
|  |  | 
|  | // Track the number of dynamic instructions executed. | 
|  | ++NumDynamicInsts; | 
|  |  | 
|  | DEBUG(dbgs() << "About to interpret: " << I); | 
|  | visit(I);   // Dispatch to one of the visit* methods... | 
|  | #if 0 | 
|  | // This is not safe, as visiting the instruction could lower it and free I. | 
|  | DEBUG( | 
|  | if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && | 
|  | I.getType() != Type::VoidTy) { | 
|  | dbgs() << "  --> "; | 
|  | const GenericValue &Val = SF.Values[&I]; | 
|  | switch (I.getType()->getTypeID()) { | 
|  | default: llvm_unreachable("Invalid GenericValue Type"); | 
|  | case Type::VoidTyID:    dbgs() << "void"; break; | 
|  | case Type::FloatTyID:   dbgs() << "float " << Val.FloatVal; break; | 
|  | case Type::DoubleTyID:  dbgs() << "double " << Val.DoubleVal; break; | 
|  | case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | dbgs() << "i" << Val.IntVal.getBitWidth() << " " | 
|  | << Val.IntVal.toStringUnsigned(10) | 
|  | << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; | 
|  | break; | 
|  | } | 
|  | }); | 
|  | #endif | 
|  | } | 
|  | } |