| //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the Operand class and its target-independent |
| // subclasses. The main classes are Variable, which represents an |
| // LLVM variable that is either register- or stack-allocated, and the |
| // Constant hierarchy, which represents integer, floating-point, |
| // and/or symbolic constants. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEOPERAND_H |
| #define SUBZERO_SRC_ICEOPERAND_H |
| |
| #include "IceDefs.h" |
| #include "IceTypes.h" |
| |
| namespace Ice { |
| |
| class Operand { |
| public: |
| enum OperandKind { |
| kConst_Base, |
| kConstInteger, |
| kConstFloat, |
| kConstDouble, |
| kConstRelocatable, |
| kConstUndef, |
| kConst_Num, |
| kVariable, |
| // Target-specific operand classes use kTarget as the starting |
| // point for their Kind enum space. |
| kTarget |
| }; |
| OperandKind getKind() const { return Kind; } |
| Type getType() const { return Ty; } |
| |
| // Every Operand keeps an array of the Variables referenced in |
| // the operand. This is so that the liveness operations can get |
| // quick access to the variables of interest, without having to dig |
| // so far into the operand. |
| SizeT getNumVars() const { return NumVars; } |
| Variable *getVar(SizeT I) const { |
| assert(I < getNumVars()); |
| return Vars[I]; |
| } |
| virtual void emit(const Cfg *Func) const = 0; |
| virtual void dump(const Cfg *Func) const = 0; |
| |
| // Query whether this object was allocated in isolation, or added to |
| // some higher-level pool. This determines whether a containing |
| // object's destructor should delete this object. Generally, |
| // constants are pooled globally, variables are pooled per-CFG, and |
| // target-specific operands are not pooled. |
| virtual bool isPooled() const { return false; } |
| |
| virtual ~Operand() {} |
| |
| protected: |
| Operand(OperandKind Kind, Type Ty) |
| : Ty(Ty), Kind(Kind), NumVars(0), Vars(NULL) {} |
| |
| const Type Ty; |
| const OperandKind Kind; |
| // Vars and NumVars are initialized by the derived class. |
| SizeT NumVars; |
| Variable **Vars; |
| |
| private: |
| Operand(const Operand &) LLVM_DELETED_FUNCTION; |
| Operand &operator=(const Operand &) LLVM_DELETED_FUNCTION; |
| }; |
| |
| // Constant is the abstract base class for constants. All |
| // constants are allocated from a global arena and are pooled. |
| class Constant : public Operand { |
| public: |
| uint32_t getPoolEntryID() const { return PoolEntryID; } |
| virtual void emit(const Cfg *Func) const { emit(Func->getContext()); } |
| virtual void dump(const Cfg *Func) const { dump(Func->getContext()); } |
| virtual void emit(GlobalContext *Ctx) const = 0; |
| virtual void dump(GlobalContext *Ctx) const = 0; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kConst_Base && Kind <= kConst_Num; |
| } |
| |
| protected: |
| Constant(OperandKind Kind, Type Ty, uint32_t PoolEntryID) |
| : Operand(Kind, Ty), PoolEntryID(PoolEntryID) { |
| Vars = NULL; |
| NumVars = 0; |
| } |
| virtual ~Constant() {} |
| // PoolEntryID is an integer that uniquely identifies the constant |
| // within its constant pool. It is used for building the constant |
| // pool in the object code and for referencing its entries. |
| const uint32_t PoolEntryID; |
| |
| private: |
| Constant(const Constant &) LLVM_DELETED_FUNCTION; |
| Constant &operator=(const Constant &) LLVM_DELETED_FUNCTION; |
| }; |
| |
| // ConstantPrimitive<> wraps a primitive type. |
| template <typename T, Operand::OperandKind K> |
| class ConstantPrimitive : public Constant { |
| public: |
| static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty, T Value, |
| uint32_t PoolEntryID) { |
| return new (Ctx->allocate<ConstantPrimitive>()) |
| ConstantPrimitive(Ty, Value, PoolEntryID); |
| } |
| T getValue() const { return Value; } |
| using Constant::emit; |
| // The target needs to implement this for each ConstantPrimitive |
| // specialization. |
| virtual void emit(GlobalContext *Ctx) const; |
| using Constant::dump; |
| virtual void dump(GlobalContext *Ctx) const { |
| Ostream &Str = Ctx->getStrDump(); |
| Str << getValue(); |
| } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == K; |
| } |
| |
| private: |
| ConstantPrimitive(Type Ty, T Value, uint32_t PoolEntryID) |
| : Constant(K, Ty, PoolEntryID), Value(Value) {} |
| ConstantPrimitive(const ConstantPrimitive &) LLVM_DELETED_FUNCTION; |
| ConstantPrimitive &operator=(const ConstantPrimitive &) LLVM_DELETED_FUNCTION; |
| virtual ~ConstantPrimitive() {} |
| const T Value; |
| }; |
| |
| typedef ConstantPrimitive<uint64_t, Operand::kConstInteger> ConstantInteger; |
| typedef ConstantPrimitive<float, Operand::kConstFloat> ConstantFloat; |
| typedef ConstantPrimitive<double, Operand::kConstDouble> ConstantDouble; |
| |
| // RelocatableTuple bundles the parameters that are used to |
| // construct an ConstantRelocatable. It is done this way so that |
| // ConstantRelocatable can fit into the global constant pool |
| // template mechanism. |
| class RelocatableTuple { |
| RelocatableTuple &operator=(const RelocatableTuple &) LLVM_DELETED_FUNCTION; |
| |
| public: |
| RelocatableTuple(const int64_t Offset, const IceString &Name, |
| bool SuppressMangling) |
| : Offset(Offset), Name(Name), SuppressMangling(SuppressMangling) {} |
| RelocatableTuple(const RelocatableTuple &Other) |
| : Offset(Other.Offset), Name(Other.Name), |
| SuppressMangling(Other.SuppressMangling) {} |
| |
| const int64_t Offset; |
| const IceString Name; |
| bool SuppressMangling; |
| }; |
| |
| bool operator<(const RelocatableTuple &A, const RelocatableTuple &B); |
| |
| // ConstantRelocatable represents a symbolic constant combined with |
| // a fixed offset. |
| class ConstantRelocatable : public Constant { |
| public: |
| static ConstantRelocatable *create(GlobalContext *Ctx, Type Ty, |
| const RelocatableTuple &Tuple, |
| uint32_t PoolEntryID) { |
| return new (Ctx->allocate<ConstantRelocatable>()) ConstantRelocatable( |
| Ty, Tuple.Offset, Tuple.Name, Tuple.SuppressMangling, PoolEntryID); |
| } |
| int64_t getOffset() const { return Offset; } |
| IceString getName() const { return Name; } |
| void setSuppressMangling(bool Value) { SuppressMangling = Value; } |
| bool getSuppressMangling() const { return SuppressMangling; } |
| using Constant::emit; |
| using Constant::dump; |
| virtual void emit(GlobalContext *Ctx) const; |
| virtual void dump(GlobalContext *Ctx) const; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kConstRelocatable; |
| } |
| |
| private: |
| ConstantRelocatable(Type Ty, int64_t Offset, const IceString &Name, |
| bool SuppressMangling, uint32_t PoolEntryID) |
| : Constant(kConstRelocatable, Ty, PoolEntryID), Offset(Offset), |
| Name(Name), SuppressMangling(SuppressMangling) {} |
| ConstantRelocatable(const ConstantRelocatable &) LLVM_DELETED_FUNCTION; |
| ConstantRelocatable & |
| operator=(const ConstantRelocatable &) LLVM_DELETED_FUNCTION; |
| virtual ~ConstantRelocatable() {} |
| const int64_t Offset; // fixed offset to add |
| const IceString Name; // optional for debug/dump |
| bool SuppressMangling; |
| }; |
| |
| // ConstantUndef represents an unspecified bit pattern. Although it is |
| // legal to lower ConstantUndef to any value, backends should try to |
| // make code generation deterministic by lowering ConstantUndefs to 0. |
| class ConstantUndef : public Constant { |
| public: |
| static ConstantUndef *create(GlobalContext *Ctx, Type Ty, |
| uint32_t PoolEntryID) { |
| return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty, PoolEntryID); |
| } |
| |
| using Constant::emit; |
| virtual void emit(GlobalContext *Ctx) const { |
| Ostream &Str = Ctx->getStrEmit(); |
| Str << "undef"; |
| } |
| |
| using Constant::dump; |
| virtual void dump(GlobalContext *Ctx) const { |
| Ostream &Str = Ctx->getStrEmit(); |
| Str << "undef"; |
| } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == kConstUndef; |
| } |
| |
| private: |
| ConstantUndef(Type Ty, uint32_t PoolEntryID) |
| : Constant(kConstUndef, Ty, PoolEntryID) {} |
| ConstantUndef(const ConstantUndef &) LLVM_DELETED_FUNCTION; |
| ConstantUndef &operator=(const ConstantUndef &) LLVM_DELETED_FUNCTION; |
| virtual ~ConstantUndef() {} |
| }; |
| |
| // RegWeight is a wrapper for a uint32_t weight value, with a |
| // special value that represents infinite weight, and an addWeight() |
| // method that ensures that W+infinity=infinity. |
| class RegWeight { |
| public: |
| RegWeight() : Weight(0) {} |
| RegWeight(uint32_t Weight) : Weight(Weight) {} |
| const static uint32_t Inf = ~0; // Force regalloc to give a register |
| const static uint32_t Zero = 0; // Force regalloc NOT to give a register |
| void addWeight(uint32_t Delta) { |
| if (Delta == Inf) |
| Weight = Inf; |
| else if (Weight != Inf) |
| Weight += Delta; |
| } |
| void addWeight(const RegWeight &Other) { addWeight(Other.Weight); } |
| void setWeight(uint32_t Val) { Weight = Val; } |
| uint32_t getWeight() const { return Weight; } |
| bool isInf() const { return Weight == Inf; } |
| |
| private: |
| uint32_t Weight; |
| }; |
| Ostream &operator<<(Ostream &Str, const RegWeight &W); |
| bool operator<(const RegWeight &A, const RegWeight &B); |
| bool operator<=(const RegWeight &A, const RegWeight &B); |
| bool operator==(const RegWeight &A, const RegWeight &B); |
| |
| // LiveRange is a set of instruction number intervals representing |
| // a variable's live range. Generally there is one interval per basic |
| // block where the variable is live, but adjacent intervals get |
| // coalesced into a single interval. LiveRange also includes a |
| // weight, in case e.g. we want a live range to have higher weight |
| // inside a loop. |
| class LiveRange { |
| public: |
| LiveRange() : Weight(0) {} |
| |
| void reset() { |
| Range.clear(); |
| Weight.setWeight(0); |
| } |
| void addSegment(InstNumberT Start, InstNumberT End); |
| |
| bool endsBefore(const LiveRange &Other) const; |
| bool overlaps(const LiveRange &Other) const; |
| bool overlaps(InstNumberT OtherBegin) const; |
| bool containsValue(InstNumberT Value) const; |
| bool isEmpty() const { return Range.empty(); } |
| InstNumberT getStart() const { |
| return Range.empty() ? -1 : Range.begin()->first; |
| } |
| |
| RegWeight getWeight() const { return Weight; } |
| void setWeight(const RegWeight &NewWeight) { Weight = NewWeight; } |
| void addWeight(uint32_t Delta) { Weight.addWeight(Delta); } |
| void dump(Ostream &Str) const; |
| |
| // Defining USE_SET uses std::set to hold the segments instead of |
| // std::list. Using std::list will be slightly faster, but is more |
| // restrictive because new segments cannot be added in the middle. |
| |
| //#define USE_SET |
| |
| private: |
| typedef std::pair<InstNumberT, InstNumberT> RangeElementType; |
| #ifdef USE_SET |
| typedef std::set<RangeElementType> RangeType; |
| #else |
| typedef std::list<RangeElementType> RangeType; |
| #endif |
| RangeType Range; |
| RegWeight Weight; |
| }; |
| |
| Ostream &operator<<(Ostream &Str, const LiveRange &L); |
| |
| // Variable represents an operand that is register-allocated or |
| // stack-allocated. If it is register-allocated, it will ultimately |
| // have a non-negative RegNum field. |
| class Variable : public Operand { |
| public: |
| static Variable *create(Cfg *Func, Type Ty, const CfgNode *Node, SizeT Index, |
| const IceString &Name) { |
| return new (Func->allocate<Variable>()) Variable(Ty, Node, Index, Name); |
| } |
| |
| SizeT getIndex() const { return Number; } |
| IceString getName() const; |
| |
| Inst *getDefinition() const { return DefInst; } |
| void setDefinition(Inst *Inst, const CfgNode *Node); |
| void replaceDefinition(Inst *Inst, const CfgNode *Node); |
| |
| const CfgNode *getLocalUseNode() const { return DefNode; } |
| bool isMultiblockLife() const { return (DefNode == NULL); } |
| void setUse(const Inst *Inst, const CfgNode *Node); |
| |
| bool getIsArg() const { return IsArgument; } |
| void setIsArg(Cfg *Func, bool IsArg = true); |
| |
| int32_t getStackOffset() const { return StackOffset; } |
| void setStackOffset(int32_t Offset) { StackOffset = Offset; } |
| |
| static const int32_t NoRegister = -1; |
| bool hasReg() const { return getRegNum() != NoRegister; } |
| int32_t getRegNum() const { return RegNum; } |
| void setRegNum(int32_t NewRegNum) { |
| // Regnum shouldn't be set more than once. |
| assert(!hasReg() || RegNum == NewRegNum); |
| RegNum = NewRegNum; |
| } |
| bool hasRegTmp() const { return getRegNumTmp() != NoRegister; } |
| int32_t getRegNumTmp() const { return RegNumTmp; } |
| void setRegNumTmp(int32_t NewRegNum) { RegNumTmp = NewRegNum; } |
| |
| RegWeight getWeight() const { return Weight; } |
| void setWeight(uint32_t NewWeight) { Weight = NewWeight; } |
| void setWeightInfinite() { Weight = RegWeight::Inf; } |
| |
| Variable *getPreferredRegister() const { return RegisterPreference; } |
| bool getRegisterOverlap() const { return AllowRegisterOverlap; } |
| void setPreferredRegister(Variable *Prefer, bool Overlap) { |
| RegisterPreference = Prefer; |
| AllowRegisterOverlap = Overlap; |
| } |
| |
| const LiveRange &getLiveRange() const { return Live; } |
| void setLiveRange(const LiveRange &Range) { Live = Range; } |
| void resetLiveRange() { Live.reset(); } |
| void addLiveRange(InstNumberT Start, InstNumberT End, uint32_t WeightDelta) { |
| assert(WeightDelta != RegWeight::Inf); |
| Live.addSegment(Start, End); |
| if (Weight.isInf()) |
| Live.setWeight(RegWeight::Inf); |
| else |
| Live.addWeight(WeightDelta * Weight.getWeight()); |
| } |
| void setLiveRangeInfiniteWeight() { Live.setWeight(RegWeight::Inf); } |
| |
| Variable *getLo() const { return LoVar; } |
| Variable *getHi() const { return HiVar; } |
| void setLoHi(Variable *Lo, Variable *Hi) { |
| assert(LoVar == NULL); |
| assert(HiVar == NULL); |
| LoVar = Lo; |
| HiVar = Hi; |
| } |
| // Creates a temporary copy of the variable with a different type. |
| // Used primarily for syntactic correctness of textual assembly |
| // emission. Note that only basic information is copied, in |
| // particular not DefInst, IsArgument, Weight, RegisterPreference, |
| // AllowRegisterOverlap, LoVar, HiVar, VarsReal. |
| Variable asType(Type Ty); |
| |
| virtual void emit(const Cfg *Func) const; |
| virtual void dump(const Cfg *Func) const; |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == kVariable; |
| } |
| |
| // The destructor is public because of the asType() method. |
| virtual ~Variable() {} |
| |
| private: |
| Variable(Type Ty, const CfgNode *Node, SizeT Index, const IceString &Name) |
| : Operand(kVariable, Ty), Number(Index), Name(Name), DefInst(NULL), |
| DefNode(Node), IsArgument(false), StackOffset(0), RegNum(NoRegister), |
| RegNumTmp(NoRegister), Weight(1), RegisterPreference(NULL), |
| AllowRegisterOverlap(false), LoVar(NULL), HiVar(NULL) { |
| Vars = VarsReal; |
| Vars[0] = this; |
| NumVars = 1; |
| } |
| Variable(const Variable &) LLVM_DELETED_FUNCTION; |
| Variable &operator=(const Variable &) LLVM_DELETED_FUNCTION; |
| // Number is unique across all variables, and is used as a |
| // (bit)vector index for liveness analysis. |
| const SizeT Number; |
| // Name is optional. |
| const IceString Name; |
| // DefInst is the instruction that produces this variable as its |
| // dest. |
| Inst *DefInst; |
| // DefNode is the node where this variable was produced, and is |
| // reset to NULL if it is used outside that node. This is used for |
| // detecting isMultiblockLife(). TODO: Collapse this to a single |
| // bit and use a separate pass to calculate the values across the |
| // Cfg. This saves space in the Variable, and removes the fragility |
| // of incrementally computing and maintaining the information. |
| const CfgNode *DefNode; |
| bool IsArgument; |
| // StackOffset is the canonical location on stack (only if |
| // RegNum<0 || IsArgument). |
| int32_t StackOffset; |
| // RegNum is the allocated register, or NoRegister if it isn't |
| // register-allocated. |
| int32_t RegNum; |
| // RegNumTmp is the tentative assignment during register allocation. |
| int32_t RegNumTmp; |
| RegWeight Weight; // Register allocation priority |
| // RegisterPreference says that if possible, the register allocator |
| // should prefer the register that was assigned to this linked |
| // variable. It also allows a spill slot to share its stack |
| // location with another variable, if that variable does not get |
| // register-allocated and therefore has a stack location. |
| Variable *RegisterPreference; |
| // AllowRegisterOverlap says that it is OK to honor |
| // RegisterPreference and "share" a register even if the two live |
| // ranges overlap. |
| bool AllowRegisterOverlap; |
| LiveRange Live; |
| // LoVar and HiVar are needed for lowering from 64 to 32 bits. When |
| // lowering from I64 to I32 on a 32-bit architecture, we split the |
| // variable into two machine-size pieces. LoVar is the low-order |
| // machine-size portion, and HiVar is the remaining high-order |
| // portion. TODO: It's wasteful to penalize all variables on all |
| // targets this way; use a sparser representation. It's also |
| // wasteful for a 64-bit target. |
| Variable *LoVar; |
| Variable *HiVar; |
| // VarsReal (and Operand::Vars) are set up such that Vars[0] == |
| // this. |
| Variable *VarsReal[1]; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICEOPERAND_H |