| //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the AArch64 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64InstrInfo.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "Utils/AArch64BaseInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "AArch64GenInstrInfo.inc" |
| |
| static cl::opt<unsigned> TBZDisplacementBits( |
| "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14), |
| cl::desc("Restrict range of TB[N]Z instructions (DEBUG)")); |
| |
| static cl::opt<unsigned> CBZDisplacementBits( |
| "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19), |
| cl::desc("Restrict range of CB[N]Z instructions (DEBUG)")); |
| |
| static cl::opt<unsigned> |
| BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19), |
| cl::desc("Restrict range of Bcc instructions (DEBUG)")); |
| |
| AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI) |
| : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP), |
| RI(STI.getTargetTriple()), Subtarget(STI) {} |
| |
| /// GetInstSize - Return the number of bytes of code the specified |
| /// instruction may be. This returns the maximum number of bytes. |
| unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
| const MachineBasicBlock &MBB = *MI.getParent(); |
| const MachineFunction *MF = MBB.getParent(); |
| const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
| |
| if (MI.getOpcode() == AArch64::INLINEASM) |
| return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); |
| |
| // FIXME: We currently only handle pseudoinstructions that don't get expanded |
| // before the assembly printer. |
| unsigned NumBytes = 0; |
| const MCInstrDesc &Desc = MI.getDesc(); |
| switch (Desc.getOpcode()) { |
| default: |
| // Anything not explicitly designated otherwise is a normal 4-byte insn. |
| NumBytes = 4; |
| break; |
| case TargetOpcode::DBG_VALUE: |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::IMPLICIT_DEF: |
| case TargetOpcode::KILL: |
| NumBytes = 0; |
| break; |
| case TargetOpcode::STACKMAP: |
| // The upper bound for a stackmap intrinsic is the full length of its shadow |
| NumBytes = StackMapOpers(&MI).getNumPatchBytes(); |
| assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); |
| break; |
| case TargetOpcode::PATCHPOINT: |
| // The size of the patchpoint intrinsic is the number of bytes requested |
| NumBytes = PatchPointOpers(&MI).getNumPatchBytes(); |
| assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); |
| break; |
| case AArch64::TLSDESC_CALLSEQ: |
| // This gets lowered to an instruction sequence which takes 16 bytes |
| NumBytes = 16; |
| break; |
| } |
| |
| return NumBytes; |
| } |
| |
| static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, |
| SmallVectorImpl<MachineOperand> &Cond) { |
| // Block ends with fall-through condbranch. |
| switch (LastInst->getOpcode()) { |
| default: |
| llvm_unreachable("Unknown branch instruction?"); |
| case AArch64::Bcc: |
| Target = LastInst->getOperand(1).getMBB(); |
| Cond.push_back(LastInst->getOperand(0)); |
| break; |
| case AArch64::CBZW: |
| case AArch64::CBZX: |
| case AArch64::CBNZW: |
| case AArch64::CBNZX: |
| Target = LastInst->getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(-1)); |
| Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); |
| Cond.push_back(LastInst->getOperand(0)); |
| break; |
| case AArch64::TBZW: |
| case AArch64::TBZX: |
| case AArch64::TBNZW: |
| case AArch64::TBNZX: |
| Target = LastInst->getOperand(2).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(-1)); |
| Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); |
| Cond.push_back(LastInst->getOperand(0)); |
| Cond.push_back(LastInst->getOperand(1)); |
| } |
| } |
| |
| static unsigned getBranchDisplacementBits(unsigned Opc) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("unexpected opcode!"); |
| case AArch64::B: |
| return 64; |
| case AArch64::TBNZW: |
| case AArch64::TBZW: |
| case AArch64::TBNZX: |
| case AArch64::TBZX: |
| return TBZDisplacementBits; |
| case AArch64::CBNZW: |
| case AArch64::CBZW: |
| case AArch64::CBNZX: |
| case AArch64::CBZX: |
| return CBZDisplacementBits; |
| case AArch64::Bcc: |
| return BCCDisplacementBits; |
| } |
| } |
| |
| bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp, |
| int64_t BrOffset) const { |
| unsigned Bits = getBranchDisplacementBits(BranchOp); |
| assert(Bits >= 3 && "max branch displacement must be enough to jump" |
| "over conditional branch expansion"); |
| return isIntN(Bits, BrOffset / 4); |
| } |
| |
| MachineBasicBlock * |
| AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const { |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("unexpected opcode!"); |
| case AArch64::B: |
| return MI.getOperand(0).getMBB(); |
| case AArch64::TBZW: |
| case AArch64::TBNZW: |
| case AArch64::TBZX: |
| case AArch64::TBNZX: |
| return MI.getOperand(2).getMBB(); |
| case AArch64::CBZW: |
| case AArch64::CBNZW: |
| case AArch64::CBZX: |
| case AArch64::CBNZX: |
| case AArch64::Bcc: |
| return MI.getOperand(1).getMBB(); |
| } |
| } |
| |
| // Branch analysis. |
| bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return false; |
| |
| if (!isUnpredicatedTerminator(*I)) |
| return false; |
| |
| // Get the last instruction in the block. |
| MachineInstr *LastInst = &*I; |
| |
| // If there is only one terminator instruction, process it. |
| unsigned LastOpc = LastInst->getOpcode(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { |
| if (isUncondBranchOpcode(LastOpc)) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| if (isCondBranchOpcode(LastOpc)) { |
| // Block ends with fall-through condbranch. |
| parseCondBranch(LastInst, TBB, Cond); |
| return false; |
| } |
| return true; // Can't handle indirect branch. |
| } |
| |
| // Get the instruction before it if it is a terminator. |
| MachineInstr *SecondLastInst = &*I; |
| unsigned SecondLastOpc = SecondLastInst->getOpcode(); |
| |
| // If AllowModify is true and the block ends with two or more unconditional |
| // branches, delete all but the first unconditional branch. |
| if (AllowModify && isUncondBranchOpcode(LastOpc)) { |
| while (isUncondBranchOpcode(SecondLastOpc)) { |
| LastInst->eraseFromParent(); |
| LastInst = SecondLastInst; |
| LastOpc = LastInst->getOpcode(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { |
| // Return now the only terminator is an unconditional branch. |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } else { |
| SecondLastInst = &*I; |
| SecondLastOpc = SecondLastInst->getOpcode(); |
| } |
| } |
| } |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I)) |
| return true; |
| |
| // If the block ends with a B and a Bcc, handle it. |
| if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| parseCondBranch(SecondLastInst, TBB, Cond); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two unconditional branches, handle it. The second |
| // one is not executed, so remove it. |
| if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // ...likewise if it ends with an indirect branch followed by an unconditional |
| // branch. |
| if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return true; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| bool AArch64InstrInfo::reverseBranchCondition( |
| SmallVectorImpl<MachineOperand> &Cond) const { |
| if (Cond[0].getImm() != -1) { |
| // Regular Bcc |
| AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm(); |
| Cond[0].setImm(AArch64CC::getInvertedCondCode(CC)); |
| } else { |
| // Folded compare-and-branch |
| switch (Cond[1].getImm()) { |
| default: |
| llvm_unreachable("Unknown conditional branch!"); |
| case AArch64::CBZW: |
| Cond[1].setImm(AArch64::CBNZW); |
| break; |
| case AArch64::CBNZW: |
| Cond[1].setImm(AArch64::CBZW); |
| break; |
| case AArch64::CBZX: |
| Cond[1].setImm(AArch64::CBNZX); |
| break; |
| case AArch64::CBNZX: |
| Cond[1].setImm(AArch64::CBZX); |
| break; |
| case AArch64::TBZW: |
| Cond[1].setImm(AArch64::TBNZW); |
| break; |
| case AArch64::TBNZW: |
| Cond[1].setImm(AArch64::TBZW); |
| break; |
| case AArch64::TBZX: |
| Cond[1].setImm(AArch64::TBNZX); |
| break; |
| case AArch64::TBNZX: |
| Cond[1].setImm(AArch64::TBZX); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (!isUncondBranchOpcode(I->getOpcode()) && |
| !isCondBranchOpcode(I->getOpcode())) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) { |
| if (BytesRemoved) |
| *BytesRemoved = 4; |
| return 1; |
| } |
| --I; |
| if (!isCondBranchOpcode(I->getOpcode())) { |
| if (BytesRemoved) |
| *BytesRemoved = 4; |
| return 1; |
| } |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| if (BytesRemoved) |
| *BytesRemoved = 8; |
| |
| return 2; |
| } |
| |
| void AArch64InstrInfo::instantiateCondBranch( |
| MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB, |
| ArrayRef<MachineOperand> Cond) const { |
| if (Cond[0].getImm() != -1) { |
| // Regular Bcc |
| BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB); |
| } else { |
| // Folded compare-and-branch |
| // Note that we use addOperand instead of addReg to keep the flags. |
| const MachineInstrBuilder MIB = |
| BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]); |
| if (Cond.size() > 3) |
| MIB.addImm(Cond[3].getImm()); |
| MIB.addMBB(TBB); |
| } |
| } |
| |
| unsigned AArch64InstrInfo::insertBranch( |
| MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| |
| if (!FBB) { |
| if (Cond.empty()) // Unconditional branch? |
| BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB); |
| else |
| instantiateCondBranch(MBB, DL, TBB, Cond); |
| |
| if (BytesAdded) |
| *BytesAdded = 4; |
| |
| return 1; |
| } |
| |
| // Two-way conditional branch. |
| instantiateCondBranch(MBB, DL, TBB, Cond); |
| BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB); |
| |
| if (BytesAdded) |
| *BytesAdded = 8; |
| |
| return 2; |
| } |
| |
| // Find the original register that VReg is copied from. |
| static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) { |
| while (TargetRegisterInfo::isVirtualRegister(VReg)) { |
| const MachineInstr *DefMI = MRI.getVRegDef(VReg); |
| if (!DefMI->isFullCopy()) |
| return VReg; |
| VReg = DefMI->getOperand(1).getReg(); |
| } |
| return VReg; |
| } |
| |
| // Determine if VReg is defined by an instruction that can be folded into a |
| // csel instruction. If so, return the folded opcode, and the replacement |
| // register. |
| static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg, |
| unsigned *NewVReg = nullptr) { |
| VReg = removeCopies(MRI, VReg); |
| if (!TargetRegisterInfo::isVirtualRegister(VReg)) |
| return 0; |
| |
| bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg)); |
| const MachineInstr *DefMI = MRI.getVRegDef(VReg); |
| unsigned Opc = 0; |
| unsigned SrcOpNum = 0; |
| switch (DefMI->getOpcode()) { |
| case AArch64::ADDSXri: |
| case AArch64::ADDSWri: |
| // if NZCV is used, do not fold. |
| if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1) |
| return 0; |
| // fall-through to ADDXri and ADDWri. |
| LLVM_FALLTHROUGH; |
| case AArch64::ADDXri: |
| case AArch64::ADDWri: |
| // add x, 1 -> csinc. |
| if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 || |
| DefMI->getOperand(3).getImm() != 0) |
| return 0; |
| SrcOpNum = 1; |
| Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr; |
| break; |
| |
| case AArch64::ORNXrr: |
| case AArch64::ORNWrr: { |
| // not x -> csinv, represented as orn dst, xzr, src. |
| unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg()); |
| if (ZReg != AArch64::XZR && ZReg != AArch64::WZR) |
| return 0; |
| SrcOpNum = 2; |
| Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr; |
| break; |
| } |
| |
| case AArch64::SUBSXrr: |
| case AArch64::SUBSWrr: |
| // if NZCV is used, do not fold. |
| if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1) |
| return 0; |
| // fall-through to SUBXrr and SUBWrr. |
| LLVM_FALLTHROUGH; |
| case AArch64::SUBXrr: |
| case AArch64::SUBWrr: { |
| // neg x -> csneg, represented as sub dst, xzr, src. |
| unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg()); |
| if (ZReg != AArch64::XZR && ZReg != AArch64::WZR) |
| return 0; |
| SrcOpNum = 2; |
| Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr; |
| break; |
| } |
| default: |
| return 0; |
| } |
| assert(Opc && SrcOpNum && "Missing parameters"); |
| |
| if (NewVReg) |
| *NewVReg = DefMI->getOperand(SrcOpNum).getReg(); |
| return Opc; |
| } |
| |
| bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, |
| ArrayRef<MachineOperand> Cond, |
| unsigned TrueReg, unsigned FalseReg, |
| int &CondCycles, int &TrueCycles, |
| int &FalseCycles) const { |
| // Check register classes. |
| const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = |
| RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); |
| if (!RC) |
| return false; |
| |
| // Expanding cbz/tbz requires an extra cycle of latency on the condition. |
| unsigned ExtraCondLat = Cond.size() != 1; |
| |
| // GPRs are handled by csel. |
| // FIXME: Fold in x+1, -x, and ~x when applicable. |
| if (AArch64::GPR64allRegClass.hasSubClassEq(RC) || |
| AArch64::GPR32allRegClass.hasSubClassEq(RC)) { |
| // Single-cycle csel, csinc, csinv, and csneg. |
| CondCycles = 1 + ExtraCondLat; |
| TrueCycles = FalseCycles = 1; |
| if (canFoldIntoCSel(MRI, TrueReg)) |
| TrueCycles = 0; |
| else if (canFoldIntoCSel(MRI, FalseReg)) |
| FalseCycles = 0; |
| return true; |
| } |
| |
| // Scalar floating point is handled by fcsel. |
| // FIXME: Form fabs, fmin, and fmax when applicable. |
| if (AArch64::FPR64RegClass.hasSubClassEq(RC) || |
| AArch64::FPR32RegClass.hasSubClassEq(RC)) { |
| CondCycles = 5 + ExtraCondLat; |
| TrueCycles = FalseCycles = 2; |
| return true; |
| } |
| |
| // Can't do vectors. |
| return false; |
| } |
| |
| void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, unsigned DstReg, |
| ArrayRef<MachineOperand> Cond, |
| unsigned TrueReg, unsigned FalseReg) const { |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| |
| // Parse the condition code, see parseCondBranch() above. |
| AArch64CC::CondCode CC; |
| switch (Cond.size()) { |
| default: |
| llvm_unreachable("Unknown condition opcode in Cond"); |
| case 1: // b.cc |
| CC = AArch64CC::CondCode(Cond[0].getImm()); |
| break; |
| case 3: { // cbz/cbnz |
| // We must insert a compare against 0. |
| bool Is64Bit; |
| switch (Cond[1].getImm()) { |
| default: |
| llvm_unreachable("Unknown branch opcode in Cond"); |
| case AArch64::CBZW: |
| Is64Bit = false; |
| CC = AArch64CC::EQ; |
| break; |
| case AArch64::CBZX: |
| Is64Bit = true; |
| CC = AArch64CC::EQ; |
| break; |
| case AArch64::CBNZW: |
| Is64Bit = false; |
| CC = AArch64CC::NE; |
| break; |
| case AArch64::CBNZX: |
| Is64Bit = true; |
| CC = AArch64CC::NE; |
| break; |
| } |
| unsigned SrcReg = Cond[2].getReg(); |
| if (Is64Bit) { |
| // cmp reg, #0 is actually subs xzr, reg, #0. |
| MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass); |
| BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR) |
| .addReg(SrcReg) |
| .addImm(0) |
| .addImm(0); |
| } else { |
| MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass); |
| BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR) |
| .addReg(SrcReg) |
| .addImm(0) |
| .addImm(0); |
| } |
| break; |
| } |
| case 4: { // tbz/tbnz |
| // We must insert a tst instruction. |
| switch (Cond[1].getImm()) { |
| default: |
| llvm_unreachable("Unknown branch opcode in Cond"); |
| case AArch64::TBZW: |
| case AArch64::TBZX: |
| CC = AArch64CC::EQ; |
| break; |
| case AArch64::TBNZW: |
| case AArch64::TBNZX: |
| CC = AArch64CC::NE; |
| break; |
| } |
| // cmp reg, #foo is actually ands xzr, reg, #1<<foo. |
| if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW) |
| BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR) |
| .addReg(Cond[2].getReg()) |
| .addImm( |
| AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32)); |
| else |
| BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR) |
| .addReg(Cond[2].getReg()) |
| .addImm( |
| AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64)); |
| break; |
| } |
| } |
| |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = nullptr; |
| bool TryFold = false; |
| if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) { |
| RC = &AArch64::GPR64RegClass; |
| Opc = AArch64::CSELXr; |
| TryFold = true; |
| } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) { |
| RC = &AArch64::GPR32RegClass; |
| Opc = AArch64::CSELWr; |
| TryFold = true; |
| } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) { |
| RC = &AArch64::FPR64RegClass; |
| Opc = AArch64::FCSELDrrr; |
| } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) { |
| RC = &AArch64::FPR32RegClass; |
| Opc = AArch64::FCSELSrrr; |
| } |
| assert(RC && "Unsupported regclass"); |
| |
| // Try folding simple instructions into the csel. |
| if (TryFold) { |
| unsigned NewVReg = 0; |
| unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg); |
| if (FoldedOpc) { |
| // The folded opcodes csinc, csinc and csneg apply the operation to |
| // FalseReg, so we need to invert the condition. |
| CC = AArch64CC::getInvertedCondCode(CC); |
| TrueReg = FalseReg; |
| } else |
| FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg); |
| |
| // Fold the operation. Leave any dead instructions for DCE to clean up. |
| if (FoldedOpc) { |
| FalseReg = NewVReg; |
| Opc = FoldedOpc; |
| // The extends the live range of NewVReg. |
| MRI.clearKillFlags(NewVReg); |
| } |
| } |
| |
| // Pull all virtual register into the appropriate class. |
| MRI.constrainRegClass(TrueReg, RC); |
| MRI.constrainRegClass(FalseReg, RC); |
| |
| // Insert the csel. |
| BuildMI(MBB, I, DL, get(Opc), DstReg) |
| .addReg(TrueReg) |
| .addReg(FalseReg) |
| .addImm(CC); |
| } |
| |
| /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx. |
| static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) { |
| uint64_t Imm = MI.getOperand(1).getImm(); |
| uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); |
| uint64_t Encoding; |
| return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding); |
| } |
| |
| // FIXME: this implementation should be micro-architecture dependent, so a |
| // micro-architecture target hook should be introduced here in future. |
| bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { |
| if (!Subtarget.hasCustomCheapAsMoveHandling()) |
| return MI.isAsCheapAsAMove(); |
| |
| if (Subtarget.hasExynosCheapAsMoveHandling()) { |
| if (isExynosResetFast(MI) || isExynosShiftLeftFast(MI)) |
| return true; |
| else |
| return MI.isAsCheapAsAMove(); |
| } |
| |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| |
| // add/sub on register without shift |
| case AArch64::ADDWri: |
| case AArch64::ADDXri: |
| case AArch64::SUBWri: |
| case AArch64::SUBXri: |
| return (MI.getOperand(3).getImm() == 0); |
| |
| // logical ops on immediate |
| case AArch64::ANDWri: |
| case AArch64::ANDXri: |
| case AArch64::EORWri: |
| case AArch64::EORXri: |
| case AArch64::ORRWri: |
| case AArch64::ORRXri: |
| return true; |
| |
| // logical ops on register without shift |
| case AArch64::ANDWrr: |
| case AArch64::ANDXrr: |
| case AArch64::BICWrr: |
| case AArch64::BICXrr: |
| case AArch64::EONWrr: |
| case AArch64::EONXrr: |
| case AArch64::EORWrr: |
| case AArch64::EORXrr: |
| case AArch64::ORNWrr: |
| case AArch64::ORNXrr: |
| case AArch64::ORRWrr: |
| case AArch64::ORRXrr: |
| return true; |
| |
| // If MOVi32imm or MOVi64imm can be expanded into ORRWri or |
| // ORRXri, it is as cheap as MOV |
| case AArch64::MOVi32imm: |
| return canBeExpandedToORR(MI, 32); |
| case AArch64::MOVi64imm: |
| return canBeExpandedToORR(MI, 64); |
| |
| // It is cheap to zero out registers if the subtarget has ZeroCycleZeroing |
| // feature. |
| case AArch64::FMOVH0: |
| case AArch64::FMOVS0: |
| case AArch64::FMOVD0: |
| return Subtarget.hasZeroCycleZeroing(); |
| case TargetOpcode::COPY: |
| return (Subtarget.hasZeroCycleZeroing() && |
| (MI.getOperand(1).getReg() == AArch64::WZR || |
| MI.getOperand(1).getReg() == AArch64::XZR)); |
| } |
| |
| llvm_unreachable("Unknown opcode to check as cheap as a move!"); |
| } |
| |
| bool AArch64InstrInfo::isExynosResetFast(const MachineInstr &MI) const { |
| unsigned Reg, Imm, Shift; |
| |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| |
| // MOV Rd, SP |
| case AArch64::ADDWri: |
| case AArch64::ADDXri: |
| if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) |
| return false; |
| |
| Reg = MI.getOperand(1).getReg(); |
| Imm = MI.getOperand(2).getImm(); |
| return ((Reg == AArch64::WSP || Reg == AArch64::SP) && Imm == 0); |
| |
| // Literal |
| case AArch64::ADR: |
| case AArch64::ADRP: |
| return true; |
| |
| // MOVI Vd, #0 |
| case AArch64::MOVID: |
| case AArch64::MOVIv8b_ns: |
| case AArch64::MOVIv2d_ns: |
| case AArch64::MOVIv16b_ns: |
| Imm = MI.getOperand(1).getImm(); |
| return (Imm == 0); |
| |
| // MOVI Vd, #0 |
| case AArch64::MOVIv2i32: |
| case AArch64::MOVIv4i16: |
| case AArch64::MOVIv4i32: |
| case AArch64::MOVIv8i16: |
| Imm = MI.getOperand(1).getImm(); |
| Shift = MI.getOperand(2).getImm(); |
| return (Imm == 0 && Shift == 0); |
| |
| // MOV Rd, Imm |
| case AArch64::MOVNWi: |
| case AArch64::MOVNXi: |
| |
| // MOV Rd, Imm |
| case AArch64::MOVZWi: |
| case AArch64::MOVZXi: |
| return true; |
| |
| // MOV Rd, Imm |
| case AArch64::ORRWri: |
| case AArch64::ORRXri: |
| if (!MI.getOperand(1).isReg()) |
| return false; |
| |
| Reg = MI.getOperand(1).getReg(); |
| Imm = MI.getOperand(2).getImm(); |
| return ((Reg == AArch64::WZR || Reg == AArch64::XZR) && Imm == 0); |
| |
| // MOV Rd, Rm |
| case AArch64::ORRWrs: |
| case AArch64::ORRXrs: |
| if (!MI.getOperand(1).isReg()) |
| return false; |
| |
| Reg = MI.getOperand(1).getReg(); |
| Imm = MI.getOperand(3).getImm(); |
| Shift = AArch64_AM::getShiftValue(Imm); |
| return ((Reg == AArch64::WZR || Reg == AArch64::XZR) && Shift == 0); |
| } |
| } |
| |
| bool AArch64InstrInfo::isExynosShiftLeftFast(const MachineInstr &MI) const { |
| unsigned Imm, Shift; |
| AArch64_AM::ShiftExtendType Ext; |
| |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| |
| // WriteI |
| case AArch64::ADDSWri: |
| case AArch64::ADDSXri: |
| case AArch64::ADDWri: |
| case AArch64::ADDXri: |
| case AArch64::SUBSWri: |
| case AArch64::SUBSXri: |
| case AArch64::SUBWri: |
| case AArch64::SUBXri: |
| return true; |
| |
| // WriteISReg |
| case AArch64::ADDSWrs: |
| case AArch64::ADDSXrs: |
| case AArch64::ADDWrs: |
| case AArch64::ADDXrs: |
| case AArch64::ANDSWrs: |
| case AArch64::ANDSXrs: |
| case AArch64::ANDWrs: |
| case AArch64::ANDXrs: |
| case AArch64::BICSWrs: |
| case AArch64::BICSXrs: |
| case AArch64::BICWrs: |
| case AArch64::BICXrs: |
| case AArch64::EONWrs: |
| case AArch64::EONXrs: |
| case AArch64::EORWrs: |
| case AArch64::EORXrs: |
| case AArch64::ORNWrs: |
| case AArch64::ORNXrs: |
| case AArch64::ORRWrs: |
| case AArch64::ORRXrs: |
| case AArch64::SUBSWrs: |
| case AArch64::SUBSXrs: |
| case AArch64::SUBWrs: |
| case AArch64::SUBXrs: |
| Imm = MI.getOperand(3).getImm(); |
| Shift = AArch64_AM::getShiftValue(Imm); |
| Ext = AArch64_AM::getShiftType(Imm); |
| return (Shift == 0 || (Shift <= 3 && Ext == AArch64_AM::LSL)); |
| |
| // WriteIEReg |
| case AArch64::ADDSWrx: |
| case AArch64::ADDSXrx: |
| case AArch64::ADDSXrx64: |
| case AArch64::ADDWrx: |
| case AArch64::ADDXrx: |
| case AArch64::ADDXrx64: |
| case AArch64::SUBSWrx: |
| case AArch64::SUBSXrx: |
| case AArch64::SUBSXrx64: |
| case AArch64::SUBWrx: |
| case AArch64::SUBXrx: |
| case AArch64::SUBXrx64: |
| Imm = MI.getOperand(3).getImm(); |
| Shift = AArch64_AM::getArithShiftValue(Imm); |
| Ext = AArch64_AM::getArithExtendType(Imm); |
| return (Shift == 0 || (Shift <= 3 && Ext == AArch64_AM::UXTX)); |
| |
| case AArch64::PRFMroW: |
| case AArch64::PRFMroX: |
| |
| // WriteLDIdx |
| case AArch64::LDRBBroW: |
| case AArch64::LDRBBroX: |
| case AArch64::LDRHHroW: |
| case AArch64::LDRHHroX: |
| case AArch64::LDRSBWroW: |
| case AArch64::LDRSBWroX: |
| case AArch64::LDRSBXroW: |
| case AArch64::LDRSBXroX: |
| case AArch64::LDRSHWroW: |
| case AArch64::LDRSHWroX: |
| case AArch64::LDRSHXroW: |
| case AArch64::LDRSHXroX: |
| case AArch64::LDRSWroW: |
| case AArch64::LDRSWroX: |
| case AArch64::LDRWroW: |
| case AArch64::LDRWroX: |
| case AArch64::LDRXroW: |
| case AArch64::LDRXroX: |
| |
| case AArch64::LDRBroW: |
| case AArch64::LDRBroX: |
| case AArch64::LDRDroW: |
| case AArch64::LDRDroX: |
| case AArch64::LDRHroW: |
| case AArch64::LDRHroX: |
| case AArch64::LDRSroW: |
| case AArch64::LDRSroX: |
| |
| // WriteSTIdx |
| case AArch64::STRBBroW: |
| case AArch64::STRBBroX: |
| case AArch64::STRHHroW: |
| case AArch64::STRHHroX: |
| case AArch64::STRWroW: |
| case AArch64::STRWroX: |
| case AArch64::STRXroW: |
| case AArch64::STRXroX: |
| |
| case AArch64::STRBroW: |
| case AArch64::STRBroX: |
| case AArch64::STRDroW: |
| case AArch64::STRDroX: |
| case AArch64::STRHroW: |
| case AArch64::STRHroX: |
| case AArch64::STRSroW: |
| case AArch64::STRSroX: |
| Imm = MI.getOperand(3).getImm(); |
| Ext = AArch64_AM::getMemExtendType(Imm); |
| return (Ext == AArch64_AM::SXTX || Ext == AArch64_AM::UXTX); |
| } |
| } |
| |
| bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) const { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| |
| case AArch64::ADDWrs: |
| case AArch64::ADDXrs: |
| case AArch64::ADDSWrs: |
| case AArch64::ADDSXrs: { |
| unsigned Imm = MI.getOperand(3).getImm(); |
| unsigned ShiftVal = AArch64_AM::getShiftValue(Imm); |
| if (ShiftVal == 0) |
| return true; |
| return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5; |
| } |
| |
| case AArch64::ADDWrx: |
| case AArch64::ADDXrx: |
| case AArch64::ADDXrx64: |
| case AArch64::ADDSWrx: |
| case AArch64::ADDSXrx: |
| case AArch64::ADDSXrx64: { |
| unsigned Imm = MI.getOperand(3).getImm(); |
| switch (AArch64_AM::getArithExtendType(Imm)) { |
| default: |
| return false; |
| case AArch64_AM::UXTB: |
| case AArch64_AM::UXTH: |
| case AArch64_AM::UXTW: |
| case AArch64_AM::UXTX: |
| return AArch64_AM::getArithShiftValue(Imm) <= 4; |
| } |
| } |
| |
| case AArch64::SUBWrs: |
| case AArch64::SUBSWrs: { |
| unsigned Imm = MI.getOperand(3).getImm(); |
| unsigned ShiftVal = AArch64_AM::getShiftValue(Imm); |
| return ShiftVal == 0 || |
| (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31); |
| } |
| |
| case AArch64::SUBXrs: |
| case AArch64::SUBSXrs: { |
| unsigned Imm = MI.getOperand(3).getImm(); |
| unsigned ShiftVal = AArch64_AM::getShiftValue(Imm); |
| return ShiftVal == 0 || |
| (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63); |
| } |
| |
| case AArch64::SUBWrx: |
| case AArch64::SUBXrx: |
| case AArch64::SUBXrx64: |
| case AArch64::SUBSWrx: |
| case AArch64::SUBSXrx: |
| case AArch64::SUBSXrx64: { |
| unsigned Imm = MI.getOperand(3).getImm(); |
| switch (AArch64_AM::getArithExtendType(Imm)) { |
| default: |
| return false; |
| case AArch64_AM::UXTB: |
| case AArch64_AM::UXTH: |
| case AArch64_AM::UXTW: |
| case AArch64_AM::UXTX: |
| return AArch64_AM::getArithShiftValue(Imm) == 0; |
| } |
| } |
| |
| case AArch64::LDRBBroW: |
| case AArch64::LDRBBroX: |
| case AArch64::LDRBroW: |
| case AArch64::LDRBroX: |
| case AArch64::LDRDroW: |
| case AArch64::LDRDroX: |
| case AArch64::LDRHHroW: |
| case AArch64::LDRHHroX: |
| case AArch64::LDRHroW: |
| case AArch64::LDRHroX: |
| case AArch64::LDRQroW: |
| case AArch64::LDRQroX: |
| case AArch64::LDRSBWroW: |
| case AArch64::LDRSBWroX: |
| case AArch64::LDRSBXroW: |
| case AArch64::LDRSBXroX: |
| case AArch64::LDRSHWroW: |
| case AArch64::LDRSHWroX: |
| case AArch64::LDRSHXroW: |
| case AArch64::LDRSHXroX: |
| case AArch64::LDRSWroW: |
| case AArch64::LDRSWroX: |
| case AArch64::LDRSroW: |
| case AArch64::LDRSroX: |
| case AArch64::LDRWroW: |
| case AArch64::LDRWroX: |
| case AArch64::LDRXroW: |
| case AArch64::LDRXroX: |
| case AArch64::PRFMroW: |
| case AArch64::PRFMroX: |
| case AArch64::STRBBroW: |
| case AArch64::STRBBroX: |
| case AArch64::STRBroW: |
| case AArch64::STRBroX: |
| case AArch64::STRDroW: |
| case AArch64::STRDroX: |
| case AArch64::STRHHroW: |
| case AArch64::STRHHroX: |
| case AArch64::STRHroW: |
| case AArch64::STRHroX: |
| case AArch64::STRQroW: |
| case AArch64::STRQroX: |
| case AArch64::STRSroW: |
| case AArch64::STRSroX: |
| case AArch64::STRWroW: |
| case AArch64::STRWroX: |
| case AArch64::STRXroW: |
| case AArch64::STRXroX: { |
| unsigned IsSigned = MI.getOperand(3).getImm(); |
| return !IsSigned; |
| } |
| } |
| } |
| |
| bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| unsigned &SrcReg, unsigned &DstReg, |
| unsigned &SubIdx) const { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case AArch64::SBFMXri: // aka sxtw |
| case AArch64::UBFMXri: // aka uxtw |
| // Check for the 32 -> 64 bit extension case, these instructions can do |
| // much more. |
| if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31) |
| return false; |
| // This is a signed or unsigned 32 -> 64 bit extension. |
| SrcReg = MI.getOperand(1).getReg(); |
| DstReg = MI.getOperand(0).getReg(); |
| SubIdx = AArch64::sub_32; |
| return true; |
| } |
| } |
| |
| bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint( |
| MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const { |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| unsigned BaseRegA = 0, BaseRegB = 0; |
| int64_t OffsetA = 0, OffsetB = 0; |
| unsigned WidthA = 0, WidthB = 0; |
| |
| assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); |
| assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); |
| |
| if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
| MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
| return false; |
| |
| // Retrieve the base register, offset from the base register and width. Width |
| // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If |
| // base registers are identical, and the offset of a lower memory access + |
| // the width doesn't overlap the offset of a higher memory access, |
| // then the memory accesses are different. |
| if (getMemOpBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) && |
| getMemOpBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) { |
| if (BaseRegA == BaseRegB) { |
| int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; |
| int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; |
| int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; |
| if (LowOffset + LowWidth <= HighOffset) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// analyzeCompare - For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2, and the value it compares against in CmpValue. |
| /// Return true if the comparison instruction can be analyzed. |
| bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, |
| unsigned &SrcReg2, int &CmpMask, |
| int &CmpValue) const { |
| // The first operand can be a frame index where we'd normally expect a |
| // register. |
| assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands"); |
| if (!MI.getOperand(1).isReg()) |
| return false; |
| |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::SUBSWrr: |
| case AArch64::SUBSWrs: |
| case AArch64::SUBSWrx: |
| case AArch64::SUBSXrr: |
| case AArch64::SUBSXrs: |
| case AArch64::SUBSXrx: |
| case AArch64::ADDSWrr: |
| case AArch64::ADDSWrs: |
| case AArch64::ADDSWrx: |
| case AArch64::ADDSXrr: |
| case AArch64::ADDSXrs: |
| case AArch64::ADDSXrx: |
| // Replace SUBSWrr with SUBWrr if NZCV is not used. |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = MI.getOperand(2).getReg(); |
| CmpMask = ~0; |
| CmpValue = 0; |
| return true; |
| case AArch64::SUBSWri: |
| case AArch64::ADDSWri: |
| case AArch64::SUBSXri: |
| case AArch64::ADDSXri: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = 0; |
| CmpMask = ~0; |
| // FIXME: In order to convert CmpValue to 0 or 1 |
| CmpValue = MI.getOperand(2).getImm() != 0; |
| return true; |
| case AArch64::ANDSWri: |
| case AArch64::ANDSXri: |
| // ANDS does not use the same encoding scheme as the others xxxS |
| // instructions. |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = 0; |
| CmpMask = ~0; |
| // FIXME:The return val type of decodeLogicalImmediate is uint64_t, |
| // while the type of CmpValue is int. When converting uint64_t to int, |
| // the high 32 bits of uint64_t will be lost. |
| // In fact it causes a bug in spec2006-483.xalancbmk |
| // CmpValue is only used to compare with zero in OptimizeCompareInstr |
| CmpValue = AArch64_AM::decodeLogicalImmediate( |
| MI.getOperand(2).getImm(), |
| MI.getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool UpdateOperandRegClass(MachineInstr &Instr) { |
| MachineBasicBlock *MBB = Instr.getParent(); |
| assert(MBB && "Can't get MachineBasicBlock here"); |
| MachineFunction *MF = MBB->getParent(); |
| assert(MF && "Can't get MachineFunction here"); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| |
| for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx; |
| ++OpIdx) { |
| MachineOperand &MO = Instr.getOperand(OpIdx); |
| const TargetRegisterClass *OpRegCstraints = |
| Instr.getRegClassConstraint(OpIdx, TII, TRI); |
| |
| // If there's no constraint, there's nothing to do. |
| if (!OpRegCstraints) |
| continue; |
| // If the operand is a frame index, there's nothing to do here. |
| // A frame index operand will resolve correctly during PEI. |
| if (MO.isFI()) |
| continue; |
| |
| assert(MO.isReg() && |
| "Operand has register constraints without being a register!"); |
| |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (!OpRegCstraints->contains(Reg)) |
| return false; |
| } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) && |
| !MRI->constrainRegClass(Reg, OpRegCstraints)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Return the opcode that does not set flags when possible - otherwise |
| /// return the original opcode. The caller is responsible to do the actual |
| /// substitution and legality checking. |
| static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) { |
| // Don't convert all compare instructions, because for some the zero register |
| // encoding becomes the sp register. |
| bool MIDefinesZeroReg = false; |
| if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR)) |
| MIDefinesZeroReg = true; |
| |
| switch (MI.getOpcode()) { |
| default: |
| return MI.getOpcode(); |
| case AArch64::ADDSWrr: |
| return AArch64::ADDWrr; |
| case AArch64::ADDSWri: |
| return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri; |
| case AArch64::ADDSWrs: |
| return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs; |
| case AArch64::ADDSWrx: |
| return AArch64::ADDWrx; |
| case AArch64::ADDSXrr: |
| return AArch64::ADDXrr; |
| case AArch64::ADDSXri: |
| return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri; |
| case AArch64::ADDSXrs: |
| return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs; |
| case AArch64::ADDSXrx: |
| return AArch64::ADDXrx; |
| case AArch64::SUBSWrr: |
| return AArch64::SUBWrr; |
| case AArch64::SUBSWri: |
| return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri; |
| case AArch64::SUBSWrs: |
| return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs; |
| case AArch64::SUBSWrx: |
| return AArch64::SUBWrx; |
| case AArch64::SUBSXrr: |
| return AArch64::SUBXrr; |
| case AArch64::SUBSXri: |
| return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri; |
| case AArch64::SUBSXrs: |
| return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs; |
| case AArch64::SUBSXrx: |
| return AArch64::SUBXrx; |
| } |
| } |
| |
| enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 }; |
| |
| /// True when condition flags are accessed (either by writing or reading) |
| /// on the instruction trace starting at From and ending at To. |
| /// |
| /// Note: If From and To are from different blocks it's assumed CC are accessed |
| /// on the path. |
| static bool areCFlagsAccessedBetweenInstrs( |
| MachineBasicBlock::iterator From, MachineBasicBlock::iterator To, |
| const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) { |
| // Early exit if To is at the beginning of the BB. |
| if (To == To->getParent()->begin()) |
| return true; |
| |
| // Check whether the instructions are in the same basic block |
| // If not, assume the condition flags might get modified somewhere. |
| if (To->getParent() != From->getParent()) |
| return true; |
| |
| // From must be above To. |
| assert(std::find_if(++To.getReverse(), To->getParent()->rend(), |
| [From](MachineInstr &MI) { |
| return MI.getIterator() == From; |
| }) != To->getParent()->rend()); |
| |
| // We iterate backward starting \p To until we hit \p From. |
| for (--To; To != From; --To) { |
| const MachineInstr &Instr = *To; |
| |
| if (((AccessToCheck & AK_Write) && |
| Instr.modifiesRegister(AArch64::NZCV, TRI)) || |
| ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI))) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Try to optimize a compare instruction. A compare instruction is an |
| /// instruction which produces AArch64::NZCV. It can be truly compare |
| /// instruction |
| /// when there are no uses of its destination register. |
| /// |
| /// The following steps are tried in order: |
| /// 1. Convert CmpInstr into an unconditional version. |
| /// 2. Remove CmpInstr if above there is an instruction producing a needed |
| /// condition code or an instruction which can be converted into such an |
| /// instruction. |
| /// Only comparison with zero is supported. |
| bool AArch64InstrInfo::optimizeCompareInstr( |
| MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, |
| int CmpValue, const MachineRegisterInfo *MRI) const { |
| assert(CmpInstr.getParent()); |
| assert(MRI); |
| |
| // Replace SUBSWrr with SUBWrr if NZCV is not used. |
| int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true); |
| if (DeadNZCVIdx != -1) { |
| if (CmpInstr.definesRegister(AArch64::WZR) || |
| CmpInstr.definesRegister(AArch64::XZR)) { |
| CmpInstr.eraseFromParent(); |
| return true; |
| } |
| unsigned Opc = CmpInstr.getOpcode(); |
| unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr); |
| if (NewOpc == Opc) |
| return false; |
| const MCInstrDesc &MCID = get(NewOpc); |
| CmpInstr.setDesc(MCID); |
| CmpInstr.RemoveOperand(DeadNZCVIdx); |
| bool succeeded = UpdateOperandRegClass(CmpInstr); |
| (void)succeeded; |
| assert(succeeded && "Some operands reg class are incompatible!"); |
| return true; |
| } |
| |
| // Continue only if we have a "ri" where immediate is zero. |
| // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare |
| // function. |
| assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!"); |
| if (CmpValue != 0 || SrcReg2 != 0) |
| return false; |
| |
| // CmpInstr is a Compare instruction if destination register is not used. |
| if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) |
| return false; |
| |
| return substituteCmpToZero(CmpInstr, SrcReg, MRI); |
| } |
| |
| /// Get opcode of S version of Instr. |
| /// If Instr is S version its opcode is returned. |
| /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version |
| /// or we are not interested in it. |
| static unsigned sForm(MachineInstr &Instr) { |
| switch (Instr.getOpcode()) { |
| default: |
| return AArch64::INSTRUCTION_LIST_END; |
| |
| case AArch64::ADDSWrr: |
| case AArch64::ADDSWri: |
| case AArch64::ADDSXrr: |
| case AArch64::ADDSXri: |
| case AArch64::SUBSWrr: |
| case AArch64::SUBSWri: |
| case AArch64::SUBSXrr: |
| case AArch64::SUBSXri: |
| return Instr.getOpcode(); |
| |
| case AArch64::ADDWrr: |
| return AArch64::ADDSWrr; |
| case AArch64::ADDWri: |
| return AArch64::ADDSWri; |
| case AArch64::ADDXrr: |
| return AArch64::ADDSXrr; |
| case AArch64::ADDXri: |
| return AArch64::ADDSXri; |
| case AArch64::ADCWr: |
| return AArch64::ADCSWr; |
| case AArch64::ADCXr: |
| return AArch64::ADCSXr; |
| case AArch64::SUBWrr: |
| return AArch64::SUBSWrr; |
| case AArch64::SUBWri: |
| return AArch64::SUBSWri; |
| case AArch64::SUBXrr: |
| return AArch64::SUBSXrr; |
| case AArch64::SUBXri: |
| return AArch64::SUBSXri; |
| case AArch64::SBCWr: |
| return AArch64::SBCSWr; |
| case AArch64::SBCXr: |
| return AArch64::SBCSXr; |
| case AArch64::ANDWri: |
| return AArch64::ANDSWri; |
| case AArch64::ANDXri: |
| return AArch64::ANDSXri; |
| } |
| } |
| |
| /// Check if AArch64::NZCV should be alive in successors of MBB. |
| static bool areCFlagsAliveInSuccessors(MachineBasicBlock *MBB) { |
| for (auto *BB : MBB->successors()) |
| if (BB->isLiveIn(AArch64::NZCV)) |
| return true; |
| return false; |
| } |
| |
| namespace { |
| |
| struct UsedNZCV { |
| bool N = false; |
| bool Z = false; |
| bool C = false; |
| bool V = false; |
| |
| UsedNZCV() = default; |
| |
| UsedNZCV &operator|=(const UsedNZCV &UsedFlags) { |
| this->N |= UsedFlags.N; |
| this->Z |= UsedFlags.Z; |
| this->C |= UsedFlags.C; |
| this->V |= UsedFlags.V; |
| return *this; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Find a condition code used by the instruction. |
| /// Returns AArch64CC::Invalid if either the instruction does not use condition |
| /// codes or we don't optimize CmpInstr in the presence of such instructions. |
| static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) { |
| switch (Instr.getOpcode()) { |
| default: |
| return AArch64CC::Invalid; |
| |
| case AArch64::Bcc: { |
| int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV); |
| assert(Idx >= 2); |
| return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 2).getImm()); |
| } |
| |
| case AArch64::CSINVWr: |
| case AArch64::CSINVXr: |
| case AArch64::CSINCWr: |
| case AArch64::CSINCXr: |
| case AArch64::CSELWr: |
| case AArch64::CSELXr: |
| case AArch64::CSNEGWr: |
| case AArch64::CSNEGXr: |
| case AArch64::FCSELSrrr: |
| case AArch64::FCSELDrrr: { |
| int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV); |
| assert(Idx >= 1); |
| return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 1).getImm()); |
| } |
| } |
| } |
| |
| static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) { |
| assert(CC != AArch64CC::Invalid); |
| UsedNZCV UsedFlags; |
| switch (CC) { |
| default: |
| break; |
| |
| case AArch64CC::EQ: // Z set |
| case AArch64CC::NE: // Z clear |
| UsedFlags.Z = true; |
| break; |
| |
| case AArch64CC::HI: // Z clear and C set |
| case AArch64CC::LS: // Z set or C clear |
| UsedFlags.Z = true; |
| LLVM_FALLTHROUGH; |
| case AArch64CC::HS: // C set |
| case AArch64CC::LO: // C clear |
| UsedFlags.C = true; |
| break; |
| |
| case AArch64CC::MI: // N set |
| case AArch64CC::PL: // N clear |
| UsedFlags.N = true; |
| break; |
| |
| case AArch64CC::VS: // V set |
| case AArch64CC::VC: // V clear |
| UsedFlags.V = true; |
| break; |
| |
| case AArch64CC::GT: // Z clear, N and V the same |
| case AArch64CC::LE: // Z set, N and V differ |
| UsedFlags.Z = true; |
| LLVM_FALLTHROUGH; |
| case AArch64CC::GE: // N and V the same |
| case AArch64CC::LT: // N and V differ |
| UsedFlags.N = true; |
| UsedFlags.V = true; |
| break; |
| } |
| return UsedFlags; |
| } |
| |
| static bool isADDSRegImm(unsigned Opcode) { |
| return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri; |
| } |
| |
| static bool isSUBSRegImm(unsigned Opcode) { |
| return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri; |
| } |
| |
| /// Check if CmpInstr can be substituted by MI. |
| /// |
| /// CmpInstr can be substituted: |
| /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0' |
| /// - and, MI and CmpInstr are from the same MachineBB |
| /// - and, condition flags are not alive in successors of the CmpInstr parent |
| /// - and, if MI opcode is the S form there must be no defs of flags between |
| /// MI and CmpInstr |
| /// or if MI opcode is not the S form there must be neither defs of flags |
| /// nor uses of flags between MI and CmpInstr. |
| /// - and C/V flags are not used after CmpInstr |
| static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr, |
| const TargetRegisterInfo *TRI) { |
| assert(MI); |
| assert(sForm(*MI) != AArch64::INSTRUCTION_LIST_END); |
| assert(CmpInstr); |
| |
| const unsigned CmpOpcode = CmpInstr->getOpcode(); |
| if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode)) |
| return false; |
| |
| if (MI->getParent() != CmpInstr->getParent()) |
| return false; |
| |
| if (areCFlagsAliveInSuccessors(CmpInstr->getParent())) |
| return false; |
| |
| AccessKind AccessToCheck = AK_Write; |
| if (sForm(*MI) != MI->getOpcode()) |
| AccessToCheck = AK_All; |
| if (areCFlagsAccessedBetweenInstrs(MI, CmpInstr, TRI, AccessToCheck)) |
| return false; |
| |
| UsedNZCV NZCVUsedAfterCmp; |
| for (auto I = std::next(CmpInstr->getIterator()), |
| E = CmpInstr->getParent()->instr_end(); |
| I != E; ++I) { |
| const MachineInstr &Instr = *I; |
| if (Instr.readsRegister(AArch64::NZCV, TRI)) { |
| AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr); |
| if (CC == AArch64CC::Invalid) // Unsupported conditional instruction |
| return false; |
| NZCVUsedAfterCmp |= getUsedNZCV(CC); |
| } |
| |
| if (Instr.modifiesRegister(AArch64::NZCV, TRI)) |
| break; |
| } |
| |
| return !NZCVUsedAfterCmp.C && !NZCVUsedAfterCmp.V; |
| } |
| |
| /// Substitute an instruction comparing to zero with another instruction |
| /// which produces needed condition flags. |
| /// |
| /// Return true on success. |
| bool AArch64InstrInfo::substituteCmpToZero( |
| MachineInstr &CmpInstr, unsigned SrcReg, |
| const MachineRegisterInfo *MRI) const { |
| assert(MRI); |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| unsigned NewOpc = sForm(*MI); |
| if (NewOpc == AArch64::INSTRUCTION_LIST_END) |
| return false; |
| |
| if (!canInstrSubstituteCmpInstr(MI, &CmpInstr, TRI)) |
| return false; |
| |
| // Update the instruction to set NZCV. |
| MI->setDesc(get(NewOpc)); |
| CmpInstr.eraseFromParent(); |
| bool succeeded = UpdateOperandRegClass(*MI); |
| (void)succeeded; |
| assert(succeeded && "Some operands reg class are incompatible!"); |
| MI->addRegisterDefined(AArch64::NZCV, TRI); |
| return true; |
| } |
| |
| bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD) |
| return false; |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| unsigned Reg = MI.getOperand(0).getReg(); |
| const GlobalValue *GV = |
| cast<GlobalValue>((*MI.memoperands_begin())->getValue()); |
| const TargetMachine &TM = MBB.getParent()->getTarget(); |
| unsigned char OpFlags = Subtarget.ClassifyGlobalReference(GV, TM); |
| const unsigned char MO_NC = AArch64II::MO_NC; |
| |
| if ((OpFlags & AArch64II::MO_GOT) != 0) { |
| BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg) |
| .addGlobalAddress(GV, 0, AArch64II::MO_GOT); |
| BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm(0) |
| .addMemOperand(*MI.memoperands_begin()); |
| } else if (TM.getCodeModel() == CodeModel::Large) { |
| BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg) |
| .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC) |
| .addImm(0); |
| BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC) |
| .addImm(16); |
| BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC) |
| .addImm(32); |
| BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addGlobalAddress(GV, 0, AArch64II::MO_G3) |
| .addImm(48); |
| BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm(0) |
| .addMemOperand(*MI.memoperands_begin()); |
| } else { |
| BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg) |
| .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE); |
| unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC; |
| BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addGlobalAddress(GV, 0, LoFlags) |
| .addMemOperand(*MI.memoperands_begin()); |
| } |
| |
| MBB.erase(MI); |
| |
| return true; |
| } |
| |
| /// Return true if this is this instruction has a non-zero immediate |
| bool AArch64InstrInfo::hasShiftedReg(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::ADDSWrs: |
| case AArch64::ADDSXrs: |
| case AArch64::ADDWrs: |
| case AArch64::ADDXrs: |
| case AArch64::ANDSWrs: |
| case AArch64::ANDSXrs: |
| case AArch64::ANDWrs: |
| case AArch64::ANDXrs: |
| case AArch64::BICSWrs: |
| case AArch64::BICSXrs: |
| case AArch64::BICWrs: |
| case AArch64::BICXrs: |
| case AArch64::EONWrs: |
| case AArch64::EONXrs: |
| case AArch64::EORWrs: |
| case AArch64::EORXrs: |
| case AArch64::ORNWrs: |
| case AArch64::ORNXrs: |
| case AArch64::ORRWrs: |
| case AArch64::ORRXrs: |
| case AArch64::SUBSWrs: |
| case AArch64::SUBSXrs: |
| case AArch64::SUBWrs: |
| case AArch64::SUBXrs: |
| if (MI.getOperand(3).isImm()) { |
| unsigned val = MI.getOperand(3).getImm(); |
| return (val != 0); |
| } |
| break; |
| } |
| return false; |
| } |
| |
| /// Return true if this is this instruction has a non-zero immediate |
| bool AArch64InstrInfo::hasExtendedReg(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::ADDSWrx: |
| case AArch64::ADDSXrx: |
| case AArch64::ADDSXrx64: |
| case AArch64::ADDWrx: |
| case AArch64::ADDXrx: |
| case AArch64::ADDXrx64: |
| case AArch64::SUBSWrx: |
| case AArch64::SUBSXrx: |
| case AArch64::SUBSXrx64: |
| case AArch64::SUBWrx: |
| case AArch64::SUBXrx: |
| case AArch64::SUBXrx64: |
| if (MI.getOperand(3).isImm()) { |
| unsigned val = MI.getOperand(3).getImm(); |
| return (val != 0); |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| // Return true if this instruction simply sets its single destination register |
| // to zero. This is equivalent to a register rename of the zero-register. |
| bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::MOVZWi: |
| case AArch64::MOVZXi: // movz Rd, #0 (LSL #0) |
| if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) { |
| assert(MI.getDesc().getNumOperands() == 3 && |
| MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands"); |
| return true; |
| } |
| break; |
| case AArch64::ANDWri: // and Rd, Rzr, #imm |
| return MI.getOperand(1).getReg() == AArch64::WZR; |
| case AArch64::ANDXri: |
| return MI.getOperand(1).getReg() == AArch64::XZR; |
| case TargetOpcode::COPY: |
| return MI.getOperand(1).getReg() == AArch64::WZR; |
| } |
| return false; |
| } |
| |
| // Return true if this instruction simply renames a general register without |
| // modifying bits. |
| bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case TargetOpcode::COPY: { |
| // GPR32 copies will by lowered to ORRXrs |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| return (AArch64::GPR32RegClass.contains(DstReg) || |
| AArch64::GPR64RegClass.contains(DstReg)); |
| } |
| case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0) |
| if (MI.getOperand(1).getReg() == AArch64::XZR) { |
| assert(MI.getDesc().getNumOperands() == 4 && |
| MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands"); |
| return true; |
| } |
| break; |
| case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0) |
| if (MI.getOperand(2).getImm() == 0) { |
| assert(MI.getDesc().getNumOperands() == 4 && |
| MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands"); |
| return true; |
| } |
| break; |
| } |
| return false; |
| } |
| |
| // Return true if this instruction simply renames a general register without |
| // modifying bits. |
| bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case TargetOpcode::COPY: { |
| // FPR64 copies will by lowered to ORR.16b |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| return (AArch64::FPR64RegClass.contains(DstReg) || |
| AArch64::FPR128RegClass.contains(DstReg)); |
| } |
| case AArch64::ORRv16i8: |
| if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { |
| assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() && |
| "invalid ORRv16i8 operands"); |
| return true; |
| } |
| break; |
| } |
| return false; |
| } |
| |
| unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::LDRWui: |
| case AArch64::LDRXui: |
| case AArch64::LDRBui: |
| case AArch64::LDRHui: |
| case AArch64::LDRSui: |
| case AArch64::LDRDui: |
| case AArch64::LDRQui: |
| if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() && |
| MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::STRWui: |
| case AArch64::STRXui: |
| case AArch64::STRBui: |
| case AArch64::STRHui: |
| case AArch64::STRSui: |
| case AArch64::STRDui: |
| case AArch64::STRQui: |
| if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() && |
| MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| /// Return true if this is load/store scales or extends its register offset. |
| /// This refers to scaling a dynamic index as opposed to scaled immediates. |
| /// MI should be a memory op that allows scaled addressing. |
| bool AArch64InstrInfo::isScaledAddr(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::LDRBBroW: |
| case AArch64::LDRBroW: |
| case AArch64::LDRDroW: |
| case AArch64::LDRHHroW: |
| case AArch64::LDRHroW: |
| case AArch64::LDRQroW: |
| case AArch64::LDRSBWroW: |
| case AArch64::LDRSBXroW: |
| case AArch64::LDRSHWroW: |
| case AArch64::LDRSHXroW: |
| case AArch64::LDRSWroW: |
| case AArch64::LDRSroW: |
| case AArch64::LDRWroW: |
| case AArch64::LDRXroW: |
| case AArch64::STRBBroW: |
| case AArch64::STRBroW: |
| case AArch64::STRDroW: |
| case AArch64::STRHHroW: |
| case AArch64::STRHroW: |
| case AArch64::STRQroW: |
| case AArch64::STRSroW: |
| case AArch64::STRWroW: |
| case AArch64::STRXroW: |
| case AArch64::LDRBBroX: |
| case AArch64::LDRBroX: |
| case AArch64::LDRDroX: |
| case AArch64::LDRHHroX: |
| case AArch64::LDRHroX: |
| case AArch64::LDRQroX: |
| case AArch64::LDRSBWroX: |
| case AArch64::LDRSBXroX: |
| case AArch64::LDRSHWroX: |
| case AArch64::LDRSHXroX: |
| case AArch64::LDRSWroX: |
| case AArch64::LDRSroX: |
| case AArch64::LDRWroX: |
| case AArch64::LDRXroX: |
| case AArch64::STRBBroX: |
| case AArch64::STRBroX: |
| case AArch64::STRDroX: |
| case AArch64::STRHHroX: |
| case AArch64::STRHroX: |
| case AArch64::STRQroX: |
| case AArch64::STRSroX: |
| case AArch64::STRWroX: |
| case AArch64::STRXroX: |
| |
| unsigned Val = MI.getOperand(3).getImm(); |
| AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val); |
| return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val); |
| } |
| return false; |
| } |
| |
| /// Check all MachineMemOperands for a hint to suppress pairing. |
| bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) { |
| return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) { |
| return MMO->getFlags() & MOSuppressPair; |
| }); |
| } |
| |
| /// Set a flag on the first MachineMemOperand to suppress pairing. |
| void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) { |
| if (MI.memoperands_empty()) |
| return; |
| (*MI.memoperands_begin())->setFlags(MOSuppressPair); |
| } |
| |
| /// Check all MachineMemOperands for a hint that the load/store is strided. |
| bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) { |
| return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) { |
| return MMO->getFlags() & MOStridedAccess; |
| }); |
| } |
| |
| bool AArch64InstrInfo::isUnscaledLdSt(unsigned Opc) { |
| switch (Opc) { |
| default: |
| return false; |
| case AArch64::STURSi: |
| case AArch64::STURDi: |
| case AArch64::STURQi: |
| case AArch64::STURBBi: |
| case AArch64::STURHHi: |
| case AArch64::STURWi: |
| case AArch64::STURXi: |
| case AArch64::LDURSi: |
| case AArch64::LDURDi: |
| case AArch64::LDURQi: |
| case AArch64::LDURWi: |
| case AArch64::LDURXi: |
| case AArch64::LDURSWi: |
| case AArch64::LDURHHi: |
| case AArch64::LDURBBi: |
| case AArch64::LDURSBWi: |
| case AArch64::LDURSHWi: |
| return true; |
| } |
| } |
| |
| bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| // Scaled instructions. |
| case AArch64::STRSui: |
| case AArch64::STRDui: |
| case AArch64::STRQui: |
| case AArch64::STRXui: |
| case AArch64::STRWui: |
| case AArch64::LDRSui: |
| case AArch64::LDRDui: |
| case AArch64::LDRQui: |
| case AArch64::LDRXui: |
| case AArch64::LDRWui: |
| case AArch64::LDRSWui: |
| // Unscaled instructions. |
| case AArch64::STURSi: |
| case AArch64::STURDi: |
| case AArch64::STURQi: |
| case AArch64::STURWi: |
| case AArch64::STURXi: |
| case AArch64::LDURSi: |
| case AArch64::LDURDi: |
| case AArch64::LDURQi: |
| case AArch64::LDURWi: |
| case AArch64::LDURXi: |
| case AArch64::LDURSWi: |
| return true; |
| } |
| } |
| |
| unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc, |
| bool &Is64Bit) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("Opcode has no flag setting equivalent!"); |
| // 32-bit cases: |
| case AArch64::ADDWri: |
| Is64Bit = false; |
| return AArch64::ADDSWri; |
| case AArch64::ADDWrr: |
| Is64Bit = false; |
| return AArch64::ADDSWrr; |
| case AArch64::ADDWrs: |
| Is64Bit = false; |
| return AArch64::ADDSWrs; |
| case AArch64::ADDWrx: |
| Is64Bit = false; |
| return AArch64::ADDSWrx; |
| case AArch64::ANDWri: |
| Is64Bit = false; |
| return AArch64::ANDSWri; |
| case AArch64::ANDWrr: |
| Is64Bit = false; |
| return AArch64::ANDSWrr; |
| case AArch64::ANDWrs: |
| Is64Bit = false; |
| return AArch64::ANDSWrs; |
| case AArch64::BICWrr: |
| Is64Bit = false; |
| return AArch64::BICSWrr; |
| case AArch64::BICWrs: |
| Is64Bit = false; |
| return AArch64::BICSWrs; |
| case AArch64::SUBWri: |
| Is64Bit = false; |
| return AArch64::SUBSWri; |
| case AArch64::SUBWrr: |
| Is64Bit = false; |
| return AArch64::SUBSWrr; |
| case AArch64::SUBWrs: |
| Is64Bit = false; |
| return AArch64::SUBSWrs; |
| case AArch64::SUBWrx: |
| Is64Bit = false; |
| return AArch64::SUBSWrx; |
| // 64-bit cases: |
| case AArch64::ADDXri: |
| Is64Bit = true; |
| return AArch64::ADDSXri; |
| case AArch64::ADDXrr: |
| Is64Bit = true; |
| return AArch64::ADDSXrr; |
| case AArch64::ADDXrs: |
| Is64Bit = true; |
| return AArch64::ADDSXrs; |
| case AArch64::ADDXrx: |
| Is64Bit = true; |
| return AArch64::ADDSXrx; |
| case AArch64::ANDXri: |
| Is64Bit = true; |
| return AArch64::ANDSXri; |
| case AArch64::ANDXrr: |
| Is64Bit = true; |
| return AArch64::ANDSXrr; |
| case AArch64::ANDXrs: |
| Is64Bit = true; |
| return AArch64::ANDSXrs; |
| case AArch64::BICXrr: |
| Is64Bit = true; |
| return AArch64::BICSXrr; |
| case AArch64::BICXrs: |
| Is64Bit = true; |
| return AArch64::BICSXrs; |
| case AArch64::SUBXri: |
| Is64Bit = true; |
| return AArch64::SUBSXri; |
| case AArch64::SUBXrr: |
| Is64Bit = true; |
| return AArch64::SUBSXrr; |
| case AArch64::SUBXrs: |
| Is64Bit = true; |
| return AArch64::SUBSXrs; |
| case AArch64::SUBXrx: |
| Is64Bit = true; |
| return AArch64::SUBSXrx; |
| } |
| } |
| |
| // Is this a candidate for ld/st merging or pairing? For example, we don't |
| // touch volatiles or load/stores that have a hint to avoid pair formation. |
| bool AArch64InstrInfo::isCandidateToMergeOrPair(MachineInstr &MI) const { |
| // If this is a volatile load/store, don't mess with it. |
| if (MI.hasOrderedMemoryRef()) |
| return false; |
| |
| // Make sure this is a reg+imm (as opposed to an address reloc). |
| assert(MI.getOperand(1).isReg() && "Expected a reg operand."); |
| if (!MI.getOperand(2).isImm()) |
| return false; |
| |
| // Can't merge/pair if the instruction modifies the base register. |
| // e.g., ldr x0, [x0] |
| unsigned BaseReg = MI.getOperand(1).getReg(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| if (MI.modifiesRegister(BaseReg, TRI)) |
| return false; |
| |
| // Check if this load/store has a hint to avoid pair formation. |
| // MachineMemOperands hints are set by the AArch64StorePairSuppress pass. |
| if (isLdStPairSuppressed(MI)) |
| return false; |
| |
| // On some CPUs quad load/store pairs are slower than two single load/stores. |
| if (Subtarget.isPaired128Slow()) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::LDURQi: |
| case AArch64::STURQi: |
| case AArch64::LDRQui: |
| case AArch64::STRQui: |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool AArch64InstrInfo::getMemOpBaseRegImmOfs( |
| MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset, |
| const TargetRegisterInfo *TRI) const { |
| unsigned Width; |
| return getMemOpBaseRegImmOfsWidth(LdSt, BaseReg, Offset, Width, TRI); |
| } |
| |
| bool AArch64InstrInfo::getMemOpBaseRegImmOfsWidth( |
| MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset, unsigned &Width, |
| const TargetRegisterInfo *TRI) const { |
| assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); |
| // Handle only loads/stores with base register followed by immediate offset. |
| if (LdSt.getNumExplicitOperands() == 3) { |
| // Non-paired instruction (e.g., ldr x1, [x0, #8]). |
| if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm()) |
| return false; |
| } else if (LdSt.getNumExplicitOperands() == 4) { |
| // Paired instruction (e.g., ldp x1, x2, [x0, #8]). |
| if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isReg() || |
| !LdSt.getOperand(3).isImm()) |
| return false; |
| } else |
| return false; |
| |
| // Get the scaling factor for the instruction and set the width for the |
| // instruction. |
| unsigned Scale = 0; |
| int64_t Dummy1, Dummy2; |
| |
| // If this returns false, then it's an instruction we don't want to handle. |
| if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2)) |
| return false; |
| |
| // Compute the offset. Offset is calculated as the immediate operand |
| // multiplied by the scaling factor. Unscaled instructions have scaling factor |
| // set to 1. |
| if (LdSt.getNumExplicitOperands() == 3) { |
| BaseReg = LdSt.getOperand(1).getReg(); |
| Offset = LdSt.getOperand(2).getImm() * Scale; |
| } else { |
| assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands"); |
| BaseReg = LdSt.getOperand(2).getReg(); |
| Offset = LdSt.getOperand(3).getImm() * Scale; |
| } |
| return true; |
| } |
| |
| MachineOperand & |
| AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const { |
| assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); |
| MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1); |
| assert(OfsOp.isImm() && "Offset operand wasn't immediate."); |
| return OfsOp; |
| } |
| |
| bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, unsigned &Scale, |
| unsigned &Width, int64_t &MinOffset, |
| int64_t &MaxOffset) const { |
| switch (Opcode) { |
| // Not a memory operation or something we want to handle. |
| default: |
| Scale = Width = 0; |
| MinOffset = MaxOffset = 0; |
| return false; |
| case AArch64::STRWpost: |
| case AArch64::LDRWpost: |
| Width = 32; |
| Scale = 4; |
| MinOffset = -256; |
| MaxOffset = 255; |
| break; |
| case AArch64::LDURQi: |
| case AArch64::STURQi: |
| Width = 16; |
| Scale = 1; |
| MinOffset = -256; |
| MaxOffset = 255; |
| break; |
| case AArch64::LDURXi: |
| case AArch64::LDURDi: |
| case AArch64::STURXi: |
| case AArch64::STURDi: |
| Width = 8; |
| Scale = 1; |
| MinOffset = -256; |
| MaxOffset = 255; |
| break; |
| case AArch64::LDURWi: |
| case AArch64::LDURSi: |
| case AArch64::LDURSWi: |
| case AArch64::STURWi: |
| case AArch64::STURSi: |
| Width = 4; |
| Scale = 1; |
| MinOffset = -256; |
| MaxOffset = 255; |
| break; |
| case AArch64::LDURHi: |
| case AArch64::LDURHHi: |
| case AArch64::LDURSHXi: |
| case AArch64::LDURSHWi: |
| case AArch64::STURHi: |
| case AArch64::STURHHi: |
| Width = 2; |
| Scale = 1; |
| MinOffset = -256; |
| MaxOffset = 255; |
| break; |
| case AArch64::LDURBi: |
| case AArch64::LDURBBi: |
| case AArch64::LDURSBXi: |
| case AArch64::LDURSBWi: |
| case AArch64::STURBi: |
| case AArch64::STURBBi: |
| Width = 1; |
| Scale = 1; |
| MinOffset = -256; |
| MaxOffset = 255; |
| break; |
| case AArch64::LDPQi: |
| case AArch64::LDNPQi: |
| case AArch64::STPQi: |
| case AArch64::STNPQi: |
| Scale = 16; |
| Width = 32; |
| MinOffset = -64; |
| MaxOffset = 63; |
| break; |
| case AArch64::LDRQui: |
| case AArch64::STRQui: |
| Scale = Width = 16; |
| MinOffset = 0; |
| MaxOffset = 4095; |
| break; |
| case AArch64::LDPXi: |
| case AArch64::LDPDi: |
| case AArch64::LDNPXi: |
| case AArch64::LDNPDi: |
| case AArch64::STPXi: |
| case AArch64::STPDi: |
| case AArch64::STNPXi: |
| case AArch64::STNPDi: |
| Scale = 8; |
| Width = 16; |
| MinOffset = -64; |
| MaxOffset = 63; |
| break; |
| case AArch64::LDRXui: |
| case AArch64::LDRDui: |
| case AArch64::STRXui: |
| case AArch64::STRDui: |
| Scale = Width = 8; |
| MinOffset = 0; |
| MaxOffset = 4095; |
| break; |
| case AArch64::LDPWi: |
| case AArch64::LDPSi: |
| case AArch64::LDNPWi: |
| case AArch64::LDNPSi: |
| case AArch64::STPWi: |
| case AArch64::STPSi: |
| case AArch64::STNPWi: |
| case AArch64::STNPSi: |
| Scale = 4; |
| Width = 8; |
| MinOffset = -64; |
| MaxOffset = 63; |
| break; |
| case AArch64::LDRWui: |
| case AArch64::LDRSui: |
| case AArch64::LDRSWui: |
| case AArch64::STRWui: |
| case AArch64::STRSui: |
| Scale = Width = 4; |
| MinOffset = 0; |
| MaxOffset = 4095; |
| break; |
| case AArch64::LDRHui: |
| case AArch64::LDRHHui: |
| case AArch64::STRHui: |
| case AArch64::STRHHui: |
| Scale = Width = 2; |
| MinOffset = 0; |
| MaxOffset = 4095; |
| break; |
| case AArch64::LDRBui: |
| case AArch64::LDRBBui: |
| case AArch64::STRBui: |
| case AArch64::STRBBui: |
| Scale = Width = 1; |
| MinOffset = 0; |
| MaxOffset = 4095; |
| break; |
| } |
| |
| return true; |
| } |
| |
| // Scale the unscaled offsets. Returns false if the unscaled offset can't be |
| // scaled. |
| static bool scaleOffset(unsigned Opc, int64_t &Offset) { |
| unsigned OffsetStride = 1; |
| switch (Opc) { |
| default: |
| return false; |
| case AArch64::LDURQi: |
| case AArch64::STURQi: |
| OffsetStride = 16; |
| break; |
| case AArch64::LDURXi: |
| case AArch64::LDURDi: |
| case AArch64::STURXi: |
| case AArch64::STURDi: |
| OffsetStride = 8; |
| break; |
| case AArch64::LDURWi: |
| case AArch64::LDURSi: |
| case AArch64::LDURSWi: |
| case AArch64::STURWi: |
| case AArch64::STURSi: |
| OffsetStride = 4; |
| break; |
| } |
| // If the byte-offset isn't a multiple of the stride, we can't scale this |
| // offset. |
| if (Offset % OffsetStride != 0) |
| return false; |
| |
| // Convert the byte-offset used by unscaled into an "element" offset used |
| // by the scaled pair load/store instructions. |
| Offset /= OffsetStride; |
| return true; |
| } |
| |
| static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) { |
| if (FirstOpc == SecondOpc) |
| return true; |
| // We can also pair sign-ext and zero-ext instructions. |
| switch (FirstOpc) { |
| default: |
| return false; |
| case AArch64::LDRWui: |
| case AArch64::LDURWi: |
| return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi; |
| case AArch64::LDRSWui: |
| case AArch64::LDURSWi: |
| return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi; |
| } |
| // These instructions can't be paired based on their opcodes. |
| return false; |
| } |
| |
| /// Detect opportunities for ldp/stp formation. |
| /// |
| /// Only called for LdSt for which getMemOpBaseRegImmOfs returns true. |
| bool AArch64InstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt, |
| unsigned BaseReg1, |
| MachineInstr &SecondLdSt, |
| unsigned BaseReg2, |
| unsigned NumLoads) const { |
| if (BaseReg1 != BaseReg2) |
| return false; |
| |
| // Only cluster up to a single pair. |
| if (NumLoads > 1) |
| return false; |
| |
| if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt)) |
| return false; |
| |
| // Can we pair these instructions based on their opcodes? |
| unsigned FirstOpc = FirstLdSt.getOpcode(); |
| unsigned SecondOpc = SecondLdSt.getOpcode(); |
| if (!canPairLdStOpc(FirstOpc, SecondOpc)) |
| return false; |
| |
| // Can't merge volatiles or load/stores that have a hint to avoid pair |
| // formation, for example. |
| if (!isCandidateToMergeOrPair(FirstLdSt) || |
| !isCandidateToMergeOrPair(SecondLdSt)) |
| return false; |
| |
| // isCandidateToMergeOrPair guarantees that operand 2 is an immediate. |
| int64_t Offset1 = FirstLdSt.getOperand(2).getImm(); |
| if (isUnscaledLdSt(FirstOpc) && !scaleOffset(FirstOpc, Offset1)) |
| return false; |
| |
| int64_t Offset2 = SecondLdSt.getOperand(2).getImm(); |
| if (isUnscaledLdSt(SecondOpc) && !scaleOffset(SecondOpc, Offset2)) |
| return false; |
| |
| // Pairwise instructions have a 7-bit signed offset field. |
| if (Offset1 > 63 || Offset1 < -64) |
| return false; |
| |
| // The caller should already have ordered First/SecondLdSt by offset. |
| assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); |
| return Offset1 + 1 == Offset2; |
| } |
| |
| static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB, |
| unsigned Reg, unsigned SubIdx, |
| unsigned State, |
| const TargetRegisterInfo *TRI) { |
| if (!SubIdx) |
| return MIB.addReg(Reg, State); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); |
| return MIB.addReg(Reg, State, SubIdx); |
| } |
| |
| static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg, |
| unsigned NumRegs) { |
| // We really want the positive remainder mod 32 here, that happens to be |
| // easily obtainable with a mask. |
| return ((DestReg - SrcReg) & 0x1f) < NumRegs; |
| } |
| |
| void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, unsigned DestReg, |
| unsigned SrcReg, bool KillSrc, |
| unsigned Opcode, |
| ArrayRef<unsigned> Indices) const { |
| assert(Subtarget.hasNEON() && "Unexpected register copy without NEON"); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| uint16_t DestEncoding = TRI->getEncodingValue(DestReg); |
| uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg); |
| unsigned NumRegs = Indices.size(); |
| |
| int SubReg = 0, End = NumRegs, Incr = 1; |
| if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) { |
| SubReg = NumRegs - 1; |
| End = -1; |
| Incr = -1; |
| } |
| |
| for (; SubReg != End; SubReg += Incr) { |
| const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode)); |
| AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI); |
| AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI); |
| AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI); |
| } |
| } |
| |
| void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, unsigned DestReg, |
| unsigned SrcReg, bool KillSrc) const { |
| if (AArch64::GPR32spRegClass.contains(DestReg) && |
| (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) { |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) { |
| // If either operand is WSP, expand to ADD #0. |
| if (Subtarget.hasZeroCycleRegMove()) { |
| // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move. |
| unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32, |
| &AArch64::GPR64spRegClass); |
| unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32, |
| &AArch64::GPR64spRegClass); |
| // This instruction is reading and writing X registers. This may upset |
| // the register scavenger and machine verifier, so we need to indicate |
| // that we are reading an undefined value from SrcRegX, but a proper |
| // value from SrcReg. |
| BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX) |
| .addReg(SrcRegX, RegState::Undef) |
| .addImm(0) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) |
| .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); |
| } else { |
| BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addImm(0) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); |
| } |
| } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) { |
| BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg) |
| .addImm(0) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); |
| } else { |
| if (Subtarget.hasZeroCycleRegMove()) { |
| // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move. |
| unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32, |
| &AArch64::GPR64spRegClass); |
| unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32, |
| &AArch64::GPR64spRegClass); |
| // This instruction is reading and writing X registers. This may upset |
| // the register scavenger and machine verifier, so we need to indicate |
| // that we are reading an undefined value from SrcRegX, but a proper |
| // value from SrcReg. |
| BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX) |
| .addReg(AArch64::XZR) |
| .addReg(SrcRegX, RegState::Undef) |
| .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); |
| } else { |
| // Otherwise, expand to ORR WZR. |
| BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg) |
| .addReg(AArch64::WZR) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| } |
| return; |
| } |
| |
| if (AArch64::GPR64spRegClass.contains(DestReg) && |
| (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) { |
| if (DestReg == AArch64::SP || SrcReg == AArch64::SP) { |
| // If either operand is SP, expand to ADD #0. |
| BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addImm(0) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); |
| } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) { |
| BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg) |
| .addImm(0) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); |
| } else { |
| // Otherwise, expand to ORR XZR. |
| BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg) |
| .addReg(AArch64::XZR) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| return; |
| } |
| |
| // Copy a DDDD register quad by copying the individual sub-registers. |
| if (AArch64::DDDDRegClass.contains(DestReg) && |
| AArch64::DDDDRegClass.contains(SrcReg)) { |
| static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1, |
| AArch64::dsub2, AArch64::dsub3}; |
| copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, |
| Indices); |
| return; |
| } |
| |
| // Copy a DDD register triple by copying the individual sub-registers. |
| if (AArch64::DDDRegClass.contains(DestReg) && |
| AArch64::DDDRegClass.contains(SrcReg)) { |
| static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1, |
| AArch64::dsub2}; |
| copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, |
| Indices); |
| return; |
| } |
| |
| // Copy a DD register pair by copying the individual sub-registers. |
| if (AArch64::DDRegClass.contains(DestReg) && |
| AArch64::DDRegClass.contains(SrcReg)) { |
| static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1}; |
| copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, |
| Indices); |
| return; |
| } |
| |
| // Copy a QQQQ register quad by copying the individual sub-registers. |
| if (AArch64::QQQQRegClass.contains(DestReg) && |
| AArch64::QQQQRegClass.contains(SrcReg)) { |
| static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1, |
| AArch64::qsub2, AArch64::qsub3}; |
| copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, |
| Indices); |
| return; |
| } |
| |
| // Copy a QQQ register triple by copying the individual sub-registers. |
| if (AArch64::QQQRegClass.contains(DestReg) && |
| AArch64::QQQRegClass.contains(SrcReg)) { |
| static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1, |
| AArch64::qsub2}; |
| copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, |
| Indices); |
| return; |
| } |
| |
| // Copy a QQ register pair by copying the individual sub-registers. |
| if (AArch64::QQRegClass.contains(DestReg) && |
| AArch64::QQRegClass.contains(SrcReg)) { |
| static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1}; |
| copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, |
| Indices); |
| return; |
| } |
| |
| if (AArch64::FPR128RegClass.contains(DestReg) && |
| AArch64::FPR128RegClass.contains(SrcReg)) { |
| if (Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) |
| .addReg(SrcReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } else { |
| BuildMI(MBB, I, DL, get(AArch64::STRQpre)) |
| .addReg(AArch64::SP, RegState::Define) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addReg(AArch64::SP) |
| .addImm(-16); |
| BuildMI(MBB, I, DL, get(AArch64::LDRQpre)) |
| .addReg(AArch64::SP, RegState::Define) |
| .addReg(DestReg, RegState::Define) |
| .addReg(AArch64::SP) |
| .addImm(16); |
| } |
| return; |
| } |
| |
| if (AArch64::FPR64RegClass.contains(DestReg) && |
| AArch64::FPR64RegClass.contains(SrcReg)) { |
| if (Subtarget.hasNEON()) { |
| DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub, |
| &AArch64::FPR128RegClass); |
| SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub, |
| &AArch64::FPR128RegClass); |
| BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) |
| .addReg(SrcReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } else { |
| BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| return; |
| } |
| |
| if (AArch64::FPR32RegClass.contains(DestReg) && |
| AArch64::FPR32RegClass.contains(SrcReg)) { |
| if (Subtarget.hasNEON()) { |
| DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub, |
| &AArch64::FPR128RegClass); |
| SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub, |
| &AArch64::FPR128RegClass); |
| BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) |
| .addReg(SrcReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } else { |
| BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| return; |
| } |
| |
| if (AArch64::FPR16RegClass.contains(DestReg) && |
| AArch64::FPR16RegClass.contains(SrcReg)) { |
| if (Subtarget.hasNEON()) { |
| DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub, |
| &AArch64::FPR128RegClass); |
| SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub, |
| &AArch64::FPR128RegClass); |
| BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) |
| .addReg(SrcReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } else { |
| DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub, |
| &AArch64::FPR32RegClass); |
| SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub, |
| &AArch64::FPR32RegClass); |
| BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| return; |
| } |
| |
| if (AArch64::FPR8RegClass.contains(DestReg) && |
| AArch64::FPR8RegClass.contains(SrcReg)) { |
| if (Subtarget.hasNEON()) { |
| DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub, |
| &AArch64::FPR128RegClass); |
| SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub, |
| &AArch64::FPR128RegClass); |
| BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) |
| .addReg(SrcReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } else { |
| DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub, |
| &AArch64::FPR32RegClass); |
| SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub, |
| &AArch64::FPR32RegClass); |
| BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| return; |
| } |
| |
| // Copies between GPR64 and FPR64. |
| if (AArch64::FPR64RegClass.contains(DestReg) && |
| AArch64::GPR64RegClass.contains(SrcReg)) { |
| BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| if (AArch64::GPR64RegClass.contains(DestReg) && |
| AArch64::FPR64RegClass.contains(SrcReg)) { |
| BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| // Copies between GPR32 and FPR32. |
| if (AArch64::FPR32RegClass.contains(DestReg) && |
| AArch64::GPR32RegClass.contains(SrcReg)) { |
| BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| if (AArch64::GPR32RegClass.contains(DestReg) && |
| AArch64::FPR32RegClass.contains(SrcReg)) { |
| BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| |
| if (DestReg == AArch64::NZCV) { |
| assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy"); |
| BuildMI(MBB, I, DL, get(AArch64::MSR)) |
| .addImm(AArch64SysReg::NZCV) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define); |
| return; |
| } |
| |
| if (SrcReg == AArch64::NZCV) { |
| assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy"); |
| BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg) |
| .addImm(AArch64SysReg::NZCV) |
| .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc)); |
| return; |
| } |
| |
| llvm_unreachable("unimplemented reg-to-reg copy"); |
| } |
| |
| void AArch64InstrInfo::storeRegToStackSlot( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, |
| bool isKill, int FI, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (MBBI != MBB.end()) |
| DL = MBBI->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| |
| MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align); |
| unsigned Opc = 0; |
| bool Offset = true; |
| switch (TRI->getSpillSize(*RC)) { |
| case 1: |
| if (AArch64::FPR8RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::STRBui; |
| break; |
| case 2: |
| if (AArch64::FPR16RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::STRHui; |
| break; |
| case 4: |
| if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) { |
| Opc = AArch64::STRWui; |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg)) |
| MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass); |
| else |
| assert(SrcReg != AArch64::WSP); |
| } else if (AArch64::FPR32RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::STRSui; |
| break; |
| case 8: |
| if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) { |
| Opc = AArch64::STRXui; |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg)) |
| MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass); |
| else |
| assert(SrcReg != AArch64::SP); |
| } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::STRDui; |
| break; |
| case 16: |
| if (AArch64::FPR128RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::STRQui; |
| else if (AArch64::DDRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); |
| Opc = AArch64::ST1Twov1d; |
| Offset = false; |
| } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, MBBI, DL, get(AArch64::STPXi)) |
| .addReg(TRI->getSubReg(SrcReg, AArch64::sube64), |
| getKillRegState(isKill)) |
| .addReg(TRI->getSubReg(SrcReg, AArch64::subo64), |
| getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| return; |
| } |
| break; |
| case 24: |
| if (AArch64::DDDRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); |
| Opc = AArch64::ST1Threev1d; |
| Offset = false; |
| } |
| break; |
| case 32: |
| if (AArch64::DDDDRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); |
| Opc = AArch64::ST1Fourv1d; |
| Offset = false; |
| } else if (AArch64::QQRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); |
| Opc = AArch64::ST1Twov2d; |
| Offset = false; |
| } |
| break; |
| case 48: |
| if (AArch64::QQQRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); |
| Opc = AArch64::ST1Threev2d; |
| Offset = false; |
| } |
| break; |
| case 64: |
| if (AArch64::QQQQRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); |
| Opc = AArch64::ST1Fourv2d; |
| Offset = false; |
| } |
| break; |
| } |
| assert(Opc && "Unknown register class"); |
| |
| const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI); |
| |
| if (Offset) |
| MI.addImm(0); |
| MI.addMemOperand(MMO); |
| } |
| |
| void AArch64InstrInfo::loadRegFromStackSlot( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, |
| int FI, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (MBBI != MBB.end()) |
| DL = MBBI->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align); |
| |
| unsigned Opc = 0; |
| bool Offset = true; |
| switch (TRI->getSpillSize(*RC)) { |
| case 1: |
| if (AArch64::FPR8RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::LDRBui; |
| break; |
| case 2: |
| if (AArch64::FPR16RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::LDRHui; |
| break; |
| case 4: |
| if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) { |
| Opc = AArch64::LDRWui; |
| if (TargetRegisterInfo::isVirtualRegister(DestReg)) |
| MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass); |
| else |
| assert(DestReg != AArch64::WSP); |
| } else if (AArch64::FPR32RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::LDRSui; |
| break; |
| case 8: |
| if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) { |
| Opc = AArch64::LDRXui; |
| if (TargetRegisterInfo::isVirtualRegister(DestReg)) |
| MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass); |
| else |
| assert(DestReg != AArch64::SP); |
| } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::LDRDui; |
| break; |
| case 16: |
| if (AArch64::FPR128RegClass.hasSubClassEq(RC)) |
| Opc = AArch64::LDRQui; |
| else if (AArch64::DDRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); |
| Opc = AArch64::LD1Twov1d; |
| Offset = false; |
| } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, MBBI, DL, get(AArch64::LDPXi)) |
| .addReg(TRI->getSubReg(DestReg, AArch64::sube64), |
| getDefRegState(true)) |
| .addReg(TRI->getSubReg(DestReg, AArch64::subo64), |
| getDefRegState(true)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| return; |
| } |
| break; |
| case 24: |
| if (AArch64::DDDRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); |
| Opc = AArch64::LD1Threev1d; |
| Offset = false; |
| } |
| break; |
| case 32: |
| if (AArch64::DDDDRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); |
| Opc = AArch64::LD1Fourv1d; |
| Offset = false; |
| } else if (AArch64::QQRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); |
| Opc = AArch64::LD1Twov2d; |
| Offset = false; |
| } |
| break; |
| case 48: |
| if (AArch64::QQQRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); |
| Opc = AArch64::LD1Threev2d; |
| Offset = false; |
| } |
| break; |
| case 64: |
| if (AArch64::QQQQRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); |
| Opc = AArch64::LD1Fourv2d; |
| Offset = false; |
| } |
| break; |
| } |
| assert(Opc && "Unknown register class"); |
| |
| const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc)) |
| .addReg(DestReg, getDefRegState(true)) |
| .addFrameIndex(FI); |
| if (Offset) |
| MI.addImm(0); |
| MI.addMemOperand(MMO); |
| } |
| |
| void llvm::emitFrameOffset(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, const DebugLoc &DL, |
| unsigned DestReg, unsigned SrcReg, int Offset, |
| const TargetInstrInfo *TII, |
| MachineInstr::MIFlag Flag, bool SetNZCV) { |
| if (DestReg == SrcReg && Offset == 0) |
| return; |
| |
| assert((DestReg != AArch64::SP || Offset % 16 == 0) && |
| "SP increment/decrement not 16-byte aligned"); |
| |
| bool isSub = Offset < 0; |
| if (isSub) |
| Offset = -Offset; |
| |
| // FIXME: If the offset won't fit in 24-bits, compute the offset into a |
| // scratch register. If DestReg is a virtual register, use it as the |
| // scratch register; otherwise, create a new virtual register (to be |
| // replaced by the scavenger at the end of PEI). That case can be optimized |
| // slightly if DestReg is SP which is always 16-byte aligned, so the scratch |
| // register can be loaded with offset%8 and the add/sub can use an extending |
| // instruction with LSL#3. |
| // Currently the function handles any offsets but generates a poor sequence |
| // of code. |
| // assert(Offset < (1 << 24) && "unimplemented reg plus immediate"); |
| |
| unsigned Opc; |
| if (SetNZCV) |
| Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri; |
| else |
| Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri; |
| const unsigned MaxEncoding = 0xfff; |
| const unsigned ShiftSize = 12; |
| const unsigned MaxEncodableValue = MaxEncoding << ShiftSize; |
| while (((unsigned)Offset) >= (1 << ShiftSize)) { |
| unsigned ThisVal; |
| if (((unsigned)Offset) > MaxEncodableValue) { |
| ThisVal = MaxEncodableValue; |
| } else { |
| ThisVal = Offset & MaxEncodableValue; |
| } |
| assert((ThisVal >> ShiftSize) <= MaxEncoding && |
| "Encoding cannot handle value that big"); |
| BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg) |
| .addReg(SrcReg) |
| .addImm(ThisVal >> ShiftSize) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize)) |
| .setMIFlag(Flag); |
| |
| SrcReg = DestReg; |
| Offset -= ThisVal; |
| if (Offset == 0) |
| return; |
| } |
| BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg) |
| .addReg(SrcReg) |
| .addImm(Offset) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) |
| .setMIFlag(Flag); |
| } |
| |
| MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl( |
| MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| MachineBasicBlock::iterator InsertPt, int FrameIndex, |
| LiveIntervals *LIS) const { |
| // This is a bit of a hack. Consider this instruction: |
| // |
| // %0 = COPY %sp; GPR64all:%0 |
| // |
| // We explicitly chose GPR64all for the virtual register so such a copy might |
| // be eliminated by RegisterCoalescer. However, that may not be possible, and |
| // %0 may even spill. We can't spill %sp, and since it is in the GPR64all |
| // register class, TargetInstrInfo::foldMemoryOperand() is going to try. |
| // |
| // To prevent that, we are going to constrain the %0 register class here. |
| // |
| // <rdar://problem/11522048> |
| // |
| if (MI.isFullCopy()) { |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| unsigned SrcReg = MI.getOperand(1).getReg(); |
| if (SrcReg == AArch64::SP && |
| TargetRegisterInfo::isVirtualRegister(DstReg)) { |
| MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass); |
| return nullptr; |
| } |
| if (DstReg == AArch64::SP && |
| TargetRegisterInfo::isVirtualRegister(SrcReg)) { |
| MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass); |
| return nullptr; |
| } |
| } |
| |
| // Handle the case where a copy is being spilled or filled but the source |
| // and destination register class don't match. For example: |
| // |
| // %0 = COPY %xzr; GPR64common:%0 |
| // |
| // In this case we can still safely fold away the COPY and generate the |
| // following spill code: |
| // |
| // STRXui %xzr, %stack.0 |
| // |
| // This also eliminates spilled cross register class COPYs (e.g. between x and |
| // d regs) of the same size. For example: |
| // |
| // %0 = COPY %1; GPR64:%0, FPR64:%1 |
| // |
| // will be filled as |
| // |
| // LDRDui %0, fi<#0> |
| // |
| // instead of |
| // |
| // LDRXui %Temp, fi<#0> |
| // %0 = FMOV %Temp |
| // |
| if (MI.isCopy() && Ops.size() == 1 && |
| // Make sure we're only folding the explicit COPY defs/uses. |
| (Ops[0] == 0 || Ops[0] == 1)) { |
| bool IsSpill = Ops[0] == 0; |
| bool IsFill = !IsSpill; |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MachineBasicBlock &MBB = *MI.getParent(); |
| const MachineOperand &DstMO = MI.getOperand(0); |
| const MachineOperand &SrcMO = MI.getOperand(1); |
| unsigned DstReg = DstMO.getReg(); |
| unsigned SrcReg = SrcMO.getReg(); |
| // This is slightly expensive to compute for physical regs since |
| // getMinimalPhysRegClass is slow. |
| auto getRegClass = [&](unsigned Reg) { |
| return TargetRegisterInfo::isVirtualRegister(Reg) |
| ? MRI.getRegClass(Reg) |
| : TRI.getMinimalPhysRegClass(Reg); |
| }; |
| |
| if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) { |
| assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) == |
| TRI.getRegSizeInBits(*getRegClass(SrcReg)) && |
| "Mismatched register size in non subreg COPY"); |
| if (IsSpill) |
| storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex, |
| getRegClass(SrcReg), &TRI); |
| else |
| loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, |
| getRegClass(DstReg), &TRI); |
| return &*--InsertPt; |
| } |
| |
| // Handle cases like spilling def of: |
| // |
| // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0 |
| // |
| // where the physical register source can be widened and stored to the full |
| // virtual reg destination stack slot, in this case producing: |
| // |
| // STRXui %xzr, %stack.0 |
| // |
| if (IsSpill && DstMO.isUndef() && |
| TargetRegisterInfo::isPhysicalRegister(SrcReg)) { |
| assert(SrcMO.getSubReg() == 0 && |
| "Unexpected subreg on physical register"); |
| const TargetRegisterClass *SpillRC; |
| unsigned SpillSubreg; |
| switch (DstMO.getSubReg()) { |
| default: |
| SpillRC = nullptr; |
| break; |
| case AArch64::sub_32: |
| case AArch64::ssub: |
| if (AArch64::GPR32RegClass.contains(SrcReg)) { |
| SpillRC = &AArch64::GPR64RegClass; |
| SpillSubreg = AArch64::sub_32; |
| } else if (AArch64::FPR32RegClass.contains(SrcReg)) { |
| SpillRC = &AArch64::FPR64RegClass; |
| SpillSubreg = AArch64::ssub; |
| } else |
| SpillRC = nullptr; |
| break; |
| case AArch64::dsub: |
| if (AArch64::FPR64RegClass.contains(SrcReg)) { |
| SpillRC = &AArch64::FPR128RegClass; |
| SpillSubreg = AArch64::dsub; |
| } else |
| SpillRC = nullptr; |
| break; |
| } |
| |
| if (SpillRC) |
| if (unsigned WidenedSrcReg = |
| TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) { |
| storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(), |
| FrameIndex, SpillRC, &TRI); |
| return &*--InsertPt; |
| } |
| } |
| |
| // Handle cases like filling use of: |
| // |
| // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1 |
| // |
| // where we can load the full virtual reg source stack slot, into the subreg |
| // destination, in this case producing: |
| // |
| // LDRWui %0:sub_32<def,read-undef>, %stack.0 |
| // |
| if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) { |
| const TargetRegisterClass *FillRC; |
| switch (DstMO.getSubReg()) { |
| default: |
| FillRC = nullptr; |
| break; |
| case AArch64::sub_32: |
| FillRC = &AArch64::GPR32RegClass; |
| break; |
| case AArch64::ssub: |
| FillRC = &AArch64::FPR32RegClass; |
| break; |
| case AArch64::dsub: |
| FillRC = &AArch64::FPR64RegClass; |
| break; |
| } |
| |
| if (FillRC) { |
| assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) == |
| TRI.getRegSizeInBits(*FillRC) && |
| "Mismatched regclass size on folded subreg COPY"); |
| loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI); |
| MachineInstr &LoadMI = *--InsertPt; |
| MachineOperand &LoadDst = LoadMI.getOperand(0); |
| assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load"); |
| LoadDst.setSubReg(DstMO.getSubReg()); |
| LoadDst.setIsUndef(); |
| return &LoadMI; |
| } |
| } |
| } |
| |
| // Cannot fold. |
| return nullptr; |
| } |
| |
| int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset, |
| bool *OutUseUnscaledOp, |
| unsigned *OutUnscaledOp, |
| int *EmittableOffset) { |
| int Scale = 1; |
| bool IsSigned = false; |
| // The ImmIdx should be changed case by case if it is not 2. |
| unsigned ImmIdx = 2; |
| unsigned UnscaledOp = 0; |
| // Set output values in case of early exit. |
| if (EmittableOffset) |
| *EmittableOffset = 0; |
| if (OutUseUnscaledOp) |
| *OutUseUnscaledOp = false; |
| if (OutUnscaledOp) |
| *OutUnscaledOp = 0; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex"); |
| // Vector spills/fills can't take an immediate offset. |
| case AArch64::LD1Twov2d: |
| case AArch64::LD1Threev2d: |
| case AArch64::LD1Fourv2d: |
| case AArch64::LD1Twov1d: |
| case AArch64::LD1Threev1d: |
| case AArch64::LD1Fourv1d: |
| case AArch64::ST1Twov2d: |
| case AArch64::ST1Threev2d: |
| case AArch64::ST1Fourv2d: |
| case AArch64::ST1Twov1d: |
| case AArch64::ST1Threev1d: |
| case AArch64::ST1Fourv1d: |
| return AArch64FrameOffsetCannotUpdate; |
| case AArch64::PRFMui: |
| Scale = 8; |
| UnscaledOp = AArch64::PRFUMi; |
| break; |
| case AArch64::LDRXui: |
| Scale = 8; |
| UnscaledOp = AArch64::LDURXi; |
| break; |
| case AArch64::LDRWui: |
| Scale = 4; |
| UnscaledOp = AArch64::LDURWi; |
| break; |
| case AArch64::LDRBui: |
| Scale = 1; |
| UnscaledOp = AArch64::LDURBi; |
| break; |
| case AArch64::LDRHui: |
| Scale = 2; |
| UnscaledOp = AArch64::LDURHi; |
| break; |
| case AArch64::LDRSui: |
| Scale = 4; |
| UnscaledOp = AArch64::LDURSi; |
| break; |
| case AArch64::LDRDui: |
| Scale = 8; |
| UnscaledOp = AArch64::LDURDi; |
| break; |
| case AArch64::LDRQui: |
| Scale = 16; |
| UnscaledOp = AArch64::LDURQi; |
| break; |
| case AArch64::LDRBBui: |
| Scale = 1; |
| UnscaledOp = AArch64::LDURBBi; |
| break; |
| case AArch64::LDRHHui: |
| Scale = 2; |
| UnscaledOp = AArch64::LDURHHi; |
| break; |
| case AArch64::LDRSBXui: |
| Scale = 1; |
| UnscaledOp = AArch64::LDURSBXi; |
| break; |
| case AArch64::LDRSBWui: |
| Scale = 1; |
| UnscaledOp = AArch64::LDURSBWi; |
| break; |
| case AArch64::LDRSHXui: |
| Scale = 2; |
| UnscaledOp = AArch64::LDURSHXi; |
| break; |
| case AArch64::LDRSHWui: |
| Scale = 2; |
| UnscaledOp = AArch64::LDURSHWi; |
| break; |
| case AArch64::LDRSWui: |
| Scale = 4; |
| UnscaledOp = AArch64::LDURSWi; |
| break; |
| |
| case AArch64::STRXui: |
| Scale = 8; |
| UnscaledOp = AArch64::STURXi; |
| break; |
| case AArch64::STRWui: |
| Scale = 4; |
| UnscaledOp = AArch64::STURWi; |
| break; |
| case AArch64::STRBui: |
| Scale = 1; |
| UnscaledOp = AArch64::STURBi; |
| break; |
| case AArch64::STRHui: |
| Scale = 2; |
| UnscaledOp = AArch64::STURHi; |
| break; |
| case AArch64::STRSui: |
| Scale = 4; |
| UnscaledOp = AArch64::STURSi; |
| break; |
| case AArch64::STRDui: |
| Scale = 8; |
| UnscaledOp = AArch64::STURDi; |
| break; |
| case AArch64::STRQui: |
| Scale = 16; |
| UnscaledOp = AArch64::STURQi; |
| break; |
| case AArch64::STRBBui: |
| Scale = 1; |
| UnscaledOp = AArch64::STURBBi; |
| break; |
| case AArch64::STRHHui: |
| Scale = 2; |
| UnscaledOp = AArch64::STURHHi; |
| break; |
| |
| case AArch64::LDPXi: |
| case AArch64::LDPDi: |
| case AArch64::STPXi: |
| case AArch64::STPDi: |
| case AArch64::LDNPXi: |
| case AArch64::LDNPDi: |
| case AArch64::STNPXi: |
| case AArch64::STNPDi: |
| ImmIdx = 3; |
| IsSigned = true; |
| Scale = 8; |
| break; |
| case AArch64::LDPQi: |
| case AArch64::STPQi: |
| case AArch64::LDNPQi: |
| case AArch64::STNPQi: |
| ImmIdx = 3; |
| IsSigned = true; |
| Scale = 16; |
| break; |
| case AArch64::LDPWi: |
| case AArch64::LDPSi: |
| case AArch64::STPWi: |
| case AArch64::STPSi: |
| case AArch64::LDNPWi: |
| case AArch64::LDNPSi: |
| case AArch64::STNPWi: |
| case AArch64::STNPSi: |
| ImmIdx = 3; |
| IsSigned = true; |
| Scale = 4; |
| break; |
| |
| case AArch64::LDURXi: |
| case AArch64::LDURWi: |
| case AArch64::LDURBi: |
| case AArch64::LDURHi: |
| case AArch64::LDURSi: |
| case AArch64::LDURDi: |
| case AArch64::LDURQi: |
| case AArch64::LDURHHi: |
| case AArch64::LDURBBi: |
| case AArch64::LDURSBXi: |
| case AArch64::LDURSBWi: |
| case AArch64::LDURSHXi: |
| case AArch64::LDURSHWi: |
| case AArch64::LDURSWi: |
| case AArch64::STURXi: |
| case AArch64::STURWi: |
| case AArch64::STURBi: |
| case AArch64::STURHi: |
| case AArch64::STURSi: |
| case AArch64::STURDi: |
| case AArch64::STURQi: |
| case AArch64::STURBBi: |
| case AArch64::STURHHi: |
| Scale = 1; |
| break; |
| } |
| |
| Offset += MI.getOperand(ImmIdx).getImm() * Scale; |
| |
| bool useUnscaledOp = false; |
| // If the offset doesn't match the scale, we rewrite the instruction to |
| // use the unscaled instruction instead. Likewise, if we have a negative |
| // offset (and have an unscaled op to use). |
| if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0)) |
| useUnscaledOp = true; |
| |
| // Use an unscaled addressing mode if the instruction has a negative offset |
| // (or if the instruction is already using an unscaled addressing mode). |
| unsigned MaskBits; |
| if (IsSigned) { |
| // ldp/stp instructions. |
| MaskBits = 7; |
| Offset /= Scale; |
| } else if (UnscaledOp == 0 || useUnscaledOp) { |
| MaskBits = 9; |
| IsSigned = true; |
| Scale = 1; |
| } else { |
| MaskBits = 12; |
| IsSigned = false; |
| Offset /= Scale; |
| } |
| |
| // Attempt to fold address computation. |
| int MaxOff = (1 << (MaskBits - IsSigned)) - 1; |
| int MinOff = (IsSigned ? (-MaxOff - 1) : 0); |
| if (Offset >= MinOff && Offset <= MaxOff) { |
| if (EmittableOffset) |
| *EmittableOffset = Offset; |
| Offset = 0; |
| } else { |
| int NewOff = Offset < 0 ? MinOff : MaxOff; |
| if (EmittableOffset) |
| *EmittableOffset = NewOff; |
| Offset = (Offset - NewOff) * Scale; |
| } |
| if (OutUseUnscaledOp) |
| *OutUseUnscaledOp = useUnscaledOp; |
| if (OutUnscaledOp) |
| *OutUnscaledOp = UnscaledOp; |
| return AArch64FrameOffsetCanUpdate | |
| (Offset == 0 ? AArch64FrameOffsetIsLegal : 0); |
| } |
| |
| bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, |
| unsigned FrameReg, int &Offset, |
| const AArch64InstrInfo *TII) { |
| unsigned Opcode = MI.getOpcode(); |
| unsigned ImmIdx = FrameRegIdx + 1; |
| |
| if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) { |
| Offset += MI.getOperand(ImmIdx).getImm(); |
| emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(), |
| MI.getOperand(0).getReg(), FrameReg, Offset, TII, |
| MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri)); |
| MI.eraseFromParent(); |
| Offset = 0; |
| return true; |
| } |
| |
| int NewOffset; |
| unsigned UnscaledOp; |
| bool UseUnscaledOp; |
| int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp, |
| &UnscaledOp, &NewOffset); |
| if (Status & AArch64FrameOffsetCanUpdate) { |
| if (Status & AArch64FrameOffsetIsLegal) |
| // Replace the FrameIndex with FrameReg. |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| if (UseUnscaledOp) |
| MI.setDesc(TII->get(UnscaledOp)); |
| |
| MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset); |
| return Offset == 0; |
| } |
| |
| return false; |
| } |
| |
| void AArch64InstrInfo::getNoop(MCInst &NopInst) const { |
| NopInst.setOpcode(AArch64::HINT); |
| NopInst.addOperand(MCOperand::createImm(0)); |
| } |
| |
| // AArch64 supports MachineCombiner. |
| bool AArch64InstrInfo::useMachineCombiner() const { return true; } |
| |
| // True when Opc sets flag |
| static bool isCombineInstrSettingFlag(unsigned Opc) { |
| switch (Opc) { |
| case AArch64::ADDSWrr: |
| case AArch64::ADDSWri: |
| case AArch64::ADDSXrr: |
| case AArch64::ADDSXri: |
| case AArch64::SUBSWrr: |
| case AArch64::SUBSXrr: |
| // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi. |
| case AArch64::SUBSWri: |
| case AArch64::SUBSXri: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // 32b Opcodes that can be combined with a MUL |
| static bool isCombineInstrCandidate32(unsigned Opc) { |
| switch (Opc) { |
| case AArch64::ADDWrr: |
| case AArch64::ADDWri: |
| case AArch64::SUBWrr: |
| case AArch64::ADDSWrr: |
| case AArch64::ADDSWri: |
| case AArch64::SUBSWrr: |
| // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi. |
| case AArch64::SUBWri: |
| case AArch64::SUBSWri: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // 64b Opcodes that can be combined with a MUL |
| static bool isCombineInstrCandidate64(unsigned Opc) { |
| switch (Opc) { |
| case AArch64::ADDXrr: |
| case AArch64::ADDXri: |
| case AArch64::SUBXrr: |
| case AArch64::ADDSXrr: |
| case AArch64::ADDSXri: |
| case AArch64::SUBSXrr: |
| // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi. |
| case AArch64::SUBXri: |
| case AArch64::SUBSXri: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // FP Opcodes that can be combined with a FMUL |
| static bool isCombineInstrCandidateFP(const MachineInstr &Inst) { |
| switch (Inst.getOpcode()) { |
| default: |
| break; |
| case AArch64::FADDSrr: |
| case AArch64::FADDDrr: |
| case AArch64::FADDv2f32: |
| case AArch64::FADDv2f64: |
| case AArch64::FADDv4f32: |
| case AArch64::FSUBSrr: |
| case AArch64::FSUBDrr: |
| case AArch64::FSUBv2f32: |
| case AArch64::FSUBv2f64: |
| case AArch64::FSUBv4f32: |
| TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options; |
| return (Options.UnsafeFPMath || |
| Options.AllowFPOpFusion == FPOpFusion::Fast); |
| } |
| return false; |
| } |
| |
| // Opcodes that can be combined with a MUL |
| static bool isCombineInstrCandidate(unsigned Opc) { |
| return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc)); |
| } |
| |
| // |
| // Utility routine that checks if \param MO is defined by an |
| // \param CombineOpc instruction in the basic block \param MBB |
| static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, |
| unsigned CombineOpc, unsigned ZeroReg = 0, |
| bool CheckZeroReg = false) { |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| MachineInstr *MI = nullptr; |
| |
| if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| MI = MRI.getUniqueVRegDef(MO.getReg()); |
| // And it needs to be in the trace (otherwise, it won't have a depth). |
| if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc) |
| return false; |
| // Must only used by the user we combine with. |
| if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) |
| return false; |
| |
| if (CheckZeroReg) { |
| assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() && |
| MI->getOperand(1).isReg() && MI->getOperand(2).isReg() && |
| MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs"); |
| // The third input reg must be zero. |
| if (MI->getOperand(3).getReg() != ZeroReg) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // |
| // Is \param MO defined by an integer multiply and can be combined? |
| static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO, |
| unsigned MulOpc, unsigned ZeroReg) { |
| return canCombine(MBB, MO, MulOpc, ZeroReg, true); |
| } |
| |
| // |
| // Is \param MO defined by a floating-point multiply and can be combined? |
| static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO, |
| unsigned MulOpc) { |
| return canCombine(MBB, MO, MulOpc); |
| } |
| |
| // TODO: There are many more machine instruction opcodes to match: |
| // 1. Other data types (integer, vectors) |
| // 2. Other math / logic operations (xor, or) |
| // 3. Other forms of the same operation (intrinsics and other variants) |
| bool AArch64InstrInfo::isAssociativeAndCommutative( |
| const MachineInstr &Inst) const { |
| switch (Inst.getOpcode()) { |
| case AArch64::FADDDrr: |
| case AArch64::FADDSrr: |
| case AArch64::FADDv2f32: |
| case AArch64::FADDv2f64: |
| case AArch64::FADDv4f32: |
| case AArch64::FMULDrr: |
| case AArch64::FMULSrr: |
| case AArch64::FMULX32: |
| case AArch64::FMULX64: |
| case AArch64::FMULXv2f32: |
| case AArch64::FMULXv2f64: |
| case AArch64::FMULXv4f32: |
| case AArch64::FMULv2f32: |
| case AArch64::FMULv2f64: |
| case AArch64::FMULv4f32: |
| return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; |
| default: |
| return false; |
| } |
| } |
| |
| /// Find instructions that can be turned into madd. |
| static bool getMaddPatterns(MachineInstr &Root, |
| SmallVectorImpl<MachineCombinerPattern> &Patterns) { |
| unsigned Opc = Root.getOpcode(); |
| MachineBasicBlock &MBB = *Root.getParent(); |
| bool Found = false; |
| |
| if (!isCombineInstrCandidate(Opc)) |
| return false; |
| if (isCombineInstrSettingFlag(Opc)) { |
| int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true); |
| // When NZCV is live bail out. |
| if (Cmp_NZCV == -1) |
| return false; |
| unsigned NewOpc = convertToNonFlagSettingOpc(Root); |
| // When opcode can't change bail out. |
| // CHECKME: do we miss any cases for opcode conversion? |
| if (NewOpc == Opc) |
| return false; |
| Opc = NewOpc; |
| } |
| |
| switch (Opc) { |
| default: |
| break; |
| case AArch64::ADDWrr: |
| assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() && |
| "ADDWrr does not have register operands"); |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr, |
| AArch64::WZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULADDW_OP1); |
| Found = true; |
| } |
| if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr, |
| AArch64::WZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULADDW_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::ADDXrr: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr, |
| AArch64::XZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULADDX_OP1); |
| Found = true; |
| } |
| if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr, |
| AArch64::XZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULADDX_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::SUBWrr: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr, |
| AArch64::WZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULSUBW_OP1); |
| Found = true; |
| } |
| if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr, |
| AArch64::WZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULSUBW_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::SUBXrr: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr, |
| AArch64::XZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULSUBX_OP1); |
| Found = true; |
| } |
| if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr, |
| AArch64::XZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULSUBX_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::ADDWri: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr, |
| AArch64::WZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULADDWI_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::ADDXri: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr, |
| AArch64::XZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULADDXI_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::SUBWri: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr, |
| AArch64::WZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULSUBWI_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::SUBXri: |
| if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr, |
| AArch64::XZR)) { |
| Patterns.push_back(MachineCombinerPattern::MULSUBXI_OP1); |
| Found = true; |
| } |
| break; |
| } |
| return Found; |
| } |
| /// Floating-Point Support |
| |
| /// Find instructions that can be turned into madd. |
| static bool getFMAPatterns(MachineInstr &Root, |
| SmallVectorImpl<MachineCombinerPattern> &Patterns) { |
| |
| if (!isCombineInstrCandidateFP(Root)) |
| return false; |
| |
| MachineBasicBlock &MBB = *Root.getParent(); |
| bool Found = false; |
| |
| switch (Root.getOpcode()) { |
| default: |
| assert(false && "Unsupported FP instruction in combiner\n"); |
| break; |
| case AArch64::FADDSrr: |
| assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() && |
| "FADDWrr does not have register operands"); |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULSrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULADDS_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv1i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULSrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULADDS_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv1i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::FADDDrr: |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULDrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULADDD_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv1i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULDrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULADDD_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv1i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::FADDv2f32: |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2f32_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2f32_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::FADDv2f64: |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2f64)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2f64_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2f64)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv2f64_OP2); |
| Found = true; |
| } |
| break; |
| case AArch64::FADDv4f32: |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv4i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv4f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv4f32_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv4i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv4f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLAv4f32_OP2); |
| Found = true; |
| } |
| break; |
| |
| case AArch64::FSUBSrr: |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULSrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULSUBS_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULSrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULSUBS_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv1i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv1i32_indexed_OP2); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FNMULSrr)) { |
| Patterns.push_back(MachineCombinerPattern::FNMULSUBS_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::FSUBDrr: |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULDrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULSUBD_OP1); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULDrr)) { |
| Patterns.push_back(MachineCombinerPattern::FMULSUBD_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv1i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv1i64_indexed_OP2); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FNMULDrr)) { |
| Patterns.push_back(MachineCombinerPattern::FNMULSUBD_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::FSUBv2f32: |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2f32_OP2); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2f32_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::FSUBv2f64: |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv2f64)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2f64_OP2); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2i64_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv2f64)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv2f64_OP1); |
| Found = true; |
| } |
| break; |
| case AArch64::FSUBv4f32: |
| if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv4i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP2); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(2), |
| AArch64::FMULv4f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv4f32_OP2); |
| Found = true; |
| } |
| if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv4i32_indexed)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP1); |
| Found = true; |
| } else if (canCombineWithFMUL(MBB, Root.getOperand(1), |
| AArch64::FMULv4f32)) { |
| Patterns.push_back(MachineCombinerPattern::FMLSv4f32_OP1); |
| Found = true; |
| } |
| break; |
| } |
| return Found; |
| } |
| |
| /// Return true when a code sequence can improve throughput. It |
| /// should be called only for instructions in loops. |
| /// \param Pattern - combiner pattern |
| bool AArch64InstrInfo::isThroughputPattern( |
| MachineCombinerPattern Pattern) const { |
| switch (Pattern) { |
| default: |
| break; |
| case MachineCombinerPattern::FMULADDS_OP1: |
| case MachineCombinerPattern::FMULADDS_OP2: |
| case MachineCombinerPattern::FMULSUBS_OP1: |
| case MachineCombinerPattern::FMULSUBS_OP2: |
| case MachineCombinerPattern::FMULADDD_OP1: |
| case MachineCombinerPattern::FMULADDD_OP2: |
| case MachineCombinerPattern::FMULSUBD_OP1: |
| case MachineCombinerPattern::FMULSUBD_OP2: |
| case MachineCombinerPattern::FNMULSUBS_OP1: |
| case MachineCombinerPattern::FNMULSUBD_OP1: |
| case MachineCombinerPattern::FMLAv1i32_indexed_OP1: |
| case MachineCombinerPattern::FMLAv1i32_indexed_OP2: |
| case MachineCombinerPattern::FMLAv1i64_indexed_OP1: |
| case MachineCombinerPattern::FMLAv1i64_indexed_OP2: |
| case MachineCombinerPattern::FMLAv2f32_OP2: |
| case MachineCombinerPattern::FMLAv2f32_OP1: |
| case MachineCombinerPattern::FMLAv2f64_OP1: |
| case MachineCombinerPattern::FMLAv2f64_OP2: |
| case MachineCombinerPattern::FMLAv2i32_indexed_OP1: |
| case MachineCombinerPattern::FMLAv2i32_indexed_OP2: |
| case MachineCombinerPattern::FMLAv2i64_indexed_OP1: |
| case MachineCombinerPattern::FMLAv2i64_indexed_OP2: |
| case MachineCombinerPattern::FMLAv4f32_OP1: |
| case MachineCombinerPattern::FMLAv4f32_OP2: |
| case MachineCombinerPattern::FMLAv4i32_indexed_OP1: |
| case MachineCombinerPattern::FMLAv4i32_indexed_OP2: |
| case MachineCombinerPattern::FMLSv1i32_indexed_OP2: |
| case MachineCombinerPattern::FMLSv1i64_indexed_OP2: |
| case MachineCombinerPattern::FMLSv2i32_indexed_OP2: |
| case MachineCombinerPattern::FMLSv2i64_indexed_OP2: |
| case MachineCombinerPattern::FMLSv2f32_OP2: |
| case MachineCombinerPattern::FMLSv2f64_OP2: |
| case MachineCombinerPattern::FMLSv4i32_indexed_OP2: |
| case MachineCombinerPattern::FMLSv4f32_OP2: |
| return true; |
| } // end switch (Pattern) |
| return false; |
| } |
| /// Return true when there is potentially a faster code sequence for an |
| /// instruction chain ending in \p Root. All potential patterns are listed in |
| /// the \p Pattern vector. Pattern should be sorted in priority order since the |
| /// pattern evaluator stops checking as soon as it finds a faster sequence. |
| |
| bool AArch64InstrInfo::getMachineCombinerPatterns( |
| MachineInstr &Root, |
| SmallVectorImpl<MachineCombinerPattern> &Patterns) const { |
| // Integer patterns |
| if (getMaddPatterns(Root, Patterns)) |
| return true; |
| // Floating point patterns |
| if (getFMAPatterns(Root, Patterns)) |
| return true; |
| |
| return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); |
| } |
| |
| enum class FMAInstKind { Default, Indexed, Accumulator }; |
| /// genFusedMultiply - Generate fused multiply instructions. |
| /// This function supports both integer and floating point instructions. |
| /// A typical example: |
| /// F|MUL I=A,B,0 |
| /// F|ADD R,I,C |
| /// ==> F|MADD R,A,B,C |
| /// \param MF Containing MachineFunction |
| /// \param MRI Register information |
| /// \param TII Target information |
| /// \param Root is the F|ADD instruction |
| /// \param [out] InsInstrs is a vector of machine instructions and will |
| /// contain the generated madd instruction |
| /// \param IdxMulOpd is index of operand in Root that is the result of |
| /// the F|MUL. In the example above IdxMulOpd is 1. |
| /// \param MaddOpc the opcode fo the f|madd instruction |
| /// \param RC Register class of operands |
| /// \param kind of fma instruction (addressing mode) to be generated |
| /// \param ReplacedAddend is the result register from the instruction |
| /// replacing the non-combined operand, if any. |
| static MachineInstr * |
| genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII, MachineInstr &Root, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd, |
| unsigned MaddOpc, const TargetRegisterClass *RC, |
| FMAInstKind kind = FMAInstKind::Default, |
| const unsigned *ReplacedAddend = nullptr) { |
| assert(IdxMulOpd == 1 || IdxMulOpd == 2); |
| |
| unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1; |
| MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg()); |
| unsigned ResultReg = Root.getOperand(0).getReg(); |
| unsigned SrcReg0 = MUL->getOperand(1).getReg(); |
| bool Src0IsKill = MUL->getOperand(1).isKill(); |
| unsigned SrcReg1 = MUL->getOperand(2).getReg(); |
| bool Src1IsKill = MUL->getOperand(2).isKill(); |
| |
| unsigned SrcReg2; |
| bool Src2IsKill; |
| if (ReplacedAddend) { |
| // If we just generated a new addend, we must be it's only use. |
| SrcReg2 = *ReplacedAddend; |
| Src2IsKill = true; |
| } else { |
| SrcReg2 = Root.getOperand(IdxOtherOpd).getReg(); |
| Src2IsKill = Root.getOperand(IdxOtherOpd).isKill(); |
| } |
| |
| if (TargetRegisterInfo::isVirtualRegister(ResultReg)) |
| MRI.constrainRegClass(ResultReg, RC); |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg0)) |
| MRI.constrainRegClass(SrcReg0, RC); |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg1)) |
| MRI.constrainRegClass(SrcReg1, RC); |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg2)) |
| MRI.constrainRegClass(SrcReg2, RC); |
| |
| MachineInstrBuilder MIB; |
| if (kind == FMAInstKind::Default) |
| MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) |
| .addReg(SrcReg0, getKillRegState(Src0IsKill)) |
| .addReg(SrcReg1, getKillRegState(Src1IsKill)) |
| .addReg(SrcReg2, getKillRegState(Src2IsKill)); |
| else if (kind == FMAInstKind::Indexed) |
| MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) |
| .addReg(SrcReg2, getKillRegState(Src2IsKill)) |
| .addReg(SrcReg0, getKillRegState(Src0IsKill)) |
| .addReg(SrcReg1, getKillRegState(Src1IsKill)) |
| .addImm(MUL->getOperand(3).getImm()); |
| else if (kind == FMAInstKind::Accumulator) |
| MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) |
| .addReg(SrcReg2, getKillRegState(Src2IsKill)) |
| .addReg(SrcReg0, getKillRegState(Src0IsKill)) |
| .addReg(SrcReg1, getKillRegState(Src1IsKill)); |
| else |
| assert(false && "Invalid FMA instruction kind \n"); |
| // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL) |
| InsInstrs.push_back(MIB); |
| return MUL; |
| } |
| |
| /// genMaddR - Generate madd instruction and combine mul and add using |
| /// an extra virtual register |
| /// Example - an ADD intermediate needs to be stored in a register: |
| /// MUL I=A,B,0 |
| /// ADD R,I,Imm |
| /// ==> ORR V, ZR, Imm |
| /// ==> MADD R,A,B,V |
| /// \param MF Containing MachineFunction |
| /// \param MRI Register information |
| /// \param TII Target information |
| /// \param Root is the ADD instruction |
| /// \param [out] InsInstrs is a vector of machine instructions and will |
| /// contain the generated madd instruction |
| /// \param IdxMulOpd is index of operand in Root that is the result of |
| /// the MUL. In the example above IdxMulOpd is 1. |
| /// \param MaddOpc the opcode fo the madd instruction |
| /// \param VR is a virtual register that holds the value of an ADD operand |
| /// (V in the example above). |
| /// \param RC Register class of operands |
| static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII, MachineInstr &Root, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR, |
| const TargetRegisterClass *RC) { |
| assert(IdxMulOpd == 1 || IdxMulOpd == 2); |
| |
| MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg()); |
| unsigned ResultReg = Root.getOperand(0).getReg(); |
| unsigned SrcReg0 = MUL->getOperand(1).getReg(); |
| bool Src0IsKill = MUL->getOperand(1).isKill(); |
| unsigned SrcReg1 = MUL->getOperand(2).getReg(); |
| bool Src1IsKill = MUL->getOperand(2).isKill(); |
| |
| if (TargetRegisterInfo::isVirtualRegister(ResultReg)) |
| MRI.constrainRegClass(ResultReg, RC); |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg0)) |
| MRI.constrainRegClass(SrcReg0, RC); |
| if (TargetRegisterInfo::isVirtualRegister(SrcReg1)) |
| MRI.constrainRegClass(SrcReg1, RC); |
| if (TargetRegisterInfo::isVirtualRegister(VR)) |
| MRI.constrainRegClass(VR, RC); |
| |
| MachineInstrBuilder MIB = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) |
| .addReg(SrcReg0, getKillRegState(Src0IsKill)) |
| .addReg(SrcReg1, getKillRegState(Src1IsKill)) |
| .addReg(VR); |
| // Insert the MADD |
| InsInstrs.push_back(MIB); |
| return MUL; |
| } |
| |
| /// When getMachineCombinerPatterns() finds potential patterns, |
| /// this function generates the instructions that could replace the |
| /// original code sequence |
| void AArch64InstrInfo::genAlternativeCodeSequence( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| MachineBasicBlock &MBB = *Root.getParent(); |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| MachineFunction &MF = *MBB.getParent(); |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| |
| MachineInstr *MUL; |
| const TargetRegisterClass *RC; |
| unsigned Opc; |
| switch (Pattern) { |
| default: |
| // Reassociate instructions. |
| TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
| DelInstrs, InstrIdxForVirtReg); |
| return; |
| case MachineCombinerPattern::MULADDW_OP1: |
| case MachineCombinerPattern::MULADDX_OP1: |
| // MUL I=A,B,0 |
| // ADD R,I,C |
| // ==> MADD R,A,B,C |
| // --- Create(MADD); |
| if (Pattern == MachineCombinerPattern::MULADDW_OP1) { |
| Opc = AArch64::MADDWrrr; |
| RC = &AArch64::GPR32RegClass; |
| } else { |
| Opc = AArch64::MADDXrrr; |
| RC = &AArch64::GPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); |
| break; |
| case MachineCombinerPattern::MULADDW_OP2: |
| case MachineCombinerPattern::MULADDX_OP2: |
| // MUL I=A,B,0 |
| // ADD R,C,I |
| // ==> MADD R,A,B,C |
| // --- Create(MADD); |
| if (Pattern == MachineCombinerPattern::MULADDW_OP2) { |
| Opc = AArch64::MADDWrrr; |
| RC = &AArch64::GPR32RegClass; |
| } else { |
| Opc = AArch64::MADDXrrr; |
| RC = &AArch64::GPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); |
| break; |
| case MachineCombinerPattern::MULADDWI_OP1: |
| case MachineCombinerPattern::MULADDXI_OP1: { |
| // MUL I=A,B,0 |
| // ADD R,I,Imm |
| // ==> ORR V, ZR, Imm |
| // ==> MADD R,A,B,V |
| // --- Create(MADD); |
| const TargetRegisterClass *OrrRC; |
| unsigned BitSize, OrrOpc, ZeroReg; |
| if (Pattern == MachineCombinerPattern::MULADDWI_OP1) { |
| OrrOpc = AArch64::ORRWri; |
| OrrRC = &AArch64::GPR32spRegClass; |
| BitSize = 32; |
| ZeroReg = AArch64::WZR; |
| Opc = AArch64::MADDWrrr; |
| RC = &AArch64::GPR32RegClass; |
| } else { |
| OrrOpc = AArch64::ORRXri; |
| OrrRC = &AArch64::GPR64spRegClass; |
| BitSize = 64; |
| ZeroReg = AArch64::XZR; |
| Opc = AArch64::MADDXrrr; |
| RC = &AArch64::GPR64RegClass; |
| } |
| unsigned NewVR = MRI.createVirtualRegister(OrrRC); |
| uint64_t Imm = Root.getOperand(2).getImm(); |
| |
| if (Root.getOperand(3).isImm()) { |
| unsigned Val = Root.getOperand(3).getImm(); |
| Imm = Imm << Val; |
| } |
| uint64_t UImm = SignExtend64(Imm, BitSize); |
| uint64_t Encoding; |
| if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { |
| MachineInstrBuilder MIB1 = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR) |
| .addReg(ZeroReg) |
| .addImm(Encoding); |
| InsInstrs.push_back(MIB1); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC); |
| } |
| break; |
| } |
| case MachineCombinerPattern::MULSUBW_OP1: |
| case MachineCombinerPattern::MULSUBX_OP1: { |
| // MUL I=A,B,0 |
| // SUB R,I, C |
| // ==> SUB V, 0, C |
| // ==> MADD R,A,B,V // = -C + A*B |
| // --- Create(MADD); |
| const TargetRegisterClass *SubRC; |
| unsigned SubOpc, ZeroReg; |
| if (Pattern == MachineCombinerPattern::MULSUBW_OP1) { |
| SubOpc = AArch64::SUBWrr; |
| SubRC = &AArch64::GPR32spRegClass; |
| ZeroReg = AArch64::WZR; |
| Opc = AArch64::MADDWrrr; |
| RC = &AArch64::GPR32RegClass; |
| } else { |
| SubOpc = AArch64::SUBXrr; |
| SubRC = &AArch64::GPR64spRegClass; |
| ZeroReg = AArch64::XZR; |
| Opc = AArch64::MADDXrrr; |
| RC = &AArch64::GPR64RegClass; |
| } |
| unsigned NewVR = MRI.createVirtualRegister(SubRC); |
| // SUB NewVR, 0, C |
| MachineInstrBuilder MIB1 = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR) |
| .addReg(ZeroReg) |
| .add(Root.getOperand(2)); |
| InsInstrs.push_back(MIB1); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC); |
| break; |
| } |
| case MachineCombinerPattern::MULSUBW_OP2: |
| case MachineCombinerPattern::MULSUBX_OP2: |
| // MUL I=A,B,0 |
| // SUB R,C,I |
| // ==> MSUB R,A,B,C (computes C - A*B) |
| // --- Create(MSUB); |
| if (Pattern == MachineCombinerPattern::MULSUBW_OP2) { |
| Opc = AArch64::MSUBWrrr; |
| RC = &AArch64::GPR32RegClass; |
| } else { |
| Opc = AArch64::MSUBXrrr; |
| RC = &AArch64::GPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); |
| break; |
| case MachineCombinerPattern::MULSUBWI_OP1: |
| case MachineCombinerPattern::MULSUBXI_OP1: { |
| // MUL I=A,B,0 |
| // SUB R,I, Imm |
| // ==> ORR V, ZR, -Imm |
| // ==> MADD R,A,B,V // = -Imm + A*B |
| // --- Create(MADD); |
| const TargetRegisterClass *OrrRC; |
| unsigned BitSize, OrrOpc, ZeroReg; |
| if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) { |
| OrrOpc = AArch64::ORRWri; |
| OrrRC = &AArch64::GPR32spRegClass; |
| BitSize = 32; |
| ZeroReg = AArch64::WZR; |
| Opc = AArch64::MADDWrrr; |
| RC = &AArch64::GPR32RegClass; |
| } else { |
| OrrOpc = AArch64::ORRXri; |
| OrrRC = &AArch64::GPR64spRegClass; |
| BitSize = 64; |
| ZeroReg = AArch64::XZR; |
| Opc = AArch64::MADDXrrr; |
| RC = &AArch64::GPR64RegClass; |
| } |
| unsigned NewVR = MRI.createVirtualRegister(OrrRC); |
| uint64_t Imm = Root.getOperand(2).getImm(); |
| if (Root.getOperand(3).isImm()) { |
| unsigned Val = Root.getOperand(3).getImm(); |
| Imm = Imm << Val; |
| } |
| uint64_t UImm = SignExtend64(-Imm, BitSize); |
| uint64_t Encoding; |
| if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { |
| MachineInstrBuilder MIB1 = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR) |
| .addReg(ZeroReg) |
| .addImm(Encoding); |
| InsInstrs.push_back(MIB1); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC); |
| } |
| break; |
| } |
| // Floating Point Support |
| case MachineCombinerPattern::FMULADDS_OP1: |
| case MachineCombinerPattern::FMULADDD_OP1: |
| // MUL I=A,B,0 |
| // ADD R,I,C |
| // ==> MADD R,A,B,C |
| // --- Create(MADD); |
| if (Pattern == MachineCombinerPattern::FMULADDS_OP1) { |
| Opc = AArch64::FMADDSrrr; |
| RC = &AArch64::FPR32RegClass; |
| } else { |
| Opc = AArch64::FMADDDrrr; |
| RC = &AArch64::FPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); |
| break; |
| case MachineCombinerPattern::FMULADDS_OP2: |
| case MachineCombinerPattern::FMULADDD_OP2: |
| // FMUL I=A,B,0 |
| // FADD R,C,I |
| // ==> FMADD R,A,B,C |
| // --- Create(FMADD); |
| if (Pattern == MachineCombinerPattern::FMULADDS_OP2) { |
| Opc = AArch64::FMADDSrrr; |
| RC = &AArch64::FPR32RegClass; |
| } else { |
| Opc = AArch64::FMADDDrrr; |
| RC = &AArch64::FPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); |
| break; |
| |
| case MachineCombinerPattern::FMLAv1i32_indexed_OP1: |
| Opc = AArch64::FMLAv1i32_indexed; |
| RC = &AArch64::FPR32RegClass; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed); |
| break; |
| case MachineCombinerPattern::FMLAv1i32_indexed_OP2: |
| Opc = AArch64::FMLAv1i32_indexed; |
| RC = &AArch64::FPR32RegClass; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| break; |
| |
| case MachineCombinerPattern::FMLAv1i64_indexed_OP1: |
| Opc = AArch64::FMLAv1i64_indexed; |
| RC = &AArch64::FPR64RegClass; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed); |
| break; |
| case MachineCombinerPattern::FMLAv1i64_indexed_OP2: |
| Opc = AArch64::FMLAv1i64_indexed; |
| RC = &AArch64::FPR64RegClass; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| break; |
| |
| case MachineCombinerPattern::FMLAv2i32_indexed_OP1: |
| case MachineCombinerPattern::FMLAv2f32_OP1: |
| RC = &AArch64::FPR64RegClass; |
| if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) { |
| Opc = AArch64::FMLAv2i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLAv2f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| case MachineCombinerPattern::FMLAv2i32_indexed_OP2: |
| case MachineCombinerPattern::FMLAv2f32_OP2: |
| RC = &AArch64::FPR64RegClass; |
| if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) { |
| Opc = AArch64::FMLAv2i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLAv2f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| |
| case MachineCombinerPattern::FMLAv2i64_indexed_OP1: |
| case MachineCombinerPattern::FMLAv2f64_OP1: |
| RC = &AArch64::FPR128RegClass; |
| if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) { |
| Opc = AArch64::FMLAv2i64_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLAv2f64; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| case MachineCombinerPattern::FMLAv2i64_indexed_OP2: |
| case MachineCombinerPattern::FMLAv2f64_OP2: |
| RC = &AArch64::FPR128RegClass; |
| if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) { |
| Opc = AArch64::FMLAv2i64_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLAv2f64; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| |
| case MachineCombinerPattern::FMLAv4i32_indexed_OP1: |
| case MachineCombinerPattern::FMLAv4f32_OP1: |
| RC = &AArch64::FPR128RegClass; |
| if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) { |
| Opc = AArch64::FMLAv4i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLAv4f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| |
| case MachineCombinerPattern::FMLAv4i32_indexed_OP2: |
| case MachineCombinerPattern::FMLAv4f32_OP2: |
| RC = &AArch64::FPR128RegClass; |
| if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) { |
| Opc = AArch64::FMLAv4i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLAv4f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| |
| case MachineCombinerPattern::FMULSUBS_OP1: |
| case MachineCombinerPattern::FMULSUBD_OP1: { |
| // FMUL I=A,B,0 |
| // FSUB R,I,C |
| // ==> FNMSUB R,A,B,C // = -C + A*B |
| // --- Create(FNMSUB); |
| if (Pattern == MachineCombinerPattern::FMULSUBS_OP1) { |
| Opc = AArch64::FNMSUBSrrr; |
| RC = &AArch64::FPR32RegClass; |
| } else { |
| Opc = AArch64::FNMSUBDrrr; |
| RC = &AArch64::FPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); |
| break; |
| } |
| |
| case MachineCombinerPattern::FNMULSUBS_OP1: |
| case MachineCombinerPattern::FNMULSUBD_OP1: { |
| // FNMUL I=A,B,0 |
| // FSUB R,I,C |
| // ==> FNMADD R,A,B,C // = -A*B - C |
| // --- Create(FNMADD); |
| if (Pattern == MachineCombinerPattern::FNMULSUBS_OP1) { |
| Opc = AArch64::FNMADDSrrr; |
| RC = &AArch64::FPR32RegClass; |
| } else { |
| Opc = AArch64::FNMADDDrrr; |
| RC = &AArch64::FPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); |
| break; |
| } |
| |
| case MachineCombinerPattern::FMULSUBS_OP2: |
| case MachineCombinerPattern::FMULSUBD_OP2: { |
| // FMUL I=A,B,0 |
| // FSUB R,C,I |
| // ==> FMSUB R,A,B,C (computes C - A*B) |
| // --- Create(FMSUB); |
| if (Pattern == MachineCombinerPattern::FMULSUBS_OP2) { |
| Opc = AArch64::FMSUBSrrr; |
| RC = &AArch64::FPR32RegClass; |
| } else { |
| Opc = AArch64::FMSUBDrrr; |
| RC = &AArch64::FPR64RegClass; |
| } |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); |
| break; |
| } |
| |
| case MachineCombinerPattern::FMLSv1i32_indexed_OP2: |
| Opc = AArch64::FMLSv1i32_indexed; |
| RC = &AArch64::FPR32RegClass; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| break; |
| |
| case MachineCombinerPattern::FMLSv1i64_indexed_OP2: |
| Opc = AArch64::FMLSv1i64_indexed; |
| RC = &AArch64::FPR64RegClass; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| break; |
| |
| case MachineCombinerPattern::FMLSv2f32_OP2: |
| case MachineCombinerPattern::FMLSv2i32_indexed_OP2: |
| RC = &AArch64::FPR64RegClass; |
| if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) { |
| Opc = AArch64::FMLSv2i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLSv2f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| |
| case MachineCombinerPattern::FMLSv2f64_OP2: |
| case MachineCombinerPattern::FMLSv2i64_indexed_OP2: |
| RC = &AArch64::FPR128RegClass; |
| if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) { |
| Opc = AArch64::FMLSv2i64_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLSv2f64; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| |
| case MachineCombinerPattern::FMLSv4f32_OP2: |
| case MachineCombinerPattern::FMLSv4i32_indexed_OP2: |
| RC = &AArch64::FPR128RegClass; |
| if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) { |
| Opc = AArch64::FMLSv4i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Indexed); |
| } else { |
| Opc = AArch64::FMLSv4f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, |
| FMAInstKind::Accumulator); |
| } |
| break; |
| case MachineCombinerPattern::FMLSv2f32_OP1: |
| case MachineCombinerPattern::FMLSv2i32_indexed_OP1: { |
| RC = &AArch64::FPR64RegClass; |
| unsigned NewVR = MRI.createVirtualRegister(RC); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f32), NewVR) |
| .add(Root.getOperand(2)); |
| InsInstrs.push_back(MIB1); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) { |
| Opc = AArch64::FMLAv2i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed, &NewVR); |
| } else { |
| Opc = AArch64::FMLAv2f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Accumulator, &NewVR); |
| } |
| break; |
| } |
| case MachineCombinerPattern::FMLSv4f32_OP1: |
| case MachineCombinerPattern::FMLSv4i32_indexed_OP1: { |
| RC = &AArch64::FPR128RegClass; |
| unsigned NewVR = MRI.createVirtualRegister(RC); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f32), NewVR) |
| .add(Root.getOperand(2)); |
| InsInstrs.push_back(MIB1); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) { |
| Opc = AArch64::FMLAv4i32_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed, &NewVR); |
| } else { |
| Opc = AArch64::FMLAv4f32; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Accumulator, &NewVR); |
| } |
| break; |
| } |
| case MachineCombinerPattern::FMLSv2f64_OP1: |
| case MachineCombinerPattern::FMLSv2i64_indexed_OP1: { |
| RC = &AArch64::FPR128RegClass; |
| unsigned NewVR = MRI.createVirtualRegister(RC); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f64), NewVR) |
| .add(Root.getOperand(2)); |
| InsInstrs.push_back(MIB1); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) { |
| Opc = AArch64::FMLAv2i64_indexed; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Indexed, &NewVR); |
| } else { |
| Opc = AArch64::FMLAv2f64; |
| MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, |
| FMAInstKind::Accumulator, &NewVR); |
| } |
| break; |
| } |
| } // end switch (Pattern) |
| // Record MUL and ADD/SUB for deletion |
| DelInstrs.push_back(MUL); |
| DelInstrs.push_back(&Root); |
| } |
| |
| /// Replace csincr-branch sequence by simple conditional branch |
| /// |
| /// Examples: |
| /// 1. \code |
| /// csinc w9, wzr, wzr, <condition code> |
| /// tbnz w9, #0, 0x44 |
| /// \endcode |
| /// to |
| /// \code |
| /// b.<inverted condition code> |
| /// \endcode |
| /// |
| /// 2. \code |
| /// csinc w9, wzr, wzr, <condition code> |
| /// tbz w9, #0, 0x44 |
| /// \endcode |
| /// to |
| /// \code |
| /// b.<condition code> |
| /// \endcode |
| /// |
| /// Replace compare and branch sequence by TBZ/TBNZ instruction when the |
| /// compare's constant operand is power of 2. |
| /// |
| /// Examples: |
| /// \code |
| /// and w8, w8, #0x400 |
| /// cbnz w8, L1 |
| /// \endcode |
| /// to |
| /// \code |
| /// tbnz w8, #10, L1 |
| /// \endcode |
| /// |
| /// \param MI Conditional Branch |
| /// \return True when the simple conditional branch is generated |
| /// |
| bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const { |
| bool IsNegativeBranch = false; |
| bool IsTestAndBranch = false; |
| unsigned TargetBBInMI = 0; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unknown branch instruction?"); |
| case AArch64::Bcc: |
| return false; |
| case AArch64::CBZW: |
| case AArch64::CBZX: |
| TargetBBInMI = 1; |
| break; |
| case AArch64::CBNZW: |
| case AArch64::CBNZX: |
| TargetBBInMI = 1; |
| IsNegativeBranch = true; |
| break; |
| case AArch64::TBZW: |
| case AArch64::TBZX: |
| TargetBBInMI = 2; |
| IsTestAndBranch = true; |
| break; |
| case AArch64::TBNZW: |
| case AArch64::TBNZX: |
| TargetBBInMI = 2; |
| IsNegativeBranch = true; |
| IsTestAndBranch = true; |
| break; |
| } |
| // So we increment a zero register and test for bits other |
| // than bit 0? Conservatively bail out in case the verifier |
| // missed this case. |
| if (IsTestAndBranch && MI.getOperand(1).getImm()) |
| return false; |
| |
| // Find Definition. |
| assert(MI.getParent() && "Incomplete machine instruciton\n"); |
| MachineBasicBlock *MBB = MI.getParent(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| unsigned VReg = MI.getOperand(0).getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(VReg)) |
| return false; |
| |
| MachineInstr *DefMI = MRI->getVRegDef(VReg); |
| |
| // Look through COPY instructions to find definition. |
| while (DefMI->isCopy()) { |
| unsigned CopyVReg = DefMI->getOperand(1).getReg(); |
| if (!MRI->hasOneNonDBGUse(CopyVReg)) |
| return false; |
| if (!MRI->hasOneDef(CopyVReg)) |
| return false; |
| DefMI = MRI->getVRegDef(CopyVReg); |
| } |
| |
| switch (DefMI->getOpcode()) { |
| default: |
| return false; |
| // Fold AND into a TBZ/TBNZ if constant operand is power of 2. |
| case AArch64::ANDWri: |
| case AArch64::ANDXri: { |
| if (IsTestAndBranch) |
| return false; |
| if (DefMI->getParent() != MBB) |
| return false; |
| if (!MRI->hasOneNonDBGUse(VReg)) |
| return false; |
| |
| bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri); |
| uint64_t Mask = AArch64_AM::decodeLogicalImmediate( |
| DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64); |
| if (!isPowerOf2_64(Mask)) |
| return false; |
| |
| MachineOperand &MO = DefMI->getOperand(1); |
| unsigned NewReg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(NewReg)) |
| return false; |
| |
| assert(!MRI->def_empty(NewReg) && "Register must be defined."); |
| |
| MachineBasicBlock &RefToMBB = *MBB; |
| MachineBasicBlock *TBB = MI.getOperand(1).getMBB(); |
| DebugLoc DL = MI.getDebugLoc(); |
| unsigned Imm = Log2_64(Mask); |
| unsigned Opc = (Imm < 32) |
| ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW) |
| : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX); |
| MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc)) |
| .addReg(NewReg) |
| .addImm(Imm) |
| .addMBB(TBB); |
| // Register lives on to the CBZ now. |
| MO.setIsKill(false); |
| |
| // For immediate smaller than 32, we need to use the 32-bit |
| // variant (W) in all cases. Indeed the 64-bit variant does not |
| // allow to encode them. |
| // Therefore, if the input register is 64-bit, we need to take the |
| // 32-bit sub-part. |
| if (!Is32Bit && Imm < 32) |
| NewMI->getOperand(0).setSubReg(AArch64::sub_32); |
| MI.eraseFromParent(); |
| return true; |
| } |
| // Look for CSINC |
| case AArch64::CSINCWr: |
| case AArch64::CSINCXr: { |
| if (!(DefMI->getOperand(1).getReg() == AArch64::WZR && |
| DefMI->getOperand(2).getReg() == AArch64::WZR) && |
| !(DefMI->getOperand(1).getReg() == AArch64::XZR && |
| DefMI->getOperand(2).getReg() == AArch64::XZR)) |
| return false; |
| |
| if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1) |
| return false; |
| |
| AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm(); |
| // Convert only when the condition code is not modified between |
| // the CSINC and the branch. The CC may be used by other |
| // instructions in between. |
| if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write)) |
| return false; |
| MachineBasicBlock &RefToMBB = *MBB; |
| MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB(); |
| DebugLoc DL = MI.getDebugLoc(); |
| if (IsNegativeBranch) |
| CC = AArch64CC::getInvertedCondCode(CC); |
| BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB); |
| MI.eraseFromParent(); |
| return true; |
| } |
| } |
| } |
| |
| std::pair<unsigned, unsigned> |
| AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| const unsigned Mask = AArch64II::MO_FRAGMENT; |
| return std::make_pair(TF & Mask, TF & ~Mask); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| using namespace AArch64II; |
| |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"}, |
| {MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"}, |
| {MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"}, |
| {MO_HI12, "aarch64-hi12"}}; |
| return makeArrayRef(TargetFlags); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { |
| using namespace AArch64II; |
| |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_GOT, "aarch64-got"}, {MO_NC, "aarch64-nc"}, {MO_TLS, "aarch64-tls"}}; |
| return makeArrayRef(TargetFlags); |
| } |
| |
| ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> |
| AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const { |
| static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = |
| {{MOSuppressPair, "aarch64-suppress-pair"}, |
| {MOStridedAccess, "aarch64-strided-access"}}; |
| return makeArrayRef(TargetFlags); |
| } |
| |
| /// Constants defining how certain sequences should be outlined. |
| /// This encompasses how an outlined function should be called, and what kind of |
| /// frame should be emitted for that outlined function. |
| /// |
| /// \p MachineOutlinerDefault implies that the function should be called with |
| /// a save and restore of LR to the stack. |
| /// |
| /// That is, |
| /// |
| /// I1 Save LR OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// I3 Restore LR I2 |
| /// I3 |
| /// RET |
| /// |
| /// * Call construction overhead: 3 (save + BL + restore) |
| /// * Frame construction overhead: 1 (ret) |
| /// * Requires stack fixups? Yes |
| /// |
| /// \p MachineOutlinerTailCall implies that the function is being created from |
| /// a sequence of instructions ending in a return. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> B OUTLINED_FUNCTION I1 |
| /// RET I2 |
| /// RET |
| /// |
| /// * Call construction overhead: 1 (B) |
| /// * Frame construction overhead: 0 (Return included in sequence) |
| /// * Requires stack fixups? No |
| /// |
| /// \p MachineOutlinerNoLRSave implies that the function should be called using |
| /// a BL instruction, but doesn't require LR to be saved and restored. This |
| /// happens when LR is known to be dead. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// I3 I2 |
| /// I3 |
| /// RET |
| /// |
| /// * Call construction overhead: 1 (BL) |
| /// * Frame construction overhead: 1 (RET) |
| /// * Requires stack fixups? No |
| /// |
| /// \p MachineOutlinerThunk implies that the function is being created from |
| /// a sequence of instructions ending in a call. The outlined function is |
| /// called with a BL instruction, and the outlined function tail-calls the |
| /// original call destination. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// BL f I2 |
| /// B f |
| /// * Call construction overhead: 1 (BL) |
| /// * Frame construction overhead: 0 |
| /// * Requires stack fixups? No |
| /// |
| /// \p MachineOutlinerRegSave implies that the function should be called with a |
| /// save and restore of LR to an available register. This allows us to avoid |
| /// stack fixups. Note that this outlining variant is compatible with the |
| /// NoLRSave case. |
| /// |
| /// That is, |
| /// |
| /// I1 Save LR OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// I3 Restore LR I2 |
| /// I3 |
| /// RET |
| /// |
| /// * Call construction overhead: 3 (save + BL + restore) |
| /// * Frame construction overhead: 1 (ret) |
| /// * Requires stack fixups? No |
| enum MachineOutlinerClass { |
| MachineOutlinerDefault, /// Emit a save, restore, call, and return. |
| MachineOutlinerTailCall, /// Only emit a branch. |
| MachineOutlinerNoLRSave, /// Emit a call and return. |
| MachineOutlinerThunk, /// Emit a call and tail-call. |
| MachineOutlinerRegSave /// Same as default, but save to a register. |
| }; |
| |
| enum MachineOutlinerMBBFlags { |
| LRUnavailableSomewhere = 0x2, |
| HasCalls = 0x4 |
| }; |
| |
| unsigned |
| AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { |
| MachineFunction *MF = C.getMF(); |
| const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>( |
| MF->getSubtarget().getRegisterInfo()); |
| |
| // Check if there is an available register across the sequence that we can |
| // use. |
| for (unsigned Reg : AArch64::GPR64RegClass) { |
| if (!ARI->isReservedReg(*MF, Reg) && |
| Reg != AArch64::LR && // LR is not reserved, but don't use it. |
| Reg != AArch64::X16 && // X16 is not guaranteed to be preserved. |
| Reg != AArch64::X17 && // Ditto for X17. |
| C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) |
| return Reg; |
| } |
| |
| // No suitable register. Return 0. |
| return 0u; |
| } |
| |
| outliner::OutlinedFunction |
| AArch64InstrInfo::getOutliningCandidateInfo( |
| std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { |
| unsigned SequenceSize = std::accumulate( |
| RepeatedSequenceLocs[0].front(), |
| std::next(RepeatedSequenceLocs[0].back()), |
| 0, [this](unsigned Sum, const MachineInstr &MI) { |
| return Sum + getInstSizeInBytes(MI); |
| }); |
| |
| // Compute liveness information for each candidate. |
| const TargetRegisterInfo &TRI = getRegisterInfo(); |
| std::for_each(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), |
| [&TRI](outliner::Candidate &C) { C.initLRU(TRI); }); |
| |
| // According to the AArch64 Procedure Call Standard, the following are |
| // undefined on entry/exit from a function call: |
| // |
| // * Registers x16, x17, (and thus w16, w17) |
| // * Condition codes (and thus the NZCV register) |
| // |
| // Because if this, we can't outline any sequence of instructions where |
| // one |
| // of these registers is live into/across it. Thus, we need to delete |
| // those |
| // candidates. |
| auto CantGuaranteeValueAcrossCall = [](outliner::Candidate &C) { |
| LiveRegUnits LRU = C.LRU; |
| return (!LRU.available(AArch64::W16) || !LRU.available(AArch64::W17) || |
| !LRU.available(AArch64::NZCV)); |
| }; |
| |
| // Erase every candidate that violates the restrictions above. (It could be |
| // true that we have viable candidates, so it's not worth bailing out in |
| // the case that, say, 1 out of 20 candidates violate the restructions.) |
| RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(), |
| RepeatedSequenceLocs.end(), |
| CantGuaranteeValueAcrossCall), |
| RepeatedSequenceLocs.end()); |
| |
| // If the sequence is empty, we're done. |
| if (RepeatedSequenceLocs.empty()) |
| return outliner::OutlinedFunction(); |
| |
| // At this point, we have only "safe" candidates to outline. Figure out |
| // frame + call instruction information. |
| |
| unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); |
| |
| // Helper lambda which sets call information for every candidate. |
| auto SetCandidateCallInfo = |
| [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { |
| for (outliner::Candidate &C : RepeatedSequenceLocs) |
| C.setCallInfo(CallID, NumBytesForCall); |
| }; |
| |
| unsigned FrameID = MachineOutlinerDefault; |
| unsigned NumBytesToCreateFrame = 4; |
| |
| // If the last instruction in any candidate is a terminator, then we should |
| // tail call all of the candidates. |
| if (RepeatedSequenceLocs[0].back()->isTerminator()) { |
| FrameID = MachineOutlinerTailCall; |
| NumBytesToCreateFrame = 0; |
| SetCandidateCallInfo(MachineOutlinerTailCall, 4); |
| } |
| |
| else if (LastInstrOpcode == AArch64::BL || LastInstrOpcode == AArch64::BLR) { |
| // FIXME: Do we need to check if the code after this uses the value of LR? |
| FrameID = MachineOutlinerThunk; |
| NumBytesToCreateFrame = 0; |
| SetCandidateCallInfo(MachineOutlinerThunk, 4); |
| } |
| |
| // Make sure that LR isn't live on entry to this candidate. The only |
| // instructions that use LR that could possibly appear in a repeated sequence |
| // are calls. Therefore, we only have to check and see if LR is dead on entry |
| // to (or exit from) some candidate. |
| else if (std::all_of(RepeatedSequenceLocs.begin(), |
| RepeatedSequenceLocs.end(), |
| [](outliner::Candidate &C) { |
| return C.LRU.available(AArch64::LR); |
| })) { |
| FrameID = MachineOutlinerNoLRSave; |
| NumBytesToCreateFrame = 4; |
| SetCandidateCallInfo(MachineOutlinerNoLRSave, 4); |
| } |
| |
| // LR is live, so we need to save it. Decide whether it should be saved to |
| // the stack, or if it can be saved to a register. |
| else { |
| if (std::all_of(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), |
| [this](outliner::Candidate &C) { |
| return findRegisterToSaveLRTo(C); |
| })) { |
| // Every candidate has an available callee-saved register for the save. |
| // We can save LR to a register. |
| FrameID = MachineOutlinerRegSave; |
| NumBytesToCreateFrame = 4; |
| SetCandidateCallInfo(MachineOutlinerRegSave, 12); |
| } |
| |
| else { |
| // At least one candidate does not have an available callee-saved |
| // register. We must save LR to the stack. |
| FrameID = MachineOutlinerDefault; |
| NumBytesToCreateFrame = 4; |
| SetCandidateCallInfo(MachineOutlinerDefault, 12); |
| } |
| } |
| |
| // Check if the range contains a call. These require a save + restore of the |
| // link register. |
| if (std::any_of(RepeatedSequenceLocs[0].front(), |
| RepeatedSequenceLocs[0].back(), |
| [](const MachineInstr &MI) { return MI.isCall(); })) |
| NumBytesToCreateFrame += 8; // Save + restore the link register. |
| |
| // Handle the last instruction separately. If this is a tail call, then the |
| // last instruction is a call. We don't want to save + restore in this case. |
| // However, it could be possible that the last instruction is a call without |
| // it being valid to tail call this sequence. We should consider this as well. |
| else if (FrameID != MachineOutlinerThunk && |
| FrameID != MachineOutlinerTailCall && |
| RepeatedSequenceLocs[0].back()->isCall()) |
| NumBytesToCreateFrame += 8; |
| |
| return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, |
| NumBytesToCreateFrame, FrameID); |
| } |
| |
| bool AArch64InstrInfo::isFunctionSafeToOutlineFrom( |
| MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { |
| const Function &F = MF.getFunction(); |
| |
| // Can F be deduplicated by the linker? If it can, don't outline from it. |
| if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) |
| return false; |
| |
| // Don't outline from functions with section markings; the program could |
| // expect that all the code is in the named section. |
| // FIXME: Allow outlining from multiple functions with the same section |
| // marking. |
| if (F.hasSection()) |
| return false; |
| |
| // Outlining from functions with redzones is unsafe since the outliner may |
| // modify the stack. Check if hasRedZone is true or unknown; if yes, don't |
| // outline from it. |
| AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| if (!AFI || AFI->hasRedZone().getValueOr(true)) |
| return false; |
| |
| // It's safe to outline from MF. |
| return true; |
| } |
| |
| unsigned |
| AArch64InstrInfo::getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const { |
| unsigned Flags = 0x0; |
| // Check if there's a call inside this MachineBasicBlock. If there is, then |
| // set a flag. |
| if (std::any_of(MBB.begin(), MBB.end(), |
| [](MachineInstr &MI) { return MI.isCall(); })) |
| Flags |= MachineOutlinerMBBFlags::HasCalls; |
| |
| // Check if LR is available through all of the MBB. If it's not, then set |
| // a flag. |
| assert(MBB.getParent()->getRegInfo().tracksLiveness() && |
| "Suitable Machine Function for outlining must track liveness"); |
| LiveRegUnits LRU(getRegisterInfo()); |
| LRU.addLiveOuts(MBB); |
| |
| std::for_each(MBB.rbegin(), |
| MBB.rend(), |
| [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); |
| |
| if (!LRU.available(AArch64::LR)) |
| Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; |
| |
| return Flags; |
| } |
| |
| outliner::InstrType |
| AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, |
| unsigned Flags) const { |
| MachineInstr &MI = *MIT; |
| MachineBasicBlock *MBB = MI.getParent(); |
| MachineFunction *MF = MBB->getParent(); |
| AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>(); |
| |
| // Don't outline LOHs. |
| if (FuncInfo->getLOHRelated().count(&MI)) |
| return outliner::InstrType::Illegal; |
| |
| // Don't allow debug values to impact outlining type. |
| if (MI.isDebugInstr() || MI.isIndirectDebugValue()) |
| return outliner::InstrType::Invisible; |
| |
| // At this point, KILL instructions don't really tell us much so we can go |
| // ahead and skip over them. |
| if (MI.isKill()) |
| return outliner::InstrType::Invisible; |
| |
| // Is this a terminator for a basic block? |
| if (MI.isTerminator()) { |
| |
| // Is this the end of a function? |
| if (MI.getParent()->succ_empty()) |
| return outliner::InstrType::Legal; |
| |
| // It's not, so don't outline it. |
| return outliner::InstrType::Illegal; |
| } |
| |
| // Make sure none of the operands are un-outlinable. |
| for (const MachineOperand &MOP : MI.operands()) { |
| if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || |
| MOP.isTargetIndex()) |
| return outliner::InstrType::Illegal; |
| |
| // If it uses LR or W30 explicitly, then don't touch it. |
| if (MOP.isReg() && !MOP.isImplicit() && |
| (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30)) |
| return outliner::InstrType::Illegal; |
| } |
| |
| // Special cases for instructions that can always be outlined, but will fail |
| // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always |
| // be outlined because they don't require a *specific* value to be in LR. |
| if (MI.getOpcode() == AArch64::ADRP) |
| return outliner::InstrType::Legal; |
| |
| // If MI is a call we might be able to outline it. We don't want to outline |
| // any calls that rely on the position of items on the stack. When we outline |
| // something containing a call, we have to emit a save and restore of LR in |
| // the outlined function. Currently, this always happens by saving LR to the |
| // stack. Thus, if we outline, say, half the parameters for a function call |
| // plus the call, then we'll break the callee's expectations for the layout |
| // of the stack. |
| // |
| // FIXME: Allow calls to functions which construct a stack frame, as long |
| // as they don't access arguments on the stack. |
| // FIXME: Figure out some way to analyze functions defined in other modules. |
| // We should be able to compute the memory usage based on the IR calling |
| // convention, even if we can't see the definition. |
| if (MI.isCall()) { |
| // Get the function associated with the call. Look at each operand and find |
| // the one that represents the callee and get its name. |
| const Function *Callee = nullptr; |
| for (const MachineOperand &MOP : MI.operands()) { |
| if (MOP.isGlobal()) { |
| Callee = dyn_cast<Function>(MOP.getGlobal()); |
| break; |
| } |
| } |
| |
| // Never outline calls to mcount. There isn't any rule that would require |
| // this, but the Linux kernel's "ftrace" feature depends on it. |
| if (Callee && Callee->getName() == "\01_mcount") |
| return outliner::InstrType::Illegal; |
| |
| // If we don't know anything about the callee, assume it depends on the |
| // stack layout of the caller. In that case, it's only legal to outline |
| // as a tail-call. Whitelist the call instructions we know about so we |
| // don't get unexpected results with call pseudo-instructions. |
| auto UnknownCallOutlineType = outliner::InstrType::Illegal; |
| if (MI.getOpcode() == AArch64::BLR || MI.getOpcode() == AArch64::BL) |
| UnknownCallOutlineType = outliner::InstrType::LegalTerminator; |
| |
| if (!Callee) |
| return UnknownCallOutlineType; |
| |
| // We have a function we have information about. Check it if it's something |
| // can safely outline. |
| MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); |
| |
| // We don't know what's going on with the callee at all. Don't touch it. |
| if (!CalleeMF) |
| return UnknownCallOutlineType; |
| |
| // Check if we know anything about the callee saves on the function. If we |
| // don't, then don't touch it, since that implies that we haven't |
| // computed anything about its stack frame yet. |
| MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); |
| if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || |
| MFI.getNumObjects() > 0) |
| return UnknownCallOutlineType; |
| |
| // At this point, we can say that CalleeMF ought to not pass anything on the |
| // stack. Therefore, we can outline it. |
| return outliner::InstrType::Legal; |
| } |
| |
| // Don't outline positions. |
| if (MI.isPosition()) |
| return outliner::InstrType::Illegal; |
| |
| // Don't touch the link register or W30. |
| if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) || |
| MI.modifiesRegister(AArch64::W30, &getRegisterInfo())) |
| return outliner::InstrType::Illegal; |
| |
| // Does this use the stack? |
| if (MI.modifiesRegister(AArch64::SP, &RI) || |
| MI.readsRegister(AArch64::SP, &RI)) { |
| // True if there is no chance that any outlined candidate from this range |
| // could require stack fixups. That is, both |
| // * LR is available in the range (No save/restore around call) |
| // * The range doesn't include calls (No save/restore in outlined frame) |
| // are true. |
| // FIXME: This is very restrictive; the flags check the whole block, |
| // not just the bit we will try to outline. |
| bool MightNeedStackFixUp = |
| (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | |
| MachineOutlinerMBBFlags::HasCalls)); |
| |
| // If this instruction is in a range where it *never* needs to be fixed |
| // up, then we can *always* outline it. This is true even if it's not |
| // possible to fix that instruction up. |
| // |
| // Why? Consider two equivalent instructions I1, I2 where both I1 and I2 |
| // use SP. Suppose that I1 sits within a range that definitely doesn't |
| // need stack fixups, while I2 sits in a range that does. |
| // |
| // First, I1 can be outlined as long as we *never* fix up the stack in |
| // any sequence containing it. I1 is already a safe instruction in the |
| // original program, so as long as we don't modify it we're good to go. |
| // So this leaves us with showing that outlining I2 won't break our |
| // program. |
| // |
| // Suppose I1 and I2 belong to equivalent candidate sequences. When we |
| // look at I2, we need to see if it can be fixed up. Suppose I2, (and |
| // thus I1) cannot be fixed up. Then I2 will be assigned an unique |
| // integer label; thus, I2 cannot belong to any candidate sequence (a |
| // contradiction). Suppose I2 can be fixed up. Then I1 can be fixed up |
| // as well, so we're good. Thus, I1 is always safe to outline. |
| // |
| // This gives us two things: first off, it buys us some more instructions |
| // for our search space by deeming stack instructions illegal only when |
| // they can't be fixed up AND we might have to fix them up. Second off, |
| // This allows us to catch tricky instructions like, say, |
| // %xi = ADDXri %sp, n, 0. We can't safely outline these since they might |
| // be paired with later SUBXris, which might *not* end up being outlined. |
| // If we mess with the stack to save something, then an ADDXri messes with |
| // it *after*, then we aren't going to restore the right something from |
| // the stack if we don't outline the corresponding SUBXri first. ADDXris and |
| // SUBXris are extremely common in prologue/epilogue code, so supporting |
| // them in the outliner can be a pretty big win! |
| if (!MightNeedStackFixUp) |
| return outliner::InstrType::Legal; |
| |
| // Any modification of SP will break our code to save/restore LR. |
| // FIXME: We could handle some instructions which add a constant offset to |
| // SP, with a bit more work. |
| if (MI.modifiesRegister(AArch64::SP, &RI)) |
| return outliner::InstrType::Illegal; |
| |
| // At this point, we have a stack instruction that we might need to fix |
| // up. We'll handle it if it's a load or store. |
| if (MI.mayLoadOrStore()) { |
| unsigned Base; // Filled with the base regiser of MI. |
| int64_t Offset; // Filled with the offset of MI. |
| unsigned DummyWidth; |
| |
| // Does it allow us to offset the base register and is the base SP? |
| if (!getMemOpBaseRegImmOfsWidth(MI, Base, Offset, DummyWidth, &RI) || |
| Base != AArch64::SP) |
| return outliner::InstrType::Illegal; |
| |
| // Find the minimum/maximum offset for this instruction and check if |
| // fixing it up would be in range. |
| int64_t MinOffset, MaxOffset; // Unscaled offsets for the instruction. |
| unsigned Scale; // The scale to multiply the offsets by. |
| getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset); |
| |
| // TODO: We should really test what happens if an instruction overflows. |
| // This is tricky to test with IR tests, but when the outliner is moved |
| // to a MIR test, it really ought to be checked. |
| Offset += 16; // Update the offset to what it would be if we outlined. |
| if (Offset < MinOffset * Scale || Offset > MaxOffset * Scale) |
| return outliner::InstrType::Illegal; |
| |
| // It's in range, so we can outline it. |
| return outliner::InstrType::Legal; |
| } |
| |
| // FIXME: Add handling for instructions like "add x0, sp, #8". |
| |
| // We can't fix it up, so don't outline it. |
| return outliner::InstrType::Illegal; |
| } |
| |
| return outliner::InstrType::Legal; |
| } |
| |
| void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { |
| for (MachineInstr &MI : MBB) { |
| unsigned Base, Width; |
| int64_t Offset; |
| |
| // Is this a load or store with an immediate offset with SP as the base? |
| if (!MI.mayLoadOrStore() || |
| !getMemOpBaseRegImmOfsWidth(MI, Base, Offset, Width, &RI) || |
| Base != AArch64::SP) |
| continue; |
| |
| // It is, so we have to fix it up. |
| unsigned Scale; |
| int64_t Dummy1, Dummy2; |
| |
| MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI); |
| assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!"); |
| getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2); |
| assert(Scale != 0 && "Unexpected opcode!"); |
| |
| // We've pushed the return address to the stack, so add 16 to the offset. |
| // This is safe, since we already checked if it would overflow when we |
| // checked if this instruction was legal to outline. |
| int64_t NewImm = (Offset + 16) / Scale; |
| StackOffsetOperand.setImm(NewImm); |
| } |
| } |
| |
| void AArch64InstrInfo::buildOutlinedFrame( |
| MachineBasicBlock &MBB, MachineFunction &MF, |
| const outliner::OutlinedFunction &OF) const { |
| // For thunk outlining, rewrite the last instruction from a call to a |
| // tail-call. |
| if (OF.FrameConstructionID == MachineOutlinerThunk) { |
| MachineInstr *Call = &*--MBB.instr_end(); |
| unsigned TailOpcode; |
| if (Call->getOpcode() == AArch64::BL) { |
| TailOpcode = AArch64::TCRETURNdi; |
| } else { |
| assert(Call->getOpcode() == AArch64::BLR); |
| TailOpcode = AArch64::TCRETURNri; |
| } |
| MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode)) |
| .add(Call->getOperand(0)) |
| .addImm(0); |
| MBB.insert(MBB.end(), TC); |
| Call->eraseFromParent(); |
| } |
| |
| // Is there a call in the outlined range? |
| auto IsNonTailCall = [](MachineInstr &MI) { |
| return MI.isCall() && !MI.isReturn(); |
| }; |
| if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) { |
| // Fix up the instructions in the range, since we're going to modify the |
| // stack. |
| assert(OF.FrameConstructionID != MachineOutlinerDefault && |
| "Can only fix up stack references once"); |
| fixupPostOutline(MBB); |
| |
| // LR has to be a live in so that we can save it. |
| MBB.addLiveIn(AArch64::LR); |
| |
| MachineBasicBlock::iterator It = MBB.begin(); |
| MachineBasicBlock::iterator Et = MBB.end(); |
| |
| if (OF.FrameConstructionID == MachineOutlinerTailCall || |
| OF.FrameConstructionID == MachineOutlinerThunk) |
| Et = std::prev(MBB.end()); |
| |
| // Insert a save before the outlined region |
| MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre)) |
| .addReg(AArch64::SP, RegState::Define) |
| .addReg(AArch64::LR) |
| .addReg(AArch64::SP) |
| .addImm(-16); |
| It = MBB.insert(It, STRXpre); |
| |
| const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| const MCRegisterInfo *MRI = STI.getRegisterInfo(); |
| unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true); |
| |
| // Add a CFI saying the stack was moved 16 B down. |
| int64_t StackPosEntry = |
| MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 16)); |
| BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION)) |
| .addCFIIndex(StackPosEntry) |
| .setMIFlags(MachineInstr::FrameSetup); |
| |
| // Add a CFI saying that the LR that we want to find is now 16 B higher than |
| // before. |
| int64_t LRPosEntry = |
| MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, 16)); |
| BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION)) |
| .addCFIIndex(LRPosEntry) |
| .setMIFlags(MachineInstr::FrameSetup); |
| |
| // Insert a restore before the terminator for the function. |
| MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost)) |
| .addReg(AArch64::SP, RegState::Define) |
| .addReg(AArch64::LR, RegState::Define) |
| .addReg(AArch64::SP) |
| .addImm(16); |
| Et = MBB.insert(Et, LDRXpost); |
| } |
| |
| // If this is a tail call outlined function, then there's already a return. |
| if (OF.FrameConstructionID == MachineOutlinerTailCall || |
| OF.FrameConstructionID == MachineOutlinerThunk) |
| return; |
| |
| // It's not a tail call, so we have to insert the return ourselves. |
| MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET)) |
| .addReg(AArch64::LR, RegState::Undef); |
| MBB.insert(MBB.end(), ret); |
| |
| // Did we have to modify the stack by saving the link register? |
| if (OF.FrameConstructionID != MachineOutlinerDefault) |
| return; |
| |
| // We modified the stack. |
| // Walk over the basic block and fix up all the stack accesses. |
| fixupPostOutline(MBB); |
| } |
| |
| MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall( |
| Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, |
| MachineFunction &MF, const outliner::Candidate &C) const { |
| |
| // Are we tail calling? |
| if (C.CallConstructionID == MachineOutlinerTailCall) { |
| // If yes, then we can just branch to the label. |
| It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi)) |
| .addGlobalAddress(M.getNamedValue(MF.getName())) |
| .addImm(0)); |
| return It; |
| } |
| |
| // Are we saving the link register? |
| if (C.CallConstructionID == MachineOutlinerNoLRSave || |
| C.CallConstructionID == MachineOutlinerThunk) { |
| // No, so just insert the call. |
| It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL)) |
| .addGlobalAddress(M.getNamedValue(MF.getName()))); |
| return It; |
| } |
| |
| // We want to return the spot where we inserted the call. |
| MachineBasicBlock::iterator CallPt; |
| |
| // Instructions for saving and restoring LR around the call instruction we're |
| // going to insert. |
| MachineInstr *Save; |
| MachineInstr *Restore; |
| // Can we save to a register? |
| if (C.CallConstructionID == MachineOutlinerRegSave) { |
| // FIXME: This logic should be sunk into a target-specific interface so that |
| // we don't have to recompute the register. |
| unsigned Reg = findRegisterToSaveLRTo(C); |
| assert(Reg != 0 && "No callee-saved register available?"); |
| |
| // Save and restore LR from that register. |
| Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg) |
| .addReg(AArch64::XZR) |
| .addReg(AArch64::LR) |
| .addImm(0); |
| Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR) |
| .addReg(AArch64::XZR) |
| .addReg(Reg) |
| .addImm(0); |
| } else { |
| // We have the default case. Save and restore from SP. |
| Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre)) |
| .addReg(AArch64::SP, RegState::Define) |
| .addReg(AArch64::LR) |
| .addReg(AArch64::SP) |
| .addImm(-16); |
| Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost)) |
| .addReg(AArch64::SP, RegState::Define) |
| .addReg(AArch64::LR, RegState::Define) |
| .addReg(AArch64::SP) |
| .addImm(16); |
| } |
| |
| It = MBB.insert(It, Save); |
| It++; |
| |
| // Insert the call. |
| It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL)) |
| .addGlobalAddress(M.getNamedValue(MF.getName()))); |
| CallPt = It; |
| It++; |
| |
| It = MBB.insert(It, Restore); |
| return CallPt; |
| } |
| |
| bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault( |
| MachineFunction &MF) const { |
| return MF.getFunction().optForMinSize(); |
| } |