| // Copyright 2019 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "SpirvShader.hpp" |
| |
| #include "SamplerCore.hpp" // TODO: Figure out what's needed. |
| #include "System/Math.hpp" |
| #include "Vulkan/VkBuffer.hpp" |
| #include "Vulkan/VkDebug.hpp" |
| #include "Vulkan/VkDescriptorSet.hpp" |
| #include "Vulkan/VkPipelineLayout.hpp" |
| #include "Vulkan/VkImageView.hpp" |
| #include "Vulkan/VkSampler.hpp" |
| #include "Vulkan/VkDescriptorSetLayout.hpp" |
| #include "Device/Config.hpp" |
| |
| #include <spirv/unified1/spirv.hpp> |
| #include <spirv/unified1/GLSL.std.450.h> |
| |
| #include <mutex> |
| |
| #ifdef Bool |
| #undef Bool // b/127920555 |
| #undef None |
| #endif |
| |
| namespace sw { |
| |
| SpirvShader::ImageSampler *SpirvShader::getImageSampler(uint32_t inst, const vk::ImageView *imageView, const vk::Sampler *sampler) |
| { |
| ImageInstruction instruction(inst); |
| ASSERT(imageView->id != 0 && (sampler->id != 0 || instruction.samplerMethod == Fetch)); |
| |
| // TODO(b/129523279): Move somewhere sensible. |
| static std::unordered_map<uint64_t, ImageSampler*> cache; |
| static std::mutex mutex; |
| |
| // FIXME(b/129523279): Take instruction opcode and optional parameters into acount (SamplerMethod / SamplerOption). |
| auto key = (static_cast<uint64_t>(imageView->id) << 32) | static_cast<uint64_t>(sampler->id); |
| |
| std::unique_lock<std::mutex> lock(mutex); |
| auto it = cache.find(key); |
| if (it != cache.end()) { return it->second; } |
| |
| Sampler samplerState = {}; |
| samplerState.textureType = convertTextureType(imageView->getType()); |
| samplerState.textureFormat = imageView->getFormat(); |
| samplerState.textureFilter = convertFilterMode(sampler); |
| samplerState.border = sampler->borderColor; |
| |
| samplerState.addressingModeU = convertAddressingMode(0, sampler->addressModeU, imageView->getType()); |
| samplerState.addressingModeV = convertAddressingMode(1, sampler->addressModeV, imageView->getType()); |
| samplerState.addressingModeW = convertAddressingMode(2, sampler->addressModeW, imageView->getType()); |
| |
| samplerState.mipmapFilter = convertMipmapMode(sampler); |
| samplerState.swizzle = imageView->getComponentMapping(); |
| samplerState.highPrecisionFiltering = false; |
| samplerState.compare = COMPARE_BYPASS; ASSERT(sampler->compareEnable == VK_FALSE); // TODO(b/129523279) |
| |
| ASSERT(sampler->anisotropyEnable == VK_FALSE); // TODO(b/129523279) |
| ASSERT(sampler->unnormalizedCoordinates == VK_FALSE); // TODO(b/129523279) |
| |
| auto fptr = emitSamplerFunction(instruction, samplerState); |
| |
| cache.emplace(key, fptr); |
| return fptr; |
| } |
| |
| SpirvShader::ImageSampler *SpirvShader::emitSamplerFunction(ImageInstruction instruction, const Sampler &samplerState) |
| { |
| // TODO(b/129523279): Hold a separate mutex lock for the sampler being built. |
| Function<Void(Pointer<Byte>, Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function; |
| { |
| Pointer<Byte> texture = function.Arg<0>(); |
| Pointer<Byte> sampler = function.Arg<1>(); |
| Pointer<SIMD::Float> in = function.Arg<2>(); |
| Pointer<SIMD::Float> out = function.Arg<3>(); |
| Pointer<Byte> constants = function.Arg<4>(); |
| |
| SamplerCore s(constants, samplerState); |
| |
| SIMD::Float uvw[3]; |
| SIMD::Float q(0); // TODO(b/129523279) |
| SIMD::Float lodOrBias(0); // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod). |
| Vector4f dsx; |
| Vector4f dsy; |
| Vector4f offset; |
| SamplerFunction samplerFunction = instruction.getSamplerFunction(); |
| |
| uint32_t i = 0; |
| for( ; i < instruction.coordinates; i++) |
| { |
| uvw[i] = in[i]; |
| } |
| |
| // TODO(b/129523279): Currently 1D textures are treated as 2D by setting the second coordinate to 0. |
| // Implement optimized 1D sampling. |
| if(samplerState.textureType == TEXTURE_1D || |
| samplerState.textureType == TEXTURE_1D_ARRAY) |
| { |
| uvw[1] = SIMD::Float(0); |
| } |
| |
| if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias) |
| { |
| lodOrBias = in[i]; |
| i++; |
| } |
| else if(instruction.samplerMethod == Grad) |
| { |
| for(uint32_t j = 0; j < instruction.gradComponents; j++, i++) |
| { |
| dsx[j] = in[i]; |
| } |
| |
| for(uint32_t j = 0; j < instruction.gradComponents; j++, i++) |
| { |
| dsy[j] = in[i]; |
| } |
| } |
| |
| if(instruction.samplerOption == Offset) |
| { |
| for(uint32_t j = 0; j < instruction.offsetComponents; j++, i++) |
| { |
| offset[j] = in[i]; |
| } |
| } |
| |
| Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lodOrBias, dsx, dsy, offset, samplerFunction); |
| |
| Pointer<SIMD::Float> rgba = out; |
| rgba[0] = sample.x; |
| rgba[1] = sample.y; |
| rgba[2] = sample.z; |
| rgba[3] = sample.w; |
| } |
| |
| return (ImageSampler*)function("sampler")->getEntry(); |
| } |
| |
| sw::TextureType SpirvShader::convertTextureType(VkImageViewType imageViewType) |
| { |
| switch(imageViewType) |
| { |
| case VK_IMAGE_VIEW_TYPE_1D: return TEXTURE_1D; |
| case VK_IMAGE_VIEW_TYPE_2D: return TEXTURE_2D; |
| // case VK_IMAGE_VIEW_TYPE_3D: return TEXTURE_3D; |
| case VK_IMAGE_VIEW_TYPE_CUBE: return TEXTURE_CUBE; |
| // case VK_IMAGE_VIEW_TYPE_1D_ARRAY: return TEXTURE_1D_ARRAY; |
| case VK_IMAGE_VIEW_TYPE_2D_ARRAY: return TEXTURE_2D_ARRAY; |
| // case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: return TEXTURE_CUBE_ARRAY; |
| default: |
| UNIMPLEMENTED("imageViewType %d", imageViewType); |
| return TEXTURE_2D; |
| } |
| } |
| |
| sw::FilterType SpirvShader::convertFilterMode(const vk::Sampler *sampler) |
| { |
| switch(sampler->magFilter) |
| { |
| case VK_FILTER_NEAREST: |
| switch(sampler->minFilter) |
| { |
| case VK_FILTER_NEAREST: return FILTER_POINT; |
| case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT; |
| default: |
| UNIMPLEMENTED("minFilter %d", sampler->minFilter); |
| return FILTER_POINT; |
| } |
| break; |
| case VK_FILTER_LINEAR: |
| switch(sampler->minFilter) |
| { |
| case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR; |
| case VK_FILTER_LINEAR: return FILTER_LINEAR; |
| default: |
| UNIMPLEMENTED("minFilter %d", sampler->minFilter); |
| return FILTER_POINT; |
| } |
| break; |
| default: |
| UNIMPLEMENTED("magFilter %d", sampler->magFilter); |
| return FILTER_POINT; |
| } |
| } |
| |
| sw::MipmapType SpirvShader::convertMipmapMode(const vk::Sampler *sampler) |
| { |
| switch(sampler->mipmapMode) |
| { |
| case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT; |
| case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR; |
| default: |
| UNIMPLEMENTED("mipmapMode %d", sampler->mipmapMode); |
| return MIPMAP_POINT; |
| } |
| } |
| |
| sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, VkSamplerAddressMode addressMode, VkImageViewType imageViewType) |
| { |
| switch(imageViewType) |
| { |
| case VK_IMAGE_VIEW_TYPE_CUBE: |
| break; |
| case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: |
| UNSUPPORTED("SPIR-V ImageCubeArray Capability (imageViewType: %d)", int(imageViewType)); |
| if(coordinateIndex == 3) |
| { |
| return ADDRESSING_LAYER; |
| } |
| break; |
| case VK_IMAGE_VIEW_TYPE_1D: |
| case VK_IMAGE_VIEW_TYPE_2D: |
| // case VK_IMAGE_VIEW_TYPE_3D: |
| break; |
| // case VK_IMAGE_VIEW_TYPE_1D_ARRAY: |
| break; |
| case VK_IMAGE_VIEW_TYPE_2D_ARRAY: |
| if(coordinateIndex == 2) |
| { |
| return ADDRESSING_LAYER; |
| } |
| break; |
| default: |
| UNIMPLEMENTED("imageViewType %d", imageViewType); |
| return ADDRESSING_WRAP; |
| } |
| |
| // Vulkan 1.1 spec: |
| // "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then |
| // VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges |
| // is performed as described earlier in the Cube map edge handling section." |
| // This corresponds with our 'seamless' addressing mode. |
| switch(imageViewType) |
| { |
| case VK_IMAGE_VIEW_TYPE_CUBE: |
| return ADDRESSING_SEAMLESS; |
| // case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: |
| UNSUPPORTED("SPIR-V ImageCubeArray Capability (imageViewType: %d)", int(imageViewType)); |
| return ADDRESSING_SEAMLESS; |
| case VK_IMAGE_VIEW_TYPE_1D: |
| case VK_IMAGE_VIEW_TYPE_2D: |
| // case VK_IMAGE_VIEW_TYPE_3D: |
| // case VK_IMAGE_VIEW_TYPE_1D_ARRAY: |
| case VK_IMAGE_VIEW_TYPE_2D_ARRAY: |
| break; |
| default: |
| UNIMPLEMENTED("imageViewType %d", imageViewType); |
| return ADDRESSING_WRAP; |
| } |
| |
| switch(addressMode) |
| { |
| case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP; |
| case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR; |
| case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP; |
| case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER; |
| case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE; |
| default: |
| UNIMPLEMENTED("addressMode %d", addressMode); |
| return ADDRESSING_WRAP; |
| } |
| } |
| |
| } // namespace sw |