| //===- HexagonEarlyIfConv.cpp ---------------------------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements a Hexagon-specific if-conversion pass that runs on the | 
 | // SSA form. | 
 | // In SSA it is not straightforward to represent instructions that condi- | 
 | // tionally define registers, since a conditionally-defined register may | 
 | // only be used under the same condition on which the definition was based. | 
 | // To avoid complications of this nature, this patch will only generate | 
 | // predicated stores, and speculate other instructions from the "if-conver- | 
 | // ted" block. | 
 | // The code will recognize CFG patterns where a block with a conditional | 
 | // branch "splits" into a "true block" and a "false block". Either of these | 
 | // could be omitted (in case of a triangle, for example). | 
 | // If after conversion of the side block(s) the CFG allows it, the resul- | 
 | // ting blocks may be merged. If the "join" block contained PHI nodes, they | 
 | // will be replaced with MUX (or MUX-like) instructions to maintain the | 
 | // semantics of the PHI. | 
 | // | 
 | // Example: | 
 | // | 
 | //         %40 = L2_loadrub_io killed %39, 1 | 
 | //         %41 = S2_tstbit_i killed %40, 0 | 
 | //         J2_jumpt killed %41, <%bb.5>, implicit dead %pc | 
 | //         J2_jump <%bb.4>, implicit dead %pc | 
 | //     Successors according to CFG: %bb.4(62) %bb.5(62) | 
 | // | 
 | // %bb.4: derived from LLVM BB %if.then | 
 | //     Predecessors according to CFG: %bb.3 | 
 | //         %11 = A2_addp %6, %10 | 
 | //         S2_storerd_io %32, 16, %11 | 
 | //     Successors according to CFG: %bb.5 | 
 | // | 
 | // %bb.5: derived from LLVM BB %if.end | 
 | //     Predecessors according to CFG: %bb.3 %bb.4 | 
 | //         %12 = PHI %6, <%bb.3>, %11, <%bb.4> | 
 | //         %13 = A2_addp %7, %12 | 
 | //         %42 = C2_cmpeqi %9, 10 | 
 | //         J2_jumpf killed %42, <%bb.3>, implicit dead %pc | 
 | //         J2_jump <%bb.6>, implicit dead %pc | 
 | //     Successors according to CFG: %bb.6(4) %bb.3(124) | 
 | // | 
 | // would become: | 
 | // | 
 | //         %40 = L2_loadrub_io killed %39, 1 | 
 | //         %41 = S2_tstbit_i killed %40, 0 | 
 | // spec->  %11 = A2_addp %6, %10 | 
 | // pred->  S2_pstorerdf_io %41, %32, 16, %11 | 
 | //         %46 = PS_pselect %41, %6, %11 | 
 | //         %13 = A2_addp %7, %46 | 
 | //         %42 = C2_cmpeqi %9, 10 | 
 | //         J2_jumpf killed %42, <%bb.3>, implicit dead %pc | 
 | //         J2_jump <%bb.6>, implicit dead %pc | 
 | //     Successors according to CFG: %bb.6 %bb.3 | 
 |  | 
 | #include "Hexagon.h" | 
 | #include "HexagonInstrInfo.h" | 
 | #include "HexagonSubtarget.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/iterator_range.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/IR/DebugLoc.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/BranchProbability.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <cassert> | 
 | #include <iterator> | 
 |  | 
 | #define DEBUG_TYPE "hexagon-eif" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | namespace llvm { | 
 |  | 
 |   FunctionPass *createHexagonEarlyIfConversion(); | 
 |   void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry); | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden, | 
 |   cl::init(true), cl::desc("Enable branch probability info")); | 
 | static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden, | 
 |   cl::desc("Size limit in Hexagon early if-conversion")); | 
 | static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false), | 
 |   cl::Hidden, cl::desc("Do not convert branches that may exit the loop")); | 
 |  | 
 | namespace { | 
 |  | 
 |   struct PrintMB { | 
 |     PrintMB(const MachineBasicBlock *B) : MB(B) {} | 
 |  | 
 |     const MachineBasicBlock *MB; | 
 |   }; | 
 |   raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { | 
 |     if (!P.MB) | 
 |       return OS << "<none>"; | 
 |     return OS << '#' << P.MB->getNumber(); | 
 |   } | 
 |  | 
 |   struct FlowPattern { | 
 |     FlowPattern() = default; | 
 |     FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, | 
 |           MachineBasicBlock *FB, MachineBasicBlock *JB) | 
 |       : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} | 
 |  | 
 |     MachineBasicBlock *SplitB = nullptr; | 
 |     MachineBasicBlock *TrueB = nullptr; | 
 |     MachineBasicBlock *FalseB = nullptr; | 
 |     MachineBasicBlock *JoinB = nullptr; | 
 |     unsigned PredR = 0; | 
 |   }; | 
 |  | 
 |   struct PrintFP { | 
 |     PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) | 
 |       : FP(P), TRI(T) {} | 
 |  | 
 |     const FlowPattern &FP; | 
 |     const TargetRegisterInfo &TRI; | 
 |     friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); | 
 |   }; | 
 |   raw_ostream &operator<<(raw_ostream &OS, | 
 |                           const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; | 
 |   raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { | 
 |     OS << "{ SplitB:" << PrintMB(P.FP.SplitB) | 
 |        << ", PredR:" << printReg(P.FP.PredR, &P.TRI) | 
 |        << ", TrueB:" << PrintMB(P.FP.TrueB) | 
 |        << ", FalseB:" << PrintMB(P.FP.FalseB) | 
 |        << ", JoinB:" << PrintMB(P.FP.JoinB) << " }"; | 
 |     return OS; | 
 |   } | 
 |  | 
 |   class HexagonEarlyIfConversion : public MachineFunctionPass { | 
 |   public: | 
 |     static char ID; | 
 |  | 
 |     HexagonEarlyIfConversion() : MachineFunctionPass(ID) {} | 
 |  | 
 |     StringRef getPassName() const override { | 
 |       return "Hexagon early if conversion"; | 
 |     } | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.addRequired<MachineBranchProbabilityInfo>(); | 
 |       AU.addRequired<MachineDominatorTree>(); | 
 |       AU.addPreserved<MachineDominatorTree>(); | 
 |       AU.addRequired<MachineLoopInfo>(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF) override; | 
 |  | 
 |   private: | 
 |     using BlockSetType = DenseSet<MachineBasicBlock *>; | 
 |  | 
 |     bool isPreheader(const MachineBasicBlock *B) const; | 
 |     bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, | 
 |           FlowPattern &FP); | 
 |     bool visitBlock(MachineBasicBlock *B, MachineLoop *L); | 
 |     bool visitLoop(MachineLoop *L); | 
 |  | 
 |     bool hasEHLabel(const MachineBasicBlock *B) const; | 
 |     bool hasUncondBranch(const MachineBasicBlock *B) const; | 
 |     bool isValidCandidate(const MachineBasicBlock *B) const; | 
 |     bool usesUndefVReg(const MachineInstr *MI) const; | 
 |     bool isValid(const FlowPattern &FP) const; | 
 |     unsigned countPredicateDefs(const MachineBasicBlock *B) const; | 
 |     unsigned computePhiCost(const MachineBasicBlock *B, | 
 |           const FlowPattern &FP) const; | 
 |     bool isProfitable(const FlowPattern &FP) const; | 
 |     bool isPredicableStore(const MachineInstr *MI) const; | 
 |     bool isSafeToSpeculate(const MachineInstr *MI) const; | 
 |     bool isPredicate(unsigned R) const; | 
 |  | 
 |     unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; | 
 |     void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, | 
 |           MachineInstr *MI, unsigned PredR, bool IfTrue); | 
 |     void predicateBlockNB(MachineBasicBlock *ToB, | 
 |           MachineBasicBlock::iterator At, MachineBasicBlock *FromB, | 
 |           unsigned PredR, bool IfTrue); | 
 |  | 
 |     unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, | 
 |           const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, | 
 |           unsigned TSR, unsigned FR, unsigned FSR); | 
 |     void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); | 
 |     void convert(const FlowPattern &FP); | 
 |  | 
 |     void removeBlock(MachineBasicBlock *B); | 
 |     void eliminatePhis(MachineBasicBlock *B); | 
 |     void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); | 
 |     void simplifyFlowGraph(const FlowPattern &FP); | 
 |  | 
 |     const HexagonInstrInfo *HII = nullptr; | 
 |     const TargetRegisterInfo *TRI = nullptr; | 
 |     MachineFunction *MFN = nullptr; | 
 |     MachineRegisterInfo *MRI = nullptr; | 
 |     MachineDominatorTree *MDT = nullptr; | 
 |     MachineLoopInfo *MLI = nullptr; | 
 |     BlockSetType Deleted; | 
 |     const MachineBranchProbabilityInfo *MBPI = nullptr; | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char HexagonEarlyIfConversion::ID = 0; | 
 |  | 
 | INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if", | 
 |   "Hexagon early if conversion", false, false) | 
 |  | 
 | bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const { | 
 |   if (B->succ_size() != 1) | 
 |     return false; | 
 |   MachineBasicBlock *SB = *B->succ_begin(); | 
 |   MachineLoop *L = MLI->getLoopFor(SB); | 
 |   return L && SB == L->getHeader() && MDT->dominates(B, SB); | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, | 
 |     MachineLoop *L, FlowPattern &FP) { | 
 |   LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B) | 
 |                     << "\n"); | 
 |  | 
 |   // Interested only in conditional branches, no .new, no new-value, etc. | 
 |   // Check the terminators directly, it's easier than handling all responses | 
 |   // from analyzeBranch. | 
 |   MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
 |   MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); | 
 |   if (T1I == B->end()) | 
 |     return false; | 
 |   unsigned Opc = T1I->getOpcode(); | 
 |   if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) | 
 |     return false; | 
 |   Register PredR = T1I->getOperand(0).getReg(); | 
 |  | 
 |   // Get the layout successor, or 0 if B does not have one. | 
 |   MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B)); | 
 |   MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr; | 
 |  | 
 |   MachineBasicBlock *T1B = T1I->getOperand(1).getMBB(); | 
 |   MachineBasicBlock::const_iterator T2I = std::next(T1I); | 
 |   // The second terminator should be an unconditional branch. | 
 |   assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); | 
 |   MachineBasicBlock *T2B = (T2I == B->end()) ? NextB | 
 |                                              : T2I->getOperand(0).getMBB(); | 
 |   if (T1B == T2B) { | 
 |     // XXX merge if T1B == NextB, or convert branch to unconditional. | 
 |     // mark as diamond with both sides equal? | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Record the true/false blocks in such a way that "true" means "if (PredR)", | 
 |   // and "false" means "if (!PredR)". | 
 |   if (Opc == Hexagon::J2_jumpt) | 
 |     TB = T1B, FB = T2B; | 
 |   else | 
 |     TB = T2B, FB = T1B; | 
 |  | 
 |   if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB)) | 
 |     return false; | 
 |  | 
 |   // Detect triangle first. In case of a triangle, one of the blocks TB/FB | 
 |   // can fall through into the other, in other words, it will be executed | 
 |   // in both cases. We only want to predicate the block that is executed | 
 |   // conditionally. | 
 |   assert(TB && FB && "Failed to find triangle control flow blocks"); | 
 |   unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); | 
 |   unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); | 
 |  | 
 |   // A block is predicable if it has one predecessor (it must be B), and | 
 |   // it has a single successor. In fact, the block has to end either with | 
 |   // an unconditional branch (which can be predicated), or with a fall- | 
 |   // through. | 
 |   // Also, skip blocks that do not belong to the same loop. | 
 |   bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L); | 
 |   bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L); | 
 |  | 
 |   // If requested (via an option), do not consider branches where the | 
 |   // true and false targets do not belong to the same loop. | 
 |   if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB)) | 
 |     return false; | 
 |  | 
 |   // If neither is predicable, there is nothing interesting. | 
 |   if (!TOk && !FOk) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr; | 
 |   MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr; | 
 |   MachineBasicBlock *JB = nullptr; | 
 |  | 
 |   if (TOk) { | 
 |     if (FOk) { | 
 |       if (TSB == FSB) | 
 |         JB = TSB; | 
 |       // Diamond: "if (P) then TB; else FB;". | 
 |     } else { | 
 |       // TOk && !FOk | 
 |       if (TSB == FB) | 
 |         JB = FB; | 
 |       FB = nullptr; | 
 |     } | 
 |   } else { | 
 |     // !TOk && FOk  (at least one must be true by now). | 
 |     if (FSB == TB) | 
 |       JB = TB; | 
 |     TB = nullptr; | 
 |   } | 
 |   // Don't try to predicate loop preheaders. | 
 |   if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) { | 
 |     LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) | 
 |                       << " is a loop preheader. Skipping.\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   FP = FlowPattern(B, PredR, TB, FB, JB); | 
 |   LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n"); | 
 |   return true; | 
 | } | 
 |  | 
 | // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that | 
 | // contains EH_LABEL. | 
 | bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { | 
 |   for (auto &I : *B) | 
 |     if (I.isEHLabel()) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize | 
 | // that a block can never fall-through. | 
 | bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) | 
 |       const { | 
 |   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); | 
 |   while (I != E) { | 
 |     if (I->isBarrier()) | 
 |       return true; | 
 |     ++I; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) | 
 |       const { | 
 |   if (!B) | 
 |     return true; | 
 |   if (B->isEHPad() || B->hasAddressTaken()) | 
 |     return false; | 
 |   if (B->succ_size() == 0) | 
 |     return false; | 
 |  | 
 |   for (auto &MI : *B) { | 
 |     if (MI.isDebugInstr()) | 
 |       continue; | 
 |     if (MI.isConditionalBranch()) | 
 |       return false; | 
 |     unsigned Opc = MI.getOpcode(); | 
 |     bool IsJMP = (Opc == Hexagon::J2_jump); | 
 |     if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI)) | 
 |       return false; | 
 |     // Look for predicate registers defined by this instruction. It's ok | 
 |     // to speculate such an instruction, but the predicate register cannot | 
 |     // be used outside of this block (or else it won't be possible to | 
 |     // update the use of it after predication). PHI uses will be updated | 
 |     // to use a result of a MUX, and a MUX cannot be created for predicate | 
 |     // registers. | 
 |     for (const MachineOperand &MO : MI.operands()) { | 
 |       if (!MO.isReg() || !MO.isDef()) | 
 |         continue; | 
 |       Register R = MO.getReg(); | 
 |       if (!Register::isVirtualRegister(R)) | 
 |         continue; | 
 |       if (!isPredicate(R)) | 
 |         continue; | 
 |       for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U) | 
 |         if (U->getParent()->isPHI()) | 
 |           return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { | 
 |   for (const MachineOperand &MO : MI->operands()) { | 
 |     if (!MO.isReg() || !MO.isUse()) | 
 |       continue; | 
 |     Register R = MO.getReg(); | 
 |     if (!Register::isVirtualRegister(R)) | 
 |       continue; | 
 |     const MachineInstr *DefI = MRI->getVRegDef(R); | 
 |     // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. | 
 |     assert(DefI && "Expecting a reaching def in MRI"); | 
 |     if (DefI->isImplicitDef()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { | 
 |   if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition | 
 |     return false; | 
 |   if (FP.TrueB && !isValidCandidate(FP.TrueB)) | 
 |     return false; | 
 |   if (FP.FalseB && !isValidCandidate(FP.FalseB)) | 
 |     return false; | 
 |   // Check the PHIs in the join block. If any of them use a register | 
 |   // that is defined as IMPLICIT_DEF, do not convert this. This can | 
 |   // legitimately happen if one side of the split never executes, but | 
 |   // the compiler is unable to prove it. That side may then seem to | 
 |   // provide an "undef" value to the join block, however it will never | 
 |   // execute at run-time. If we convert this case, the "undef" will | 
 |   // be used in a MUX instruction, and that may seem like actually | 
 |   // using an undefined value to other optimizations. This could lead | 
 |   // to trouble further down the optimization stream, cause assertions | 
 |   // to fail, etc. | 
 |   if (FP.JoinB) { | 
 |     const MachineBasicBlock &B = *FP.JoinB; | 
 |     for (auto &MI : B) { | 
 |       if (!MI.isPHI()) | 
 |         break; | 
 |       if (usesUndefVReg(&MI)) | 
 |         return false; | 
 |       Register DefR = MI.getOperand(0).getReg(); | 
 |       if (isPredicate(DefR)) | 
 |         return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B, | 
 |       const FlowPattern &FP) const { | 
 |   if (B->pred_size() < 2) | 
 |     return 0; | 
 |  | 
 |   unsigned Cost = 0; | 
 |   for (const MachineInstr &MI : *B) { | 
 |     if (!MI.isPHI()) | 
 |       break; | 
 |     // If both incoming blocks are one of the TrueB/FalseB/SplitB, then | 
 |     // a MUX may be needed. Otherwise the PHI will need to be updated at | 
 |     // no extra cost. | 
 |     // Find the interesting PHI operands for further checks. | 
 |     SmallVector<unsigned,2> Inc; | 
 |     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { | 
 |       const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB(); | 
 |       if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB) | 
 |         Inc.push_back(i); | 
 |     } | 
 |     assert(Inc.size() <= 2); | 
 |     if (Inc.size() < 2) | 
 |       continue; | 
 |  | 
 |     const MachineOperand &RA = MI.getOperand(1); | 
 |     const MachineOperand &RB = MI.getOperand(3); | 
 |     assert(RA.isReg() && RB.isReg()); | 
 |     // Must have a MUX if the phi uses a subregister. | 
 |     if (RA.getSubReg() != 0 || RB.getSubReg() != 0) { | 
 |       Cost++; | 
 |       continue; | 
 |     } | 
 |     const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg()); | 
 |     const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg()); | 
 |     if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3)) | 
 |       Cost++; | 
 |   } | 
 |   return Cost; | 
 | } | 
 |  | 
 | unsigned HexagonEarlyIfConversion::countPredicateDefs( | 
 |       const MachineBasicBlock *B) const { | 
 |   unsigned PredDefs = 0; | 
 |   for (auto &MI : *B) { | 
 |     for (const MachineOperand &MO : MI.operands()) { | 
 |       if (!MO.isReg() || !MO.isDef()) | 
 |         continue; | 
 |       Register R = MO.getReg(); | 
 |       if (!Register::isVirtualRegister(R)) | 
 |         continue; | 
 |       if (isPredicate(R)) | 
 |         PredDefs++; | 
 |     } | 
 |   } | 
 |   return PredDefs; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { | 
 |   BranchProbability JumpProb(1, 10); | 
 |   BranchProbability Prob(9, 10); | 
 |   if (MBPI && FP.TrueB && !FP.FalseB && | 
 |       (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb || | 
 |        MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)) | 
 |     return false; | 
 |  | 
 |   if (MBPI && !FP.TrueB && FP.FalseB && | 
 |       (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb || | 
 |        MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)) | 
 |     return false; | 
 |  | 
 |   if (FP.TrueB && FP.FalseB) { | 
 |     // Do not IfCovert if the branch is one sided. | 
 |     if (MBPI) { | 
 |       if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob) | 
 |         return false; | 
 |       if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // If both sides are predicable, convert them if they join, and the | 
 |     // join block has no other predecessors. | 
 |     MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); | 
 |     MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); | 
 |     if (TSB != FSB) | 
 |       return false; | 
 |     if (TSB->pred_size() != 2) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Calculate the total size of the predicated blocks. | 
 |   // Assume instruction counts without branches to be the approximation of | 
 |   // the code size. If the predicated blocks are smaller than a packet size, | 
 |   // approximate the spare room in the packet that could be filled with the | 
 |   // predicated/speculated instructions. | 
 |   auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) { | 
 |     if (!B) | 
 |       return 0u; | 
 |     unsigned T = std::count_if(B->begin(), B->getFirstTerminator(), | 
 |                                [](const MachineInstr &MI) { | 
 |                                  return !MI.isMetaInstruction(); | 
 |                                }); | 
 |     if (T < HEXAGON_PACKET_SIZE) | 
 |       Spare += HEXAGON_PACKET_SIZE-T; | 
 |     return T; | 
 |   }; | 
 |   unsigned Spare = 0; | 
 |   unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare); | 
 |   LLVM_DEBUG( | 
 |       dbgs() << "Total number of instructions to be predicated/speculated: " | 
 |              << TotalIn << ", spare room: " << Spare << "\n"); | 
 |   if (TotalIn >= SizeLimit+Spare) | 
 |     return false; | 
 |  | 
 |   // Count the number of PHI nodes that will need to be updated (converted | 
 |   // to MUX). Those can be later converted to predicated instructions, so | 
 |   // they aren't always adding extra cost. | 
 |   // KLUDGE: Also, count the number of predicate register definitions in | 
 |   // each block. The scheduler may increase the pressure of these and cause | 
 |   // expensive spills (e.g. bitmnp01). | 
 |   unsigned TotalPh = 0; | 
 |   unsigned PredDefs = countPredicateDefs(FP.SplitB); | 
 |   if (FP.JoinB) { | 
 |     TotalPh = computePhiCost(FP.JoinB, FP); | 
 |     PredDefs += countPredicateDefs(FP.JoinB); | 
 |   } else { | 
 |     if (FP.TrueB && FP.TrueB->succ_size() > 0) { | 
 |       MachineBasicBlock *SB = *FP.TrueB->succ_begin(); | 
 |       TotalPh += computePhiCost(SB, FP); | 
 |       PredDefs += countPredicateDefs(SB); | 
 |     } | 
 |     if (FP.FalseB && FP.FalseB->succ_size() > 0) { | 
 |       MachineBasicBlock *SB = *FP.FalseB->succ_begin(); | 
 |       TotalPh += computePhiCost(SB, FP); | 
 |       PredDefs += countPredicateDefs(SB); | 
 |     } | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: " | 
 |                     << TotalPh << "\n"); | 
 |   if (TotalIn+TotalPh >= SizeLimit+Spare) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs | 
 |                     << "\n"); | 
 |   if (PredDefs > 4) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, | 
 |       MachineLoop *L) { | 
 |   bool Changed = false; | 
 |  | 
 |   // Visit all dominated blocks from the same loop first, then process B. | 
 |   MachineDomTreeNode *N = MDT->getNode(B); | 
 |  | 
 |   using GTN = GraphTraits<MachineDomTreeNode *>; | 
 |  | 
 |   // We will change CFG/DT during this traversal, so take precautions to | 
 |   // avoid problems related to invalidated iterators. In fact, processing | 
 |   // a child C of B cannot cause another child to be removed, but it can | 
 |   // cause a new child to be added (which was a child of C before C itself | 
 |   // was removed. This new child C, however, would have been processed | 
 |   // prior to processing B, so there is no need to process it again. | 
 |   // Simply keep a list of children of B, and traverse that list. | 
 |   using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; | 
 |   DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); | 
 |   for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { | 
 |     MachineBasicBlock *SB = (*I)->getBlock(); | 
 |     if (!Deleted.count(SB)) | 
 |       Changed |= visitBlock(SB, L); | 
 |   } | 
 |   // When walking down the dominator tree, we want to traverse through | 
 |   // blocks from nested (other) loops, because they can dominate blocks | 
 |   // that are in L. Skip the non-L blocks only after the tree traversal. | 
 |   if (MLI->getLoopFor(B) != L) | 
 |     return Changed; | 
 |  | 
 |   FlowPattern FP; | 
 |   if (!matchFlowPattern(B, L, FP)) | 
 |     return Changed; | 
 |  | 
 |   if (!isValid(FP)) { | 
 |     LLVM_DEBUG(dbgs() << "Conversion is not valid\n"); | 
 |     return Changed; | 
 |   } | 
 |   if (!isProfitable(FP)) { | 
 |     LLVM_DEBUG(dbgs() << "Conversion is not profitable\n"); | 
 |     return Changed; | 
 |   } | 
 |  | 
 |   convert(FP); | 
 |   simplifyFlowGraph(FP); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { | 
 |   MachineBasicBlock *HB = L ? L->getHeader() : nullptr; | 
 |   LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) | 
 |                 : dbgs() << "Visiting function") | 
 |              << "\n"); | 
 |   bool Changed = false; | 
 |   if (L) { | 
 |     for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) | 
 |       Changed |= visitLoop(*I); | 
 |   } | 
 |  | 
 |   MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN); | 
 |   Changed |= visitBlock(L ? HB : EntryB, L); | 
 |   return Changed; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) | 
 |       const { | 
 |   // HexagonInstrInfo::isPredicable will consider these stores are non- | 
 |   // -predicable if the offset would become constant-extended after | 
 |   // predication. | 
 |   unsigned Opc = MI->getOpcode(); | 
 |   switch (Opc) { | 
 |     case Hexagon::S2_storerb_io: | 
 |     case Hexagon::S2_storerbnew_io: | 
 |     case Hexagon::S2_storerh_io: | 
 |     case Hexagon::S2_storerhnew_io: | 
 |     case Hexagon::S2_storeri_io: | 
 |     case Hexagon::S2_storerinew_io: | 
 |     case Hexagon::S2_storerd_io: | 
 |     case Hexagon::S4_storeirb_io: | 
 |     case Hexagon::S4_storeirh_io: | 
 |     case Hexagon::S4_storeiri_io: | 
 |       return true; | 
 |   } | 
 |  | 
 |   // TargetInstrInfo::isPredicable takes a non-const pointer. | 
 |   return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI)); | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) | 
 |       const { | 
 |   if (MI->mayLoadOrStore()) | 
 |     return false; | 
 |   if (MI->isCall() || MI->isBarrier() || MI->isBranch()) | 
 |     return false; | 
 |   if (MI->hasUnmodeledSideEffects()) | 
 |     return false; | 
 |   if (MI->getOpcode() == TargetOpcode::LIFETIME_END) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::isPredicate(unsigned R) const { | 
 |   const TargetRegisterClass *RC = MRI->getRegClass(R); | 
 |   return RC == &Hexagon::PredRegsRegClass || | 
 |          RC == &Hexagon::HvxQRRegClass; | 
 | } | 
 |  | 
 | unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, | 
 |       bool IfTrue) const { | 
 |   return HII->getCondOpcode(Opc, !IfTrue); | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, | 
 |       MachineBasicBlock::iterator At, MachineInstr *MI, | 
 |       unsigned PredR, bool IfTrue) { | 
 |   DebugLoc DL; | 
 |   if (At != ToB->end()) | 
 |     DL = At->getDebugLoc(); | 
 |   else if (!ToB->empty()) | 
 |     DL = ToB->back().getDebugLoc(); | 
 |  | 
 |   unsigned Opc = MI->getOpcode(); | 
 |  | 
 |   if (isPredicableStore(MI)) { | 
 |     unsigned COpc = getCondStoreOpcode(Opc, IfTrue); | 
 |     assert(COpc); | 
 |     MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc)); | 
 |     MachineInstr::mop_iterator MOI = MI->operands_begin(); | 
 |     if (HII->isPostIncrement(*MI)) { | 
 |       MIB.add(*MOI); | 
 |       ++MOI; | 
 |     } | 
 |     MIB.addReg(PredR); | 
 |     for (const MachineOperand &MO : make_range(MOI, MI->operands_end())) | 
 |       MIB.add(MO); | 
 |  | 
 |     // Set memory references. | 
 |     MIB.cloneMemRefs(*MI); | 
 |  | 
 |     MI->eraseFromParent(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Opc == Hexagon::J2_jump) { | 
 |     MachineBasicBlock *TB = MI->getOperand(0).getMBB(); | 
 |     const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt | 
 |                                            : Hexagon::J2_jumpf); | 
 |     BuildMI(*ToB, At, DL, D) | 
 |       .addReg(PredR) | 
 |       .addMBB(TB); | 
 |     MI->eraseFromParent(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Print the offending instruction unconditionally as we are about to | 
 |   // abort. | 
 |   dbgs() << *MI; | 
 |   llvm_unreachable("Unexpected instruction"); | 
 | } | 
 |  | 
 | // Predicate/speculate non-branch instructions from FromB into block ToB. | 
 | // Leave the branches alone, they will be handled later. Btw, at this point | 
 | // FromB should have at most one branch, and it should be unconditional. | 
 | void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, | 
 |       MachineBasicBlock::iterator At, MachineBasicBlock *FromB, | 
 |       unsigned PredR, bool IfTrue) { | 
 |   LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n"); | 
 |   MachineBasicBlock::iterator End = FromB->getFirstTerminator(); | 
 |   MachineBasicBlock::iterator I, NextI; | 
 |  | 
 |   for (I = FromB->begin(); I != End; I = NextI) { | 
 |     assert(!I->isPHI()); | 
 |     NextI = std::next(I); | 
 |     if (isSafeToSpeculate(&*I)) | 
 |       ToB->splice(At, FromB, I); | 
 |     else | 
 |       predicateInstr(ToB, At, &*I, PredR, IfTrue); | 
 |   } | 
 | } | 
 |  | 
 | unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B, | 
 |       MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, | 
 |       unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) { | 
 |   unsigned Opc = 0; | 
 |   switch (DRC->getID()) { | 
 |     case Hexagon::IntRegsRegClassID: | 
 |     case Hexagon::IntRegsLow8RegClassID: | 
 |       Opc = Hexagon::C2_mux; | 
 |       break; | 
 |     case Hexagon::DoubleRegsRegClassID: | 
 |     case Hexagon::GeneralDoubleLow8RegsRegClassID: | 
 |       Opc = Hexagon::PS_pselect; | 
 |       break; | 
 |     case Hexagon::HvxVRRegClassID: | 
 |       Opc = Hexagon::PS_vselect; | 
 |       break; | 
 |     case Hexagon::HvxWRRegClassID: | 
 |       Opc = Hexagon::PS_wselect; | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("unexpected register type"); | 
 |   } | 
 |   const MCInstrDesc &D = HII->get(Opc); | 
 |  | 
 |   DebugLoc DL = B->findBranchDebugLoc(); | 
 |   Register MuxR = MRI->createVirtualRegister(DRC); | 
 |   BuildMI(*B, At, DL, D, MuxR) | 
 |     .addReg(PredR) | 
 |     .addReg(TR, 0, TSR) | 
 |     .addReg(FR, 0, FSR); | 
 |   return MuxR; | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, | 
 |       const FlowPattern &FP) { | 
 |   // Visit all PHI nodes in the WhereB block and generate MUX instructions | 
 |   // in the split block. Update the PHI nodes with the values of the MUX. | 
 |   auto NonPHI = WhereB->getFirstNonPHI(); | 
 |   for (auto I = WhereB->begin(); I != NonPHI; ++I) { | 
 |     MachineInstr *PN = &*I; | 
 |     // Registers and subregisters corresponding to TrueB, FalseB and SplitB. | 
 |     unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; | 
 |     for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { | 
 |       const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1); | 
 |       if (BO.getMBB() == FP.SplitB) | 
 |         SR = RO.getReg(), SSR = RO.getSubReg(); | 
 |       else if (BO.getMBB() == FP.TrueB) | 
 |         TR = RO.getReg(), TSR = RO.getSubReg(); | 
 |       else if (BO.getMBB() == FP.FalseB) | 
 |         FR = RO.getReg(), FSR = RO.getSubReg(); | 
 |       else | 
 |         continue; | 
 |       PN->RemoveOperand(i+1); | 
 |       PN->RemoveOperand(i); | 
 |     } | 
 |     if (TR == 0) | 
 |       TR = SR, TSR = SSR; | 
 |     else if (FR == 0) | 
 |       FR = SR, FSR = SSR; | 
 |  | 
 |     assert(TR || FR); | 
 |     unsigned MuxR = 0, MuxSR = 0; | 
 |  | 
 |     if (TR && FR) { | 
 |       Register DR = PN->getOperand(0).getReg(); | 
 |       const TargetRegisterClass *RC = MRI->getRegClass(DR); | 
 |       MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC, | 
 |                       FP.PredR, TR, TSR, FR, FSR); | 
 |     } else if (TR) { | 
 |       MuxR = TR; | 
 |       MuxSR = TSR; | 
 |     } else { | 
 |       MuxR = FR; | 
 |       MuxSR = FSR; | 
 |     } | 
 |  | 
 |     PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false, | 
 |                                              false, false, MuxSR)); | 
 |     PN->addOperand(MachineOperand::CreateMBB(FP.SplitB)); | 
 |   } | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { | 
 |   MachineBasicBlock *TSB = nullptr, *FSB = nullptr; | 
 |   MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); | 
 |   assert(OldTI != FP.SplitB->end()); | 
 |   DebugLoc DL = OldTI->getDebugLoc(); | 
 |  | 
 |   if (FP.TrueB) { | 
 |     TSB = *FP.TrueB->succ_begin(); | 
 |     predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true); | 
 |   } | 
 |   if (FP.FalseB) { | 
 |     FSB = *FP.FalseB->succ_begin(); | 
 |     MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); | 
 |     predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false); | 
 |   } | 
 |  | 
 |   // Regenerate new terminators in the split block and update the successors. | 
 |   // First, remember any information that may be needed later and remove the | 
 |   // existing terminators/successors from the split block. | 
 |   MachineBasicBlock *SSB = nullptr; | 
 |   FP.SplitB->erase(OldTI, FP.SplitB->end()); | 
 |   while (FP.SplitB->succ_size() > 0) { | 
 |     MachineBasicBlock *T = *FP.SplitB->succ_begin(); | 
 |     // It's possible that the split block had a successor that is not a pre- | 
 |     // dicated block. This could only happen if there was only one block to | 
 |     // be predicated. Example: | 
 |     //   split_b: | 
 |     //     if (p) jump true_b | 
 |     //     jump unrelated2_b | 
 |     //   unrelated1_b: | 
 |     //     ... | 
 |     //   unrelated2_b:  ; can have other predecessors, so it's not "false_b" | 
 |     //     jump other_b | 
 |     //   true_b:        ; only reachable from split_b, can be predicated | 
 |     //     ... | 
 |     // | 
 |     // Find this successor (SSB) if it exists. | 
 |     if (T != FP.TrueB && T != FP.FalseB) { | 
 |       assert(!SSB); | 
 |       SSB = T; | 
 |     } | 
 |     FP.SplitB->removeSuccessor(FP.SplitB->succ_begin()); | 
 |   } | 
 |  | 
 |   // Insert new branches and update the successors of the split block. This | 
 |   // may create unconditional branches to the layout successor, etc., but | 
 |   // that will be cleaned up later. For now, make sure that correct code is | 
 |   // generated. | 
 |   if (FP.JoinB) { | 
 |     assert(!SSB || SSB == FP.JoinB); | 
 |     BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) | 
 |       .addMBB(FP.JoinB); | 
 |     FP.SplitB->addSuccessor(FP.JoinB); | 
 |   } else { | 
 |     bool HasBranch = false; | 
 |     if (TSB) { | 
 |       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt)) | 
 |         .addReg(FP.PredR) | 
 |         .addMBB(TSB); | 
 |       FP.SplitB->addSuccessor(TSB); | 
 |       HasBranch = true; | 
 |     } | 
 |     if (FSB) { | 
 |       const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump) | 
 |                                        : HII->get(Hexagon::J2_jumpf); | 
 |       MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D); | 
 |       if (!HasBranch) | 
 |         MIB.addReg(FP.PredR); | 
 |       MIB.addMBB(FSB); | 
 |       FP.SplitB->addSuccessor(FSB); | 
 |     } | 
 |     if (SSB) { | 
 |       // This cannot happen if both TSB and FSB are set. [TF]SB are the | 
 |       // successor blocks of the TrueB and FalseB (or null of the TrueB | 
 |       // or FalseB block is null). SSB is the potential successor block | 
 |       // of the SplitB that is neither TrueB nor FalseB. | 
 |       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) | 
 |         .addMBB(SSB); | 
 |       FP.SplitB->addSuccessor(SSB); | 
 |     } | 
 |   } | 
 |  | 
 |   // What is left to do is to update the PHI nodes that could have entries | 
 |   // referring to predicated blocks. | 
 |   if (FP.JoinB) { | 
 |     updatePhiNodes(FP.JoinB, FP); | 
 |   } else { | 
 |     if (TSB) | 
 |       updatePhiNodes(TSB, FP); | 
 |     if (FSB) | 
 |       updatePhiNodes(FSB, FP); | 
 |     // Nothing to update in SSB, since SSB's predecessors haven't changed. | 
 |   } | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { | 
 |   LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n"); | 
 |  | 
 |   // Transfer the immediate dominator information from B to its descendants. | 
 |   MachineDomTreeNode *N = MDT->getNode(B); | 
 |   MachineDomTreeNode *IDN = N->getIDom(); | 
 |   if (IDN) { | 
 |     MachineBasicBlock *IDB = IDN->getBlock(); | 
 |  | 
 |     using GTN = GraphTraits<MachineDomTreeNode *>; | 
 |     using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; | 
 |  | 
 |     DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); | 
 |     for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { | 
 |       MachineBasicBlock *SB = (*I)->getBlock(); | 
 |       MDT->changeImmediateDominator(SB, IDB); | 
 |     } | 
 |   } | 
 |  | 
 |   while (B->succ_size() > 0) | 
 |     B->removeSuccessor(B->succ_begin()); | 
 |  | 
 |   for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I) | 
 |     (*I)->removeSuccessor(B, true); | 
 |  | 
 |   Deleted.insert(B); | 
 |   MDT->eraseNode(B); | 
 |   MFN->erase(B->getIterator()); | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { | 
 |   LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n"); | 
 |   MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); | 
 |   for (I = B->begin(); I != NonPHI; I = NextI) { | 
 |     NextI = std::next(I); | 
 |     MachineInstr *PN = &*I; | 
 |     assert(PN->getNumOperands() == 3 && "Invalid phi node"); | 
 |     MachineOperand &UO = PN->getOperand(1); | 
 |     Register UseR = UO.getReg(), UseSR = UO.getSubReg(); | 
 |     Register DefR = PN->getOperand(0).getReg(); | 
 |     unsigned NewR = UseR; | 
 |     if (UseSR) { | 
 |       // MRI.replaceVregUsesWith does not allow to update the subregister, | 
 |       // so instead of doing the use-iteration here, create a copy into a | 
 |       // "non-subregistered" register. | 
 |       const DebugLoc &DL = PN->getDebugLoc(); | 
 |       const TargetRegisterClass *RC = MRI->getRegClass(DefR); | 
 |       NewR = MRI->createVirtualRegister(RC); | 
 |       NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR) | 
 |         .addReg(UseR, 0, UseSR); | 
 |     } | 
 |     MRI->replaceRegWith(DefR, NewR); | 
 |     B->erase(I); | 
 |   } | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, | 
 |       MachineBasicBlock *SuccB) { | 
 |   LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " | 
 |                     << PrintMB(SuccB) << "\n"); | 
 |   bool TermOk = hasUncondBranch(SuccB); | 
 |   eliminatePhis(SuccB); | 
 |   HII->removeBranch(*PredB); | 
 |   PredB->removeSuccessor(SuccB); | 
 |   PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end()); | 
 |   PredB->transferSuccessorsAndUpdatePHIs(SuccB); | 
 |   removeBlock(SuccB); | 
 |   if (!TermOk) | 
 |     PredB->updateTerminator(); | 
 | } | 
 |  | 
 | void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { | 
 |   if (FP.TrueB) | 
 |     removeBlock(FP.TrueB); | 
 |   if (FP.FalseB) | 
 |     removeBlock(FP.FalseB); | 
 |  | 
 |   FP.SplitB->updateTerminator(); | 
 |   if (FP.SplitB->succ_size() != 1) | 
 |     return; | 
 |  | 
 |   MachineBasicBlock *SB = *FP.SplitB->succ_begin(); | 
 |   if (SB->pred_size() != 1) | 
 |     return; | 
 |  | 
 |   // By now, the split block has only one successor (SB), and SB has only | 
 |   // one predecessor. We can try to merge them. We will need to update ter- | 
 |   // minators in FP.Split+SB, and that requires working analyzeBranch, which | 
 |   // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends | 
 |   // with an unconditional branch, we won't need to touch the terminators. | 
 |   if (!hasEHLabel(SB) || hasUncondBranch(SB)) | 
 |     mergeBlocks(FP.SplitB, SB); | 
 | } | 
 |  | 
 | bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { | 
 |   if (skipFunction(MF.getFunction())) | 
 |     return false; | 
 |  | 
 |   auto &ST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   HII = ST.getInstrInfo(); | 
 |   TRI = ST.getRegisterInfo(); | 
 |   MFN = &MF; | 
 |   MRI = &MF.getRegInfo(); | 
 |   MDT = &getAnalysis<MachineDominatorTree>(); | 
 |   MLI = &getAnalysis<MachineLoopInfo>(); | 
 |   MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() : | 
 |     nullptr; | 
 |  | 
 |   Deleted.clear(); | 
 |   bool Changed = false; | 
 |  | 
 |   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) | 
 |     Changed |= visitLoop(*I); | 
 |   Changed |= visitLoop(nullptr); | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Public Constructor Functions | 
 | //===----------------------------------------------------------------------===// | 
 | FunctionPass *llvm::createHexagonEarlyIfConversion() { | 
 |   return new HexagonEarlyIfConversion(); | 
 | } |