| // Copyright 2019 The SwiftShader Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //    http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include "SpirvShader.hpp" | 
 |  | 
 | #include "SamplerCore.hpp" // TODO: Figure out what's needed. | 
 | #include "System/Math.hpp" | 
 | #include "Vulkan/VkBuffer.hpp" | 
 | #include "Vulkan/VkDebug.hpp" | 
 | #include "Vulkan/VkDescriptorSet.hpp" | 
 | #include "Vulkan/VkPipelineLayout.hpp" | 
 | #include "Vulkan/VkImageView.hpp" | 
 | #include "Vulkan/VkSampler.hpp" | 
 | #include "Vulkan/VkDescriptorSetLayout.hpp" | 
 | #include "Device/Config.hpp" | 
 |  | 
 | #include <spirv/unified1/spirv.hpp> | 
 | #include <spirv/unified1/GLSL.std.450.h> | 
 |  | 
 | #include <climits> | 
 | #include <mutex> | 
 |  | 
 | namespace | 
 | { | 
 |  | 
 | struct SamplingRoutineKey | 
 | { | 
 | 	uint32_t instruction; | 
 | 	uint32_t sampler; | 
 | 	uint32_t imageView; | 
 |  | 
 | 	bool operator==(const SamplingRoutineKey &rhs) const | 
 | 	{ | 
 | 		return instruction == rhs.instruction && sampler == rhs.sampler && imageView == rhs.imageView; | 
 | 	} | 
 |  | 
 | 	struct Hash | 
 | 	{ | 
 | 		std::size_t operator()(const SamplingRoutineKey &key) const noexcept | 
 | 		{ | 
 | 			return (key.instruction << 16) ^ (key.sampler << 8) ^ key.imageView; | 
 | 		} | 
 | 	}; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | namespace sw { | 
 |  | 
 | SpirvShader::ImageSampler *SpirvShader::getImageSampler(uint32_t inst, vk::SampledImageDescriptor const *imageDescriptor, const vk::Sampler *sampler) | 
 | { | 
 | 	ImageInstruction instruction(inst); | 
 | 	ASSERT(imageDescriptor->imageViewId != 0 && (sampler->id != 0 || instruction.samplerMethod == Fetch)); | 
 |  | 
 | 	// TODO(b/129523279): Move somewhere sensible. | 
 | 	static std::unordered_map<SamplingRoutineKey, ImageSampler*, SamplingRoutineKey::Hash> cache; | 
 | 	static std::mutex mutex; | 
 |  | 
 | 	SamplingRoutineKey key = {inst, imageDescriptor->imageViewId, sampler->id}; | 
 |  | 
 | 	std::unique_lock<std::mutex> lock(mutex); | 
 | 	auto it = cache.find(key); | 
 | 	if (it != cache.end()) { return it->second; } | 
 |  | 
 | 	auto type = imageDescriptor->type; | 
 |  | 
 | 	Sampler samplerState = {}; | 
 | 	samplerState.textureType = convertTextureType(type); | 
 | 	samplerState.textureFormat = imageDescriptor->format; | 
 | 	samplerState.textureFilter = (instruction.samplerMethod == Gather) ? FILTER_GATHER : convertFilterMode(sampler); | 
 | 	samplerState.border = sampler->borderColor; | 
 |  | 
 | 	samplerState.addressingModeU = convertAddressingMode(0, sampler->addressModeU, type); | 
 | 	samplerState.addressingModeV = convertAddressingMode(1, sampler->addressModeV, type); | 
 | 	samplerState.addressingModeW = convertAddressingMode(2, sampler->addressModeW, type); | 
 |  | 
 | 	samplerState.mipmapFilter = convertMipmapMode(sampler); | 
 | 	samplerState.swizzle = imageDescriptor->swizzle; | 
 | 	samplerState.gatherComponent = instruction.gatherComponent; | 
 | 	samplerState.highPrecisionFiltering = false; | 
 | 	samplerState.compareEnable = (sampler->compareEnable == VK_TRUE); | 
 | 	samplerState.compareOp = sampler->compareOp; | 
 | 	samplerState.unnormalizedCoordinates = (sampler->unnormalizedCoordinates == VK_TRUE); | 
 | 	samplerState.largeTexture = (imageDescriptor->extent.width  > SHRT_MAX) || | 
 | 	                            (imageDescriptor->extent.height > SHRT_MAX) || | 
 | 	                            (imageDescriptor->extent.depth  > SHRT_MAX); | 
 |  | 
 | 	if(sampler->ycbcrConversion) | 
 | 	{ | 
 | 		samplerState.ycbcrModel = sampler->ycbcrConversion->ycbcrModel; | 
 | 		samplerState.studioSwing = (sampler->ycbcrConversion->ycbcrRange == VK_SAMPLER_YCBCR_RANGE_ITU_NARROW); | 
 | 		samplerState.swappedChroma = (sampler->ycbcrConversion->components.r != VK_COMPONENT_SWIZZLE_R); | 
 | 	} | 
 |  | 
 | 	if(sampler->anisotropyEnable != VK_FALSE) | 
 | 	{ | 
 | 		UNSUPPORTED("anisotropyEnable"); | 
 | 	} | 
 |  | 
 | 	auto fptr = emitSamplerFunction(instruction, samplerState); | 
 |  | 
 | 	cache.emplace(key, fptr); | 
 | 	return fptr; | 
 | } | 
 |  | 
 | SpirvShader::ImageSampler *SpirvShader::emitSamplerFunction(ImageInstruction instruction, const Sampler &samplerState) | 
 | { | 
 | 	// TODO(b/129523279): Hold a separate mutex lock for the sampler being built. | 
 | 	Function<Void(Pointer<Byte>, Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function; | 
 | 	{ | 
 | 		Pointer<Byte> texture = function.Arg<0>(); | 
 | 		Pointer<Byte> sampler = function.Arg<1>(); | 
 | 		Pointer<SIMD::Float> in = function.Arg<2>(); | 
 | 		Pointer<SIMD::Float> out = function.Arg<3>(); | 
 | 		Pointer<Byte> constants = function.Arg<4>(); | 
 |  | 
 | 		SIMD::Float uvw[4]; | 
 | 		SIMD::Float q; | 
 | 		SIMD::Float lodOrBias;  // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod). | 
 | 		Vector4f dsx; | 
 | 		Vector4f dsy; | 
 | 		Vector4f offset; | 
 | 		SamplerFunction samplerFunction = instruction.getSamplerFunction(); | 
 |  | 
 | 		uint32_t i = 0; | 
 | 		for( ; i < instruction.coordinates; i++) | 
 | 		{ | 
 | 			uvw[i] = in[i]; | 
 | 		} | 
 |  | 
 | 		if (instruction.isDref()) | 
 | 		{ | 
 | 			q = in[i]; | 
 | 			i++; | 
 | 		} | 
 |  | 
 | 		// TODO(b/134669567): Currently 1D textures are treated as 2D by setting the second coordinate to 0. | 
 | 		// Implement optimized 1D sampling. | 
 | 		if(samplerState.textureType == TEXTURE_1D) | 
 | 		{ | 
 | 			uvw[1] = SIMD::Float(0); | 
 | 		} | 
 | 		else if(samplerState.textureType == TEXTURE_1D_ARRAY) | 
 | 		{ | 
 | 			uvw[1] = SIMD::Float(0); | 
 | 			uvw[2] = in[1];  // Move 1D layer coordinate to 2D layer coordinate index. | 
 | 		} | 
 |  | 
 | 		if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch) | 
 | 		{ | 
 | 			lodOrBias = in[i]; | 
 | 			i++; | 
 | 		} | 
 | 		else if(instruction.samplerMethod == Grad) | 
 | 		{ | 
 | 			for(uint32_t j = 0; j < instruction.gradComponents; j++, i++) | 
 | 			{ | 
 | 				dsx[j] = in[i]; | 
 | 			} | 
 |  | 
 | 			for(uint32_t j = 0; j < instruction.gradComponents; j++, i++) | 
 | 			{ | 
 | 				dsy[j] = in[i]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if(instruction.samplerOption == Offset) | 
 | 		{ | 
 | 			for(uint32_t j = 0; j < instruction.offsetComponents; j++, i++) | 
 | 			{ | 
 | 				offset[j] = in[i]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		SamplerCore s(constants, samplerState); | 
 |  | 
 | 		// For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes | 
 | 		// a single LOD per four elements, so we sample the image again for each LOD separately. | 
 | 		if(samplerFunction.method == Lod || samplerFunction.method == Grad)  // TODO(b/133868964): Also handle divergent Bias and Fetch with Lod. | 
 | 		{ | 
 | 			auto lod = Pointer<Float>(&lodOrBias); | 
 |  | 
 | 			For(Int i = 0, i < SIMD::Width, i++) | 
 | 			{ | 
 | 				SIMD::Float dPdx; | 
 | 				SIMD::Float dPdy; | 
 |  | 
 | 				dPdx.x = Pointer<Float>(&dsx.x)[i]; | 
 | 				dPdx.y = Pointer<Float>(&dsx.y)[i]; | 
 | 				dPdx.z = Pointer<Float>(&dsx.z)[i]; | 
 |  | 
 | 				dPdy.x = Pointer<Float>(&dsy.x)[i]; | 
 | 				dPdy.y = Pointer<Float>(&dsy.y)[i]; | 
 | 				dPdy.z = Pointer<Float>(&dsy.z)[i]; | 
 |  | 
 | 				// 1D textures are treated as 2D texture with second coordinate 0, so we also need to zero out the second grad component. TODO(b/134669567) | 
 | 				if(samplerState.textureType == TEXTURE_1D || samplerState.textureType == TEXTURE_1D_ARRAY) | 
 | 				{ | 
 | 					dPdx.y = Float(0.0f); | 
 | 					dPdy.y = Float(0.0f); | 
 | 				} | 
 |  | 
 | 				Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lod[i], dPdx, dPdy, offset, samplerFunction); | 
 |  | 
 | 				Pointer<Float> rgba = out; | 
 | 				rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i]; | 
 | 				rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i]; | 
 | 				rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i]; | 
 | 				rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i]; | 
 | 			} | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lodOrBias.x, (dsx.x), (dsy.x), offset, samplerFunction); | 
 |  | 
 | 			Pointer<SIMD::Float> rgba = out; | 
 | 			rgba[0] = sample.x; | 
 | 			rgba[1] = sample.y; | 
 | 			rgba[2] = sample.z; | 
 | 			rgba[3] = sample.w; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return (ImageSampler*)function("sampler")->getEntry(); | 
 | } | 
 |  | 
 | sw::TextureType SpirvShader::convertTextureType(VkImageViewType imageViewType) | 
 | { | 
 | 	switch(imageViewType) | 
 | 	{ | 
 | 	case VK_IMAGE_VIEW_TYPE_1D:         return TEXTURE_1D; | 
 | 	case VK_IMAGE_VIEW_TYPE_2D:         return TEXTURE_2D; | 
 | 	case VK_IMAGE_VIEW_TYPE_3D:         return TEXTURE_3D; | 
 | 	case VK_IMAGE_VIEW_TYPE_CUBE:       return TEXTURE_CUBE; | 
 | 	case VK_IMAGE_VIEW_TYPE_1D_ARRAY:   return TEXTURE_1D_ARRAY; | 
 | 	case VK_IMAGE_VIEW_TYPE_2D_ARRAY:   return TEXTURE_2D_ARRAY; | 
 | //	case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: return TEXTURE_CUBE_ARRAY; | 
 | 	default: | 
 | 		UNIMPLEMENTED("imageViewType %d", imageViewType); | 
 | 		return TEXTURE_2D; | 
 | 	} | 
 | } | 
 |  | 
 | sw::FilterType SpirvShader::convertFilterMode(const vk::Sampler *sampler) | 
 | { | 
 | 	switch(sampler->magFilter) | 
 | 	{ | 
 | 	case VK_FILTER_NEAREST: | 
 | 		switch(sampler->minFilter) | 
 | 		{ | 
 | 		case VK_FILTER_NEAREST: return FILTER_POINT; | 
 | 		case VK_FILTER_LINEAR:  return FILTER_MIN_LINEAR_MAG_POINT; | 
 | 		default: | 
 | 			UNIMPLEMENTED("minFilter %d", sampler->minFilter); | 
 | 			return FILTER_POINT; | 
 | 		} | 
 | 		break; | 
 | 	case VK_FILTER_LINEAR: | 
 | 		switch(sampler->minFilter) | 
 | 		{ | 
 | 		case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR; | 
 | 		case VK_FILTER_LINEAR:  return FILTER_LINEAR; | 
 | 		default: | 
 | 			UNIMPLEMENTED("minFilter %d", sampler->minFilter); | 
 | 			return FILTER_POINT; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	UNIMPLEMENTED("magFilter %d", sampler->magFilter); | 
 | 	return FILTER_POINT; | 
 | } | 
 |  | 
 | sw::MipmapType SpirvShader::convertMipmapMode(const vk::Sampler *sampler) | 
 | { | 
 | 	if(sampler->ycbcrConversion) | 
 | 	{ | 
 | 		return MIPMAP_NONE;  // YCbCr images can only have one mipmap level. | 
 | 	} | 
 |  | 
 | 	switch(sampler->mipmapMode) | 
 | 	{ | 
 | 	case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT; | 
 | 	case VK_SAMPLER_MIPMAP_MODE_LINEAR:  return MIPMAP_LINEAR; | 
 | 	default: | 
 | 		UNIMPLEMENTED("mipmapMode %d", sampler->mipmapMode); | 
 | 		return MIPMAP_POINT; | 
 | 	} | 
 | } | 
 |  | 
 | sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, VkSamplerAddressMode addressMode, VkImageViewType imageViewType) | 
 | { | 
 | 	switch(imageViewType) | 
 | 	{ | 
 | 	case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: | 
 | 		UNSUPPORTED("SPIR-V ImageCubeArray Capability (imageViewType: %d)", int(imageViewType)); | 
 | 		if(coordinateIndex == 3) | 
 | 		{ | 
 | 			return ADDRESSING_LAYER; | 
 | 		} | 
 | 		// Fall through to CUBE case: | 
 | 	case VK_IMAGE_VIEW_TYPE_CUBE: | 
 | 		if(coordinateIndex <= 1)  // Cube faces themselves are addressed as 2D images. | 
 | 		{ | 
 | 			// Vulkan 1.1 spec: | 
 | 			// "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then | 
 | 			//  VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges | 
 | 			//  is performed as described earlier in the Cube map edge handling section." | 
 | 			// This corresponds with our 'SEAMLESS' addressing mode. | 
 | 			return ADDRESSING_SEAMLESS; | 
 | 		} | 
 | 		else if(coordinateIndex == 2) | 
 | 		{ | 
 | 			// The cube face is an index into array layers. | 
 | 			return ADDRESSING_CUBEFACE; | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			return ADDRESSING_UNUSED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case VK_IMAGE_VIEW_TYPE_1D:  // Treated as 2D texture with second coordinate 0. TODO(b/134669567) | 
 | 		if(coordinateIndex == 1) | 
 | 		{ | 
 | 			return ADDRESSING_WRAP; | 
 | 		} | 
 | 		else if(coordinateIndex >= 2) | 
 | 		{ | 
 | 			return ADDRESSING_UNUSED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case VK_IMAGE_VIEW_TYPE_3D: | 
 | 		if(coordinateIndex >= 3) | 
 | 		{ | 
 | 			return ADDRESSING_UNUSED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case VK_IMAGE_VIEW_TYPE_1D_ARRAY:  // Treated as 2D texture with second coordinate 0. TODO(b/134669567) | 
 | 		if(coordinateIndex == 1) | 
 | 		{ | 
 | 			return ADDRESSING_WRAP; | 
 | 		} | 
 | 		// Fall through to 2D_ARRAY case: | 
 | 	case VK_IMAGE_VIEW_TYPE_2D_ARRAY: | 
 | 		if(coordinateIndex == 2) | 
 | 		{ | 
 | 			return ADDRESSING_LAYER; | 
 | 		} | 
 | 		else if(coordinateIndex >= 3) | 
 | 		{ | 
 | 			return ADDRESSING_UNUSED; | 
 | 		} | 
 | 		// Fall through to 2D case: | 
 | 	case VK_IMAGE_VIEW_TYPE_2D: | 
 | 		if(coordinateIndex >= 2) | 
 | 		{ | 
 | 			return ADDRESSING_UNUSED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		UNIMPLEMENTED("imageViewType %d", imageViewType); | 
 | 		return ADDRESSING_WRAP; | 
 | 	} | 
 |  | 
 | 	switch(addressMode) | 
 | 	{ | 
 | 	case VK_SAMPLER_ADDRESS_MODE_REPEAT:               return ADDRESSING_WRAP; | 
 | 	case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:      return ADDRESSING_MIRROR; | 
 | 	case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:        return ADDRESSING_CLAMP; | 
 | 	case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:      return ADDRESSING_BORDER; | 
 | 	case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE; | 
 | 	default: | 
 | 		UNIMPLEMENTED("addressMode %d", addressMode); | 
 | 		return ADDRESSING_WRAP; | 
 | 	} | 
 | } | 
 |  | 
 | } // namespace sw |