blob: 9278161ec71eeb89155ea5b5f9a76a5f15d3ee3c [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkDeviceMemory.hpp"
#include "VkBuffer.hpp"
#include "VkImage.hpp"
#include "Device/Blitter.hpp"
#include "Device/Surface.hpp"
#include <cstring>
namespace vk
{
Image::Image(const VkImageCreateInfo* pCreateInfo, void* mem) :
flags(pCreateInfo->flags),
imageType(pCreateInfo->imageType),
format(pCreateInfo->format),
extent(pCreateInfo->extent),
mipLevels(pCreateInfo->mipLevels),
arrayLayers(pCreateInfo->arrayLayers),
samples(pCreateInfo->samples),
tiling(pCreateInfo->tiling)
{
blitter = new sw::Blitter();
}
void Image::destroy(const VkAllocationCallbacks* pAllocator)
{
delete blitter;
}
size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo* pCreateInfo)
{
return 0;
}
const VkMemoryRequirements Image::getMemoryRequirements() const
{
VkMemoryRequirements memoryRequirements;
memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT;
memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT;
memoryRequirements.size = getStorageSize(flags);
return memoryRequirements;
}
void Image::bind(VkDeviceMemory pDeviceMemory, VkDeviceSize pMemoryOffset)
{
deviceMemory = Cast(pDeviceMemory);
memoryOffset = pMemoryOffset;
}
void Image::getSubresourceLayout(const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) const
{
uint32_t bpp = bytesPerTexel(flags);
pLayout->offset = getMemoryOffset(flags, pSubresource->mipLevel, pSubresource->arrayLayer);
pLayout->size = getMipLevelSize(flags, pSubresource->mipLevel);
pLayout->rowPitch = rowPitchBytes(flags, pSubresource->mipLevel);
pLayout->depthPitch = slicePitchBytes(flags, pSubresource->mipLevel);
pLayout->arrayPitch = getLayerSize(flags);
}
void Image::copyTo(VkImage dstImage, const VkImageCopy& pRegion)
{
// Image copy does not perform any conversion, it simply copies memory from
// an image to another image that has the same number of bytes per pixel.
Image* dst = Cast(dstImage);
int srcBytesPerTexel = bytesPerTexel(pRegion.srcSubresource.aspectMask);
ASSERT(srcBytesPerTexel == dst->bytesPerTexel(pRegion.dstSubresource.aspectMask));
if(!((pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
(pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT)) ||
(pRegion.srcSubresource.baseArrayLayer != 0) ||
(pRegion.srcSubresource.layerCount != 1))
{
UNIMPLEMENTED();
}
if(!((pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
(pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT)) ||
(pRegion.dstSubresource.baseArrayLayer != 0) ||
(pRegion.dstSubresource.layerCount != 1))
{
UNIMPLEMENTED();
}
const char* srcMem = static_cast<const char*>(getTexelPointer(pRegion.srcOffset, pRegion.srcSubresource));
char* dstMem = static_cast<char*>(dst->getTexelPointer(pRegion.dstOffset, pRegion.dstSubresource));
int srcRowPitchBytes = rowPitchBytes(pRegion.srcSubresource.aspectMask, pRegion.srcSubresource.mipLevel);
int srcSlicePitchBytes = slicePitchBytes(pRegion.srcSubresource.aspectMask, pRegion.srcSubresource.mipLevel);
int dstRowPitchBytes = dst->rowPitchBytes(pRegion.dstSubresource.aspectMask, pRegion.dstSubresource.mipLevel);
int dstSlicePitchBytes = dst->slicePitchBytes(pRegion.dstSubresource.aspectMask, pRegion.dstSubresource.mipLevel);
VkExtent3D srcExtent = getMipLevelExtent(pRegion.srcSubresource.mipLevel);
VkExtent3D dstExtent = dst->getMipLevelExtent(pRegion.dstSubresource.mipLevel);
bool isSinglePlane = (pRegion.extent.depth == 1);
bool isSingleLine = (pRegion.extent.height == 1) && isSinglePlane;
// In order to copy multiple lines using a single memcpy call, we
// have to make sure that we need to copy the entire line and that
// both source and destination lines have the same length in bytes
bool isEntireLine = (pRegion.extent.width == srcExtent.width) &&
(pRegion.extent.width == dstExtent.width) &&
(srcRowPitchBytes == dstRowPitchBytes);
// In order to copy multiple planes using a single memcpy call, we
// have to make sure that we need to copy the entire plane and that
// both source and destination planes have the same length in bytes
bool isEntirePlane = isEntireLine &&
(pRegion.extent.height == srcExtent.height) &&
(pRegion.extent.height == dstExtent.height) &&
(srcSlicePitchBytes == dstSlicePitchBytes);
if(isSingleLine) // Copy one line
{
memcpy(dstMem, srcMem, pRegion.extent.width * srcBytesPerTexel);
}
else if(isEntireLine && isSinglePlane) // Copy one plane
{
memcpy(dstMem, srcMem, pRegion.extent.height * srcRowPitchBytes);
}
else if(isEntirePlane) // Copy multiple planes
{
memcpy(dstMem, srcMem, pRegion.extent.depth * srcSlicePitchBytes);
}
else if(isEntireLine) // Copy plane by plane
{
for(uint32_t z = 0; z < pRegion.extent.depth; z++, dstMem += dstSlicePitchBytes, srcMem += srcSlicePitchBytes)
{
memcpy(dstMem, srcMem, pRegion.extent.height * srcRowPitchBytes);
}
}
else // Copy line by line
{
for(uint32_t z = 0; z < pRegion.extent.depth; z++)
{
for(uint32_t y = 0; y < pRegion.extent.height; y++, dstMem += dstRowPitchBytes, srcMem += srcRowPitchBytes)
{
memcpy(dstMem, srcMem, pRegion.extent.width * srcBytesPerTexel);
}
}
}
}
void Image::copy(VkBuffer buffer, const VkBufferImageCopy& region, bool bufferIsSource)
{
if(!((region.imageSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(region.imageSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
(region.imageSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT)))
{
UNIMPLEMENTED();
}
VkExtent3D mipLevelExtent = getMipLevelExtent(region.imageSubresource.mipLevel);
int imageBytesPerTexel = bytesPerTexel(region.imageSubresource.aspectMask);
int imageRowPitchBytes = rowPitchBytes(region.imageSubresource.aspectMask, region.imageSubresource.mipLevel);
int imageSlicePitchBytes = slicePitchBytes(region.imageSubresource.aspectMask, region.imageSubresource.mipLevel);
int bufferRowPitchBytes = ((region.bufferRowLength == 0) ? region.imageExtent.width : region.bufferRowLength) *
imageBytesPerTexel;
int bufferSlicePitchBytes = (((region.bufferImageHeight == 0) || (region.bufferRowLength == 0))) ?
region.imageExtent.height * bufferRowPitchBytes :
(region.bufferImageHeight * region.bufferRowLength) * imageBytesPerTexel;
int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes;
int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes;
int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes;
int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes;
bool isSinglePlane = (region.imageExtent.depth == 1);
bool isSingleLine = (region.imageExtent.height == 1) && isSinglePlane;
bool isEntireLine = (region.imageExtent.width == mipLevelExtent.width) &&
(imageRowPitchBytes == bufferRowPitchBytes);
bool isEntirePlane = isEntireLine && (region.imageExtent.height == mipLevelExtent.height) &&
(imageSlicePitchBytes == bufferSlicePitchBytes);
VkDeviceSize layerSize = getLayerSize(flags);
char* bufferMemory = static_cast<char*>(Cast(buffer)->getOffsetPointer(region.bufferOffset));
char* imageMemory = static_cast<char*>(deviceMemory->getOffsetPointer(
getMemoryOffset(region.imageSubresource.aspectMask, region.imageSubresource.mipLevel,
region.imageSubresource.baseArrayLayer) +
texelOffsetBytesInStorage(region.imageOffset, region.imageSubresource)));
char* srcMemory = bufferIsSource ? bufferMemory : imageMemory;
char* dstMemory = bufferIsSource ? imageMemory : bufferMemory;
VkDeviceSize copySize = 0;
if(isSingleLine)
{
copySize = region.imageExtent.width * imageBytesPerTexel;
}
else if(isEntireLine && isSinglePlane)
{
copySize = region.imageExtent.height * imageRowPitchBytes;
}
else if(isEntirePlane)
{
copySize = region.imageExtent.depth * imageSlicePitchBytes; // Copy multiple planes
}
else if(isEntireLine) // Copy plane by plane
{
copySize = region.imageExtent.height * imageRowPitchBytes;
}
else // Copy line by line
{
copySize = region.imageExtent.width * imageBytesPerTexel;
}
for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++)
{
if(isSingleLine || (isEntireLine && isSinglePlane) || isEntirePlane)
{
memcpy(dstMemory, srcMemory, copySize);
}
else if(isEntireLine) // Copy plane by plane
{
for(uint32_t z = 0; z < region.imageExtent.depth; z++)
{
memcpy(dstMemory, srcMemory, copySize);
srcMemory += srcSlicePitchBytes;
dstMemory += dstSlicePitchBytes;
}
}
else // Copy line by line
{
for(uint32_t z = 0; z < region.imageExtent.depth; z++)
{
for(uint32_t y = 0; y < region.imageExtent.height; y++)
{
memcpy(dstMemory, srcMemory, copySize);
srcMemory += srcRowPitchBytes;
dstMemory += dstRowPitchBytes;
}
}
}
srcMemory += layerSize;
dstMemory += layerSize;
}
}
void Image::copyTo(VkBuffer dstBuffer, const VkBufferImageCopy& region)
{
copy(dstBuffer, region, false);
}
void Image::copyFrom(VkBuffer srcBuffer, const VkBufferImageCopy& region)
{
copy(srcBuffer, region, true);
}
void* Image::getTexelPointer(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const
{
return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) +
getMemoryOffset(flags, subresource.mipLevel, subresource.baseArrayLayer));
}
VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const
{
return offset.z * slicePitchBytes(flags, subresource.mipLevel) +
offset.y * rowPitchBytes(flags, subresource.mipLevel) +
offset.x * bytesPerTexel(flags);
}
VkExtent3D Image::getMipLevelExtent(uint32_t mipLevel) const
{
VkExtent3D mipLevelExtent;
mipLevelExtent.width = extent.width >> mipLevel;
mipLevelExtent.height = extent.height >> mipLevel;
mipLevelExtent.depth = extent.depth >> mipLevel;
if(mipLevelExtent.width == 0)
{
mipLevelExtent.width = 1;
}
if(mipLevelExtent.height == 0)
{
mipLevelExtent.height = 1;
}
if(mipLevelExtent.depth == 0)
{
mipLevelExtent.depth = 1;
}
return mipLevelExtent;
}
int Image::rowPitchBytes(const VkImageAspectFlags& flags, uint32_t mipLevel) const
{
// Depth and Stencil pitch should be computed separately
ASSERT((flags & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
return sw::Surface::pitchB(getMipLevelExtent(mipLevel).width, isCube() ? 1 : 0, getFormat(flags), false);
}
int Image::slicePitchBytes(const VkImageAspectFlags& flags, uint32_t mipLevel) const
{
// Depth and Stencil slice should be computed separately
ASSERT((flags & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
VkExtent3D mipLevelExtent = getMipLevelExtent(mipLevel);
return sw::Surface::sliceB(mipLevelExtent.width, mipLevelExtent.height, isCube() ? 1 : 0, getFormat(flags), false);
}
int Image::bytesPerTexel(const VkImageAspectFlags& flags) const
{
// Depth and Stencil bytes should be computed separately
ASSERT((flags & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
return sw::Surface::bytes(getFormat(flags));
}
VkFormat Image::getFormat(const VkImageAspectFlags& flags) const
{
switch(flags)
{
case VK_IMAGE_ASPECT_DEPTH_BIT:
switch(format)
{
case VK_FORMAT_D16_UNORM_S8_UINT:
return VK_FORMAT_D16_UNORM;
case VK_FORMAT_D24_UNORM_S8_UINT:
return VK_FORMAT_X8_D24_UNORM_PACK32; // FIXME: This will allocate an extra byte per pixel
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return VK_FORMAT_D32_SFLOAT;
default:
break;
}
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
switch(format)
{
case VK_FORMAT_D16_UNORM_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return VK_FORMAT_S8_UINT;
default:
break;
}
break;
default:
break;
}
return format;
}
bool Image::isCube() const
{
return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D);
}
VkDeviceSize Image::getMemoryOffset(const VkImageAspectFlags& flags) const
{
switch(format)
{
case VK_FORMAT_D16_UNORM_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
if(flags == VK_IMAGE_ASPECT_STENCIL_BIT)
{
// Offset by depth buffer to get to stencil buffer
return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT);
}
break;
default:
break;
}
return memoryOffset;
}
VkDeviceSize Image::getMemoryOffset(const VkImageAspectFlags& flags, uint32_t mipLevel) const
{
VkDeviceSize offset = getMemoryOffset(flags);
for(uint32_t i = 0; i < mipLevel; ++i)
{
offset += getMipLevelSize(flags, i);
}
return offset;
}
VkDeviceSize Image::getMemoryOffset(const VkImageAspectFlags& flags, uint32_t mipLevel, uint32_t layer) const
{
return layer * getLayerSize(flags) + getMemoryOffset(flags, mipLevel);
}
VkDeviceSize Image::getMipLevelSize(const VkImageAspectFlags& flags, uint32_t mipLevel) const
{
int slicePitchB = 0;
if(sw::Surface::isDepth(format) && sw::Surface::isStencil(format))
{
switch(flags)
{
case VK_IMAGE_ASPECT_DEPTH_BIT:
case VK_IMAGE_ASPECT_STENCIL_BIT:
slicePitchB = slicePitchBytes(flags, mipLevel);
break;
default:
// Allow allocating both depth and stencil contiguously
slicePitchB = (slicePitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, mipLevel) +
slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, mipLevel));
break;
}
}
else
{
slicePitchB = slicePitchBytes(flags, mipLevel);
}
return getMipLevelExtent(mipLevel).depth * slicePitchB;
}
VkDeviceSize Image::getLayerSize(const VkImageAspectFlags& flags) const
{
VkDeviceSize layerSize = 0;
for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel)
{
layerSize += getMipLevelSize(flags, mipLevel);
}
return layerSize;
}
VkDeviceSize Image::getStorageSize(const VkImageAspectFlags& flags) const
{
return arrayLayers * getLayerSize(flags);
}
sw::Surface* Image::asSurface(const VkImageAspectFlags& flags, uint32_t mipLevel, uint32_t layer) const
{
VkExtent3D mipLevelExtent = getMipLevelExtent(mipLevel);
return sw::Surface::create(mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, getFormat(flags),
deviceMemory->getOffsetPointer(getMemoryOffset(flags, mipLevel, layer)),
rowPitchBytes(flags, mipLevel), slicePitchBytes(flags, mipLevel));
}
void Image::blit(VkImage dstImage, const VkImageBlit& region, VkFilter filter)
{
VkImageAspectFlags srcFlags = region.srcSubresource.aspectMask;
VkImageAspectFlags dstFlags = region.dstSubresource.aspectMask;
if((region.srcSubresource.baseArrayLayer != 0) ||
(region.dstSubresource.baseArrayLayer != 0) ||
(region.srcSubresource.layerCount != 1) ||
(region.dstSubresource.layerCount != 1) ||
(srcFlags != dstFlags))
{
UNIMPLEMENTED();
}
int32_t numSlices = (region.srcOffsets[1].z - region.srcOffsets[0].z);
ASSERT(numSlices == (region.dstOffsets[1].z - region.dstOffsets[0].z));
sw::Surface* srcSurface = asSurface(srcFlags, region.srcSubresource.mipLevel, 0);
sw::Surface* dstSurface = Cast(dstImage)->asSurface(dstFlags, region.dstSubresource.mipLevel, 0);
sw::SliceRectF sRect(static_cast<float>(region.srcOffsets[0].x), static_cast<float>(region.srcOffsets[0].y),
static_cast<float>(region.srcOffsets[1].x), static_cast<float>(region.srcOffsets[1].y),
region.srcOffsets[0].z);
sw::SliceRect dRect(region.dstOffsets[0].x, region.dstOffsets[0].y,
region.dstOffsets[1].x, region.dstOffsets[1].y, region.dstOffsets[0].z);
for(int i = 0; i < numSlices; i++)
{
blitter->blit(srcSurface, sRect, dstSurface, dRect,
{filter != VK_FILTER_NEAREST, srcFlags == VK_IMAGE_ASPECT_STENCIL_BIT, false});
sRect.slice++;
dRect.slice++;
}
delete srcSurface;
delete dstSurface;
}
VkFormat Image::getClearFormat() const
{
// Set the proper format for the clear value, as described here:
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values
if(sw::Surface::isSignedNonNormalizedInteger(format))
{
return VK_FORMAT_R32G32B32A32_SINT;
}
else if(sw::Surface::isUnsignedNonNormalizedInteger(format))
{
return VK_FORMAT_R32G32B32A32_UINT;
}
return VK_FORMAT_R32G32B32A32_SFLOAT;
}
uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange& subresourceRange) const
{
return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ?
arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1;
}
uint32_t Image::getLastMipLevel(const VkImageSubresourceRange& subresourceRange) const
{
return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ?
mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1;
}
void Image::clear(void* pixelData, VkFormat format, const VkImageSubresourceRange& subresourceRange, VkImageAspectFlags aspectMask)
{
uint32_t firstLayer = subresourceRange.baseArrayLayer;
uint32_t lastLayer = getLastLayerIndex(subresourceRange);
for(uint32_t layer = firstLayer; layer <= lastLayer; ++layer)
{
uint32_t lastLevel = getLastMipLevel(subresourceRange);
for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastLevel; ++mipLevel)
{
VkExtent3D mipLevelExtent = getMipLevelExtent(mipLevel);
for(uint32_t s = 0; s < mipLevelExtent.depth; ++s)
{
const sw::SliceRect dRect(0, 0, mipLevelExtent.width, mipLevelExtent.height, s);
sw::Surface* surface = asSurface(aspectMask, mipLevel, layer);
blitter->clear(pixelData, format, surface, dRect, 0xF);
delete surface;
}
}
}
}
void Image::clear(void* pixelData, VkFormat format, const VkRect2D& renderArea, const VkImageSubresourceRange& subresourceRange, VkImageAspectFlags aspectMask)
{
if((subresourceRange.baseMipLevel != 0) ||
(subresourceRange.levelCount != 1))
{
UNIMPLEMENTED();
}
sw::SliceRect dRect(renderArea.offset.x, renderArea.offset.y,
renderArea.offset.x + renderArea.extent.width,
renderArea.offset.y + renderArea.extent.height, 0);
uint32_t firstLayer = subresourceRange.baseArrayLayer;
uint32_t lastLayer = getLastLayerIndex(subresourceRange);
for(uint32_t layer = firstLayer; layer <= lastLayer; ++layer)
{
for(uint32_t s = 0; s < extent.depth; ++s)
{
dRect.slice = s;
sw::Surface* surface = asSurface(aspectMask, 0, layer);
blitter->clear(pixelData, format, surface, dRect, 0xF);
delete surface;
}
}
}
void Image::clear(const VkClearColorValue& color, const VkImageSubresourceRange& subresourceRange)
{
if(!(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT))
{
UNIMPLEMENTED();
}
clear((void*)color.float32, getClearFormat(), subresourceRange, VK_IMAGE_ASPECT_COLOR_BIT);
}
void Image::clear(const VkClearDepthStencilValue& color, const VkImageSubresourceRange& subresourceRange)
{
if((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT)) != 0)
{
UNIMPLEMENTED();
}
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
{
clear((void*)(&color.depth), VK_FORMAT_D32_SFLOAT, subresourceRange, VK_IMAGE_ASPECT_DEPTH_BIT);
}
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
{
clear((void*)(&color.stencil), VK_FORMAT_S8_UINT, subresourceRange, VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
void Image::clear(const VkClearValue& clearValue, const VkRect2D& renderArea, const VkImageSubresourceRange& subresourceRange)
{
if(!((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT))) ||
(subresourceRange.baseMipLevel != 0) ||
(subresourceRange.levelCount != 1))
{
UNIMPLEMENTED();
}
if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)
{
clear((void*)(clearValue.color.float32), getClearFormat(), renderArea, subresourceRange, VK_IMAGE_ASPECT_COLOR_BIT);
}
else
{
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
{
clear((void*)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, renderArea, subresourceRange, VK_IMAGE_ASPECT_DEPTH_BIT);
}
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
{
clear((void*)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, renderArea, subresourceRange, VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
}
} // namespace vk