| //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that AVR uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AVRISelLowering.h" |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #include "AVR.h" |
| #include "AVRMachineFunctionInfo.h" |
| #include "AVRSubtarget.h" |
| #include "AVRTargetMachine.h" |
| #include "MCTargetDesc/AVRMCTargetDesc.h" |
| |
| namespace llvm { |
| |
| AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM, |
| const AVRSubtarget &STI) |
| : TargetLowering(TM), Subtarget(STI) { |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, &AVR::GPR8RegClass); |
| addRegisterClass(MVT::i16, &AVR::DREGSRegClass); |
| |
| // Compute derived properties from the register classes. |
| computeRegisterProperties(Subtarget.getRegisterInfo()); |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); |
| setSchedulingPreference(Sched::RegPressure); |
| setStackPointerRegisterToSaveRestore(AVR::SP); |
| setSupportsUnalignedAtomics(true); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i16, Custom); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); |
| |
| setOperationAction(ISD::INLINEASM, MVT::Other, Custom); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { |
| setLoadExtAction(N, VT, MVT::i1, Promote); |
| setLoadExtAction(N, VT, MVT::i8, Expand); |
| } |
| } |
| |
| setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::ADDC, VT, Legal); |
| setOperationAction(ISD::SUBC, VT, Legal); |
| setOperationAction(ISD::ADDE, VT, Legal); |
| setOperationAction(ISD::SUBE, VT, Legal); |
| } |
| |
| // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types |
| // revert into a sub since we don't have an add with immediate instruction. |
| setOperationAction(ISD::ADD, MVT::i32, Custom); |
| setOperationAction(ISD::ADD, MVT::i64, Custom); |
| |
| // our shift instructions are only able to shift 1 bit at a time, so handle |
| // this in a custom way. |
| setOperationAction(ISD::SRA, MVT::i8, Custom); |
| setOperationAction(ISD::SHL, MVT::i8, Custom); |
| setOperationAction(ISD::SRL, MVT::i8, Custom); |
| setOperationAction(ISD::SRA, MVT::i16, Custom); |
| setOperationAction(ISD::SHL, MVT::i16, Custom); |
| setOperationAction(ISD::SRL, MVT::i16, Custom); |
| setOperationAction(ISD::SRA, MVT::i32, Custom); |
| setOperationAction(ISD::SHL, MVT::i32, Custom); |
| setOperationAction(ISD::SRL, MVT::i32, Custom); |
| setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); |
| |
| setOperationAction(ISD::ROTL, MVT::i8, Custom); |
| setOperationAction(ISD::ROTL, MVT::i16, Expand); |
| setOperationAction(ISD::ROTR, MVT::i8, Custom); |
| setOperationAction(ISD::ROTR, MVT::i16, Expand); |
| |
| setOperationAction(ISD::BR_CC, MVT::i8, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i16, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); |
| setOperationAction(ISD::SETCC, MVT::i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::i16, Custom); |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::i8, Expand); |
| setOperationAction(ISD::SELECT, MVT::i16, Expand); |
| |
| setOperationAction(ISD::BSWAP, MVT::i16, Expand); |
| |
| // Add support for postincrement and predecrement load/stores. |
| setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); |
| setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| |
| // Atomic operations which must be lowered to rtlib calls |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::ATOMIC_SWAP, VT, Expand); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); |
| } |
| |
| // Division/remainder |
| setOperationAction(ISD::UDIV, MVT::i8, Expand); |
| setOperationAction(ISD::UDIV, MVT::i16, Expand); |
| setOperationAction(ISD::UREM, MVT::i8, Expand); |
| setOperationAction(ISD::UREM, MVT::i16, Expand); |
| setOperationAction(ISD::SDIV, MVT::i8, Expand); |
| setOperationAction(ISD::SDIV, MVT::i16, Expand); |
| setOperationAction(ISD::SREM, MVT::i8, Expand); |
| setOperationAction(ISD::SREM, MVT::i16, Expand); |
| |
| // Make division and modulus custom |
| setOperationAction(ISD::UDIVREM, MVT::i8, Custom); |
| setOperationAction(ISD::UDIVREM, MVT::i16, Custom); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Custom); |
| setOperationAction(ISD::SDIVREM, MVT::i8, Custom); |
| setOperationAction(ISD::SDIVREM, MVT::i16, Custom); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Custom); |
| |
| // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co. |
| setOperationAction(ISD::MUL, MVT::i8, Expand); |
| setOperationAction(ISD::MUL, MVT::i16, Expand); |
| |
| // Expand 16 bit multiplications. |
| setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); |
| |
| // Expand multiplications to libcalls when there is |
| // no hardware MUL. |
| if (!Subtarget.supportsMultiplication()) { |
| setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| // TODO: The generated code is pretty poor. Investigate using the |
| // same "shift and subtract with carry" trick that we do for |
| // extending 8-bit to 16-bit. This may require infrastructure |
| // improvements in how we treat 16-bit "registers" to be feasible. |
| } |
| |
| // Division rtlib functions (not supported), use divmod functions instead |
| setLibcallName(RTLIB::SDIV_I8, nullptr); |
| setLibcallName(RTLIB::SDIV_I16, nullptr); |
| setLibcallName(RTLIB::SDIV_I32, nullptr); |
| setLibcallName(RTLIB::UDIV_I8, nullptr); |
| setLibcallName(RTLIB::UDIV_I16, nullptr); |
| setLibcallName(RTLIB::UDIV_I32, nullptr); |
| |
| // Modulus rtlib functions (not supported), use divmod functions instead |
| setLibcallName(RTLIB::SREM_I8, nullptr); |
| setLibcallName(RTLIB::SREM_I16, nullptr); |
| setLibcallName(RTLIB::SREM_I32, nullptr); |
| setLibcallName(RTLIB::UREM_I8, nullptr); |
| setLibcallName(RTLIB::UREM_I16, nullptr); |
| setLibcallName(RTLIB::UREM_I32, nullptr); |
| |
| // Division and modulus rtlib functions |
| setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4"); |
| setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4"); |
| setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); |
| setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4"); |
| setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4"); |
| setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); |
| |
| // Several of the runtime library functions use a special calling conv |
| setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN); |
| setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN); |
| setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN); |
| setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN); |
| |
| // Trigonometric rtlib functions |
| setLibcallName(RTLIB::SIN_F32, "sin"); |
| setLibcallName(RTLIB::COS_F32, "cos"); |
| |
| setMinFunctionAlignment(Align(2)); |
| setMinimumJumpTableEntries(UINT_MAX); |
| } |
| |
| const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| #define NODE(name) \ |
| case AVRISD::name: \ |
| return #name |
| |
| switch (Opcode) { |
| default: |
| return nullptr; |
| NODE(RET_FLAG); |
| NODE(RETI_FLAG); |
| NODE(CALL); |
| NODE(WRAPPER); |
| NODE(LSL); |
| NODE(LSLW); |
| NODE(LSR); |
| NODE(LSRW); |
| NODE(ROL); |
| NODE(ROR); |
| NODE(ASR); |
| NODE(ASRW); |
| NODE(LSLLOOP); |
| NODE(LSRLOOP); |
| NODE(ROLLOOP); |
| NODE(RORLOOP); |
| NODE(ASRLOOP); |
| NODE(BRCOND); |
| NODE(CMP); |
| NODE(CMPC); |
| NODE(TST); |
| NODE(SELECT_CC); |
| #undef NODE |
| } |
| } |
| |
| EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| assert(!VT.isVector() && "No AVR SetCC type for vectors!"); |
| return MVT::i8; |
| } |
| |
| SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const { |
| unsigned Opc8; |
| const SDNode *N = Op.getNode(); |
| EVT VT = Op.getValueType(); |
| SDLoc dl(N); |
| assert(isPowerOf2_32(VT.getSizeInBits()) && |
| "Expected power-of-2 shift amount"); |
| |
| if (VT.getSizeInBits() == 32) { |
| if (!isa<ConstantSDNode>(N->getOperand(1))) { |
| // 32-bit shifts are converted to a loop in IR. |
| // This should be unreachable. |
| report_fatal_error("Expected a constant shift amount!"); |
| } |
| SDVTList ResTys = DAG.getVTList(MVT::i16, MVT::i16); |
| SDValue SrcLo = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i16, Op.getOperand(0), |
| DAG.getConstant(0, dl, MVT::i16)); |
| SDValue SrcHi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i16, Op.getOperand(0), |
| DAG.getConstant(1, dl, MVT::i16)); |
| uint64_t ShiftAmount = |
| cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| if (ShiftAmount == 16) { |
| // Special case these two operations because they appear to be used by the |
| // generic codegen parts to lower 32-bit numbers. |
| // TODO: perhaps we can lower shift amounts bigger than 16 to a 16-bit |
| // shift of a part of the 32-bit value? |
| switch (Op.getOpcode()) { |
| case ISD::SHL: { |
| SDValue Zero = DAG.getConstant(0, dl, MVT::i16); |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, Zero, SrcLo); |
| } |
| case ISD::SRL: { |
| SDValue Zero = DAG.getConstant(0, dl, MVT::i16); |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, SrcHi, Zero); |
| } |
| } |
| } |
| SDValue Cnt = DAG.getTargetConstant(ShiftAmount, dl, MVT::i8); |
| unsigned Opc; |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Invalid 32-bit shift opcode!"); |
| case ISD::SHL: |
| Opc = AVRISD::LSLW; |
| break; |
| case ISD::SRL: |
| Opc = AVRISD::LSRW; |
| break; |
| case ISD::SRA: |
| Opc = AVRISD::ASRW; |
| break; |
| } |
| SDValue Result = DAG.getNode(Opc, dl, ResTys, SrcLo, SrcHi, Cnt); |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, Result.getValue(0), |
| Result.getValue(1)); |
| } |
| |
| // Expand non-constant shifts to loops. |
| if (!isa<ConstantSDNode>(N->getOperand(1))) { |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Invalid shift opcode!"); |
| case ISD::SHL: |
| return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| case ISD::SRL: |
| return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| case ISD::ROTL: { |
| SDValue Amt = N->getOperand(1); |
| EVT AmtVT = Amt.getValueType(); |
| Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt, |
| DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT)); |
| return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt); |
| } |
| case ISD::ROTR: { |
| SDValue Amt = N->getOperand(1); |
| EVT AmtVT = Amt.getValueType(); |
| Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt, |
| DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT)); |
| return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt); |
| } |
| case ISD::SRA: |
| return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| } |
| } |
| |
| uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| SDValue Victim = N->getOperand(0); |
| |
| switch (Op.getOpcode()) { |
| case ISD::SRA: |
| Opc8 = AVRISD::ASR; |
| break; |
| case ISD::ROTL: |
| Opc8 = AVRISD::ROL; |
| ShiftAmount = ShiftAmount % VT.getSizeInBits(); |
| break; |
| case ISD::ROTR: |
| Opc8 = AVRISD::ROR; |
| ShiftAmount = ShiftAmount % VT.getSizeInBits(); |
| break; |
| case ISD::SRL: |
| Opc8 = AVRISD::LSR; |
| break; |
| case ISD::SHL: |
| Opc8 = AVRISD::LSL; |
| break; |
| default: |
| llvm_unreachable("Invalid shift opcode"); |
| } |
| |
| // Optimize int8/int16 shifts. |
| if (VT.getSizeInBits() == 8) { |
| if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) { |
| // Optimize LSL when 4 <= ShiftAmount <= 6. |
| Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); |
| Victim = |
| DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0xf0, dl, VT)); |
| ShiftAmount -= 4; |
| } else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount && |
| ShiftAmount < 7) { |
| // Optimize LSR when 4 <= ShiftAmount <= 6. |
| Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); |
| Victim = |
| DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0x0f, dl, VT)); |
| ShiftAmount -= 4; |
| } else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) { |
| // Optimize LSL when ShiftAmount == 7. |
| Victim = DAG.getNode(AVRISD::LSLBN, dl, VT, Victim, |
| DAG.getConstant(7, dl, VT)); |
| ShiftAmount = 0; |
| } else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) { |
| // Optimize LSR when ShiftAmount == 7. |
| Victim = DAG.getNode(AVRISD::LSRBN, dl, VT, Victim, |
| DAG.getConstant(7, dl, VT)); |
| ShiftAmount = 0; |
| } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 6) { |
| // Optimize ASR when ShiftAmount == 6. |
| Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim, |
| DAG.getConstant(6, dl, VT)); |
| ShiftAmount = 0; |
| } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) { |
| // Optimize ASR when ShiftAmount == 7. |
| Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim, |
| DAG.getConstant(7, dl, VT)); |
| ShiftAmount = 0; |
| } |
| } else if (VT.getSizeInBits() == 16) { |
| if (Op.getOpcode() == ISD::SRA) |
| // Special optimization for int16 arithmetic right shift. |
| switch (ShiftAmount) { |
| case 15: |
| Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, |
| DAG.getConstant(15, dl, VT)); |
| ShiftAmount = 0; |
| break; |
| case 14: |
| Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, |
| DAG.getConstant(14, dl, VT)); |
| ShiftAmount = 0; |
| break; |
| case 7: |
| Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, |
| DAG.getConstant(7, dl, VT)); |
| ShiftAmount = 0; |
| break; |
| default: |
| break; |
| } |
| if (4 <= ShiftAmount && ShiftAmount < 8) |
| switch (Op.getOpcode()) { |
| case ISD::SHL: |
| Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim, |
| DAG.getConstant(4, dl, VT)); |
| ShiftAmount -= 4; |
| break; |
| case ISD::SRL: |
| Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim, |
| DAG.getConstant(4, dl, VT)); |
| ShiftAmount -= 4; |
| break; |
| default: |
| break; |
| } |
| else if (8 <= ShiftAmount && ShiftAmount < 12) |
| switch (Op.getOpcode()) { |
| case ISD::SHL: |
| Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim, |
| DAG.getConstant(8, dl, VT)); |
| ShiftAmount -= 8; |
| // Only operate on the higher byte for remaining shift bits. |
| Opc8 = AVRISD::LSLHI; |
| break; |
| case ISD::SRL: |
| Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim, |
| DAG.getConstant(8, dl, VT)); |
| ShiftAmount -= 8; |
| // Only operate on the lower byte for remaining shift bits. |
| Opc8 = AVRISD::LSRLO; |
| break; |
| case ISD::SRA: |
| Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, |
| DAG.getConstant(8, dl, VT)); |
| ShiftAmount -= 8; |
| // Only operate on the lower byte for remaining shift bits. |
| Opc8 = AVRISD::ASRLO; |
| break; |
| default: |
| break; |
| } |
| else if (12 <= ShiftAmount) |
| switch (Op.getOpcode()) { |
| case ISD::SHL: |
| Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim, |
| DAG.getConstant(12, dl, VT)); |
| ShiftAmount -= 12; |
| // Only operate on the higher byte for remaining shift bits. |
| Opc8 = AVRISD::LSLHI; |
| break; |
| case ISD::SRL: |
| Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim, |
| DAG.getConstant(12, dl, VT)); |
| ShiftAmount -= 12; |
| // Only operate on the lower byte for remaining shift bits. |
| Opc8 = AVRISD::LSRLO; |
| break; |
| case ISD::SRA: |
| Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, |
| DAG.getConstant(8, dl, VT)); |
| ShiftAmount -= 8; |
| // Only operate on the lower byte for remaining shift bits. |
| Opc8 = AVRISD::ASRLO; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| while (ShiftAmount--) { |
| Victim = DAG.getNode(Opc8, dl, VT, Victim); |
| } |
| |
| return Victim; |
| } |
| |
| SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { |
| unsigned Opcode = Op->getOpcode(); |
| assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && |
| "Invalid opcode for Div/Rem lowering"); |
| bool IsSigned = (Opcode == ISD::SDIVREM); |
| EVT VT = Op->getValueType(0); |
| Type *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| |
| RTLIB::Libcall LC; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: |
| LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; |
| break; |
| case MVT::i16: |
| LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; |
| break; |
| case MVT::i32: |
| LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; |
| break; |
| } |
| |
| SDValue InChain = DAG.getEntryNode(); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (SDValue const &Value : Op->op_values()) { |
| Entry.Node = Value; |
| Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsSExt = IsSigned; |
| Entry.IsZExt = !IsSigned; |
| Args.push_back(Entry); |
| } |
| |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = (Type *)StructType::get(Ty, Ty); |
| |
| SDLoc dl(Op); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(InChain) |
| .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) |
| .setInRegister() |
| .setSExtResult(IsSigned) |
| .setZExtResult(!IsSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| return CallInfo.first; |
| } |
| |
| SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto DL = DAG.getDataLayout(); |
| |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| |
| // Create the TargetGlobalAddress node, folding in the constant offset. |
| SDValue Result = |
| DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset); |
| return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); |
| } |
| |
| SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto DL = DAG.getDataLayout(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| |
| SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL)); |
| |
| return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); |
| } |
| |
| /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC. |
| static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unknown condition code!"); |
| case ISD::SETEQ: |
| return AVRCC::COND_EQ; |
| case ISD::SETNE: |
| return AVRCC::COND_NE; |
| case ISD::SETGE: |
| return AVRCC::COND_GE; |
| case ISD::SETLT: |
| return AVRCC::COND_LT; |
| case ISD::SETUGE: |
| return AVRCC::COND_SH; |
| case ISD::SETULT: |
| return AVRCC::COND_LO; |
| } |
| } |
| |
| /// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands. |
| SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG, SDLoc DL) const { |
| assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) && |
| "LHS and RHS have different types"); |
| assert(((LHS.getSimpleValueType() == MVT::i16) || |
| (LHS.getSimpleValueType() == MVT::i8)) && |
| "invalid comparison type"); |
| |
| SDValue Cmp; |
| |
| if (LHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(RHS)) { |
| // Generate a CPI/CPC pair if RHS is a 16-bit constant. |
| SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS, |
| DAG.getIntPtrConstant(1, DL)); |
| Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); |
| } else { |
| // Generate ordinary 16-bit comparison. |
| Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS); |
| } |
| |
| return Cmp; |
| } |
| |
| /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for |
| /// the given operands. |
| SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &AVRcc, SelectionDAG &DAG, |
| SDLoc DL) const { |
| SDValue Cmp; |
| EVT VT = LHS.getValueType(); |
| bool UseTest = false; |
| |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETLE: { |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETGE; |
| break; |
| } |
| case ISD::SETGT: { |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| switch (C->getSExtValue()) { |
| case -1: { |
| // When doing lhs > -1 use a tst instruction on the top part of lhs |
| // and use brpl instead of using a chain of cp/cpc. |
| UseTest = true; |
| AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8); |
| break; |
| } |
| case 0: { |
| // Turn lhs > 0 into 0 < lhs since 0 can be materialized with |
| // __zero_reg__ in lhs. |
| RHS = LHS; |
| LHS = DAG.getConstant(0, DL, VT); |
| CC = ISD::SETLT; |
| break; |
| } |
| default: { |
| // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows |
| // us to fold the constant into the cmp instruction. |
| RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); |
| CC = ISD::SETGE; |
| break; |
| } |
| } |
| break; |
| } |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETLT; |
| break; |
| } |
| case ISD::SETLT: { |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| switch (C->getSExtValue()) { |
| case 1: { |
| // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with |
| // __zero_reg__ in lhs. |
| RHS = LHS; |
| LHS = DAG.getConstant(0, DL, VT); |
| CC = ISD::SETGE; |
| break; |
| } |
| case 0: { |
| // When doing lhs < 0 use a tst instruction on the top part of lhs |
| // and use brmi instead of using a chain of cp/cpc. |
| UseTest = true; |
| AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8); |
| break; |
| } |
| } |
| } |
| break; |
| } |
| case ISD::SETULE: { |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETUGE; |
| break; |
| } |
| case ISD::SETUGT: { |
| // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to |
| // fold the constant into the cmp instruction. |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); |
| CC = ISD::SETUGE; |
| break; |
| } |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETULT; |
| break; |
| } |
| } |
| |
| // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of |
| // using the default and/or/xor expansion code which is much longer. |
| if (VT == MVT::i32) { |
| SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| if (UseTest) { |
| // When using tst we only care about the highest part. |
| SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi, |
| DAG.getIntPtrConstant(1, DL)); |
| Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); |
| } else { |
| Cmp = getAVRCmp(LHSlo, RHSlo, DAG, DL); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); |
| } |
| } else if (VT == MVT::i64) { |
| SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| if (UseTest) { |
| // When using tst we only care about the highest part. |
| SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3, |
| DAG.getIntPtrConstant(1, DL)); |
| Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); |
| } else { |
| Cmp = getAVRCmp(LHS0, RHS0, DAG, DL); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp); |
| } |
| } else if (VT == MVT::i8 || VT == MVT::i16) { |
| if (UseTest) { |
| // When using tst we only care about the highest part. |
| Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, |
| (VT == MVT::i8) |
| ? LHS |
| : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, |
| LHS, DAG.getIntPtrConstant(1, DL))); |
| } else { |
| Cmp = getAVRCmp(LHS, RHS, DAG, DL); |
| } |
| } else { |
| llvm_unreachable("Invalid comparison size"); |
| } |
| |
| // When using a test instruction AVRcc is already set. |
| if (!UseTest) { |
| AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8); |
| } |
| |
| return Cmp; |
| } |
| |
| SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc dl(Op); |
| |
| SDValue TargetCC; |
| SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); |
| |
| return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC, |
| Cmp); |
| } |
| |
| SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue TrueV = Op.getOperand(2); |
| SDValue FalseV = Op.getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDLoc dl(Op); |
| |
| SDValue TargetCC; |
| SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| |
| return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops); |
| } |
| |
| SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SDLoc DL(Op); |
| |
| SDValue TargetCC; |
| SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL); |
| |
| SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType()); |
| SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType()); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| |
| return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops); |
| } |
| |
| SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| auto DL = DAG.getDataLayout(); |
| SDLoc dl(Op); |
| |
| // Vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL)); |
| |
| return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| // Modify the existing ISD::INLINEASM node to add the implicit zero register. |
| SDValue AVRTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { |
| SDValue ZeroReg = DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8); |
| if (Op.getOperand(Op.getNumOperands() - 1) == ZeroReg || |
| Op.getOperand(Op.getNumOperands() - 2) == ZeroReg) { |
| // Zero register has already been added. Don't add it again. |
| // If this isn't handled, we get called over and over again. |
| return Op; |
| } |
| |
| // Get a list of operands to the new INLINEASM node. This is mostly a copy, |
| // with some edits. |
| // Add the following operands at the end (but before the glue node, if it's |
| // there): |
| // - The flags of the implicit zero register operand. |
| // - The implicit zero register operand itself. |
| SDLoc dl(Op); |
| SmallVector<SDValue, 8> Ops; |
| SDNode *N = Op.getNode(); |
| SDValue Glue; |
| for (unsigned I = 0; I < N->getNumOperands(); I++) { |
| SDValue Operand = N->getOperand(I); |
| if (Operand.getValueType() == MVT::Glue) { |
| // The glue operand always needs to be at the end, so we need to treat it |
| // specially. |
| Glue = Operand; |
| } else { |
| Ops.push_back(Operand); |
| } |
| } |
| unsigned Flags = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1); |
| Ops.push_back(DAG.getTargetConstant(Flags, dl, MVT::i32)); |
| Ops.push_back(ZeroReg); |
| if (Glue) { |
| Ops.push_back(Glue); |
| } |
| |
| // Replace the current INLINEASM node with a new one that has the zero |
| // register as implicit parameter. |
| SDValue New = DAG.getNode(N->getOpcode(), dl, N->getVTList(), Ops); |
| DAG.ReplaceAllUsesOfValueWith(Op, New); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), New.getValue(1)); |
| |
| return New; |
| } |
| |
| SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| return LowerShifts(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: |
| return LowerBlockAddress(Op, DAG); |
| case ISD::BR_CC: |
| return LowerBR_CC(Op, DAG); |
| case ISD::SELECT_CC: |
| return LowerSELECT_CC(Op, DAG); |
| case ISD::SETCC: |
| return LowerSETCC(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| return LowerDivRem(Op, DAG); |
| case ISD::INLINEASM: |
| return LowerINLINEASM(Op, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Replace a node with an illegal result type |
| /// with a new node built out of custom code. |
| void AVRTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDLoc DL(N); |
| |
| switch (N->getOpcode()) { |
| case ISD::ADD: { |
| // Convert add (x, imm) into sub (x, -imm). |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| SDValue Sub = DAG.getNode( |
| ISD::SUB, DL, N->getValueType(0), N->getOperand(0), |
| DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0))); |
| Results.push_back(Sub); |
| } |
| break; |
| } |
| default: { |
| SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| |
| for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) |
| Results.push_back(Res.getValue(I)); |
| |
| break; |
| } |
| } |
| } |
| |
| /// Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, |
| Instruction *I) const { |
| int64_t Offs = AM.BaseOffs; |
| |
| // Allow absolute addresses. |
| if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) { |
| return true; |
| } |
| |
| // Flash memory instructions only allow zero offsets. |
| if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) { |
| return false; |
| } |
| |
| // Allow reg+<6bit> offset. |
| if (Offs < 0) |
| Offs = -Offs; |
| if (AM.BaseGV == nullptr && AM.HasBaseReg && AM.Scale == 0 && |
| isUInt<6>(Offs)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| EVT VT; |
| const SDNode *Op; |
| SDLoc DL(N); |
| |
| if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Op = LD->getBasePtr().getNode(); |
| if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| return false; |
| if (AVR::isProgramMemoryAccess(LD)) { |
| return false; |
| } |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Op = ST->getBasePtr().getNode(); |
| if (AVR::isProgramMemoryAccess(ST)) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| if (VT != MVT::i8 && VT != MVT::i16) { |
| return false; |
| } |
| |
| if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| return false; |
| } |
| |
| if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| int RHSC = RHS->getSExtValue(); |
| if (Op->getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) { |
| return false; |
| } |
| |
| Base = Op->getOperand(0); |
| Offset = DAG.getConstant(RHSC, DL, MVT::i8); |
| AM = ISD::PRE_DEC; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| EVT VT; |
| SDLoc DL(N); |
| |
| if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| return false; |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| if (AVR::isProgramMemoryAccess(ST)) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| if (VT != MVT::i8 && VT != MVT::i16) { |
| return false; |
| } |
| |
| if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| return false; |
| } |
| |
| if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| int RHSC = RHS->getSExtValue(); |
| if (Op->getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) { |
| return false; |
| } |
| |
| Base = Op->getOperand(0); |
| Offset = DAG.getConstant(RHSC, DL, MVT::i8); |
| AM = ISD::POST_INC; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool AVRTargetLowering::isOffsetFoldingLegal( |
| const GlobalAddressSDNode *GA) const { |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Formal Arguments Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "AVRGenCallingConv.inc" |
| |
| /// Registers for calling conventions, ordered in reverse as required by ABI. |
| /// Both arrays must be of the same length. |
| static const MCPhysReg RegList8AVR[] = { |
| AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20, |
| AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14, |
| AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9, AVR::R8}; |
| static const MCPhysReg RegList8Tiny[] = {AVR::R25, AVR::R24, AVR::R23, |
| AVR::R22, AVR::R21, AVR::R20}; |
| static const MCPhysReg RegList16AVR[] = { |
| AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21, |
| AVR::R21R20, AVR::R20R19, AVR::R19R18, AVR::R18R17, AVR::R17R16, |
| AVR::R16R15, AVR::R15R14, AVR::R14R13, AVR::R13R12, AVR::R12R11, |
| AVR::R11R10, AVR::R10R9, AVR::R9R8}; |
| static const MCPhysReg RegList16Tiny[] = {AVR::R26R25, AVR::R25R24, |
| AVR::R24R23, AVR::R23R22, |
| AVR::R22R21, AVR::R21R20}; |
| |
| static_assert(std::size(RegList8AVR) == std::size(RegList16AVR), |
| "8-bit and 16-bit register arrays must be of equal length"); |
| static_assert(std::size(RegList8Tiny) == std::size(RegList16Tiny), |
| "8-bit and 16-bit register arrays must be of equal length"); |
| |
| /// Analyze incoming and outgoing function arguments. We need custom C++ code |
| /// to handle special constraints in the ABI. |
| /// In addition, all pieces of a certain argument have to be passed either |
| /// using registers or the stack but never mixing both. |
| template <typename ArgT> |
| static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI, |
| const Function *F, const DataLayout *TD, |
| const SmallVectorImpl<ArgT> &Args, |
| SmallVectorImpl<CCValAssign> &ArgLocs, |
| CCState &CCInfo, bool Tiny) { |
| // Choose the proper register list for argument passing according to the ABI. |
| ArrayRef<MCPhysReg> RegList8; |
| ArrayRef<MCPhysReg> RegList16; |
| if (Tiny) { |
| RegList8 = ArrayRef(RegList8Tiny, std::size(RegList8Tiny)); |
| RegList16 = ArrayRef(RegList16Tiny, std::size(RegList16Tiny)); |
| } else { |
| RegList8 = ArrayRef(RegList8AVR, std::size(RegList8AVR)); |
| RegList16 = ArrayRef(RegList16AVR, std::size(RegList16AVR)); |
| } |
| |
| unsigned NumArgs = Args.size(); |
| // This is the index of the last used register, in RegList*. |
| // -1 means R26 (R26 is never actually used in CC). |
| int RegLastIdx = -1; |
| // Once a value is passed to the stack it will always be used |
| bool UseStack = false; |
| for (unsigned i = 0; i != NumArgs;) { |
| MVT VT = Args[i].VT; |
| // We have to count the number of bytes for each function argument, that is |
| // those Args with the same OrigArgIndex. This is important in case the |
| // function takes an aggregate type. |
| // Current argument will be between [i..j). |
| unsigned ArgIndex = Args[i].OrigArgIndex; |
| unsigned TotalBytes = VT.getStoreSize(); |
| unsigned j = i + 1; |
| for (; j != NumArgs; ++j) { |
| if (Args[j].OrigArgIndex != ArgIndex) |
| break; |
| TotalBytes += Args[j].VT.getStoreSize(); |
| } |
| // Round up to even number of bytes. |
| TotalBytes = alignTo(TotalBytes, 2); |
| // Skip zero sized arguments |
| if (TotalBytes == 0) |
| continue; |
| // The index of the first register to be used |
| unsigned RegIdx = RegLastIdx + TotalBytes; |
| RegLastIdx = RegIdx; |
| // If there are not enough registers, use the stack |
| if (RegIdx >= RegList8.size()) { |
| UseStack = true; |
| } |
| for (; i != j; ++i) { |
| MVT VT = Args[i].VT; |
| |
| if (UseStack) { |
| auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext()); |
| unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt), |
| TD->getABITypeAlign(evt)); |
| CCInfo.addLoc( |
| CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full)); |
| } else { |
| unsigned Reg; |
| if (VT == MVT::i8) { |
| Reg = CCInfo.AllocateReg(RegList8[RegIdx]); |
| } else if (VT == MVT::i16) { |
| Reg = CCInfo.AllocateReg(RegList16[RegIdx]); |
| } else { |
| llvm_unreachable( |
| "calling convention can only manage i8 and i16 types"); |
| } |
| assert(Reg && "register not available in calling convention"); |
| CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full)); |
| // Registers inside a particular argument are sorted in increasing order |
| // (remember the array is reversed). |
| RegIdx -= VT.getStoreSize(); |
| } |
| } |
| } |
| } |
| |
| /// Count the total number of bytes needed to pass or return these arguments. |
| template <typename ArgT> |
| static unsigned |
| getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) { |
| unsigned TotalBytes = 0; |
| |
| for (const ArgT &Arg : Args) { |
| TotalBytes += Arg.VT.getStoreSize(); |
| } |
| return TotalBytes; |
| } |
| |
| /// Analyze incoming and outgoing value of returning from a function. |
| /// The algorithm is similar to analyzeArguments, but there can only be |
| /// one value, possibly an aggregate, and it is limited to 8 bytes. |
| template <typename ArgT> |
| static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args, |
| CCState &CCInfo, bool Tiny) { |
| unsigned NumArgs = Args.size(); |
| unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args); |
| // CanLowerReturn() guarantees this assertion. |
| if (Tiny) |
| assert(TotalBytes <= 4 && |
| "return values greater than 4 bytes cannot be lowered on AVRTiny"); |
| else |
| assert(TotalBytes <= 8 && |
| "return values greater than 8 bytes cannot be lowered on AVR"); |
| |
| // Choose the proper register list for argument passing according to the ABI. |
| ArrayRef<MCPhysReg> RegList8; |
| ArrayRef<MCPhysReg> RegList16; |
| if (Tiny) { |
| RegList8 = ArrayRef(RegList8Tiny, std::size(RegList8Tiny)); |
| RegList16 = ArrayRef(RegList16Tiny, std::size(RegList16Tiny)); |
| } else { |
| RegList8 = ArrayRef(RegList8AVR, std::size(RegList8AVR)); |
| RegList16 = ArrayRef(RegList16AVR, std::size(RegList16AVR)); |
| } |
| |
| // GCC-ABI says that the size is rounded up to the next even number, |
| // but actually once it is more than 4 it will always round up to 8. |
| if (TotalBytes > 4) { |
| TotalBytes = 8; |
| } else { |
| TotalBytes = alignTo(TotalBytes, 2); |
| } |
| |
| // The index of the first register to use. |
| int RegIdx = TotalBytes - 1; |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT VT = Args[i].VT; |
| unsigned Reg; |
| if (VT == MVT::i8) { |
| Reg = CCInfo.AllocateReg(RegList8[RegIdx]); |
| } else if (VT == MVT::i16) { |
| Reg = CCInfo.AllocateReg(RegList16[RegIdx]); |
| } else { |
| llvm_unreachable("calling convention can only manage i8 and i16 types"); |
| } |
| assert(Reg && "register not available in calling convention"); |
| CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full)); |
| // Registers sort in increasing order |
| RegIdx -= VT.getStoreSize(); |
| } |
| } |
| |
| SDValue AVRTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto DL = DAG.getDataLayout(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| // Variadic functions do not need all the analysis below. |
| if (isVarArg) { |
| CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg); |
| } else { |
| analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo, |
| Subtarget.hasTinyEncoding()); |
| } |
| |
| SDValue ArgValue; |
| for (CCValAssign &VA : ArgLocs) { |
| |
| // Arguments stored on registers. |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| const TargetRegisterClass *RC; |
| if (RegVT == MVT::i8) { |
| RC = &AVR::GPR8RegClass; |
| } else if (RegVT == MVT::i16) { |
| RC = &AVR::DREGSRegClass; |
| } else { |
| llvm_unreachable("Unknown argument type!"); |
| } |
| |
| Register Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| |
| // :NOTE: Clang should not promote any i8 into i16 but for safety the |
| // following code will handle zexts or sexts generated by other |
| // front ends. Otherwise: |
| // If this is an 8 bit value, it is really passed promoted |
| // to 16 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::ZExt: |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| } |
| |
| InVals.push_back(ArgValue); |
| } else { |
| // Only arguments passed on the stack should make it here. |
| assert(VA.isMemLoc()); |
| |
| EVT LocVT = VA.getLocVT(); |
| |
| // Create the frame index object for this incoming parameter. |
| int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, |
| VA.getLocMemOffset(), true); |
| |
| // Create the SelectionDAG nodes corresponding to a load |
| // from this parameter. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL)); |
| InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| } |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| unsigned StackSize = CCInfo.getNextStackOffset(); |
| AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| |
| AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true)); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Call Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool isVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // AVR does not yet support tail call optimization. |
| isTailCall = false; |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| const Function *F = nullptr; |
| if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| if (isa<Function>(GV)) |
| F = cast<Function>(GV); |
| Callee = |
| DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout())); |
| } else if (const ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(ES->getSymbol(), |
| getPointerTy(DAG.getDataLayout())); |
| } |
| |
| // Variadic functions do not need all the analysis below. |
| if (isVarArg) { |
| CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg); |
| } else { |
| analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo, |
| Subtarget.hasTinyEncoding()); |
| } |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| |
| // First, walk the register assignments, inserting copies. |
| unsigned AI, AE; |
| bool HasStackArgs = false; |
| for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) { |
| CCValAssign &VA = ArgLocs[AI]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = OutVals[AI]; |
| |
| // Promote the value if needed. With Clang this should not happen. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg); |
| break; |
| } |
| |
| // Stop when we encounter a stack argument, we need to process them |
| // in reverse order in the loop below. |
| if (VA.isMemLoc()) { |
| HasStackArgs = true; |
| break; |
| } |
| |
| // Arguments that can be passed on registers must be kept in the RegsToPass |
| // vector. |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } |
| |
| // Second, stack arguments have to walked. |
| // Previously this code created chained stores but those chained stores appear |
| // to be unchained in the legalization phase. Therefore, do not attempt to |
| // chain them here. In fact, chaining them here somehow causes the first and |
| // second store to be reversed which is the exact opposite of the intended |
| // effect. |
| if (HasStackArgs) { |
| SmallVector<SDValue, 8> MemOpChains; |
| for (; AI != AE; AI++) { |
| CCValAssign &VA = ArgLocs[AI]; |
| SDValue Arg = OutVals[AI]; |
| |
| assert(VA.isMemLoc()); |
| |
| // SP points to one stack slot further so add one to adjust it. |
| SDValue PtrOff = DAG.getNode( |
| ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), |
| DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())), |
| DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL)); |
| |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, Arg, PtrOff, |
| MachinePointerInfo::getStack(MF, VA.getLocMemOffset()))); |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain and |
| // flag operands which copy the outgoing args into registers. The InFlag in |
| // necessary since all emited instructions must be stuck together. |
| SDValue InFlag; |
| for (auto Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (auto Reg : RegsToPass) { |
| Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| } |
| |
| // The zero register (usually R1) must be passed as an implicit register so |
| // that this register is correctly zeroed in interrupts. |
| Ops.push_back(DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = |
| TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) { |
| Ops.push_back(InFlag); |
| } |
| |
| Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, DL); |
| |
| if (!Ins.empty()) { |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG, |
| InVals); |
| } |
| |
| /// Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| /// |
| SDValue AVRTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Handle runtime calling convs. |
| if (CallConv == CallingConv::AVR_BUILTIN) { |
| CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN); |
| } else { |
| analyzeReturnValues(Ins, CCInfo, Subtarget.hasTinyEncoding()); |
| } |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (CCValAssign const &RVLoc : RVLocs) { |
| Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(), |
| InFlag) |
| .getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| bool AVRTargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| if (CallConv == CallingConv::AVR_BUILTIN) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN); |
| } |
| |
| unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs); |
| return TotalBytes <= (unsigned)(Subtarget.hasTinyEncoding() ? 4 : 8); |
| } |
| |
| SDValue |
| AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to locations. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Analyze return values. |
| if (CallConv == CallingConv::AVR_BUILTIN) { |
| CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN); |
| } else { |
| analyzeReturnValues(Outs, CCInfo, Subtarget.hasTinyEncoding()); |
| } |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // Don't emit the ret/reti instruction when the naked attribute is present in |
| // the function being compiled. |
| if (MF.getFunction().getAttributes().hasFnAttr(Attribute::Naked)) { |
| return Chain; |
| } |
| |
| const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| |
| if (!AFI->isInterruptOrSignalHandler()) { |
| // The return instruction has an implicit zero register operand: it must |
| // contain zero on return. |
| // This is not needed in interrupts however, where the zero register is |
| // handled specially (only pushed/popped when needed). |
| RetOps.push_back(DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)); |
| } |
| |
| unsigned RetOpc = |
| AFI->isInterruptOrSignalHandler() ? AVRISD::RETI_FLAG : AVRISD::RET_FLAG; |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| if (Flag.getNode()) { |
| RetOps.push_back(Flag); |
| } |
| |
| return DAG.getNode(RetOpc, dl, MVT::Other, RetOps); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom Inserters |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| unsigned Opc; |
| const TargetRegisterClass *RC; |
| bool HasRepeatedOperand = false; |
| bool HasZeroOperand = false; |
| MachineFunction *F = BB->getParent(); |
| MachineRegisterInfo &RI = F->getRegInfo(); |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Invalid shift opcode!"); |
| case AVR::Lsl8: |
| Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd |
| RC = &AVR::GPR8RegClass; |
| HasRepeatedOperand = true; |
| break; |
| case AVR::Lsl16: |
| Opc = AVR::LSLWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Asr8: |
| Opc = AVR::ASRRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Asr16: |
| Opc = AVR::ASRWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Lsr8: |
| Opc = AVR::LSRRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Lsr16: |
| Opc = AVR::LSRWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Rol8: |
| Opc = AVR::ROLBRd; |
| RC = &AVR::GPR8RegClass; |
| HasZeroOperand = true; |
| break; |
| case AVR::Rol16: |
| Opc = AVR::ROLWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Ror8: |
| Opc = AVR::RORBRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Ror16: |
| Opc = AVR::RORWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| } |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| |
| MachineFunction::iterator I; |
| for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I) |
| ; |
| if (I != F->end()) |
| ++I; |
| |
| // Create loop block. |
| MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| F->insert(I, LoopBB); |
| F->insert(I, CheckBB); |
| F->insert(I, RemBB); |
| |
| // Update machine-CFG edges by transferring all successors of the current |
| // block to the block containing instructions after shift. |
| RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| RemBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB. |
| BB->addSuccessor(CheckBB); |
| LoopBB->addSuccessor(CheckBB); |
| CheckBB->addSuccessor(LoopBB); |
| CheckBB->addSuccessor(RemBB); |
| |
| Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass); |
| Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass); |
| Register ShiftReg = RI.createVirtualRegister(RC); |
| Register ShiftReg2 = RI.createVirtualRegister(RC); |
| Register ShiftAmtSrcReg = MI.getOperand(2).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| Register DstReg = MI.getOperand(0).getReg(); |
| |
| // BB: |
| // rjmp CheckBB |
| BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB); |
| |
| // LoopBB: |
| // ShiftReg2 = shift ShiftReg |
| auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg); |
| if (HasRepeatedOperand) |
| ShiftMI.addReg(ShiftReg); |
| if (HasZeroOperand) |
| ShiftMI.addReg(Subtarget.getZeroRegister()); |
| |
| // CheckBB: |
| // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] |
| // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] |
| // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] |
| // ShiftAmt2 = ShiftAmt - 1; |
| // if (ShiftAmt2 >= 0) goto LoopBB; |
| BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg) |
| .addReg(SrcReg) |
| .addMBB(BB) |
| .addReg(ShiftReg2) |
| .addMBB(LoopBB); |
| BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg) |
| .addReg(ShiftAmtSrcReg) |
| .addMBB(BB) |
| .addReg(ShiftAmtReg2) |
| .addMBB(LoopBB); |
| BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg) |
| .addReg(SrcReg) |
| .addMBB(BB) |
| .addReg(ShiftReg2) |
| .addMBB(LoopBB); |
| |
| BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2).addReg(ShiftAmtReg); |
| BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return RemBB; |
| } |
| |
| // Do a multibyte AVR shift. Insert shift instructions and put the output |
| // registers in the Regs array. |
| // Because AVR does not have a normal shift instruction (only a single bit shift |
| // instruction), we have to emulate this behavior with other instructions. |
| // It first tries large steps (moving registers around) and then smaller steps |
| // like single bit shifts. |
| // Large shifts actually reduce the number of shifted registers, so the below |
| // algorithms have to work independently of the number of registers that are |
| // shifted. |
| // For more information and background, see this blogpost: |
| // https://aykevl.nl/2021/02/avr-bitshift |
| static void insertMultibyteShift(MachineInstr &MI, MachineBasicBlock *BB, |
| MutableArrayRef<std::pair<Register, int>> Regs, |
| ISD::NodeType Opc, int64_t ShiftAmt) { |
| const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); |
| const AVRSubtarget &STI = BB->getParent()->getSubtarget<AVRSubtarget>(); |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const DebugLoc &dl = MI.getDebugLoc(); |
| |
| const bool ShiftLeft = Opc == ISD::SHL; |
| const bool ArithmeticShift = Opc == ISD::SRA; |
| |
| // Zero a register, for use in later operations. |
| Register ZeroReg = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::COPY), ZeroReg) |
| .addReg(STI.getZeroRegister()); |
| |
| // Do a shift modulo 6 or 7. This is a bit more complicated than most shifts |
| // and is hard to compose with the rest, so these are special cased. |
| // The basic idea is to shift one or two bits in the opposite direction and |
| // then move registers around to get the correct end result. |
| if (ShiftLeft && (ShiftAmt % 8) >= 6) { |
| // Left shift modulo 6 or 7. |
| |
| // Create a slice of the registers we're going to modify, to ease working |
| // with them. |
| size_t ShiftRegsOffset = ShiftAmt / 8; |
| size_t ShiftRegsSize = Regs.size() - ShiftRegsOffset; |
| MutableArrayRef<std::pair<Register, int>> ShiftRegs = |
| Regs.slice(ShiftRegsOffset, ShiftRegsSize); |
| |
| // Shift one to the right, keeping the least significant bit as the carry |
| // bit. |
| insertMultibyteShift(MI, BB, ShiftRegs, ISD::SRL, 1); |
| |
| // Rotate the least significant bit from the carry bit into a new register |
| // (that starts out zero). |
| Register LowByte = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), LowByte).addReg(ZeroReg); |
| |
| // Shift one more to the right if this is a modulo-6 shift. |
| if (ShiftAmt % 8 == 6) { |
| insertMultibyteShift(MI, BB, ShiftRegs, ISD::SRL, 1); |
| Register NewLowByte = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), NewLowByte).addReg(LowByte); |
| LowByte = NewLowByte; |
| } |
| |
| // Move all registers to the left, zeroing the bottom registers as needed. |
| for (size_t I = 0; I < Regs.size(); I++) { |
| int ShiftRegsIdx = I + 1; |
| if (ShiftRegsIdx < (int)ShiftRegs.size()) { |
| Regs[I] = ShiftRegs[ShiftRegsIdx]; |
| } else if (ShiftRegsIdx == (int)ShiftRegs.size()) { |
| Regs[I] = std::pair(LowByte, 0); |
| } else { |
| Regs[I] = std::pair(ZeroReg, 0); |
| } |
| } |
| |
| return; |
| } |
| |
| // Right shift modulo 6 or 7. |
| if (!ShiftLeft && (ShiftAmt % 8) >= 6) { |
| // Create a view on the registers we're going to modify, to ease working |
| // with them. |
| size_t ShiftRegsSize = Regs.size() - (ShiftAmt / 8); |
| MutableArrayRef<std::pair<Register, int>> ShiftRegs = |
| Regs.slice(0, ShiftRegsSize); |
| |
| // Shift one to the left. |
| insertMultibyteShift(MI, BB, ShiftRegs, ISD::SHL, 1); |
| |
| // Sign or zero extend the most significant register into a new register. |
| // The HighByte is the byte that still has one (or two) bits from the |
| // original value. The ExtByte is purely a zero/sign extend byte (all bits |
| // are either 0 or 1). |
| Register HighByte = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| Register ExtByte = 0; |
| if (ArithmeticShift) { |
| // Sign-extend bit that was shifted out last. |
| BuildMI(*BB, MI, dl, TII.get(AVR::SBCRdRr), HighByte) |
| .addReg(HighByte, RegState::Undef) |
| .addReg(HighByte, RegState::Undef); |
| ExtByte = HighByte; |
| // The highest bit of the original value is the same as the zero-extend |
| // byte, so HighByte and ExtByte are the same. |
| } else { |
| // Use the zero register for zero extending. |
| ExtByte = ZeroReg; |
| // Rotate most significant bit into a new register (that starts out zero). |
| BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), HighByte) |
| .addReg(ExtByte) |
| .addReg(ExtByte); |
| } |
| |
| // Shift one more to the left for modulo 6 shifts. |
| if (ShiftAmt % 8 == 6) { |
| insertMultibyteShift(MI, BB, ShiftRegs, ISD::SHL, 1); |
| // Shift the topmost bit into the HighByte. |
| Register NewExt = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), NewExt) |
| .addReg(HighByte) |
| .addReg(HighByte); |
| HighByte = NewExt; |
| } |
| |
| // Move all to the right, while sign or zero extending. |
| for (int I = Regs.size() - 1; I >= 0; I--) { |
| int ShiftRegsIdx = I - (Regs.size() - ShiftRegs.size()) - 1; |
| if (ShiftRegsIdx >= 0) { |
| Regs[I] = ShiftRegs[ShiftRegsIdx]; |
| } else if (ShiftRegsIdx == -1) { |
| Regs[I] = std::pair(HighByte, 0); |
| } else { |
| Regs[I] = std::pair(ExtByte, 0); |
| } |
| } |
| |
| return; |
| } |
| |
| // For shift amounts of at least one register, simply rename the registers and |
| // zero the bottom registers. |
| while (ShiftLeft && ShiftAmt >= 8) { |
| // Move all registers one to the left. |
| for (size_t I = 0; I < Regs.size() - 1; I++) { |
| Regs[I] = Regs[I + 1]; |
| } |
| |
| // Zero the least significant register. |
| Regs[Regs.size() - 1] = std::pair(ZeroReg, 0); |
| |
| // Continue shifts with the leftover registers. |
| Regs = Regs.drop_back(1); |
| |
| ShiftAmt -= 8; |
| } |
| |
| // And again, the same for right shifts. |
| Register ShrExtendReg = 0; |
| if (!ShiftLeft && ShiftAmt >= 8) { |
| if (ArithmeticShift) { |
| // Sign extend the most significant register into ShrExtendReg. |
| ShrExtendReg = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| Register Tmp = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::ADDRdRr), Tmp) |
| .addReg(Regs[0].first, 0, Regs[0].second) |
| .addReg(Regs[0].first, 0, Regs[0].second); |
| BuildMI(*BB, MI, dl, TII.get(AVR::SBCRdRr), ShrExtendReg) |
| .addReg(Tmp) |
| .addReg(Tmp); |
| } else { |
| ShrExtendReg = ZeroReg; |
| } |
| for (; ShiftAmt >= 8; ShiftAmt -= 8) { |
| // Move all registers one to the right. |
| for (size_t I = Regs.size() - 1; I != 0; I--) { |
| Regs[I] = Regs[I - 1]; |
| } |
| |
| // Zero or sign extend the most significant register. |
| Regs[0] = std::pair(ShrExtendReg, 0); |
| |
| // Continue shifts with the leftover registers. |
| Regs = Regs.drop_front(1); |
| } |
| } |
| |
| // The bigger shifts are already handled above. |
| assert((ShiftAmt < 8) && "Unexpect shift amount"); |
| |
| // Shift by four bits, using a complicated swap/eor/andi/eor sequence. |
| // It only works for logical shifts because the bits shifted in are all |
| // zeroes. |
| // To shift a single byte right, it produces code like this: |
| // swap r0 |
| // andi r0, 0x0f |
| // For a two-byte (16-bit) shift, it adds the following instructions to shift |
| // the upper byte into the lower byte: |
| // swap r1 |
| // eor r0, r1 |
| // andi r1, 0x0f |
| // eor r0, r1 |
| // For bigger shifts, it repeats the above sequence. For example, for a 3-byte |
| // (24-bit) shift it adds: |
| // swap r2 |
| // eor r1, r2 |
| // andi r2, 0x0f |
| // eor r1, r2 |
| if (!ArithmeticShift && ShiftAmt >= 4) { |
| Register Prev = 0; |
| for (size_t I = 0; I < Regs.size(); I++) { |
| size_t Idx = ShiftLeft ? I : Regs.size() - I - 1; |
| Register SwapReg = MRI.createVirtualRegister(&AVR::LD8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::SWAPRd), SwapReg) |
| .addReg(Regs[Idx].first, 0, Regs[Idx].second); |
| if (I != 0) { |
| Register R = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::EORRdRr), R) |
| .addReg(Prev) |
| .addReg(SwapReg); |
| Prev = R; |
| } |
| Register AndReg = MRI.createVirtualRegister(&AVR::LD8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::ANDIRdK), AndReg) |
| .addReg(SwapReg) |
| .addImm(ShiftLeft ? 0xf0 : 0x0f); |
| if (I != 0) { |
| Register R = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| BuildMI(*BB, MI, dl, TII.get(AVR::EORRdRr), R) |
| .addReg(Prev) |
| .addReg(AndReg); |
| size_t PrevIdx = ShiftLeft ? Idx - 1 : Idx + 1; |
| Regs[PrevIdx] = std::pair(R, 0); |
| } |
| Prev = AndReg; |
| Regs[Idx] = std::pair(AndReg, 0); |
| } |
| ShiftAmt -= 4; |
| } |
| |
| // Shift by one. This is the fallback that always works, and the shift |
| // operation that is used for 1, 2, and 3 bit shifts. |
| while (ShiftLeft && ShiftAmt) { |
| // Shift one to the left. |
| for (ssize_t I = Regs.size() - 1; I >= 0; I--) { |
| Register Out = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| Register In = Regs[I].first; |
| Register InSubreg = Regs[I].second; |
| if (I == (ssize_t)Regs.size() - 1) { // first iteration |
| BuildMI(*BB, MI, dl, TII.get(AVR::ADDRdRr), Out) |
| .addReg(In, 0, InSubreg) |
| .addReg(In, 0, InSubreg); |
| } else { |
| BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), Out) |
| .addReg(In, 0, InSubreg) |
| .addReg(In, 0, InSubreg); |
| } |
| Regs[I] = std::pair(Out, 0); |
| } |
| ShiftAmt--; |
| } |
| while (!ShiftLeft && ShiftAmt) { |
| // Shift one to the right. |
| for (size_t I = 0; I < Regs.size(); I++) { |
| Register Out = MRI.createVirtualRegister(&AVR::GPR8RegClass); |
| Register In = Regs[I].first; |
| Register InSubreg = Regs[I].second; |
| if (I == 0) { |
| unsigned Opc = ArithmeticShift ? AVR::ASRRd : AVR::LSRRd; |
| BuildMI(*BB, MI, dl, TII.get(Opc), Out).addReg(In, 0, InSubreg); |
| } else { |
| BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), Out).addReg(In, 0, InSubreg); |
| } |
| Regs[I] = std::pair(Out, 0); |
| } |
| ShiftAmt--; |
| } |
| |
| if (ShiftAmt != 0) { |
| llvm_unreachable("don't know how to shift!"); // sanity check |
| } |
| } |
| |
| // Do a wide (32-bit) shift. |
| MachineBasicBlock * |
| AVRTargetLowering::insertWideShift(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| const DebugLoc &dl = MI.getDebugLoc(); |
| |
| // How much to shift to the right (meaning: a negative number indicates a left |
| // shift). |
| int64_t ShiftAmt = MI.getOperand(4).getImm(); |
| ISD::NodeType Opc; |
| switch (MI.getOpcode()) { |
| case AVR::Lsl32: |
| Opc = ISD::SHL; |
| break; |
| case AVR::Lsr32: |
| Opc = ISD::SRL; |
| break; |
| case AVR::Asr32: |
| Opc = ISD::SRA; |
| break; |
| } |
| |
| // Read the input registers, with the most significant register at index 0. |
| std::array<std::pair<Register, int>, 4> Registers = { |
| std::pair(MI.getOperand(3).getReg(), AVR::sub_hi), |
| std::pair(MI.getOperand(3).getReg(), AVR::sub_lo), |
| std::pair(MI.getOperand(2).getReg(), AVR::sub_hi), |
| std::pair(MI.getOperand(2).getReg(), AVR::sub_lo), |
| }; |
| |
| // Do the shift. The registers are modified in-place. |
| insertMultibyteShift(MI, BB, Registers, Opc, ShiftAmt); |
| |
| // Combine the 8-bit registers into 16-bit register pairs. |
| // This done either from LSB to MSB or from MSB to LSB, depending on the |
| // shift. It's an optimization so that the register allocator will use the |
| // fewest movs possible (which order we use isn't a correctness issue, just an |
| // optimization issue). |
| // - lsl prefers starting from the most significant byte (2nd case). |
| // - lshr prefers starting from the least significant byte (1st case). |
| // - for ashr it depends on the number of shifted bytes. |
| // Some shift operations still don't get the most optimal mov sequences even |
| // with this distinction. TODO: figure out why and try to fix it (but we're |
| // already equal to or faster than avr-gcc in all cases except ashr 8). |
| if (Opc != ISD::SHL && |
| (Opc != ISD::SRA || (ShiftAmt < 16 || ShiftAmt >= 22))) { |
| // Use the resulting registers starting with the least significant byte. |
| BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(0).getReg()) |
| .addReg(Registers[3].first, 0, Registers[3].second) |
| .addImm(AVR::sub_lo) |
| .addReg(Registers[2].first, 0, Registers[2].second) |
| .addImm(AVR::sub_hi); |
| BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(1).getReg()) |
| .addReg(Registers[1].first, 0, Registers[1].second) |
| .addImm(AVR::sub_lo) |
| .addReg(Registers[0].first, 0, Registers[0].second) |
| .addImm(AVR::sub_hi); |
| } else { |
| // Use the resulting registers starting with the most significant byte. |
| BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(1).getReg()) |
| .addReg(Registers[0].first, 0, Registers[0].second) |
| .addImm(AVR::sub_hi) |
| .addReg(Registers[1].first, 0, Registers[1].second) |
| .addImm(AVR::sub_lo); |
| BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(0).getReg()) |
| .addReg(Registers[2].first, 0, Registers[2].second) |
| .addImm(AVR::sub_hi) |
| .addReg(Registers[3].first, 0, Registers[3].second) |
| .addImm(AVR::sub_lo); |
| } |
| |
| // Remove the pseudo instruction. |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| static bool isCopyMulResult(MachineBasicBlock::iterator const &I) { |
| if (I->getOpcode() == AVR::COPY) { |
| Register SrcReg = I->getOperand(1).getReg(); |
| return (SrcReg == AVR::R0 || SrcReg == AVR::R1); |
| } |
| |
| return false; |
| } |
| |
| // The mul instructions wreak havock on our zero_reg R1. We need to clear it |
| // after the result has been evacuated. This is probably not the best way to do |
| // it, but it works for now. |
| MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| MachineBasicBlock::iterator I(MI); |
| ++I; // in any case insert *after* the mul instruction |
| if (isCopyMulResult(I)) |
| ++I; |
| if (isCopyMulResult(I)) |
| ++I; |
| BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1) |
| .addReg(AVR::R1) |
| .addReg(AVR::R1); |
| return BB; |
| } |
| |
| // Insert a read from the zero register. |
| MachineBasicBlock * |
| AVRTargetLowering::insertCopyZero(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| MachineBasicBlock::iterator I(MI); |
| BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::COPY)) |
| .add(MI.getOperand(0)) |
| .addReg(Subtarget.getZeroRegister()); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| // Lower atomicrmw operation to disable interrupts, do operation, and restore |
| // interrupts. This works because all AVR microcontrollers are single core. |
| MachineBasicBlock *AVRTargetLowering::insertAtomicArithmeticOp( |
| MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, int Width) const { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| MachineBasicBlock::iterator I(MI); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| // Example instruction sequence, for an atomic 8-bit add: |
| // ldi r25, 5 |
| // in r0, SREG |
| // cli |
| // ld r24, X |
| // add r25, r24 |
| // st X, r25 |
| // out SREG, r0 |
| |
| const TargetRegisterClass *RC = |
| (Width == 8) ? &AVR::GPR8RegClass : &AVR::DREGSRegClass; |
| unsigned LoadOpcode = (Width == 8) ? AVR::LDRdPtr : AVR::LDWRdPtr; |
| unsigned StoreOpcode = (Width == 8) ? AVR::STPtrRr : AVR::STWPtrRr; |
| |
| // Disable interrupts. |
| BuildMI(*BB, I, dl, TII.get(AVR::INRdA), Subtarget.getTmpRegister()) |
| .addImm(Subtarget.getIORegSREG()); |
| BuildMI(*BB, I, dl, TII.get(AVR::BCLRs)).addImm(7); |
| |
| // Load the original value. |
| BuildMI(*BB, I, dl, TII.get(LoadOpcode), MI.getOperand(0).getReg()) |
| .add(MI.getOperand(1)); |
| |
| // Do the arithmetic operation. |
| Register Result = MRI.createVirtualRegister(RC); |
| BuildMI(*BB, I, dl, TII.get(Opcode), Result) |
| .addReg(MI.getOperand(0).getReg()) |
| .add(MI.getOperand(2)); |
| |
| // Store the result. |
| BuildMI(*BB, I, dl, TII.get(StoreOpcode)) |
| .add(MI.getOperand(1)) |
| .addReg(Result); |
| |
| // Restore interrupts. |
| BuildMI(*BB, I, dl, TII.get(AVR::OUTARr)) |
| .addImm(Subtarget.getIORegSREG()) |
| .addReg(Subtarget.getTmpRegister()); |
| |
| // Remove the pseudo instruction. |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| int Opc = MI.getOpcode(); |
| |
| // Pseudo shift instructions with a non constant shift amount are expanded |
| // into a loop. |
| switch (Opc) { |
| case AVR::Lsl8: |
| case AVR::Lsl16: |
| case AVR::Lsr8: |
| case AVR::Lsr16: |
| case AVR::Rol8: |
| case AVR::Rol16: |
| case AVR::Ror8: |
| case AVR::Ror16: |
| case AVR::Asr8: |
| case AVR::Asr16: |
| return insertShift(MI, MBB); |
| case AVR::Lsl32: |
| case AVR::Lsr32: |
| case AVR::Asr32: |
| return insertWideShift(MI, MBB); |
| case AVR::MULRdRr: |
| case AVR::MULSRdRr: |
| return insertMul(MI, MBB); |
| case AVR::CopyZero: |
| return insertCopyZero(MI, MBB); |
| case AVR::AtomicLoadAdd8: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::ADDRdRr, 8); |
| case AVR::AtomicLoadAdd16: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::ADDWRdRr, 16); |
| case AVR::AtomicLoadSub8: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::SUBRdRr, 8); |
| case AVR::AtomicLoadSub16: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::SUBWRdRr, 16); |
| case AVR::AtomicLoadAnd8: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::ANDRdRr, 8); |
| case AVR::AtomicLoadAnd16: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::ANDWRdRr, 16); |
| case AVR::AtomicLoadOr8: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::ORRdRr, 8); |
| case AVR::AtomicLoadOr16: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::ORWRdRr, 16); |
| case AVR::AtomicLoadXor8: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::EORRdRr, 8); |
| case AVR::AtomicLoadXor16: |
| return insertAtomicArithmeticOp(MI, MBB, AVR::EORWRdRr, 16); |
| } |
| |
| assert((Opc == AVR::Select16 || Opc == AVR::Select8) && |
| "Unexpected instr type to insert"); |
| |
| const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent() |
| ->getParent() |
| ->getSubtarget() |
| .getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| // To "insert" a SELECT instruction, we insert the diamond |
| // control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch |
| // on, the true/false values to select between, and a branch opcode |
| // to use. |
| |
| MachineFunction *MF = MBB->getParent(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineBasicBlock *FallThrough = MBB->getFallThrough(); |
| |
| // If the current basic block falls through to another basic block, |
| // we must insert an unconditional branch to the fallthrough destination |
| // if we are to insert basic blocks at the prior fallthrough point. |
| if (FallThrough != nullptr) { |
| BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough); |
| } |
| |
| MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineFunction::iterator I; |
| for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I) |
| ; |
| if (I != MF->end()) |
| ++I; |
| MF->insert(I, trueMBB); |
| MF->insert(I, falseMBB); |
| |
| // Transfer remaining instructions and all successors of the current |
| // block to the block which will contain the Phi node for the |
| // select. |
| trueMBB->splice(trueMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| trueMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm(); |
| BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB); |
| BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB); |
| MBB->addSuccessor(falseMBB); |
| MBB->addSuccessor(trueMBB); |
| |
| // Unconditionally flow back to the true block |
| BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB); |
| falseMBB->addSuccessor(trueMBB); |
| |
| // Set up the Phi node to determine where we came from |
| BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), |
| MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(MBB) |
| .addReg(MI.getOperand(2).getReg()) |
| .addMBB(falseMBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return trueMBB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Asm Support |
| //===----------------------------------------------------------------------===// |
| |
| AVRTargetLowering::ConstraintType |
| AVRTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'a': // Simple upper registers |
| case 'b': // Base pointer registers pairs |
| case 'd': // Upper register |
| case 'l': // Lower registers |
| case 'e': // Pointer register pairs |
| case 'q': // Stack pointer register |
| case 'r': // Any register |
| case 'w': // Special upper register pairs |
| return C_RegisterClass; |
| case 't': // Temporary register |
| case 'x': |
| case 'X': // Pointer register pair X |
| case 'y': |
| case 'Y': // Pointer register pair Y |
| case 'z': |
| case 'Z': // Pointer register pair Z |
| return C_Register; |
| case 'Q': // A memory address based on Y or Z pointer with displacement. |
| return C_Memory; |
| case 'G': // Floating point constant |
| case 'I': // 6-bit positive integer constant |
| case 'J': // 6-bit negative integer constant |
| case 'K': // Integer constant (Range: 2) |
| case 'L': // Integer constant (Range: 0) |
| case 'M': // 8-bit integer constant |
| case 'N': // Integer constant (Range: -1) |
| case 'O': // Integer constant (Range: 8, 16, 24) |
| case 'P': // Integer constant (Range: 1) |
| case 'R': // Integer constant (Range: -6 to 5)x |
| return C_Immediate; |
| } |
| } |
| |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| unsigned |
| AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { |
| // Not sure if this is actually the right thing to do, but we got to do |
| // *something* [agnat] |
| switch (ConstraintCode[0]) { |
| case 'Q': |
| return InlineAsm::Constraint_Q; |
| } |
| return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| } |
| |
| AVRTargetLowering::ConstraintWeight |
| AVRTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| // (this behaviour has been copied from the ARM backend) |
| if (!CallOperandVal) { |
| return CW_Default; |
| } |
| |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'd': |
| case 'r': |
| case 'l': |
| weight = CW_Register; |
| break; |
| case 'a': |
| case 'b': |
| case 'e': |
| case 'q': |
| case 't': |
| case 'w': |
| case 'x': |
| case 'X': |
| case 'y': |
| case 'Y': |
| case 'z': |
| case 'Z': |
| weight = CW_SpecificReg; |
| break; |
| case 'G': |
| if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) { |
| if (C->isZero()) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'I': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (isUInt<6>(C->getZExtValue())) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'J': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'K': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() == 2) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'L': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() == 0) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'M': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (isUInt<8>(C->getZExtValue())) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'N': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getSExtValue() == -1) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'O': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) || |
| (C->getZExtValue() == 24)) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'P': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() == 1) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'R': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'Q': |
| weight = CW_Memory; |
| break; |
| } |
| |
| return weight; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'a': // Simple upper registers r16..r23. |
| if (VT == MVT::i8) |
| return std::make_pair(0U, &AVR::LD8loRegClass); |
| else if (VT == MVT::i16) |
| return std::make_pair(0U, &AVR::DREGSLD8loRegClass); |
| break; |
| case 'b': // Base pointer registers: y, z. |
| if (VT == MVT::i8 || VT == MVT::i16) |
| return std::make_pair(0U, &AVR::PTRDISPREGSRegClass); |
| break; |
| case 'd': // Upper registers r16..r31. |
| if (VT == MVT::i8) |
| return std::make_pair(0U, &AVR::LD8RegClass); |
| else if (VT == MVT::i16) |
| return std::make_pair(0U, &AVR::DLDREGSRegClass); |
| break; |
| case 'l': // Lower registers r0..r15. |
| if (VT == MVT::i8) |
| return std::make_pair(0U, &AVR::GPR8loRegClass); |
| else if (VT == MVT::i16) |
| return std::make_pair(0U, &AVR::DREGSloRegClass); |
| break; |
| case 'e': // Pointer register pairs: x, y, z. |
| if (VT == MVT::i8 || VT == MVT::i16) |
| return std::make_pair(0U, &AVR::PTRREGSRegClass); |
| break; |
| case 'q': // Stack pointer register: SPH:SPL. |
| return std::make_pair(0U, &AVR::GPRSPRegClass); |
| case 'r': // Any register: r0..r31. |
| if (VT == MVT::i8) |
| return std::make_pair(0U, &AVR::GPR8RegClass); |
| else if (VT == MVT::i16) |
| return std::make_pair(0U, &AVR::DREGSRegClass); |
| break; |
| case 't': // Temporary register: r0. |
| if (VT == MVT::i8) |
| return std::make_pair(unsigned(Subtarget.getTmpRegister()), |
| &AVR::GPR8RegClass); |
| break; |
| case 'w': // Special upper register pairs: r24, r26, r28, r30. |
| if (VT == MVT::i8 || VT == MVT::i16) |
| return std::make_pair(0U, &AVR::IWREGSRegClass); |
| break; |
| case 'x': // Pointer register pair X: r27:r26. |
| case 'X': |
| if (VT == MVT::i8 || VT == MVT::i16) |
| return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass); |
| break; |
| case 'y': // Pointer register pair Y: r29:r28. |
| case 'Y': |
| if (VT == MVT::i8 || VT == MVT::i16) |
| return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass); |
| break; |
| case 'z': // Pointer register pair Z: r31:r30. |
| case 'Z': |
| if (VT == MVT::i8 || VT == MVT::i16) |
| return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint( |
| Subtarget.getRegisterInfo(), Constraint, VT); |
| } |
| |
| void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| SDLoc DL(Op); |
| EVT Ty = Op.getValueType(); |
| |
| // Currently only support length 1 constraints. |
| if (Constraint.length() != 1) { |
| return; |
| } |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: |
| break; |
| // Deal with integers first: |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': |
| case 'R': { |
| const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) { |
| return; |
| } |
| |
| int64_t CVal64 = C->getSExtValue(); |
| uint64_t CUVal64 = C->getZExtValue(); |
| switch (ConstraintLetter) { |
| case 'I': // 0..63 |
| if (!isUInt<6>(CUVal64)) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'J': // -63..0 |
| if (CVal64 < -63 || CVal64 > 0) |
| return; |
| Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| break; |
| case 'K': // 2 |
| if (CUVal64 != 2) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'L': // 0 |
| if (CUVal64 != 0) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'M': // 0..255 |
| if (!isUInt<8>(CUVal64)) |
| return; |
| // i8 type may be printed as a negative number, |
| // e.g. 254 would be printed as -2, |
| // so we force it to i16 at least. |
| if (Ty.getSimpleVT() == MVT::i8) { |
| Ty = MVT::i16; |
| } |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'N': // -1 |
| if (CVal64 != -1) |
| return; |
| Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| break; |
| case 'O': // 8, 16, 24 |
| if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'P': // 1 |
| if (CUVal64 != 1) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'R': // -6..5 |
| if (CVal64 < -6 || CVal64 > 5) |
| return; |
| Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| break; |
| } |
| |
| break; |
| } |
| case 'G': |
| const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op); |
| if (!FC || !FC->isZero()) |
| return; |
| // Soften float to i8 0 |
| Result = DAG.getTargetConstant(0, DL, MVT::i8); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| const MachineFunction &MF) const { |
| Register Reg; |
| |
| if (VT == LLT::scalar(8)) { |
| Reg = StringSwitch<unsigned>(RegName) |
| .Case("r0", AVR::R0) |
| .Case("r1", AVR::R1) |
| .Default(0); |
| } else { |
| Reg = StringSwitch<unsigned>(RegName) |
| .Case("r0", AVR::R1R0) |
| .Case("sp", AVR::SP) |
| .Default(0); |
| } |
| |
| if (Reg) |
| return Reg; |
| |
| report_fatal_error( |
| Twine("Invalid register name \"" + StringRef(RegName) + "\".")); |
| } |
| |
| } // end of namespace llvm |