| //===- ELFObject.cpp ------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ELFObject.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/Object/ELF.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileOutputBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::objcopy::elf; |
| using namespace llvm::object; |
| |
| template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { |
| uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + |
| Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); |
| Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); |
| Phdr.p_type = Seg.Type; |
| Phdr.p_flags = Seg.Flags; |
| Phdr.p_offset = Seg.Offset; |
| Phdr.p_vaddr = Seg.VAddr; |
| Phdr.p_paddr = Seg.PAddr; |
| Phdr.p_filesz = Seg.FileSize; |
| Phdr.p_memsz = Seg.MemSize; |
| Phdr.p_align = Seg.Align; |
| } |
| |
| Error SectionBase::removeSectionReferences( |
| bool, function_ref<bool(const SectionBase *)>) { |
| return Error::success(); |
| } |
| |
| Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) { |
| return Error::success(); |
| } |
| |
| Error SectionBase::initialize(SectionTableRef) { return Error::success(); } |
| void SectionBase::finalize() {} |
| void SectionBase::markSymbols() {} |
| void SectionBase::replaceSectionReferences( |
| const DenseMap<SectionBase *, SectionBase *> &) {} |
| void SectionBase::onRemove() {} |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { |
| uint8_t *B = |
| reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset; |
| Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); |
| Shdr.sh_name = Sec.NameIndex; |
| Shdr.sh_type = Sec.Type; |
| Shdr.sh_flags = Sec.Flags; |
| Shdr.sh_addr = Sec.Addr; |
| Shdr.sh_offset = Sec.Offset; |
| Shdr.sh_size = Sec.Size; |
| Shdr.sh_link = Sec.Link; |
| Shdr.sh_info = Sec.Info; |
| Shdr.sh_addralign = Sec.Align; |
| Shdr.sh_entsize = Sec.EntrySize; |
| } |
| |
| template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { |
| Sec.EntrySize = sizeof(Elf_Sym); |
| Sec.Size = Sec.Symbols.size() * Sec.EntrySize; |
| // Align to the largest field in Elf_Sym. |
| Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { |
| Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); |
| Sec.Size = Sec.Relocations.size() * Sec.EntrySize; |
| // Align to the largest field in Elf_Rel(a). |
| Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) { |
| Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) { |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) { |
| return Error::success(); |
| } |
| |
| Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write symbol section index table '" + |
| Sec.Name + "' "); |
| } |
| |
| Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write symbol table '" + Sec.Name + |
| "' out to binary"); |
| } |
| |
| Error BinarySectionWriter::visit(const RelocationSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write relocation section '" + Sec.Name + |
| "' out to binary"); |
| } |
| |
| Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write '" + Sec.Name + "' out to binary"); |
| } |
| |
| Error BinarySectionWriter::visit(const GroupSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write '" + Sec.Name + "' out to binary"); |
| } |
| |
| Error SectionWriter::visit(const Section &Sec) { |
| if (Sec.Type != SHT_NOBITS) |
| llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); |
| |
| return Error::success(); |
| } |
| |
| static bool addressOverflows32bit(uint64_t Addr) { |
| // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok |
| return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; |
| } |
| |
| template <class T> static T checkedGetHex(StringRef S) { |
| T Value; |
| bool Fail = S.getAsInteger(16, Value); |
| assert(!Fail); |
| (void)Fail; |
| return Value; |
| } |
| |
| // Fills exactly Len bytes of buffer with hexadecimal characters |
| // representing value 'X' |
| template <class T, class Iterator> |
| static Iterator toHexStr(T X, Iterator It, size_t Len) { |
| // Fill range with '0' |
| std::fill(It, It + Len, '0'); |
| |
| for (long I = Len - 1; I >= 0; --I) { |
| unsigned char Mod = static_cast<unsigned char>(X) & 15; |
| *(It + I) = hexdigit(Mod, false); |
| X >>= 4; |
| } |
| assert(X == 0); |
| return It + Len; |
| } |
| |
| uint8_t IHexRecord::getChecksum(StringRef S) { |
| assert((S.size() & 1) == 0); |
| uint8_t Checksum = 0; |
| while (!S.empty()) { |
| Checksum += checkedGetHex<uint8_t>(S.take_front(2)); |
| S = S.drop_front(2); |
| } |
| return -Checksum; |
| } |
| |
| IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, |
| ArrayRef<uint8_t> Data) { |
| IHexLineData Line(getLineLength(Data.size())); |
| assert(Line.size()); |
| auto Iter = Line.begin(); |
| *Iter++ = ':'; |
| Iter = toHexStr(Data.size(), Iter, 2); |
| Iter = toHexStr(Addr, Iter, 4); |
| Iter = toHexStr(Type, Iter, 2); |
| for (uint8_t X : Data) |
| Iter = toHexStr(X, Iter, 2); |
| StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter)); |
| Iter = toHexStr(getChecksum(S), Iter, 2); |
| *Iter++ = '\r'; |
| *Iter++ = '\n'; |
| assert(Iter == Line.end()); |
| return Line; |
| } |
| |
| static Error checkRecord(const IHexRecord &R) { |
| switch (R.Type) { |
| case IHexRecord::Data: |
| if (R.HexData.size() == 0) |
| return createStringError( |
| errc::invalid_argument, |
| "zero data length is not allowed for data records"); |
| break; |
| case IHexRecord::EndOfFile: |
| break; |
| case IHexRecord::SegmentAddr: |
| // 20-bit segment address. Data length must be 2 bytes |
| // (4 bytes in hex) |
| if (R.HexData.size() != 4) |
| return createStringError( |
| errc::invalid_argument, |
| "segment address data should be 2 bytes in size"); |
| break; |
| case IHexRecord::StartAddr80x86: |
| case IHexRecord::StartAddr: |
| if (R.HexData.size() != 8) |
| return createStringError(errc::invalid_argument, |
| "start address data should be 4 bytes in size"); |
| // According to Intel HEX specification '03' record |
| // only specifies the code address within the 20-bit |
| // segmented address space of the 8086/80186. This |
| // means 12 high order bits should be zeroes. |
| if (R.Type == IHexRecord::StartAddr80x86 && |
| R.HexData.take_front(3) != "000") |
| return createStringError(errc::invalid_argument, |
| "start address exceeds 20 bit for 80x86"); |
| break; |
| case IHexRecord::ExtendedAddr: |
| // 16-31 bits of linear base address |
| if (R.HexData.size() != 4) |
| return createStringError( |
| errc::invalid_argument, |
| "extended address data should be 2 bytes in size"); |
| break; |
| default: |
| // Unknown record type |
| return createStringError(errc::invalid_argument, "unknown record type: %u", |
| static_cast<unsigned>(R.Type)); |
| } |
| return Error::success(); |
| } |
| |
| // Checks that IHEX line contains valid characters. |
| // This allows converting hexadecimal data to integers |
| // without extra verification. |
| static Error checkChars(StringRef Line) { |
| assert(!Line.empty()); |
| if (Line[0] != ':') |
| return createStringError(errc::invalid_argument, |
| "missing ':' in the beginning of line."); |
| |
| for (size_t Pos = 1; Pos < Line.size(); ++Pos) |
| if (hexDigitValue(Line[Pos]) == -1U) |
| return createStringError(errc::invalid_argument, |
| "invalid character at position %zu.", Pos + 1); |
| return Error::success(); |
| } |
| |
| Expected<IHexRecord> IHexRecord::parse(StringRef Line) { |
| assert(!Line.empty()); |
| |
| // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' |
| if (Line.size() < 11) |
| return createStringError(errc::invalid_argument, |
| "line is too short: %zu chars.", Line.size()); |
| |
| if (Error E = checkChars(Line)) |
| return std::move(E); |
| |
| IHexRecord Rec; |
| size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2)); |
| if (Line.size() != getLength(DataLen)) |
| return createStringError(errc::invalid_argument, |
| "invalid line length %zu (should be %zu)", |
| Line.size(), getLength(DataLen)); |
| |
| Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4)); |
| Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2)); |
| Rec.HexData = Line.substr(9, DataLen * 2); |
| |
| if (getChecksum(Line.drop_front(1)) != 0) |
| return createStringError(errc::invalid_argument, "incorrect checksum."); |
| if (Error E = checkRecord(Rec)) |
| return std::move(E); |
| return Rec; |
| } |
| |
| static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { |
| Segment *Seg = Sec->ParentSegment; |
| if (Seg && Seg->Type != ELF::PT_LOAD) |
| Seg = nullptr; |
| return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset |
| : Sec->Addr; |
| } |
| |
| void IHexSectionWriterBase::writeSection(const SectionBase *Sec, |
| ArrayRef<uint8_t> Data) { |
| assert(Data.size() == Sec->Size); |
| const uint32_t ChunkSize = 16; |
| uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; |
| while (!Data.empty()) { |
| uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); |
| if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { |
| if (Addr > 0xFFFFFU) { |
| // Write extended address record, zeroing segment address |
| // if needed. |
| if (SegmentAddr != 0) |
| SegmentAddr = writeSegmentAddr(0U); |
| BaseAddr = writeBaseAddr(Addr); |
| } else { |
| // We can still remain 16-bit |
| SegmentAddr = writeSegmentAddr(Addr); |
| } |
| } |
| uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; |
| assert(SegOffset <= 0xFFFFU); |
| DataSize = std::min(DataSize, 0x10000U - SegOffset); |
| writeData(0, SegOffset, Data.take_front(DataSize)); |
| Addr += DataSize; |
| Data = Data.drop_front(DataSize); |
| } |
| } |
| |
| uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { |
| assert(Addr <= 0xFFFFFU); |
| uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0}; |
| writeData(2, 0, Data); |
| return Addr & 0xF0000U; |
| } |
| |
| uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { |
| assert(Addr <= 0xFFFFFFFFU); |
| uint64_t Base = Addr & 0xFFFF0000U; |
| uint8_t Data[] = {static_cast<uint8_t>(Base >> 24), |
| static_cast<uint8_t>((Base >> 16) & 0xFF)}; |
| writeData(4, 0, Data); |
| return Base; |
| } |
| |
| void IHexSectionWriterBase::writeData(uint8_t, uint16_t, |
| ArrayRef<uint8_t> Data) { |
| Offset += IHexRecord::getLineLength(Data.size()); |
| } |
| |
| Error IHexSectionWriterBase::visit(const Section &Sec) { |
| writeSection(&Sec, Sec.Contents); |
| return Error::success(); |
| } |
| |
| Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { |
| writeSection(&Sec, Sec.Data); |
| return Error::success(); |
| } |
| |
| Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { |
| // Check that sizer has already done its work |
| assert(Sec.Size == Sec.StrTabBuilder.getSize()); |
| // We are free to pass an invalid pointer to writeSection as long |
| // as we don't actually write any data. The real writer class has |
| // to override this method . |
| writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)}); |
| return Error::success(); |
| } |
| |
| Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { |
| writeSection(&Sec, Sec.Contents); |
| return Error::success(); |
| } |
| |
| void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, |
| ArrayRef<uint8_t> Data) { |
| IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); |
| memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size()); |
| Offset += HexData.size(); |
| } |
| |
| Error IHexSectionWriter::visit(const StringTableSection &Sec) { |
| assert(Sec.Size == Sec.StrTabBuilder.getSize()); |
| std::vector<uint8_t> Data(Sec.Size); |
| Sec.StrTabBuilder.write(Data.data()); |
| writeSection(&Sec, Data); |
| return Error::success(); |
| } |
| |
| Error Section::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error Section::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| Error SectionWriter::visit(const OwnedDataSection &Sec) { |
| llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset); |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { |
| ArrayRef<uint8_t> Compressed = |
| Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>)); |
| SmallVector<uint8_t, 128> Decompressed; |
| DebugCompressionType Type; |
| switch (Sec.ChType) { |
| case ELFCOMPRESS_ZLIB: |
| Type = DebugCompressionType::Zlib; |
| break; |
| case ELFCOMPRESS_ZSTD: |
| Type = DebugCompressionType::Zstd; |
| break; |
| default: |
| return createStringError(errc::invalid_argument, |
| "--decompress-debug-sections: ch_type (" + |
| Twine(Sec.ChType) + ") of section '" + |
| Sec.Name + "' is unsupported"); |
| } |
| if (auto *Reason = |
| compression::getReasonIfUnsupported(compression::formatFor(Type))) |
| return createStringError(errc::invalid_argument, |
| "failed to decompress section '" + Sec.Name + |
| "': " + Reason); |
| if (Error E = compression::decompress(Type, Compressed, Decompressed, |
| static_cast<size_t>(Sec.Size))) |
| return createStringError(errc::invalid_argument, |
| "failed to decompress section '" + Sec.Name + |
| "': " + toString(std::move(E))); |
| |
| uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
| std::copy(Decompressed.begin(), Decompressed.end(), Buf); |
| |
| return Error::success(); |
| } |
| |
| Error BinarySectionWriter::visit(const DecompressedSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write compressed section '" + Sec.Name + |
| "' "); |
| } |
| |
| Error DecompressedSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| Error OwnedDataSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| void OwnedDataSection::appendHexData(StringRef HexData) { |
| assert((HexData.size() & 1) == 0); |
| while (!HexData.empty()) { |
| Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2))); |
| HexData = HexData.drop_front(2); |
| } |
| Size = Data.size(); |
| } |
| |
| Error BinarySectionWriter::visit(const CompressedSection &Sec) { |
| return createStringError(errc::operation_not_permitted, |
| "cannot write compressed section '" + Sec.Name + |
| "' "); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { |
| uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
| Elf_Chdr_Impl<ELFT> Chdr = {}; |
| switch (Sec.CompressionType) { |
| case DebugCompressionType::None: |
| std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); |
| return Error::success(); |
| case DebugCompressionType::Zlib: |
| Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; |
| break; |
| case DebugCompressionType::Zstd: |
| Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD; |
| break; |
| } |
| Chdr.ch_size = Sec.DecompressedSize; |
| Chdr.ch_addralign = Sec.DecompressedAlign; |
| memcpy(Buf, &Chdr, sizeof(Chdr)); |
| Buf += sizeof(Chdr); |
| |
| std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); |
| return Error::success(); |
| } |
| |
| CompressedSection::CompressedSection(const SectionBase &Sec, |
| DebugCompressionType CompressionType, |
| bool Is64Bits) |
| : SectionBase(Sec), CompressionType(CompressionType), |
| DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { |
| compression::compress(compression::Params(CompressionType), OriginalData, |
| CompressedData); |
| |
| Flags |= ELF::SHF_COMPRESSED; |
| size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>) |
| : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>); |
| Size = ChdrSize + CompressedData.size(); |
| Align = 8; |
| } |
| |
| CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, |
| uint32_t ChType, uint64_t DecompressedSize, |
| uint64_t DecompressedAlign) |
| : ChType(ChType), CompressionType(DebugCompressionType::None), |
| DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { |
| OriginalData = CompressedData; |
| } |
| |
| Error CompressedSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error CompressedSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); } |
| |
| uint32_t StringTableSection::findIndex(StringRef Name) const { |
| return StrTabBuilder.getOffset(Name); |
| } |
| |
| void StringTableSection::prepareForLayout() { |
| StrTabBuilder.finalize(); |
| Size = StrTabBuilder.getSize(); |
| } |
| |
| Error SectionWriter::visit(const StringTableSection &Sec) { |
| Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) + |
| Sec.Offset); |
| return Error::success(); |
| } |
| |
| Error StringTableSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error StringTableSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { |
| uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
| llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf)); |
| return Error::success(); |
| } |
| |
| Error SectionIndexSection::initialize(SectionTableRef SecTable) { |
| Size = 0; |
| Expected<SymbolTableSection *> Sec = |
| SecTable.getSectionOfType<SymbolTableSection>( |
| Link, |
| "Link field value " + Twine(Link) + " in section " + Name + |
| " is invalid", |
| "Link field value " + Twine(Link) + " in section " + Name + |
| " is not a symbol table"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| setSymTab(*Sec); |
| Symbols->setShndxTable(this); |
| return Error::success(); |
| } |
| |
| void SectionIndexSection::finalize() { Link = Symbols->Index; } |
| |
| Error SectionIndexSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { |
| switch (Index) { |
| case SHN_ABS: |
| case SHN_COMMON: |
| return true; |
| } |
| |
| if (Machine == EM_AMDGPU) { |
| return Index == SHN_AMDGPU_LDS; |
| } |
| |
| if (Machine == EM_MIPS) { |
| switch (Index) { |
| case SHN_MIPS_ACOMMON: |
| case SHN_MIPS_SCOMMON: |
| case SHN_MIPS_SUNDEFINED: |
| return true; |
| } |
| } |
| |
| if (Machine == EM_HEXAGON) { |
| switch (Index) { |
| case SHN_HEXAGON_SCOMMON: |
| case SHN_HEXAGON_SCOMMON_1: |
| case SHN_HEXAGON_SCOMMON_2: |
| case SHN_HEXAGON_SCOMMON_4: |
| case SHN_HEXAGON_SCOMMON_8: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Large indexes force us to clarify exactly what this function should do. This |
| // function should return the value that will appear in st_shndx when written |
| // out. |
| uint16_t Symbol::getShndx() const { |
| if (DefinedIn != nullptr) { |
| if (DefinedIn->Index >= SHN_LORESERVE) |
| return SHN_XINDEX; |
| return DefinedIn->Index; |
| } |
| |
| if (ShndxType == SYMBOL_SIMPLE_INDEX) { |
| // This means that we don't have a defined section but we do need to |
| // output a legitimate section index. |
| return SHN_UNDEF; |
| } |
| |
| assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || |
| (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || |
| (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); |
| return static_cast<uint16_t>(ShndxType); |
| } |
| |
| bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } |
| |
| void SymbolTableSection::assignIndices() { |
| uint32_t Index = 0; |
| for (auto &Sym : Symbols) |
| Sym->Index = Index++; |
| } |
| |
| void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, |
| SectionBase *DefinedIn, uint64_t Value, |
| uint8_t Visibility, uint16_t Shndx, |
| uint64_t SymbolSize) { |
| Symbol Sym; |
| Sym.Name = Name.str(); |
| Sym.Binding = Bind; |
| Sym.Type = Type; |
| Sym.DefinedIn = DefinedIn; |
| if (DefinedIn != nullptr) |
| DefinedIn->HasSymbol = true; |
| if (DefinedIn == nullptr) { |
| if (Shndx >= SHN_LORESERVE) |
| Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); |
| else |
| Sym.ShndxType = SYMBOL_SIMPLE_INDEX; |
| } |
| Sym.Value = Value; |
| Sym.Visibility = Visibility; |
| Sym.Size = SymbolSize; |
| Sym.Index = Symbols.size(); |
| Symbols.emplace_back(std::make_unique<Symbol>(Sym)); |
| Size += this->EntrySize; |
| } |
| |
| Error SymbolTableSection::removeSectionReferences( |
| bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
| if (ToRemove(SectionIndexTable)) |
| SectionIndexTable = nullptr; |
| if (ToRemove(SymbolNames)) { |
| if (!AllowBrokenLinks) |
| return createStringError( |
| llvm::errc::invalid_argument, |
| "string table '%s' cannot be removed because it is " |
| "referenced by the symbol table '%s'", |
| SymbolNames->Name.data(), this->Name.data()); |
| SymbolNames = nullptr; |
| } |
| return removeSymbols( |
| [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); |
| } |
| |
| void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { |
| for (SymPtr &Sym : llvm::drop_begin(Symbols)) |
| Callable(*Sym); |
| std::stable_partition( |
| std::begin(Symbols), std::end(Symbols), |
| [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); |
| assignIndices(); |
| } |
| |
| Error SymbolTableSection::removeSymbols( |
| function_ref<bool(const Symbol &)> ToRemove) { |
| Symbols.erase( |
| std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), |
| [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), |
| std::end(Symbols)); |
| Size = Symbols.size() * EntrySize; |
| assignIndices(); |
| return Error::success(); |
| } |
| |
| void SymbolTableSection::replaceSectionReferences( |
| const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
| for (std::unique_ptr<Symbol> &Sym : Symbols) |
| if (SectionBase *To = FromTo.lookup(Sym->DefinedIn)) |
| Sym->DefinedIn = To; |
| } |
| |
| Error SymbolTableSection::initialize(SectionTableRef SecTable) { |
| Size = 0; |
| Expected<StringTableSection *> Sec = |
| SecTable.getSectionOfType<StringTableSection>( |
| Link, |
| "Symbol table has link index of " + Twine(Link) + |
| " which is not a valid index", |
| "Symbol table has link index of " + Twine(Link) + |
| " which is not a string table"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| setStrTab(*Sec); |
| return Error::success(); |
| } |
| |
| void SymbolTableSection::finalize() { |
| uint32_t MaxLocalIndex = 0; |
| for (std::unique_ptr<Symbol> &Sym : Symbols) { |
| Sym->NameIndex = |
| SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name); |
| if (Sym->Binding == STB_LOCAL) |
| MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); |
| } |
| // Now we need to set the Link and Info fields. |
| Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; |
| Info = MaxLocalIndex + 1; |
| } |
| |
| void SymbolTableSection::prepareForLayout() { |
| // Reserve proper amount of space in section index table, so we can |
| // layout sections correctly. We will fill the table with correct |
| // indexes later in fillShdnxTable. |
| if (SectionIndexTable) |
| SectionIndexTable->reserve(Symbols.size()); |
| |
| // Add all of our strings to SymbolNames so that SymbolNames has the right |
| // size before layout is decided. |
| // If the symbol names section has been removed, don't try to add strings to |
| // the table. |
| if (SymbolNames != nullptr) |
| for (std::unique_ptr<Symbol> &Sym : Symbols) |
| SymbolNames->addString(Sym->Name); |
| } |
| |
| void SymbolTableSection::fillShndxTable() { |
| if (SectionIndexTable == nullptr) |
| return; |
| // Fill section index table with real section indexes. This function must |
| // be called after assignOffsets. |
| for (const std::unique_ptr<Symbol> &Sym : Symbols) { |
| if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) |
| SectionIndexTable->addIndex(Sym->DefinedIn->Index); |
| else |
| SectionIndexTable->addIndex(SHN_UNDEF); |
| } |
| } |
| |
| Expected<const Symbol *> |
| SymbolTableSection::getSymbolByIndex(uint32_t Index) const { |
| if (Symbols.size() <= Index) |
| return createStringError(errc::invalid_argument, |
| "invalid symbol index: " + Twine(Index)); |
| return Symbols[Index].get(); |
| } |
| |
| Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) { |
| Expected<const Symbol *> Sym = |
| static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index); |
| if (!Sym) |
| return Sym.takeError(); |
| |
| return const_cast<Symbol *>(*Sym); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { |
| Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset); |
| // Loop though symbols setting each entry of the symbol table. |
| for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) { |
| Sym->st_name = Symbol->NameIndex; |
| Sym->st_value = Symbol->Value; |
| Sym->st_size = Symbol->Size; |
| Sym->st_other = Symbol->Visibility; |
| Sym->setBinding(Symbol->Binding); |
| Sym->setType(Symbol->Type); |
| Sym->st_shndx = Symbol->getShndx(); |
| ++Sym; |
| } |
| return Error::success(); |
| } |
| |
| Error SymbolTableSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| StringRef RelocationSectionBase::getNamePrefix() const { |
| switch (Type) { |
| case SHT_REL: |
| return ".rel"; |
| case SHT_RELA: |
| return ".rela"; |
| default: |
| llvm_unreachable("not a relocation section"); |
| } |
| } |
| |
| Error RelocationSection::removeSectionReferences( |
| bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
| if (ToRemove(Symbols)) { |
| if (!AllowBrokenLinks) |
| return createStringError( |
| llvm::errc::invalid_argument, |
| "symbol table '%s' cannot be removed because it is " |
| "referenced by the relocation section '%s'", |
| Symbols->Name.data(), this->Name.data()); |
| Symbols = nullptr; |
| } |
| |
| for (const Relocation &R : Relocations) { |
| if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || |
| !ToRemove(R.RelocSymbol->DefinedIn)) |
| continue; |
| return createStringError(llvm::errc::invalid_argument, |
| "section '%s' cannot be removed: (%s+0x%" PRIx64 |
| ") has relocation against symbol '%s'", |
| R.RelocSymbol->DefinedIn->Name.data(), |
| SecToApplyRel->Name.data(), R.Offset, |
| R.RelocSymbol->Name.c_str()); |
| } |
| |
| return Error::success(); |
| } |
| |
| template <class SymTabType> |
| Error RelocSectionWithSymtabBase<SymTabType>::initialize( |
| SectionTableRef SecTable) { |
| if (Link != SHN_UNDEF) { |
| Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>( |
| Link, |
| "Link field value " + Twine(Link) + " in section " + Name + |
| " is invalid", |
| "Link field value " + Twine(Link) + " in section " + Name + |
| " is not a symbol table"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| setSymTab(*Sec); |
| } |
| |
| if (Info != SHN_UNDEF) { |
| Expected<SectionBase *> Sec = |
| SecTable.getSection(Info, "Info field value " + Twine(Info) + |
| " in section " + Name + " is invalid"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| setSection(*Sec); |
| } else |
| setSection(nullptr); |
| |
| return Error::success(); |
| } |
| |
| template <class SymTabType> |
| void RelocSectionWithSymtabBase<SymTabType>::finalize() { |
| this->Link = Symbols ? Symbols->Index : 0; |
| |
| if (SecToApplyRel != nullptr) |
| this->Info = SecToApplyRel->Index; |
| } |
| |
| template <class ELFT> |
| static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {} |
| |
| template <class ELFT> |
| static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { |
| Rela.r_addend = Addend; |
| } |
| |
| template <class RelRange, class T> |
| static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { |
| for (const auto &Reloc : Relocations) { |
| Buf->r_offset = Reloc.Offset; |
| setAddend(*Buf, Reloc.Addend); |
| Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, |
| Reloc.Type, IsMips64EL); |
| ++Buf; |
| } |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { |
| uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
| if (Sec.Type == SHT_REL) |
| writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf), |
| Sec.getObject().IsMips64EL); |
| else |
| writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf), |
| Sec.getObject().IsMips64EL); |
| return Error::success(); |
| } |
| |
| Error RelocationSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error RelocationSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| Error RelocationSection::removeSymbols( |
| function_ref<bool(const Symbol &)> ToRemove) { |
| for (const Relocation &Reloc : Relocations) |
| if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) |
| return createStringError( |
| llvm::errc::invalid_argument, |
| "not stripping symbol '%s' because it is named in a relocation", |
| Reloc.RelocSymbol->Name.data()); |
| return Error::success(); |
| } |
| |
| void RelocationSection::markSymbols() { |
| for (const Relocation &Reloc : Relocations) |
| if (Reloc.RelocSymbol) |
| Reloc.RelocSymbol->Referenced = true; |
| } |
| |
| void RelocationSection::replaceSectionReferences( |
| const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
| // Update the target section if it was replaced. |
| if (SectionBase *To = FromTo.lookup(SecToApplyRel)) |
| SecToApplyRel = To; |
| } |
| |
| Error SectionWriter::visit(const DynamicRelocationSection &Sec) { |
| llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); |
| return Error::success(); |
| } |
| |
| Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| Error DynamicRelocationSection::removeSectionReferences( |
| bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
| if (ToRemove(Symbols)) { |
| if (!AllowBrokenLinks) |
| return createStringError( |
| llvm::errc::invalid_argument, |
| "symbol table '%s' cannot be removed because it is " |
| "referenced by the relocation section '%s'", |
| Symbols->Name.data(), this->Name.data()); |
| Symbols = nullptr; |
| } |
| |
| // SecToApplyRel contains a section referenced by sh_info field. It keeps |
| // a section to which the relocation section applies. When we remove any |
| // sections we also remove their relocation sections. Since we do that much |
| // earlier, this assert should never be triggered. |
| assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); |
| return Error::success(); |
| } |
| |
| Error Section::removeSectionReferences( |
| bool AllowBrokenDependency, |
| function_ref<bool(const SectionBase *)> ToRemove) { |
| if (ToRemove(LinkSection)) { |
| if (!AllowBrokenDependency) |
| return createStringError(llvm::errc::invalid_argument, |
| "section '%s' cannot be removed because it is " |
| "referenced by the section '%s'", |
| LinkSection->Name.data(), this->Name.data()); |
| LinkSection = nullptr; |
| } |
| return Error::success(); |
| } |
| |
| void GroupSection::finalize() { |
| this->Info = Sym ? Sym->Index : 0; |
| this->Link = SymTab ? SymTab->Index : 0; |
| // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global |
| // status is not part of the equation. If Sym is localized, the intention is |
| // likely to make the group fully localized. Drop GRP_COMDAT to suppress |
| // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc |
| if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) |
| this->FlagWord &= ~GRP_COMDAT; |
| } |
| |
| Error GroupSection::removeSectionReferences( |
| bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
| if (ToRemove(SymTab)) { |
| if (!AllowBrokenLinks) |
| return createStringError( |
| llvm::errc::invalid_argument, |
| "section '.symtab' cannot be removed because it is " |
| "referenced by the group section '%s'", |
| this->Name.data()); |
| SymTab = nullptr; |
| Sym = nullptr; |
| } |
| llvm::erase_if(GroupMembers, ToRemove); |
| return Error::success(); |
| } |
| |
| Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { |
| if (ToRemove(*Sym)) |
| return createStringError(llvm::errc::invalid_argument, |
| "symbol '%s' cannot be removed because it is " |
| "referenced by the section '%s[%d]'", |
| Sym->Name.data(), this->Name.data(), this->Index); |
| return Error::success(); |
| } |
| |
| void GroupSection::markSymbols() { |
| if (Sym) |
| Sym->Referenced = true; |
| } |
| |
| void GroupSection::replaceSectionReferences( |
| const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
| for (SectionBase *&Sec : GroupMembers) |
| if (SectionBase *To = FromTo.lookup(Sec)) |
| Sec = To; |
| } |
| |
| void GroupSection::onRemove() { |
| // As the header section of the group is removed, drop the Group flag in its |
| // former members. |
| for (SectionBase *Sec : GroupMembers) |
| Sec->Flags &= ~SHF_GROUP; |
| } |
| |
| Error Section::initialize(SectionTableRef SecTable) { |
| if (Link == ELF::SHN_UNDEF) |
| return Error::success(); |
| |
| Expected<SectionBase *> Sec = |
| SecTable.getSection(Link, "Link field value " + Twine(Link) + |
| " in section " + Name + " is invalid"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| LinkSection = *Sec; |
| |
| if (LinkSection->Type == ELF::SHT_SYMTAB) |
| LinkSection = nullptr; |
| |
| return Error::success(); |
| } |
| |
| void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } |
| |
| void GnuDebugLinkSection::init(StringRef File) { |
| FileName = sys::path::filename(File); |
| // The format for the .gnu_debuglink starts with the file name and is |
| // followed by a null terminator and then the CRC32 of the file. The CRC32 |
| // should be 4 byte aligned. So we add the FileName size, a 1 for the null |
| // byte, and then finally push the size to alignment and add 4. |
| Size = alignTo(FileName.size() + 1, 4) + 4; |
| // The CRC32 will only be aligned if we align the whole section. |
| Align = 4; |
| Type = OriginalType = ELF::SHT_PROGBITS; |
| Name = ".gnu_debuglink"; |
| // For sections not found in segments, OriginalOffset is only used to |
| // establish the order that sections should go in. By using the maximum |
| // possible offset we cause this section to wind up at the end. |
| OriginalOffset = std::numeric_limits<uint64_t>::max(); |
| } |
| |
| GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, |
| uint32_t PrecomputedCRC) |
| : FileName(File), CRC32(PrecomputedCRC) { |
| init(File); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { |
| unsigned char *Buf = |
| reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
| Elf_Word *CRC = |
| reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); |
| *CRC = Sec.CRC32; |
| llvm::copy(Sec.FileName, Buf); |
| return Error::success(); |
| } |
| |
| Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| template <class ELFT> |
| Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { |
| ELF::Elf32_Word *Buf = |
| reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); |
| support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord); |
| for (SectionBase *S : Sec.GroupMembers) |
| support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index); |
| return Error::success(); |
| } |
| |
| Error GroupSection::accept(SectionVisitor &Visitor) const { |
| return Visitor.visit(*this); |
| } |
| |
| Error GroupSection::accept(MutableSectionVisitor &Visitor) { |
| return Visitor.visit(*this); |
| } |
| |
| // Returns true IFF a section is wholly inside the range of a segment |
| static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { |
| // If a section is empty it should be treated like it has a size of 1. This is |
| // to clarify the case when an empty section lies on a boundary between two |
| // segments and ensures that the section "belongs" to the second segment and |
| // not the first. |
| uint64_t SecSize = Sec.Size ? Sec.Size : 1; |
| |
| // Ignore just added sections. |
| if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max()) |
| return false; |
| |
| if (Sec.Type == SHT_NOBITS) { |
| if (!(Sec.Flags & SHF_ALLOC)) |
| return false; |
| |
| bool SectionIsTLS = Sec.Flags & SHF_TLS; |
| bool SegmentIsTLS = Seg.Type == PT_TLS; |
| if (SectionIsTLS != SegmentIsTLS) |
| return false; |
| |
| return Seg.VAddr <= Sec.Addr && |
| Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; |
| } |
| |
| return Seg.Offset <= Sec.OriginalOffset && |
| Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; |
| } |
| |
| // Returns true IFF a segment's original offset is inside of another segment's |
| // range. |
| static bool segmentOverlapsSegment(const Segment &Child, |
| const Segment &Parent) { |
| |
| return Parent.OriginalOffset <= Child.OriginalOffset && |
| Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; |
| } |
| |
| static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { |
| // Any segment without a parent segment should come before a segment |
| // that has a parent segment. |
| if (A->OriginalOffset < B->OriginalOffset) |
| return true; |
| if (A->OriginalOffset > B->OriginalOffset) |
| return false; |
| return A->Index < B->Index; |
| } |
| |
| void BasicELFBuilder::initFileHeader() { |
| Obj->Flags = 0x0; |
| Obj->Type = ET_REL; |
| Obj->OSABI = ELFOSABI_NONE; |
| Obj->ABIVersion = 0; |
| Obj->Entry = 0x0; |
| Obj->Machine = EM_NONE; |
| Obj->Version = 1; |
| } |
| |
| void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } |
| |
| StringTableSection *BasicELFBuilder::addStrTab() { |
| auto &StrTab = Obj->addSection<StringTableSection>(); |
| StrTab.Name = ".strtab"; |
| |
| Obj->SectionNames = &StrTab; |
| return &StrTab; |
| } |
| |
| SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { |
| auto &SymTab = Obj->addSection<SymbolTableSection>(); |
| |
| SymTab.Name = ".symtab"; |
| SymTab.Link = StrTab->Index; |
| |
| // The symbol table always needs a null symbol |
| SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); |
| |
| Obj->SymbolTable = &SymTab; |
| return &SymTab; |
| } |
| |
| Error BasicELFBuilder::initSections() { |
| for (SectionBase &Sec : Obj->sections()) |
| if (Error Err = Sec.initialize(Obj->sections())) |
| return Err; |
| |
| return Error::success(); |
| } |
| |
| void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { |
| auto Data = ArrayRef<uint8_t>( |
| reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), |
| MemBuf->getBufferSize()); |
| auto &DataSection = Obj->addSection<Section>(Data); |
| DataSection.Name = ".data"; |
| DataSection.Type = ELF::SHT_PROGBITS; |
| DataSection.Size = Data.size(); |
| DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; |
| |
| std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); |
| std::replace_if( |
| std::begin(SanitizedFilename), std::end(SanitizedFilename), |
| [](char C) { return !isAlnum(C); }, '_'); |
| Twine Prefix = Twine("_binary_") + SanitizedFilename; |
| |
| SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, |
| /*Value=*/0, NewSymbolVisibility, 0, 0); |
| SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, |
| /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0); |
| SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, |
| /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS, |
| 0); |
| } |
| |
| Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() { |
| initFileHeader(); |
| initHeaderSegment(); |
| |
| SymbolTableSection *SymTab = addSymTab(addStrTab()); |
| if (Error Err = initSections()) |
| return std::move(Err); |
| addData(SymTab); |
| |
| return std::move(Obj); |
| } |
| |
| // Adds sections from IHEX data file. Data should have been |
| // fully validated by this time. |
| void IHexELFBuilder::addDataSections() { |
| OwnedDataSection *Section = nullptr; |
| uint64_t SegmentAddr = 0, BaseAddr = 0; |
| uint32_t SecNo = 1; |
| |
| for (const IHexRecord &R : Records) { |
| uint64_t RecAddr; |
| switch (R.Type) { |
| case IHexRecord::Data: |
| // Ignore empty data records |
| if (R.HexData.empty()) |
| continue; |
| RecAddr = R.Addr + SegmentAddr + BaseAddr; |
| if (!Section || Section->Addr + Section->Size != RecAddr) { |
| // OriginalOffset field is only used to sort sections before layout, so |
| // instead of keeping track of real offsets in IHEX file, and as |
| // layoutSections() and layoutSectionsForOnlyKeepDebug() use |
| // llvm::stable_sort(), we can just set it to a constant (zero). |
| Section = &Obj->addSection<OwnedDataSection>( |
| ".sec" + std::to_string(SecNo), RecAddr, |
| ELF::SHF_ALLOC | ELF::SHF_WRITE, 0); |
| SecNo++; |
| } |
| Section->appendHexData(R.HexData); |
| break; |
| case IHexRecord::EndOfFile: |
| break; |
| case IHexRecord::SegmentAddr: |
| // 20-bit segment address. |
| SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4; |
| break; |
| case IHexRecord::StartAddr80x86: |
| case IHexRecord::StartAddr: |
| Obj->Entry = checkedGetHex<uint32_t>(R.HexData); |
| assert(Obj->Entry <= 0xFFFFFU); |
| break; |
| case IHexRecord::ExtendedAddr: |
| // 16-31 bits of linear base address |
| BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16; |
| break; |
| default: |
| llvm_unreachable("unknown record type"); |
| } |
| } |
| } |
| |
| Expected<std::unique_ptr<Object>> IHexELFBuilder::build() { |
| initFileHeader(); |
| initHeaderSegment(); |
| StringTableSection *StrTab = addStrTab(); |
| addSymTab(StrTab); |
| if (Error Err = initSections()) |
| return std::move(Err); |
| addDataSections(); |
| |
| return std::move(Obj); |
| } |
| |
| template <class ELFT> |
| ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj, |
| std::optional<StringRef> ExtractPartition) |
| : ElfFile(ElfObj.getELFFile()), Obj(Obj), |
| ExtractPartition(ExtractPartition) { |
| Obj.IsMips64EL = ElfFile.isMips64EL(); |
| } |
| |
| template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { |
| for (Segment &Parent : Obj.segments()) { |
| // Every segment will overlap with itself but we don't want a segment to |
| // be its own parent so we avoid that situation. |
| if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { |
| // We want a canonical "most parental" segment but this requires |
| // inspecting the ParentSegment. |
| if (compareSegmentsByOffset(&Parent, &Child)) |
| if (Child.ParentSegment == nullptr || |
| compareSegmentsByOffset(&Parent, Child.ParentSegment)) { |
| Child.ParentSegment = &Parent; |
| } |
| } |
| } |
| } |
| |
| template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() { |
| if (!ExtractPartition) |
| return Error::success(); |
| |
| for (const SectionBase &Sec : Obj.sections()) { |
| if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { |
| EhdrOffset = Sec.Offset; |
| return Error::success(); |
| } |
| } |
| return createStringError(errc::invalid_argument, |
| "could not find partition named '" + |
| *ExtractPartition + "'"); |
| } |
| |
| template <class ELFT> |
| Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) { |
| uint32_t Index = 0; |
| |
| Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers = |
| HeadersFile.program_headers(); |
| if (!Headers) |
| return Headers.takeError(); |
| |
| for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) { |
| if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) |
| return createStringError( |
| errc::invalid_argument, |
| "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) + |
| " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) + |
| " goes past the end of the file"); |
| |
| ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset, |
| (size_t)Phdr.p_filesz}; |
| Segment &Seg = Obj.addSegment(Data); |
| Seg.Type = Phdr.p_type; |
| Seg.Flags = Phdr.p_flags; |
| Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; |
| Seg.Offset = Phdr.p_offset + EhdrOffset; |
| Seg.VAddr = Phdr.p_vaddr; |
| Seg.PAddr = Phdr.p_paddr; |
| Seg.FileSize = Phdr.p_filesz; |
| Seg.MemSize = Phdr.p_memsz; |
| Seg.Align = Phdr.p_align; |
| Seg.Index = Index++; |
| for (SectionBase &Sec : Obj.sections()) |
| if (sectionWithinSegment(Sec, Seg)) { |
| Seg.addSection(&Sec); |
| if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) |
| Sec.ParentSegment = &Seg; |
| } |
| } |
| |
| auto &ElfHdr = Obj.ElfHdrSegment; |
| ElfHdr.Index = Index++; |
| ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; |
| |
| const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); |
| auto &PrHdr = Obj.ProgramHdrSegment; |
| PrHdr.Type = PT_PHDR; |
| PrHdr.Flags = 0; |
| // The spec requires us to have p_vaddr % p_align == p_offset % p_align. |
| // Whereas this works automatically for ElfHdr, here OriginalOffset is |
| // always non-zero and to ensure the equation we assign the same value to |
| // VAddr as well. |
| PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; |
| PrHdr.PAddr = 0; |
| PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; |
| // The spec requires us to naturally align all the fields. |
| PrHdr.Align = sizeof(Elf_Addr); |
| PrHdr.Index = Index++; |
| |
| // Now we do an O(n^2) loop through the segments in order to match up |
| // segments. |
| for (Segment &Child : Obj.segments()) |
| setParentSegment(Child); |
| setParentSegment(ElfHdr); |
| setParentSegment(PrHdr); |
| |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { |
| if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) |
| return createStringError(errc::invalid_argument, |
| "invalid alignment " + Twine(GroupSec->Align) + |
| " of group section '" + GroupSec->Name + "'"); |
| SectionTableRef SecTable = Obj.sections(); |
| if (GroupSec->Link != SHN_UNDEF) { |
| auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( |
| GroupSec->Link, |
| "link field value '" + Twine(GroupSec->Link) + "' in section '" + |
| GroupSec->Name + "' is invalid", |
| "link field value '" + Twine(GroupSec->Link) + "' in section '" + |
| GroupSec->Name + "' is not a symbol table"); |
| if (!SymTab) |
| return SymTab.takeError(); |
| |
| Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info); |
| if (!Sym) |
| return createStringError(errc::invalid_argument, |
| "info field value '" + Twine(GroupSec->Info) + |
| "' in section '" + GroupSec->Name + |
| "' is not a valid symbol index"); |
| GroupSec->setSymTab(*SymTab); |
| GroupSec->setSymbol(*Sym); |
| } |
| if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || |
| GroupSec->Contents.empty()) |
| return createStringError(errc::invalid_argument, |
| "the content of the section " + GroupSec->Name + |
| " is malformed"); |
| const ELF::Elf32_Word *Word = |
| reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); |
| const ELF::Elf32_Word *End = |
| Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); |
| GroupSec->setFlagWord( |
| support::endian::read32<ELFT::TargetEndianness>(Word++)); |
| for (; Word != End; ++Word) { |
| uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word); |
| Expected<SectionBase *> Sec = SecTable.getSection( |
| Index, "group member index " + Twine(Index) + " in section '" + |
| GroupSec->Name + "' is invalid"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| GroupSec->addMember(*Sec); |
| } |
| |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { |
| Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index); |
| if (!Shdr) |
| return Shdr.takeError(); |
| |
| Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr); |
| if (!StrTabData) |
| return StrTabData.takeError(); |
| |
| ArrayRef<Elf_Word> ShndxData; |
| |
| Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols = |
| ElfFile.symbols(*Shdr); |
| if (!Symbols) |
| return Symbols.takeError(); |
| |
| for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) { |
| SectionBase *DefSection = nullptr; |
| |
| Expected<StringRef> Name = Sym.getName(*StrTabData); |
| if (!Name) |
| return Name.takeError(); |
| |
| if (Sym.st_shndx == SHN_XINDEX) { |
| if (SymTab->getShndxTable() == nullptr) |
| return createStringError(errc::invalid_argument, |
| "symbol '" + *Name + |
| "' has index SHN_XINDEX but no " |
| "SHT_SYMTAB_SHNDX section exists"); |
| if (ShndxData.data() == nullptr) { |
| Expected<const Elf_Shdr *> ShndxSec = |
| ElfFile.getSection(SymTab->getShndxTable()->Index); |
| if (!ShndxSec) |
| return ShndxSec.takeError(); |
| |
| Expected<ArrayRef<Elf_Word>> Data = |
| ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec); |
| if (!Data) |
| return Data.takeError(); |
| |
| ShndxData = *Data; |
| if (ShndxData.size() != Symbols->size()) |
| return createStringError( |
| errc::invalid_argument, |
| "symbol section index table does not have the same number of " |
| "entries as the symbol table"); |
| } |
| Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; |
| Expected<SectionBase *> Sec = Obj.sections().getSection( |
| Index, |
| "symbol '" + *Name + "' has invalid section index " + Twine(Index)); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| DefSection = *Sec; |
| } else if (Sym.st_shndx >= SHN_LORESERVE) { |
| if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { |
| return createStringError( |
| errc::invalid_argument, |
| "symbol '" + *Name + |
| "' has unsupported value greater than or equal " |
| "to SHN_LORESERVE: " + |
| Twine(Sym.st_shndx)); |
| } |
| } else if (Sym.st_shndx != SHN_UNDEF) { |
| Expected<SectionBase *> Sec = Obj.sections().getSection( |
| Sym.st_shndx, "symbol '" + *Name + |
| "' is defined has invalid section index " + |
| Twine(Sym.st_shndx)); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| DefSection = *Sec; |
| } |
| |
| SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection, |
| Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); |
| } |
| |
| return Error::success(); |
| } |
| |
| template <class ELFT> |
| static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {} |
| |
| template <class ELFT> |
| static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { |
| ToSet = Rela.r_addend; |
| } |
| |
| template <class T> |
| static Error initRelocations(RelocationSection *Relocs, T RelRange) { |
| for (const auto &Rel : RelRange) { |
| Relocation ToAdd; |
| ToAdd.Offset = Rel.r_offset; |
| getAddend(ToAdd.Addend, Rel); |
| ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); |
| |
| if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { |
| if (!Relocs->getObject().SymbolTable) |
| return createStringError( |
| errc::invalid_argument, |
| "'" + Relocs->Name + "': relocation references symbol with index " + |
| Twine(Sym) + ", but there is no symbol table"); |
| Expected<Symbol *> SymByIndex = |
| Relocs->getObject().SymbolTable->getSymbolByIndex(Sym); |
| if (!SymByIndex) |
| return SymByIndex.takeError(); |
| |
| ToAdd.RelocSymbol = *SymByIndex; |
| } |
| |
| Relocs->addRelocation(ToAdd); |
| } |
| |
| return Error::success(); |
| } |
| |
| Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index, |
| Twine ErrMsg) { |
| if (Index == SHN_UNDEF || Index > Sections.size()) |
| return createStringError(errc::invalid_argument, ErrMsg); |
| return Sections[Index - 1].get(); |
| } |
| |
| template <class T> |
| Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index, |
| Twine IndexErrMsg, |
| Twine TypeErrMsg) { |
| Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg); |
| if (!BaseSec) |
| return BaseSec.takeError(); |
| |
| if (T *Sec = dyn_cast<T>(*BaseSec)) |
| return Sec; |
| |
| return createStringError(errc::invalid_argument, TypeErrMsg); |
| } |
| |
| template <class ELFT> |
| Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { |
| switch (Shdr.sh_type) { |
| case SHT_REL: |
| case SHT_RELA: |
| if (Shdr.sh_flags & SHF_ALLOC) { |
| if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
| return Obj.addSection<DynamicRelocationSection>(*Data); |
| else |
| return Data.takeError(); |
| } |
| return Obj.addSection<RelocationSection>(Obj); |
| case SHT_STRTAB: |
| // If a string table is allocated we don't want to mess with it. That would |
| // mean altering the memory image. There are no special link types or |
| // anything so we can just use a Section. |
| if (Shdr.sh_flags & SHF_ALLOC) { |
| if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
| return Obj.addSection<Section>(*Data); |
| else |
| return Data.takeError(); |
| } |
| return Obj.addSection<StringTableSection>(); |
| case SHT_HASH: |
| case SHT_GNU_HASH: |
| // Hash tables should refer to SHT_DYNSYM which we're not going to change. |
| // Because of this we don't need to mess with the hash tables either. |
| if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
| return Obj.addSection<Section>(*Data); |
| else |
| return Data.takeError(); |
| case SHT_GROUP: |
| if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
| return Obj.addSection<GroupSection>(*Data); |
| else |
| return Data.takeError(); |
| case SHT_DYNSYM: |
| if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
| return Obj.addSection<DynamicSymbolTableSection>(*Data); |
| else |
| return Data.takeError(); |
| case SHT_DYNAMIC: |
| if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
| return Obj.addSection<DynamicSection>(*Data); |
| else |
| return Data.takeError(); |
| case SHT_SYMTAB: { |
| auto &SymTab = Obj.addSection<SymbolTableSection>(); |
| Obj.SymbolTable = &SymTab; |
| return SymTab; |
| } |
| case SHT_SYMTAB_SHNDX: { |
| auto &ShndxSection = Obj.addSection<SectionIndexSection>(); |
| Obj.SectionIndexTable = &ShndxSection; |
| return ShndxSection; |
| } |
| case SHT_NOBITS: |
| return Obj.addSection<Section>(ArrayRef<uint8_t>()); |
| default: { |
| Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr); |
| if (!Data) |
| return Data.takeError(); |
| |
| Expected<StringRef> Name = ElfFile.getSectionName(Shdr); |
| if (!Name) |
| return Name.takeError(); |
| |
| if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED)) |
| return Obj.addSection<Section>(*Data); |
| auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data()); |
| return Obj.addSection<CompressedSection>(CompressedSection( |
| *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign)); |
| } |
| } |
| } |
| |
| template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() { |
| uint32_t Index = 0; |
| Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = |
| ElfFile.sections(); |
| if (!Sections) |
| return Sections.takeError(); |
| |
| for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) { |
| if (Index == 0) { |
| ++Index; |
| continue; |
| } |
| Expected<SectionBase &> Sec = makeSection(Shdr); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| Expected<StringRef> SecName = ElfFile.getSectionName(Shdr); |
| if (!SecName) |
| return SecName.takeError(); |
| Sec->Name = SecName->str(); |
| Sec->Type = Sec->OriginalType = Shdr.sh_type; |
| Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; |
| Sec->Addr = Shdr.sh_addr; |
| Sec->Offset = Shdr.sh_offset; |
| Sec->OriginalOffset = Shdr.sh_offset; |
| Sec->Size = Shdr.sh_size; |
| Sec->Link = Shdr.sh_link; |
| Sec->Info = Shdr.sh_info; |
| Sec->Align = Shdr.sh_addralign; |
| Sec->EntrySize = Shdr.sh_entsize; |
| Sec->Index = Index++; |
| Sec->OriginalIndex = Sec->Index; |
| Sec->OriginalData = ArrayRef<uint8_t>( |
| ElfFile.base() + Shdr.sh_offset, |
| (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); |
| } |
| |
| return Error::success(); |
| } |
| |
| template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) { |
| uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; |
| if (ShstrIndex == SHN_XINDEX) { |
| Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| ShstrIndex = (*Sec)->sh_link; |
| } |
| |
| if (ShstrIndex == SHN_UNDEF) |
| Obj.HadShdrs = false; |
| else { |
| Expected<StringTableSection *> Sec = |
| Obj.sections().template getSectionOfType<StringTableSection>( |
| ShstrIndex, |
| "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + |
| " is invalid", |
| "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + |
| " does not reference a string table"); |
| if (!Sec) |
| return Sec.takeError(); |
| |
| Obj.SectionNames = *Sec; |
| } |
| |
| // If a section index table exists we'll need to initialize it before we |
| // initialize the symbol table because the symbol table might need to |
| // reference it. |
| if (Obj.SectionIndexTable) |
| if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections())) |
| return Err; |
| |
| // Now that all of the sections have been added we can fill out some extra |
| // details about symbol tables. We need the symbol table filled out before |
| // any relocations. |
| if (Obj.SymbolTable) { |
| if (Error Err = Obj.SymbolTable->initialize(Obj.sections())) |
| return Err; |
| if (Error Err = initSymbolTable(Obj.SymbolTable)) |
| return Err; |
| } else if (EnsureSymtab) { |
| if (Error Err = Obj.addNewSymbolTable()) |
| return Err; |
| } |
| |
| // Now that all sections and symbols have been added we can add |
| // relocations that reference symbols and set the link and info fields for |
| // relocation sections. |
| for (SectionBase &Sec : Obj.sections()) { |
| if (&Sec == Obj.SymbolTable) |
| continue; |
| if (Error Err = Sec.initialize(Obj.sections())) |
| return Err; |
| if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) { |
| Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = |
| ElfFile.sections(); |
| if (!Sections) |
| return Sections.takeError(); |
| |
| const typename ELFFile<ELFT>::Elf_Shdr *Shdr = |
| Sections->begin() + RelSec->Index; |
| if (RelSec->Type == SHT_REL) { |
| Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels = |
| ElfFile.rels(*Shdr); |
| if (!Rels) |
| return Rels.takeError(); |
| |
| if (Error Err = initRelocations(RelSec, *Rels)) |
| return Err; |
| } else { |
| Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = |
| ElfFile.relas(*Shdr); |
| if (!Relas) |
| return Relas.takeError(); |
| |
| if (Error Err = initRelocations(RelSec, *Relas)) |
| return Err; |
| } |
| } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) { |
| if (Error Err = initGroupSection(GroupSec)) |
| return Err; |
| } |
| } |
| |
| return Error::success(); |
| } |
| |
| template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) { |
| if (Error E = readSectionHeaders()) |
| return E; |
| if (Error E = findEhdrOffset()) |
| return E; |
| |
| // The ELFFile whose ELF headers and program headers are copied into the |
| // output file. Normally the same as ElfFile, but if we're extracting a |
| // loadable partition it will point to the partition's headers. |
| Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef( |
| {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); |
| if (!HeadersFile) |
| return HeadersFile.takeError(); |
| |
| const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); |
| Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64; |
| Obj.OSABI = Ehdr.e_ident[EI_OSABI]; |
| Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; |
| Obj.Type = Ehdr.e_type; |
| Obj.Machine = Ehdr.e_machine; |
| Obj.Version = Ehdr.e_version; |
| Obj.Entry = Ehdr.e_entry; |
| Obj.Flags = Ehdr.e_flags; |
| |
| if (Error E = readSections(EnsureSymtab)) |
| return E; |
| return readProgramHeaders(*HeadersFile); |
| } |
| |
| Writer::~Writer() = default; |
| |
| Reader::~Reader() = default; |
| |
| Expected<std::unique_ptr<Object>> |
| BinaryReader::create(bool /*EnsureSymtab*/) const { |
| return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); |
| } |
| |
| Expected<std::vector<IHexRecord>> IHexReader::parse() const { |
| SmallVector<StringRef, 16> Lines; |
| std::vector<IHexRecord> Records; |
| bool HasSections = false; |
| |
| MemBuf->getBuffer().split(Lines, '\n'); |
| Records.reserve(Lines.size()); |
| for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { |
| StringRef Line = Lines[LineNo - 1].trim(); |
| if (Line.empty()) |
| continue; |
| |
| Expected<IHexRecord> R = IHexRecord::parse(Line); |
| if (!R) |
| return parseError(LineNo, R.takeError()); |
| if (R->Type == IHexRecord::EndOfFile) |
| break; |
| HasSections |= (R->Type == IHexRecord::Data); |
| Records.push_back(*R); |
| } |
| if (!HasSections) |
| return parseError(-1U, "no sections"); |
| |
| return std::move(Records); |
| } |
| |
| Expected<std::unique_ptr<Object>> |
| IHexReader::create(bool /*EnsureSymtab*/) const { |
| Expected<std::vector<IHexRecord>> Records = parse(); |
| if (!Records) |
| return Records.takeError(); |
| |
| return IHexELFBuilder(*Records).build(); |
| } |
| |
| Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const { |
| auto Obj = std::make_unique<Object>(); |
| if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { |
| ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition); |
| if (Error Err = Builder.build(EnsureSymtab)) |
| return std::move(Err); |
| return std::move(Obj); |
| } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { |
| ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition); |
| if (Error Err = Builder.build(EnsureSymtab)) |
| return std::move(Err); |
| return std::move(Obj); |
| } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { |
| ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition); |
| if (Error Err = Builder.build(EnsureSymtab)) |
| return std::move(Err); |
| return std::move(Obj); |
| } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { |
| ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition); |
| if (Error Err = Builder.build(EnsureSymtab)) |
| return std::move(Err); |
| return std::move(Obj); |
| } |
| return createStringError(errc::invalid_argument, "invalid file type"); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { |
| Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart()); |
| std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); |
| Ehdr.e_ident[EI_MAG0] = 0x7f; |
| Ehdr.e_ident[EI_MAG1] = 'E'; |
| Ehdr.e_ident[EI_MAG2] = 'L'; |
| Ehdr.e_ident[EI_MAG3] = 'F'; |
| Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| Ehdr.e_ident[EI_DATA] = |
| ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB; |
| Ehdr.e_ident[EI_VERSION] = EV_CURRENT; |
| Ehdr.e_ident[EI_OSABI] = Obj.OSABI; |
| Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; |
| |
| Ehdr.e_type = Obj.Type; |
| Ehdr.e_machine = Obj.Machine; |
| Ehdr.e_version = Obj.Version; |
| Ehdr.e_entry = Obj.Entry; |
| // We have to use the fully-qualified name llvm::size |
| // since some compilers complain on ambiguous resolution. |
| Ehdr.e_phnum = llvm::size(Obj.segments()); |
| Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; |
| Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; |
| Ehdr.e_flags = Obj.Flags; |
| Ehdr.e_ehsize = sizeof(Elf_Ehdr); |
| if (WriteSectionHeaders && Obj.sections().size() != 0) { |
| Ehdr.e_shentsize = sizeof(Elf_Shdr); |
| Ehdr.e_shoff = Obj.SHOff; |
| // """ |
| // If the number of sections is greater than or equal to |
| // SHN_LORESERVE (0xff00), this member has the value zero and the actual |
| // number of section header table entries is contained in the sh_size field |
| // of the section header at index 0. |
| // """ |
| auto Shnum = Obj.sections().size() + 1; |
| if (Shnum >= SHN_LORESERVE) |
| Ehdr.e_shnum = 0; |
| else |
| Ehdr.e_shnum = Shnum; |
| // """ |
| // If the section name string table section index is greater than or equal |
| // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) |
| // and the actual index of the section name string table section is |
| // contained in the sh_link field of the section header at index 0. |
| // """ |
| if (Obj.SectionNames->Index >= SHN_LORESERVE) |
| Ehdr.e_shstrndx = SHN_XINDEX; |
| else |
| Ehdr.e_shstrndx = Obj.SectionNames->Index; |
| } else { |
| Ehdr.e_shentsize = 0; |
| Ehdr.e_shoff = 0; |
| Ehdr.e_shnum = 0; |
| Ehdr.e_shstrndx = 0; |
| } |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { |
| for (auto &Seg : Obj.segments()) |
| writePhdr(Seg); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { |
| // This reference serves to write the dummy section header at the begining |
| // of the file. It is not used for anything else |
| Elf_Shdr &Shdr = |
| *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff); |
| Shdr.sh_name = 0; |
| Shdr.sh_type = SHT_NULL; |
| Shdr.sh_flags = 0; |
| Shdr.sh_addr = 0; |
| Shdr.sh_offset = 0; |
| // See writeEhdr for why we do this. |
| uint64_t Shnum = Obj.sections().size() + 1; |
| if (Shnum >= SHN_LORESERVE) |
| Shdr.sh_size = Shnum; |
| else |
| Shdr.sh_size = 0; |
| // See writeEhdr for why we do this. |
| if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) |
| Shdr.sh_link = Obj.SectionNames->Index; |
| else |
| Shdr.sh_link = 0; |
| Shdr.sh_info = 0; |
| Shdr.sh_addralign = 0; |
| Shdr.sh_entsize = 0; |
| |
| for (SectionBase &Sec : Obj.sections()) |
| writeShdr(Sec); |
| } |
| |
| template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() { |
| for (SectionBase &Sec : Obj.sections()) |
| // Segments are responsible for writing their contents, so only write the |
| // section data if the section is not in a segment. Note that this renders |
| // sections in segments effectively immutable. |
| if (Sec.ParentSegment == nullptr) |
| if (Error Err = Sec.accept(*SecWriter)) |
| return Err; |
| |
| return Error::success(); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() { |
| for (Segment &Seg : Obj.segments()) { |
| size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size()); |
| std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(), |
| Size); |
| } |
| |
| for (auto it : Obj.getUpdatedSections()) { |
| SectionBase *Sec = it.first; |
| ArrayRef<uint8_t> Data = it.second; |
| |
| auto *Parent = Sec->ParentSegment; |
| assert(Parent && "This section should've been part of a segment."); |
| uint64_t Offset = |
| Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; |
| llvm::copy(Data, Buf->getBufferStart() + Offset); |
| } |
| |
| // Iterate over removed sections and overwrite their old data with zeroes. |
| for (auto &Sec : Obj.removedSections()) { |
| Segment *Parent = Sec.ParentSegment; |
| if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) |
| continue; |
| uint64_t Offset = |
| Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; |
| std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size); |
| } |
| } |
| |
| template <class ELFT> |
| ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, |
| bool OnlyKeepDebug) |
| : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), |
| OnlyKeepDebug(OnlyKeepDebug) {} |
| |
| Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) { |
| auto It = llvm::find_if(Sections, |
| [&](const SecPtr &Sec) { return Sec->Name == Name; }); |
| if (It == Sections.end()) |
| return createStringError(errc::invalid_argument, "section '%s' not found", |
| Name.str().c_str()); |
| |
| auto *OldSec = It->get(); |
| if (!OldSec->hasContents()) |
| return createStringError( |
| errc::invalid_argument, |
| "section '%s' cannot be updated because it does not have contents", |
| Name.str().c_str()); |
| |
| if (Data.size() > OldSec->Size && OldSec->ParentSegment) |
| return createStringError(errc::invalid_argument, |
| "cannot fit data of size %zu into section '%s' " |
| "with size %" PRIu64 " that is part of a segment", |
| Data.size(), Name.str().c_str(), OldSec->Size); |
| |
| if (!OldSec->ParentSegment) { |
| *It = std::make_unique<OwnedDataSection>(*OldSec, Data); |
| } else { |
| // The segment writer will be in charge of updating these contents. |
| OldSec->Size = Data.size(); |
| UpdatedSections[OldSec] = Data; |
| } |
| |
| return Error::success(); |
| } |
| |
| Error Object::removeSections( |
| bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) { |
| |
| auto Iter = std::stable_partition( |
| std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { |
| if (ToRemove(*Sec)) |
| return false; |
| if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { |
| if (auto ToRelSec = RelSec->getSection()) |
| return !ToRemove(*ToRelSec); |
| } |
| return true; |
| }); |
| if (SymbolTable != nullptr && ToRemove(*SymbolTable)) |
| SymbolTable = nullptr; |
| if (SectionNames != nullptr && ToRemove(*SectionNames)) |
| SectionNames = nullptr; |
| if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) |
| SectionIndexTable = nullptr; |
| // Now make sure there are no remaining references to the sections that will |
| // be removed. Sometimes it is impossible to remove a reference so we emit |
| // an error here instead. |
| std::unordered_set<const SectionBase *> RemoveSections; |
| RemoveSections.reserve(std::distance(Iter, std::end(Sections))); |
| for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { |
| for (auto &Segment : Segments) |
| Segment->removeSection(RemoveSec.get()); |
| RemoveSec->onRemove(); |
| RemoveSections.insert(RemoveSec.get()); |
| } |
| |
| // For each section that remains alive, we want to remove the dead references. |
| // This either might update the content of the section (e.g. remove symbols |
| // from symbol table that belongs to removed section) or trigger an error if |
| // a live section critically depends on a section being removed somehow |
| // (e.g. the removed section is referenced by a relocation). |
| for (auto &KeepSec : make_range(std::begin(Sections), Iter)) { |
| if (Error E = KeepSec->removeSectionReferences( |
| AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { |
| return RemoveSections.find(Sec) != RemoveSections.end(); |
| })) |
| return E; |
| } |
| |
| // Transfer removed sections into the Object RemovedSections container for use |
| // later. |
| std::move(Iter, Sections.end(), std::back_inserter(RemovedSections)); |
| // Now finally get rid of them all together. |
| Sections.erase(Iter, std::end(Sections)); |
| return Error::success(); |
| } |
| |
| Error Object::replaceSections( |
| const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
| auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { |
| return Lhs->Index < Rhs->Index; |
| }; |
| assert(llvm::is_sorted(Sections, SectionIndexLess) && |
| "Sections are expected to be sorted by Index"); |
| // Set indices of new sections so that they can be later sorted into positions |
| // of removed ones. |
| for (auto &I : FromTo) |
| I.second->Index = I.first->Index; |
| |
| // Notify all sections about the replacement. |
| for (auto &Sec : Sections) |
| Sec->replaceSectionReferences(FromTo); |
| |
| if (Error E = removeSections( |
| /*AllowBrokenLinks=*/false, |
| [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; })) |
| return E; |
| llvm::sort(Sections, SectionIndexLess); |
| return Error::success(); |
| } |
| |
| Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { |
| if (SymbolTable) |
| for (const SecPtr &Sec : Sections) |
| if (Error E = Sec->removeSymbols(ToRemove)) |
| return E; |
| return Error::success(); |
| } |
| |
| Error Object::addNewSymbolTable() { |
| assert(!SymbolTable && "Object must not has a SymbolTable."); |
| |
| // Reuse an existing SHT_STRTAB section if it exists. |
| StringTableSection *StrTab = nullptr; |
| for (SectionBase &Sec : sections()) { |
| if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { |
| StrTab = static_cast<StringTableSection *>(&Sec); |
| |
| // Prefer a string table that is not the section header string table, if |
| // such a table exists. |
| if (SectionNames != &Sec) |
| break; |
| } |
| } |
| if (!StrTab) |
| StrTab = &addSection<StringTableSection>(); |
| |
| SymbolTableSection &SymTab = addSection<SymbolTableSection>(); |
| SymTab.Name = ".symtab"; |
| SymTab.Link = StrTab->Index; |
| if (Error Err = SymTab.initialize(sections())) |
| return Err; |
| SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); |
| |
| SymbolTable = &SymTab; |
| |
| return Error::success(); |
| } |
| |
| // Orders segments such that if x = y->ParentSegment then y comes before x. |
| static void orderSegments(std::vector<Segment *> &Segments) { |
| llvm::stable_sort(Segments, compareSegmentsByOffset); |
| } |
| |
| // This function finds a consistent layout for a list of segments starting from |
| // an Offset. It assumes that Segments have been sorted by orderSegments and |
| // returns an Offset one past the end of the last segment. |
| static uint64_t layoutSegments(std::vector<Segment *> &Segments, |
| uint64_t Offset) { |
| assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); |
| // The only way a segment should move is if a section was between two |
| // segments and that section was removed. If that section isn't in a segment |
| // then it's acceptable, but not ideal, to simply move it to after the |
| // segments. So we can simply layout segments one after the other accounting |
| // for alignment. |
| for (Segment *Seg : Segments) { |
| // We assume that segments have been ordered by OriginalOffset and Index |
| // such that a parent segment will always come before a child segment in |
| // OrderedSegments. This means that the Offset of the ParentSegment should |
| // already be set and we can set our offset relative to it. |
| if (Seg->ParentSegment != nullptr) { |
| Segment *Parent = Seg->ParentSegment; |
| Seg->Offset = |
| Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; |
| } else { |
| Seg->Offset = |
| alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr); |
| } |
| Offset = std::max(Offset, Seg->Offset + Seg->FileSize); |
| } |
| return Offset; |
| } |
| |
| // This function finds a consistent layout for a list of sections. It assumes |
| // that the ->ParentSegment of each section has already been laid out. The |
| // supplied starting Offset is used for the starting offset of any section that |
| // does not have a ParentSegment. It returns either the offset given if all |
| // sections had a ParentSegment or an offset one past the last section if there |
| // was a section that didn't have a ParentSegment. |
| template <class Range> |
| static uint64_t layoutSections(Range Sections, uint64_t Offset) { |
| // Now the offset of every segment has been set we can assign the offsets |
| // of each section. For sections that are covered by a segment we should use |
| // the segment's original offset and the section's original offset to compute |
| // the offset from the start of the segment. Using the offset from the start |
| // of the segment we can assign a new offset to the section. For sections not |
| // covered by segments we can just bump Offset to the next valid location. |
| // While it is not necessary, layout the sections in the order based on their |
| // original offsets to resemble the input file as close as possible. |
| std::vector<SectionBase *> OutOfSegmentSections; |
| uint32_t Index = 1; |
| for (auto &Sec : Sections) { |
| Sec.Index = Index++; |
| if (Sec.ParentSegment != nullptr) { |
| auto Segment = *Sec.ParentSegment; |
| Sec.Offset = |
| Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); |
| } else |
| OutOfSegmentSections.push_back(&Sec); |
| } |
| |
| llvm::stable_sort(OutOfSegmentSections, |
| [](const SectionBase *Lhs, const SectionBase *Rhs) { |
| return Lhs->OriginalOffset < Rhs->OriginalOffset; |
| }); |
| for (auto *Sec : OutOfSegmentSections) { |
| Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align); |
| Sec->Offset = Offset; |
| if (Sec->Type != SHT_NOBITS) |
| Offset += Sec->Size; |
| } |
| return Offset; |
| } |
| |
| // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus |
| // occupy no space in the file. |
| static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { |
| // The layout algorithm requires the sections to be handled in the order of |
| // their offsets in the input file, at least inside segments. |
| std::vector<SectionBase *> Sections; |
| Sections.reserve(Obj.sections().size()); |
| uint32_t Index = 1; |
| for (auto &Sec : Obj.sections()) { |
| Sec.Index = Index++; |
| Sections.push_back(&Sec); |
| } |
| llvm::stable_sort(Sections, |
| [](const SectionBase *Lhs, const SectionBase *Rhs) { |
| return Lhs->OriginalOffset < Rhs->OriginalOffset; |
| }); |
| |
| for (auto *Sec : Sections) { |
| auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD |
| ? Sec->ParentSegment->firstSection() |
| : nullptr; |
| |
| // The first section in a PT_LOAD has to have congruent offset and address |
| // modulo the alignment, which usually equals the maximum page size. |
| if (FirstSec && FirstSec == Sec) |
| Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr); |
| |
| // sh_offset is not significant for SHT_NOBITS sections, but the congruence |
| // rule must be followed if it is the first section in a PT_LOAD. Do not |
| // advance Off. |
| if (Sec->Type == SHT_NOBITS) { |
| Sec->Offset = Off; |
| continue; |
| } |
| |
| if (!FirstSec) { |
| // FirstSec being nullptr generally means that Sec does not have the |
| // SHF_ALLOC flag. |
| Off = Sec->Align ? alignTo(Off, Sec->Align) : Off; |
| } else if (FirstSec != Sec) { |
| // The offset is relative to the first section in the PT_LOAD segment. Use |
| // sh_offset for non-SHF_ALLOC sections. |
| Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; |
| } |
| Sec->Offset = Off; |
| Off += Sec->Size; |
| } |
| return Off; |
| } |
| |
| // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values |
| // have been updated. |
| static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments, |
| uint64_t HdrEnd) { |
| uint64_t MaxOffset = 0; |
| for (Segment *Seg : Segments) { |
| if (Seg->Type == PT_PHDR) |
| continue; |
| |
| // The segment offset is generally the offset of the first section. |
| // |
| // For a segment containing no section (see sectionWithinSegment), if it has |
| // a parent segment, copy the parent segment's offset field. This works for |
| // empty PT_TLS. If no parent segment, use 0: the segment is not useful for |
| // debugging anyway. |
| const SectionBase *FirstSec = Seg->firstSection(); |
| uint64_t Offset = |
| FirstSec ? FirstSec->Offset |
| : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); |
| uint64_t FileSize = 0; |
| for (const SectionBase *Sec : Seg->Sections) { |
| uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; |
| if (Sec->Offset + Size > Offset) |
| FileSize = std::max(FileSize, Sec->Offset + Size - Offset); |
| } |
| |
| // If the segment includes EHDR and program headers, don't make it smaller |
| // than the headers. |
| if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { |
| FileSize += Offset - Seg->Offset; |
| Offset = Seg->Offset; |
| FileSize = std::max(FileSize, HdrEnd - Offset); |
| } |
| |
| Seg->Offset = Offset; |
| Seg->FileSize = FileSize; |
| MaxOffset = std::max(MaxOffset, Offset + FileSize); |
| } |
| return MaxOffset; |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { |
| Segment &ElfHdr = Obj.ElfHdrSegment; |
| ElfHdr.Type = PT_PHDR; |
| ElfHdr.Flags = 0; |
| ElfHdr.VAddr = 0; |
| ElfHdr.PAddr = 0; |
| ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); |
| ElfHdr.Align = 0; |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { |
| // We need a temporary list of segments that has a special order to it |
| // so that we know that anytime ->ParentSegment is set that segment has |
| // already had its offset properly set. |
| std::vector<Segment *> OrderedSegments; |
| for (Segment &Segment : Obj.segments()) |
| OrderedSegments.push_back(&Segment); |
| OrderedSegments.push_back(&Obj.ElfHdrSegment); |
| OrderedSegments.push_back(&Obj.ProgramHdrSegment); |
| orderSegments(OrderedSegments); |
| |
| uint64_t Offset; |
| if (OnlyKeepDebug) { |
| // For --only-keep-debug, the sections that did not preserve contents were |
| // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and |
| // then rewrite p_offset/p_filesz of program headers. |
| uint64_t HdrEnd = |
| sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); |
| Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); |
| Offset = std::max(Offset, |
| layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd)); |
| } else { |
| // Offset is used as the start offset of the first segment to be laid out. |
| // Since the ELF Header (ElfHdrSegment) must be at the start of the file, |
| // we start at offset 0. |
| Offset = layoutSegments(OrderedSegments, 0); |
| Offset = layoutSections(Obj.sections(), Offset); |
| } |
| // If we need to write the section header table out then we need to align the |
| // Offset so that SHOffset is valid. |
| if (WriteSectionHeaders) |
| Offset = alignTo(Offset, sizeof(Elf_Addr)); |
| Obj.SHOff = Offset; |
| } |
| |
| template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { |
| // We already have the section header offset so we can calculate the total |
| // size by just adding up the size of each section header. |
| if (!WriteSectionHeaders) |
| return Obj.SHOff; |
| size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. |
| return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); |
| } |
| |
| template <class ELFT> Error ELFWriter<ELFT>::write() { |
| // Segment data must be written first, so that the ELF header and program |
| // header tables can overwrite it, if covered by a segment. |
| writeSegmentData(); |
| writeEhdr(); |
| writePhdrs(); |
| if (Error E = writeSectionData()) |
| return E; |
| if (WriteSectionHeaders) |
| writeShdrs(); |
| |
| // TODO: Implement direct writing to the output stream (without intermediate |
| // memory buffer Buf). |
| Out.write(Buf->getBufferStart(), Buf->getBufferSize()); |
| return Error::success(); |
| } |
| |
| static Error removeUnneededSections(Object &Obj) { |
| // We can remove an empty symbol table from non-relocatable objects. |
| // Relocatable objects typically have relocation sections whose |
| // sh_link field points to .symtab, so we can't remove .symtab |
| // even if it is empty. |
| if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || |
| !Obj.SymbolTable->empty()) |
| return Error::success(); |
| |
| // .strtab can be used for section names. In such a case we shouldn't |
| // remove it. |
| auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames |
| ? nullptr |
| : Obj.SymbolTable->getStrTab(); |
| return Obj.removeSections(false, [&](const SectionBase &Sec) { |
| return &Sec == Obj.SymbolTable || &Sec == StrTab; |
| }); |
| } |
| |
| template <class ELFT> Error ELFWriter<ELFT>::finalize() { |
| // It could happen that SectionNames has been removed and yet the user wants |
| // a section header table output. We need to throw an error if a user tries |
| // to do that. |
| if (Obj.SectionNames == nullptr && WriteSectionHeaders) |
| return createStringError(llvm::errc::invalid_argument, |
| "cannot write section header table because " |
| "section header string table was removed"); |
| |
| if (Error E = removeUnneededSections(Obj)) |
| return E; |
| |
| // We need to assign indexes before we perform layout because we need to know |
| // if we need large indexes or not. We can assign indexes first and check as |
| // we go to see if we will actully need large indexes. |
| bool NeedsLargeIndexes = false; |
| if (Obj.sections().size() >= SHN_LORESERVE) { |
| SectionTableRef Sections = Obj.sections(); |
| // Sections doesn't include the null section header, so account for this |
| // when skipping the first N sections. |
| NeedsLargeIndexes = |
| any_of(drop_begin(Sections, SHN_LORESERVE - 1), |
| [](const SectionBase &Sec) { return Sec.HasSymbol; }); |
| // TODO: handle case where only one section needs the large index table but |
| // only needs it because the large index table hasn't been removed yet. |
| } |
| |
| if (NeedsLargeIndexes) { |
| // This means we definitely need to have a section index table but if we |
| // already have one then we should use it instead of making a new one. |
| if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { |
| // Addition of a section to the end does not invalidate the indexes of |
| // other sections and assigns the correct index to the new section. |
| auto &Shndx = Obj.addSection<SectionIndexSection>(); |
| Obj.SymbolTable->setShndxTable(&Shndx); |
| Shndx.setSymTab(Obj.SymbolTable); |
| } |
| } else { |
| // Since we don't need SectionIndexTable we should remove it and all |
| // references to it. |
| if (Obj.SectionIndexTable != nullptr) { |
| // We do not support sections referring to the section index table. |
| if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/, |
| [this](const SectionBase &Sec) { |
| return &Sec == Obj.SectionIndexTable; |
| })) |
| return E; |
| } |
| } |
| |
| // Make sure we add the names of all the sections. Importantly this must be |
| // done after we decide to add or remove SectionIndexes. |
| if (Obj.SectionNames != nullptr) |
| for (const SectionBase &Sec : Obj.sections()) |
| Obj.SectionNames->addString(Sec.Name); |
| |
| initEhdrSegment(); |
| |
| // Before we can prepare for layout the indexes need to be finalized. |
| // Also, the output arch may not be the same as the input arch, so fix up |
| // size-related fields before doing layout calculations. |
| uint64_t Index = 0; |
| auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>(); |
| for (SectionBase &Sec : Obj.sections()) { |
| Sec.Index = Index++; |
| if (Error Err = Sec.accept(*SecSizer)) |
| return Err; |
| } |
| |
| // The symbol table does not update all other sections on update. For |
| // instance, symbol names are not added as new symbols are added. This means |
| // that some sections, like .strtab, don't yet have their final size. |
| if (Obj.SymbolTable != nullptr) |
| Obj.SymbolTable->prepareForLayout(); |
| |
| // Now that all strings are added we want to finalize string table builders, |
| // because that affects section sizes which in turn affects section offsets. |
| for (SectionBase &Sec : Obj.sections()) |
| if (auto StrTab = dyn_cast<StringTableSection>(&Sec)) |
| StrTab->prepareForLayout(); |
| |
| assignOffsets(); |
| |
| // layoutSections could have modified section indexes, so we need |
| // to fill the index table after assignOffsets. |
| if (Obj.SymbolTable != nullptr) |
| Obj.SymbolTable->fillShndxTable(); |
| |
| // Finally now that all offsets and indexes have been set we can finalize any |
| // remaining issues. |
| uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); |
| for (SectionBase &Sec : Obj.sections()) { |
| Sec.HeaderOffset = Offset; |
| Offset += sizeof(Elf_Shdr); |
| if (WriteSectionHeaders) |
| Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name); |
| Sec.finalize(); |
| } |
| |
| size_t TotalSize = totalSize(); |
| Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); |
| if (!Buf) |
| return createStringError(errc::not_enough_memory, |
| "failed to allocate memory buffer of " + |
| Twine::utohexstr(TotalSize) + " bytes"); |
| |
| SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf); |
| return Error::success(); |
| } |
| |
| Error BinaryWriter::write() { |
| for (const SectionBase &Sec : Obj.allocSections()) |
| if (Error Err = Sec.accept(*SecWriter)) |
| return Err; |
| |
| // TODO: Implement direct writing to the output stream (without intermediate |
| // memory buffer Buf). |
| Out.write(Buf->getBufferStart(), Buf->getBufferSize()); |
| return Error::success(); |
| } |
| |
| Error BinaryWriter::finalize() { |
| // Compute the section LMA based on its sh_offset and the containing segment's |
| // p_offset and p_paddr. Also compute the minimum LMA of all non-empty |
| // sections as MinAddr. In the output, the contents between address 0 and |
| // MinAddr will be skipped. |
| uint64_t MinAddr = UINT64_MAX; |
| for (SectionBase &Sec : Obj.allocSections()) { |
| // If Sec's type is changed from SHT_NOBITS due to --set-section-flags, |
| // Offset may not be aligned. Align it to max(Align, 1). |
| if (Sec.ParentSegment != nullptr) |
| Sec.Addr = alignTo(Sec.Offset - Sec.ParentSegment->Offset + |
| Sec.ParentSegment->PAddr, |
| std::max(Sec.Align, uint64_t(1))); |
| if (Sec.Type != SHT_NOBITS && Sec.Size > 0) |
| MinAddr = std::min(MinAddr, Sec.Addr); |
| } |
| |
| // Now that every section has been laid out we just need to compute the total |
| // file size. This might not be the same as the offset returned by |
| // layoutSections, because we want to truncate the last segment to the end of |
| // its last non-empty section, to match GNU objcopy's behaviour. |
| TotalSize = 0; |
| for (SectionBase &Sec : Obj.allocSections()) |
| if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { |
| Sec.Offset = Sec.Addr - MinAddr; |
| TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size); |
| } |
| |
| Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); |
| if (!Buf) |
| return createStringError(errc::not_enough_memory, |
| "failed to allocate memory buffer of " + |
| Twine::utohexstr(TotalSize) + " bytes"); |
| SecWriter = std::make_unique<BinarySectionWriter>(*Buf); |
| return Error::success(); |
| } |
| |
| bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs, |
| const SectionBase *Rhs) const { |
| return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) < |
| (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU); |
| } |
| |
| uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { |
| IHexLineData HexData; |
| uint8_t Data[4] = {}; |
| // We don't write entry point record if entry is zero. |
| if (Obj.Entry == 0) |
| return 0; |
| |
| if (Obj.Entry <= 0xFFFFFU) { |
| Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; |
| support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry), |
| support::big); |
| HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data); |
| } else { |
| support::endian::write(Data, static_cast<uint32_t>(Obj.Entry), |
| support::big); |
| HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data); |
| } |
| memcpy(Buf, HexData.data(), HexData.size()); |
| return HexData.size(); |
| } |
| |
| uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { |
| IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {}); |
| memcpy(Buf, HexData.data(), HexData.size()); |
| return HexData.size(); |
| } |
| |
| Error IHexWriter::write() { |
| IHexSectionWriter Writer(*Buf); |
| // Write sections. |
| for (const SectionBase *Sec : Sections) |
| if (Error Err = Sec->accept(Writer)) |
| return Err; |
| |
| uint64_t Offset = Writer.getBufferOffset(); |
| // Write entry point address. |
| Offset += writeEntryPointRecord( |
| reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); |
| // Write EOF. |
| Offset += writeEndOfFileRecord( |
| reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); |
| assert(Offset == TotalSize); |
| |
| // TODO: Implement direct writing to the output stream (without intermediate |
| // memory buffer Buf). |
| Out.write(Buf->getBufferStart(), Buf->getBufferSize()); |
| return Error::success(); |
| } |
| |
| Error IHexWriter::checkSection(const SectionBase &Sec) { |
| uint64_t Addr = sectionPhysicalAddr(&Sec); |
| if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1)) |
| return createStringError( |
| errc::invalid_argument, |
| "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", |
| Sec.Name.c_str(), Addr, Addr + Sec.Size - 1); |
| return Error::success(); |
| } |
| |
| Error IHexWriter::finalize() { |
| // We can't write 64-bit addresses. |
| if (addressOverflows32bit(Obj.Entry)) |
| return createStringError(errc::invalid_argument, |
| "Entry point address 0x%llx overflows 32 bits", |
| Obj.Entry); |
| |
| for (const SectionBase &Sec : Obj.sections()) |
| if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS && |
| Sec.Size > 0) { |
| if (Error E = checkSection(Sec)) |
| return E; |
| Sections.insert(&Sec); |
| } |
| |
| std::unique_ptr<WritableMemoryBuffer> EmptyBuffer = |
| WritableMemoryBuffer::getNewMemBuffer(0); |
| if (!EmptyBuffer) |
| return createStringError(errc::not_enough_memory, |
| "failed to allocate memory buffer of 0 bytes"); |
| |
| IHexSectionWriterBase LengthCalc(*EmptyBuffer); |
| for (const SectionBase *Sec : Sections) |
| if (Error Err = Sec->accept(LengthCalc)) |
| return Err; |
| |
| // We need space to write section records + StartAddress record |
| // (if start adress is not zero) + EndOfFile record. |
| TotalSize = LengthCalc.getBufferOffset() + |
| (Obj.Entry ? IHexRecord::getLineLength(4) : 0) + |
| IHexRecord::getLineLength(0); |
| |
| Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); |
| if (!Buf) |
| return createStringError(errc::not_enough_memory, |
| "failed to allocate memory buffer of " + |
| Twine::utohexstr(TotalSize) + " bytes"); |
| |
| return Error::success(); |
| } |
| |
| namespace llvm { |
| namespace objcopy { |
| namespace elf { |
| |
| template class ELFBuilder<ELF64LE>; |
| template class ELFBuilder<ELF64BE>; |
| template class ELFBuilder<ELF32LE>; |
| template class ELFBuilder<ELF32BE>; |
| |
| template class ELFWriter<ELF64LE>; |
| template class ELFWriter<ELF64BE>; |
| template class ELFWriter<ELF32LE>; |
| template class ELFWriter<ELF32BE>; |
| |
| } // end namespace elf |
| } // end namespace objcopy |
| } // end namespace llvm |