blob: 3892b09e5b63d983af8cdf02b66d82e3ee56df46 [file] [log] [blame]
//===- ModelUnderTrainingRunner.cpp - 'development' mode runner -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of a MLModelRunner for 'development' mode, i.e. evaluation
// happens off a model that's provided from the command line and is interpreted.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TFLITE)
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include <optional>
using namespace llvm;
namespace {
struct LoggedFeatureSpec {
TensorSpec Spec;
std::optional<std::string> LoggingName;
};
std::optional<std::vector<LoggedFeatureSpec>>
loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
StringRef ModelPath, StringRef SpecFileOverride) {
SmallVector<char, 128> OutputSpecsPath;
StringRef FileName = SpecFileOverride;
if (FileName.empty()) {
llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()};
}
auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
if (!BufferOrError) {
Ctx.emitError("Error opening output specs file: " + FileName + " : " +
BufferOrError.getError().message());
return std::nullopt;
}
auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
if (!ParsedJSONValues) {
Ctx.emitError("Could not parse specs file: " + FileName);
return std::nullopt;
}
auto ValuesArray = ParsedJSONValues->getAsArray();
if (!ValuesArray) {
Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
"logging_name:<name>} dictionaries");
return std::nullopt;
}
std::vector<LoggedFeatureSpec> Ret;
for (const auto &Value : *ValuesArray)
if (const auto *Obj = Value.getAsObject())
if (const auto *SpecPart = Obj->get("tensor_spec"))
if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
if (auto LoggingName = Obj->getString("logging_name")) {
if (!TensorSpec->isElementType<int64_t>() &&
!TensorSpec->isElementType<int32_t>() &&
!TensorSpec->isElementType<float>()) {
Ctx.emitError(
"Only int64, int32, and float tensors are supported. "
"Found unsupported type for tensor named " +
TensorSpec->name());
return std::nullopt;
}
Ret.push_back({*TensorSpec, LoggingName->str()});
}
if (ValuesArray->size() != Ret.size()) {
Ctx.emitError(
"Unable to parse output spec. It should be a json file containing an "
"array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
"with a json object describing a TensorSpec; and a 'logging_name' key, "
"which is a string to use as name when logging this tensor in the "
"training log.");
return std::nullopt;
}
if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) {
Ctx.emitError("The first output spec must describe the decision tensor, "
"and must have the logging_name " +
StringRef(ExpectedDecisionName));
return std::nullopt;
}
return Ret;
}
} // namespace
ModelUnderTrainingRunner::ModelUnderTrainingRunner(
LLVMContext &Ctx, const std::string &ModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs,
const std::vector<TensorSpec> &ExtraOutputsForLogging)
: MLModelRunner(Ctx, MLModelRunner::Kind::Development, InputSpecs.size()),
OutputSpecs(OutputSpecs), ExtraOutputsForLogging(ExtraOutputsForLogging) {
Evaluator =
std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs);
if (!Evaluator || !Evaluator->isValid()) {
Ctx.emitError("Failed to create saved model evaluator");
Evaluator.reset();
return;
}
for (size_t I = 0, E = InputSpecs.size(); I < E; ++I) {
setUpBufferForTensor(I, InputSpecs[I], Evaluator->getUntypedInput(I));
}
}
void *ModelUnderTrainingRunner::evaluateUntyped() {
LastEvaluationResult = Evaluator->evaluate();
if (!LastEvaluationResult.has_value()) {
Ctx.emitError("Error evaluating model.");
return nullptr;
}
return LastEvaluationResult->getUntypedTensorValue(0);
}
std::unique_ptr<ModelUnderTrainingRunner>
ModelUnderTrainingRunner::createAndEnsureValid(
LLVMContext &Ctx, const std::string &ModelPath, StringRef DecisionName,
const std::vector<TensorSpec> &InputSpecs,
StringRef OutputSpecsPathOverride) {
if (auto MaybeOutputSpecs = loadOutputSpecs(Ctx, DecisionName, ModelPath,
OutputSpecsPathOverride)) {
std::unique_ptr<ModelUnderTrainingRunner> MUTR;
std::vector<TensorSpec> OutputSpecs;
std::vector<TensorSpec> ExtraOutputsForLogging;
append_range(OutputSpecs,
map_range(*MaybeOutputSpecs, [](const LoggedFeatureSpec &LFS) {
return LFS.Spec;
}));
append_range(ExtraOutputsForLogging,
map_range(drop_begin(*MaybeOutputSpecs),
[](const LoggedFeatureSpec &LFS) {
return TensorSpec(LFS.LoggingName
? *LFS.LoggingName
: LFS.Spec.name(),
LFS.Spec);
}));
MUTR.reset(new ModelUnderTrainingRunner(
Ctx, ModelPath, InputSpecs, OutputSpecs, ExtraOutputsForLogging));
if (MUTR && MUTR->isValid())
return MUTR;
Ctx.emitError("Could not load or create model evaluator.");
return nullptr;
}
Ctx.emitError("Could not load the policy model from the provided path");
return nullptr;
}
#endif // defined(LLVM_HAVE_TFLITE)