| // Copyright (c) 2013, the Dart project authors.  Please see the AUTHORS file | 
 | // for details. All rights reserved. Use of this source code is governed by a | 
 | // BSD-style license that can be found in the LICENSE file. | 
 | // | 
 | // This is forked from Dart revision df52deea9f25690eb8b66c5995da92b70f7ac1fe | 
 | // Please update the (git) revision if we merge changes from Dart. | 
 | // https://code.google.com/p/dart/wiki/GettingTheSource | 
 |  | 
 | #include "vm/globals.h"  // NOLINT | 
 | #if defined(TARGET_ARCH_ARM) | 
 |  | 
 | #include "vm/assembler.h" | 
 | #include "vm/cpu.h" | 
 | #include "vm/longjump.h" | 
 | #include "vm/runtime_entry.h" | 
 | #include "vm/simulator.h" | 
 | #include "vm/stack_frame.h" | 
 | #include "vm/stub_code.h" | 
 |  | 
 | // An extra check since we are assuming the existence of /proc/cpuinfo below. | 
 | #if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID) | 
 | #error ARM cross-compile only supported on Linux | 
 | #endif | 
 |  | 
 | namespace dart { | 
 |  | 
 | DECLARE_FLAG(bool, allow_absolute_addresses); | 
 | DEFINE_FLAG(bool, print_stop_message, true, "Print stop message."); | 
 | DECLARE_FLAG(bool, inline_alloc); | 
 |  | 
 | #if 0 | 
 | // Moved to encodeImmRegOffsetEnc3 in IceAssemblerARM32.cpp | 
 | uint32_t Address::encoding3() const { | 
 |   if (kind_ == Immediate) { | 
 |     uint32_t offset = encoding_ & kOffset12Mask; | 
 |     ASSERT(offset < 256); | 
 |     return (encoding_ & ~kOffset12Mask) | B22 | | 
 |            ((offset & 0xf0) << 4) | (offset & 0xf); | 
 |   } | 
 |   ASSERT(kind_ == IndexRegister); | 
 |   return encoding_; | 
 | } | 
 | #endif | 
 |  | 
 | uint32_t Address::vencoding() const { | 
 |   ASSERT(kind_ == Immediate); | 
 |   uint32_t offset = encoding_ & kOffset12Mask; | 
 |   ASSERT(offset < (1 << 10));  // In the range 0 to +1020. | 
 |   ASSERT(Utils::IsAligned(offset, 4));  // Multiple of 4. | 
 |   int mode = encoding_ & ((8|4|1) << 21); | 
 |   ASSERT((mode == Offset) || (mode == NegOffset)); | 
 |   uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2); | 
 |   if (mode == Offset) { | 
 |     vencoding |= 1 << 23; | 
 |   } | 
 |   return vencoding; | 
 | } | 
 |  | 
 |  | 
 | void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) { | 
 |   ASSERT(Utils::IsAligned(data, 4)); | 
 |   ASSERT(Utils::IsAligned(length, 4)); | 
 |   const uword end = data + length; | 
 |   while (data < end) { | 
 |     *reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction; | 
 |     data += 4; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Emit(int32_t value) { | 
 |   AssemblerBuffer::EnsureCapacity ensured(&buffer_); | 
 |   buffer_.Emit<int32_t>(value); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::emitType01() | 
 | void Assembler::EmitType01(Condition cond, | 
 |                            int type, | 
 |                            Opcode opcode, | 
 |                            int set_cc, | 
 |                            Register rn, | 
 |                            Register rd, | 
 |                            Operand o) { | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | | 
 |                      type << kTypeShift | | 
 |                      static_cast<int32_t>(opcode) << kOpcodeShift | | 
 |                      set_cc << kSShift | | 
 |                      static_cast<int32_t>(rn) << kRnShift | | 
 |                      static_cast<int32_t>(rd) << kRdShift | | 
 |                      o.encoding(); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitType05() | 
 | void Assembler::EmitType5(Condition cond, int32_t offset, bool link) { | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | | 
 |                      5 << kTypeShift | | 
 |                      (link ? 1 : 0) << kLinkShift; | 
 |   Emit(Assembler::EncodeBranchOffset(offset, encoding)); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitMemOp() | 
 | void Assembler::EmitMemOp(Condition cond, | 
 |                           bool load, | 
 |                           bool byte, | 
 |                           Register rd, | 
 |                           Address ad) { | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B26 | (ad.kind() == Address::Immediate ? 0 : B25) | | 
 |                      (load ? L : 0) | | 
 |                      (byte ? B : 0) | | 
 |                      (static_cast<int32_t>(rd) << kRdShift) | | 
 |                      ad.encoding(); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to AssemblerARM32::emitMemOpEnc3(); | 
 | void Assembler::EmitMemOpAddressMode3(Condition cond, | 
 |                                       int32_t mode, | 
 |                                       Register rd, | 
 |                                       Address ad) { | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      mode | | 
 |                      (static_cast<int32_t>(rd) << kRdShift) | | 
 |                      ad.encoding3(); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitMuliMemOp() | 
 | void Assembler::EmitMultiMemOp(Condition cond, | 
 |                                BlockAddressMode am, | 
 |                                bool load, | 
 |                                Register base, | 
 |                                RegList regs) { | 
 |   ASSERT(base != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | | 
 |                      am | | 
 |                      (load ? L : 0) | | 
 |                      (static_cast<int32_t>(base) << kRnShift) | | 
 |                      regs; | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::EmitShiftImmediate(Condition cond, | 
 |                                    Shift opcode, | 
 |                                    Register rd, | 
 |                                    Register rm, | 
 |                                    Operand o) { | 
 |   ASSERT(cond != kNoCondition); | 
 |   ASSERT(o.type() == 1); | 
 |   int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | | 
 |                      static_cast<int32_t>(MOV) << kOpcodeShift | | 
 |                      static_cast<int32_t>(rd) << kRdShift | | 
 |                      o.encoding() << kShiftImmShift | | 
 |                      static_cast<int32_t>(opcode) << kShiftShift | | 
 |                      static_cast<int32_t>(rm); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EmitShiftRegister(Condition cond, | 
 |                                   Shift opcode, | 
 |                                   Register rd, | 
 |                                   Register rm, | 
 |                                   Operand o) { | 
 |   ASSERT(cond != kNoCondition); | 
 |   ASSERT(o.type() == 0); | 
 |   int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | | 
 |                      static_cast<int32_t>(MOV) << kOpcodeShift | | 
 |                      static_cast<int32_t>(rd) << kRdShift | | 
 |                      o.encoding() << kShiftRegisterShift | | 
 |                      static_cast<int32_t>(opcode) << kShiftShift | | 
 |                      B4 | | 
 |                      static_cast<int32_t>(rm); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::and_() | 
 | void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), AND, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::eor() | 
 | void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), EOR, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::sub() | 
 | void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), SUB, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::rsb() | 
 | void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), RSB, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::rsb() | 
 | void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), RSB, 1, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::add() | 
 | void Assembler::add(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), ADD, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::add() | 
 | void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), ADD, 1, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::sub() | 
 | void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), SUB, 1, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::adc() | 
 | void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), ADC, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::adc() | 
 | void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), ADC, 1, rn, rd, o); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), SBC, 0, rn, rd, o); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), SBC, 1, rn, rd, o); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::rsc()f | 
 | void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), RSC, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::tst() | 
 | void Assembler::tst(Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), TST, 1, rn, R0, o); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::teq(Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), TEQ, 1, rn, R0, o); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::cmp() | 
 | void Assembler::cmp(Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), CMP, 1, rn, R0, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::cmn() | 
 | void Assembler::cmn(Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), CMN, 1, rn, R0, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::orr() | 
 | void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), ORR, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemberARM32::orr() | 
 | void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), ORR, 1, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::mov() | 
 | // TODO(kschimpf) other forms of move. | 
 | void Assembler::mov(Register rd, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), MOV, 0, R0, rd, o); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::movs(Register rd, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), MOV, 1, R0, rd, o); | 
 | } | 
 |  | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::bic() | 
 | void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), BIC, 0, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::bic() | 
 | void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), BIC, 1, rn, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::mvn() | 
 | void Assembler::mvn(Register rd, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), MVN, 0, R0, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::mvn() | 
 | void Assembler::mvns(Register rd, Operand o, Condition cond) { | 
 |   EmitType01(cond, o.type(), MVN, 1, R0, rd, o); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::clz() | 
 | void Assembler::clz(Register rd, Register rm, Condition cond) { | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(rm != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   ASSERT(rd != PC); | 
 |   ASSERT(rm != PC); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B24 | B22 | B21 | (0xf << 16) | | 
 |                      (static_cast<int32_t>(rd) << kRdShift) | | 
 |                      (0xf << 8) | B4 | static_cast<int32_t>(rm); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::movw() | 
 | void Assembler::movw(Register rd, uint16_t imm16, Condition cond) { | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | | 
 |                      B25 | B24 | ((imm16 >> 12) << 16) | | 
 |                      static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::movt() | 
 | void Assembler::movt(Register rd, uint16_t imm16, Condition cond) { | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | | 
 |                      B25 | B24 | B22 | ((imm16 >> 12) << 16) | | 
 |                      static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitMulOp() | 
 | void Assembler::EmitMulOp(Condition cond, int32_t opcode, | 
 |                           Register rd, Register rn, | 
 |                           Register rm, Register rs) { | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(rn != kNoRegister); | 
 |   ASSERT(rm != kNoRegister); | 
 |   ASSERT(rs != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = opcode | | 
 |       (static_cast<int32_t>(cond) << kConditionShift) | | 
 |       (static_cast<int32_t>(rn) << kRnShift) | | 
 |       (static_cast<int32_t>(rd) << kRdShift) | | 
 |       (static_cast<int32_t>(rs) << kRsShift) | | 
 |       B7 | B4 | | 
 |       (static_cast<int32_t>(rm) << kRmShift); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::mul() | 
 | void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) { | 
 |   // Assembler registers rd, rn, rm are encoded as rn, rm, rs. | 
 |   EmitMulOp(cond, 0, R0, rd, rn, rm); | 
 | } | 
 | #endif | 
 |  | 
 | // Like mul, but sets condition flags. | 
 | void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) { | 
 |   EmitMulOp(cond, B20, R0, rd, rn, rm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::mla() | 
 | void Assembler::mla(Register rd, Register rn, | 
 |                     Register rm, Register ra, Condition cond) { | 
 |   // rd <- ra + rn * rm. | 
 |   // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. | 
 |   EmitMulOp(cond, B21, ra, rd, rn, rm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::mla() | 
 | void Assembler::mls(Register rd, Register rn, | 
 |                     Register rm, Register ra, Condition cond) { | 
 |   // rd <- ra - rn * rm. | 
 |   if (TargetCPUFeatures::arm_version() == ARMv7) { | 
 |     // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. | 
 |     EmitMulOp(cond, B22 | B21, ra, rd, rn, rm); | 
 |   } else { | 
 |     mul(IP, rn, rm, cond); | 
 |     sub(rd, ra, Operand(IP), cond); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::smull(Register rd_lo, Register rd_hi, | 
 |                       Register rn, Register rm, Condition cond) { | 
 |   // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. | 
 |   EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::umull() | 
 | void Assembler::umull(Register rd_lo, Register rd_hi, | 
 |                       Register rn, Register rm, Condition cond) { | 
 |   // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. | 
 |   EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::umlal(Register rd_lo, Register rd_hi, | 
 |                       Register rn, Register rm, Condition cond) { | 
 |   // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. | 
 |   EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::umaal(Register rd_lo, Register rd_hi, | 
 |                       Register rn, Register rm) { | 
 |   ASSERT(rd_lo != IP); | 
 |   ASSERT(rd_hi != IP); | 
 |   ASSERT(rn != IP); | 
 |   ASSERT(rm != IP); | 
 |   if (TargetCPUFeatures::arm_version() != ARMv5TE) { | 
 |     // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. | 
 |     EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm); | 
 |   } else { | 
 |     mov(IP, Operand(0)); | 
 |     umlal(rd_lo, IP, rn, rm); | 
 |     adds(rd_lo, rd_lo, Operand(rd_hi)); | 
 |     adc(rd_hi, IP, Operand(0)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::emitDivOp() | 
 | void Assembler::EmitDivOp(Condition cond, int32_t opcode, | 
 |                           Register rd, Register rn, Register rm) { | 
 |   ASSERT(TargetCPUFeatures::integer_division_supported()); | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(rn != kNoRegister); | 
 |   ASSERT(rm != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = opcode | | 
 |     (static_cast<int32_t>(cond) << kConditionShift) | | 
 |     (static_cast<int32_t>(rn) << kDivRnShift) | | 
 |     (static_cast<int32_t>(rd) << kDivRdShift) | | 
 |       // TODO(kschimpf): Why not also: B15 | B14 | B13 | B12? | 
 |     B26 | B25 | B24 | B20 | B4 | | 
 |     (static_cast<int32_t>(rm) << kDivRmShift); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::sdiv() | 
 | void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) { | 
 |   EmitDivOp(cond, 0, rd, rn, rm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::udiv() | 
 | void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) { | 
 |   EmitDivOp(cond, B21 , rd, rn, rm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::ldr() | 
 | void Assembler::ldr(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOp(cond, true, false, rd, ad); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::str() | 
 | void Assembler::str(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOp(cond, false, false, rd, ad); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::ldr() | 
 | void Assembler::ldrb(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOp(cond, true, true, rd, ad); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::str() | 
 | void Assembler::strb(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOp(cond, false, true, rd, ad); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::ldrh(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::strh(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::ldrsb(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::ldrsh(Register rd, Address ad, Condition cond) { | 
 |   EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::ldrd(Register rd, Register rn, int32_t offset, Condition cond) { | 
 |   ASSERT((rd % 2) == 0); | 
 |   if (TargetCPUFeatures::arm_version() == ARMv5TE) { | 
 |     const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1); | 
 |     ldr(rd, Address(rn, offset), cond); | 
 |     ldr(rd2, Address(rn, offset + kWordSize), cond); | 
 |   } else { | 
 |     EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::strd(Register rd, Register rn, int32_t offset, Condition cond) { | 
 |   ASSERT((rd % 2) == 0); | 
 |   if (TargetCPUFeatures::arm_version() == ARMv5TE) { | 
 |     const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1); | 
 |     str(rd, Address(rn, offset), cond); | 
 |     str(rd2, Address(rn, offset + kWordSize), cond); | 
 |   } else { | 
 |     EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset)); | 
 |   } | 
 | } | 
 |  | 
 | #if 0 | 
 | // Folded into ARM32::AssemblerARM32::popList(), since it is its only | 
 | // use (and doesn't implement ARM STM instruction). | 
 | void Assembler::ldm(BlockAddressMode am, Register base, RegList regs, | 
 |                     Condition cond) { | 
 |   ASSERT(regs != 0); | 
 |   EmitMultiMemOp(cond, am, true, base, regs); | 
 | } | 
 |  | 
 | // Folded into ARM32::AssemblerARM32::pushList(), since it is its only | 
 | // use (and doesn't implement ARM STM instruction). | 
 | void Assembler::stm(BlockAddressMode am, Register base, RegList regs, | 
 |                     Condition cond) { | 
 |   ASSERT(regs != 0); | 
 |   EmitMultiMemOp(cond, am, false, base, regs); | 
 | } | 
 |  | 
 | // Moved to ARM::AssemblerARM32::ldrex(); | 
 | void Assembler::ldrex(Register rt, Register rn, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); | 
 |   ASSERT(rn != kNoRegister); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B24 | | 
 |                      B23 | | 
 |                      L   | | 
 |                      (static_cast<int32_t>(rn) << kLdExRnShift) | | 
 |                      (static_cast<int32_t>(rt) << kLdExRtShift) | | 
 |                      B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0; | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM::AssemblerARM32::strex(); | 
 | void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); | 
 |   ASSERT(rn != kNoRegister); | 
 |   ASSERT(rd != kNoRegister); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B24 | | 
 |                      B23 | | 
 |                      (static_cast<int32_t>(rn) << kStrExRnShift) | | 
 |                      (static_cast<int32_t>(rd) << kStrExRdShift) | | 
 |                      B11 | B10 | B9 | B8 | B7 | B4 | | 
 |                      (static_cast<int32_t>(rt) << kStrExRtShift); | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::clrex() { | 
 |   ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); | 
 |   int32_t encoding = (kSpecialCondition << kConditionShift) | | 
 |                      B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf; | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::nop(). | 
 | void Assembler::nop(Condition cond) { | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B25 | B24 | B21 | (0xf << 12); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vmovsr(). | 
 | void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sn != kNoSRegister); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | | 
 |                      ((static_cast<int32_t>(sn) >> 1)*B16) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | | 
 |                      ((static_cast<int32_t>(sn) & 1)*B7) | B4; | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vmovrs(). | 
 | void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sn != kNoSRegister); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | B20 | | 
 |                      ((static_cast<int32_t>(sn) >> 1)*B16) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | | 
 |                      ((static_cast<int32_t>(sn) & 1)*B7) | B4; | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void Assembler::vmovsrr(SRegister sm, Register rt, Register rt2, | 
 |                         Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sm != kNoSRegister); | 
 |   ASSERT(sm != S31); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(rt2 != kNoRegister); | 
 |   ASSERT(rt2 != SP); | 
 |   ASSERT(rt2 != PC); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B22 | | 
 |                      (static_cast<int32_t>(rt2)*B16) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | | 
 |                      ((static_cast<int32_t>(sm) & 1)*B5) | B4 | | 
 |                      (static_cast<int32_t>(sm) >> 1); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vmovrrs(Register rt, Register rt2, SRegister sm, | 
 |                         Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sm != kNoSRegister); | 
 |   ASSERT(sm != S31); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(rt2 != kNoRegister); | 
 |   ASSERT(rt2 != SP); | 
 |   ASSERT(rt2 != PC); | 
 |   ASSERT(rt != rt2); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B22 | B20 | | 
 |                      (static_cast<int32_t>(rt2)*B16) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | | 
 |                      ((static_cast<int32_t>(sm) & 1)*B5) | B4 | | 
 |                      (static_cast<int32_t>(sm) >> 1); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::vmovdqir(). | 
 | void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT((i == 0) || (i == 1)); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(dn != kNoDRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | | 
 |                      (i*B21) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | | 
 |                      ((static_cast<int32_t>(dn) >> 4)*B7) | | 
 |                      ((static_cast<int32_t>(dn) & 0xf)*B16) | B4; | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vmovdrr(). | 
 | void Assembler::vmovdrr(DRegister dm, Register rt, Register rt2, | 
 |                         Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(dm != kNoDRegister); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(rt2 != kNoRegister); | 
 |   ASSERT(rt2 != SP); | 
 |   ASSERT(rt2 != PC); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B22 | | 
 |                      (static_cast<int32_t>(rt2)*B16) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | | 
 |                      ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | | 
 |                      (static_cast<int32_t>(dm) & 0xf); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vmovrrd(). | 
 | void Assembler::vmovrrd(Register rt, Register rt2, DRegister dm, | 
 |                         Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(dm != kNoDRegister); | 
 |   ASSERT(rt != kNoRegister); | 
 |   ASSERT(rt != SP); | 
 |   ASSERT(rt != PC); | 
 |   ASSERT(rt2 != kNoRegister); | 
 |   ASSERT(rt2 != SP); | 
 |   ASSERT(rt2 != PC); | 
 |   ASSERT(rt != rt2); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B22 | B20 | | 
 |                      (static_cast<int32_t>(rt2)*B16) | | 
 |                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | | 
 |                      ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | | 
 |                      (static_cast<int32_t>(dm) & 0xf); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vldrs() | 
 | void Assembler::vldrs(SRegister sd, Address ad, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sd != kNoSRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B24 | B20 | | 
 |                      ((static_cast<int32_t>(sd) & 1)*B22) | | 
 |                      ((static_cast<int32_t>(sd) >> 1)*B12) | | 
 |                      B11 | B9 | ad.vencoding(); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vstrs() | 
 | void Assembler::vstrs(SRegister sd, Address ad, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC); | 
 |   ASSERT(sd != kNoSRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B24 | | 
 |                      ((static_cast<int32_t>(sd) & 1)*B22) | | 
 |                      ((static_cast<int32_t>(sd) >> 1)*B12) | | 
 |                      B11 | B9 | ad.vencoding(); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | void Assembler::vldrd(DRegister dd, Address ad, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(dd != kNoDRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B24 | B20 | | 
 |                      ((static_cast<int32_t>(dd) >> 4)*B22) | | 
 |                      ((static_cast<int32_t>(dd) & 0xf)*B12) | | 
 |                      B11 | B9 | B8 | ad.vencoding(); | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::vstrd(DRegister dd, Address ad, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC); | 
 |   ASSERT(dd != kNoDRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B24 | | 
 |                      ((static_cast<int32_t>(dd) >> 4)*B22) | | 
 |                      ((static_cast<int32_t>(dd) & 0xf)*B12) | | 
 |                      B11 | B9 | B8 | ad.vencoding(); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | void Assembler::EmitMultiVSMemOp(Condition cond, | 
 |                                 BlockAddressMode am, | 
 |                                 bool load, | 
 |                                 Register base, | 
 |                                 SRegister start, | 
 |                                 uint32_t count) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(base != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   ASSERT(start != kNoSRegister); | 
 |   ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters); | 
 |  | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B11 | B9 | | 
 |                      am | | 
 |                      (load ? L : 0) | | 
 |                      (static_cast<int32_t>(base) << kRnShift) | | 
 |                      ((static_cast<int32_t>(start) & 0x1) ? D : 0) | | 
 |                      ((static_cast<int32_t>(start) >> 1) << 12) | | 
 |                      count; | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EmitMultiVDMemOp(Condition cond, | 
 |                                 BlockAddressMode am, | 
 |                                 bool load, | 
 |                                 Register base, | 
 |                                 DRegister start, | 
 |                                 int32_t count) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(base != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   ASSERT(start != kNoDRegister); | 
 |   ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters); | 
 |   const int armv5te = TargetCPUFeatures::arm_version() == ARMv5TE ? 1 : 0; | 
 |  | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B11 | B9 | B8 | | 
 |                      am | | 
 |                      (load ? L : 0) | | 
 |                      (static_cast<int32_t>(base) << kRnShift) | | 
 |                      ((static_cast<int32_t>(start) & 0x10) ? D : 0) | | 
 |                      ((static_cast<int32_t>(start) & 0xf) << 12) | | 
 |                      (count << 1) | armv5te; | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vldms(BlockAddressMode am, Register base, | 
 |                       SRegister first, SRegister last, Condition cond) { | 
 |   ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); | 
 |   ASSERT(last > first); | 
 |   EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vstms(BlockAddressMode am, Register base, | 
 |                       SRegister first, SRegister last, Condition cond) { | 
 |   ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); | 
 |   ASSERT(last > first); | 
 |   EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vldmd(BlockAddressMode am, Register base, | 
 |                       DRegister first, intptr_t count, Condition cond) { | 
 |   ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); | 
 |   ASSERT(count <= 16); | 
 |   ASSERT(first + count <= kNumberOfDRegisters); | 
 |   EmitMultiVDMemOp(cond, am, true, base, first, count); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vstmd(BlockAddressMode am, Register base, | 
 |                       DRegister first, intptr_t count, Condition cond) { | 
 |   ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); | 
 |   ASSERT(count <= 16); | 
 |   ASSERT(first + count <= kNumberOfDRegisters); | 
 |   EmitMultiVDMemOp(cond, am, false, base, first, count); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::emitVFPsss | 
 | void Assembler::EmitVFPsss(Condition cond, int32_t opcode, | 
 |                            SRegister sd, SRegister sn, SRegister sm) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sd != kNoSRegister); | 
 |   ASSERT(sn != kNoSRegister); | 
 |   ASSERT(sm != kNoSRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | B11 | B9 | opcode | | 
 |                      ((static_cast<int32_t>(sd) & 1)*B22) | | 
 |                      ((static_cast<int32_t>(sn) >> 1)*B16) | | 
 |                      ((static_cast<int32_t>(sd) >> 1)*B12) | | 
 |                      ((static_cast<int32_t>(sn) & 1)*B7) | | 
 |                      ((static_cast<int32_t>(sm) & 1)*B5) | | 
 |                      (static_cast<int32_t>(sm) >> 1); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitVFPddd | 
 | void Assembler::EmitVFPddd(Condition cond, int32_t opcode, | 
 |                            DRegister dd, DRegister dn, DRegister dm) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(dd != kNoDRegister); | 
 |   ASSERT(dn != kNoDRegister); | 
 |   ASSERT(dm != kNoDRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | B11 | B9 | B8 | opcode | | 
 |                      ((static_cast<int32_t>(dd) >> 4)*B22) | | 
 |                      ((static_cast<int32_t>(dn) & 0xf)*B16) | | 
 |                      ((static_cast<int32_t>(dd) & 0xf)*B12) | | 
 |                      ((static_cast<int32_t>(dn) >> 4)*B7) | | 
 |                      ((static_cast<int32_t>(dm) >> 4)*B5) | | 
 |                      (static_cast<int32_t>(dm) & 0xf); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmovss() | 
 | void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmovdd() | 
 | void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) { | 
 |   EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmovs() | 
 | bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) { | 
 |   if (TargetCPUFeatures::arm_version() != ARMv7) { | 
 |     return false; | 
 |   } | 
 |   uint32_t imm32 = bit_cast<uint32_t, float>(s_imm); | 
 |   if (((imm32 & ((1 << 19) - 1)) == 0) && | 
 |       ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) || | 
 |        (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) { | 
 |     uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) | | 
 |         ((imm32 >> 19) & ((1 << 6) -1)); | 
 |     EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf), | 
 |                sd, S0, S0); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmovd() | 
 | bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) { | 
 |   if (TargetCPUFeatures::arm_version() != ARMv7) { | 
 |     return false; | 
 |   } | 
 |   uint64_t imm64 = bit_cast<uint64_t, double>(d_imm); | 
 |   if (((imm64 & ((1LL << 48) - 1)) == 0) && | 
 |       ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) || | 
 |        (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) { | 
 |     uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) | | 
 |         ((imm64 >> 48) & ((1 << 6) -1)); | 
 |     EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf), | 
 |                dd, D0, D0); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vadds() | 
 | void Assembler::vadds(SRegister sd, SRegister sn, SRegister sm, | 
 |                       Condition cond) { | 
 |   EmitVFPsss(cond, B21 | B20, sd, sn, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vaddd() | 
 | void Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm, | 
 |                       Condition cond) { | 
 |   EmitVFPddd(cond, B21 | B20, dd, dn, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vsubs() | 
 | void Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm, | 
 |                       Condition cond) { | 
 |   EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vsubd() | 
 | void Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm, | 
 |                       Condition cond) { | 
 |   EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmuls() | 
 | void Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm, | 
 |                       Condition cond) { | 
 |   EmitVFPsss(cond, B21, sd, sn, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmuld() | 
 | void Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm, | 
 |                       Condition cond) { | 
 |   EmitVFPddd(cond, B21, dd, dn, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmlas() | 
 | void Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm, | 
 |                       Condition cond) { | 
 |   EmitVFPsss(cond, 0, sd, sn, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmlad() | 
 | void Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm, | 
 |                       Condition cond) { | 
 |   EmitVFPddd(cond, 0, dd, dn, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmlss() | 
 | void Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm, | 
 |                       Condition cond) { | 
 |   EmitVFPsss(cond, B6, sd, sn, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vmlsd() | 
 | void Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm, | 
 |                       Condition cond) { | 
 |   EmitVFPddd(cond, B6, dd, dn, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vdivs() | 
 | void Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm, | 
 |                       Condition cond) { | 
 |   EmitVFPsss(cond, B23, sd, sn, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vdivd() | 
 | void Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm, | 
 |                       Condition cond) { | 
 |   EmitVFPddd(cond, B23, dd, dn, dm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vabss(). | 
 | void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vabsd(). | 
 | void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) { | 
 |   EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) { | 
 |   EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::vsqrts(). | 
 | void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vsqrtd(). | 
 | void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) { | 
 |   EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitVFPsd | 
 | void Assembler::EmitVFPsd(Condition cond, int32_t opcode, | 
 |                           SRegister sd, DRegister dm) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(sd != kNoSRegister); | 
 |   ASSERT(dm != kNoDRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | B11 | B9 | opcode | | 
 |                      ((static_cast<int32_t>(sd) & 1)*B22) | | 
 |                      ((static_cast<int32_t>(sd) >> 1)*B12) | | 
 |                      ((static_cast<int32_t>(dm) >> 4)*B5) | | 
 |                      (static_cast<int32_t>(dm) & 0xf); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::emitVFPds | 
 | void Assembler::EmitVFPds(Condition cond, int32_t opcode, | 
 |                           DRegister dd, SRegister sm) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(dd != kNoDRegister); | 
 |   ASSERT(sm != kNoSRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | B11 | B9 | opcode | | 
 |                      ((static_cast<int32_t>(dd) >> 4)*B22) | | 
 |                      ((static_cast<int32_t>(dd) & 0xf)*B12) | | 
 |                      ((static_cast<int32_t>(sm) & 1)*B5) | | 
 |                      (static_cast<int32_t>(sm) >> 1); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtsd(). | 
 | void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) { | 
 |   EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtds(). | 
 | void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) { | 
 |   EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtis() | 
 | void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) { | 
 |   EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::vcvtsi() | 
 | void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtdi() | 
 | void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) { | 
 |   EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtus(). | 
 | void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtud(). | 
 | void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) { | 
 |   EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtsu() | 
 | void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vcvtdu() | 
 | void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) { | 
 |   EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm); | 
 | } | 
 |  | 
 | // Moved to ARM23::AssemblerARM32::vcmps(). | 
 | void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm); | 
 | } | 
 |  | 
 | // Moved to ARM23::AssemblerARM32::vcmpd(). | 
 | void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) { | 
 |   EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm); | 
 | } | 
 |  | 
 | // Moved to ARM23::AssemblerARM32::vcmpsz(). | 
 | void Assembler::vcmpsz(SRegister sd, Condition cond) { | 
 |   EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0); | 
 | } | 
 |  | 
 | // Moved to ARM23::AssemblerARM32::vcmpdz(). | 
 | void Assembler::vcmpdz(DRegister dd, Condition cond) { | 
 |   EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0); | 
 | } | 
 |  | 
 | // APSR_nzcv version moved to ARM32::AssemblerARM32::vmrsAPSR_nzcv() | 
 | void Assembler::vmrs(Register rd, Condition cond) { | 
 |   ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | | 
 |                      (static_cast<int32_t>(rd)*B12) | | 
 |                      B11 | B9 | B4; | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::vmstat(Condition cond) { | 
 |   vmrs(APSR, cond); | 
 | } | 
 |  | 
 |  | 
 | static inline int ShiftOfOperandSize(OperandSize size) { | 
 |   switch (size) { | 
 |     case kByte: | 
 |     case kUnsignedByte: | 
 |       return 0; | 
 |     case kHalfword: | 
 |     case kUnsignedHalfword: | 
 |       return 1; | 
 |     case kWord: | 
 |     case kUnsignedWord: | 
 |       return 2; | 
 |     case kWordPair: | 
 |       return 3; | 
 |     case kSWord: | 
 |     case kDWord: | 
 |       return 0; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return -1; | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::emitSIMDqqq() | 
 | void Assembler::EmitSIMDqqq(int32_t opcode, OperandSize size, | 
 |                             QRegister qd, QRegister qn, QRegister qm) { | 
 |   ASSERT(TargetCPUFeatures::neon_supported()); | 
 |   int sz = ShiftOfOperandSize(size); | 
 |   int32_t encoding = | 
 |       (static_cast<int32_t>(kSpecialCondition) << kConditionShift) | | 
 |       B25 | B6 | | 
 |       opcode | ((sz & 0x3) * B20) | | 
 |       ((static_cast<int32_t>(qd * 2) >> 4)*B22) | | 
 |       ((static_cast<int32_t>(qn * 2) & 0xf)*B16) | | 
 |       ((static_cast<int32_t>(qd * 2) & 0xf)*B12) | | 
 |       ((static_cast<int32_t>(qn * 2) >> 4)*B7) | | 
 |       ((static_cast<int32_t>(qm * 2) >> 4)*B5) | | 
 |       (static_cast<int32_t>(qm * 2) & 0xf); | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::EmitSIMDddd(int32_t opcode, OperandSize size, | 
 |                             DRegister dd, DRegister dn, DRegister dm) { | 
 |   ASSERT(TargetCPUFeatures::neon_supported()); | 
 |   int sz = ShiftOfOperandSize(size); | 
 |   int32_t encoding = | 
 |       (static_cast<int32_t>(kSpecialCondition) << kConditionShift) | | 
 |       B25 | | 
 |       opcode | ((sz & 0x3) * B20) | | 
 |       ((static_cast<int32_t>(dd) >> 4)*B22) | | 
 |       ((static_cast<int32_t>(dn) & 0xf)*B16) | | 
 |       ((static_cast<int32_t>(dd) & 0xf)*B12) | | 
 |       ((static_cast<int32_t>(dn) >> 4)*B7) | | 
 |       ((static_cast<int32_t>(dm) >> 4)*B5) | | 
 |       (static_cast<int32_t>(dm) & 0xf); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vmovq(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::vaddqi(). | 
 | void Assembler::vaddqi(OperandSize sz, | 
 |                        QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B11, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vaddqf(). | 
 | void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::vsubqi(OperandSize sz, | 
 |                        QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B11, sz, qd, qn, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::vmulqi(). | 
 | void Assembler::vmulqi(OperandSize sz, | 
 |                        QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vmulqf(). | 
 | void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vshlqi(). | 
 | void Assembler::vshlqi(OperandSize sz, | 
 |                        QRegister qd, QRegister qm, QRegister qn) { | 
 |   EmitSIMDqqq(B25 | B10, sz, qd, qn, qm); | 
 | } | 
 |  | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vshlqu(). | 
 | void Assembler::vshlqu(OperandSize sz, | 
 |                        QRegister qd, QRegister qm, QRegister qn) { | 
 |   EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::veorq() | 
 | void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::vorrq() | 
 | void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::vandq() | 
 | void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm); | 
 | } | 
 |  | 
 | void Assembler::vmvnq(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to Arm32::AssemblerARM32::vabsq(). | 
 | void Assembler::vabsqs(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord, | 
 |               qd, Q0, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vnegqs(). | 
 | void Assembler::vnegqs(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord, | 
 |               qd, Q0, qm); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void Assembler::vrecpeqs(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord, | 
 |               qd, Q0, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vrsqrteqs(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7, | 
 |               kSWord, qd, Q0, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) { | 
 |   ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair)); | 
 |   int code = 0; | 
 |  | 
 |   switch (sz) { | 
 |     case kByte: | 
 |     case kUnsignedByte: { | 
 |       ASSERT((idx >= 0) && (idx < 8)); | 
 |       code = 1 | (idx << 1); | 
 |       break; | 
 |     } | 
 |     case kHalfword: | 
 |     case kUnsignedHalfword: { | 
 |       ASSERT((idx >= 0) && (idx < 4)); | 
 |       code = 2 | (idx << 2); | 
 |       break; | 
 |     } | 
 |     case kWord: | 
 |     case kUnsignedWord: { | 
 |       ASSERT((idx >= 0) && (idx < 2)); | 
 |       code = 4 | (idx << 3); | 
 |       break; | 
 |     } | 
 |     default: { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair, | 
 |               static_cast<DRegister>(qd * 2), | 
 |               static_cast<DRegister>(code & 0xf), | 
 |               dm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) { | 
 |   ASSERT((len >= 1) && (len <= 4)); | 
 |   EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::vzipqw(QRegister qd, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm); | 
 | } | 
 |  | 
 |  | 
 | #if 0 | 
 | // Moved to Arm32::AssemblerARM32::vceqqi(). | 
 | void Assembler::vceqqi(OperandSize sz, | 
 |                       QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vceqqi(). | 
 | void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vcgeqi(). | 
 | void Assembler::vcgeqi(OperandSize sz, | 
 |                       QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vcugeqi(). | 
 | void Assembler::vcugeqi(OperandSize sz, | 
 |                       QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vcgeqs(). | 
 | void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vcgtqi(). | 
 | void Assembler::vcgtqi(OperandSize sz, | 
 |                       QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B9 | B8, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vcugtqi(). | 
 | void Assembler::vcugtqi(OperandSize sz, | 
 |                       QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to Arm32::AssemblerARM32::vcgtqs(). | 
 | void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::bkpt() | 
 | void Assembler::bkpt(uint16_t imm16) { | 
 |   Emit(BkptEncoding(imm16)); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void Assembler::b(Label* label, Condition cond) { | 
 |   EmitBranch(cond, label, false); | 
 | } | 
 |  | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::bl() | 
 | void Assembler::bl(Label* label, Condition cond) { | 
 |   EmitBranch(cond, label, true); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::bx() | 
 | void Assembler::bx(Register rm, Condition cond) { | 
 |   ASSERT(rm != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B24 | B21 | (0xfff << 8) | B4 | | 
 |                      (static_cast<int32_t>(rm) << kRmShift); | 
 |   Emit(encoding); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::blx() | 
 | void Assembler::blx(Register rm, Condition cond) { | 
 |   ASSERT(rm != kNoRegister); | 
 |   ASSERT(cond != kNoCondition); | 
 |   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | | 
 |                      B24 | B21 | (0xfff << 8) | B5 | B4 | | 
 |                      (static_cast<int32_t>(rm) << kRmShift); | 
 |   Emit(encoding); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void Assembler::MarkExceptionHandler(Label* label) { | 
 |   EmitType01(AL, 1, TST, 1, PC, R0, Operand(0)); | 
 |   Label l; | 
 |   b(&l); | 
 |   EmitBranch(AL, label, false); | 
 |   Bind(&l); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Drop(intptr_t stack_elements) { | 
 |   ASSERT(stack_elements >= 0); | 
 |   if (stack_elements > 0) { | 
 |     AddImmediate(SP, SP, stack_elements * kWordSize); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | intptr_t Assembler::FindImmediate(int32_t imm) { | 
 |   return object_pool_wrapper_.FindImmediate(imm); | 
 | } | 
 |  | 
 |  | 
 | // Uses a code sequence that can easily be decoded. | 
 | void Assembler::LoadWordFromPoolOffset(Register rd, | 
 |                                        int32_t offset, | 
 |                                        Register pp, | 
 |                                        Condition cond) { | 
 |   ASSERT((pp != PP) || constant_pool_allowed()); | 
 |   ASSERT(rd != pp); | 
 |   int32_t offset_mask = 0; | 
 |   if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) { | 
 |     ldr(rd, Address(pp, offset), cond); | 
 |   } else { | 
 |     int32_t offset_hi = offset & ~offset_mask;  // signed | 
 |     uint32_t offset_lo = offset & offset_mask;  // unsigned | 
 |     // Inline a simplified version of AddImmediate(rd, pp, offset_hi). | 
 |     Operand o; | 
 |     if (Operand::CanHold(offset_hi, &o)) { | 
 |       add(rd, pp, o, cond); | 
 |     } else { | 
 |       LoadImmediate(rd, offset_hi, cond); | 
 |       add(rd, pp, Operand(rd), cond); | 
 |     } | 
 |     ldr(rd, Address(rd, offset_lo), cond); | 
 |   } | 
 | } | 
 |  | 
 | void Assembler::CheckCodePointer() { | 
 | #ifdef DEBUG | 
 |   Label cid_ok, instructions_ok; | 
 |   Push(R0); | 
 |   Push(IP); | 
 |   CompareClassId(CODE_REG, kCodeCid, R0); | 
 |   b(&cid_ok, EQ); | 
 |   bkpt(0); | 
 |   Bind(&cid_ok); | 
 |  | 
 |   const intptr_t offset = CodeSize() + Instr::kPCReadOffset + | 
 |       Instructions::HeaderSize() - kHeapObjectTag; | 
 |   mov(R0, Operand(PC)); | 
 |   AddImmediate(R0, R0, -offset); | 
 |   ldr(IP, FieldAddress(CODE_REG, Code::saved_instructions_offset())); | 
 |   cmp(R0, Operand(IP)); | 
 |   b(&instructions_ok, EQ); | 
 |   bkpt(1); | 
 |   Bind(&instructions_ok); | 
 |   Pop(IP); | 
 |   Pop(R0); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | void Assembler::RestoreCodePointer() { | 
 |   ldr(CODE_REG, Address(FP, kPcMarkerSlotFromFp * kWordSize)); | 
 |   CheckCodePointer(); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadPoolPointer(Register reg) { | 
 |   // Load new pool pointer. | 
 |   CheckCodePointer(); | 
 |   ldr(reg, FieldAddress(CODE_REG, Code::object_pool_offset())); | 
 |   set_constant_pool_allowed(reg == PP); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadIsolate(Register rd) { | 
 |   ldr(rd, Address(THR, Thread::isolate_offset())); | 
 | } | 
 |  | 
 |  | 
 | bool Assembler::CanLoadFromObjectPool(const Object& object) const { | 
 |   ASSERT(!Thread::CanLoadFromThread(object)); | 
 |   if (!constant_pool_allowed()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   ASSERT(object.IsNotTemporaryScopedHandle()); | 
 |   ASSERT(object.IsOld()); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadObjectHelper(Register rd, | 
 |                                  const Object& object, | 
 |                                  Condition cond, | 
 |                                  bool is_unique, | 
 |                                  Register pp) { | 
 |   // Load common VM constants from the thread. This works also in places where | 
 |   // no constant pool is set up (e.g. intrinsic code). | 
 |   if (Thread::CanLoadFromThread(object)) { | 
 |     // Load common VM constants from the thread. This works also in places where | 
 |     // no constant pool is set up (e.g. intrinsic code). | 
 |     ldr(rd, Address(THR, Thread::OffsetFromThread(object)), cond); | 
 |   } else if (object.IsSmi()) { | 
 |     // Relocation doesn't apply to Smis. | 
 |     LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond); | 
 |   } else if (CanLoadFromObjectPool(object)) { | 
 |     // Make sure that class CallPattern is able to decode this load from the | 
 |     // object pool. | 
 |     const int32_t offset = ObjectPool::element_offset( | 
 |        is_unique ? object_pool_wrapper_.AddObject(object) | 
 |                  : object_pool_wrapper_.FindObject(object)); | 
 |     LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, pp, cond); | 
 |   } else { | 
 |     ASSERT(FLAG_allow_absolute_addresses); | 
 |     ASSERT(object.IsOld()); | 
 |     // Make sure that class CallPattern is able to decode this load immediate. | 
 |     const int32_t object_raw = reinterpret_cast<int32_t>(object.raw()); | 
 |     LoadImmediate(rd, object_raw, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadObject(Register rd, const Object& object, Condition cond) { | 
 |   LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadUniqueObject(Register rd, | 
 |                                  const Object& object, | 
 |                                  Condition cond) { | 
 |   LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadFunctionFromCalleePool(Register dst, | 
 |                                            const Function& function, | 
 |                                            Register new_pp) { | 
 |   const int32_t offset = | 
 |       ObjectPool::element_offset(object_pool_wrapper_.FindObject(function)); | 
 |   LoadWordFromPoolOffset(dst, offset - kHeapObjectTag, new_pp, AL); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadNativeEntry(Register rd, | 
 |                                 const ExternalLabel* label, | 
 |                                 Patchability patchable, | 
 |                                 Condition cond) { | 
 |   const int32_t offset = ObjectPool::element_offset( | 
 |       object_pool_wrapper_.FindNativeEntry(label, patchable)); | 
 |   LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::PushObject(const Object& object) { | 
 |   LoadObject(IP, object); | 
 |   Push(IP); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CompareObject(Register rn, const Object& object) { | 
 |   ASSERT(rn != IP); | 
 |   if (object.IsSmi()) { | 
 |     CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw())); | 
 |   } else { | 
 |     LoadObject(IP, object); | 
 |     cmp(rn, Operand(IP)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Preserves object and value registers. | 
 | void Assembler::StoreIntoObjectFilterNoSmi(Register object, | 
 |                                            Register value, | 
 |                                            Label* no_update) { | 
 |   COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) && | 
 |                  (kOldObjectAlignmentOffset == 0)); | 
 |  | 
 |   // Write-barrier triggers if the value is in the new space (has bit set) and | 
 |   // the object is in the old space (has bit cleared). | 
 |   // To check that, we compute value & ~object and skip the write barrier | 
 |   // if the bit is not set. We can't destroy the object. | 
 |   bic(IP, value, Operand(object)); | 
 |   tst(IP, Operand(kNewObjectAlignmentOffset)); | 
 |   b(no_update, EQ); | 
 | } | 
 |  | 
 |  | 
 | // Preserves object and value registers. | 
 | void Assembler::StoreIntoObjectFilter(Register object, | 
 |                                       Register value, | 
 |                                       Label* no_update) { | 
 |   // For the value we are only interested in the new/old bit and the tag bit. | 
 |   // And the new bit with the tag bit. The resulting bit will be 0 for a Smi. | 
 |   and_(IP, value, Operand(value, LSL, kObjectAlignmentLog2 - 1)); | 
 |   // And the result with the negated space bit of the object. | 
 |   bic(IP, IP, Operand(object)); | 
 |   tst(IP, Operand(kNewObjectAlignmentOffset)); | 
 |   b(no_update, EQ); | 
 | } | 
 |  | 
 |  | 
 | Operand Assembler::GetVerifiedMemoryShadow() { | 
 |   Operand offset; | 
 |   if (!Operand::CanHold(VerifiedMemory::offset(), &offset)) { | 
 |     FATAL1("Offset 0x%" Px " not representable", VerifiedMemory::offset()); | 
 |   } | 
 |   return offset; | 
 | } | 
 |  | 
 |  | 
 | void Assembler::WriteShadowedField(Register base, | 
 |                                    intptr_t offset, | 
 |                                    Register value, | 
 |                                    Condition cond) { | 
 |   if (VerifiedMemory::enabled()) { | 
 |     ASSERT(base != value); | 
 |     Operand shadow(GetVerifiedMemoryShadow()); | 
 |     add(base, base, shadow, cond); | 
 |     str(value, Address(base, offset), cond); | 
 |     sub(base, base, shadow, cond); | 
 |   } | 
 |   str(value, Address(base, offset), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::WriteShadowedFieldPair(Register base, | 
 |                                        intptr_t offset, | 
 |                                        Register value_even, | 
 |                                        Register value_odd, | 
 |                                        Condition cond) { | 
 |   ASSERT(value_odd == value_even + 1); | 
 |   if (VerifiedMemory::enabled()) { | 
 |     ASSERT(base != value_even); | 
 |     ASSERT(base != value_odd); | 
 |     Operand shadow(GetVerifiedMemoryShadow()); | 
 |     add(base, base, shadow, cond); | 
 |     strd(value_even, base, offset, cond); | 
 |     sub(base, base, shadow, cond); | 
 |   } | 
 |   strd(value_even, base, offset, cond); | 
 | } | 
 |  | 
 |  | 
 | Register UseRegister(Register reg, RegList* used) { | 
 |   ASSERT(reg != SP); | 
 |   ASSERT(reg != PC); | 
 |   ASSERT((*used & (1 << reg)) == 0); | 
 |   *used |= (1 << reg); | 
 |   return reg; | 
 | } | 
 |  | 
 |  | 
 | Register AllocateRegister(RegList* used) { | 
 |   const RegList free = ~*used; | 
 |   return (free == 0) ? | 
 |       kNoRegister : | 
 |       UseRegister(static_cast<Register>(Utils::CountTrailingZeros(free)), used); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::VerifiedWrite(const Address& address, | 
 |                               Register new_value, | 
 |                               FieldContent old_content) { | 
 | #if defined(DEBUG) | 
 |   ASSERT(address.mode() == Address::Offset || | 
 |          address.mode() == Address::NegOffset); | 
 |   // Allocate temporary registers (and check for register collisions). | 
 |   RegList used = 0; | 
 |   UseRegister(new_value, &used); | 
 |   Register base = UseRegister(address.rn(), &used); | 
 |   if (address.rm() != kNoRegister) { | 
 |     UseRegister(address.rm(), &used); | 
 |   } | 
 |   Register old_value = AllocateRegister(&used); | 
 |   Register temp = AllocateRegister(&used); | 
 |   PushList(used); | 
 |   ldr(old_value, address); | 
 |   // First check that 'old_value' contains 'old_content'. | 
 |   // Smi test. | 
 |   tst(old_value, Operand(kHeapObjectTag)); | 
 |   Label ok; | 
 |   switch (old_content) { | 
 |     case kOnlySmi: | 
 |       b(&ok, EQ);  // Smi is OK. | 
 |       Stop("Expected smi."); | 
 |       break; | 
 |     case kHeapObjectOrSmi: | 
 |       b(&ok, EQ);  // Smi is OK. | 
 |       // Non-smi case: Verify object pointer is word-aligned when untagged. | 
 |       COMPILE_ASSERT(kHeapObjectTag == 1); | 
 |       tst(old_value, Operand((kWordSize - 1) - kHeapObjectTag)); | 
 |       b(&ok, EQ); | 
 |       Stop("Expected heap object or Smi"); | 
 |       break; | 
 |     case kEmptyOrSmiOrNull: | 
 |       b(&ok, EQ);  // Smi is OK. | 
 |       // Non-smi case: Check for the special zap word or null. | 
 |       // Note: Cannot use CompareImmediate, since IP may be in use. | 
 |       LoadImmediate(temp, Heap::kZap32Bits); | 
 |       cmp(old_value, Operand(temp)); | 
 |       b(&ok, EQ); | 
 |       LoadObject(temp, Object::null_object()); | 
 |       cmp(old_value, Operand(temp)); | 
 |       b(&ok, EQ); | 
 |       Stop("Expected zapped, Smi or null"); | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   Bind(&ok); | 
 |   if (VerifiedMemory::enabled()) { | 
 |     Operand shadow_offset(GetVerifiedMemoryShadow()); | 
 |     // Adjust the address to shadow. | 
 |     add(base, base, shadow_offset); | 
 |     ldr(temp, address); | 
 |     cmp(old_value, Operand(temp)); | 
 |     Label match; | 
 |     b(&match, EQ); | 
 |     Stop("Write barrier verification failed"); | 
 |     Bind(&match); | 
 |     // Write new value in shadow. | 
 |     str(new_value, address); | 
 |     // Restore original address. | 
 |     sub(base, base, shadow_offset); | 
 |   } | 
 |   str(new_value, address); | 
 |   PopList(used); | 
 | #else | 
 |   str(new_value, address); | 
 | #endif  // DEBUG | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoObject(Register object, | 
 |                                 const Address& dest, | 
 |                                 Register value, | 
 |                                 bool can_value_be_smi) { | 
 |   ASSERT(object != value); | 
 |   VerifiedWrite(dest, value, kHeapObjectOrSmi); | 
 |   Label done; | 
 |   if (can_value_be_smi) { | 
 |     StoreIntoObjectFilter(object, value, &done); | 
 |   } else { | 
 |     StoreIntoObjectFilterNoSmi(object, value, &done); | 
 |   } | 
 |   // A store buffer update is required. | 
 |   RegList regs = (1 << CODE_REG) | (1 << LR); | 
 |   if (value != R0) { | 
 |     regs |= (1 << R0);  // Preserve R0. | 
 |   } | 
 |   PushList(regs); | 
 |   if (object != R0) { | 
 |     mov(R0, Operand(object)); | 
 |   } | 
 |   ldr(CODE_REG, Address(THR, Thread::update_store_buffer_code_offset())); | 
 |   ldr(LR, Address(THR, Thread::update_store_buffer_entry_point_offset())); | 
 |   blx(LR); | 
 |   PopList(regs); | 
 |   Bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoObjectOffset(Register object, | 
 |                                       int32_t offset, | 
 |                                       Register value, | 
 |                                       bool can_value_be_smi) { | 
 |   int32_t ignored = 0; | 
 |   if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { | 
 |     StoreIntoObject( | 
 |         object, FieldAddress(object, offset), value, can_value_be_smi); | 
 |   } else { | 
 |     AddImmediate(IP, object, offset - kHeapObjectTag); | 
 |     StoreIntoObject(object, Address(IP), value, can_value_be_smi); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoObjectNoBarrier(Register object, | 
 |                                          const Address& dest, | 
 |                                          Register value, | 
 |                                          FieldContent old_content) { | 
 |   VerifiedWrite(dest, value, old_content); | 
 | #if defined(DEBUG) | 
 |   Label done; | 
 |   StoreIntoObjectFilter(object, value, &done); | 
 |   Stop("Store buffer update is required"); | 
 |   Bind(&done); | 
 | #endif  // defined(DEBUG) | 
 |   // No store buffer update. | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoObjectNoBarrierOffset(Register object, | 
 |                                                int32_t offset, | 
 |                                                Register value, | 
 |                                                FieldContent old_content) { | 
 |   int32_t ignored = 0; | 
 |   if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { | 
 |     StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value, | 
 |                              old_content); | 
 |   } else { | 
 |     AddImmediate(IP, object, offset - kHeapObjectTag); | 
 |     StoreIntoObjectNoBarrier(object, Address(IP), value, old_content); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoObjectNoBarrier(Register object, | 
 |                                          const Address& dest, | 
 |                                          const Object& value, | 
 |                                          FieldContent old_content) { | 
 |   ASSERT(value.IsSmi() || value.InVMHeap() || | 
 |          (value.IsOld() && value.IsNotTemporaryScopedHandle())); | 
 |   // No store buffer update. | 
 |   LoadObject(IP, value); | 
 |   VerifiedWrite(dest, IP, old_content); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoObjectNoBarrierOffset(Register object, | 
 |                                                int32_t offset, | 
 |                                                const Object& value, | 
 |                                                FieldContent old_content) { | 
 |   int32_t ignored = 0; | 
 |   if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { | 
 |     StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value, | 
 |                              old_content); | 
 |   } else { | 
 |     AddImmediate(IP, object, offset - kHeapObjectTag); | 
 |     StoreIntoObjectNoBarrier(object, Address(IP), value, old_content); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::InitializeFieldsNoBarrier(Register object, | 
 |                                           Register begin, | 
 |                                           Register end, | 
 |                                           Register value_even, | 
 |                                           Register value_odd) { | 
 |   ASSERT(value_odd == value_even + 1); | 
 |   Label init_loop; | 
 |   Bind(&init_loop); | 
 |   AddImmediate(begin, 2 * kWordSize); | 
 |   cmp(begin, Operand(end)); | 
 |   WriteShadowedFieldPair(begin, -2 * kWordSize, value_even, value_odd, LS); | 
 |   b(&init_loop, CC); | 
 |   WriteShadowedField(begin, -2 * kWordSize, value_even, HI); | 
 | #if defined(DEBUG) | 
 |   Label done; | 
 |   StoreIntoObjectFilter(object, value_even, &done); | 
 |   StoreIntoObjectFilter(object, value_odd, &done); | 
 |   Stop("Store buffer update is required"); | 
 |   Bind(&done); | 
 | #endif  // defined(DEBUG) | 
 |   // No store buffer update. | 
 | } | 
 |  | 
 |  | 
 | void Assembler::InitializeFieldsNoBarrierUnrolled(Register object, | 
 |                                                   Register base, | 
 |                                                   intptr_t begin_offset, | 
 |                                                   intptr_t end_offset, | 
 |                                                   Register value_even, | 
 |                                                   Register value_odd) { | 
 |   ASSERT(value_odd == value_even + 1); | 
 |   intptr_t current_offset = begin_offset; | 
 |   while (current_offset + kWordSize < end_offset) { | 
 |     WriteShadowedFieldPair(base, current_offset, value_even, value_odd); | 
 |     current_offset += 2*kWordSize; | 
 |   } | 
 |   while (current_offset < end_offset) { | 
 |     WriteShadowedField(base, current_offset, value_even); | 
 |     current_offset += kWordSize; | 
 |   } | 
 | #if defined(DEBUG) | 
 |   Label done; | 
 |   StoreIntoObjectFilter(object, value_even, &done); | 
 |   StoreIntoObjectFilter(object, value_odd, &done); | 
 |   Stop("Store buffer update is required"); | 
 |   Bind(&done); | 
 | #endif  // defined(DEBUG) | 
 |   // No store buffer update. | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreIntoSmiField(const Address& dest, Register value) { | 
 | #if defined(DEBUG) | 
 |   Label done; | 
 |   tst(value, Operand(kHeapObjectTag)); | 
 |   b(&done, EQ); | 
 |   Stop("New value must be Smi."); | 
 |   Bind(&done); | 
 | #endif  // defined(DEBUG) | 
 |   VerifiedWrite(dest, value, kOnlySmi); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadClassId(Register result, Register object, Condition cond) { | 
 |   ASSERT(RawObject::kClassIdTagPos == 16); | 
 |   ASSERT(RawObject::kClassIdTagSize == 16); | 
 |   const intptr_t class_id_offset = Object::tags_offset() + | 
 |       RawObject::kClassIdTagPos / kBitsPerByte; | 
 |   ldrh(result, FieldAddress(object, class_id_offset), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadClassById(Register result, Register class_id) { | 
 |   ASSERT(result != class_id); | 
 |   LoadIsolate(result); | 
 |   const intptr_t offset = | 
 |       Isolate::class_table_offset() + ClassTable::table_offset(); | 
 |   LoadFromOffset(kWord, result, result, offset); | 
 |   ldr(result, Address(result, class_id, LSL, 2)); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadClass(Register result, Register object, Register scratch) { | 
 |   ASSERT(scratch != result); | 
 |   LoadClassId(scratch, object); | 
 |   LoadClassById(result, scratch); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CompareClassId(Register object, | 
 |                                intptr_t class_id, | 
 |                                Register scratch) { | 
 |   LoadClassId(scratch, object); | 
 |   CompareImmediate(scratch, class_id); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadClassIdMayBeSmi(Register result, Register object) { | 
 |   tst(object, Operand(kSmiTagMask)); | 
 |   LoadClassId(result, object, NE); | 
 |   LoadImmediate(result, kSmiCid, EQ); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) { | 
 |   LoadClassIdMayBeSmi(result, object); | 
 |   SmiTag(result); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::ComputeRange(Register result, | 
 |                              Register value, | 
 |                              Register scratch, | 
 |                              Label* not_mint) { | 
 |   const Register hi = TMP; | 
 |   const Register lo = scratch; | 
 |  | 
 |   Label done; | 
 |   mov(result, Operand(value, LSR, kBitsPerWord - 1)); | 
 |   tst(value, Operand(kSmiTagMask)); | 
 |   b(&done, EQ); | 
 |   CompareClassId(value, kMintCid, result); | 
 |   b(not_mint, NE); | 
 |   ldr(hi, FieldAddress(value, Mint::value_offset() + kWordSize)); | 
 |   ldr(lo, FieldAddress(value, Mint::value_offset())); | 
 |   rsb(result, hi, Operand(ICData::kInt32RangeBit)); | 
 |   cmp(hi, Operand(lo, ASR, kBitsPerWord - 1)); | 
 |   b(&done, EQ); | 
 |   LoadImmediate(result, ICData::kUint32RangeBit);  // Uint32 | 
 |   tst(hi, Operand(hi)); | 
 |   LoadImmediate(result, ICData::kInt64RangeBit, NE);  // Int64 | 
 |   Bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::UpdateRangeFeedback(Register value, | 
 |                                     intptr_t index, | 
 |                                     Register ic_data, | 
 |                                     Register scratch1, | 
 |                                     Register scratch2, | 
 |                                     Label* miss) { | 
 |   ASSERT(ICData::IsValidRangeFeedbackIndex(index)); | 
 |   ComputeRange(scratch1, value, scratch2, miss); | 
 |   ldr(scratch2, FieldAddress(ic_data, ICData::state_bits_offset())); | 
 |   orr(scratch2, | 
 |       scratch2, | 
 |       Operand(scratch1, LSL, ICData::RangeFeedbackShift(index))); | 
 |   str(scratch2, FieldAddress(ic_data, ICData::state_bits_offset())); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ::canEncodeBranchoffset() in IceAssemblerARM32.cpp. | 
 | static bool CanEncodeBranchOffset(int32_t offset) { | 
 |   ASSERT(Utils::IsAligned(offset, 4)); | 
 |   // Note: This check doesn't take advantage of the fact that offset>>2 | 
 |   // is stored (allowing two more bits in address space). | 
 |   return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::encodeBranchOffset() | 
 | int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) { | 
 |   // The offset is off by 8 due to the way the ARM CPUs read PC. | 
 |   offset -= Instr::kPCReadOffset; | 
 |  | 
 |   if (!CanEncodeBranchOffset(offset)) { | 
 |     ASSERT(!use_far_branches()); | 
 |     Thread::Current()->long_jump_base()->Jump( | 
 |         1, Object::branch_offset_error()); | 
 |   } | 
 |  | 
 |   // Properly preserve only the bits supported in the instruction. | 
 |   offset >>= 2; | 
 |   offset &= kBranchOffsetMask; | 
 |   return (inst & ~kBranchOffsetMask) | offset; | 
 | } | 
 |  | 
 | // Moved to AssemberARM32::decodeBranchOffset() | 
 | int Assembler::DecodeBranchOffset(int32_t inst) { | 
 |   // Sign-extend, left-shift by 2, then add 8. | 
 |   return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset); | 
 | } | 
 | #endif | 
 |  | 
 | static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) { | 
 |   int32_t offset = 0; | 
 |   offset |= (movt & 0xf0000) << 12; | 
 |   offset |= (movt & 0xfff) << 16; | 
 |   offset |= (movw & 0xf0000) >> 4; | 
 |   offset |= movw & 0xfff; | 
 |   return offset; | 
 | } | 
 |  | 
 |  | 
 | static int32_t DecodeARMv6LoadImmediate(int32_t mov, int32_t or1, | 
 |                                         int32_t or2, int32_t or3) { | 
 |   int32_t offset = 0; | 
 |   offset |= (mov & 0xff) << 24; | 
 |   offset |= (or1 & 0xff) << 16; | 
 |   offset |= (or2 & 0xff) << 8; | 
 |   offset |= (or3 & 0xff); | 
 |   return offset; | 
 | } | 
 |  | 
 |  | 
 | class PatchFarBranch : public AssemblerFixup { | 
 |  public: | 
 |   PatchFarBranch() {} | 
 |  | 
 |   void Process(const MemoryRegion& region, intptr_t position) { | 
 |     const ARMVersion version = TargetCPUFeatures::arm_version(); | 
 |     if ((version == ARMv5TE) || (version == ARMv6)) { | 
 |       ProcessARMv6(region, position); | 
 |     } else { | 
 |       ASSERT(version == ARMv7); | 
 |       ProcessARMv7(region, position); | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   void ProcessARMv6(const MemoryRegion& region, intptr_t position) { | 
 |     const int32_t mov = region.Load<int32_t>(position); | 
 |     const int32_t or1 = region.Load<int32_t>(position + 1*Instr::kInstrSize); | 
 |     const int32_t or2 = region.Load<int32_t>(position + 2*Instr::kInstrSize); | 
 |     const int32_t or3 = region.Load<int32_t>(position + 3*Instr::kInstrSize); | 
 |     const int32_t bx = region.Load<int32_t>(position + 4*Instr::kInstrSize); | 
 |  | 
 |     if (((mov & 0xffffff00) == 0xe3a0c400) &&  // mov IP, (byte3 rot 4) | 
 |         ((or1 & 0xffffff00) == 0xe38cc800) &&  // orr IP, IP, (byte2 rot 8) | 
 |         ((or2 & 0xffffff00) == 0xe38ccc00) &&  // orr IP, IP, (byte1 rot 12) | 
 |         ((or3 & 0xffffff00) == 0xe38cc000)) {  // orr IP, IP, byte0 | 
 |       const int32_t offset = DecodeARMv6LoadImmediate(mov, or1, or2, or3); | 
 |       const int32_t dest = region.start() + offset; | 
 |       const int32_t dest0 = (dest & 0x000000ff); | 
 |       const int32_t dest1 = (dest & 0x0000ff00) >> 8; | 
 |       const int32_t dest2 = (dest & 0x00ff0000) >> 16; | 
 |       const int32_t dest3 = (dest & 0xff000000) >> 24; | 
 |       const int32_t patched_mov = 0xe3a0c400 | dest3; | 
 |       const int32_t patched_or1 = 0xe38cc800 | dest2; | 
 |       const int32_t patched_or2 = 0xe38ccc00 | dest1; | 
 |       const int32_t patched_or3 = 0xe38cc000 | dest0; | 
 |  | 
 |       region.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov); | 
 |       region.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1); | 
 |       region.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2); | 
 |       region.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3); | 
 |       return; | 
 |     } | 
 |  | 
 |     // If the offset loading instructions aren't there, we must have replaced | 
 |     // the far branch with a near one, and so these instructions | 
 |     // should be NOPs. | 
 |     ASSERT((or1 == Instr::kNopInstruction) && | 
 |            (or2 == Instr::kNopInstruction) && | 
 |            (or3 == Instr::kNopInstruction) && | 
 |            (bx == Instr::kNopInstruction)); | 
 |   } | 
 |  | 
 |  | 
 |   void ProcessARMv7(const MemoryRegion& region, intptr_t position) { | 
 |     const int32_t movw = region.Load<int32_t>(position); | 
 |     const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize); | 
 |     const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize); | 
 |  | 
 |     if (((movt & 0xfff0f000) == 0xe340c000) &&  // movt IP, high | 
 |         ((movw & 0xfff0f000) == 0xe300c000)) {   // movw IP, low | 
 |       const int32_t offset = DecodeARMv7LoadImmediate(movt, movw); | 
 |       const int32_t dest = region.start() + offset; | 
 |       const uint16_t dest_high = Utils::High16Bits(dest); | 
 |       const uint16_t dest_low = Utils::Low16Bits(dest); | 
 |       const int32_t patched_movt = | 
 |           0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff); | 
 |       const int32_t patched_movw = | 
 |           0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff); | 
 |  | 
 |       region.Store<int32_t>(position, patched_movw); | 
 |       region.Store<int32_t>(position + Instr::kInstrSize, patched_movt); | 
 |       return; | 
 |     } | 
 |  | 
 |     // If the offset loading instructions aren't there, we must have replaced | 
 |     // the far branch with a near one, and so these instructions | 
 |     // should be NOPs. | 
 |     ASSERT((movt == Instr::kNopInstruction) && | 
 |            (bx == Instr::kNopInstruction)); | 
 |   } | 
 |  | 
 |   virtual bool IsPointerOffset() const { return false; } | 
 | }; | 
 |  | 
 |  | 
 | void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) { | 
 |   buffer_.EmitFixup(new PatchFarBranch()); | 
 |   LoadPatchableImmediate(IP, offset); | 
 |   if (link) { | 
 |     blx(IP, cond); | 
 |   } else { | 
 |     bx(IP, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EmitBranch(Condition cond, Label* label, bool link) { | 
 |   if (label->IsBound()) { | 
 |     const int32_t dest = label->Position() - buffer_.Size(); | 
 |     if (use_far_branches() && !CanEncodeBranchOffset(dest)) { | 
 |       EmitFarBranch(cond, label->Position(), link); | 
 |     } else { | 
 |       EmitType5(cond, dest, link); | 
 |     } | 
 |   } else { | 
 |     const intptr_t position = buffer_.Size(); | 
 |     if (use_far_branches()) { | 
 |       const int32_t dest = label->position_; | 
 |       EmitFarBranch(cond, dest, link); | 
 |     } else { | 
 |       // Use the offset field of the branch instruction for linking the sites. | 
 |       EmitType5(cond, label->position_, link); | 
 |     } | 
 |     label->LinkTo(position); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BindARMv6(Label* label) { | 
 |   ASSERT(!label->IsBound()); | 
 |   intptr_t bound_pc = buffer_.Size(); | 
 |   while (label->IsLinked()) { | 
 |     const int32_t position = label->Position(); | 
 |     int32_t dest = bound_pc - position; | 
 |     if (use_far_branches() && !CanEncodeBranchOffset(dest)) { | 
 |       // Far branches are enabled and we can't encode the branch offset. | 
 |  | 
 |       // Grab instructions that load the offset. | 
 |       const int32_t mov = | 
 |           buffer_.Load<int32_t>(position); | 
 |       const int32_t or1 = | 
 |           buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); | 
 |       const int32_t or2 = | 
 |           buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); | 
 |       const int32_t or3 = | 
 |           buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize); | 
 |  | 
 |       // Change from relative to the branch to relative to the assembler | 
 |       // buffer. | 
 |       dest = buffer_.Size(); | 
 |       const int32_t dest0 = (dest & 0x000000ff); | 
 |       const int32_t dest1 = (dest & 0x0000ff00) >> 8; | 
 |       const int32_t dest2 = (dest & 0x00ff0000) >> 16; | 
 |       const int32_t dest3 = (dest & 0xff000000) >> 24; | 
 |       const int32_t patched_mov = 0xe3a0c400 | dest3; | 
 |       const int32_t patched_or1 = 0xe38cc800 | dest2; | 
 |       const int32_t patched_or2 = 0xe38ccc00 | dest1; | 
 |       const int32_t patched_or3 = 0xe38cc000 | dest0; | 
 |  | 
 |       // Rewrite the instructions. | 
 |       buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov); | 
 |       buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1); | 
 |       buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2); | 
 |       buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3); | 
 |       label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3); | 
 |     } else if (use_far_branches() && CanEncodeBranchOffset(dest)) { | 
 |       // Grab instructions that load the offset, and the branch. | 
 |       const int32_t mov = | 
 |           buffer_.Load<int32_t>(position); | 
 |       const int32_t or1 = | 
 |           buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); | 
 |       const int32_t or2 = | 
 |           buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); | 
 |       const int32_t or3 = | 
 |           buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize); | 
 |       const int32_t branch = | 
 |           buffer_.Load<int32_t>(position + 4 * Instr::kInstrSize); | 
 |  | 
 |       // Grab the branch condition, and encode the link bit. | 
 |       const int32_t cond = branch & 0xf0000000; | 
 |       const int32_t link = (branch & 0x20) << 19; | 
 |  | 
 |       // Encode the branch and the offset. | 
 |       const int32_t new_branch = cond | link | 0x0a000000; | 
 |       const int32_t encoded = EncodeBranchOffset(dest, new_branch); | 
 |  | 
 |       // Write the encoded branch instruction followed by two nops. | 
 |       buffer_.Store<int32_t>(position, encoded); | 
 |       buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, | 
 |           Instr::kNopInstruction); | 
 |       buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, | 
 |           Instr::kNopInstruction); | 
 |       buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, | 
 |           Instr::kNopInstruction); | 
 |       buffer_.Store<int32_t>(position + 4 * Instr::kInstrSize, | 
 |           Instr::kNopInstruction); | 
 |  | 
 |       label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3); | 
 |     } else { | 
 |       int32_t next = buffer_.Load<int32_t>(position); | 
 |       int32_t encoded = Assembler::EncodeBranchOffset(dest, next); | 
 |       buffer_.Store<int32_t>(position, encoded); | 
 |       label->position_ = Assembler::DecodeBranchOffset(next); | 
 |     } | 
 |   } | 
 |   label->BindTo(bound_pc); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::bind(Label* Label) | 
 | // Note: Most of this code isn't needed because instruction selection has | 
 | // already been handler | 
 | void Assembler::BindARMv7(Label* label) { | 
 |   ASSERT(!label->IsBound()); | 
 |   intptr_t bound_pc = buffer_.Size(); | 
 |   while (label->IsLinked()) { | 
 |     const int32_t position = label->Position(); | 
 |     int32_t dest = bound_pc - position; | 
 |     if (use_far_branches() && !CanEncodeBranchOffset(dest)) { | 
 |       // Far branches are enabled and we can't encode the branch offset. | 
 |  | 
 |       // Grab instructions that load the offset. | 
 |       const int32_t movw = | 
 |           buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize); | 
 |       const int32_t movt = | 
 |           buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); | 
 |  | 
 |       // Change from relative to the branch to relative to the assembler | 
 |       // buffer. | 
 |       dest = buffer_.Size(); | 
 |       const uint16_t dest_high = Utils::High16Bits(dest); | 
 |       const uint16_t dest_low = Utils::Low16Bits(dest); | 
 |       const int32_t patched_movt = | 
 |           0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff); | 
 |       const int32_t patched_movw = | 
 |           0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff); | 
 |  | 
 |       // Rewrite the instructions. | 
 |       buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw); | 
 |       buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt); | 
 |       label->position_ = DecodeARMv7LoadImmediate(movt, movw); | 
 |     } else if (use_far_branches() && CanEncodeBranchOffset(dest)) { | 
 |       // Far branches are enabled, but we can encode the branch offset. | 
 |  | 
 |       // Grab instructions that load the offset, and the branch. | 
 |       const int32_t movw = | 
 |           buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize); | 
 |       const int32_t movt = | 
 |           buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); | 
 |       const int32_t branch = | 
 |           buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); | 
 |  | 
 |       // Grab the branch condition, and encode the link bit. | 
 |       const int32_t cond = branch & 0xf0000000; | 
 |       const int32_t link = (branch & 0x20) << 19; | 
 |  | 
 |       // Encode the branch and the offset. | 
 |       const int32_t new_branch = cond | link | 0x0a000000; | 
 |       const int32_t encoded = EncodeBranchOffset(dest, new_branch); | 
 |  | 
 |       // Write the encoded branch instruction followed by two nops. | 
 |       buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, | 
 |           encoded); | 
 |       buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, | 
 |           Instr::kNopInstruction); | 
 |       buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, | 
 |           Instr::kNopInstruction); | 
 |  | 
 |       label->position_ = DecodeARMv7LoadImmediate(movt, movw); | 
 |     } else { | 
 |       int32_t next = buffer_.Load<int32_t>(position); | 
 |       int32_t encoded = Assembler::EncodeBranchOffset(dest, next); | 
 |       buffer_.Store<int32_t>(position, encoded); | 
 |       label->position_ = Assembler::DecodeBranchOffset(next); | 
 |     } | 
 |   } | 
 |   label->BindTo(bound_pc); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void Assembler::Bind(Label* label) { | 
 |   const ARMVersion version = TargetCPUFeatures::arm_version(); | 
 |   if ((version == ARMv5TE) || (version == ARMv6)) { | 
 |     BindARMv6(label); | 
 |   } else { | 
 |     ASSERT(version == ARMv7); | 
 |     BindARMv7(label); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | OperandSize Address::OperandSizeFor(intptr_t cid) { | 
 |   switch (cid) { | 
 |     case kArrayCid: | 
 |     case kImmutableArrayCid: | 
 |       return kWord; | 
 |     case kOneByteStringCid: | 
 |     case kExternalOneByteStringCid: | 
 |       return kByte; | 
 |     case kTwoByteStringCid: | 
 |     case kExternalTwoByteStringCid: | 
 |       return kHalfword; | 
 |     case kTypedDataInt8ArrayCid: | 
 |       return kByte; | 
 |     case kTypedDataUint8ArrayCid: | 
 |     case kTypedDataUint8ClampedArrayCid: | 
 |     case kExternalTypedDataUint8ArrayCid: | 
 |     case kExternalTypedDataUint8ClampedArrayCid: | 
 |       return kUnsignedByte; | 
 |     case kTypedDataInt16ArrayCid: | 
 |       return kHalfword; | 
 |     case kTypedDataUint16ArrayCid: | 
 |       return kUnsignedHalfword; | 
 |     case kTypedDataInt32ArrayCid: | 
 |       return kWord; | 
 |     case kTypedDataUint32ArrayCid: | 
 |       return kUnsignedWord; | 
 |     case kTypedDataInt64ArrayCid: | 
 |     case kTypedDataUint64ArrayCid: | 
 |       UNREACHABLE(); | 
 |       return kByte; | 
 |     case kTypedDataFloat32ArrayCid: | 
 |       return kSWord; | 
 |     case kTypedDataFloat64ArrayCid: | 
 |       return kDWord; | 
 |     case kTypedDataFloat32x4ArrayCid: | 
 |     case kTypedDataInt32x4ArrayCid: | 
 |     case kTypedDataFloat64x2ArrayCid: | 
 |       return kRegList; | 
 |     case kTypedDataInt8ArrayViewCid: | 
 |       UNREACHABLE(); | 
 |       return kByte; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       return kByte; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool Address::CanHoldLoadOffset(OperandSize size, | 
 |                                 int32_t offset, | 
 |                                 int32_t* offset_mask) { | 
 |   switch (size) { | 
 |     case kByte: | 
 |     case kHalfword: | 
 |     case kUnsignedHalfword: | 
 |     case kWordPair: { | 
 |       *offset_mask = 0xff; | 
 |       return Utils::IsAbsoluteUint(8, offset);  // Addressing mode 3. | 
 |     } | 
 |     case kUnsignedByte: | 
 |     case kWord: | 
 |     case kUnsignedWord: { | 
 |       *offset_mask = 0xfff; | 
 |       return Utils::IsAbsoluteUint(12, offset);  // Addressing mode 2. | 
 |     } | 
 |     case kSWord: | 
 |     case kDWord: { | 
 |       *offset_mask = 0x3fc;  // Multiple of 4. | 
 |       // VFP addressing mode. | 
 |       return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4)); | 
 |     } | 
 |     case kRegList: { | 
 |       *offset_mask = 0x0; | 
 |       return offset == 0; | 
 |     } | 
 |     default: { | 
 |       UNREACHABLE(); | 
 |       return false; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool Address::CanHoldStoreOffset(OperandSize size, | 
 |                                  int32_t offset, | 
 |                                  int32_t* offset_mask) { | 
 |   switch (size) { | 
 |     case kHalfword: | 
 |     case kUnsignedHalfword: | 
 |     case kWordPair: { | 
 |       *offset_mask = 0xff; | 
 |       return Utils::IsAbsoluteUint(8, offset);  // Addressing mode 3. | 
 |     } | 
 |     case kByte: | 
 |     case kUnsignedByte: | 
 |     case kWord: | 
 |     case kUnsignedWord: { | 
 |       *offset_mask = 0xfff; | 
 |       return Utils::IsAbsoluteUint(12, offset);  // Addressing mode 2. | 
 |     } | 
 |     case kSWord: | 
 |     case kDWord: { | 
 |       *offset_mask = 0x3fc;  // Multiple of 4. | 
 |       // VFP addressing mode. | 
 |       return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4)); | 
 |     } | 
 |     case kRegList: { | 
 |       *offset_mask = 0x0; | 
 |       return offset == 0; | 
 |     } | 
 |     default: { | 
 |       UNREACHABLE(); | 
 |       return false; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool Address::CanHoldImmediateOffset( | 
 |     bool is_load, intptr_t cid, int64_t offset) { | 
 |   int32_t offset_mask = 0; | 
 |   if (is_load) { | 
 |     return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask); | 
 |   } else { | 
 |     return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask); | 
 |   } | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::push(). | 
 | void Assembler::Push(Register rd, Condition cond) { | 
 |   str(rd, Address(SP, -kWordSize, Address::PreIndex), cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::pop(). | 
 | void Assembler::Pop(Register rd, Condition cond) { | 
 |   ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::pushList(). | 
 | void Assembler::PushList(RegList regs, Condition cond) { | 
 |   stm(DB_W, SP, regs, cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::popList(). | 
 | void Assembler::PopList(RegList regs, Condition cond) { | 
 |   ldm(IA_W, SP, regs, cond); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::MoveRegister(Register rd, Register rm, Condition cond) { | 
 |   if (rd != rm) { | 
 |     mov(rd, Operand(rm), cond); | 
 |   } | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::lsl() | 
 | void Assembler::Lsl(Register rd, Register rm, const Operand& shift_imm, | 
 |                     Condition cond) { | 
 |   ASSERT(shift_imm.type() == 1); | 
 |   ASSERT(shift_imm.encoding() != 0);  // Do not use Lsl if no shift is wanted. | 
 |   mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::lsl() | 
 | void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) { | 
 |   mov(rd, Operand(rm, LSL, rs), cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::lsr() | 
 | void Assembler::Lsr(Register rd, Register rm, const Operand& shift_imm, | 
 |                     Condition cond) { | 
 |   ASSERT(shift_imm.type() == 1); | 
 |   uint32_t shift = shift_imm.encoding(); | 
 |   ASSERT(shift != 0);  // Do not use Lsr if no shift is wanted. | 
 |   if (shift == 32) { | 
 |     shift = 0;  // Comply to UAL syntax. | 
 |   } | 
 |   mov(rd, Operand(rm, LSR, shift), cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::lsr() | 
 | void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) { | 
 |   mov(rd, Operand(rm, LSR, rs), cond); | 
 | } | 
 |  | 
 | // Moved to ARM32::AssemblerARM32::asr() | 
 | void Assembler::Asr(Register rd, Register rm, const Operand& shift_imm, | 
 |                     Condition cond) { | 
 |   ASSERT(shift_imm.type() == 1); | 
 |   uint32_t shift = shift_imm.encoding(); | 
 |   ASSERT(shift != 0);  // Do not use Asr if no shift is wanted. | 
 |   if (shift == 32) { | 
 |     shift = 0;  // Comply to UAL syntax. | 
 |   } | 
 |   mov(rd, Operand(rm, ASR, shift), cond); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::Asrs(Register rd, Register rm, const Operand& shift_imm, | 
 |                      Condition cond) { | 
 |   ASSERT(shift_imm.type() == 1); | 
 |   uint32_t shift = shift_imm.encoding(); | 
 |   ASSERT(shift != 0);  // Do not use Asr if no shift is wanted. | 
 |   if (shift == 32) { | 
 |     shift = 0;  // Comply to UAL syntax. | 
 |   } | 
 |   movs(rd, Operand(rm, ASR, shift), cond); | 
 | } | 
 |  | 
 | #if 0 | 
 | // Moved to ARM32::AssemblerARM32::asr() | 
 | void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) { | 
 |   mov(rd, Operand(rm, ASR, rs), cond); | 
 | } | 
 | #endif | 
 |  | 
 | void Assembler::Ror(Register rd, Register rm, const Operand& shift_imm, | 
 |                     Condition cond) { | 
 |   ASSERT(shift_imm.type() == 1); | 
 |   ASSERT(shift_imm.encoding() != 0);  // Use Rrx instruction. | 
 |   mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) { | 
 |   mov(rd, Operand(rm, ROR, rs), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Rrx(Register rd, Register rm, Condition cond) { | 
 |   mov(rd, Operand(rm, ROR, 0), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::SignFill(Register rd, Register rm, Condition cond) { | 
 |   Asr(rd, rm, Operand(31), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) { | 
 |   ASSERT(qm != QTMP); | 
 |   ASSERT(qd != QTMP); | 
 |  | 
 |   // Reciprocal estimate. | 
 |   vrecpeqs(qd, qm); | 
 |   // 2 Newton-Raphson steps. | 
 |   vrecpsqs(QTMP, qm, qd); | 
 |   vmulqs(qd, qd, QTMP); | 
 |   vrecpsqs(QTMP, qm, qd); | 
 |   vmulqs(qd, qd, QTMP); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) { | 
 |   ASSERT(qm != QTMP); | 
 |   ASSERT(qd != QTMP); | 
 |  | 
 |   // Reciprocal square root estimate. | 
 |   vrsqrteqs(qd, qm); | 
 |   // 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2. | 
 |   // First step. | 
 |   vmulqs(QTMP, qd, qd);  // QTMP <- xn^2 | 
 |   vrsqrtsqs(QTMP, qm, QTMP);  // QTMP <- (3 - Q1*QTMP) / 2. | 
 |   vmulqs(qd, qd, QTMP);  // xn+1 <- xn * QTMP | 
 |   // Second step. | 
 |   vmulqs(QTMP, qd, qd); | 
 |   vrsqrtsqs(QTMP, qm, QTMP); | 
 |   vmulqs(qd, qd, QTMP); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) { | 
 |   ASSERT(temp != QTMP); | 
 |   ASSERT(qm != QTMP); | 
 |   ASSERT(qd != QTMP); | 
 |  | 
 |   if (temp != kNoQRegister) { | 
 |     vmovq(temp, qm); | 
 |     qm = temp; | 
 |   } | 
 |  | 
 |   VreciprocalSqrtqs(qd, qm); | 
 |   vmovq(qm, qd); | 
 |   Vreciprocalqs(qd, qm); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) { | 
 |   ASSERT(qd != QTMP); | 
 |   ASSERT(qn != QTMP); | 
 |   ASSERT(qm != QTMP); | 
 |  | 
 |   Vreciprocalqs(qd, qm); | 
 |   vmulqs(qd, qn, qd); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Branch(const StubEntry& stub_entry, | 
 |                        Patchability patchable, | 
 |                        Register pp, | 
 |                        Condition cond) { | 
 |   const Code& target_code = Code::Handle(stub_entry.code()); | 
 |   const int32_t offset = ObjectPool::element_offset( | 
 |       object_pool_wrapper_.FindObject(target_code, patchable)); | 
 |   LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, pp, cond); | 
 |   ldr(IP, FieldAddress(CODE_REG, Code::entry_point_offset()), cond); | 
 |   bx(IP, cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BranchLink(const Code& target, Patchability patchable) { | 
 |   // Make sure that class CallPattern is able to patch the label referred | 
 |   // to by this code sequence. | 
 |   // For added code robustness, use 'blx lr' in a patchable sequence and | 
 |   // use 'blx ip' in a non-patchable sequence (see other BranchLink flavors). | 
 |   const int32_t offset = ObjectPool::element_offset( | 
 |       object_pool_wrapper_.FindObject(target, patchable)); | 
 |   LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, PP, AL); | 
 |   ldr(LR, FieldAddress(CODE_REG, Code::entry_point_offset())); | 
 |   blx(LR);  // Use blx instruction so that the return branch prediction works. | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BranchLink(const StubEntry& stub_entry, | 
 |                            Patchability patchable) { | 
 |   const Code& code = Code::Handle(stub_entry.code()); | 
 |   BranchLink(code, patchable); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BranchLinkPatchable(const Code& target) { | 
 |   BranchLink(target, kPatchable); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BranchLink(const ExternalLabel* label) { | 
 |   LoadImmediate(LR, label->address());  // Target address is never patched. | 
 |   blx(LR);  // Use blx instruction so that the return branch prediction works. | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BranchLinkPatchable(const StubEntry& stub_entry) { | 
 |   BranchLinkPatchable(Code::Handle(stub_entry.code())); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::BranchLinkOffset(Register base, int32_t offset) { | 
 |   ASSERT(base != PC); | 
 |   ASSERT(base != IP); | 
 |   LoadFromOffset(kWord, IP, base, offset); | 
 |   blx(IP);  // Use blx instruction so that the return branch prediction works. | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadPatchableImmediate( | 
 |     Register rd, int32_t value, Condition cond) { | 
 |   const ARMVersion version = TargetCPUFeatures::arm_version(); | 
 |   if ((version == ARMv5TE) || (version == ARMv6)) { | 
 |     // This sequence is patched in a few places, and should remain fixed. | 
 |     const uint32_t byte0 = (value & 0x000000ff); | 
 |     const uint32_t byte1 = (value & 0x0000ff00) >> 8; | 
 |     const uint32_t byte2 = (value & 0x00ff0000) >> 16; | 
 |     const uint32_t byte3 = (value & 0xff000000) >> 24; | 
 |     mov(rd, Operand(4, byte3), cond); | 
 |     orr(rd, rd, Operand(8, byte2), cond); | 
 |     orr(rd, rd, Operand(12, byte1), cond); | 
 |     orr(rd, rd, Operand(byte0), cond); | 
 |   } else { | 
 |     ASSERT(version == ARMv7); | 
 |     const uint16_t value_low = Utils::Low16Bits(value); | 
 |     const uint16_t value_high = Utils::High16Bits(value); | 
 |     movw(rd, value_low, cond); | 
 |     movt(rd, value_high, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadDecodableImmediate( | 
 |     Register rd, int32_t value, Condition cond) { | 
 |   const ARMVersion version = TargetCPUFeatures::arm_version(); | 
 |   if ((version == ARMv5TE) || (version == ARMv6)) { | 
 |     if (constant_pool_allowed()) { | 
 |       const int32_t offset = Array::element_offset(FindImmediate(value)); | 
 |       LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond); | 
 |     } else { | 
 |       LoadPatchableImmediate(rd, value, cond); | 
 |     } | 
 |   } else { | 
 |     ASSERT(version == ARMv7); | 
 |     movw(rd, Utils::Low16Bits(value), cond); | 
 |     const uint16_t value_high = Utils::High16Bits(value); | 
 |     if (value_high != 0) { | 
 |       movt(rd, value_high, cond); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) { | 
 |   Operand o; | 
 |   if (Operand::CanHold(value, &o)) { | 
 |     mov(rd, o, cond); | 
 |   } else if (Operand::CanHold(~value, &o)) { | 
 |     mvn(rd, o, cond); | 
 |   } else { | 
 |     LoadDecodableImmediate(rd, value, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) { | 
 |   if (!vmovs(sd, value, cond)) { | 
 |     const DRegister dd = static_cast<DRegister>(sd >> 1); | 
 |     const int index = sd & 1; | 
 |     LoadImmediate(IP, bit_cast<int32_t, float>(value), cond); | 
 |     vmovdr(dd, index, IP, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadDImmediate(DRegister dd, | 
 |                                double value, | 
 |                                Register scratch, | 
 |                                Condition cond) { | 
 |   ASSERT(scratch != PC); | 
 |   ASSERT(scratch != IP); | 
 |   if (!vmovd(dd, value, cond)) { | 
 |     // A scratch register and IP are needed to load an arbitrary double. | 
 |     ASSERT(scratch != kNoRegister); | 
 |     int64_t imm64 = bit_cast<int64_t, double>(value); | 
 |     LoadImmediate(IP, Utils::Low32Bits(imm64), cond); | 
 |     LoadImmediate(scratch, Utils::High32Bits(imm64), cond); | 
 |     vmovdrr(dd, IP, scratch, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadFromOffset(OperandSize size, | 
 |                                Register reg, | 
 |                                Register base, | 
 |                                int32_t offset, | 
 |                                Condition cond) { | 
 |   int32_t offset_mask = 0; | 
 |   if (!Address::CanHoldLoadOffset(size, offset, &offset_mask)) { | 
 |     ASSERT(base != IP); | 
 |     AddImmediate(IP, base, offset & ~offset_mask, cond); | 
 |     base = IP; | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   switch (size) { | 
 |     case kByte: | 
 |       ldrsb(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kUnsignedByte: | 
 |       ldrb(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kHalfword: | 
 |       ldrsh(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kUnsignedHalfword: | 
 |       ldrh(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kWord: | 
 |       ldr(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kWordPair: | 
 |       ldrd(reg, base, offset, cond); | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreToOffset(OperandSize size, | 
 |                               Register reg, | 
 |                               Register base, | 
 |                               int32_t offset, | 
 |                               Condition cond) { | 
 |   int32_t offset_mask = 0; | 
 |   if (!Address::CanHoldStoreOffset(size, offset, &offset_mask)) { | 
 |     ASSERT(reg != IP); | 
 |     ASSERT(base != IP); | 
 |     AddImmediate(IP, base, offset & ~offset_mask, cond); | 
 |     base = IP; | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   switch (size) { | 
 |     case kByte: | 
 |       strb(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kHalfword: | 
 |       strh(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kWord: | 
 |       str(reg, Address(base, offset), cond); | 
 |       break; | 
 |     case kWordPair: | 
 |       strd(reg, base, offset, cond); | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadSFromOffset(SRegister reg, | 
 |                                 Register base, | 
 |                                 int32_t offset, | 
 |                                 Condition cond) { | 
 |   int32_t offset_mask = 0; | 
 |   if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) { | 
 |     ASSERT(base != IP); | 
 |     AddImmediate(IP, base, offset & ~offset_mask, cond); | 
 |     base = IP; | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   vldrs(reg, Address(base, offset), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreSToOffset(SRegister reg, | 
 |                                Register base, | 
 |                                int32_t offset, | 
 |                                Condition cond) { | 
 |   int32_t offset_mask = 0; | 
 |   if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) { | 
 |     ASSERT(base != IP); | 
 |     AddImmediate(IP, base, offset & ~offset_mask, cond); | 
 |     base = IP; | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   vstrs(reg, Address(base, offset), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadDFromOffset(DRegister reg, | 
 |                                 Register base, | 
 |                                 int32_t offset, | 
 |                                 Condition cond) { | 
 |   int32_t offset_mask = 0; | 
 |   if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) { | 
 |     ASSERT(base != IP); | 
 |     AddImmediate(IP, base, offset & ~offset_mask, cond); | 
 |     base = IP; | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   vldrd(reg, Address(base, offset), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::StoreDToOffset(DRegister reg, | 
 |                                Register base, | 
 |                                int32_t offset, | 
 |                                Condition cond) { | 
 |   int32_t offset_mask = 0; | 
 |   if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) { | 
 |     ASSERT(base != IP); | 
 |     AddImmediate(IP, base, offset & ~offset_mask, cond); | 
 |     base = IP; | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   vstrd(reg, Address(base, offset), cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadMultipleDFromOffset(DRegister first, | 
 |                                         intptr_t count, | 
 |                                         Register base, | 
 |                                         int32_t offset) { | 
 |   ASSERT(base != IP); | 
 |   AddImmediate(IP, base, offset); | 
 |   vldmd(IA, IP, first, count); | 
 | } | 
 |  | 
 | void Assembler::StoreMultipleDToOffset(DRegister first, | 
 |                                        intptr_t count, | 
 |                                        Register base, | 
 |                                        int32_t offset) { | 
 |   ASSERT(base != IP); | 
 |   AddImmediate(IP, base, offset); | 
 |   vstmd(IA, IP, first, count); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CopyDoubleField( | 
 |     Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { | 
 |   if (TargetCPUFeatures::vfp_supported()) { | 
 |     LoadDFromOffset(dtmp, src, Double::value_offset() - kHeapObjectTag); | 
 |     StoreDToOffset(dtmp, dst, Double::value_offset() - kHeapObjectTag); | 
 |   } else { | 
 |     LoadFromOffset(kWord, tmp1, src, | 
 |         Double::value_offset() - kHeapObjectTag); | 
 |     LoadFromOffset(kWord, tmp2, src, | 
 |         Double::value_offset() + kWordSize - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp1, dst, | 
 |         Double::value_offset() - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp2, dst, | 
 |         Double::value_offset() + kWordSize - kHeapObjectTag); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CopyFloat32x4Field( | 
 |     Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { | 
 |   if (TargetCPUFeatures::neon_supported()) { | 
 |     LoadMultipleDFromOffset(dtmp, 2, src, | 
 |         Float32x4::value_offset() - kHeapObjectTag); | 
 |     StoreMultipleDToOffset(dtmp, 2, dst, | 
 |         Float32x4::value_offset() - kHeapObjectTag); | 
 |   } else { | 
 |     LoadFromOffset(kWord, tmp1, src, | 
 |         (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag); | 
 |     LoadFromOffset(kWord, tmp2, src, | 
 |         (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp1, dst, | 
 |         (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp2, dst, | 
 |         (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag); | 
 |  | 
 |     LoadFromOffset(kWord, tmp1, src, | 
 |         (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag); | 
 |     LoadFromOffset(kWord, tmp2, src, | 
 |         (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp1, dst, | 
 |         (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp2, dst, | 
 |         (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CopyFloat64x2Field( | 
 |     Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { | 
 |   if (TargetCPUFeatures::neon_supported()) { | 
 |     LoadMultipleDFromOffset(dtmp, 2, src, | 
 |         Float64x2::value_offset() - kHeapObjectTag); | 
 |     StoreMultipleDToOffset(dtmp, 2, dst, | 
 |         Float64x2::value_offset() - kHeapObjectTag); | 
 |   } else { | 
 |     LoadFromOffset(kWord, tmp1, src, | 
 |         (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag); | 
 |     LoadFromOffset(kWord, tmp2, src, | 
 |         (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp1, dst, | 
 |         (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp2, dst, | 
 |         (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag); | 
 |  | 
 |     LoadFromOffset(kWord, tmp1, src, | 
 |         (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag); | 
 |     LoadFromOffset(kWord, tmp2, src, | 
 |         (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp1, dst, | 
 |         (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag); | 
 |     StoreToOffset(kWord, tmp2, dst, | 
 |         (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::AddImmediate(Register rd, int32_t value, Condition cond) { | 
 |   AddImmediate(rd, rd, value, cond); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::AddImmediate(Register rd, Register rn, int32_t value, | 
 |                              Condition cond) { | 
 |   if (value == 0) { | 
 |     if (rd != rn) { | 
 |       mov(rd, Operand(rn), cond); | 
 |     } | 
 |     return; | 
 |   } | 
 |   // We prefer to select the shorter code sequence rather than selecting add for | 
 |   // positive values and sub for negatives ones, which would slightly improve | 
 |   // the readability of generated code for some constants. | 
 |   Operand o; | 
 |   if (Operand::CanHold(value, &o)) { | 
 |     add(rd, rn, o, cond); | 
 |   } else if (Operand::CanHold(-value, &o)) { | 
 |     sub(rd, rn, o, cond); | 
 |   } else { | 
 |     ASSERT(rn != IP); | 
 |     if (Operand::CanHold(~value, &o)) { | 
 |       mvn(IP, o, cond); | 
 |       add(rd, rn, Operand(IP), cond); | 
 |     } else if (Operand::CanHold(~(-value), &o)) { | 
 |       mvn(IP, o, cond); | 
 |       sub(rd, rn, Operand(IP), cond); | 
 |     } else { | 
 |       LoadDecodableImmediate(IP, value, cond); | 
 |       add(rd, rn, Operand(IP), cond); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::AddImmediateSetFlags(Register rd, Register rn, int32_t value, | 
 |                                      Condition cond) { | 
 |   Operand o; | 
 |   if (Operand::CanHold(value, &o)) { | 
 |     // Handles value == kMinInt32. | 
 |     adds(rd, rn, o, cond); | 
 |   } else if (Operand::CanHold(-value, &o)) { | 
 |     ASSERT(value != kMinInt32);  // Would cause erroneous overflow detection. | 
 |     subs(rd, rn, o, cond); | 
 |   } else { | 
 |     ASSERT(rn != IP); | 
 |     if (Operand::CanHold(~value, &o)) { | 
 |       mvn(IP, o, cond); | 
 |       adds(rd, rn, Operand(IP), cond); | 
 |     } else if (Operand::CanHold(~(-value), &o)) { | 
 |       ASSERT(value != kMinInt32);  // Would cause erroneous overflow detection. | 
 |       mvn(IP, o, cond); | 
 |       subs(rd, rn, Operand(IP), cond); | 
 |     } else { | 
 |       LoadDecodableImmediate(IP, value, cond); | 
 |       adds(rd, rn, Operand(IP), cond); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::SubImmediateSetFlags(Register rd, Register rn, int32_t value, | 
 |                                     Condition cond) { | 
 |   Operand o; | 
 |   if (Operand::CanHold(value, &o)) { | 
 |     // Handles value == kMinInt32. | 
 |     subs(rd, rn, o, cond); | 
 |   } else if (Operand::CanHold(-value, &o)) { | 
 |     ASSERT(value != kMinInt32);  // Would cause erroneous overflow detection. | 
 |     adds(rd, rn, o, cond); | 
 |   } else { | 
 |     ASSERT(rn != IP); | 
 |     if (Operand::CanHold(~value, &o)) { | 
 |       mvn(IP, o, cond); | 
 |       subs(rd, rn, Operand(IP), cond); | 
 |     } else if (Operand::CanHold(~(-value), &o)) { | 
 |       ASSERT(value != kMinInt32);  // Would cause erroneous overflow detection. | 
 |       mvn(IP, o, cond); | 
 |       adds(rd, rn, Operand(IP), cond); | 
 |     } else { | 
 |       LoadDecodableImmediate(IP, value, cond); | 
 |       subs(rd, rn, Operand(IP), cond); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::AndImmediate(Register rd, Register rs, int32_t imm, | 
 |                              Condition cond) { | 
 |   Operand o; | 
 |   if (Operand::CanHold(imm, &o)) { | 
 |     and_(rd, rs, Operand(o), cond); | 
 |   } else { | 
 |     LoadImmediate(TMP, imm, cond); | 
 |     and_(rd, rs, Operand(TMP), cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) { | 
 |   Operand o; | 
 |   if (Operand::CanHold(value, &o)) { | 
 |     cmp(rn, o, cond); | 
 |   } else { | 
 |     ASSERT(rn != IP); | 
 |     LoadImmediate(IP, value, cond); | 
 |     cmp(rn, Operand(IP), cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) { | 
 |   Operand o; | 
 |   if (Operand::CanHold(imm, &o)) { | 
 |     tst(rn, o, cond); | 
 |   } else { | 
 |     LoadImmediate(IP, imm); | 
 |     tst(rn, Operand(IP), cond); | 
 |   } | 
 | } | 
 |  | 
 | void Assembler::IntegerDivide(Register result, Register left, Register right, | 
 |                               DRegister tmpl, DRegister tmpr) { | 
 |   ASSERT(tmpl != tmpr); | 
 |   if (TargetCPUFeatures::integer_division_supported()) { | 
 |     sdiv(result, left, right); | 
 |   } else { | 
 |     ASSERT(TargetCPUFeatures::vfp_supported()); | 
 |     SRegister stmpl = static_cast<SRegister>(2 * tmpl); | 
 |     SRegister stmpr = static_cast<SRegister>(2 * tmpr); | 
 |     vmovsr(stmpl, left); | 
 |     vcvtdi(tmpl, stmpl);  // left is in tmpl. | 
 |     vmovsr(stmpr, right); | 
 |     vcvtdi(tmpr, stmpr);  // right is in tmpr. | 
 |     vdivd(tmpr, tmpl, tmpr); | 
 |     vcvtid(stmpr, tmpr); | 
 |     vmovrs(result, stmpr); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static int NumRegsBelowFP(RegList regs) { | 
 |   int count = 0; | 
 |   for (int i = 0; i < FP; i++) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       count++; | 
 |     } | 
 |   } | 
 |   return count; | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EnterFrame(RegList regs, intptr_t frame_size) { | 
 |   if (prologue_offset_ == -1) { | 
 |     prologue_offset_ = CodeSize(); | 
 |   } | 
 |   PushList(regs); | 
 |   if ((regs & (1 << FP)) != 0) { | 
 |     // Set FP to the saved previous FP. | 
 |     add(FP, SP, Operand(4 * NumRegsBelowFP(regs))); | 
 |   } | 
 |   AddImmediate(SP, -frame_size); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LeaveFrame(RegList regs) { | 
 |   ASSERT((regs & (1 << PC)) == 0);  // Must not pop PC. | 
 |   if ((regs & (1 << FP)) != 0) { | 
 |     // Use FP to set SP. | 
 |     sub(SP, FP, Operand(4 * NumRegsBelowFP(regs))); | 
 |   } | 
 |   PopList(regs); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Ret() { | 
 |   bx(LR); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) { | 
 |   // Reserve space for arguments and align frame before entering | 
 |   // the C++ world. | 
 |   AddImmediate(SP, -frame_space); | 
 |   if (OS::ActivationFrameAlignment() > 1) { | 
 |     bic(SP, SP, Operand(OS::ActivationFrameAlignment() - 1)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) { | 
 |   // Preserve volatile CPU registers and PP. | 
 |   EnterFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP), 0); | 
 |   COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0); | 
 |  | 
 |   // Preserve all volatile FPU registers. | 
 |   if (TargetCPUFeatures::vfp_supported()) { | 
 |     DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg); | 
 |     DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg); | 
 |     if ((lastv - firstv + 1) >= 16) { | 
 |       DRegister mid = static_cast<DRegister>(firstv + 16); | 
 |       vstmd(DB_W, SP, mid, lastv - mid + 1); | 
 |       vstmd(DB_W, SP, firstv, 16); | 
 |     } else { | 
 |       vstmd(DB_W, SP, firstv, lastv - firstv + 1); | 
 |     } | 
 |   } | 
 |  | 
 |   LoadPoolPointer(); | 
 |  | 
 |   ReserveAlignedFrameSpace(frame_space); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LeaveCallRuntimeFrame() { | 
 |   // SP might have been modified to reserve space for arguments | 
 |   // and ensure proper alignment of the stack frame. | 
 |   // We need to restore it before restoring registers. | 
 |   const intptr_t kPushedFpuRegisterSize = | 
 |       TargetCPUFeatures::vfp_supported() ? | 
 |       kDartVolatileFpuRegCount * kFpuRegisterSize : 0; | 
 |  | 
 |   COMPILE_ASSERT(PP < FP); | 
 |   COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0); | 
 |   // kVolatileCpuRegCount +1 for PP, -1 because even though LR is volatile, | 
 |   // it is pushed ahead of FP. | 
 |   const intptr_t kPushedRegistersSize = | 
 |       kDartVolatileCpuRegCount * kWordSize + kPushedFpuRegisterSize; | 
 |   AddImmediate(SP, FP, -kPushedRegistersSize); | 
 |  | 
 |   // Restore all volatile FPU registers. | 
 |   if (TargetCPUFeatures::vfp_supported()) { | 
 |     DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg); | 
 |     DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg); | 
 |     if ((lastv - firstv + 1) >= 16) { | 
 |       DRegister mid = static_cast<DRegister>(firstv + 16); | 
 |       vldmd(IA_W, SP, firstv, 16); | 
 |       vldmd(IA_W, SP, mid, lastv - mid + 1); | 
 |     } else { | 
 |       vldmd(IA_W, SP, firstv, lastv - firstv + 1); | 
 |     } | 
 |   } | 
 |  | 
 |   // Restore volatile CPU registers. | 
 |   LeaveFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP)); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::CallRuntime(const RuntimeEntry& entry, | 
 |                             intptr_t argument_count) { | 
 |   entry.Call(this, argument_count); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EnterDartFrame(intptr_t frame_size) { | 
 |   ASSERT(!constant_pool_allowed()); | 
 |  | 
 |   // Registers are pushed in descending order: R9 | R10 | R11 | R14. | 
 |   EnterFrame((1 << PP) | (1 << CODE_REG) | (1 << FP) | (1 << LR), 0); | 
 |  | 
 |   // Setup pool pointer for this dart function. | 
 |   LoadPoolPointer(); | 
 |  | 
 |   // Reserve space for locals. | 
 |   AddImmediate(SP, -frame_size); | 
 | } | 
 |  | 
 |  | 
 | // On entry to a function compiled for OSR, the caller's frame pointer, the | 
 | // stack locals, and any copied parameters are already in place.  The frame | 
 | // pointer is already set up.  The PC marker is not correct for the | 
 | // optimized function and there may be extra space for spill slots to | 
 | // allocate. We must also set up the pool pointer for the function. | 
 | void Assembler::EnterOsrFrame(intptr_t extra_size) { | 
 |   ASSERT(!constant_pool_allowed()); | 
 |   Comment("EnterOsrFrame"); | 
 |   RestoreCodePointer(); | 
 |   LoadPoolPointer(); | 
 |  | 
 |   AddImmediate(SP, -extra_size); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LeaveDartFrame(RestorePP restore_pp) { | 
 |   if (restore_pp == kRestoreCallerPP) { | 
 |     ldr(PP, Address(FP, kSavedCallerPpSlotFromFp * kWordSize)); | 
 |     set_constant_pool_allowed(false); | 
 |   } | 
 |   Drop(2);  // Drop saved PP, PC marker. | 
 |   LeaveFrame((1 << FP) | (1 << LR)); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::EnterStubFrame() { | 
 |   EnterDartFrame(0); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LeaveStubFrame() { | 
 |   LeaveDartFrame(); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::LoadAllocationStatsAddress(Register dest, | 
 |                                            intptr_t cid, | 
 |                                            bool inline_isolate) { | 
 |   ASSERT(dest != kNoRegister); | 
 |   ASSERT(dest != TMP); | 
 |   ASSERT(cid > 0); | 
 |   const intptr_t class_offset = ClassTable::ClassOffsetFor(cid); | 
 |   if (inline_isolate) { | 
 |     ASSERT(FLAG_allow_absolute_addresses); | 
 |     ClassTable* class_table = Isolate::Current()->class_table(); | 
 |     ClassHeapStats** table_ptr = class_table->TableAddressFor(cid); | 
 |     if (cid < kNumPredefinedCids) { | 
 |       LoadImmediate(dest, reinterpret_cast<uword>(*table_ptr) + class_offset); | 
 |     } else { | 
 |       LoadImmediate(dest, reinterpret_cast<uword>(table_ptr)); | 
 |       ldr(dest, Address(dest, 0)); | 
 |       AddImmediate(dest, class_offset); | 
 |     } | 
 |   } else { | 
 |     LoadIsolate(dest); | 
 |     intptr_t table_offset = | 
 |         Isolate::class_table_offset() + ClassTable::TableOffsetFor(cid); | 
 |     ldr(dest, Address(dest, table_offset)); | 
 |     AddImmediate(dest, class_offset); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::MaybeTraceAllocation(intptr_t cid, | 
 |                                      Register temp_reg, | 
 |                                      Label* trace, | 
 |                                      bool inline_isolate) { | 
 |   LoadAllocationStatsAddress(temp_reg, cid, inline_isolate); | 
 |   const uword state_offset = ClassHeapStats::state_offset(); | 
 |   ldr(temp_reg, Address(temp_reg, state_offset)); | 
 |   tst(temp_reg, Operand(ClassHeapStats::TraceAllocationMask())); | 
 |   b(trace, NE); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::IncrementAllocationStats(Register stats_addr_reg, | 
 |                                          intptr_t cid, | 
 |                                          Heap::Space space) { | 
 |   ASSERT(stats_addr_reg != kNoRegister); | 
 |   ASSERT(stats_addr_reg != TMP); | 
 |   ASSERT(cid > 0); | 
 |   const uword count_field_offset = (space == Heap::kNew) ? | 
 |     ClassHeapStats::allocated_since_gc_new_space_offset() : | 
 |     ClassHeapStats::allocated_since_gc_old_space_offset(); | 
 |   const Address& count_address = Address(stats_addr_reg, count_field_offset); | 
 |   ldr(TMP, count_address); | 
 |   AddImmediate(TMP, 1); | 
 |   str(TMP, count_address); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::IncrementAllocationStatsWithSize(Register stats_addr_reg, | 
 |                                                  Register size_reg, | 
 |                                                  Heap::Space space) { | 
 |   ASSERT(stats_addr_reg != kNoRegister); | 
 |   ASSERT(stats_addr_reg != TMP); | 
 |   const uword count_field_offset = (space == Heap::kNew) ? | 
 |     ClassHeapStats::allocated_since_gc_new_space_offset() : | 
 |     ClassHeapStats::allocated_since_gc_old_space_offset(); | 
 |   const uword size_field_offset = (space == Heap::kNew) ? | 
 |     ClassHeapStats::allocated_size_since_gc_new_space_offset() : | 
 |     ClassHeapStats::allocated_size_since_gc_old_space_offset(); | 
 |   const Address& count_address = Address(stats_addr_reg, count_field_offset); | 
 |   const Address& size_address = Address(stats_addr_reg, size_field_offset); | 
 |   ldr(TMP, count_address); | 
 |   AddImmediate(TMP, 1); | 
 |   str(TMP, count_address); | 
 |   ldr(TMP, size_address); | 
 |   add(TMP, TMP, Operand(size_reg)); | 
 |   str(TMP, size_address); | 
 | } | 
 |  | 
 |  | 
 | void Assembler::TryAllocate(const Class& cls, | 
 |                             Label* failure, | 
 |                             Register instance_reg, | 
 |                             Register temp_reg) { | 
 |   ASSERT(failure != NULL); | 
 |   if (FLAG_inline_alloc) { | 
 |     ASSERT(instance_reg != temp_reg); | 
 |     ASSERT(temp_reg != IP); | 
 |     const intptr_t instance_size = cls.instance_size(); | 
 |     ASSERT(instance_size != 0); | 
 |     // If this allocation is traced, program will jump to failure path | 
 |     // (i.e. the allocation stub) which will allocate the object and trace the | 
 |     // allocation call site. | 
 |     MaybeTraceAllocation(cls.id(), temp_reg, failure, | 
 |                          /* inline_isolate = */ false); | 
 |     Heap::Space space = Heap::SpaceForAllocation(cls.id()); | 
 |     ldr(temp_reg, Address(THR, Thread::heap_offset())); | 
 |     ldr(instance_reg, Address(temp_reg, Heap::TopOffset(space))); | 
 |     // TODO(koda): Protect against unsigned overflow here. | 
 |     AddImmediateSetFlags(instance_reg, instance_reg, instance_size); | 
 |  | 
 |     // instance_reg: potential next object start. | 
 |     ldr(IP, Address(temp_reg, Heap::EndOffset(space))); | 
 |     cmp(IP, Operand(instance_reg)); | 
 |     // fail if heap end unsigned less than or equal to instance_reg. | 
 |     b(failure, LS); | 
 |  | 
 |     // Successfully allocated the object, now update top to point to | 
 |     // next object start and store the class in the class field of object. | 
 |     str(instance_reg, Address(temp_reg, Heap::TopOffset(space))); | 
 |  | 
 |     LoadAllocationStatsAddress(temp_reg, cls.id(), | 
 |                                /* inline_isolate = */ false); | 
 |  | 
 |     ASSERT(instance_size >= kHeapObjectTag); | 
 |     AddImmediate(instance_reg, -instance_size + kHeapObjectTag); | 
 |  | 
 |     uword tags = 0; | 
 |     tags = RawObject::SizeTag::update(instance_size, tags); | 
 |     ASSERT(cls.id() != kIllegalCid); | 
 |     tags = RawObject::ClassIdTag::update(cls.id(), tags); | 
 |     LoadImmediate(IP, tags); | 
 |     str(IP, FieldAddress(instance_reg, Object::tags_offset())); | 
 |  | 
 |     IncrementAllocationStats(temp_reg, cls.id(), space); | 
 |   } else { | 
 |     b(failure); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::TryAllocateArray(intptr_t cid, | 
 |                                  intptr_t instance_size, | 
 |                                  Label* failure, | 
 |                                  Register instance, | 
 |                                  Register end_address, | 
 |                                  Register temp1, | 
 |                                  Register temp2) { | 
 |   if (FLAG_inline_alloc) { | 
 |     // If this allocation is traced, program will jump to failure path | 
 |     // (i.e. the allocation stub) which will allocate the object and trace the | 
 |     // allocation call site. | 
 |     MaybeTraceAllocation(cid, temp1, failure, /* inline_isolate = */ false); | 
 |     Heap::Space space = Heap::SpaceForAllocation(cid); | 
 |     ldr(temp1, Address(THR, Thread::heap_offset())); | 
 |     // Potential new object start. | 
 |     ldr(instance, Address(temp1, Heap::TopOffset(space))); | 
 |     AddImmediateSetFlags(end_address, instance, instance_size); | 
 |     b(failure, CS);  // Branch if unsigned overflow. | 
 |  | 
 |     // Check if the allocation fits into the remaining space. | 
 |     // instance: potential new object start. | 
 |     // end_address: potential next object start. | 
 |     ldr(temp2, Address(temp1, Heap::EndOffset(space))); | 
 |     cmp(end_address, Operand(temp2)); | 
 |     b(failure, CS); | 
 |  | 
 |     LoadAllocationStatsAddress(temp2, cid, /* inline_isolate = */ false); | 
 |  | 
 |     // Successfully allocated the object(s), now update top to point to | 
 |     // next object start and initialize the object. | 
 |     str(end_address, Address(temp1, Heap::TopOffset(space))); | 
 |     add(instance, instance, Operand(kHeapObjectTag)); | 
 |  | 
 |     // Initialize the tags. | 
 |     // instance: new object start as a tagged pointer. | 
 |     uword tags = 0; | 
 |     tags = RawObject::ClassIdTag::update(cid, tags); | 
 |     tags = RawObject::SizeTag::update(instance_size, tags); | 
 |     LoadImmediate(temp1, tags); | 
 |     str(temp1, FieldAddress(instance, Array::tags_offset()));  // Store tags. | 
 |  | 
 |     LoadImmediate(temp1, instance_size); | 
 |     IncrementAllocationStatsWithSize(temp2, temp1, space); | 
 |   } else { | 
 |     b(failure); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Assembler::Stop(const char* message) { | 
 |   if (FLAG_print_stop_message) { | 
 |     PushList((1 << R0) | (1 << IP) | (1 << LR));  // Preserve R0, IP, LR. | 
 |     LoadImmediate(R0, reinterpret_cast<int32_t>(message)); | 
 |     // PrintStopMessage() preserves all registers. | 
 |     BranchLink(&StubCode::PrintStopMessage_entry()->label()); | 
 |     PopList((1 << R0) | (1 << IP) | (1 << LR));  // Restore R0, IP, LR. | 
 |   } | 
 |   // Emit the message address before the svc instruction, so that we can | 
 |   // 'unstop' and continue execution in the simulator or jump to the next | 
 |   // instruction in gdb. | 
 |   Label stop; | 
 |   b(&stop); | 
 |   Emit(reinterpret_cast<int32_t>(message)); | 
 |   Bind(&stop); | 
 |   bkpt(Instr::kStopMessageCode); | 
 | } | 
 |  | 
 |  | 
 | Address Assembler::ElementAddressForIntIndex(bool is_load, | 
 |                                              bool is_external, | 
 |                                              intptr_t cid, | 
 |                                              intptr_t index_scale, | 
 |                                              Register array, | 
 |                                              intptr_t index, | 
 |                                              Register temp) { | 
 |   const int64_t offset_base = | 
 |       (is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag)); | 
 |   const int64_t offset = offset_base + | 
 |       static_cast<int64_t>(index) * index_scale; | 
 |   ASSERT(Utils::IsInt(32, offset)); | 
 |  | 
 |   if (Address::CanHoldImmediateOffset(is_load, cid, offset)) { | 
 |     return Address(array, static_cast<int32_t>(offset)); | 
 |   } else { | 
 |     ASSERT(Address::CanHoldImmediateOffset(is_load, cid, offset - offset_base)); | 
 |     AddImmediate(temp, array, static_cast<int32_t>(offset_base)); | 
 |     return Address(temp, static_cast<int32_t>(offset - offset_base)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Address Assembler::ElementAddressForRegIndex(bool is_load, | 
 |                                              bool is_external, | 
 |                                              intptr_t cid, | 
 |                                              intptr_t index_scale, | 
 |                                              Register array, | 
 |                                              Register index) { | 
 |   // Note that index is expected smi-tagged, (i.e, LSL 1) for all arrays. | 
 |   const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) - kSmiTagShift; | 
 |   int32_t offset = | 
 |       is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag); | 
 |   const OperandSize size = Address::OperandSizeFor(cid); | 
 |   ASSERT(array != IP); | 
 |   ASSERT(index != IP); | 
 |   const Register base = is_load ? IP : index; | 
 |   if ((offset != 0) || | 
 |       (size == kSWord) || (size == kDWord) || (size == kRegList)) { | 
 |     if (shift < 0) { | 
 |       ASSERT(shift == -1); | 
 |       add(base, array, Operand(index, ASR, 1)); | 
 |     } else { | 
 |       add(base, array, Operand(index, LSL, shift)); | 
 |     } | 
 |   } else { | 
 |     if (shift < 0) { | 
 |       ASSERT(shift == -1); | 
 |       return Address(array, index, ASR, 1); | 
 |     } else { | 
 |       return Address(array, index, LSL, shift); | 
 |     } | 
 |   } | 
 |   int32_t offset_mask = 0; | 
 |   if ((is_load && !Address::CanHoldLoadOffset(size, | 
 |                                               offset, | 
 |                                               &offset_mask)) || | 
 |       (!is_load && !Address::CanHoldStoreOffset(size, | 
 |                                                 offset, | 
 |                                                 &offset_mask))) { | 
 |     AddImmediate(base, offset & ~offset_mask); | 
 |     offset = offset & offset_mask; | 
 |   } | 
 |   return Address(base, offset); | 
 | } | 
 |  | 
 |  | 
 | static const char* cpu_reg_names[kNumberOfCpuRegisters] = { | 
 |   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
 |   "r8", "ctx", "pp", "fp", "ip", "sp", "lr", "pc", | 
 | }; | 
 |  | 
 |  | 
 | const char* Assembler::RegisterName(Register reg) { | 
 |   ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters)); | 
 |   return cpu_reg_names[reg]; | 
 | } | 
 |  | 
 |  | 
 | static const char* fpu_reg_names[kNumberOfFpuRegisters] = { | 
 |   "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | 
 | #if defined(VFPv3_D32) | 
 |   "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | 
 | #endif | 
 | }; | 
 |  | 
 |  | 
 | const char* Assembler::FpuRegisterName(FpuRegister reg) { | 
 |   ASSERT((0 <= reg) && (reg < kNumberOfFpuRegisters)); | 
 |   return fpu_reg_names[reg]; | 
 | } | 
 |  | 
 | }  // namespace dart | 
 |  | 
 | #endif  // defined TARGET_ARCH_ARM |