| //===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_TWINE_H |
| #define LLVM_ADT_TWINE_H |
| |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <string> |
| |
| namespace llvm { |
| |
| class formatv_object_base; |
| class raw_ostream; |
| |
| /// Twine - A lightweight data structure for efficiently representing the |
| /// concatenation of temporary values as strings. |
| /// |
| /// A Twine is a kind of rope, it represents a concatenated string using a |
| /// binary-tree, where the string is the preorder of the nodes. Since the |
| /// Twine can be efficiently rendered into a buffer when its result is used, |
| /// it avoids the cost of generating temporary values for intermediate string |
| /// results -- particularly in cases when the Twine result is never |
| /// required. By explicitly tracking the type of leaf nodes, we can also avoid |
| /// the creation of temporary strings for conversions operations (such as |
| /// appending an integer to a string). |
| /// |
| /// A Twine is not intended for use directly and should not be stored, its |
| /// implementation relies on the ability to store pointers to temporary stack |
| /// objects which may be deallocated at the end of a statement. Twines should |
| /// only be used accepted as const references in arguments, when an API wishes |
| /// to accept possibly-concatenated strings. |
| /// |
| /// Twines support a special 'null' value, which always concatenates to form |
| /// itself, and renders as an empty string. This can be returned from APIs to |
| /// effectively nullify any concatenations performed on the result. |
| /// |
| /// \b Implementation |
| /// |
| /// Given the nature of a Twine, it is not possible for the Twine's |
| /// concatenation method to construct interior nodes; the result must be |
| /// represented inside the returned value. For this reason a Twine object |
| /// actually holds two values, the left- and right-hand sides of a |
| /// concatenation. We also have nullary Twine objects, which are effectively |
| /// sentinel values that represent empty strings. |
| /// |
| /// Thus, a Twine can effectively have zero, one, or two children. The \see |
| /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for |
| /// testing the number of children. |
| /// |
| /// We maintain a number of invariants on Twine objects (FIXME: Why): |
| /// - Nullary twines are always represented with their Kind on the left-hand |
| /// side, and the Empty kind on the right-hand side. |
| /// - Unary twines are always represented with the value on the left-hand |
| /// side, and the Empty kind on the right-hand side. |
| /// - If a Twine has another Twine as a child, that child should always be |
| /// binary (otherwise it could have been folded into the parent). |
| /// |
| /// These invariants are check by \see isValid(). |
| /// |
| /// \b Efficiency Considerations |
| /// |
| /// The Twine is designed to yield efficient and small code for common |
| /// situations. For this reason, the concat() method is inlined so that |
| /// concatenations of leaf nodes can be optimized into stores directly into a |
| /// single stack allocated object. |
| /// |
| /// In practice, not all compilers can be trusted to optimize concat() fully, |
| /// so we provide two additional methods (and accompanying operator+ |
| /// overloads) to guarantee that particularly important cases (cstring plus |
| /// StringRef) codegen as desired. |
| class Twine { |
| /// NodeKind - Represent the type of an argument. |
| enum NodeKind : unsigned char { |
| /// An empty string; the result of concatenating anything with it is also |
| /// empty. |
| NullKind, |
| |
| /// The empty string. |
| EmptyKind, |
| |
| /// A pointer to a Twine instance. |
| TwineKind, |
| |
| /// A pointer to a C string instance. |
| CStringKind, |
| |
| /// A pointer to an std::string instance. |
| StdStringKind, |
| |
| /// A pointer to a StringRef instance. |
| StringRefKind, |
| |
| /// A pointer to a SmallString instance. |
| SmallStringKind, |
| |
| /// A pointer to a formatv_object_base instance. |
| FormatvObjectKind, |
| |
| /// A char value, to render as a character. |
| CharKind, |
| |
| /// An unsigned int value, to render as an unsigned decimal integer. |
| DecUIKind, |
| |
| /// An int value, to render as a signed decimal integer. |
| DecIKind, |
| |
| /// A pointer to an unsigned long value, to render as an unsigned decimal |
| /// integer. |
| DecULKind, |
| |
| /// A pointer to a long value, to render as a signed decimal integer. |
| DecLKind, |
| |
| /// A pointer to an unsigned long long value, to render as an unsigned |
| /// decimal integer. |
| DecULLKind, |
| |
| /// A pointer to a long long value, to render as a signed decimal integer. |
| DecLLKind, |
| |
| /// A pointer to a uint64_t value, to render as an unsigned hexadecimal |
| /// integer. |
| UHexKind |
| }; |
| |
| union Child |
| { |
| const Twine *twine; |
| const char *cString; |
| const std::string *stdString; |
| const StringRef *stringRef; |
| const SmallVectorImpl<char> *smallString; |
| const formatv_object_base *formatvObject; |
| char character; |
| unsigned int decUI; |
| int decI; |
| const unsigned long *decUL; |
| const long *decL; |
| const unsigned long long *decULL; |
| const long long *decLL; |
| const uint64_t *uHex; |
| }; |
| |
| /// LHS - The prefix in the concatenation, which may be uninitialized for |
| /// Null or Empty kinds. |
| Child LHS; |
| /// RHS - The suffix in the concatenation, which may be uninitialized for |
| /// Null or Empty kinds. |
| Child RHS; |
| /// LHSKind - The NodeKind of the left hand side, \see getLHSKind(). |
| NodeKind LHSKind; |
| /// RHSKind - The NodeKind of the right hand side, \see getRHSKind(). |
| NodeKind RHSKind; |
| |
| /// Construct a nullary twine; the kind must be NullKind or EmptyKind. |
| explicit Twine(NodeKind Kind) |
| : LHSKind(Kind), RHSKind(EmptyKind) { |
| assert(isNullary() && "Invalid kind!"); |
| } |
| |
| /// Construct a binary twine. |
| explicit Twine(const Twine &LHS, const Twine &RHS) |
| : LHSKind(TwineKind), RHSKind(TwineKind) { |
| this->LHS.twine = &LHS; |
| this->RHS.twine = &RHS; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct a twine from explicit values. |
| explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind) |
| : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) { |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Check for the null twine. |
| bool isNull() const { |
| return getLHSKind() == NullKind; |
| } |
| |
| /// Check for the empty twine. |
| bool isEmpty() const { |
| return getLHSKind() == EmptyKind; |
| } |
| |
| /// Check if this is a nullary twine (null or empty). |
| bool isNullary() const { |
| return isNull() || isEmpty(); |
| } |
| |
| /// Check if this is a unary twine. |
| bool isUnary() const { |
| return getRHSKind() == EmptyKind && !isNullary(); |
| } |
| |
| /// Check if this is a binary twine. |
| bool isBinary() const { |
| return getLHSKind() != NullKind && getRHSKind() != EmptyKind; |
| } |
| |
| /// Check if this is a valid twine (satisfying the invariants on |
| /// order and number of arguments). |
| bool isValid() const { |
| // Nullary twines always have Empty on the RHS. |
| if (isNullary() && getRHSKind() != EmptyKind) |
| return false; |
| |
| // Null should never appear on the RHS. |
| if (getRHSKind() == NullKind) |
| return false; |
| |
| // The RHS cannot be non-empty if the LHS is empty. |
| if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind) |
| return false; |
| |
| // A twine child should always be binary. |
| if (getLHSKind() == TwineKind && |
| !LHS.twine->isBinary()) |
| return false; |
| if (getRHSKind() == TwineKind && |
| !RHS.twine->isBinary()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Get the NodeKind of the left-hand side. |
| NodeKind getLHSKind() const { return LHSKind; } |
| |
| /// Get the NodeKind of the right-hand side. |
| NodeKind getRHSKind() const { return RHSKind; } |
| |
| /// Print one child from a twine. |
| void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const; |
| |
| /// Print the representation of one child from a twine. |
| void printOneChildRepr(raw_ostream &OS, Child Ptr, |
| NodeKind Kind) const; |
| |
| public: |
| /// @name Constructors |
| /// @{ |
| |
| /// Construct from an empty string. |
| /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) { |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| Twine(const Twine &) = default; |
| |
| /// Construct from a C string. |
| /// |
| /// We take care here to optimize "" into the empty twine -- this will be |
| /// optimized out for string constants. This allows Twine arguments have |
| /// default "" values, without introducing unnecessary string constants. |
| /*implicit*/ Twine(const char *Str) |
| : RHSKind(EmptyKind) { |
| if (Str[0] != '\0') { |
| LHS.cString = Str; |
| LHSKind = CStringKind; |
| } else |
| LHSKind = EmptyKind; |
| |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct from an std::string. |
| /*implicit*/ Twine(const std::string &Str) |
| : LHSKind(StdStringKind), RHSKind(EmptyKind) { |
| LHS.stdString = &Str; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct from a StringRef. |
| /*implicit*/ Twine(const StringRef &Str) |
| : LHSKind(StringRefKind), RHSKind(EmptyKind) { |
| LHS.stringRef = &Str; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct from a SmallString. |
| /*implicit*/ Twine(const SmallVectorImpl<char> &Str) |
| : LHSKind(SmallStringKind), RHSKind(EmptyKind) { |
| LHS.smallString = &Str; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct from a formatv_object_base. |
| /*implicit*/ Twine(const formatv_object_base &Fmt) |
| : LHSKind(FormatvObjectKind), RHSKind(EmptyKind) { |
| LHS.formatvObject = &Fmt; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct from a char. |
| explicit Twine(char Val) |
| : LHSKind(CharKind), RHSKind(EmptyKind) { |
| LHS.character = Val; |
| } |
| |
| /// Construct from a signed char. |
| explicit Twine(signed char Val) |
| : LHSKind(CharKind), RHSKind(EmptyKind) { |
| LHS.character = static_cast<char>(Val); |
| } |
| |
| /// Construct from an unsigned char. |
| explicit Twine(unsigned char Val) |
| : LHSKind(CharKind), RHSKind(EmptyKind) { |
| LHS.character = static_cast<char>(Val); |
| } |
| |
| /// Construct a twine to print \p Val as an unsigned decimal integer. |
| explicit Twine(unsigned Val) |
| : LHSKind(DecUIKind), RHSKind(EmptyKind) { |
| LHS.decUI = Val; |
| } |
| |
| /// Construct a twine to print \p Val as a signed decimal integer. |
| explicit Twine(int Val) |
| : LHSKind(DecIKind), RHSKind(EmptyKind) { |
| LHS.decI = Val; |
| } |
| |
| /// Construct a twine to print \p Val as an unsigned decimal integer. |
| explicit Twine(const unsigned long &Val) |
| : LHSKind(DecULKind), RHSKind(EmptyKind) { |
| LHS.decUL = &Val; |
| } |
| |
| /// Construct a twine to print \p Val as a signed decimal integer. |
| explicit Twine(const long &Val) |
| : LHSKind(DecLKind), RHSKind(EmptyKind) { |
| LHS.decL = &Val; |
| } |
| |
| /// Construct a twine to print \p Val as an unsigned decimal integer. |
| explicit Twine(const unsigned long long &Val) |
| : LHSKind(DecULLKind), RHSKind(EmptyKind) { |
| LHS.decULL = &Val; |
| } |
| |
| /// Construct a twine to print \p Val as a signed decimal integer. |
| explicit Twine(const long long &Val) |
| : LHSKind(DecLLKind), RHSKind(EmptyKind) { |
| LHS.decLL = &Val; |
| } |
| |
| // FIXME: Unfortunately, to make sure this is as efficient as possible we |
| // need extra binary constructors from particular types. We can't rely on |
| // the compiler to be smart enough to fold operator+()/concat() down to the |
| // right thing. Yet. |
| |
| /// Construct as the concatenation of a C string and a StringRef. |
| /*implicit*/ Twine(const char *LHS, const StringRef &RHS) |
| : LHSKind(CStringKind), RHSKind(StringRefKind) { |
| this->LHS.cString = LHS; |
| this->RHS.stringRef = &RHS; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Construct as the concatenation of a StringRef and a C string. |
| /*implicit*/ Twine(const StringRef &LHS, const char *RHS) |
| : LHSKind(StringRefKind), RHSKind(CStringKind) { |
| this->LHS.stringRef = &LHS; |
| this->RHS.cString = RHS; |
| assert(isValid() && "Invalid twine!"); |
| } |
| |
| /// Since the intended use of twines is as temporary objects, assignments |
| /// when concatenating might cause undefined behavior or stack corruptions |
| Twine &operator=(const Twine &) = delete; |
| |
| /// Create a 'null' string, which is an empty string that always |
| /// concatenates to form another empty string. |
| static Twine createNull() { |
| return Twine(NullKind); |
| } |
| |
| /// @} |
| /// @name Numeric Conversions |
| /// @{ |
| |
| // Construct a twine to print \p Val as an unsigned hexadecimal integer. |
| static Twine utohexstr(const uint64_t &Val) { |
| Child LHS, RHS; |
| LHS.uHex = &Val; |
| RHS.twine = nullptr; |
| return Twine(LHS, UHexKind, RHS, EmptyKind); |
| } |
| |
| /// @} |
| /// @name Predicate Operations |
| /// @{ |
| |
| /// Check if this twine is trivially empty; a false return value does not |
| /// necessarily mean the twine is empty. |
| bool isTriviallyEmpty() const { |
| return isNullary(); |
| } |
| |
| /// Return true if this twine can be dynamically accessed as a single |
| /// StringRef value with getSingleStringRef(). |
| bool isSingleStringRef() const { |
| if (getRHSKind() != EmptyKind) return false; |
| |
| switch (getLHSKind()) { |
| case EmptyKind: |
| case CStringKind: |
| case StdStringKind: |
| case StringRefKind: |
| case SmallStringKind: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// @} |
| /// @name String Operations |
| /// @{ |
| |
| Twine concat(const Twine &Suffix) const; |
| |
| /// @} |
| /// @name Output & Conversion. |
| /// @{ |
| |
| /// Return the twine contents as a std::string. |
| std::string str() const; |
| |
| /// Append the concatenated string into the given SmallString or SmallVector. |
| void toVector(SmallVectorImpl<char> &Out) const; |
| |
| /// This returns the twine as a single StringRef. This method is only valid |
| /// if isSingleStringRef() is true. |
| StringRef getSingleStringRef() const { |
| assert(isSingleStringRef() &&"This cannot be had as a single stringref!"); |
| switch (getLHSKind()) { |
| default: llvm_unreachable("Out of sync with isSingleStringRef"); |
| case EmptyKind: return StringRef(); |
| case CStringKind: return StringRef(LHS.cString); |
| case StdStringKind: return StringRef(*LHS.stdString); |
| case StringRefKind: return *LHS.stringRef; |
| case SmallStringKind: |
| return StringRef(LHS.smallString->data(), LHS.smallString->size()); |
| } |
| } |
| |
| /// This returns the twine as a single StringRef if it can be |
| /// represented as such. Otherwise the twine is written into the given |
| /// SmallVector and a StringRef to the SmallVector's data is returned. |
| StringRef toStringRef(SmallVectorImpl<char> &Out) const { |
| if (isSingleStringRef()) |
| return getSingleStringRef(); |
| toVector(Out); |
| return StringRef(Out.data(), Out.size()); |
| } |
| |
| /// This returns the twine as a single null terminated StringRef if it |
| /// can be represented as such. Otherwise the twine is written into the |
| /// given SmallVector and a StringRef to the SmallVector's data is returned. |
| /// |
| /// The returned StringRef's size does not include the null terminator. |
| StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const; |
| |
| /// Write the concatenated string represented by this twine to the |
| /// stream \p OS. |
| void print(raw_ostream &OS) const; |
| |
| /// Dump the concatenated string represented by this twine to stderr. |
| void dump() const; |
| |
| /// Write the representation of this twine to the stream \p OS. |
| void printRepr(raw_ostream &OS) const; |
| |
| /// Dump the representation of this twine to stderr. |
| void dumpRepr() const; |
| |
| /// @} |
| }; |
| |
| /// @name Twine Inline Implementations |
| /// @{ |
| |
| inline Twine Twine::concat(const Twine &Suffix) const { |
| // Concatenation with null is null. |
| if (isNull() || Suffix.isNull()) |
| return Twine(NullKind); |
| |
| // Concatenation with empty yields the other side. |
| if (isEmpty()) |
| return Suffix; |
| if (Suffix.isEmpty()) |
| return *this; |
| |
| // Otherwise we need to create a new node, taking care to fold in unary |
| // twines. |
| Child NewLHS, NewRHS; |
| NewLHS.twine = this; |
| NewRHS.twine = &Suffix; |
| NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind; |
| if (isUnary()) { |
| NewLHS = LHS; |
| NewLHSKind = getLHSKind(); |
| } |
| if (Suffix.isUnary()) { |
| NewRHS = Suffix.LHS; |
| NewRHSKind = Suffix.getLHSKind(); |
| } |
| |
| return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind); |
| } |
| |
| inline Twine operator+(const Twine &LHS, const Twine &RHS) { |
| return LHS.concat(RHS); |
| } |
| |
| /// Additional overload to guarantee simplified codegen; this is equivalent to |
| /// concat(). |
| |
| inline Twine operator+(const char *LHS, const StringRef &RHS) { |
| return Twine(LHS, RHS); |
| } |
| |
| /// Additional overload to guarantee simplified codegen; this is equivalent to |
| /// concat(). |
| |
| inline Twine operator+(const StringRef &LHS, const char *RHS) { |
| return Twine(LHS, RHS); |
| } |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) { |
| RHS.print(OS); |
| return OS; |
| } |
| |
| /// @} |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_TWINE_H |