blob: 604d84994b6c429f8c88fb20663072a3eaf917b6 [file] [log] [blame]
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Hexagon uses to lower LLVM code
// into a selection DAG.
//
//===----------------------------------------------------------------------===//
#include "HexagonISelLowering.h"
#include "Hexagon.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonTargetObjectFile.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "hexagon-lowering"
static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
cl::init(true), cl::Hidden,
cl::desc("Control jump table emission on Hexagon target"));
static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable Hexagon SDNode scheduling"));
static cl::opt<bool> EnableFastMath("ffast-math",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable Fast Math processing"));
static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
cl::Hidden, cl::ZeroOrMore, cl::init(5),
cl::desc("Set minimum jump tables"));
static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
cl::Hidden, cl::ZeroOrMore, cl::init(6),
cl::desc("Max #stores to inline memcpy"));
static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
cl::Hidden, cl::ZeroOrMore, cl::init(4),
cl::desc("Max #stores to inline memcpy"));
static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
cl::Hidden, cl::ZeroOrMore, cl::init(6),
cl::desc("Max #stores to inline memmove"));
static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
cl::Hidden, cl::ZeroOrMore, cl::init(4),
cl::desc("Max #stores to inline memmove"));
static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
cl::Hidden, cl::ZeroOrMore, cl::init(8),
cl::desc("Max #stores to inline memset"));
static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
cl::Hidden, cl::ZeroOrMore, cl::init(4),
cl::desc("Max #stores to inline memset"));
static cl::opt<bool> AlignLoads("hexagon-align-loads",
cl::Hidden, cl::init(false),
cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
namespace {
class HexagonCCState : public CCState {
unsigned NumNamedVarArgParams = 0;
public:
HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
unsigned NumNamedArgs)
: CCState(CC, IsVarArg, MF, locs, C),
NumNamedVarArgParams(NumNamedArgs) {}
unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
};
} // end anonymous namespace
// Implement calling convention for Hexagon.
static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
static const MCPhysReg ArgRegs[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2,
Hexagon::R3, Hexagon::R4, Hexagon::R5
};
const unsigned NumArgRegs = array_lengthof(ArgRegs);
unsigned RegNum = State.getFirstUnallocated(ArgRegs);
// RegNum is an index into ArgRegs: skip a register if RegNum is odd.
if (RegNum != NumArgRegs && RegNum % 2 == 1)
State.AllocateReg(ArgRegs[RegNum]);
// Always return false here, as this function only makes sure that the first
// unallocated register has an even register number and does not actually
// allocate a register for the current argument.
return false;
}
#include "HexagonGenCallingConv.inc"
void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) {
if (VT != PromotedLdStVT) {
setOperationAction(ISD::LOAD, VT, Promote);
AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType(ISD::STORE, VT, PromotedLdStVT);
}
}
SDValue
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
const {
return SDValue();
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter. Sometimes what we are copying is the end of a
/// larger object, the part that does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
SDValue Chain, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, const SDLoc &dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile=*/false, /*AlwaysInline=*/false,
/*isTailCall=*/false,
MachinePointerInfo(), MachinePointerInfo());
}
bool
HexagonTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
}
// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
// passed by value, the function prototype is modified to return void and
// the value is stored in memory pointed by a pointer passed by caller.
SDValue
HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values of ISD::RET
if (Subtarget.useHVXOps())
CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
else
CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
}
bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
// If either no tail call or told not to tail call at all, don't.
auto Attr =
CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
if (!CI->isTailCall() || Attr.getValueAsString() == "true")
return false;
return true;
}
/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers. This assumes that
/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
/// being lowered. Returns a SDNode with the same number of values as the
/// ISD::CALL.
SDValue HexagonTargetLowering::LowerCallResult(
SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
if (Subtarget.useHVXOps())
CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
else
CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
SDValue RetVal;
if (RVLocs[i].getValVT() == MVT::i1) {
// Return values of type MVT::i1 require special handling. The reason
// is that MVT::i1 is associated with the PredRegs register class, but
// values of that type are still returned in R0. Generate an explicit
// copy into a predicate register from R0, and treat the value of the
// predicate register as the call result.
auto &MRI = DAG.getMachineFunction().getRegInfo();
SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
MVT::i32, Glue);
// FR0 = (Value, Chain, Glue)
unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
FR0.getValue(0), FR0.getValue(2));
// TPR = (Chain, Glue)
// Don't glue this CopyFromReg, because it copies from a virtual
// register. If it is glued to the call, InstrEmitter will add it
// as an implicit def to the call (EmitMachineNode).
RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
Glue = TPR.getValue(1);
Chain = TPR.getValue(0);
} else {
RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), Glue);
Glue = RetVal.getValue(2);
Chain = RetVal.getValue(1);
}
InVals.push_back(RetVal.getValue(0));
}
return Chain;
}
/// LowerCall - Functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
bool DoesNotReturn = CLI.DoesNotReturn;
bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto PtrVT = getPointerTy(MF.getDataLayout());
unsigned NumParams = CLI.CS.getInstruction()
? CLI.CS.getFunctionType()->getNumParams()
: 0;
if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
NumParams);
if (Subtarget.useHVXOps())
CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
else
CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
if (Attr.getValueAsString() == "true")
CLI.IsTailCall = false;
if (CLI.IsTailCall) {
bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
IsVarArg, IsStructRet, StructAttrFlag, Outs,
OutVals, Ins, DAG);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isMemLoc()) {
CLI.IsTailCall = false;
break;
}
}
LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
: "Argument must be passed on stack. "
"Not eligible for Tail Call\n"));
}
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
SDValue StackPtr =
DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
bool NeedsArgAlign = false;
unsigned LargestAlignSeen = 0;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Record if we need > 8 byte alignment on an argument.
bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
NeedsArgAlign |= ArgAlign;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
// Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getBitcast(VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
if (VA.isMemLoc()) {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
StackPtr.getValueType());
MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
if (ArgAlign)
LargestAlignSeen = std::max(LargestAlignSeen,
VA.getLocVT().getStoreSizeInBits() >> 3);
if (Flags.isByVal()) {
// The argument is a struct passed by value. According to LLVM, "Arg"
// is a pointer.
MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
Flags, DAG, dl));
} else {
MachinePointerInfo LocPI = MachinePointerInfo::getStack(
DAG.getMachineFunction(), LocMemOffset);
SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
MemOpChains.push_back(S);
}
continue;
}
// Arguments that can be passed on register must be kept at RegsToPass
// vector.
if (VA.isRegLoc())
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
}
if (NeedsArgAlign && Subtarget.hasV60Ops()) {
LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
MFI.ensureMaxAlignment(LargestAlignSeen);
}
// Transform all store nodes into one single node because all store
// nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
SDValue Glue;
if (!CLI.IsTailCall) {
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
Glue = Chain.getValue(1);
}
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The Glue is necessary since all emitted instructions must be
// stuck together.
if (!CLI.IsTailCall) {
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, Glue);
Glue = Chain.getValue(1);
}
} else {
// For tail calls lower the arguments to the 'real' stack slot.
//
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
//
// Do not flag preceding copytoreg stuff together with the following stuff.
Glue = SDValue();
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, Glue);
Glue = Chain.getValue(1);
}
Glue = SDValue();
}
bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
} else if (ExternalSymbolSDNode *S =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
}
const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (Glue.getNode())
Ops.push_back(Glue);
if (CLI.IsTailCall) {
MFI.setHasTailCall();
return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
}
// Set this here because we need to know this for "hasFP" in frame lowering.
// The target-independent code calls getFrameRegister before setting it, and
// getFrameRegister uses hasFP to determine whether the function has FP.
MFI.setHasCalls(true);
unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
Glue = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(0, dl, true), Glue, dl);
Glue = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
InVals, OutVals, Callee);
}
/// Returns true by value, base pointer and offset pointer and addressing
/// mode by reference if this node can be combined with a load / store to
/// form a post-indexed load / store.
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
if (!LSN)
return false;
EVT VT = LSN->getMemoryVT();
if (!VT.isSimple())
return false;
bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
VT == MVT::v4i16 || VT == MVT::v8i8 ||
Subtarget.isHVXVectorType(VT.getSimpleVT());
if (!IsLegalType)
return false;
if (Op->getOpcode() != ISD::ADD)
return false;
Base = Op->getOperand(0);
Offset = Op->getOperand(1);
if (!isa<ConstantSDNode>(Offset.getNode()))
return false;
AM = ISD::POST_INC;
int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
}
SDValue
HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
unsigned LR = HRI.getRARegister();
if (Op.getOpcode() != ISD::INLINEASM || HMFI.hasClobberLR())
return Op;
unsigned NumOps = Op.getNumOperands();
if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
--NumOps; // Ignore the flag operand.
for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
++i; // Skip the ID value.
switch (InlineAsm::getKind(Flags)) {
default:
llvm_unreachable("Bad flags!");
case InlineAsm::Kind_RegUse:
case InlineAsm::Kind_Imm:
case InlineAsm::Kind_Mem:
i += NumVals;
break;
case InlineAsm::Kind_Clobber:
case InlineAsm::Kind_RegDef:
case InlineAsm::Kind_RegDefEarlyClobber: {
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
if (Reg != LR)
continue;
HMFI.setHasClobberLR(true);
return Op;
}
break;
}
}
}
return Op;
}
// Need to transform ISD::PREFETCH into something that doesn't inherit
// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
// SDNPMayStore.
SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
// Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
// if the "reg" is fed by an "add".
SDLoc DL(Op);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}
// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
// is marked as having side-effects, while the register read on Hexagon does
// not have any. TableGen refuses to accept the direct pattern from that node
// to the A4_tfrcpp.
SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDLoc dl(Op);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
}
SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// Lower the hexagon_prefetch builtin to DCFETCH, as above.
if (IntNo == Intrinsic::hexagon_prefetch) {
SDValue Addr = Op.getOperand(2);
SDLoc DL(Op);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDValue Align = Op.getOperand(2);
SDLoc dl(Op);
ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
unsigned A = AlignConst->getSExtValue();
auto &HFI = *Subtarget.getFrameLowering();
// "Zero" means natural stack alignment.
if (A == 0)
A = HFI.getStackAlignment();
LLVM_DEBUG({
dbgs () << __func__ << " Align: " << A << " Size: ";
Size.getNode()->dump(&DAG);
dbgs() << "\n";
});
SDValue AC = DAG.getConstant(A, dl, MVT::i32);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
DAG.ReplaceAllUsesOfValueWith(Op, AA);
return AA;
}
SDValue HexagonTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
MF.getFunction().getFunctionType()->getNumParams());
if (Subtarget.useHVXOps())
CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
else
CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
// For LLVM, in the case when returning a struct by value (>8byte),
// the first argument is a pointer that points to the location on caller's
// stack where the return value will be stored. For Hexagon, the location on
// caller's stack is passed only when the struct size is smaller than (and
// equal to) 8 bytes. If not, no address will be passed into callee and
// callee return the result direclty through R0/R1.
auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool ByVal = Flags.isByVal();
// Arguments passed in registers:
// 1. 32- and 64-bit values and HVX vectors are passed directly,
// 2. Large structs are passed via an address, and the address is
// passed in a register.
if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
llvm_unreachable("ByValSize must be bigger than 8 bytes");
bool InReg = VA.isRegLoc() &&
(!ByVal || (ByVal && Flags.getByValSize() > 8));
if (InReg) {
MVT RegVT = VA.getLocVT();
if (VA.getLocInfo() == CCValAssign::BCvt)
RegVT = VA.getValVT();
const TargetRegisterClass *RC = getRegClassFor(RegVT);
unsigned VReg = MRI.createVirtualRegister(RC);
SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
// Treat values of type MVT::i1 specially: they are passed in
// registers of type i32, but they need to remain as values of
// type i1 for consistency of the argument lowering.
if (VA.getValVT() == MVT::i1) {
assert(RegVT.getSizeInBits() <= 32);
SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
Copy, DAG.getConstant(1, dl, RegVT));
Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
ISD::SETNE);
} else {
#ifndef NDEBUG
unsigned RegSize = RegVT.getSizeInBits();
assert(RegSize == 32 || RegSize == 64 ||
Subtarget.isHVXVectorType(RegVT));
#endif
}
InVals.push_back(Copy);
MRI.addLiveIn(VA.getLocReg(), VReg);
} else {
assert(VA.isMemLoc() && "Argument should be passed in memory");
// If it's a byval parameter, then we need to compute the
// "real" size, not the size of the pointer.
unsigned ObjSize = Flags.isByVal()
? Flags.getByValSize()
: VA.getLocVT().getStoreSizeInBits() / 8;
// Create the frame index object for this incoming parameter.
int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
if (Flags.isByVal()) {
// If it's a pass-by-value aggregate, then do not dereference the stack
// location. Instead, we should generate a reference to the stack
// location.
InVals.push_back(FIN);
} else {
SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI, 0));
InVals.push_back(L);
}
}
}
if (IsVarArg) {
// This will point to the next argument passed via stack.
int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
HMFI.setVarArgsFrameIndex(FI);
}
return Chain;
}
SDValue
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
// VASTART stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MachineFunction &MF = DAG.getMachineFunction();
HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
const SDLoc &dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
MVT ResTy = ty(Op);
MVT OpTy = ty(LHS);
if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
MVT ElemTy = OpTy.getVectorElementType();
assert(ElemTy.isScalarInteger());
MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
OpTy.getVectorNumElements());
return DAG.getSetCC(dl, ResTy,
DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
}
// Treat all other vector types as legal.
if (ResTy.isVector())
return Op;
// Comparisons of short integers should use sign-extend, not zero-extend,
// since we can represent small negative values in the compare instructions.
// The LLVM default is to use zero-extend arbitrarily in these cases.
auto isSExtFree = [this](SDValue N) {
switch (N.getOpcode()) {
case ISD::TRUNCATE: {
// A sign-extend of a truncate of a sign-extend is free.
SDValue Op = N.getOperand(0);
if (Op.getOpcode() != ISD::AssertSext)
return false;
EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned ThisBW = ty(N).getSizeInBits();
unsigned OrigBW = OrigTy.getSizeInBits();
// The type that was sign-extended to get the AssertSext must be
// narrower than the type of N (so that N has still the same value
// as the original).
return ThisBW >= OrigBW;
}
case ISD::LOAD:
// We have sign-extended loads.
return true;
}
return false;
};
if (OpTy == MVT::i8 || OpTy == MVT::i16) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
bool IsNegative = C && C->getAPIntValue().isNegative();
if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
return DAG.getSetCC(dl, ResTy,
DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue PredOp = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
EVT OpVT = Op1.getValueType();
SDLoc DL(Op);
if (OpVT == MVT::v2i16) {
SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
return TR;
}
return SDValue();
}
static Constant *convert_i1_to_i8(const Constant *ConstVal) {
SmallVector<Constant *, 128> NewConst;
const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
if (!CV)
return nullptr;
LLVMContext &Ctx = ConstVal->getContext();
IRBuilder<> IRB(Ctx);
unsigned NumVectorElements = CV->getNumOperands();
assert(isPowerOf2_32(NumVectorElements) &&
"conversion only supported for pow2 VectorSize!");
for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
uint8_t x = 0;
for (unsigned j = 0; j < 8; ++j) {
uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
x |= y << (7 - j);
}
assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
NewConst.push_back(IRB.getInt8(x));
}
return ConstantVector::get(NewConst);
}
SDValue
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
EVT ValTy = Op.getValueType();
ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
Constant *CVal = nullptr;
bool isVTi1Type = false;
if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
Type *CValTy = ConstVal->getType();
if (CValTy->isVectorTy() &&
CValTy->getVectorElementType()->isIntegerTy(1)) {
CVal = convert_i1_to_i8(ConstVal);
isVTi1Type = (CVal != nullptr);
}
}
unsigned Align = CPN->getAlignment();
bool IsPositionIndependent = isPositionIndependent();
unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
unsigned Offset = 0;
SDValue T;
if (CPN->isMachineConstantPoolEntry())
T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
TF);
else if (isVTi1Type)
T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
else
T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
"Inconsistent target flag encountered");
if (IsPositionIndependent)
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
}
SDValue
HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
int Idx = cast<JumpTableSDNode>(Op)->getIndex();
if (isPositionIndependent()) {
SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
}
SDValue T = DAG.getTargetJumpTable(Idx, VT);
return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
}
SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return LR, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
HRI.getFrameRegister(), VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
SDValue
HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
SDLoc dl(Op);
return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
}
SDValue
HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
auto *GAN = cast<GlobalAddressSDNode>(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
auto *GV = GAN->getGlobal();
int64_t Offset = GAN->getOffset();
auto &HLOF = *HTM.getObjFileLowering();
Reloc::Model RM = HTM.getRelocationModel();
if (RM == Reloc::Static) {
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
const GlobalObject *GO = GV->getBaseObject();
if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
}
bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
if (UsePCRel) {
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
}
// Use GOT index.
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
}
// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
SDValue
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
Reloc::Model RM = HTM.getRelocationModel();
if (RM == Reloc::Static) {
SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
}
SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
}
SDValue
HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
}
SDValue
HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDLoc dl(GA);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
OperandFlags);
// Create Operands for the call.The Operands should have the following:
// 1. Chain SDValue
// 2. Callee which in this case is the Global address value.
// 3. Registers live into the call.In this case its R0, as we
// have just one argument to be passed.
// 4. Glue.
// Note: The order is important.
const auto &HRI = *Subtarget.getRegisterInfo();
const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
DAG.getRegisterMask(Mask), Glue };
Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
// Inform MFI that function has calls.
MFI.setAdjustsStack(true);
Glue = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
}
//
// Lower using the intial executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
int64_t Offset = GA->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Get the thread pointer.
SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
bool IsPositionIndependent = isPositionIndependent();
unsigned char TF =
IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
// First generate the TLS symbol address
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
Offset, TF);
SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
if (IsPositionIndependent) {
// Generate the GOT pointer in case of position independent code
SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
// Add the TLS Symbol address to GOT pointer.This gives
// GOT relative relocation for the symbol.
Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
}
// Load the offset value for TLS symbol.This offset is relative to
// thread pointer.
SDValue LoadOffset =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
// Address of the thread local variable is the add of thread
// pointer and the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
}
//
// Lower using the local executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
int64_t Offset = GA->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Get the thread pointer.
SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
// Generate the TLS symbol address
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
HexagonII::MO_TPREL);
SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
// Address of the thread local variable is the add of thread
// pointer and the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
}
//
// Lower using the general dynamic model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
int64_t Offset = GA->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// First generate the TLS symbol address
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
HexagonII::MO_GDGOT);
// Then, generate the GOT pointer
SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
// Add the TLS symbol and the GOT pointer
SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
// Copy over the argument to R0
SDValue InFlag;
Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
InFlag = Chain.getValue(1);
unsigned Flags =
static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
: HexagonII::MO_GDPLT;
return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
Hexagon::R0, Flags);
}
//
// Lower TLS addresses.
//
// For now for dynamic models, we only support the general dynamic model.
//
SDValue
HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
switch (HTM.getTLSModel(GA->getGlobal())) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic:
return LowerToTLSGeneralDynamicModel(GA, DAG);
case TLSModel::InitialExec:
return LowerToTLSInitialExecModel(GA, DAG);
case TLSModel::LocalExec:
return LowerToTLSLocalExecModel(GA, DAG);
}
llvm_unreachable("Bogus TLS model");
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
const HexagonSubtarget &ST)
: TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
Subtarget(ST) {
bool IsV4 = !Subtarget.hasV5Ops();
auto &HRI = *Subtarget.getRegisterInfo();
setPrefLoopAlignment(4);
setPrefFunctionAlignment(4);
setMinFunctionAlignment(2);
setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
setMaxAtomicSizeInBitsSupported(64);
setMinCmpXchgSizeInBits(32);
if (EnableHexSDNodeSched)
setSchedulingPreference(Sched::VLIW);
else
setSchedulingPreference(Sched::Source);
// Limits for inline expansion of memcpy/memmove
MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
MaxStoresPerMemset = MaxStoresPerMemsetCL;
MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
//
// Set up register classes.
//
addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
if (Subtarget.hasV5Ops()) {
addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
}
//
// Handling of scalar operations.
//
// All operations default to "legal", except:
// - indexed loads and stores (pre-/post-incremented),
// - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
// ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
// FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
// FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
// which default to "expand" for at least one type.
// Misc operations.
setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
// Custom legalize GlobalAddress nodes into CONST32.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
// Hexagon needs to optimize cases with negative constants.
setOperationAction(ISD::SETCC, MVT::i8, Custom);
setOperationAction(ISD::SETCC, MVT::i16, Custom);
setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
if (EmitJumpTables)
setMinimumJumpTableEntries(MinimumJumpTables);
else
setMinimumJumpTableEntries(std::numeric_limits<int>::max());
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::ABS, MVT::i32, Legal);
setOperationAction(ISD::ABS, MVT::i64, Legal);
// Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
// but they only operate on i64.
for (MVT VT : MVT::integer_valuetypes()) {
setOperationAction(ISD::UADDO, VT, Expand);
setOperationAction(ISD::USUBO, VT, Expand);
setOperationAction(ISD::SADDO, VT, Expand);
setOperationAction(ISD::SSUBO, VT, Expand);
setOperationAction(ISD::ADDCARRY, VT, Expand);
setOperationAction(ISD::SUBCARRY, VT, Expand);
}
setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
setOperationAction(ISD::CTLZ, MVT::i8, Promote);
setOperationAction(ISD::CTLZ, MVT::i16, Promote);
setOperationAction(ISD::CTTZ, MVT::i8, Promote);
setOperationAction(ISD::CTTZ, MVT::i16, Promote);
// In V5, popcount can count # of 1s in i64 but returns i32.
// On V4 it will be expanded (set later).
setOperationAction(ISD::CTPOP, MVT::i8, Promote);
setOperationAction(ISD::CTPOP, MVT::i16, Promote);
setOperationAction(ISD::CTPOP, MVT::i32, Promote);
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
setOperationAction(ISD::BSWAP, MVT::i64, Legal);
for (unsigned IntExpOp :
{ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
for (MVT VT : MVT::integer_valuetypes())
setOperationAction(IntExpOp, VT, Expand);
}
for (unsigned FPExpOp :
{ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
ISD::FPOW, ISD::FCOPYSIGN}) {
for (MVT VT : MVT::fp_valuetypes())
setOperationAction(FPExpOp, VT, Expand);
}
// No extending loads from i32.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
}
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Turn FP extload into load/fpextend.
for (MVT VT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
// Expand BR_CC and SELECT_CC for all integer and fp types.
for (MVT VT : MVT::integer_valuetypes()) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
//
// Handling of vector operations.
//
promoteLdStType(MVT::v4i8, MVT::i32);
promoteLdStType(MVT::v2i16, MVT::i32);
promoteLdStType(MVT::v8i8, MVT::i64);
promoteLdStType(MVT::v4i16, MVT::i64);
promoteLdStType(MVT::v2i32, MVT::i64);
// Set the action for vector operations to "expand", then override it with
// either "custom" or "legal" for specific cases.
static const unsigned VectExpOps[] = {
// Integer arithmetic:
ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
// Logical/bit:
ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
// Floating point arithmetic/math functions:
ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
// Misc:
ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
// Vector:
ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
};
for (MVT VT : MVT::vector_valuetypes()) {
for (unsigned VectExpOp : VectExpOps)
setOperationAction(VectExpOp, VT, Expand);
// Expand all extending loads and truncating stores:
for (MVT TargetVT : MVT::vector_valuetypes()) {
if (TargetVT == VT)
continue;
setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
setTruncStoreAction(VT, TargetVT, Expand);
}
// Normalize all inputs to SELECT to be vectors of i32.
if (VT.getVectorElementType() != MVT::i32) {
MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
setOperationAction(ISD::SELECT, VT, Promote);
AddPromotedToType(ISD::SELECT, VT, VT32);
}
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
}
// Extending loads from (native) vectors of i8 into (native) vectors of i16
// are legal.
setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
// Types natively supported:
for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
setOperationAction(ISD::ADD, NativeVT, Legal);
setOperationAction(ISD::SUB, NativeVT, Legal);
setOperationAction(ISD::MUL, NativeVT, Legal);
setOperationAction(ISD::AND, NativeVT, Legal);
setOperationAction(ISD::OR, NativeVT, Legal);
setOperationAction(ISD::XOR, NativeVT, Legal);
}
// Custom lower unaligned loads.
for (MVT VecVT : {MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
setOperationAction(ISD::LOAD, VecVT, Custom);
}
for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) {
setCondCodeAction(ISD::SETLT, VT, Expand);
setCondCodeAction(ISD::SETLE, VT, Expand);
setCondCodeAction(ISD::SETULT, VT, Expand);
setCondCodeAction(ISD::SETULE, VT, Expand);
}
// Custom-lower bitcasts from i8 to v8i1.
setOperationAction(ISD::BITCAST, MVT::i8, Custom);
setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
// Subtarget-specific operation actions.
//
if (Subtarget.hasV60Ops()) {
setOperationAction(ISD::ROTL, MVT::i32, Custom);
setOperationAction(ISD::ROTL, MVT::i64, Custom);
}
if (Subtarget.hasV5Ops()) {
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FADD, MVT::f64, Expand);
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::FMUL, MVT::f64, Expand);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
} else { // V4
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
setOperationAction(ISD::CTPOP, MVT::i8, Expand);
setOperationAction(ISD::CTPOP, MVT::i16, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// Expand these operations for both f32 and f64:
for (unsigned FPExpOpV4 :
{ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
setOperationAction(FPExpOpV4, MVT::f32, Expand);
setOperationAction(FPExpOpV4, MVT::f64, Expand);
}
for (ISD::CondCode FPExpCCV4 :
{ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
ISD::SETUO, ISD::SETO}) {
setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
}
}
// Handling of indexed loads/stores: default is "expand".
//
for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
setIndexedLoadAction(ISD::POST_INC, VT, Legal);
setIndexedStoreAction(ISD::POST_INC, VT, Legal);
}
if (Subtarget.useHVXOps())
initializeHVXLowering();
computeRegisterProperties(&HRI);
//
// Library calls for unsupported operations
//
bool FastMath = EnableFastMath;
setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
if (IsV4) {
// Handle single-precision floating point operations on V4.
if (FastMath) {
setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
// Double-precision compares.
setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
} else {
setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
// Double-precision compares.
setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
}
}
// This is the only fast library function for sqrtd.
if (FastMath)
setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
// Prefix is: nothing for "slow-math",
// "fast2_" for V4 fast-math and V5+ fast-math double-precision
// (actually, keep fast-math and fast-math2 separate for now)
if (FastMath) {
setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
// Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
} else {
setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
}
if (Subtarget.hasV5Ops()) {
if (FastMath)
setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
else
setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
} else {
// V4
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
}
// These cause problems when the shift amount is non-constant.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((HexagonISD::NodeType)Opcode) {
case HexagonISD::ADDC: return "HexagonISD::ADDC";
case HexagonISD::SUBC: return "HexagonISD::SUBC";
case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
case HexagonISD::CALL: return "HexagonISD::CALL";
case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
case HexagonISD::CALLR: return "HexagonISD::CALLR";
case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
case HexagonISD::CONST32: return "HexagonISD::CONST32";
case HexagonISD::CP: return "HexagonISD::CP";
case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
case HexagonISD::INSERT: return "HexagonISD::INSERT";
case HexagonISD::JT: return "HexagonISD::JT";
case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
case HexagonISD::VASL: return "HexagonISD::VASL";
case HexagonISD::VASR: return "HexagonISD::VASR";
case HexagonISD::VLSR: return "HexagonISD::VLSR";
case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT";
case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
case HexagonISD::VROR: return "HexagonISD::VROR";
case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
case HexagonISD::VZERO: return "HexagonISD::VZERO";
case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW";
case HexagonISD::D2P: return "HexagonISD::D2P";
case HexagonISD::P2D: return "HexagonISD::P2D";
case HexagonISD::V2Q: return "HexagonISD::V2Q";
case HexagonISD::Q2V: return "HexagonISD::Q2V";
case HexagonISD::QCAT: return "HexagonISD::QCAT";
case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
case HexagonISD::OP_END: break;
}
return nullptr;
}
// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
// intrinsic.
static bool isBrevLdIntrinsic(const Value *Inst) {
unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
ID == Intrinsic::hexagon_L2_loadri_pbr ||
ID == Intrinsic::hexagon_L2_loadrh_pbr ||
ID == Intrinsic::hexagon_L2_loadruh_pbr ||
ID == Intrinsic::hexagon_L2_loadrb_pbr ||
ID == Intrinsic::hexagon_L2_loadrub_pbr);
}
// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
// instruction. So far we only handle bitcast, extract value and bit reverse
// load intrinsic instructions. Should we handle CGEP ?
static Value *getBrevLdObject(Value *V) {
if (Operator::getOpcode(V) == Instruction::ExtractValue ||
Operator::getOpcode(V) == Instruction::BitCast)
V = cast<Operator>(V)->getOperand(0);
else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
V = cast<Instruction>(V)->getOperand(0);
return V;
}
// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
// a back edge. If the back edge comes from the intrinsic itself, the incoming
// edge is returned.
static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
const BasicBlock *Parent = PN->getParent();
int Idx = -1;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
BasicBlock *Blk = PN->getIncomingBlock(i);
// Determine if the back edge is originated from intrinsic.
if (Blk == Parent) {
Value *BackEdgeVal = PN->getIncomingValue(i);
Value *BaseVal;
// Loop over till we return the same Value or we hit the IntrBaseVal.
do {
BaseVal = BackEdgeVal;
BackEdgeVal = getBrevLdObject(BackEdgeVal);
} while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
// If the getBrevLdObject returns IntrBaseVal, we should return the
// incoming edge.
if (IntrBaseVal == BackEdgeVal)
continue;
Idx = i;
break;
} else // Set the node to incoming edge.
Idx = i;
}
assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
return PN->getIncomingValue(Idx);
}
// Bit-reverse Load Intrinsic: Figure out the underlying object the base
// pointer points to, for the bit-reverse load intrinsic. Setting this to
// memoperand might help alias analysis to figure out the dependencies.
static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
Value *IntrBaseVal = V;
Value *BaseVal;
// Loop over till we return the same Value, implies we either figure out
// the object or we hit a PHI
do {
BaseVal = V;
V = getBrevLdObject(V);
} while (BaseVal != V);
// Identify the object from PHINode.
if (const PHINode *PN = dyn_cast<PHINode>(V))
return returnEdge(PN, IntrBaseVal);
// For non PHI nodes, the object is the last value returned by getBrevLdObject
else
return V;
}
/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and store the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::hexagon_L2_loadrd_pbr:
case Intrinsic::hexagon_L2_loadri_pbr:
case Intrinsic::hexagon_L2_loadrh_pbr:
case Intrinsic::hexagon_L2_loadruh_pbr:
case Intrinsic::hexagon_L2_loadrb_pbr:
case Intrinsic::hexagon_L2_loadrub_pbr: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
auto &Cont = I.getCalledFunction()->getParent()->getContext();
// The intrinsic function call is of the form { ElTy, i8* }
// @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
// should be derived from ElTy.
PointerType *PtrTy = I.getCalledFunction()
->getReturnType()
->getContainedType(0)
->getPointerTo();
Info.memVT = MVT::getVT(PtrTy->getElementType());
llvm::Value *BasePtrVal = I.getOperand(0);
Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
// The offset value comes through Modifier register. For now, assume the
// offset is 0.
Info.offset = 0;
Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont));
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::hexagon_V6_vgathermw:
case Intrinsic::hexagon_V6_vgathermw_128B:
case Intrinsic::hexagon_V6_vgathermh:
case Intrinsic::hexagon_V6_vgathermh_128B:
case Intrinsic::hexagon_V6_vgathermhw:
case Intrinsic::hexagon_V6_vgathermhw_128B:
case Intrinsic::hexagon_V6_vgathermwq:
case Intrinsic::hexagon_V6_vgathermwq_128B:
case Intrinsic::hexagon_V6_vgathermhq:
case Intrinsic::hexagon_V6_vgathermhq_128B:
case Intrinsic::hexagon_V6_vgathermhwq:
case Intrinsic::hexagon_V6_vgathermhwq_128B: {
const Module &M = *I.getParent()->getParent()->getParent();
Info.opc = ISD::INTRINSIC_W_CHAIN;
Type *VecTy = I.getArgOperand(1)->getType();
Info.memVT = MVT::getVT(VecTy);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8;
Info.flags = MachineMemOperand::MOLoad |
MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile;
return true;
}
default:
break;
}
return false;
}
bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
}
bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isSimple() || !VT2.isSimple())
return false;
return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
}
bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
return isOperationLegalOrCustom(ISD::FMA, VT);
}
// Should we expand the build vector with shuffles?
bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
unsigned DefinedValues) const {
return false;
}
bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
EVT VT) const {
return true;
}
TargetLoweringBase::LegalizeTypeAction
HexagonTargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() == 1)
return TargetLoweringBase::TypeScalarizeVector;
// Always widen vectors of i1.
MVT ElemTy = VT.getSimpleVT().getVectorElementType();
if (ElemTy == MVT::i1)
return TargetLoweringBase::TypeWidenVector;
if (Subtarget.useHVXOps()) {
// If the size of VT is at least half of the vector length,
// widen the vector. Note: the threshold was not selected in
// any scientific way.
ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
if (llvm::find(Tys, ElemTy) != Tys.end()) {
unsigned HwWidth = 8*Subtarget.getVectorLength();
unsigned VecWidth = VT.getSizeInBits();
if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
return TargetLoweringBase::TypeWidenVector;
}
}
return TargetLoweringBase::TypeSplitVector;
}
std::pair<SDValue, int>
HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
if (Addr.getOpcode() == ISD::ADD) {
SDValue Op1 = Addr.getOperand(1);
if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
return { Addr.getOperand(0), CN->getSExtValue() };
}
return { Addr, 0 };
}
// Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
// to select data from, V3 is the permutation.
SDValue
HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
const {
const auto *SVN = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> AM = SVN->getMask();
assert(AM.size() <= 8 && "Unexpected shuffle mask");
unsigned VecLen = AM.size();
MVT VecTy = ty(Op);
assert(!Subtarget.isHVXVectorType(VecTy, true) &&
"HVX shuffles should be legal");
assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
const SDLoc &dl(Op);
// If the inputs are not the same as the output, bail. This is not an
// error situation, but complicates the handling and the default expansion
// (into BUILD_VECTOR) should be adequate.
if (ty(Op0) != VecTy || ty(Op1) != VecTy)
return SDValue();
// Normalize the mask so that the first non-negative index comes from
// the first operand.
SmallVector<int,8> Mask(AM.begin(), AM.end());
unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
if (F == AM.size())
return DAG.getUNDEF(VecTy);
if (AM[F] >= int(VecLen)) {
ShuffleVectorSDNode::commuteMask(Mask);
std::swap(Op0, Op1);
}
// Express the shuffle mask in terms of bytes.
SmallVector<int,8> ByteMask;
unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
int M = Mask[i];
if (M < 0) {
for (unsigned j = 0; j != ElemBytes; ++j)
ByteMask.push_back(-1);
} else {
for (unsigned j = 0; j != ElemBytes; ++j)
ByteMask.push_back(M*ElemBytes + j);
}
}
assert(ByteMask.size() <= 8);
// All non-undef (non-negative) indexes are well within [0..127], so they
// fit in a single byte. Build two 64-bit words:
// - MaskIdx where each byte is the corresponding index (for non-negative
// indexes), and 0xFF for negative indexes, and
// - MaskUnd that has 0xFF for each negative index.
uint64_t MaskIdx = 0;
uint64_t MaskUnd = 0;
for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
unsigned S = 8*i;
uint64_t M = ByteMask[i] & 0xFF;
if (M == 0xFF)
MaskUnd |= M << S;
MaskIdx |= M << S;
}
if (ByteMask.size() == 4) {
// Identity.
if (MaskIdx == (0x03020100 | MaskUnd))
return Op0;
// Byte swap.
if (MaskIdx == (0x00010203 | MaskUnd)) {
SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
return DAG.getBitcast(VecTy, T1);
}
// Byte packs.
SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
if (MaskIdx == (0x06040200 | MaskUnd))
return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
if (MaskIdx == (0x07050301 | MaskUnd))
return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
if (MaskIdx == (0x02000604 | MaskUnd))
return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
if (MaskIdx == (0x03010705 | MaskUnd))
return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
}
if (ByteMask.size() == 8) {
// Identity.
if (MaskIdx == (0x0706050403020100ull | MaskUnd))
return Op0;
// Byte swap.
if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
return DAG.getBitcast(VecTy, T1);
}
// Halfword picks.
if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
VectorPair P = opSplit(Op0, dl, DAG);
return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
}
// Byte packs.
if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
}
return SDValue();
}
// Create a Hexagon-specific node for shifting a vector by an integer.
SDValue
HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
const {
if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
if (SDValue S = BVN->getSplatValue()) {
unsigned NewOpc;
switch (Op.getOpcode()) {
case ISD::SHL:
NewOpc = HexagonISD::VASL;
break;
case ISD::SRA:
NewOpc = HexagonISD::VASR;
break;
case ISD::SRL:
NewOpc = HexagonISD::VLSR;
break;
default:
llvm_unreachable("Unexpected shift opcode");
}
return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
}
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
return getVectorShiftByInt(Op, DAG);
}
SDValue
HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
return Op;
return SDValue();
}
SDValue
HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
SDValue InpV = Op.getOperand(0);
MVT InpTy = ty(InpV);
assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
const SDLoc &dl(Op);
// Handle conversion from i8 to v8i1.
if (ResTy == MVT::v8i1) {
SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
}
return SDValue();
}
bool
HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
MVT VecTy, SelectionDAG &DAG,
MutableArrayRef<ConstantInt*> Consts) const {
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
bool AllConst = true;
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
SDValue V = Values[i];
if (V.isUndef()) {
Consts[i] = ConstantInt::get(IntTy, 0);
continue;
}
// Make sure to always cast to IntTy.
if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
const ConstantInt *CI = CN->getConstantIntValue();
Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
} else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
const ConstantFP *CF = CN->getConstantFPValue();
APInt A = CF->getValueAPF().bitcastToAPInt();
Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
} else {
AllConst = false;
}
}
return AllConst;
}
SDValue
HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
MVT VecTy, SelectionDAG &DAG) const {
MVT ElemTy = VecTy.getVectorElementType();
assert(VecTy.getVectorNumElements() == Elem.size());
SmallVector<ConstantInt*,4> Consts(Elem.size());
bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
unsigned First, Num = Elem.size();
for (First = 0; First != Num; ++First)
if (!isUndef(Elem[First]))
break;
if (First == Num)
return DAG.getUNDEF(VecTy);
if (AllConst &&
llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
return getZero(dl, VecTy, DAG);
if (ElemTy == MVT::i16) {
assert(Elem.size() == 2);
if (AllConst) {
uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
Consts[1]->getZExtValue() << 16;
return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
}
SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
{Elem[1], Elem[0]}, DAG);
return DAG.getBitcast(MVT::v2i16, N);
}
if (ElemTy == MVT::i8) {
// First try generating a constant.
if (AllConst) {
int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
(Consts[1]->getZExtValue() & 0xFF) << 8 |
(Consts[1]->getZExtValue() & 0xFF) << 16 |
Consts[2]->getZExtValue() << 24;
return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
}
// Then try splat.
bool IsSplat = true;
for (unsigned i = 0; i != Num; ++i) {
if (i == First)
continue;
if (Elem[i] == Elem[First] || isUndef(Elem[i]))
continue;
IsSplat = false;
break;
}
if (IsSplat) {
// Legalize the operand to VSPLAT.
SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
}
// Generate
// (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
// (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
assert(Elem.size() == 4);
SDValue Vs[4];
for (unsigned i = 0; i != 4; ++i) {
Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
}
SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
return DAG.getBitcast(MVT::v4i8, R);
}
#ifndef NDEBUG
dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
#endif
llvm_unreachable("Unexpected vector element type");
}
SDValue
HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
MVT VecTy, SelectionDAG &DAG) const {
MVT ElemTy = VecTy.getVectorElementType();
assert(VecTy.getVectorNumElements() == Elem.size());
SmallVector<ConstantInt*,8> Consts(Elem.size());
bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
unsigned First, Num = Elem.size();
for (First = 0; First != Num; ++First)
if (!isUndef(Elem[First]))
break;
if (First == Num)
return DAG.getUNDEF(VecTy);
if (AllConst &&
llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
return getZero(dl, VecTy, DAG);
// First try splat if possible.
if (ElemTy == MVT::i16) {
bool IsSplat = true;
for (unsigned i = 0; i != Num; ++i) {
if (i == First)
continue;
if (Elem[i] == Elem[First] || isUndef(Elem[i]))
continue;
IsSplat = false;
break;
}
if (IsSplat) {
// Legalize the operand to VSPLAT.
SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
}
}
// Then try constant.
if (AllConst) {
uint64_t Val = 0;
unsigned W = ElemTy.getSizeInBits();
uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull
: (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
for (unsigned i = 0; i != Num; ++i)
Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
return DAG.getBitcast(VecTy, V0);
}
// Build two 32-bit vectors and concatenate.
MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
SDValue L = (ElemTy == MVT::i32)
? Elem[0]
: buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
SDValue H = (ElemTy == MVT::i32)
? Elem[1]
: buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
}
SDValue
HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
const SDLoc &dl, MVT ValTy, MVT ResTy,
SelectionDAG &DAG) const {
MVT VecTy = ty(VecV);
assert(!ValTy.isVector() ||
VecTy.getVectorElementType() == ValTy.getVectorElementType());
unsigned VecWidth = VecTy.getSizeInBits();
unsigned ValWidth = ValTy.getSizeInBits();
unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
assert((VecWidth % ElemWidth) == 0);
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
// Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
// without any coprocessors).
if (ElemWidth == 1) {
assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
// Check if this is an extract of the lowest bit.
if (IdxN) {
// Extracting the lowest bit is a no-op, but it changes the type,
// so it must be kept as an operation to avoid errors related to
// type mismatches.
if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
}
// If the value extracted is a single bit, use tstbit.
if (ValWidth == 1) {
SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
}
// Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
// a predicate register. The elements of the vector are repeated
// in the register (if necessary) so that the total number is 8.
// The extracted subvector will need to be expanded in such a way.
unsigned Scale = VecWidth / ValWidth;
// Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
// position 0.
assert(ty(IdxV) == MVT::i32);
SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
DAG.getConstant(8*Scale, dl, MVT::i32));
SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
while (Scale > 1) {
// The longest possible subvector is at most 32 bits, so it is always
// contained in the low subregister.
T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
T1 = expandPredicate(T1, dl, DAG);
Scale /= 2;
}
return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
}
assert(VecWidth == 32 || VecWidth == 64);
// Cast everything to scalar integer types.
MVT ScalarTy = tyScalar(VecTy);
VecV = DAG.getBitcast(ScalarTy, VecV);
SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
SDValue ExtV;
if (IdxN) {
unsigned Off = IdxN->getZExtValue() * ElemWidth;
if (VecWidth == 64 && ValWidth == 32) {
assert(Off == 0 || Off == 32);
unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
} else if (Off == 0 && (ValWidth % 8) == 0) {
ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
} else {
SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
// The return type of EXTRACTU must be the same as the type of the
// input vector.
ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
{VecV, WidthV, OffV});
}
} else {
if (ty(IdxV) != MVT::i32)
IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
DAG.getConstant(ElemWidth, dl, MVT::i32));
ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
{VecV, WidthV, OffV});
}
// Cast ExtV to the requested result type.
ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
ExtV = DAG.getBitcast(ResTy, ExtV);
return ExtV;
}
SDValue
HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
const SDLoc &dl, MVT ValTy,
SelectionDAG &DAG) const {
MVT VecTy = ty(VecV);
if (VecTy.getVectorElementType() == MVT::i1) {
MVT ValTy = ty(ValV);
assert(ValTy.getVectorElementType() == MVT::i1);
SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
unsigned VecLen = VecTy.getVectorNumElements();
unsigned Scale = VecLen / ValTy.getVectorNumElements();
assert(Scale > 1);
for (unsigned R = Scale; R > 1; R /= 2) {
ValR = contractPredicate(ValR, dl, DAG);
ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
DAG.getUNDEF(MVT::i32), ValR);
}
// The longest possible subvector is at most 32 bits, so it is always
// contained in the low subregister.
ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
unsigned ValBytes = 64 / Scale;
SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
DAG.getConstant(8, dl, MVT::i32));
SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
{VecR, ValR, Width, Idx});
return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
}
unsigned VecWidth = VecTy.getSizeInBits();
unsigned ValWidth = ValTy.getSizeInBits();
assert(VecWidth == 32 || VecWidth == 64);
assert((VecWidth % ValWidth) == 0);
// Cast everything to scalar integer types.
MVT ScalarTy = MVT::getIntegerVT(VecWidth);
// The actual type of ValV may be different than ValTy (which is related
// to the vector type).
unsigned VW = ty(ValV).getSizeInBits();
ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
VecV = DAG.getBitcast(ScalarTy, VecV);
if (VW != VecWidth)
ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
SDValue InsV;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
unsigned W = C->getZExtValue() * ValWidth;
SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
{VecV, ValV, WidthV, OffV});
} else {
if (ty(IdxV) != MVT::i32)
IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
{VecV, ValV, WidthV, OffV});
}
return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
}
SDValue
HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
SelectionDAG &DAG) const {
assert(ty(Vec32).getSizeInBits() == 32);
if (isUndef(Vec32))
return DAG.getUNDEF(MVT::i64);
return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
}
SDValue
HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
SelectionDAG &DAG) const {
assert(ty(Vec64).getSizeInBits() == 64);
if (isUndef(Vec64))
return DAG.getUNDEF(MVT::i32);
return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
}
SDValue
HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
const {
if (Ty.isVector()) {
assert(Ty.isInteger() && "Only integer vectors are supported here");
unsigned W = Ty.getSizeInBits();
if (W <= 64)
return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
return DAG.getNode(HexagonISD::VZERO, dl, Ty);
}
if (Ty.isInteger())
return DAG.getConstant(0, dl, Ty);
if (Ty.isFloatingPoint())
return DAG.getConstantFP(0.0, dl, Ty);
llvm_unreachable("Invalid type for zero");
}
SDValue
HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
MVT VecTy = ty(Op);
unsigned BW = VecTy.getSizeInBits();
const SDLoc &dl(Op);
SmallVector<SDValue,8> Ops;
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
Ops.push_back(Op.getOperand(i));
if (BW == 32)
return buildVector32(Ops, dl, VecTy, DAG);
if (BW == 64)
return buildVector64(Ops, dl, VecTy, DAG);
if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
// For each i1 element in the resulting predicate register, put 1
// shifted by the index of the element into a general-purpose register,
// then or them together and transfer it back into a predicate register.
SDValue Rs[8];
SDValue Z = getZero(dl, MVT::i32, DAG);
// Always produce 8 bits, repeat inputs if necessary.
unsigned Rep = 8 / VecTy.getVectorNumElements();
for (unsigned i = 0; i != 8; ++i) {
SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
}
for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
for (unsigned i = 0, e = A.size()/2; i != e; ++i)
Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
}
// Move the value directly to a predicate register.
return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
MVT VecTy = ty(Op);
const SDLoc &dl(Op);
if (VecTy.getSizeInBits() == 64) {
assert(Op.getNumOperands() == 2);
return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
Op.getOperand(0));
}
MVT ElemTy = VecTy.getVectorElementType();
if (ElemTy == MVT::i1) {
assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
MVT OpTy = ty(Op.getOperand(0));
// Scale is how many times the operands need to be contracted to match
// the representation in the target register.
unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
assert(Scale == Op.getNumOperands() && Scale > 1);
// First, convert all bool vectors to integers, then generate pairwise
// inserts to form values of doubled length. Up until there are only
// two values left to concatenate, all of these values will fit in a
// 32-bit integer, so keep them as i32 to use 32-bit inserts.
SmallVector<SDValue,4> Words[2];
unsigned IdxW = 0;
for (SDValue P : Op.getNode()->op_values()) {
SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
for (unsigned R = Scale; R > 1; R /= 2) {
W = contractPredicate(W, dl, DAG);
W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
DAG.getUNDEF(MVT::i32), W);
}
W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
Words[IdxW].push_back(W);
}
while (Scale > 2) {
SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
Words[IdxW ^ 1].clear();
for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
// Insert W1 into W0 right next to the significant bits of W0.
SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
{W0, W1, WidthV, WidthV});
Words[IdxW ^ 1].push_back(T);
}
IdxW ^= 1;
Scale /= 2;
}
// Another sanity check. At this point there should only be two words
// left, and Scale should be 2.
assert(Scale == 2 && Words[IdxW].size() == 2);
SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
Words[IdxW][1], Words[IdxW][0]);
return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Vec = Op.getOperand(0);
MVT ElemTy = ty(Vec).getVectorElementType();
return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
}
SDValue
HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
ty(Op), ty(Op), DAG);
}
SDValue
HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
SDLoc(Op), ty(Op).getVectorElementType(), DAG);
}
SDValue
HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDValue ValV = Op.getOperand(1);
return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
SDLoc(Op), ty(ValV), DAG);
}
bool
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
// Assuming the caller does not have either a signext or zeroext modifier, and
// only one value is accepted, any reasonable truncation is allowed.
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
// FIXME: in principle up to 64-bit could be made safe, but it would be very
// fragile at the moment: any support for multiple value returns would be
// liable to disallow tail calls involving i64 -> iN truncation in many cases.
return Ty1->getPrimitiveSizeInBits() <= 32;
}
SDValue
HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
const {
LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
unsigned HaveAlign = LN->getAlignment();
MVT LoadTy = ty(Op);
unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
if (HaveAlign >= NeedAlign)
return Op;
const SDLoc &dl(Op);
const DataLayout &DL = DAG.getDataLayout();
LLVMContext &Ctx = *DAG.getContext();
unsigned AS = LN->getAddressSpace();
// If the load aligning is disabled or the load can be broken up into two
// smaller legal loads, do the default (target-independent) expansion.
bool DoDefault = false;
// Handle it in the default way if this is an indexed load.
if (!LN->isUnindexed())
DoDefault = true;
if (!AlignLoads) {
if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), AS, HaveAlign))
return Op;
DoDefault = true;
}
if (!DoDefault && 2*HaveAlign == NeedAlign) {
// The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8*HaveAlign)
: MVT::getVectorVT(MVT::i8, HaveAlign);
DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, AS, HaveAlign);
}
if (DoDefault) {
std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
return DAG.getMergeValues({P.first, P.second}, dl);
}
// The code below generates two loads, both aligned as NeedAlign, and
// with the distance of NeedAlign between them. For that to cover the
// bits that need to be loaded (and without overlapping), the size of
// the loads should be equal to NeedAlign. This is true for all loadable
// types, but add an assertion in case something changes in the future.
assert(LoadTy.getSizeInBits() == 8*NeedAlign);
unsigned LoadLen = NeedAlign;
SDValue Base = LN->getBasePtr();
SDValue Chain = LN->getChain();
auto BO = getBaseAndOffset(Base);
unsigned BaseOpc = BO.first.getOpcode();
if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
return Op;
if (BO.second % LoadLen != 0) {
BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
BO.second -= BO.second % LoadLen;
}
SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
DAG.getConstant(NeedAlign, dl, MVT::i32))
: BO.first;
SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
MachineMemOperand *WideMMO = nullptr;
if (MachineMemOperand *MMO = LN->getMemOperand()) {
MachineFunction &MF = DAG.getMachineFunction();
WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
MMO->getSyncScopeID(), MMO->getOrdering(),
MMO->getFailureOrdering());
}
SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
{Load1, Load0, BaseNoOff.getOperand(0)});
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Load0.getValue(1), Load1.getValue(1));
SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
return M;
}
SDValue
HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
const SDLoc &dl(Op);
unsigned Opc = Op.getOpcode();
SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
if (Opc == ISD::ADDCARRY)
return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
{ X, Y, C });
EVT CarryTy = C.getValueType();
SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
{ X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
SDValue Out[] = { SubC.getValue(0),
DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
return DAG.getMergeValues(Out, dl);
}
SDValue
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Mark function as containing a call to EH_RETURN.
HexagonMachineFunctionInfo *FuncInfo =
DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
FuncInfo->setHasEHReturn();
unsigned OffsetReg = Hexagon::R28;
SDValue StoreAddr =
DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
DAG.getIntPtrConstant(4, dl));
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
// Not needed we already use it as explict input to EH_RETURN.
// MF.getRegInfo().addLiveOut(OffsetReg);
return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
}
SDValue
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
// Handle INLINEASM first.
if (Opc == ISD::INLINEASM)
return LowerINLINEASM(Op, DAG);
if (isHvxOperation(Op)) {
// If HVX lowering returns nothing, try the default lowering.
if (SDValue V = LowerHvxOperation(Op, DAG))
return V;
}
switch (Opc) {
default:
#ifndef NDEBUG
Op.getNode()->dumpr(&DAG);
if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
errs() << "Error: check for a non-legal type in this operation\n";
#endif
llvm_unreachable("Should not custom lower this!");
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::BITCAST: return LowerBITCAST(Op, DAG);
case ISD::LOAD: return LowerUnalignedLoad(Op, DAG);
case ISD::ADDCARRY:
case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG);
case ISD::SRA:
case ISD::SHL:
case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
case ISD::ROTL: return LowerROTL(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VSELECT: return LowerVSELECT(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
break;
}
return SDValue();
}
void
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
const SDLoc &dl(N);
switch (N->getOpcode()) {
case ISD::SRL:
case ISD::SRA:
case ISD::SHL:
return;
case ISD::BITCAST:
// Handle a bitcast from v8i1 to i8.
if (N->getValueType(0) == MVT::i8) {
SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
N->getOperand(0), DAG);
Results.push_back(P);
}
break;
}
}
/// Returns relocation base for the given PIC jumptable.
SDValue
HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
int Idx = cast<JumpTableSDNode>(Table)->getIndex();
EVT VT = Table.getValueType();
SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
}
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'q':
case 'v':
if (Subtarget.useHVXOps())
return C_RegisterClass;
break;
case 'a':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
HexagonTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r': // R0-R31
switch (VT.SimpleTy) {
default:
return {0u, nullptr};
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::f32:
return {0u, &Hexagon::IntRegsRegClass};
case MVT::i64:
case MVT::f64:
return {0u, &Hexagon::DoubleRegsRegClass};
}
break;
case 'a': // M0-M1
if (VT != MVT::i32)
return {0u, nullptr};
return {0u, &Hexagon::ModRegsRegClass};
case 'q': // q0-q3
switch (VT.getSizeInBits()) {
default:
return {0u, nullptr};
case 512:
case 1024:
return {0u, &Hexagon::HvxQRRegClass};
}
break;
case 'v': // V0-V31
switch (VT.getSizeInBits()) {
default:
return {0u, nullptr};
case 512:
return {0u, &Hexagon::HvxVRRegClass};
case 1024:
if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
return {0u, &Hexagon::HvxVRRegClass};
return {0u, &Hexagon::HvxWRRegClass};
case 2048:
return {0u, &Hexagon::HvxWRRegClass};
}
break;
default:
return {0u, nullptr};
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
return Subtarget.hasV5Ops();
}
/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
if (Ty->isSized()) {
// When LSR detects uses of the same base address to access different
// types (e.g. unions), it will assume a conservative type for these
// uses:
// LSR Use: Kind=Address of void in addrspace(4294967295), ...
// The type Ty passed here would then be "void". Skip the alignment
// checks, but do not return false right away, since that confuses
// LSR into crashing.
unsigned A = DL.getABITypeAlignment(Ty);
// The base offset must be a multiple of the alignment.
if ((AM.BaseOffs % A) != 0)
return false;
// The shifted offset must fit in 11 bits.
if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
return false;
}
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
int Scale = AM.Scale;
if (Scale < 0)
Scale = -Scale;
switch (Scale) {
case 0: // No scale reg, "r+i", "r", or just "i".
break;
default: // No scaled addressing mode.
return false;
}
return true;
}
/// Return true if folding a constant offset with the given GlobalAddress is
/// legal. It is frequently not legal in PIC relocation models.
bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
const {
return HTM.getRelocationModel() == Reloc::Static;
}
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return Imm >= -512 && Imm <= 511;
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee,
CallingConv::ID CalleeCC,
bool IsVarArg,
bool IsCalleeStructRet,
bool IsCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
const Function &CallerF = DAG.getMachineFunction().getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
// ***************************************************************************
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes.
// ***************************************************************************
// If this is a tail call via a function pointer, then don't do it!
if (!isa<GlobalAddressSDNode>(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) {
return false;
}
// Do not optimize if the calling conventions do not match and the conventions
// used are not C or Fast.
if (!CCMatch) {
bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
// If R & E, then ok.
if (!R || !E)
return false;
}
// Do not tail call optimize vararg calls.
if (IsVarArg)
return false;
// Also avoid tail call optimization if either caller or callee uses struct
// return semantics.
if (IsCalleeStructRet || IsCallerStructRet)
return false;
// In addition to the cases above, we also disable Tail Call Optimization if
// the calling convention code that at least one outgoing argument needs to
// go on the stack. We cannot check that here because at this point that
// information is not available.
return true;
}
/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
///
/// If DstAlign is zero that means it's safe to destination alignment can
/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
/// a need to check it against alignment requirement, probably because the
/// source does not need to be loaded. If 'IsMemset' is true, that means it's
/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
/// does not need to be loaded. It returns EVT::Other if the type should be
/// determined using generic target-independent logic.
EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc, MachineFunction &MF) const {
auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
return (GivenA % MinA) == 0;
};
if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
return MVT::i64;
if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
return MVT::i32;
if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
return MVT::i16;
return MVT::Other;
}
bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AS, unsigned Align, bool *Fast) const {
if (Fast)
*Fast = false;
return Subtarget.isHVXVectorType(VT.getSimpleVT());
}
std::pair<const TargetRegisterClass*, uint8_t>
HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
if (Subtarget.isHVXVectorType(VT, true)) {
unsigned BitWidth = VT.getSizeInBits();
unsigned VecWidth = Subtarget.getVectorLength() * 8;
if (VT.getVectorElementType() == MVT::i1)
return std::make_pair(&Hexagon::HvxQRRegClass, 1);
if (BitWidth == VecWidth)
return std::make_pair(&Hexagon::HvxVRRegClass, 1);
assert(BitWidth == 2 * VecWidth);
return std::make_pair(&Hexagon::HvxWRRegClass, 1);
}
return TargetLowering::findRepresentativeClass(TRI, VT);
}
Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
BasicBlock *BB = Builder.GetInsertBlock();
Module *M = BB->getParent()->getParent();
Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
unsigned SZ = Ty->getPrimitiveSizeInBits();
assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
: Intrinsic::hexagon_L4_loadd_locked;
Value *Fn = Intrinsic::getDeclaration(M, IntID);
return Builder.CreateCall(Fn, Addr, "larx");
}
/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
Value *Val, Value *Addr, AtomicOrdering Ord) const {
BasicBlock *BB = Builder.GetInsertBlock();
Module *M = BB->getParent()->getParent();
Type *Ty = Val->getType();
unsigned SZ = Ty->getPrimitiveSizeInBits();
assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
: Intrinsic::hexagon_S4_stored_locked;
Value *Fn = Intrinsic::getDeclaration(M, IntID);
Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
return Ext;
}
TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
// Do not expand loads and stores that don't exceed 64 bits.
return LI->getType()->getPrimitiveSizeInBits() > 64
? AtomicExpansionKind::LLOnly
: AtomicExpansionKind::None;
}
bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
// Do not expand loads and stores that don't exceed 64 bits.
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
}
bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *AI) const {
const DataLayout &DL = AI->getModule()->getDataLayout();
unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
return Size >= 4 && Size <= 8;
}