| //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interfaces that Hexagon uses to lower LLVM code |
| // into a selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonISelLowering.h" |
| #include "Hexagon.h" |
| #include "HexagonMachineFunctionInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "HexagonTargetMachine.h" |
| #include "HexagonTargetObjectFile.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetCallingConv.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "hexagon-lowering" |
| |
| static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", |
| cl::init(true), cl::Hidden, |
| cl::desc("Control jump table emission on Hexagon target")); |
| |
| static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", |
| cl::Hidden, cl::ZeroOrMore, cl::init(false), |
| cl::desc("Enable Hexagon SDNode scheduling")); |
| |
| static cl::opt<bool> EnableFastMath("ffast-math", |
| cl::Hidden, cl::ZeroOrMore, cl::init(false), |
| cl::desc("Enable Fast Math processing")); |
| |
| static cl::opt<int> MinimumJumpTables("minimum-jump-tables", |
| cl::Hidden, cl::ZeroOrMore, cl::init(5), |
| cl::desc("Set minimum jump tables")); |
| |
| static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", |
| cl::Hidden, cl::ZeroOrMore, cl::init(6), |
| cl::desc("Max #stores to inline memcpy")); |
| |
| static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", |
| cl::Hidden, cl::ZeroOrMore, cl::init(4), |
| cl::desc("Max #stores to inline memcpy")); |
| |
| static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", |
| cl::Hidden, cl::ZeroOrMore, cl::init(6), |
| cl::desc("Max #stores to inline memmove")); |
| |
| static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", |
| cl::Hidden, cl::ZeroOrMore, cl::init(4), |
| cl::desc("Max #stores to inline memmove")); |
| |
| static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", |
| cl::Hidden, cl::ZeroOrMore, cl::init(8), |
| cl::desc("Max #stores to inline memset")); |
| |
| static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", |
| cl::Hidden, cl::ZeroOrMore, cl::init(4), |
| cl::desc("Max #stores to inline memset")); |
| |
| static cl::opt<bool> AlignLoads("hexagon-align-loads", |
| cl::Hidden, cl::init(false), |
| cl::desc("Rewrite unaligned loads as a pair of aligned loads")); |
| |
| |
| namespace { |
| |
| class HexagonCCState : public CCState { |
| unsigned NumNamedVarArgParams = 0; |
| |
| public: |
| HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, |
| SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, |
| unsigned NumNamedArgs) |
| : CCState(CC, IsVarArg, MF, locs, C), |
| NumNamedVarArgParams(NumNamedArgs) {} |
| unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } |
| }; |
| |
| } // end anonymous namespace |
| |
| |
| // Implement calling convention for Hexagon. |
| |
| static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| static const MCPhysReg ArgRegs[] = { |
| Hexagon::R0, Hexagon::R1, Hexagon::R2, |
| Hexagon::R3, Hexagon::R4, Hexagon::R5 |
| }; |
| const unsigned NumArgRegs = array_lengthof(ArgRegs); |
| unsigned RegNum = State.getFirstUnallocated(ArgRegs); |
| |
| // RegNum is an index into ArgRegs: skip a register if RegNum is odd. |
| if (RegNum != NumArgRegs && RegNum % 2 == 1) |
| State.AllocateReg(ArgRegs[RegNum]); |
| |
| // Always return false here, as this function only makes sure that the first |
| // unallocated register has an even register number and does not actually |
| // allocate a register for the current argument. |
| return false; |
| } |
| |
| #include "HexagonGenCallingConv.inc" |
| |
| |
| void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) { |
| if (VT != PromotedLdStVT) { |
| setOperationAction(ISD::LOAD, VT, Promote); |
| AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT); |
| |
| setOperationAction(ISD::STORE, VT, Promote); |
| AddPromotedToType(ISD::STORE, VT, PromotedLdStVT); |
| } |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) |
| const { |
| return SDValue(); |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" of size "Size". Alignment information is |
| /// specified by the specific parameter attribute. The copy will be passed as |
| /// a byval function parameter. Sometimes what we are copying is the end of a |
| /// larger object, the part that does not fit in registers. |
| static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, |
| SDValue Chain, ISD::ArgFlagsTy Flags, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*isVolatile=*/false, /*AlwaysInline=*/false, |
| /*isTailCall=*/false, |
| MachinePointerInfo(), MachinePointerInfo()); |
| } |
| |
| bool |
| HexagonTargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| |
| if (MF.getSubtarget<HexagonSubtarget>().useHVXOps()) |
| return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX); |
| return CCInfo.CheckReturn(Outs, RetCC_Hexagon); |
| } |
| |
| // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is |
| // passed by value, the function prototype is modified to return void and |
| // the value is stored in memory pointed by a pointer passed by caller. |
| SDValue |
| HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to locations. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze return values of ISD::RET |
| if (Subtarget.useHVXOps()) |
| CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX); |
| else |
| CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); |
| } |
| |
| bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| // If either no tail call or told not to tail call at all, don't. |
| auto Attr = |
| CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); |
| if (!CI->isTailCall() || Attr.getValueAsString() == "true") |
| return false; |
| |
| return true; |
| } |
| |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the |
| /// appropriate copies out of appropriate physical registers. This assumes that |
| /// Chain/Glue are the input chain/glue to use, and that TheCall is the call |
| /// being lowered. Returns a SDNode with the same number of values as the |
| /// ISD::CALL. |
| SDValue HexagonTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| if (Subtarget.useHVXOps()) |
| CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX); |
| else |
| CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| SDValue RetVal; |
| if (RVLocs[i].getValVT() == MVT::i1) { |
| // Return values of type MVT::i1 require special handling. The reason |
| // is that MVT::i1 is associated with the PredRegs register class, but |
| // values of that type are still returned in R0. Generate an explicit |
| // copy into a predicate register from R0, and treat the value of the |
| // predicate register as the call result. |
| auto &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), |
| MVT::i32, Glue); |
| // FR0 = (Value, Chain, Glue) |
| unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); |
| SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, |
| FR0.getValue(0), FR0.getValue(2)); |
| // TPR = (Chain, Glue) |
| // Don't glue this CopyFromReg, because it copies from a virtual |
| // register. If it is glued to the call, InstrEmitter will add it |
| // as an implicit def to the call (EmitMachineNode). |
| RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); |
| Glue = TPR.getValue(1); |
| Chain = TPR.getValue(0); |
| } else { |
| RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), |
| RVLocs[i].getValVT(), Glue); |
| Glue = RetVal.getValue(2); |
| Chain = RetVal.getValue(1); |
| } |
| InVals.push_back(RetVal.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| /// LowerCall - Functions arguments are copied from virtual regs to |
| /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. |
| SDValue |
| HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| bool DoesNotReturn = CLI.DoesNotReturn; |
| |
| bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| unsigned NumParams = CLI.CS.getInstruction() |
| ? CLI.CS.getFunctionType()->getNumParams() |
| : 0; |
| if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), |
| NumParams); |
| |
| if (Subtarget.useHVXOps()) |
| CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX); |
| else |
| CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); |
| |
| auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); |
| if (Attr.getValueAsString() == "true") |
| CLI.IsTailCall = false; |
| |
| if (CLI.IsTailCall) { |
| bool StructAttrFlag = MF.getFunction().hasStructRetAttr(); |
| CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| IsVarArg, IsStructRet, StructAttrFlag, Outs, |
| OutVals, Ins, DAG); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (VA.isMemLoc()) { |
| CLI.IsTailCall = false; |
| break; |
| } |
| } |
| LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n" |
| : "Argument must be passed on stack. " |
| "Not eligible for Tail Call\n")); |
| } |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| SDValue StackPtr = |
| DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); |
| |
| bool NeedsArgAlign = false; |
| unsigned LargestAlignSeen = 0; |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| // Record if we need > 8 byte alignment on an argument. |
| bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT()); |
| NeedsArgAlign |= ArgAlign; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: |
| // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getBitcast(VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isMemLoc()) { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, |
| StackPtr.getValueType()); |
| MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); |
| if (ArgAlign) |
| LargestAlignSeen = std::max(LargestAlignSeen, |
| VA.getLocVT().getStoreSizeInBits() >> 3); |
| if (Flags.isByVal()) { |
| // The argument is a struct passed by value. According to LLVM, "Arg" |
| // is a pointer. |
| MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, |
| Flags, DAG, dl)); |
| } else { |
| MachinePointerInfo LocPI = MachinePointerInfo::getStack( |
| DAG.getMachineFunction(), LocMemOffset); |
| SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); |
| MemOpChains.push_back(S); |
| } |
| continue; |
| } |
| |
| // Arguments that can be passed on register must be kept at RegsToPass |
| // vector. |
| if (VA.isRegLoc()) |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } |
| |
| if (NeedsArgAlign && Subtarget.hasV60Ops()) { |
| LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); |
| unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); |
| LargestAlignSeen = std::max(LargestAlignSeen, VecAlign); |
| MFI.ensureMaxAlignment(LargestAlignSeen); |
| } |
| // Transform all store nodes into one single node because all store |
| // nodes are independent of each other. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| SDValue Glue; |
| if (!CLI.IsTailCall) { |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); |
| Glue = Chain.getValue(1); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token |
| // chain and flag operands which copy the outgoing args into registers. |
| // The Glue is necessary since all emitted instructions must be |
| // stuck together. |
| if (!CLI.IsTailCall) { |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, Glue); |
| Glue = Chain.getValue(1); |
| } |
| } else { |
| // For tail calls lower the arguments to the 'real' stack slot. |
| // |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| // |
| // Do not flag preceding copytoreg stuff together with the following stuff. |
| Glue = SDValue(); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, Glue); |
| Glue = Chain.getValue(1); |
| } |
| Glue = SDValue(); |
| } |
| |
| bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls(); |
| unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); |
| } else if (ExternalSymbolSDNode *S = |
| dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| } |
| |
| const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (Glue.getNode()) |
| Ops.push_back(Glue); |
| |
| if (CLI.IsTailCall) { |
| MFI.setHasTailCall(); |
| return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); |
| } |
| |
| // Set this here because we need to know this for "hasFP" in frame lowering. |
| // The target-independent code calls getFrameRegister before setting it, and |
| // getFrameRegister uses hasFP to determine whether the function has FP. |
| MFI.setHasCalls(true); |
| |
| unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; |
| Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); |
| Glue = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), Glue, dl); |
| Glue = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, |
| InVals, OutVals, Callee); |
| } |
| |
| /// Returns true by value, base pointer and offset pointer and addressing |
| /// mode by reference if this node can be combined with a load / store to |
| /// form a post-indexed load / store. |
| bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N); |
| if (!LSN) |
| return false; |
| EVT VT = LSN->getMemoryVT(); |
| if (!VT.isSimple()) |
| return false; |
| bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || |
| VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 || |
| VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 || |
| VT == MVT::v4i16 || VT == MVT::v8i8 || |
| Subtarget.isHVXVectorType(VT.getSimpleVT()); |
| if (!IsLegalType) |
| return false; |
| |
| if (Op->getOpcode() != ISD::ADD) |
| return false; |
| Base = Op->getOperand(0); |
| Offset = Op->getOperand(1); |
| if (!isa<ConstantSDNode>(Offset.getNode())) |
| return false; |
| AM = ISD::POST_INC; |
| |
| int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); |
| return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); |
| const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| unsigned LR = HRI.getRARegister(); |
| |
| if (Op.getOpcode() != ISD::INLINEASM || HMFI.hasClobberLR()) |
| return Op; |
| |
| unsigned NumOps = Op.getNumOperands(); |
| if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue) |
| --NumOps; // Ignore the flag operand. |
| |
| for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
| unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); |
| unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); |
| ++i; // Skip the ID value. |
| |
| switch (InlineAsm::getKind(Flags)) { |
| default: |
| llvm_unreachable("Bad flags!"); |
| case InlineAsm::Kind_RegUse: |
| case InlineAsm::Kind_Imm: |
| case InlineAsm::Kind_Mem: |
| i += NumVals; |
| break; |
| case InlineAsm::Kind_Clobber: |
| case InlineAsm::Kind_RegDef: |
| case InlineAsm::Kind_RegDefEarlyClobber: { |
| for (; NumVals; --NumVals, ++i) { |
| unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); |
| if (Reg != LR) |
| continue; |
| HMFI.setHasClobberLR(true); |
| return Op; |
| } |
| break; |
| } |
| } |
| } |
| |
| return Op; |
| } |
| |
| // Need to transform ISD::PREFETCH into something that doesn't inherit |
| // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and |
| // SDNPMayStore. |
| SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Addr = Op.getOperand(1); |
| // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, |
| // if the "reg" is fed by an "add". |
| SDLoc DL(Op); |
| SDValue Zero = DAG.getConstant(0, DL, MVT::i32); |
| return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); |
| } |
| |
| // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode |
| // is marked as having side-effects, while the register read on Hexagon does |
| // not have any. TableGen refuses to accept the direct pattern from that node |
| // to the A4_tfrcpp. |
| SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDLoc dl(Op); |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); |
| return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); |
| } |
| |
| SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| // Lower the hexagon_prefetch builtin to DCFETCH, as above. |
| if (IntNo == Intrinsic::hexagon_prefetch) { |
| SDValue Addr = Op.getOperand(2); |
| SDLoc DL(Op); |
| SDValue Zero = DAG.getConstant(0, DL, MVT::i32); |
| return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| SDValue Align = Op.getOperand(2); |
| SDLoc dl(Op); |
| |
| ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); |
| assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); |
| |
| unsigned A = AlignConst->getSExtValue(); |
| auto &HFI = *Subtarget.getFrameLowering(); |
| // "Zero" means natural stack alignment. |
| if (A == 0) |
| A = HFI.getStackAlignment(); |
| |
| LLVM_DEBUG({ |
| dbgs () << __func__ << " Align: " << A << " Size: "; |
| Size.getNode()->dump(&DAG); |
| dbgs() << "\n"; |
| }); |
| |
| SDValue AC = DAG.getConstant(A, dl, MVT::i32); |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); |
| SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); |
| |
| DAG.ReplaceAllUsesOfValueWith(Op, AA); |
| return AA; |
| } |
| |
| SDValue HexagonTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(), |
| MF.getFunction().getFunctionType()->getNumParams()); |
| |
| if (Subtarget.useHVXOps()) |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX); |
| else |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); |
| |
| // For LLVM, in the case when returning a struct by value (>8byte), |
| // the first argument is a pointer that points to the location on caller's |
| // stack where the return value will be stored. For Hexagon, the location on |
| // caller's stack is passed only when the struct size is smaller than (and |
| // equal to) 8 bytes. If not, no address will be passed into callee and |
| // callee return the result direclty through R0/R1. |
| |
| auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| bool ByVal = Flags.isByVal(); |
| |
| // Arguments passed in registers: |
| // 1. 32- and 64-bit values and HVX vectors are passed directly, |
| // 2. Large structs are passed via an address, and the address is |
| // passed in a register. |
| if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8) |
| llvm_unreachable("ByValSize must be bigger than 8 bytes"); |
| |
| bool InReg = VA.isRegLoc() && |
| (!ByVal || (ByVal && Flags.getByValSize() > 8)); |
| |
| if (InReg) { |
| MVT RegVT = VA.getLocVT(); |
| if (VA.getLocInfo() == CCValAssign::BCvt) |
| RegVT = VA.getValVT(); |
| |
| const TargetRegisterClass *RC = getRegClassFor(RegVT); |
| unsigned VReg = MRI.createVirtualRegister(RC); |
| SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); |
| |
| // Treat values of type MVT::i1 specially: they are passed in |
| // registers of type i32, but they need to remain as values of |
| // type i1 for consistency of the argument lowering. |
| if (VA.getValVT() == MVT::i1) { |
| assert(RegVT.getSizeInBits() <= 32); |
| SDValue T = DAG.getNode(ISD::AND, dl, RegVT, |
| Copy, DAG.getConstant(1, dl, RegVT)); |
| Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT), |
| ISD::SETNE); |
| } else { |
| #ifndef NDEBUG |
| unsigned RegSize = RegVT.getSizeInBits(); |
| assert(RegSize == 32 || RegSize == 64 || |
| Subtarget.isHVXVectorType(RegVT)); |
| #endif |
| } |
| InVals.push_back(Copy); |
| MRI.addLiveIn(VA.getLocReg(), VReg); |
| } else { |
| assert(VA.isMemLoc() && "Argument should be passed in memory"); |
| |
| // If it's a byval parameter, then we need to compute the |
| // "real" size, not the size of the pointer. |
| unsigned ObjSize = Flags.isByVal() |
| ? Flags.getByValSize() |
| : VA.getLocVT().getStoreSizeInBits() / 8; |
| |
| // Create the frame index object for this incoming parameter. |
| int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); |
| int FI = MFI.CreateFixedObject(ObjSize, Offset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| if (Flags.isByVal()) { |
| // If it's a pass-by-value aggregate, then do not dereference the stack |
| // location. Instead, we should generate a reference to the stack |
| // location. |
| InVals.push_back(FIN); |
| } else { |
| SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI, 0)); |
| InVals.push_back(L); |
| } |
| } |
| } |
| |
| |
| if (IsVarArg) { |
| // This will point to the next argument passed via stack. |
| int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(); |
| int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); |
| HMFI.setVarArgsFrameIndex(FI); |
| } |
| |
| return Chain; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| // VASTART stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); |
| SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| const SDLoc &dl(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| MVT ResTy = ty(Op); |
| MVT OpTy = ty(LHS); |
| |
| if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { |
| MVT ElemTy = OpTy.getVectorElementType(); |
| assert(ElemTy.isScalarInteger()); |
| MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), |
| OpTy.getVectorNumElements()); |
| return DAG.getSetCC(dl, ResTy, |
| DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy), |
| DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC); |
| } |
| |
| // Treat all other vector types as legal. |
| if (ResTy.isVector()) |
| return Op; |
| |
| // Comparisons of short integers should use sign-extend, not zero-extend, |
| // since we can represent small negative values in the compare instructions. |
| // The LLVM default is to use zero-extend arbitrarily in these cases. |
| auto isSExtFree = [this](SDValue N) { |
| switch (N.getOpcode()) { |
| case ISD::TRUNCATE: { |
| // A sign-extend of a truncate of a sign-extend is free. |
| SDValue Op = N.getOperand(0); |
| if (Op.getOpcode() != ISD::AssertSext) |
| return false; |
| EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| unsigned ThisBW = ty(N).getSizeInBits(); |
| unsigned OrigBW = OrigTy.getSizeInBits(); |
| // The type that was sign-extended to get the AssertSext must be |
| // narrower than the type of N (so that N has still the same value |
| // as the original). |
| return ThisBW >= OrigBW; |
| } |
| case ISD::LOAD: |
| // We have sign-extended loads. |
| return true; |
| } |
| return false; |
| }; |
| |
| if (OpTy == MVT::i8 || OpTy == MVT::i16) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); |
| bool IsNegative = C && C->getAPIntValue().isNegative(); |
| if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS)) |
| return DAG.getSetCC(dl, ResTy, |
| DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32), |
| DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue PredOp = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); |
| EVT OpVT = Op1.getValueType(); |
| SDLoc DL(Op); |
| |
| if (OpVT == MVT::v2i16) { |
| SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); |
| SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); |
| SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); |
| SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); |
| return TR; |
| } |
| |
| return SDValue(); |
| } |
| |
| static Constant *convert_i1_to_i8(const Constant *ConstVal) { |
| SmallVector<Constant *, 128> NewConst; |
| const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal); |
| if (!CV) |
| return nullptr; |
| |
| LLVMContext &Ctx = ConstVal->getContext(); |
| IRBuilder<> IRB(Ctx); |
| unsigned NumVectorElements = CV->getNumOperands(); |
| assert(isPowerOf2_32(NumVectorElements) && |
| "conversion only supported for pow2 VectorSize!"); |
| |
| for (unsigned i = 0; i < NumVectorElements / 8; ++i) { |
| uint8_t x = 0; |
| for (unsigned j = 0; j < 8; ++j) { |
| uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue(); |
| x |= y << (7 - j); |
| } |
| assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!"); |
| NewConst.push_back(IRB.getInt8(x)); |
| } |
| return ConstantVector::get(NewConst); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { |
| EVT ValTy = Op.getValueType(); |
| ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); |
| Constant *CVal = nullptr; |
| bool isVTi1Type = false; |
| if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) { |
| Type *CValTy = ConstVal->getType(); |
| if (CValTy->isVectorTy() && |
| CValTy->getVectorElementType()->isIntegerTy(1)) { |
| CVal = convert_i1_to_i8(ConstVal); |
| isVTi1Type = (CVal != nullptr); |
| } |
| } |
| unsigned Align = CPN->getAlignment(); |
| bool IsPositionIndependent = isPositionIndependent(); |
| unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; |
| |
| unsigned Offset = 0; |
| SDValue T; |
| if (CPN->isMachineConstantPoolEntry()) |
| T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset, |
| TF); |
| else if (isVTi1Type) |
| T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF); |
| else |
| T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF); |
| |
| assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF && |
| "Inconsistent target flag encountered"); |
| |
| if (IsPositionIndependent) |
| return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); |
| return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| int Idx = cast<JumpTableSDNode>(Op)->getIndex(); |
| if (isPositionIndependent()) { |
| SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); |
| return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); |
| } |
| |
| SDValue T = DAG.getTargetJumpTable(Idx, VT); |
| return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { |
| const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(4, dl, MVT::i32); |
| return DAG.getLoad(VT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Return LR, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
| HRI.getFrameRegister(), VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo()); |
| return FrameAddr; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { |
| SDLoc dl(Op); |
| return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| auto *GAN = cast<GlobalAddressSDNode>(Op); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| auto *GV = GAN->getGlobal(); |
| int64_t Offset = GAN->getOffset(); |
| |
| auto &HLOF = *HTM.getObjFileLowering(); |
| Reloc::Model RM = HTM.getRelocationModel(); |
| |
| if (RM == Reloc::Static) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); |
| const GlobalObject *GO = GV->getBaseObject(); |
| if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM)) |
| return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); |
| return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); |
| } |
| |
| bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); |
| if (UsePCRel) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, |
| HexagonII::MO_PCREL); |
| return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); |
| } |
| |
| // Use GOT index. |
| SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); |
| SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); |
| SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); |
| return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); |
| } |
| |
| // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. |
| SDValue |
| HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| SDLoc dl(Op); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| Reloc::Model RM = HTM.getRelocationModel(); |
| if (RM == Reloc::Static) { |
| SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); |
| return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); |
| } |
| |
| SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); |
| return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) |
| const { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, |
| HexagonII::MO_PCREL); |
| return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); |
| } |
| |
| SDValue |
| HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, |
| GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, |
| unsigned char OperandFlags) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDLoc dl(GA); |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), |
| OperandFlags); |
| // Create Operands for the call.The Operands should have the following: |
| // 1. Chain SDValue |
| // 2. Callee which in this case is the Global address value. |
| // 3. Registers live into the call.In this case its R0, as we |
| // have just one argument to be passed. |
| // 4. Glue. |
| // Note: The order is important. |
| |
| const auto &HRI = *Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), |
| DAG.getRegisterMask(Mask), Glue }; |
| Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); |
| |
| // Inform MFI that function has calls. |
| MFI.setAdjustsStack(true); |
| |
| Glue = Chain.getValue(1); |
| return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); |
| } |
| |
| // |
| // Lower using the intial executable model for TLS addresses |
| // |
| SDValue |
| HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| SDLoc dl(GA); |
| int64_t Offset = GA->getOffset(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Get the thread pointer. |
| SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); |
| |
| bool IsPositionIndependent = isPositionIndependent(); |
| unsigned char TF = |
| IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; |
| |
| // First generate the TLS symbol address |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, |
| Offset, TF); |
| |
| SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); |
| |
| if (IsPositionIndependent) { |
| // Generate the GOT pointer in case of position independent code |
| SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); |
| |
| // Add the TLS Symbol address to GOT pointer.This gives |
| // GOT relative relocation for the symbol. |
| Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); |
| } |
| |
| // Load the offset value for TLS symbol.This offset is relative to |
| // thread pointer. |
| SDValue LoadOffset = |
| DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); |
| |
| // Address of the thread local variable is the add of thread |
| // pointer and the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); |
| } |
| |
| // |
| // Lower using the local executable model for TLS addresses |
| // |
| SDValue |
| HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| SDLoc dl(GA); |
| int64_t Offset = GA->getOffset(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Get the thread pointer. |
| SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); |
| // Generate the TLS symbol address |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, |
| HexagonII::MO_TPREL); |
| SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); |
| |
| // Address of the thread local variable is the add of thread |
| // pointer and the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); |
| } |
| |
| // |
| // Lower using the general dynamic model for TLS addresses |
| // |
| SDValue |
| HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| SDLoc dl(GA); |
| int64_t Offset = GA->getOffset(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // First generate the TLS symbol address |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, |
| HexagonII::MO_GDGOT); |
| |
| // Then, generate the GOT pointer |
| SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); |
| |
| // Add the TLS symbol and the GOT pointer |
| SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); |
| SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); |
| |
| // Copy over the argument to R0 |
| SDValue InFlag; |
| Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| unsigned Flags = |
| static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls() |
| ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended |
| : HexagonII::MO_GDPLT; |
| |
| return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT, |
| Hexagon::R0, Flags); |
| } |
| |
| // |
| // Lower TLS addresses. |
| // |
| // For now for dynamic models, we only support the general dynamic model. |
| // |
| SDValue |
| HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| |
| switch (HTM.getTLSModel(GA->getGlobal())) { |
| case TLSModel::GeneralDynamic: |
| case TLSModel::LocalDynamic: |
| return LowerToTLSGeneralDynamicModel(GA, DAG); |
| case TLSModel::InitialExec: |
| return LowerToTLSInitialExecModel(GA, DAG); |
| case TLSModel::LocalExec: |
| return LowerToTLSLocalExecModel(GA, DAG); |
| } |
| llvm_unreachable("Bogus TLS model"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering Implementation |
| //===----------------------------------------------------------------------===// |
| |
| HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, |
| const HexagonSubtarget &ST) |
| : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), |
| Subtarget(ST) { |
| bool IsV4 = !Subtarget.hasV5Ops(); |
| auto &HRI = *Subtarget.getRegisterInfo(); |
| |
| setPrefLoopAlignment(4); |
| setPrefFunctionAlignment(4); |
| setMinFunctionAlignment(2); |
| setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); |
| setBooleanContents(TargetLoweringBase::UndefinedBooleanContent); |
| setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent); |
| |
| setMaxAtomicSizeInBitsSupported(64); |
| setMinCmpXchgSizeInBits(32); |
| |
| if (EnableHexSDNodeSched) |
| setSchedulingPreference(Sched::VLIW); |
| else |
| setSchedulingPreference(Sched::Source); |
| |
| // Limits for inline expansion of memcpy/memmove |
| MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; |
| MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; |
| MaxStoresPerMemmove = MaxStoresPerMemmoveCL; |
| MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; |
| MaxStoresPerMemset = MaxStoresPerMemsetCL; |
| MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; |
| |
| // |
| // Set up register classes. |
| // |
| |
| addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); |
| addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa |
| addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa |
| addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba |
| addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); |
| addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); |
| addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); |
| addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); |
| addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); |
| addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); |
| addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); |
| |
| if (Subtarget.hasV5Ops()) { |
| addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); |
| addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); |
| } |
| |
| // |
| // Handling of scalar operations. |
| // |
| // All operations default to "legal", except: |
| // - indexed loads and stores (pre-/post-incremented), |
| // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, |
| // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, |
| // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, |
| // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, |
| // which default to "expand" for at least one type. |
| |
| // Misc operations. |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand |
| |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::INLINEASM, MVT::Other, Custom); |
| setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); |
| setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); |
| |
| // Custom legalize GlobalAddress nodes into CONST32. |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| |
| // Hexagon needs to optimize cases with negative constants. |
| setOperationAction(ISD::SETCC, MVT::i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::i16, Custom); |
| setOperationAction(ISD::SETCC, MVT::v4i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::v2i16, Custom); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| |
| if (EmitJumpTables) |
| setMinimumJumpTableEntries(MinimumJumpTables); |
| else |
| setMinimumJumpTableEntries(std::numeric_limits<int>::max()); |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| setOperationAction(ISD::ABS, MVT::i32, Legal); |
| setOperationAction(ISD::ABS, MVT::i64, Legal); |
| |
| // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit, |
| // but they only operate on i64. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::UADDO, VT, Expand); |
| setOperationAction(ISD::USUBO, VT, Expand); |
| setOperationAction(ISD::SADDO, VT, Expand); |
| setOperationAction(ISD::SSUBO, VT, Expand); |
| setOperationAction(ISD::ADDCARRY, VT, Expand); |
| setOperationAction(ISD::SUBCARRY, VT, Expand); |
| } |
| setOperationAction(ISD::ADDCARRY, MVT::i64, Custom); |
| setOperationAction(ISD::SUBCARRY, MVT::i64, Custom); |
| |
| setOperationAction(ISD::CTLZ, MVT::i8, Promote); |
| setOperationAction(ISD::CTLZ, MVT::i16, Promote); |
| setOperationAction(ISD::CTTZ, MVT::i8, Promote); |
| setOperationAction(ISD::CTTZ, MVT::i16, Promote); |
| |
| // In V5, popcount can count # of 1s in i64 but returns i32. |
| // On V4 it will be expanded (set later). |
| setOperationAction(ISD::CTPOP, MVT::i8, Promote); |
| setOperationAction(ISD::CTPOP, MVT::i16, Promote); |
| setOperationAction(ISD::CTPOP, MVT::i32, Promote); |
| setOperationAction(ISD::CTPOP, MVT::i64, Legal); |
| |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| setOperationAction(ISD::BSWAP, MVT::i32, Legal); |
| setOperationAction(ISD::BSWAP, MVT::i64, Legal); |
| |
| for (unsigned IntExpOp : |
| {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, |
| ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, |
| ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, |
| ISD::SMUL_LOHI, ISD::UMUL_LOHI}) { |
| for (MVT VT : MVT::integer_valuetypes()) |
| setOperationAction(IntExpOp, VT, Expand); |
| } |
| |
| for (unsigned FPExpOp : |
| {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, |
| ISD::FPOW, ISD::FCOPYSIGN}) { |
| for (MVT VT : MVT::fp_valuetypes()) |
| setOperationAction(FPExpOp, VT, Expand); |
| } |
| |
| // No extending loads from i32. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); |
| } |
| // Turn FP truncstore into trunc + store. |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| // Turn FP extload into load/fpextend. |
| for (MVT VT : MVT::fp_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); |
| |
| // Expand BR_CC and SELECT_CC for all integer and fp types. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::BR_CC, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| } |
| for (MVT VT : MVT::fp_valuetypes()) { |
| setOperationAction(ISD::BR_CC, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| } |
| setOperationAction(ISD::BR_CC, MVT::Other, Expand); |
| |
| // |
| // Handling of vector operations. |
| // |
| |
| promoteLdStType(MVT::v4i8, MVT::i32); |
| promoteLdStType(MVT::v2i16, MVT::i32); |
| promoteLdStType(MVT::v8i8, MVT::i64); |
| promoteLdStType(MVT::v4i16, MVT::i64); |
| promoteLdStType(MVT::v2i32, MVT::i64); |
| |
| // Set the action for vector operations to "expand", then override it with |
| // either "custom" or "legal" for specific cases. |
| static const unsigned VectExpOps[] = { |
| // Integer arithmetic: |
| ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, |
| ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO, |
| ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI, |
| // Logical/bit: |
| ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, |
| ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, |
| // Floating point arithmetic/math functions: |
| ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, |
| ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, |
| ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2, |
| ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, |
| ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, |
| ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, |
| // Misc: |
| ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool, |
| // Vector: |
| ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, |
| ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, |
| ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, |
| ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE |
| }; |
| |
| for (MVT VT : MVT::vector_valuetypes()) { |
| for (unsigned VectExpOp : VectExpOps) |
| setOperationAction(VectExpOp, VT, Expand); |
| |
| // Expand all extending loads and truncating stores: |
| for (MVT TargetVT : MVT::vector_valuetypes()) { |
| if (TargetVT == VT) |
| continue; |
| setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); |
| setTruncStoreAction(VT, TargetVT, Expand); |
| } |
| |
| // Normalize all inputs to SELECT to be vectors of i32. |
| if (VT.getVectorElementType() != MVT::i32) { |
| MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); |
| setOperationAction(ISD::SELECT, VT, Promote); |
| AddPromotedToType(ISD::SELECT, VT, VT32); |
| } |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRL, VT, Custom); |
| } |
| |
| // Extending loads from (native) vectors of i8 into (native) vectors of i16 |
| // are legal. |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); |
| |
| // Types natively supported: |
| for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8, |
| MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { |
| setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); |
| |
| setOperationAction(ISD::ADD, NativeVT, Legal); |
| setOperationAction(ISD::SUB, NativeVT, Legal); |
| setOperationAction(ISD::MUL, NativeVT, Legal); |
| setOperationAction(ISD::AND, NativeVT, Legal); |
| setOperationAction(ISD::OR, NativeVT, Legal); |
| setOperationAction(ISD::XOR, NativeVT, Legal); |
| } |
| |
| // Custom lower unaligned loads. |
| for (MVT VecVT : {MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8, |
| MVT::v2i16, MVT::v4i16, MVT::v2i32}) { |
| setOperationAction(ISD::LOAD, VecVT, Custom); |
| } |
| |
| for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) { |
| setCondCodeAction(ISD::SETLT, VT, Expand); |
| setCondCodeAction(ISD::SETLE, VT, Expand); |
| setCondCodeAction(ISD::SETULT, VT, Expand); |
| setCondCodeAction(ISD::SETULE, VT, Expand); |
| } |
| |
| // Custom-lower bitcasts from i8 to v8i1. |
| setOperationAction(ISD::BITCAST, MVT::i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::v2i16, Custom); |
| setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); |
| |
| // Subtarget-specific operation actions. |
| // |
| if (Subtarget.hasV60Ops()) { |
| setOperationAction(ISD::ROTL, MVT::i32, Custom); |
| setOperationAction(ISD::ROTL, MVT::i64, Custom); |
| } |
| if (Subtarget.hasV5Ops()) { |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FADD, MVT::f64, Expand); |
| setOperationAction(ISD::FSUB, MVT::f64, Expand); |
| setOperationAction(ISD::FMUL, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); |
| } else { // V4 |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); |
| |
| setOperationAction(ISD::CTPOP, MVT::i8, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i16, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| |
| // Expand these operations for both f32 and f64: |
| for (unsigned FPExpOpV4 : |
| {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) { |
| setOperationAction(FPExpOpV4, MVT::f32, Expand); |
| setOperationAction(FPExpOpV4, MVT::f64, Expand); |
| } |
| |
| for (ISD::CondCode FPExpCCV4 : |
| {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE, |
| ISD::SETUO, ISD::SETO}) { |
| setCondCodeAction(FPExpCCV4, MVT::f32, Expand); |
| setCondCodeAction(FPExpCCV4, MVT::f64, Expand); |
| } |
| } |
| |
| // Handling of indexed loads/stores: default is "expand". |
| // |
| for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64, |
| MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) { |
| setIndexedLoadAction(ISD::POST_INC, VT, Legal); |
| setIndexedStoreAction(ISD::POST_INC, VT, Legal); |
| } |
| |
| if (Subtarget.useHVXOps()) |
| initializeHVXLowering(); |
| |
| computeRegisterProperties(&HRI); |
| |
| // |
| // Library calls for unsupported operations |
| // |
| bool FastMath = EnableFastMath; |
| |
| setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); |
| setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); |
| setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); |
| setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); |
| setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); |
| setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); |
| setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); |
| setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); |
| |
| setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); |
| setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); |
| setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); |
| |
| if (IsV4) { |
| // Handle single-precision floating point operations on V4. |
| if (FastMath) { |
| setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3"); |
| setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3"); |
| setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3"); |
| setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2"); |
| setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2"); |
| // Double-precision compares. |
| setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2"); |
| setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2"); |
| } else { |
| setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); |
| setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); |
| setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); |
| setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); |
| setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); |
| // Double-precision compares. |
| setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); |
| setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); |
| } |
| } |
| |
| // This is the only fast library function for sqrtd. |
| if (FastMath) |
| setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); |
| |
| // Prefix is: nothing for "slow-math", |
| // "fast2_" for V4 fast-math and V5+ fast-math double-precision |
| // (actually, keep fast-math and fast-math2 separate for now) |
| if (FastMath) { |
| setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); |
| setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); |
| setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); |
| setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); |
| // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok). |
| setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); |
| } else { |
| setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); |
| setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); |
| setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); |
| setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); |
| setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); |
| } |
| |
| if (Subtarget.hasV5Ops()) { |
| if (FastMath) |
| setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); |
| else |
| setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); |
| } else { |
| // V4 |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); |
| setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); |
| setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); |
| setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); |
| setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); |
| setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); |
| setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); |
| setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); |
| setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); |
| setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); |
| setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); |
| setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); |
| setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); |
| setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); |
| } |
| |
| // These cause problems when the shift amount is non-constant. |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| } |
| |
| const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((HexagonISD::NodeType)Opcode) { |
| case HexagonISD::ADDC: return "HexagonISD::ADDC"; |
| case HexagonISD::SUBC: return "HexagonISD::SUBC"; |
| case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; |
| case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; |
| case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; |
| case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; |
| case HexagonISD::CALL: return "HexagonISD::CALL"; |
| case HexagonISD::CALLnr: return "HexagonISD::CALLnr"; |
| case HexagonISD::CALLR: return "HexagonISD::CALLR"; |
| case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; |
| case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; |
| case HexagonISD::CONST32: return "HexagonISD::CONST32"; |
| case HexagonISD::CP: return "HexagonISD::CP"; |
| case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; |
| case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; |
| case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT"; |
| case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; |
| case HexagonISD::INSERT: return "HexagonISD::INSERT"; |
| case HexagonISD::JT: return "HexagonISD::JT"; |
| case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; |
| case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; |
| case HexagonISD::VASL: return "HexagonISD::VASL"; |
| case HexagonISD::VASR: return "HexagonISD::VASR"; |
| case HexagonISD::VLSR: return "HexagonISD::VLSR"; |
| case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT"; |
| case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW"; |
| case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0"; |
| case HexagonISD::VROR: return "HexagonISD::VROR"; |
| case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE"; |
| case HexagonISD::VZERO: return "HexagonISD::VZERO"; |
| case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW"; |
| case HexagonISD::D2P: return "HexagonISD::D2P"; |
| case HexagonISD::P2D: return "HexagonISD::P2D"; |
| case HexagonISD::V2Q: return "HexagonISD::V2Q"; |
| case HexagonISD::Q2V: return "HexagonISD::Q2V"; |
| case HexagonISD::QCAT: return "HexagonISD::QCAT"; |
| case HexagonISD::QTRUE: return "HexagonISD::QTRUE"; |
| case HexagonISD::QFALSE: return "HexagonISD::QFALSE"; |
| case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST"; |
| case HexagonISD::VALIGN: return "HexagonISD::VALIGN"; |
| case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR"; |
| case HexagonISD::OP_END: break; |
| } |
| return nullptr; |
| } |
| |
| // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load |
| // intrinsic. |
| static bool isBrevLdIntrinsic(const Value *Inst) { |
| unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID(); |
| return (ID == Intrinsic::hexagon_L2_loadrd_pbr || |
| ID == Intrinsic::hexagon_L2_loadri_pbr || |
| ID == Intrinsic::hexagon_L2_loadrh_pbr || |
| ID == Intrinsic::hexagon_L2_loadruh_pbr || |
| ID == Intrinsic::hexagon_L2_loadrb_pbr || |
| ID == Intrinsic::hexagon_L2_loadrub_pbr); |
| } |
| |
| // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous |
| // instruction. So far we only handle bitcast, extract value and bit reverse |
| // load intrinsic instructions. Should we handle CGEP ? |
| static Value *getBrevLdObject(Value *V) { |
| if (Operator::getOpcode(V) == Instruction::ExtractValue || |
| Operator::getOpcode(V) == Instruction::BitCast) |
| V = cast<Operator>(V)->getOperand(0); |
| else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V)) |
| V = cast<Instruction>(V)->getOperand(0); |
| return V; |
| } |
| |
| // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or |
| // a back edge. If the back edge comes from the intrinsic itself, the incoming |
| // edge is returned. |
| static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) { |
| const BasicBlock *Parent = PN->getParent(); |
| int Idx = -1; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { |
| BasicBlock *Blk = PN->getIncomingBlock(i); |
| // Determine if the back edge is originated from intrinsic. |
| if (Blk == Parent) { |
| Value *BackEdgeVal = PN->getIncomingValue(i); |
| Value *BaseVal; |
| // Loop over till we return the same Value or we hit the IntrBaseVal. |
| do { |
| BaseVal = BackEdgeVal; |
| BackEdgeVal = getBrevLdObject(BackEdgeVal); |
| } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal)); |
| // If the getBrevLdObject returns IntrBaseVal, we should return the |
| // incoming edge. |
| if (IntrBaseVal == BackEdgeVal) |
| continue; |
| Idx = i; |
| break; |
| } else // Set the node to incoming edge. |
| Idx = i; |
| } |
| assert(Idx >= 0 && "Unexpected index to incoming argument in PHI"); |
| return PN->getIncomingValue(Idx); |
| } |
| |
| // Bit-reverse Load Intrinsic: Figure out the underlying object the base |
| // pointer points to, for the bit-reverse load intrinsic. Setting this to |
| // memoperand might help alias analysis to figure out the dependencies. |
| static Value *getUnderLyingObjectForBrevLdIntr(Value *V) { |
| Value *IntrBaseVal = V; |
| Value *BaseVal; |
| // Loop over till we return the same Value, implies we either figure out |
| // the object or we hit a PHI |
| do { |
| BaseVal = V; |
| V = getBrevLdObject(V); |
| } while (BaseVal != V); |
| |
| // Identify the object from PHINode. |
| if (const PHINode *PN = dyn_cast<PHINode>(V)) |
| return returnEdge(PN, IntrBaseVal); |
| // For non PHI nodes, the object is the last value returned by getBrevLdObject |
| else |
| return V; |
| } |
| |
| /// Given an intrinsic, checks if on the target the intrinsic will need to map |
| /// to a MemIntrinsicNode (touches memory). If this is the case, it returns |
| /// true and store the intrinsic information into the IntrinsicInfo that was |
| /// passed to the function. |
| bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| case Intrinsic::hexagon_L2_loadrd_pbr: |
| case Intrinsic::hexagon_L2_loadri_pbr: |
| case Intrinsic::hexagon_L2_loadrh_pbr: |
| case Intrinsic::hexagon_L2_loadruh_pbr: |
| case Intrinsic::hexagon_L2_loadrb_pbr: |
| case Intrinsic::hexagon_L2_loadrub_pbr: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| auto &Cont = I.getCalledFunction()->getParent()->getContext(); |
| // The intrinsic function call is of the form { ElTy, i8* } |
| // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type |
| // should be derived from ElTy. |
| PointerType *PtrTy = I.getCalledFunction() |
| ->getReturnType() |
| ->getContainedType(0) |
| ->getPointerTo(); |
| Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| llvm::Value *BasePtrVal = I.getOperand(0); |
| Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal); |
| // The offset value comes through Modifier register. For now, assume the |
| // offset is 0. |
| Info.offset = 0; |
| Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)); |
| Info.flags = MachineMemOperand::MOLoad; |
| return true; |
| } |
| case Intrinsic::hexagon_V6_vgathermw: |
| case Intrinsic::hexagon_V6_vgathermw_128B: |
| case Intrinsic::hexagon_V6_vgathermh: |
| case Intrinsic::hexagon_V6_vgathermh_128B: |
| case Intrinsic::hexagon_V6_vgathermhw: |
| case Intrinsic::hexagon_V6_vgathermhw_128B: |
| case Intrinsic::hexagon_V6_vgathermwq: |
| case Intrinsic::hexagon_V6_vgathermwq_128B: |
| case Intrinsic::hexagon_V6_vgathermhq: |
| case Intrinsic::hexagon_V6_vgathermhq_128B: |
| case Intrinsic::hexagon_V6_vgathermhwq: |
| case Intrinsic::hexagon_V6_vgathermhwq_128B: { |
| const Module &M = *I.getParent()->getParent()->getParent(); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Type *VecTy = I.getArgOperand(1)->getType(); |
| Info.memVT = MVT::getVT(VecTy); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8; |
| Info.flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore | |
| MachineMemOperand::MOVolatile; |
| return true; |
| } |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2)); |
| } |
| |
| bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (!VT1.isSimple() || !VT2.isSimple()) |
| return false; |
| return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32; |
| } |
| |
| bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { |
| return isOperationLegalOrCustom(ISD::FMA, VT); |
| } |
| |
| // Should we expand the build vector with shuffles? |
| bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, |
| unsigned DefinedValues) const { |
| return false; |
| } |
| |
| bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask, |
| EVT VT) const { |
| return true; |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| HexagonTargetLowering::getPreferredVectorAction(EVT VT) const { |
| if (VT.getVectorNumElements() == 1) |
| return TargetLoweringBase::TypeScalarizeVector; |
| |
| // Always widen vectors of i1. |
| MVT ElemTy = VT.getSimpleVT().getVectorElementType(); |
| if (ElemTy == MVT::i1) |
| return TargetLoweringBase::TypeWidenVector; |
| |
| if (Subtarget.useHVXOps()) { |
| // If the size of VT is at least half of the vector length, |
| // widen the vector. Note: the threshold was not selected in |
| // any scientific way. |
| ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); |
| if (llvm::find(Tys, ElemTy) != Tys.end()) { |
| unsigned HwWidth = 8*Subtarget.getVectorLength(); |
| unsigned VecWidth = VT.getSizeInBits(); |
| if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) |
| return TargetLoweringBase::TypeWidenVector; |
| } |
| } |
| return TargetLoweringBase::TypeSplitVector; |
| } |
| |
| std::pair<SDValue, int> |
| HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const { |
| if (Addr.getOpcode() == ISD::ADD) { |
| SDValue Op1 = Addr.getOperand(1); |
| if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode())) |
| return { Addr.getOperand(0), CN->getSExtValue() }; |
| } |
| return { Addr, 0 }; |
| } |
| |
| // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors |
| // to select data from, V3 is the permutation. |
| SDValue |
| HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) |
| const { |
| const auto *SVN = cast<ShuffleVectorSDNode>(Op); |
| ArrayRef<int> AM = SVN->getMask(); |
| assert(AM.size() <= 8 && "Unexpected shuffle mask"); |
| unsigned VecLen = AM.size(); |
| |
| MVT VecTy = ty(Op); |
| assert(!Subtarget.isHVXVectorType(VecTy, true) && |
| "HVX shuffles should be legal"); |
| assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length"); |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| const SDLoc &dl(Op); |
| |
| // If the inputs are not the same as the output, bail. This is not an |
| // error situation, but complicates the handling and the default expansion |
| // (into BUILD_VECTOR) should be adequate. |
| if (ty(Op0) != VecTy || ty(Op1) != VecTy) |
| return SDValue(); |
| |
| // Normalize the mask so that the first non-negative index comes from |
| // the first operand. |
| SmallVector<int,8> Mask(AM.begin(), AM.end()); |
| unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data(); |
| if (F == AM.size()) |
| return DAG.getUNDEF(VecTy); |
| if (AM[F] >= int(VecLen)) { |
| ShuffleVectorSDNode::commuteMask(Mask); |
| std::swap(Op0, Op1); |
| } |
| |
| // Express the shuffle mask in terms of bytes. |
| SmallVector<int,8> ByteMask; |
| unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8; |
| for (unsigned i = 0, e = Mask.size(); i != e; ++i) { |
| int M = Mask[i]; |
| if (M < 0) { |
| for (unsigned j = 0; j != ElemBytes; ++j) |
| ByteMask.push_back(-1); |
| } else { |
| for (unsigned j = 0; j != ElemBytes; ++j) |
| ByteMask.push_back(M*ElemBytes + j); |
| } |
| } |
| assert(ByteMask.size() <= 8); |
| |
| // All non-undef (non-negative) indexes are well within [0..127], so they |
| // fit in a single byte. Build two 64-bit words: |
| // - MaskIdx where each byte is the corresponding index (for non-negative |
| // indexes), and 0xFF for negative indexes, and |
| // - MaskUnd that has 0xFF for each negative index. |
| uint64_t MaskIdx = 0; |
| uint64_t MaskUnd = 0; |
| for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) { |
| unsigned S = 8*i; |
| uint64_t M = ByteMask[i] & 0xFF; |
| if (M == 0xFF) |
| MaskUnd |= M << S; |
| MaskIdx |= M << S; |
| } |
| |
| if (ByteMask.size() == 4) { |
| // Identity. |
| if (MaskIdx == (0x03020100 | MaskUnd)) |
| return Op0; |
| // Byte swap. |
| if (MaskIdx == (0x00010203 | MaskUnd)) { |
| SDValue T0 = DAG.getBitcast(MVT::i32, Op0); |
| SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0); |
| return DAG.getBitcast(VecTy, T1); |
| } |
| |
| // Byte packs. |
| SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl, |
| typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0}); |
| if (MaskIdx == (0x06040200 | MaskUnd)) |
| return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG); |
| if (MaskIdx == (0x07050301 | MaskUnd)) |
| return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG); |
| |
| SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl, |
| typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1}); |
| if (MaskIdx == (0x02000604 | MaskUnd)) |
| return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG); |
| if (MaskIdx == (0x03010705 | MaskUnd)) |
| return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG); |
| } |
| |
| if (ByteMask.size() == 8) { |
| // Identity. |
| if (MaskIdx == (0x0706050403020100ull | MaskUnd)) |
| return Op0; |
| // Byte swap. |
| if (MaskIdx == (0x0001020304050607ull | MaskUnd)) { |
| SDValue T0 = DAG.getBitcast(MVT::i64, Op0); |
| SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0); |
| return DAG.getBitcast(VecTy, T1); |
| } |
| |
| // Halfword picks. |
| if (MaskIdx == (0x0d0c050409080100ull | MaskUnd)) |
| return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG); |
| if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd)) |
| return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG); |
| if (MaskIdx == (0x0d0c090805040100ull | MaskUnd)) |
| return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG); |
| if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd)) |
| return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG); |
| if (MaskIdx == (0x0706030205040100ull | MaskUnd)) { |
| VectorPair P = opSplit(Op0, dl, DAG); |
| return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG); |
| } |
| |
| // Byte packs. |
| if (MaskIdx == (0x0e060c040a020800ull | MaskUnd)) |
| return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG); |
| if (MaskIdx == (0x0f070d050b030901ull | MaskUnd)) |
| return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Create a Hexagon-specific node for shifting a vector by an integer. |
| SDValue |
| HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) |
| const { |
| if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) { |
| if (SDValue S = BVN->getSplatValue()) { |
| unsigned NewOpc; |
| switch (Op.getOpcode()) { |
| case ISD::SHL: |
| NewOpc = HexagonISD::VASL; |
| break; |
| case ISD::SRA: |
| NewOpc = HexagonISD::VASR; |
| break; |
| case ISD::SRL: |
| NewOpc = HexagonISD::VLSR; |
| break; |
| default: |
| llvm_unreachable("Unexpected shift opcode"); |
| } |
| return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { |
| return getVectorShiftByInt(Op, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { |
| if (isa<ConstantSDNode>(Op.getOperand(1).getNode())) |
| return Op; |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { |
| MVT ResTy = ty(Op); |
| SDValue InpV = Op.getOperand(0); |
| MVT InpTy = ty(InpV); |
| assert(ResTy.getSizeInBits() == InpTy.getSizeInBits()); |
| const SDLoc &dl(Op); |
| |
| // Handle conversion from i8 to v8i1. |
| if (ResTy == MVT::v8i1) { |
| SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV); |
| SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32); |
| return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| bool |
| HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values, |
| MVT VecTy, SelectionDAG &DAG, |
| MutableArrayRef<ConstantInt*> Consts) const { |
| MVT ElemTy = VecTy.getVectorElementType(); |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth); |
| bool AllConst = true; |
| |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) { |
| SDValue V = Values[i]; |
| if (V.isUndef()) { |
| Consts[i] = ConstantInt::get(IntTy, 0); |
| continue; |
| } |
| // Make sure to always cast to IntTy. |
| if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) { |
| const ConstantInt *CI = CN->getConstantIntValue(); |
| Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue()); |
| } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) { |
| const ConstantFP *CF = CN->getConstantFPValue(); |
| APInt A = CF->getValueAPF().bitcastToAPInt(); |
| Consts[i] = ConstantInt::get(IntTy, A.getZExtValue()); |
| } else { |
| AllConst = false; |
| } |
| } |
| return AllConst; |
| } |
| |
| SDValue |
| HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, |
| MVT VecTy, SelectionDAG &DAG) const { |
| MVT ElemTy = VecTy.getVectorElementType(); |
| assert(VecTy.getVectorNumElements() == Elem.size()); |
| |
| SmallVector<ConstantInt*,4> Consts(Elem.size()); |
| bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); |
| |
| unsigned First, Num = Elem.size(); |
| for (First = 0; First != Num; ++First) |
| if (!isUndef(Elem[First])) |
| break; |
| if (First == Num) |
| return DAG.getUNDEF(VecTy); |
| |
| if (AllConst && |
| llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) |
| return getZero(dl, VecTy, DAG); |
| |
| if (ElemTy == MVT::i16) { |
| assert(Elem.size() == 2); |
| if (AllConst) { |
| uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) | |
| Consts[1]->getZExtValue() << 16; |
| return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32)); |
| } |
| SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, |
| {Elem[1], Elem[0]}, DAG); |
| return DAG.getBitcast(MVT::v2i16, N); |
| } |
| |
| if (ElemTy == MVT::i8) { |
| // First try generating a constant. |
| if (AllConst) { |
| int32_t V = (Consts[0]->getZExtValue() & 0xFF) | |
| (Consts[1]->getZExtValue() & 0xFF) << 8 | |
| (Consts[1]->getZExtValue() & 0xFF) << 16 | |
| Consts[2]->getZExtValue() << 24; |
| return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32)); |
| } |
| |
| // Then try splat. |
| bool IsSplat = true; |
| for (unsigned i = 0; i != Num; ++i) { |
| if (i == First) |
| continue; |
| if (Elem[i] == Elem[First] || isUndef(Elem[i])) |
| continue; |
| IsSplat = false; |
| break; |
| } |
| if (IsSplat) { |
| // Legalize the operand to VSPLAT. |
| SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); |
| return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); |
| } |
| |
| // Generate |
| // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) | |
| // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16 |
| assert(Elem.size() == 4); |
| SDValue Vs[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32); |
| Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8); |
| } |
| SDValue S8 = DAG.getConstant(8, dl, MVT::i32); |
| SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8}); |
| SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8}); |
| SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0}); |
| SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1}); |
| |
| SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG); |
| return DAG.getBitcast(MVT::v4i8, R); |
| } |
| |
| #ifndef NDEBUG |
| dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n'; |
| #endif |
| llvm_unreachable("Unexpected vector element type"); |
| } |
| |
| SDValue |
| HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, |
| MVT VecTy, SelectionDAG &DAG) const { |
| MVT ElemTy = VecTy.getVectorElementType(); |
| assert(VecTy.getVectorNumElements() == Elem.size()); |
| |
| SmallVector<ConstantInt*,8> Consts(Elem.size()); |
| bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); |
| |
| unsigned First, Num = Elem.size(); |
| for (First = 0; First != Num; ++First) |
| if (!isUndef(Elem[First])) |
| break; |
| if (First == Num) |
| return DAG.getUNDEF(VecTy); |
| |
| if (AllConst && |
| llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) |
| return getZero(dl, VecTy, DAG); |
| |
| // First try splat if possible. |
| if (ElemTy == MVT::i16) { |
| bool IsSplat = true; |
| for (unsigned i = 0; i != Num; ++i) { |
| if (i == First) |
| continue; |
| if (Elem[i] == Elem[First] || isUndef(Elem[i])) |
| continue; |
| IsSplat = false; |
| break; |
| } |
| if (IsSplat) { |
| // Legalize the operand to VSPLAT. |
| SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); |
| return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext); |
| } |
| } |
| |
| // Then try constant. |
| if (AllConst) { |
| uint64_t Val = 0; |
| unsigned W = ElemTy.getSizeInBits(); |
| uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull |
| : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull; |
| for (unsigned i = 0; i != Num; ++i) |
| Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask); |
| SDValue V0 = DAG.getConstant(Val, dl, MVT::i64); |
| return DAG.getBitcast(VecTy, V0); |
| } |
| |
| // Build two 32-bit vectors and concatenate. |
| MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2); |
| SDValue L = (ElemTy == MVT::i32) |
| ? Elem[0] |
| : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG); |
| SDValue H = (ElemTy == MVT::i32) |
| ? Elem[1] |
| : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG); |
| return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L}); |
| } |
| |
| SDValue |
| HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV, |
| const SDLoc &dl, MVT ValTy, MVT ResTy, |
| SelectionDAG &DAG) const { |
| MVT VecTy = ty(VecV); |
| assert(!ValTy.isVector() || |
| VecTy.getVectorElementType() == ValTy.getVectorElementType()); |
| unsigned VecWidth = VecTy.getSizeInBits(); |
| unsigned ValWidth = ValTy.getSizeInBits(); |
| unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits(); |
| assert((VecWidth % ElemWidth) == 0); |
| auto *IdxN = dyn_cast<ConstantSDNode>(IdxV); |
| |
| // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon |
| // without any coprocessors). |
| if (ElemWidth == 1) { |
| assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure"); |
| assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2); |
| // Check if this is an extract of the lowest bit. |
| if (IdxN) { |
| // Extracting the lowest bit is a no-op, but it changes the type, |
| // so it must be kept as an operation to avoid errors related to |
| // type mismatches. |
| if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1) |
| return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV); |
| } |
| |
| // If the value extracted is a single bit, use tstbit. |
| if (ValWidth == 1) { |
| SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); |
| SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32); |
| SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0); |
| return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0); |
| } |
| |
| // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in |
| // a predicate register. The elements of the vector are repeated |
| // in the register (if necessary) so that the total number is 8. |
| // The extracted subvector will need to be expanded in such a way. |
| unsigned Scale = VecWidth / ValWidth; |
| |
| // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to |
| // position 0. |
| assert(ty(IdxV) == MVT::i32); |
| SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| DAG.getConstant(8*Scale, dl, MVT::i32)); |
| SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); |
| SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0); |
| while (Scale > 1) { |
| // The longest possible subvector is at most 32 bits, so it is always |
| // contained in the low subregister. |
| T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1); |
| T1 = expandPredicate(T1, dl, DAG); |
| Scale /= 2; |
| } |
| |
| return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1); |
| } |
| |
| assert(VecWidth == 32 || VecWidth == 64); |
| |
| // Cast everything to scalar integer types. |
| MVT ScalarTy = tyScalar(VecTy); |
| VecV = DAG.getBitcast(ScalarTy, VecV); |
| |
| SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); |
| SDValue ExtV; |
| |
| if (IdxN) { |
| unsigned Off = IdxN->getZExtValue() * ElemWidth; |
| if (VecWidth == 64 && ValWidth == 32) { |
| assert(Off == 0 || Off == 32); |
| unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; |
| ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV); |
| } else if (Off == 0 && (ValWidth % 8) == 0) { |
| ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy)); |
| } else { |
| SDValue OffV = DAG.getConstant(Off, dl, MVT::i32); |
| // The return type of EXTRACTU must be the same as the type of the |
| // input vector. |
| ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, |
| {VecV, WidthV, OffV}); |
| } |
| } else { |
| if (ty(IdxV) != MVT::i32) |
| IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); |
| SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| DAG.getConstant(ElemWidth, dl, MVT::i32)); |
| ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, |
| {VecV, WidthV, OffV}); |
| } |
| |
| // Cast ExtV to the requested result type. |
| ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy)); |
| ExtV = DAG.getBitcast(ResTy, ExtV); |
| return ExtV; |
| } |
| |
| SDValue |
| HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, |
| const SDLoc &dl, MVT ValTy, |
| SelectionDAG &DAG) const { |
| MVT VecTy = ty(VecV); |
| if (VecTy.getVectorElementType() == MVT::i1) { |
| MVT ValTy = ty(ValV); |
| assert(ValTy.getVectorElementType() == MVT::i1); |
| SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV); |
| unsigned VecLen = VecTy.getVectorNumElements(); |
| unsigned Scale = VecLen / ValTy.getVectorNumElements(); |
| assert(Scale > 1); |
| |
| for (unsigned R = Scale; R > 1; R /= 2) { |
| ValR = contractPredicate(ValR, dl, DAG); |
| ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, |
| DAG.getUNDEF(MVT::i32), ValR); |
| } |
| // The longest possible subvector is at most 32 bits, so it is always |
| // contained in the low subregister. |
| ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR); |
| |
| unsigned ValBytes = 64 / Scale; |
| SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32); |
| SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| DAG.getConstant(8, dl, MVT::i32)); |
| SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); |
| SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, |
| {VecR, ValR, Width, Idx}); |
| return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins); |
| } |
| |
| unsigned VecWidth = VecTy.getSizeInBits(); |
| unsigned ValWidth = ValTy.getSizeInBits(); |
| assert(VecWidth == 32 || VecWidth == 64); |
| assert((VecWidth % ValWidth) == 0); |
| |
| // Cast everything to scalar integer types. |
| MVT ScalarTy = MVT::getIntegerVT(VecWidth); |
| // The actual type of ValV may be different than ValTy (which is related |
| // to the vector type). |
| unsigned VW = ty(ValV).getSizeInBits(); |
| ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV); |
| VecV = DAG.getBitcast(ScalarTy, VecV); |
| if (VW != VecWidth) |
| ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy); |
| |
| SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); |
| SDValue InsV; |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) { |
| unsigned W = C->getZExtValue() * ValWidth; |
| SDValue OffV = DAG.getConstant(W, dl, MVT::i32); |
| InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, |
| {VecV, ValV, WidthV, OffV}); |
| } else { |
| if (ty(IdxV) != MVT::i32) |
| IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); |
| SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV); |
| InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, |
| {VecV, ValV, WidthV, OffV}); |
| } |
| |
| return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV); |
| } |
| |
| SDValue |
| HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl, |
| SelectionDAG &DAG) const { |
| assert(ty(Vec32).getSizeInBits() == 32); |
| if (isUndef(Vec32)) |
| return DAG.getUNDEF(MVT::i64); |
| return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl, |
| SelectionDAG &DAG) const { |
| assert(ty(Vec64).getSizeInBits() == 64); |
| if (isUndef(Vec64)) |
| return DAG.getUNDEF(MVT::i32); |
| return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) |
| const { |
| if (Ty.isVector()) { |
| assert(Ty.isInteger() && "Only integer vectors are supported here"); |
| unsigned W = Ty.getSizeInBits(); |
| if (W <= 64) |
| return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W))); |
| return DAG.getNode(HexagonISD::VZERO, dl, Ty); |
| } |
| |
| if (Ty.isInteger()) |
| return DAG.getConstant(0, dl, Ty); |
| if (Ty.isFloatingPoint()) |
| return DAG.getConstantFP(0.0, dl, Ty); |
| llvm_unreachable("Invalid type for zero"); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { |
| MVT VecTy = ty(Op); |
| unsigned BW = VecTy.getSizeInBits(); |
| const SDLoc &dl(Op); |
| SmallVector<SDValue,8> Ops; |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) |
| Ops.push_back(Op.getOperand(i)); |
| |
| if (BW == 32) |
| return buildVector32(Ops, dl, VecTy, DAG); |
| if (BW == 64) |
| return buildVector64(Ops, dl, VecTy, DAG); |
| |
| if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) { |
| // For each i1 element in the resulting predicate register, put 1 |
| // shifted by the index of the element into a general-purpose register, |
| // then or them together and transfer it back into a predicate register. |
| SDValue Rs[8]; |
| SDValue Z = getZero(dl, MVT::i32, DAG); |
| // Always produce 8 bits, repeat inputs if necessary. |
| unsigned Rep = 8 / VecTy.getVectorNumElements(); |
| for (unsigned i = 0; i != 8; ++i) { |
| SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32); |
| Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z); |
| } |
| for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) { |
| for (unsigned i = 0, e = A.size()/2; i != e; ++i) |
| Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]); |
| } |
| // Move the value directly to a predicate register. |
| return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VecTy = ty(Op); |
| const SDLoc &dl(Op); |
| if (VecTy.getSizeInBits() == 64) { |
| assert(Op.getNumOperands() == 2); |
| return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1), |
| Op.getOperand(0)); |
| } |
| |
| MVT ElemTy = VecTy.getVectorElementType(); |
| if (ElemTy == MVT::i1) { |
| assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1); |
| MVT OpTy = ty(Op.getOperand(0)); |
| // Scale is how many times the operands need to be contracted to match |
| // the representation in the target register. |
| unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements(); |
| assert(Scale == Op.getNumOperands() && Scale > 1); |
| |
| // First, convert all bool vectors to integers, then generate pairwise |
| // inserts to form values of doubled length. Up until there are only |
| // two values left to concatenate, all of these values will fit in a |
| // 32-bit integer, so keep them as i32 to use 32-bit inserts. |
| SmallVector<SDValue,4> Words[2]; |
| unsigned IdxW = 0; |
| |
| for (SDValue P : Op.getNode()->op_values()) { |
| SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P); |
| for (unsigned R = Scale; R > 1; R /= 2) { |
| W = contractPredicate(W, dl, DAG); |
| W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, |
| DAG.getUNDEF(MVT::i32), W); |
| } |
| W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W); |
| Words[IdxW].push_back(W); |
| } |
| |
| while (Scale > 2) { |
| SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32); |
| Words[IdxW ^ 1].clear(); |
| |
| for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) { |
| SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1]; |
| // Insert W1 into W0 right next to the significant bits of W0. |
| SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, |
| {W0, W1, WidthV, WidthV}); |
| Words[IdxW ^ 1].push_back(T); |
| } |
| IdxW ^= 1; |
| Scale /= 2; |
| } |
| |
| // Another sanity check. At this point there should only be two words |
| // left, and Scale should be 2. |
| assert(Scale == 2 && Words[IdxW].size() == 2); |
| |
| SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, |
| Words[IdxW][1], Words[IdxW][0]); |
| return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| MVT ElemTy = ty(Vec).getVectorElementType(); |
| return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op), |
| ty(Op), ty(Op), DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), |
| SDLoc(Op), ty(Op).getVectorElementType(), DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue ValV = Op.getOperand(1); |
| return insertVector(Op.getOperand(0), ValV, Op.getOperand(2), |
| SDLoc(Op), ty(ValV), DAG); |
| } |
| |
| bool |
| HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { |
| // Assuming the caller does not have either a signext or zeroext modifier, and |
| // only one value is accepted, any reasonable truncation is allowed. |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| |
| // FIXME: in principle up to 64-bit could be made safe, but it would be very |
| // fragile at the moment: any support for multiple value returns would be |
| // liable to disallow tail calls involving i64 -> iN truncation in many cases. |
| return Ty1->getPrimitiveSizeInBits() <= 32; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) |
| const { |
| LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); |
| unsigned HaveAlign = LN->getAlignment(); |
| MVT LoadTy = ty(Op); |
| unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy); |
| if (HaveAlign >= NeedAlign) |
| return Op; |
| |
| const SDLoc &dl(Op); |
| const DataLayout &DL = DAG.getDataLayout(); |
| LLVMContext &Ctx = *DAG.getContext(); |
| unsigned AS = LN->getAddressSpace(); |
| |
| // If the load aligning is disabled or the load can be broken up into two |
| // smaller legal loads, do the default (target-independent) expansion. |
| bool DoDefault = false; |
| // Handle it in the default way if this is an indexed load. |
| if (!LN->isUnindexed()) |
| DoDefault = true; |
| |
| if (!AlignLoads) { |
| if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), AS, HaveAlign)) |
| return Op; |
| DoDefault = true; |
| } |
| if (!DoDefault && 2*HaveAlign == NeedAlign) { |
| // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)". |
| MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8*HaveAlign) |
| : MVT::getVectorVT(MVT::i8, HaveAlign); |
| DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, AS, HaveAlign); |
| } |
| if (DoDefault) { |
| std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG); |
| return DAG.getMergeValues({P.first, P.second}, dl); |
| } |
| |
| // The code below generates two loads, both aligned as NeedAlign, and |
| // with the distance of NeedAlign between them. For that to cover the |
| // bits that need to be loaded (and without overlapping), the size of |
| // the loads should be equal to NeedAlign. This is true for all loadable |
| // types, but add an assertion in case something changes in the future. |
| assert(LoadTy.getSizeInBits() == 8*NeedAlign); |
| |
| unsigned LoadLen = NeedAlign; |
| SDValue Base = LN->getBasePtr(); |
| SDValue Chain = LN->getChain(); |
| auto BO = getBaseAndOffset(Base); |
| unsigned BaseOpc = BO.first.getOpcode(); |
| if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0) |
| return Op; |
| |
| if (BO.second % LoadLen != 0) { |
| BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first, |
| DAG.getConstant(BO.second % LoadLen, dl, MVT::i32)); |
| BO.second -= BO.second % LoadLen; |
| } |
| SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR) |
| ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first, |
| DAG.getConstant(NeedAlign, dl, MVT::i32)) |
| : BO.first; |
| SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl); |
| SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl); |
| |
| MachineMemOperand *WideMMO = nullptr; |
| if (MachineMemOperand *MMO = LN->getMemOperand()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(), |
| 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(), |
| MMO->getSyncScopeID(), MMO->getOrdering(), |
| MMO->getFailureOrdering()); |
| } |
| |
| SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO); |
| SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO); |
| |
| SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy, |
| {Load1, Load0, BaseNoOff.getOperand(0)}); |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| Load0.getValue(1), Load1.getValue(1)); |
| SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl); |
| return M; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const { |
| const SDLoc &dl(Op); |
| unsigned Opc = Op.getOpcode(); |
| SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2); |
| |
| if (Opc == ISD::ADDCARRY) |
| return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(), |
| { X, Y, C }); |
| |
| EVT CarryTy = C.getValueType(); |
| SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(), |
| { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) }); |
| SDValue Out[] = { SubC.getValue(0), |
| DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) }; |
| return DAG.getMergeValues(Out, dl); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Offset = Op.getOperand(1); |
| SDValue Handler = Op.getOperand(2); |
| SDLoc dl(Op); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Mark function as containing a call to EH_RETURN. |
| HexagonMachineFunctionInfo *FuncInfo = |
| DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); |
| FuncInfo->setHasEHReturn(); |
| |
| unsigned OffsetReg = Hexagon::R28; |
| |
| SDValue StoreAddr = |
| DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), |
| DAG.getIntPtrConstant(4, dl)); |
| Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); |
| Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); |
| |
| // Not needed we already use it as explict input to EH_RETURN. |
| // MF.getRegInfo().addLiveOut(OffsetReg); |
| |
| return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| |
| // Handle INLINEASM first. |
| if (Opc == ISD::INLINEASM) |
| return LowerINLINEASM(Op, DAG); |
| |
| if (isHvxOperation(Op)) { |
| // If HVX lowering returns nothing, try the default lowering. |
| if (SDValue V = LowerHvxOperation(Op, DAG)) |
| return V; |
| } |
| |
| switch (Opc) { |
| default: |
| #ifndef NDEBUG |
| Op.getNode()->dumpr(&DAG); |
| if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) |
| errs() << "Error: check for a non-legal type in this operation\n"; |
| #endif |
| llvm_unreachable("Should not custom lower this!"); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::BITCAST: return LowerBITCAST(Op, DAG); |
| case ISD::LOAD: return LowerUnalignedLoad(Op, DAG); |
| case ISD::ADDCARRY: |
| case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG); |
| case ISD::SRA: |
| case ISD::SHL: |
| case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); |
| case ISD::ROTL: return LowerROTL(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); |
| case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::VSELECT: return LowerVSELECT(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); |
| case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); |
| case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| void |
| HexagonTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| const SDLoc &dl(N); |
| switch (N->getOpcode()) { |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::SHL: |
| return; |
| case ISD::BITCAST: |
| // Handle a bitcast from v8i1 to i8. |
| if (N->getValueType(0) == MVT::i8) { |
| SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, |
| N->getOperand(0), DAG); |
| Results.push_back(P); |
| } |
| break; |
| } |
| } |
| |
| /// Returns relocation base for the given PIC jumptable. |
| SDValue |
| HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| int Idx = cast<JumpTableSDNode>(Table)->getIndex(); |
| EVT VT = Table.getValueType(); |
| SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); |
| return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| TargetLowering::ConstraintType |
| HexagonTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'q': |
| case 'v': |
| if (Subtarget.useHVXOps()) |
| return C_RegisterClass; |
| break; |
| case 'a': |
| return C_RegisterClass; |
| default: |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| HexagonTargetLowering::getRegForInlineAsmConstraint( |
| const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': // R0-R31 |
| switch (VT.SimpleTy) { |
| default: |
| return {0u, nullptr}; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| return {0u, &Hexagon::IntRegsRegClass}; |
| case MVT::i64: |
| case MVT::f64: |
| return {0u, &Hexagon::DoubleRegsRegClass}; |
| } |
| break; |
| case 'a': // M0-M1 |
| if (VT != MVT::i32) |
| return {0u, nullptr}; |
| return {0u, &Hexagon::ModRegsRegClass}; |
| case 'q': // q0-q3 |
| switch (VT.getSizeInBits()) { |
| default: |
| return {0u, nullptr}; |
| case 512: |
| case 1024: |
| return {0u, &Hexagon::HvxQRRegClass}; |
| } |
| break; |
| case 'v': // V0-V31 |
| switch (VT.getSizeInBits()) { |
| default: |
| return {0u, nullptr}; |
| case 512: |
| return {0u, &Hexagon::HvxVRRegClass}; |
| case 1024: |
| if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps()) |
| return {0u, &Hexagon::HvxVRRegClass}; |
| return {0u, &Hexagon::HvxWRRegClass}; |
| case 2048: |
| return {0u, &Hexagon::HvxWRRegClass}; |
| } |
| break; |
| default: |
| return {0u, nullptr}; |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| return Subtarget.hasV5Ops(); |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented by |
| /// AM is legal for this target, for a load/store of the specified type. |
| bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| if (Ty->isSized()) { |
| // When LSR detects uses of the same base address to access different |
| // types (e.g. unions), it will assume a conservative type for these |
| // uses: |
| // LSR Use: Kind=Address of void in addrspace(4294967295), ... |
| // The type Ty passed here would then be "void". Skip the alignment |
| // checks, but do not return false right away, since that confuses |
| // LSR into crashing. |
| unsigned A = DL.getABITypeAlignment(Ty); |
| // The base offset must be a multiple of the alignment. |
| if ((AM.BaseOffs % A) != 0) |
| return false; |
| // The shifted offset must fit in 11 bits. |
| if (!isInt<11>(AM.BaseOffs >> Log2_32(A))) |
| return false; |
| } |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| int Scale = AM.Scale; |
| if (Scale < 0) |
| Scale = -Scale; |
| switch (Scale) { |
| case 0: // No scale reg, "r+i", "r", or just "i". |
| break; |
| default: // No scaled addressing mode. |
| return false; |
| } |
| return true; |
| } |
| |
| /// Return true if folding a constant offset with the given GlobalAddress is |
| /// legal. It is frequently not legal in PIC relocation models. |
| bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) |
| const { |
| return HTM.getRelocationModel() == Reloc::Static; |
| } |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can compare |
| /// a register against the immediate without having to materialize the |
| /// immediate into a register. |
| bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return Imm >= -512 && Imm <= 511; |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool HexagonTargetLowering::IsEligibleForTailCallOptimization( |
| SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool IsVarArg, |
| bool IsCalleeStructRet, |
| bool IsCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| const Function &CallerF = DAG.getMachineFunction().getFunction(); |
| CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| // *************************************************************************** |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. |
| // *************************************************************************** |
| |
| // If this is a tail call via a function pointer, then don't do it! |
| if (!isa<GlobalAddressSDNode>(Callee) && |
| !isa<ExternalSymbolSDNode>(Callee)) { |
| return false; |
| } |
| |
| // Do not optimize if the calling conventions do not match and the conventions |
| // used are not C or Fast. |
| if (!CCMatch) { |
| bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); |
| bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); |
| // If R & E, then ok. |
| if (!R || !E) |
| return false; |
| } |
| |
| // Do not tail call optimize vararg calls. |
| if (IsVarArg) |
| return false; |
| |
| // Also avoid tail call optimization if either caller or callee uses struct |
| // return semantics. |
| if (IsCalleeStructRet || IsCallerStructRet) |
| return false; |
| |
| // In addition to the cases above, we also disable Tail Call Optimization if |
| // the calling convention code that at least one outgoing argument needs to |
| // go on the stack. We cannot check that here because at this point that |
| // information is not available. |
| return true; |
| } |
| |
| /// Returns the target specific optimal type for load and store operations as |
| /// a result of memset, memcpy, and memmove lowering. |
| /// |
| /// If DstAlign is zero that means it's safe to destination alignment can |
| /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't |
| /// a need to check it against alignment requirement, probably because the |
| /// source does not need to be loaded. If 'IsMemset' is true, that means it's |
| /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of |
| /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it |
| /// does not need to be loaded. It returns EVT::Other if the type should be |
| /// determined using generic target-independent logic. |
| EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, |
| bool MemcpyStrSrc, MachineFunction &MF) const { |
| |
| auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool { |
| return (GivenA % MinA) == 0; |
| }; |
| |
| if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8))) |
| return MVT::i64; |
| if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4))) |
| return MVT::i32; |
| if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2))) |
| return MVT::i16; |
| |
| return MVT::Other; |
| } |
| |
| bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, |
| unsigned AS, unsigned Align, bool *Fast) const { |
| if (Fast) |
| *Fast = false; |
| return Subtarget.isHVXVectorType(VT.getSimpleVT()); |
| } |
| |
| std::pair<const TargetRegisterClass*, uint8_t> |
| HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, |
| MVT VT) const { |
| if (Subtarget.isHVXVectorType(VT, true)) { |
| unsigned BitWidth = VT.getSizeInBits(); |
| unsigned VecWidth = Subtarget.getVectorLength() * 8; |
| |
| if (VT.getVectorElementType() == MVT::i1) |
| return std::make_pair(&Hexagon::HvxQRRegClass, 1); |
| if (BitWidth == VecWidth) |
| return std::make_pair(&Hexagon::HvxVRRegClass, 1); |
| assert(BitWidth == 2 * VecWidth); |
| return std::make_pair(&Hexagon::HvxWRRegClass, 1); |
| } |
| |
| return TargetLowering::findRepresentativeClass(TRI, VT); |
| } |
| |
| Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, |
| AtomicOrdering Ord) const { |
| BasicBlock *BB = Builder.GetInsertBlock(); |
| Module *M = BB->getParent()->getParent(); |
| Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); |
| unsigned SZ = Ty->getPrimitiveSizeInBits(); |
| assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); |
| Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked |
| : Intrinsic::hexagon_L4_loadd_locked; |
| Value *Fn = Intrinsic::getDeclaration(M, IntID); |
| return Builder.CreateCall(Fn, Addr, "larx"); |
| } |
| |
| /// Perform a store-conditional operation to Addr. Return the status of the |
| /// store. This should be 0 if the store succeeded, non-zero otherwise. |
| Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, |
| Value *Val, Value *Addr, AtomicOrdering Ord) const { |
| BasicBlock *BB = Builder.GetInsertBlock(); |
| Module *M = BB->getParent()->getParent(); |
| Type *Ty = Val->getType(); |
| unsigned SZ = Ty->getPrimitiveSizeInBits(); |
| assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); |
| Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked |
| : Intrinsic::hexagon_S4_stored_locked; |
| Value *Fn = Intrinsic::getDeclaration(M, IntID); |
| Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); |
| Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); |
| Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); |
| return Ext; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { |
| // Do not expand loads and stores that don't exceed 64 bits. |
| return LI->getType()->getPrimitiveSizeInBits() > 64 |
| ? AtomicExpansionKind::LLOnly |
| : AtomicExpansionKind::None; |
| } |
| |
| bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { |
| // Do not expand loads and stores that don't exceed 64 bits. |
| return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; |
| } |
| |
| bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( |
| AtomicCmpXchgInst *AI) const { |
| const DataLayout &DL = AI->getModule()->getDataLayout(); |
| unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); |
| return Size >= 4 && Size <= 8; |
| } |