| //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for add, fadd, sub, and fsub. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/AlignOf.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/KnownBits.h" |
| #include <cassert> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| namespace { |
| |
| /// Class representing coefficient of floating-point addend. |
| /// This class needs to be highly efficient, which is especially true for |
| /// the constructor. As of I write this comment, the cost of the default |
| /// constructor is merely 4-byte-store-zero (Assuming compiler is able to |
| /// perform write-merging). |
| /// |
| class FAddendCoef { |
| public: |
| // The constructor has to initialize a APFloat, which is unnecessary for |
| // most addends which have coefficient either 1 or -1. So, the constructor |
| // is expensive. In order to avoid the cost of the constructor, we should |
| // reuse some instances whenever possible. The pre-created instances |
| // FAddCombine::Add[0-5] embodies this idea. |
| FAddendCoef() = default; |
| ~FAddendCoef(); |
| |
| // If possible, don't define operator+/operator- etc because these |
| // operators inevitably call FAddendCoef's constructor which is not cheap. |
| void operator=(const FAddendCoef &A); |
| void operator+=(const FAddendCoef &A); |
| void operator*=(const FAddendCoef &S); |
| |
| void set(short C) { |
| assert(!insaneIntVal(C) && "Insane coefficient"); |
| IsFp = false; IntVal = C; |
| } |
| |
| void set(const APFloat& C); |
| |
| void negate(); |
| |
| bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } |
| Value *getValue(Type *) const; |
| |
| bool isOne() const { return isInt() && IntVal == 1; } |
| bool isTwo() const { return isInt() && IntVal == 2; } |
| bool isMinusOne() const { return isInt() && IntVal == -1; } |
| bool isMinusTwo() const { return isInt() && IntVal == -2; } |
| |
| private: |
| bool insaneIntVal(int V) { return V > 4 || V < -4; } |
| |
| APFloat *getFpValPtr() |
| { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } |
| |
| const APFloat *getFpValPtr() const |
| { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } |
| |
| const APFloat &getFpVal() const { |
| assert(IsFp && BufHasFpVal && "Incorret state"); |
| return *getFpValPtr(); |
| } |
| |
| APFloat &getFpVal() { |
| assert(IsFp && BufHasFpVal && "Incorret state"); |
| return *getFpValPtr(); |
| } |
| |
| bool isInt() const { return !IsFp; } |
| |
| // If the coefficient is represented by an integer, promote it to a |
| // floating point. |
| void convertToFpType(const fltSemantics &Sem); |
| |
| // Construct an APFloat from a signed integer. |
| // TODO: We should get rid of this function when APFloat can be constructed |
| // from an *SIGNED* integer. |
| APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); |
| |
| bool IsFp = false; |
| |
| // True iff FpValBuf contains an instance of APFloat. |
| bool BufHasFpVal = false; |
| |
| // The integer coefficient of an individual addend is either 1 or -1, |
| // and we try to simplify at most 4 addends from neighboring at most |
| // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt |
| // is overkill of this end. |
| short IntVal = 0; |
| |
| AlignedCharArrayUnion<APFloat> FpValBuf; |
| }; |
| |
| /// FAddend is used to represent floating-point addend. An addend is |
| /// represented as <C, V>, where the V is a symbolic value, and C is a |
| /// constant coefficient. A constant addend is represented as <C, 0>. |
| class FAddend { |
| public: |
| FAddend() = default; |
| |
| void operator+=(const FAddend &T) { |
| assert((Val == T.Val) && "Symbolic-values disagree"); |
| Coeff += T.Coeff; |
| } |
| |
| Value *getSymVal() const { return Val; } |
| const FAddendCoef &getCoef() const { return Coeff; } |
| |
| bool isConstant() const { return Val == nullptr; } |
| bool isZero() const { return Coeff.isZero(); } |
| |
| void set(short Coefficient, Value *V) { |
| Coeff.set(Coefficient); |
| Val = V; |
| } |
| void set(const APFloat &Coefficient, Value *V) { |
| Coeff.set(Coefficient); |
| Val = V; |
| } |
| void set(const ConstantFP *Coefficient, Value *V) { |
| Coeff.set(Coefficient->getValueAPF()); |
| Val = V; |
| } |
| |
| void negate() { Coeff.negate(); } |
| |
| /// Drill down the U-D chain one step to find the definition of V, and |
| /// try to break the definition into one or two addends. |
| static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); |
| |
| /// Similar to FAddend::drillDownOneStep() except that the value being |
| /// splitted is the addend itself. |
| unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; |
| |
| private: |
| void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } |
| |
| // This addend has the value of "Coeff * Val". |
| Value *Val = nullptr; |
| FAddendCoef Coeff; |
| }; |
| |
| /// FAddCombine is the class for optimizing an unsafe fadd/fsub along |
| /// with its neighboring at most two instructions. |
| /// |
| class FAddCombine { |
| public: |
| FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} |
| |
| Value *simplify(Instruction *FAdd); |
| |
| private: |
| using AddendVect = SmallVector<const FAddend *, 4>; |
| |
| Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); |
| |
| /// Convert given addend to a Value |
| Value *createAddendVal(const FAddend &A, bool& NeedNeg); |
| |
| /// Return the number of instructions needed to emit the N-ary addition. |
| unsigned calcInstrNumber(const AddendVect& Vect); |
| |
| Value *createFSub(Value *Opnd0, Value *Opnd1); |
| Value *createFAdd(Value *Opnd0, Value *Opnd1); |
| Value *createFMul(Value *Opnd0, Value *Opnd1); |
| Value *createFNeg(Value *V); |
| Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); |
| void createInstPostProc(Instruction *NewInst, bool NoNumber = false); |
| |
| // Debugging stuff are clustered here. |
| #ifndef NDEBUG |
| unsigned CreateInstrNum; |
| void initCreateInstNum() { CreateInstrNum = 0; } |
| void incCreateInstNum() { CreateInstrNum++; } |
| #else |
| void initCreateInstNum() {} |
| void incCreateInstNum() {} |
| #endif |
| |
| InstCombiner::BuilderTy &Builder; |
| Instruction *Instr = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of |
| // {FAddendCoef, FAddend, FAddition, FAddCombine}. |
| // |
| //===----------------------------------------------------------------------===// |
| FAddendCoef::~FAddendCoef() { |
| if (BufHasFpVal) |
| getFpValPtr()->~APFloat(); |
| } |
| |
| void FAddendCoef::set(const APFloat& C) { |
| APFloat *P = getFpValPtr(); |
| |
| if (isInt()) { |
| // As the buffer is meanless byte stream, we cannot call |
| // APFloat::operator=(). |
| new(P) APFloat(C); |
| } else |
| *P = C; |
| |
| IsFp = BufHasFpVal = true; |
| } |
| |
| void FAddendCoef::convertToFpType(const fltSemantics &Sem) { |
| if (!isInt()) |
| return; |
| |
| APFloat *P = getFpValPtr(); |
| if (IntVal > 0) |
| new(P) APFloat(Sem, IntVal); |
| else { |
| new(P) APFloat(Sem, 0 - IntVal); |
| P->changeSign(); |
| } |
| IsFp = BufHasFpVal = true; |
| } |
| |
| APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { |
| if (Val >= 0) |
| return APFloat(Sem, Val); |
| |
| APFloat T(Sem, 0 - Val); |
| T.changeSign(); |
| |
| return T; |
| } |
| |
| void FAddendCoef::operator=(const FAddendCoef &That) { |
| if (That.isInt()) |
| set(That.IntVal); |
| else |
| set(That.getFpVal()); |
| } |
| |
| void FAddendCoef::operator+=(const FAddendCoef &That) { |
| enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; |
| if (isInt() == That.isInt()) { |
| if (isInt()) |
| IntVal += That.IntVal; |
| else |
| getFpVal().add(That.getFpVal(), RndMode); |
| return; |
| } |
| |
| if (isInt()) { |
| const APFloat &T = That.getFpVal(); |
| convertToFpType(T.getSemantics()); |
| getFpVal().add(T, RndMode); |
| return; |
| } |
| |
| APFloat &T = getFpVal(); |
| T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); |
| } |
| |
| void FAddendCoef::operator*=(const FAddendCoef &That) { |
| if (That.isOne()) |
| return; |
| |
| if (That.isMinusOne()) { |
| negate(); |
| return; |
| } |
| |
| if (isInt() && That.isInt()) { |
| int Res = IntVal * (int)That.IntVal; |
| assert(!insaneIntVal(Res) && "Insane int value"); |
| IntVal = Res; |
| return; |
| } |
| |
| const fltSemantics &Semantic = |
| isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); |
| |
| if (isInt()) |
| convertToFpType(Semantic); |
| APFloat &F0 = getFpVal(); |
| |
| if (That.isInt()) |
| F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), |
| APFloat::rmNearestTiesToEven); |
| else |
| F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); |
| } |
| |
| void FAddendCoef::negate() { |
| if (isInt()) |
| IntVal = 0 - IntVal; |
| else |
| getFpVal().changeSign(); |
| } |
| |
| Value *FAddendCoef::getValue(Type *Ty) const { |
| return isInt() ? |
| ConstantFP::get(Ty, float(IntVal)) : |
| ConstantFP::get(Ty->getContext(), getFpVal()); |
| } |
| |
| // The definition of <Val> Addends |
| // ========================================= |
| // A + B <1, A>, <1,B> |
| // A - B <1, A>, <1,B> |
| // 0 - B <-1, B> |
| // C * A, <C, A> |
| // A + C <1, A> <C, NULL> |
| // 0 +/- 0 <0, NULL> (corner case) |
| // |
| // Legend: A and B are not constant, C is constant |
| unsigned FAddend::drillValueDownOneStep |
| (Value *Val, FAddend &Addend0, FAddend &Addend1) { |
| Instruction *I = nullptr; |
| if (!Val || !(I = dyn_cast<Instruction>(Val))) |
| return 0; |
| |
| unsigned Opcode = I->getOpcode(); |
| |
| if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { |
| ConstantFP *C0, *C1; |
| Value *Opnd0 = I->getOperand(0); |
| Value *Opnd1 = I->getOperand(1); |
| if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) |
| Opnd0 = nullptr; |
| |
| if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) |
| Opnd1 = nullptr; |
| |
| if (Opnd0) { |
| if (!C0) |
| Addend0.set(1, Opnd0); |
| else |
| Addend0.set(C0, nullptr); |
| } |
| |
| if (Opnd1) { |
| FAddend &Addend = Opnd0 ? Addend1 : Addend0; |
| if (!C1) |
| Addend.set(1, Opnd1); |
| else |
| Addend.set(C1, nullptr); |
| if (Opcode == Instruction::FSub) |
| Addend.negate(); |
| } |
| |
| if (Opnd0 || Opnd1) |
| return Opnd0 && Opnd1 ? 2 : 1; |
| |
| // Both operands are zero. Weird! |
| Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); |
| return 1; |
| } |
| |
| if (I->getOpcode() == Instruction::FMul) { |
| Value *V0 = I->getOperand(0); |
| Value *V1 = I->getOperand(1); |
| if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { |
| Addend0.set(C, V1); |
| return 1; |
| } |
| |
| if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { |
| Addend0.set(C, V0); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Try to break *this* addend into two addends. e.g. Suppose this addend is |
| // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, |
| // i.e. <2.3, X> and <2.3, Y>. |
| unsigned FAddend::drillAddendDownOneStep |
| (FAddend &Addend0, FAddend &Addend1) const { |
| if (isConstant()) |
| return 0; |
| |
| unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); |
| if (!BreakNum || Coeff.isOne()) |
| return BreakNum; |
| |
| Addend0.Scale(Coeff); |
| |
| if (BreakNum == 2) |
| Addend1.Scale(Coeff); |
| |
| return BreakNum; |
| } |
| |
| Value *FAddCombine::simplify(Instruction *I) { |
| assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && |
| "Expected 'reassoc'+'nsz' instruction"); |
| |
| // Currently we are not able to handle vector type. |
| if (I->getType()->isVectorTy()) |
| return nullptr; |
| |
| assert((I->getOpcode() == Instruction::FAdd || |
| I->getOpcode() == Instruction::FSub) && "Expect add/sub"); |
| |
| // Save the instruction before calling other member-functions. |
| Instr = I; |
| |
| FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; |
| |
| unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); |
| |
| // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. |
| unsigned Opnd0_ExpNum = 0; |
| unsigned Opnd1_ExpNum = 0; |
| |
| if (!Opnd0.isConstant()) |
| Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); |
| |
| // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. |
| if (OpndNum == 2 && !Opnd1.isConstant()) |
| Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); |
| |
| // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 |
| if (Opnd0_ExpNum && Opnd1_ExpNum) { |
| AddendVect AllOpnds; |
| AllOpnds.push_back(&Opnd0_0); |
| AllOpnds.push_back(&Opnd1_0); |
| if (Opnd0_ExpNum == 2) |
| AllOpnds.push_back(&Opnd0_1); |
| if (Opnd1_ExpNum == 2) |
| AllOpnds.push_back(&Opnd1_1); |
| |
| // Compute instruction quota. We should save at least one instruction. |
| unsigned InstQuota = 0; |
| |
| Value *V0 = I->getOperand(0); |
| Value *V1 = I->getOperand(1); |
| InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && |
| (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; |
| |
| if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) |
| return R; |
| } |
| |
| if (OpndNum != 2) { |
| // The input instruction is : "I=0.0 +/- V". If the "V" were able to be |
| // splitted into two addends, say "V = X - Y", the instruction would have |
| // been optimized into "I = Y - X" in the previous steps. |
| // |
| const FAddendCoef &CE = Opnd0.getCoef(); |
| return CE.isOne() ? Opnd0.getSymVal() : nullptr; |
| } |
| |
| // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] |
| if (Opnd1_ExpNum) { |
| AddendVect AllOpnds; |
| AllOpnds.push_back(&Opnd0); |
| AllOpnds.push_back(&Opnd1_0); |
| if (Opnd1_ExpNum == 2) |
| AllOpnds.push_back(&Opnd1_1); |
| |
| if (Value *R = simplifyFAdd(AllOpnds, 1)) |
| return R; |
| } |
| |
| // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] |
| if (Opnd0_ExpNum) { |
| AddendVect AllOpnds; |
| AllOpnds.push_back(&Opnd1); |
| AllOpnds.push_back(&Opnd0_0); |
| if (Opnd0_ExpNum == 2) |
| AllOpnds.push_back(&Opnd0_1); |
| |
| if (Value *R = simplifyFAdd(AllOpnds, 1)) |
| return R; |
| } |
| |
| return nullptr; |
| } |
| |
| Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { |
| unsigned AddendNum = Addends.size(); |
| assert(AddendNum <= 4 && "Too many addends"); |
| |
| // For saving intermediate results; |
| unsigned NextTmpIdx = 0; |
| FAddend TmpResult[3]; |
| |
| // Points to the constant addend of the resulting simplified expression. |
| // If the resulting expr has constant-addend, this constant-addend is |
| // desirable to reside at the top of the resulting expression tree. Placing |
| // constant close to supper-expr(s) will potentially reveal some optimization |
| // opportunities in super-expr(s). |
| const FAddend *ConstAdd = nullptr; |
| |
| // Simplified addends are placed <SimpVect>. |
| AddendVect SimpVect; |
| |
| // The outer loop works on one symbolic-value at a time. Suppose the input |
| // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... |
| // The symbolic-values will be processed in this order: x, y, z. |
| for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { |
| |
| const FAddend *ThisAddend = Addends[SymIdx]; |
| if (!ThisAddend) { |
| // This addend was processed before. |
| continue; |
| } |
| |
| Value *Val = ThisAddend->getSymVal(); |
| unsigned StartIdx = SimpVect.size(); |
| SimpVect.push_back(ThisAddend); |
| |
| // The inner loop collects addends sharing same symbolic-value, and these |
| // addends will be later on folded into a single addend. Following above |
| // example, if the symbolic value "y" is being processed, the inner loop |
| // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will |
| // be later on folded into "<b1+b2, y>". |
| for (unsigned SameSymIdx = SymIdx + 1; |
| SameSymIdx < AddendNum; SameSymIdx++) { |
| const FAddend *T = Addends[SameSymIdx]; |
| if (T && T->getSymVal() == Val) { |
| // Set null such that next iteration of the outer loop will not process |
| // this addend again. |
| Addends[SameSymIdx] = nullptr; |
| SimpVect.push_back(T); |
| } |
| } |
| |
| // If multiple addends share same symbolic value, fold them together. |
| if (StartIdx + 1 != SimpVect.size()) { |
| FAddend &R = TmpResult[NextTmpIdx ++]; |
| R = *SimpVect[StartIdx]; |
| for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) |
| R += *SimpVect[Idx]; |
| |
| // Pop all addends being folded and push the resulting folded addend. |
| SimpVect.resize(StartIdx); |
| if (Val) { |
| if (!R.isZero()) { |
| SimpVect.push_back(&R); |
| } |
| } else { |
| // Don't push constant addend at this time. It will be the last element |
| // of <SimpVect>. |
| ConstAdd = &R; |
| } |
| } |
| } |
| |
| assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && |
| "out-of-bound access"); |
| |
| if (ConstAdd) |
| SimpVect.push_back(ConstAdd); |
| |
| Value *Result; |
| if (!SimpVect.empty()) |
| Result = createNaryFAdd(SimpVect, InstrQuota); |
| else { |
| // The addition is folded to 0.0. |
| Result = ConstantFP::get(Instr->getType(), 0.0); |
| } |
| |
| return Result; |
| } |
| |
| Value *FAddCombine::createNaryFAdd |
| (const AddendVect &Opnds, unsigned InstrQuota) { |
| assert(!Opnds.empty() && "Expect at least one addend"); |
| |
| // Step 1: Check if the # of instructions needed exceeds the quota. |
| |
| unsigned InstrNeeded = calcInstrNumber(Opnds); |
| if (InstrNeeded > InstrQuota) |
| return nullptr; |
| |
| initCreateInstNum(); |
| |
| // step 2: Emit the N-ary addition. |
| // Note that at most three instructions are involved in Fadd-InstCombine: the |
| // addition in question, and at most two neighboring instructions. |
| // The resulting optimized addition should have at least one less instruction |
| // than the original addition expression tree. This implies that the resulting |
| // N-ary addition has at most two instructions, and we don't need to worry |
| // about tree-height when constructing the N-ary addition. |
| |
| Value *LastVal = nullptr; |
| bool LastValNeedNeg = false; |
| |
| // Iterate the addends, creating fadd/fsub using adjacent two addends. |
| for (const FAddend *Opnd : Opnds) { |
| bool NeedNeg; |
| Value *V = createAddendVal(*Opnd, NeedNeg); |
| if (!LastVal) { |
| LastVal = V; |
| LastValNeedNeg = NeedNeg; |
| continue; |
| } |
| |
| if (LastValNeedNeg == NeedNeg) { |
| LastVal = createFAdd(LastVal, V); |
| continue; |
| } |
| |
| if (LastValNeedNeg) |
| LastVal = createFSub(V, LastVal); |
| else |
| LastVal = createFSub(LastVal, V); |
| |
| LastValNeedNeg = false; |
| } |
| |
| if (LastValNeedNeg) { |
| LastVal = createFNeg(LastVal); |
| } |
| |
| #ifndef NDEBUG |
| assert(CreateInstrNum == InstrNeeded && |
| "Inconsistent in instruction numbers"); |
| #endif |
| |
| return LastVal; |
| } |
| |
| Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder.CreateFSub(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| Value *FAddCombine::createFNeg(Value *V) { |
| Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); |
| Value *NewV = createFSub(Zero, V); |
| if (Instruction *I = dyn_cast<Instruction>(NewV)) |
| createInstPostProc(I, true); // fneg's don't receive instruction numbers. |
| return NewV; |
| } |
| |
| Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder.CreateFAdd(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder.CreateFMul(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { |
| NewInstr->setDebugLoc(Instr->getDebugLoc()); |
| |
| // Keep track of the number of instruction created. |
| if (!NoNumber) |
| incCreateInstNum(); |
| |
| // Propagate fast-math flags |
| NewInstr->setFastMathFlags(Instr->getFastMathFlags()); |
| } |
| |
| // Return the number of instruction needed to emit the N-ary addition. |
| // NOTE: Keep this function in sync with createAddendVal(). |
| unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { |
| unsigned OpndNum = Opnds.size(); |
| unsigned InstrNeeded = OpndNum - 1; |
| |
| // The number of addends in the form of "(-1)*x". |
| unsigned NegOpndNum = 0; |
| |
| // Adjust the number of instructions needed to emit the N-ary add. |
| for (const FAddend *Opnd : Opnds) { |
| if (Opnd->isConstant()) |
| continue; |
| |
| // The constant check above is really for a few special constant |
| // coefficients. |
| if (isa<UndefValue>(Opnd->getSymVal())) |
| continue; |
| |
| const FAddendCoef &CE = Opnd->getCoef(); |
| if (CE.isMinusOne() || CE.isMinusTwo()) |
| NegOpndNum++; |
| |
| // Let the addend be "c * x". If "c == +/-1", the value of the addend |
| // is immediately available; otherwise, it needs exactly one instruction |
| // to evaluate the value. |
| if (!CE.isMinusOne() && !CE.isOne()) |
| InstrNeeded++; |
| } |
| if (NegOpndNum == OpndNum) |
| InstrNeeded++; |
| return InstrNeeded; |
| } |
| |
| // Input Addend Value NeedNeg(output) |
| // ================================================================ |
| // Constant C C false |
| // <+/-1, V> V coefficient is -1 |
| // <2/-2, V> "fadd V, V" coefficient is -2 |
| // <C, V> "fmul V, C" false |
| // |
| // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. |
| Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { |
| const FAddendCoef &Coeff = Opnd.getCoef(); |
| |
| if (Opnd.isConstant()) { |
| NeedNeg = false; |
| return Coeff.getValue(Instr->getType()); |
| } |
| |
| Value *OpndVal = Opnd.getSymVal(); |
| |
| if (Coeff.isMinusOne() || Coeff.isOne()) { |
| NeedNeg = Coeff.isMinusOne(); |
| return OpndVal; |
| } |
| |
| if (Coeff.isTwo() || Coeff.isMinusTwo()) { |
| NeedNeg = Coeff.isMinusTwo(); |
| return createFAdd(OpndVal, OpndVal); |
| } |
| |
| NeedNeg = false; |
| return createFMul(OpndVal, Coeff.getValue(Instr->getType())); |
| } |
| |
| // Checks if any operand is negative and we can convert add to sub. |
| // This function checks for following negative patterns |
| // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) |
| // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) |
| // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even |
| static Value *checkForNegativeOperand(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| // This function creates 2 instructions to replace ADD, we need at least one |
| // of LHS or RHS to have one use to ensure benefit in transform. |
| if (!LHS->hasOneUse() && !RHS->hasOneUse()) |
| return nullptr; |
| |
| Value *X = nullptr, *Y = nullptr, *Z = nullptr; |
| const APInt *C1 = nullptr, *C2 = nullptr; |
| |
| // if ONE is on other side, swap |
| if (match(RHS, m_Add(m_Value(X), m_One()))) |
| std::swap(LHS, RHS); |
| |
| if (match(LHS, m_Add(m_Value(X), m_One()))) { |
| // if XOR on other side, swap |
| if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) |
| std::swap(X, RHS); |
| |
| if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { |
| // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) |
| // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) |
| if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { |
| Value *NewAnd = Builder.CreateAnd(Z, *C1); |
| return Builder.CreateSub(RHS, NewAnd, "sub"); |
| } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { |
| // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) |
| // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) |
| Value *NewOr = Builder.CreateOr(Z, ~(*C1)); |
| return Builder.CreateSub(RHS, NewOr, "sub"); |
| } |
| } |
| } |
| |
| // Restore LHS and RHS |
| LHS = I.getOperand(0); |
| RHS = I.getOperand(1); |
| |
| // if XOR is on other side, swap |
| if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) |
| std::swap(LHS, RHS); |
| |
| // C2 is ODD |
| // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) |
| // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) |
| if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) |
| if (C1->countTrailingZeros() == 0) |
| if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { |
| Value *NewOr = Builder.CreateOr(Z, ~(*C2)); |
| return Builder.CreateSub(RHS, NewOr, "sub"); |
| } |
| return nullptr; |
| } |
| |
| /// Wrapping flags may allow combining constants separated by an extend. |
| static Instruction *foldNoWrapAdd(BinaryOperator &Add, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); |
| Type *Ty = Add.getType(); |
| Constant *Op1C; |
| if (!match(Op1, m_Constant(Op1C))) |
| return nullptr; |
| |
| // Try this match first because it results in an add in the narrow type. |
| // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) |
| Value *X; |
| const APInt *C1, *C2; |
| if (match(Op1, m_APInt(C1)) && |
| match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && |
| C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { |
| Constant *NewC = |
| ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); |
| return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); |
| } |
| |
| // More general combining of constants in the wide type. |
| // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) |
| Constant *NarrowC; |
| if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { |
| Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); |
| Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); |
| Value *WideX = Builder.CreateSExt(X, Ty); |
| return BinaryOperator::CreateAdd(WideX, NewC); |
| } |
| // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) |
| if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { |
| Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); |
| Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); |
| Value *WideX = Builder.CreateZExt(X, Ty); |
| return BinaryOperator::CreateAdd(WideX, NewC); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { |
| Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); |
| Constant *Op1C; |
| if (!match(Op1, m_Constant(Op1C))) |
| return nullptr; |
| |
| if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) |
| return NV; |
| |
| Value *X; |
| Constant *Op00C; |
| |
| // add (sub C1, X), C2 --> sub (add C1, C2), X |
| if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) |
| return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); |
| |
| Value *Y; |
| |
| // add (sub X, Y), -1 --> add (not Y), X |
| if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && |
| match(Op1, m_AllOnes())) |
| return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); |
| |
| // zext(bool) + C -> bool ? C + 1 : C |
| if (match(Op0, m_ZExt(m_Value(X))) && |
| X->getType()->getScalarSizeInBits() == 1) |
| return SelectInst::Create(X, AddOne(Op1C), Op1); |
| // sext(bool) + C -> bool ? C - 1 : C |
| if (match(Op0, m_SExt(m_Value(X))) && |
| X->getType()->getScalarSizeInBits() == 1) |
| return SelectInst::Create(X, SubOne(Op1C), Op1); |
| |
| // ~X + C --> (C-1) - X |
| if (match(Op0, m_Not(m_Value(X)))) |
| return BinaryOperator::CreateSub(SubOne(Op1C), X); |
| |
| const APInt *C; |
| if (!match(Op1, m_APInt(C))) |
| return nullptr; |
| |
| // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) |
| const APInt *C2; |
| if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) |
| return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); |
| |
| if (C->isSignMask()) { |
| // If wrapping is not allowed, then the addition must set the sign bit: |
| // X + (signmask) --> X | signmask |
| if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) |
| return BinaryOperator::CreateOr(Op0, Op1); |
| |
| // If wrapping is allowed, then the addition flips the sign bit of LHS: |
| // X + (signmask) --> X ^ signmask |
| return BinaryOperator::CreateXor(Op0, Op1); |
| } |
| |
| // Is this add the last step in a convoluted sext? |
| // add(zext(xor i16 X, -32768), -32768) --> sext X |
| Type *Ty = Add.getType(); |
| if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && |
| C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) |
| return CastInst::Create(Instruction::SExt, X, Ty); |
| |
| if (C->isOneValue() && Op0->hasOneUse()) { |
| // add (sext i1 X), 1 --> zext (not X) |
| // TODO: The smallest IR representation is (select X, 0, 1), and that would |
| // not require the one-use check. But we need to remove a transform in |
| // visitSelect and make sure that IR value tracking for select is equal or |
| // better than for these ops. |
| if (match(Op0, m_SExt(m_Value(X))) && |
| X->getType()->getScalarSizeInBits() == 1) |
| return new ZExtInst(Builder.CreateNot(X), Ty); |
| |
| // Shifts and add used to flip and mask off the low bit: |
| // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 |
| const APInt *C3; |
| if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && |
| C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { |
| Value *NotX = Builder.CreateNot(X); |
| return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| // Matches multiplication expression Op * C where C is a constant. Returns the |
| // constant value in C and the other operand in Op. Returns true if such a |
| // match is found. |
| static bool MatchMul(Value *E, Value *&Op, APInt &C) { |
| const APInt *AI; |
| if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { |
| C = *AI; |
| return true; |
| } |
| if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { |
| C = APInt(AI->getBitWidth(), 1); |
| C <<= *AI; |
| return true; |
| } |
| return false; |
| } |
| |
| // Matches remainder expression Op % C where C is a constant. Returns the |
| // constant value in C and the other operand in Op. Returns the signedness of |
| // the remainder operation in IsSigned. Returns true if such a match is |
| // found. |
| static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { |
| const APInt *AI; |
| IsSigned = false; |
| if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { |
| IsSigned = true; |
| C = *AI; |
| return true; |
| } |
| if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { |
| C = *AI; |
| return true; |
| } |
| if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { |
| C = *AI + 1; |
| return true; |
| } |
| return false; |
| } |
| |
| // Matches division expression Op / C with the given signedness as indicated |
| // by IsSigned, where C is a constant. Returns the constant value in C and the |
| // other operand in Op. Returns true if such a match is found. |
| static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { |
| const APInt *AI; |
| if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { |
| C = *AI; |
| return true; |
| } |
| if (!IsSigned) { |
| if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { |
| C = *AI; |
| return true; |
| } |
| if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { |
| C = APInt(AI->getBitWidth(), 1); |
| C <<= *AI; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Returns whether C0 * C1 with the given signedness overflows. |
| static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { |
| bool overflow; |
| if (IsSigned) |
| (void)C0.smul_ov(C1, overflow); |
| else |
| (void)C0.umul_ov(C1, overflow); |
| return overflow; |
| } |
| |
| // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) |
| // does not overflow. |
| Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Value *X, *MulOpV; |
| APInt C0, MulOpC; |
| bool IsSigned; |
| // Match I = X % C0 + MulOpV * C0 |
| if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || |
| (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && |
| C0 == MulOpC) { |
| Value *RemOpV; |
| APInt C1; |
| bool Rem2IsSigned; |
| // Match MulOpC = RemOpV % C1 |
| if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && |
| IsSigned == Rem2IsSigned) { |
| Value *DivOpV; |
| APInt DivOpC; |
| // Match RemOpV = X / C0 |
| if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && |
| C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { |
| Value *NewDivisor = |
| ConstantInt::get(X->getType()->getContext(), C0 * C1); |
| return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") |
| : Builder.CreateURem(X, NewDivisor, "urem"); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Fold |
| /// (1 << NBits) - 1 |
| /// Into: |
| /// ~(-(1 << NBits)) |
| /// Because a 'not' is better for bit-tracking analysis and other transforms |
| /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. |
| static Instruction *canonicalizeLowbitMask(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *NBits; |
| if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) |
| return nullptr; |
| |
| Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); |
| Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); |
| // Be wary of constant folding. |
| if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { |
| // Always NSW. But NUW propagates from `add`. |
| BOp->setHasNoSignedWrap(); |
| BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| } |
| |
| return BinaryOperator::CreateNot(NotMask, I.getName()); |
| } |
| |
| static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { |
| assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); |
| Type *Ty = I.getType(); |
| auto getUAddSat = [&]() { |
| return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); |
| }; |
| |
| // add (umin X, ~Y), Y --> uaddsat X, Y |
| Value *X, *Y; |
| if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), |
| m_Deferred(Y)))) |
| return CallInst::Create(getUAddSat(), { X, Y }); |
| |
| // add (umin X, ~C), C --> uaddsat X, C |
| const APInt *C, *NotC; |
| if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && |
| *C == ~*NotC) |
| return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); |
| |
| return nullptr; |
| } |
| |
| Instruction * |
| InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( |
| BinaryOperator &I) { |
| assert((I.getOpcode() == Instruction::Add || |
| I.getOpcode() == Instruction::Or || |
| I.getOpcode() == Instruction::Sub) && |
| "Expecting add/or/sub instruction"); |
| |
| // We have a subtraction/addition between a (potentially truncated) *logical* |
| // right-shift of X and a "select". |
| Value *X, *Select; |
| Instruction *LowBitsToSkip, *Extract; |
| if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( |
| m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), |
| m_Instruction(Extract))), |
| m_Value(Select)))) |
| return nullptr; |
| |
| // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. |
| if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) |
| return nullptr; |
| |
| Type *XTy = X->getType(); |
| bool HadTrunc = I.getType() != XTy; |
| |
| // If there was a truncation of extracted value, then we'll need to produce |
| // one extra instruction, so we need to ensure one instruction will go away. |
| if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) |
| return nullptr; |
| |
| // Extraction should extract high NBits bits, with shift amount calculated as: |
| // low bits to skip = shift bitwidth - high bits to extract |
| // The shift amount itself may be extended, and we need to look past zero-ext |
| // when matching NBits, that will matter for matching later. |
| Constant *C; |
| Value *NBits; |
| if (!match( |
| LowBitsToSkip, |
| m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || |
| !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, |
| APInt(C->getType()->getScalarSizeInBits(), |
| X->getType()->getScalarSizeInBits())))) |
| return nullptr; |
| |
| // Sign-extending value can be zero-extended if we `sub`tract it, |
| // or sign-extended otherwise. |
| auto SkipExtInMagic = [&I](Value *&V) { |
| if (I.getOpcode() == Instruction::Sub) |
| match(V, m_ZExtOrSelf(m_Value(V))); |
| else |
| match(V, m_SExtOrSelf(m_Value(V))); |
| }; |
| |
| // Now, finally validate the sign-extending magic. |
| // `select` itself may be appropriately extended, look past that. |
| SkipExtInMagic(Select); |
| |
| ICmpInst::Predicate Pred; |
| const APInt *Thr; |
| Value *SignExtendingValue, *Zero; |
| bool ShouldSignext; |
| // It must be a select between two values we will later establish to be a |
| // sign-extending value and a zero constant. The condition guarding the |
| // sign-extension must be based on a sign bit of the same X we had in `lshr`. |
| if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), |
| m_Value(SignExtendingValue), m_Value(Zero))) || |
| !isSignBitCheck(Pred, *Thr, ShouldSignext)) |
| return nullptr; |
| |
| // icmp-select pair is commutative. |
| if (!ShouldSignext) |
| std::swap(SignExtendingValue, Zero); |
| |
| // If we should not perform sign-extension then we must add/or/subtract zero. |
| if (!match(Zero, m_Zero())) |
| return nullptr; |
| // Otherwise, it should be some constant, left-shifted by the same NBits we |
| // had in `lshr`. Said left-shift can also be appropriately extended. |
| // Again, we must look past zero-ext when looking for NBits. |
| SkipExtInMagic(SignExtendingValue); |
| Constant *SignExtendingValueBaseConstant; |
| if (!match(SignExtendingValue, |
| m_Shl(m_Constant(SignExtendingValueBaseConstant), |
| m_ZExtOrSelf(m_Specific(NBits))))) |
| return nullptr; |
| // If we `sub`, then the constant should be one, else it should be all-ones. |
| if (I.getOpcode() == Instruction::Sub |
| ? !match(SignExtendingValueBaseConstant, m_One()) |
| : !match(SignExtendingValueBaseConstant, m_AllOnes())) |
| return nullptr; |
| |
| auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, |
| Extract->getName() + ".sext"); |
| NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. |
| if (!HadTrunc) |
| return NewAShr; |
| |
| Builder.Insert(NewAShr); |
| return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); |
| } |
| |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) { |
| if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), |
| I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| // (A*B)+(A*C) -> A*(B+C) etc |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldAddWithConstant(I)) |
| return X; |
| |
| if (Instruction *X = foldNoWrapAdd(I, Builder)) |
| return X; |
| |
| // FIXME: This should be moved into the above helper function to allow these |
| // transforms for general constant or constant splat vectors. |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Type *Ty = I.getType(); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; |
| if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { |
| unsigned TySizeBits = Ty->getScalarSizeInBits(); |
| const APInt &RHSVal = CI->getValue(); |
| unsigned ExtendAmt = 0; |
| // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. |
| // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. |
| if (XorRHS->getValue() == -RHSVal) { |
| if (RHSVal.isPowerOf2()) |
| ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; |
| else if (XorRHS->getValue().isPowerOf2()) |
| ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; |
| } |
| |
| if (ExtendAmt) { |
| APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); |
| if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) |
| ExtendAmt = 0; |
| } |
| |
| if (ExtendAmt) { |
| Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); |
| Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); |
| return BinaryOperator::CreateAShr(NewShl, ShAmt); |
| } |
| |
| // If this is a xor that was canonicalized from a sub, turn it back into |
| // a sub and fuse this add with it. |
| if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { |
| KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); |
| if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) |
| return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), |
| XorLHS); |
| } |
| // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, |
| // transform them into (X + (signmask ^ C)) |
| if (XorRHS->getValue().isSignMask()) |
| return BinaryOperator::CreateAdd(XorLHS, |
| ConstantExpr::getXor(XorRHS, CI)); |
| } |
| } |
| |
| if (Ty->isIntOrIntVectorTy(1)) |
| return BinaryOperator::CreateXor(LHS, RHS); |
| |
| // X + X --> X << 1 |
| if (LHS == RHS) { |
| auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); |
| Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| return Shl; |
| } |
| |
| Value *A, *B; |
| if (match(LHS, m_Neg(m_Value(A)))) { |
| // -A + -B --> -(A + B) |
| if (match(RHS, m_Neg(m_Value(B)))) |
| return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); |
| |
| // -A + B --> B - A |
| return BinaryOperator::CreateSub(RHS, A); |
| } |
| |
| // A + -B --> A - B |
| if (match(RHS, m_Neg(m_Value(B)))) |
| return BinaryOperator::CreateSub(LHS, B); |
| |
| if (Value *V = checkForNegativeOperand(I, Builder)) |
| return replaceInstUsesWith(I, V); |
| |
| // (A + 1) + ~B --> A - B |
| // ~B + (A + 1) --> A - B |
| // (~B + A) + 1 --> A - B |
| // (A + ~B) + 1 --> A - B |
| if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || |
| match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) |
| return BinaryOperator::CreateSub(A, B); |
| |
| // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) |
| if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); |
| |
| // A+B --> A|B iff A and B have no bits set in common. |
| if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) |
| return BinaryOperator::CreateOr(LHS, RHS); |
| |
| // FIXME: We already did a check for ConstantInt RHS above this. |
| // FIXME: Is this pattern covered by another fold? No regression tests fail on |
| // removal. |
| if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { |
| // (X & FF00) + xx00 -> (X+xx00) & FF00 |
| Value *X; |
| ConstantInt *C2; |
| if (LHS->hasOneUse() && |
| match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && |
| CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { |
| // See if all bits from the first bit set in the Add RHS up are included |
| // in the mask. First, get the rightmost bit. |
| const APInt &AddRHSV = CRHS->getValue(); |
| |
| // Form a mask of all bits from the lowest bit added through the top. |
| APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); |
| |
| // See if the and mask includes all of these bits. |
| APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); |
| |
| if (AddRHSHighBits == AddRHSHighBitsAnd) { |
| // Okay, the xform is safe. Insert the new add pronto. |
| Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); |
| return BinaryOperator::CreateAnd(NewAdd, C2); |
| } |
| } |
| } |
| |
| // add (select X 0 (sub n A)) A --> select X A n |
| { |
| SelectInst *SI = dyn_cast<SelectInst>(LHS); |
| Value *A = RHS; |
| if (!SI) { |
| SI = dyn_cast<SelectInst>(RHS); |
| A = LHS; |
| } |
| if (SI && SI->hasOneUse()) { |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| Value *N; |
| |
| // Can we fold the add into the argument of the select? |
| // We check both true and false select arguments for a matching subtract. |
| if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) |
| // Fold the add into the true select value. |
| return SelectInst::Create(SI->getCondition(), N, A); |
| |
| if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) |
| // Fold the add into the false select value. |
| return SelectInst::Create(SI->getCondition(), A, N); |
| } |
| } |
| |
| if (Instruction *Ext = narrowMathIfNoOverflow(I)) |
| return Ext; |
| |
| // (add (xor A, B) (and A, B)) --> (or A, B) |
| // (add (and A, B) (xor A, B)) --> (or A, B) |
| if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), |
| m_c_And(m_Deferred(A), m_Deferred(B))))) |
| return BinaryOperator::CreateOr(A, B); |
| |
| // (add (or A, B) (and A, B)) --> (add A, B) |
| // (add (and A, B) (or A, B)) --> (add A, B) |
| if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), |
| m_c_And(m_Deferred(A), m_Deferred(B))))) { |
| I.setOperand(0, A); |
| I.setOperand(1, B); |
| return &I; |
| } |
| |
| // TODO(jingyue): Consider willNotOverflowSignedAdd and |
| // willNotOverflowUnsignedAdd to reduce the number of invocations of |
| // computeKnownBits. |
| bool Changed = false; |
| if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { |
| Changed = true; |
| I.setHasNoSignedWrap(true); |
| } |
| if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { |
| Changed = true; |
| I.setHasNoUnsignedWrap(true); |
| } |
| |
| if (Instruction *V = canonicalizeLowbitMask(I, Builder)) |
| return V; |
| |
| if (Instruction *V = |
| canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) |
| return V; |
| |
| if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) |
| return SatAdd; |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| /// Eliminate an op from a linear interpolation (lerp) pattern. |
| static Instruction *factorizeLerp(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *X, *Y, *Z; |
| if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), |
| m_OneUse(m_FSub(m_FPOne(), |
| m_Value(Z))))), |
| m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) |
| return nullptr; |
| |
| // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] |
| Value *XY = Builder.CreateFSubFMF(X, Y, &I); |
| Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); |
| return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); |
| } |
| |
| /// Factor a common operand out of fadd/fsub of fmul/fdiv. |
| static Instruction *factorizeFAddFSub(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| assert((I.getOpcode() == Instruction::FAdd || |
| I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); |
| assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && |
| "FP factorization requires FMF"); |
| |
| if (Instruction *Lerp = factorizeLerp(I, Builder)) |
| return Lerp; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Value *X, *Y, *Z; |
| bool IsFMul; |
| if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && |
| match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || |
| (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && |
| match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) |
| IsFMul = true; |
| else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && |
| match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) |
| IsFMul = false; |
| else |
| return nullptr; |
| |
| // (X * Z) + (Y * Z) --> (X + Y) * Z |
| // (X * Z) - (Y * Z) --> (X - Y) * Z |
| // (X / Z) + (Y / Z) --> (X + Y) / Z |
| // (X / Z) - (Y / Z) --> (X - Y) / Z |
| bool IsFAdd = I.getOpcode() == Instruction::FAdd; |
| Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) |
| : Builder.CreateFSubFMF(X, Y, &I); |
| |
| // Bail out if we just created a denormal constant. |
| // TODO: This is copied from a previous implementation. Is it necessary? |
| const APFloat *C; |
| if (match(XY, m_APFloat(C)) && !C->isNormal()) |
| return nullptr; |
| |
| return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) |
| : BinaryOperator::CreateFDivFMF(XY, Z, &I); |
| } |
| |
| Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { |
| if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), |
| I.getFastMathFlags(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedFAdd; |
| |
| // (-X) + Y --> Y - X |
| Value *X, *Y; |
| if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) |
| return BinaryOperator::CreateFSubFMF(Y, X, &I); |
| |
| // Similar to above, but look through fmul/fdiv for the negated term. |
| // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] |
| Value *Z; |
| if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), |
| m_Value(Z)))) { |
| Value *XY = Builder.CreateFMulFMF(X, Y, &I); |
| return BinaryOperator::CreateFSubFMF(Z, XY, &I); |
| } |
| // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] |
| // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] |
| if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), |
| m_Value(Z))) || |
| match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), |
| m_Value(Z)))) { |
| Value *XY = Builder.CreateFDivFMF(X, Y, &I); |
| return BinaryOperator::CreateFSubFMF(Z, XY, &I); |
| } |
| |
| // Check for (fadd double (sitofp x), y), see if we can merge this into an |
| // integer add followed by a promotion. |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { |
| Value *LHSIntVal = LHSConv->getOperand(0); |
| Type *FPType = LHSConv->getType(); |
| |
| // TODO: This check is overly conservative. In many cases known bits |
| // analysis can tell us that the result of the addition has less significant |
| // bits than the integer type can hold. |
| auto IsValidPromotion = [](Type *FTy, Type *ITy) { |
| Type *FScalarTy = FTy->getScalarType(); |
| Type *IScalarTy = ITy->getScalarType(); |
| |
| // Do we have enough bits in the significand to represent the result of |
| // the integer addition? |
| unsigned MaxRepresentableBits = |
| APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); |
| return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; |
| }; |
| |
| // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) |
| // ... if the constant fits in the integer value. This is useful for things |
| // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer |
| // requires a constant pool load, and generally allows the add to be better |
| // instcombined. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) |
| if (IsValidPromotion(FPType, LHSIntVal->getType())) { |
| Constant *CI = |
| ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); |
| if (LHSConv->hasOneUse() && |
| ConstantExpr::getSIToFP(CI, I.getType()) == CFP && |
| willNotOverflowSignedAdd(LHSIntVal, CI, I)) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); |
| return new SIToFPInst(NewAdd, I.getType()); |
| } |
| } |
| |
| // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) |
| if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { |
| Value *RHSIntVal = RHSConv->getOperand(0); |
| // It's enough to check LHS types only because we require int types to |
| // be the same for this transform. |
| if (IsValidPromotion(FPType, LHSIntVal->getType())) { |
| // Only do this if x/y have the same type, if at least one of them has a |
| // single use (so we don't increase the number of int->fp conversions), |
| // and if the integer add will not overflow. |
| if (LHSIntVal->getType() == RHSIntVal->getType() && |
| (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && |
| willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); |
| return new SIToFPInst(NewAdd, I.getType()); |
| } |
| } |
| } |
| } |
| |
| // Handle specials cases for FAdd with selects feeding the operation |
| if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) |
| return replaceInstUsesWith(I, V); |
| |
| if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { |
| if (Instruction *F = factorizeFAddFSub(I, Builder)) |
| return F; |
| if (Value *V = FAddCombine(Builder).simplify(&I)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Optimize pointer differences into the same array into a size. Consider: |
| /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer |
| /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. |
| Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, |
| Type *Ty, bool IsNUW) { |
| // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize |
| // this. |
| bool Swapped = false; |
| GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; |
| |
| // For now we require one side to be the base pointer "A" or a constant |
| // GEP derived from it. |
| if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { |
| // (gep X, ...) - X |
| if (LHSGEP->getOperand(0) == RHS) { |
| GEP1 = LHSGEP; |
| Swapped = false; |
| } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { |
| // (gep X, ...) - (gep X, ...) |
| if (LHSGEP->getOperand(0)->stripPointerCasts() == |
| RHSGEP->getOperand(0)->stripPointerCasts()) { |
| GEP2 = RHSGEP; |
| GEP1 = LHSGEP; |
| Swapped = false; |
| } |
| } |
| } |
| |
| if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { |
| // X - (gep X, ...) |
| if (RHSGEP->getOperand(0) == LHS) { |
| GEP1 = RHSGEP; |
| Swapped = true; |
| } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { |
| // (gep X, ...) - (gep X, ...) |
| if (RHSGEP->getOperand(0)->stripPointerCasts() == |
| LHSGEP->getOperand(0)->stripPointerCasts()) { |
| GEP2 = LHSGEP; |
| GEP1 = RHSGEP; |
| Swapped = true; |
| } |
| } |
| } |
| |
| if (!GEP1) |
| // No GEP found. |
| return nullptr; |
| |
| if (GEP2) { |
| // (gep X, ...) - (gep X, ...) |
| // |
| // Avoid duplicating the arithmetic if there are more than one non-constant |
| // indices between the two GEPs and either GEP has a non-constant index and |
| // multiple users. If zero non-constant index, the result is a constant and |
| // there is no duplication. If one non-constant index, the result is an add |
| // or sub with a constant, which is no larger than the original code, and |
| // there's no duplicated arithmetic, even if either GEP has multiple |
| // users. If more than one non-constant indices combined, as long as the GEP |
| // with at least one non-constant index doesn't have multiple users, there |
| // is no duplication. |
| unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); |
| unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); |
| if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && |
| ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || |
| (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { |
| return nullptr; |
| } |
| } |
| |
| // Emit the offset of the GEP and an intptr_t. |
| Value *Result = EmitGEPOffset(GEP1); |
| |
| // If this is a single inbounds GEP and the original sub was nuw, |
| // then the final multiplication is also nuw. We match an extra add zero |
| // here, because that's what EmitGEPOffset() generates. |
| Instruction *I; |
| if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && |
| match(Result, m_Add(m_Instruction(I), m_Zero())) && |
| I->getOpcode() == Instruction::Mul) |
| I->setHasNoUnsignedWrap(); |
| |
| // If we had a constant expression GEP on the other side offsetting the |
| // pointer, subtract it from the offset we have. |
| if (GEP2) { |
| Value *Offset = EmitGEPOffset(GEP2); |
| Result = Builder.CreateSub(Result, Offset); |
| } |
| |
| // If we have p - gep(p, ...) then we have to negate the result. |
| if (Swapped) |
| Result = Builder.CreateNeg(Result, "diff.neg"); |
| |
| return Builder.CreateIntCast(Result, Ty, true); |
| } |
| |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) { |
| if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), |
| I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| // (A*B)-(A*C) -> A*(B-C) etc |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| // If this is a 'B = x-(-A)', change to B = x+A. |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| if (Value *V = dyn_castNegVal(Op1)) { |
| BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); |
| |
| if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { |
| assert(BO->getOpcode() == Instruction::Sub && |
| "Expected a subtraction operator!"); |
| if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) |
| Res->setHasNoSignedWrap(true); |
| } else { |
| if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) |
| Res->setHasNoSignedWrap(true); |
| } |
| |
| return Res; |
| } |
| |
| if (I.getType()->isIntOrIntVectorTy(1)) |
| return BinaryOperator::CreateXor(Op0, Op1); |
| |
| // Replace (-1 - A) with (~A). |
| if (match(Op0, m_AllOnes())) |
| return BinaryOperator::CreateNot(Op1); |
| |
| // (~X) - (~Y) --> Y - X |
| Value *X, *Y; |
| if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) |
| return BinaryOperator::CreateSub(Y, X); |
| |
| // (X + -1) - Y --> ~Y + X |
| if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) |
| return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); |
| |
| // Y - (X + 1) --> ~X + Y |
| if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One())))) |
| return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0); |
| |
| // Y - ~X --> (X + 1) + Y |
| if (match(Op1, m_OneUse(m_Not(m_Value(X))))) { |
| return BinaryOperator::CreateAdd( |
| Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X); |
| } |
| |
| if (Constant *C = dyn_cast<Constant>(Op0)) { |
| bool IsNegate = match(C, m_ZeroInt()); |
| Value *X; |
| if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { |
| // 0 - (zext bool) --> sext bool |
| // C - (zext bool) --> bool ? C - 1 : C |
| if (IsNegate) |
| return CastInst::CreateSExtOrBitCast(X, I.getType()); |
| return SelectInst::Create(X, SubOne(C), C); |
| } |
| if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { |
| // 0 - (sext bool) --> zext bool |
| // C - (sext bool) --> bool ? C + 1 : C |
| if (IsNegate) |
| return CastInst::CreateZExtOrBitCast(X, I.getType()); |
| return SelectInst::Create(X, AddOne(C), C); |
| } |
| |
| // C - ~X == X + (1+C) |
| if (match(Op1, m_Not(m_Value(X)))) |
| return BinaryOperator::CreateAdd(X, AddOne(C)); |
| |
| // Try to fold constant sub into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| // Try to fold constant sub into PHI values. |
| if (PHINode *PN = dyn_cast<PHINode>(Op1)) |
| if (Instruction *R = foldOpIntoPhi(I, PN)) |
| return R; |
| |
| Constant *C2; |
| |
| // C-(C2-X) --> X+(C-C2) |
| if (match(Op1, m_Sub(m_Constant(C2), m_Value(X)))) |
| return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); |
| |
| // C-(X+C2) --> (C-C2)-X |
| if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) |
| return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); |
| } |
| |
| const APInt *Op0C; |
| if (match(Op0, m_APInt(Op0C))) { |
| |
| if (Op0C->isNullValue()) { |
| Value *Op1Wide; |
| match(Op1, m_TruncOrSelf(m_Value(Op1Wide))); |
| bool HadTrunc = Op1Wide != Op1; |
| bool NoTruncOrTruncIsOneUse = !HadTrunc || Op1->hasOneUse(); |
| unsigned BitWidth = Op1Wide->getType()->getScalarSizeInBits(); |
| |
| Value *X; |
| const APInt *ShAmt; |
| // -(X >>u 31) -> (X >>s 31) |
| if (NoTruncOrTruncIsOneUse && |
| match(Op1Wide, m_LShr(m_Value(X), m_APInt(ShAmt))) && |
| *ShAmt == BitWidth - 1) { |
| Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1); |
| Instruction *NewShift = BinaryOperator::CreateAShr(X, ShAmtOp); |
| NewShift->copyIRFlags(Op1Wide); |
| if (!HadTrunc) |
| return NewShift; |
| Builder.Insert(NewShift); |
| return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType()); |
| } |
| // -(X >>s 31) -> (X >>u 31) |
| if (NoTruncOrTruncIsOneUse && |
| match(Op1Wide, m_AShr(m_Value(X), m_APInt(ShAmt))) && |
| *ShAmt == BitWidth - 1) { |
| Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1); |
| Instruction *NewShift = BinaryOperator::CreateLShr(X, ShAmtOp); |
| NewShift->copyIRFlags(Op1Wide); |
| if (!HadTrunc) |
| return NewShift; |
| Builder.Insert(NewShift); |
| return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType()); |
| } |
| |
| if (!HadTrunc && Op1->hasOneUse()) { |
| Value *LHS, *RHS; |
| SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; |
| if (SPF == SPF_ABS || SPF == SPF_NABS) { |
| // This is a negate of an ABS/NABS pattern. Just swap the operands |
| // of the select. |
| cast<SelectInst>(Op1)->swapValues(); |
| // Don't swap prof metadata, we didn't change the branch behavior. |
| return replaceInstUsesWith(I, Op1); |
| } |
| } |
| } |
| |
| // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known |
| // zero. |
| if (Op0C->isMask()) { |
| KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); |
| if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) |
| return BinaryOperator::CreateXor(Op1, Op0); |
| } |
| } |
| |
| { |
| Value *Y; |
| // X-(X+Y) == -Y X-(Y+X) == -Y |
| if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) |
| return BinaryOperator::CreateNeg(Y); |
| |
| // (X-Y)-X == -Y |
| if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) |
| return BinaryOperator::CreateNeg(Y); |
| } |
| |
| // (sub (or A, B) (and A, B)) --> (xor A, B) |
| { |
| Value *A, *B; |
| if (match(Op1, m_And(m_Value(A), m_Value(B))) && |
| match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateXor(A, B); |
| } |
| |
| // (sub (and A, B) (or A, B)) --> neg (xor A, B) |
| { |
| Value *A, *B; |
| if (match(Op0, m_And(m_Value(A), m_Value(B))) && |
| match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && |
| (Op0->hasOneUse() || Op1->hasOneUse())) |
| return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); |
| } |
| |
| // (sub (or A, B), (xor A, B)) --> (and A, B) |
| { |
| Value *A, *B; |
| if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && |
| match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateAnd(A, B); |
| } |
| |
| // (sub (xor A, B) (or A, B)) --> neg (and A, B) |
| { |
| Value *A, *B; |
| if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && |
| match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && |
| (Op0->hasOneUse() || Op1->hasOneUse())) |
| return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); |
| } |
| |
| { |
| Value *Y; |
| // ((X | Y) - X) --> (~X & Y) |
| if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) |
| return BinaryOperator::CreateAnd( |
| Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); |
| } |
| |
| { |
| // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) |
| Value *X; |
| if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), |
| m_OneUse(m_Neg(m_Value(X))))))) { |
| return BinaryOperator::CreateNeg(Builder.CreateAnd( |
| Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); |
| } |
| } |
| |
| { |
| // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) |
| Constant *C; |
| if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { |
| return BinaryOperator::CreateNeg( |
| Builder.CreateAnd(Op1, Builder.CreateNot(C))); |
| } |
| } |
| |
| { |
| // If we have a subtraction between some value and a select between |
| // said value and something else, sink subtraction into select hands, i.e.: |
| // sub (select %Cond, %TrueVal, %FalseVal), %Op1 |
| // -> |
| // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) |
| // or |
| // sub %Op0, (select %Cond, %TrueVal, %FalseVal) |
| // -> |
| // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) |
| // This will result in select between new subtraction and 0. |
| auto SinkSubIntoSelect = |
| [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, |
| auto SubBuilder) -> Instruction * { |
| Value *Cond, *TrueVal, *FalseVal; |
| if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), |
| m_Value(FalseVal))))) |
| return nullptr; |
| if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) |
| return nullptr; |
| // While it is really tempting to just create two subtractions and let |
| // InstCombine fold one of those to 0, it isn't possible to do so |
| // because of worklist visitation order. So ugly it is. |
| bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; |
| Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); |
| Constant *Zero = Constant::getNullValue(Ty); |
| SelectInst *NewSel = |
| SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, |
| OtherHandOfSubIsTrueVal ? NewSub : Zero); |
| // Preserve prof metadata if any. |
| NewSel->copyMetadata(cast<Instruction>(*Select)); |
| return NewSel; |
| }; |
| if (Instruction *NewSel = SinkSubIntoSelect( |
| /*Select=*/Op0, /*OtherHandOfSub=*/Op1, |
| [Builder = &Builder, Op1](Value *OtherHandOfSelect) { |
| return Builder->CreateSub(OtherHandOfSelect, |
| /*OtherHandOfSub=*/Op1); |
| })) |
| return NewSel; |
| if (Instruction *NewSel = SinkSubIntoSelect( |
| /*Select=*/Op1, /*OtherHandOfSub=*/Op0, |
| [Builder = &Builder, Op0](Value *OtherHandOfSelect) { |
| return Builder->CreateSub(/*OtherHandOfSub=*/Op0, |
| OtherHandOfSelect); |
| })) |
| return NewSel; |
| } |
| |
| if (Op1->hasOneUse()) { |
| Value *X = nullptr, *Y = nullptr, *Z = nullptr; |
| Constant *C = nullptr; |
| |
| // (X - (Y - Z)) --> (X + (Z - Y)). |
| if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) |
| return BinaryOperator::CreateAdd(Op0, |
| Builder.CreateSub(Z, Y, Op1->getName())); |
| |
| // (X - (X & Y)) --> (X & ~Y) |
| if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) |
| return BinaryOperator::CreateAnd(Op0, |
| Builder.CreateNot(Y, Y->getName() + ".not")); |
| |
| // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. |
| if (match(Op0, m_Zero())) { |
| Constant *Op11C; |
| if (match(Op1, m_SDiv(m_Value(X), m_Constant(Op11C))) && |
| !Op11C->containsUndefElement() && Op11C->isNotMinSignedValue() && |
| Op11C->isNotOneValue()) { |
| Instruction *BO = |
| BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(Op11C)); |
| BO->setIsExact(cast<BinaryOperator>(Op1)->isExact()); |
| return BO; |
| } |
| } |
| |
| // 0 - (X << Y) -> (-X << Y) when X is freely negatable. |
| if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) |
| if (Value *XNeg = dyn_castNegVal(X)) |
| return BinaryOperator::CreateShl(XNeg, Y); |
| |
| // Subtracting -1/0 is the same as adding 1/0: |
| // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) |
| // 'nuw' is dropped in favor of the canonical form. |
| if (match(Op1, m_SExt(m_Value(Y))) && |
| Y->getType()->getScalarSizeInBits() == 1) { |
| Value *Zext = Builder.CreateZExt(Y, I.getType()); |
| BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); |
| Add->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| return Add; |
| } |
| // sub [nsw] X, zext(bool Y) -> add [nsw] X, sext(bool Y) |
| // 'nuw' is dropped in favor of the canonical form. |
| if (match(Op1, m_ZExt(m_Value(Y))) && Y->getType()->isIntOrIntVectorTy(1)) { |
| Value *Sext = Builder.CreateSExt(Y, I.getType()); |
| BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Sext); |
| Add->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| return Add; |
| } |
| |
| // X - A*-B -> X + A*B |
| // X - -A*B -> X + A*B |
| Value *A, *B; |
| if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) |
| return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); |
| |
| // X - A*C -> X + A*-C |
| // No need to handle commuted multiply because multiply handling will |
| // ensure constant will be move to the right hand side. |
| if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) { |
| Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C)); |
| return BinaryOperator::CreateAdd(Op0, NewMul); |
| } |
| } |
| |
| { |
| // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A |
| // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A |
| // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O) |
| // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O) |
| // So long as O here is freely invertible, this will be neutral or a win. |
| Value *LHS, *RHS, *A; |
| Value *NotA = Op0, *MinMax = Op1; |
| SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; |
| if (!SelectPatternResult::isMinOrMax(SPF)) { |
| NotA = Op1; |
| MinMax = Op0; |
| SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; |
| } |
| if (SelectPatternResult::isMinOrMax(SPF) && |
| match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { |
| if (NotA == LHS) |
| std::swap(LHS, RHS); |
| // LHS is now O above and expected to have at least 2 uses (the min/max) |
| // NotA is epected to have 2 uses from the min/max and 1 from the sub. |
| if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && |
| !NotA->hasNUsesOrMore(4)) { |
| // Note: We don't generate the inverse max/min, just create the not of |
| // it and let other folds do the rest. |
| Value *Not = Builder.CreateNot(MinMax); |
| if (NotA == Op0) |
| return BinaryOperator::CreateSub(Not, A); |
| else |
| return BinaryOperator::CreateSub(A, Not); |
| } |
| } |
| } |
| |
| // Optimize pointer differences into the same array into a size. Consider: |
| // &A[10] - &A[0]: we should compile this to "10". |
| Value *LHSOp, *RHSOp; |
| if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && |
| match(Op1, m_PtrToInt(m_Value(RHSOp)))) |
| if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), |
| I.hasNoUnsignedWrap())) |
| return replaceInstUsesWith(I, Res); |
| |
| // trunc(p)-trunc(q) -> trunc(p-q) |
| if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && |
| match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) |
| if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), |
| /* IsNUW */ false)) |
| return replaceInstUsesWith(I, Res); |
| |
| // Canonicalize a shifty way to code absolute value to the common pattern. |
| // There are 2 potential commuted variants. |
| // We're relying on the fact that we only do this transform when the shift has |
| // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase |
| // instructions). |
| Value *A; |
| const APInt *ShAmt; |
| Type *Ty = I.getType(); |
| if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && |
| Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && |
| match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { |
| // B = ashr i32 A, 31 ; smear the sign bit |
| // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) |
| // --> (A < 0) ? -A : A |
| Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); |
| // Copy the nuw/nsw flags from the sub to the negate. |
| Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), |
| I.hasNoSignedWrap()); |
| return SelectInst::Create(Cmp, Neg, A); |
| } |
| |
| if (Instruction *V = |
| canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) |
| return V; |
| |
| if (Instruction *Ext = narrowMathIfNoOverflow(I)) |
| return Ext; |
| |
| bool Changed = false; |
| if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoSignedWrap(true); |
| } |
| if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoUnsignedWrap(true); |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| /// This eliminates floating-point negation in either 'fneg(X)' or |
| /// 'fsub(-0.0, X)' form by combining into a constant operand. |
| static Instruction *foldFNegIntoConstant(Instruction &I) { |
| Value *X; |
| Constant *C; |
| |
| // Fold negation into constant operand. This is limited with one-use because |
| // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. |
| // -(X * C) --> X * (-C) |
| // FIXME: It's arguable whether these should be m_OneUse or not. The current |
| // belief is that the FNeg allows for better reassociation opportunities. |
| if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) |
| return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); |
| // -(X / C) --> X / (-C) |
| if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) |
| return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); |
| // -(C / X) --> (-C) / X |
| if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) |
| return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); |
| |
| return nullptr; |
| } |
| |
| static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *FNeg; |
| if (!match(&I, m_FNeg(m_Value(FNeg)))) |
| return nullptr; |
| |
| Value *X, *Y; |
| if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) |
| return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); |
| |
| if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) |
| return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFNeg(UnaryOperator &I) { |
| Value *Op = I.getOperand(0); |
| |
| if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldFNegIntoConstant(I)) |
| return X; |
| |
| Value *X, *Y; |
| |
| // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) |
| if (I.hasNoSignedZeros() && |
| match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) |
| return BinaryOperator::CreateFSubFMF(Y, X, &I); |
| |
| if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) |
| return R; |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFSub(BinaryOperator &I) { |
| if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), |
| I.getFastMathFlags(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| // Subtraction from -0.0 is the canonical form of fneg. |
| // fsub nsz 0, X ==> fsub nsz -0.0, X |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) |
| return BinaryOperator::CreateFNegFMF(Op1, &I); |
| |
| if (Instruction *X = foldFNegIntoConstant(I)) |
| return X; |
| |
| if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) |
| return R; |
| |
| Value *X, *Y; |
| Constant *C; |
| |
| // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) |
| // Canonicalize to fadd to make analysis easier. |
| // This can also help codegen because fadd is commutative. |
| // Note that if this fsub was really an fneg, the fadd with -0.0 will get |
| // killed later. We still limit that particular transform with 'hasOneUse' |
| // because an fneg is assumed better/cheaper than a generic fsub. |
| if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { |
| if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { |
| Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); |
| return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); |
| } |
| } |
| |
| if (isa<Constant>(Op0)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *NV = FoldOpIntoSelect(I, SI)) |
| return NV; |
| |
| // X - C --> X + (-C) |
| // But don't transform constant expressions because there's an inverse fold |
| // for X + (-Y) --> X - Y. |
| if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) |
| return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); |
| |
| // X - (-Y) --> X + Y |
| if (match(Op1, m_FNeg(m_Value(Y)))) |
| return BinaryOperator::CreateFAddFMF(Op0, Y, &I); |
| |
| // Similar to above, but look through a cast of the negated value: |
| // X - (fptrunc(-Y)) --> X + fptrunc(Y) |
| Type *Ty = I.getType(); |
| if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) |
| return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); |
| |
| // X - (fpext(-Y)) --> X + fpext(Y) |
| if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) |
| return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); |
| |
| // Similar to above, but look through fmul/fdiv of the negated value: |
| // Op0 - (-X * Y) --> Op0 + (X * Y) |
| // Op0 - (Y * -X) --> Op0 + (X * Y) |
| if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { |
| Value *FMul = Builder.CreateFMulFMF(X, Y, &I); |
| return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); |
| } |
| // Op0 - (-X / Y) --> Op0 + (X / Y) |
| // Op0 - (X / -Y) --> Op0 + (X / Y) |
| if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || |
| match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { |
| Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); |
| return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); |
| } |
| |
| // Handle special cases for FSub with selects feeding the operation |
| if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) |
| return replaceInstUsesWith(I, V); |
| |
| if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { |
| // (Y - X) - Y --> -X |
| if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) |
| return BinaryOperator::CreateFNegFMF(X, &I); |
| |
| // Y - (X + Y) --> -X |
| // Y - (Y + X) --> -X |
| if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) |
| return BinaryOperator::CreateFNegFMF(X, &I); |
| |
| // (X * C) - X --> X * (C - 1.0) |
| if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { |
| Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); |
| return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); |
| } |
| // X - (X * C) --> X * (1.0 - C) |
| if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { |
| Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); |
| return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); |
| } |
| |
| if (Instruction *F = factorizeFAddFSub(I, Builder)) |
| return F; |
| |
| // TODO: This performs reassociative folds for FP ops. Some fraction of the |
| // functionality has been subsumed by simple pattern matching here and in |
| // InstSimplify. We should let a dedicated reassociation pass handle more |
| // complex pattern matching and remove this from InstCombine. |
| if (Value *V = FAddCombine(Builder).simplify(&I)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| return nullptr; |
| } |