| //===-- RegAllocBasic.cpp - basic register allocator ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the RABasic function pass, which provides a minimal |
| // implementation of the basic register allocator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "RegAllocBase.h" |
| #include "LiveDebugVariables.h" |
| #include "LiveIntervalUnion.h" |
| #include "LiveRangeEdit.h" |
| #include "RenderMachineFunction.h" |
| #include "Spiller.h" |
| #include "VirtRegMap.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Function.h" |
| #include "llvm/PassAnalysisSupport.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #ifndef NDEBUG |
| #include "llvm/ADT/SparseBitVector.h" |
| #endif |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Timer.h" |
| |
| #include <cstdlib> |
| #include <queue> |
| |
| using namespace llvm; |
| |
| STATISTIC(NumAssigned , "Number of registers assigned"); |
| STATISTIC(NumUnassigned , "Number of registers unassigned"); |
| STATISTIC(NumNewQueued , "Number of new live ranges queued"); |
| |
| static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", |
| createBasicRegisterAllocator); |
| |
| // Temporary verification option until we can put verification inside |
| // MachineVerifier. |
| static cl::opt<bool, true> |
| VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled), |
| cl::desc("Verify during register allocation")); |
| |
| const char *RegAllocBase::TimerGroupName = "Register Allocation"; |
| bool RegAllocBase::VerifyEnabled = false; |
| |
| namespace { |
| struct CompSpillWeight { |
| bool operator()(LiveInterval *A, LiveInterval *B) const { |
| return A->weight < B->weight; |
| } |
| }; |
| } |
| |
| namespace { |
| /// RABasic provides a minimal implementation of the basic register allocation |
| /// algorithm. It prioritizes live virtual registers by spill weight and spills |
| /// whenever a register is unavailable. This is not practical in production but |
| /// provides a useful baseline both for measuring other allocators and comparing |
| /// the speed of the basic algorithm against other styles of allocators. |
| class RABasic : public MachineFunctionPass, public RegAllocBase |
| { |
| // context |
| MachineFunction *MF; |
| |
| // analyses |
| LiveStacks *LS; |
| RenderMachineFunction *RMF; |
| |
| // state |
| std::auto_ptr<Spiller> SpillerInstance; |
| std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, |
| CompSpillWeight> Queue; |
| public: |
| RABasic(); |
| |
| /// Return the pass name. |
| virtual const char* getPassName() const { |
| return "Basic Register Allocator"; |
| } |
| |
| /// RABasic analysis usage. |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| virtual void releaseMemory(); |
| |
| virtual Spiller &spiller() { return *SpillerInstance; } |
| |
| virtual float getPriority(LiveInterval *LI) { return LI->weight; } |
| |
| virtual void enqueue(LiveInterval *LI) { |
| Queue.push(LI); |
| } |
| |
| virtual LiveInterval *dequeue() { |
| if (Queue.empty()) |
| return 0; |
| LiveInterval *LI = Queue.top(); |
| Queue.pop(); |
| return LI; |
| } |
| |
| virtual unsigned selectOrSplit(LiveInterval &VirtReg, |
| SmallVectorImpl<LiveInterval*> &SplitVRegs); |
| |
| /// Perform register allocation. |
| virtual bool runOnMachineFunction(MachineFunction &mf); |
| |
| static char ID; |
| }; |
| |
| char RABasic::ID = 0; |
| |
| } // end anonymous namespace |
| |
| RABasic::RABasic(): MachineFunctionPass(ID) { |
| initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); |
| initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); |
| initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); |
| initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); |
| initializeLiveStacksPass(*PassRegistry::getPassRegistry()); |
| initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); |
| initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); |
| initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); |
| initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<LiveDebugVariables>(); |
| AU.addPreserved<LiveDebugVariables>(); |
| if (StrongPHIElim) |
| AU.addRequiredID(StrongPHIEliminationID); |
| AU.addRequiredTransitiveID(RegisterCoalescerPassID); |
| AU.addRequired<CalculateSpillWeights>(); |
| AU.addRequired<LiveStacks>(); |
| AU.addPreserved<LiveStacks>(); |
| AU.addRequiredID(MachineDominatorsID); |
| AU.addPreservedID(MachineDominatorsID); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addRequired<VirtRegMap>(); |
| AU.addPreserved<VirtRegMap>(); |
| DEBUG(AU.addRequired<RenderMachineFunction>()); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| void RABasic::releaseMemory() { |
| SpillerInstance.reset(0); |
| RegAllocBase::releaseMemory(); |
| } |
| |
| #ifndef NDEBUG |
| // Verify each LiveIntervalUnion. |
| void RegAllocBase::verify() { |
| LiveVirtRegBitSet VisitedVRegs; |
| OwningArrayPtr<LiveVirtRegBitSet> |
| unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); |
| |
| // Verify disjoint unions. |
| for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { |
| DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI)); |
| LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; |
| PhysReg2LiveUnion[PhysReg].verify(VRegs); |
| // Union + intersection test could be done efficiently in one pass, but |
| // don't add a method to SparseBitVector unless we really need it. |
| assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); |
| VisitedVRegs |= VRegs; |
| } |
| |
| // Verify vreg coverage. |
| for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); |
| liItr != liEnd; ++liItr) { |
| unsigned reg = liItr->first; |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; |
| if (!VRM->hasPhys(reg)) continue; // spilled? |
| unsigned PhysReg = VRM->getPhys(reg); |
| if (!unionVRegs[PhysReg].test(reg)) { |
| dbgs() << "LiveVirtReg " << reg << " not in union " << |
| TRI->getName(PhysReg) << "\n"; |
| llvm_unreachable("unallocated live vreg"); |
| } |
| } |
| // FIXME: I'm not sure how to verify spilled intervals. |
| } |
| #endif //!NDEBUG |
| |
| //===----------------------------------------------------------------------===// |
| // RegAllocBase Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Instantiate a LiveIntervalUnion for each physical register. |
| void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, |
| unsigned NRegs) { |
| NumRegs = NRegs; |
| Array = |
| static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs)); |
| for (unsigned r = 0; r != NRegs; ++r) |
| new(Array + r) LiveIntervalUnion(r, allocator); |
| } |
| |
| void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) { |
| NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled); |
| TRI = &vrm.getTargetRegInfo(); |
| MRI = &vrm.getRegInfo(); |
| VRM = &vrm; |
| LIS = &lis; |
| RegClassInfo.runOnMachineFunction(vrm.getMachineFunction()); |
| |
| const unsigned NumRegs = TRI->getNumRegs(); |
| if (NumRegs != PhysReg2LiveUnion.numRegs()) { |
| PhysReg2LiveUnion.init(UnionAllocator, NumRegs); |
| // Cache an interferece query for each physical reg |
| Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); |
| } |
| } |
| |
| void RegAllocBase::LiveUnionArray::clear() { |
| if (!Array) |
| return; |
| for (unsigned r = 0; r != NumRegs; ++r) |
| Array[r].~LiveIntervalUnion(); |
| free(Array); |
| NumRegs = 0; |
| Array = 0; |
| } |
| |
| void RegAllocBase::releaseMemory() { |
| for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r) |
| PhysReg2LiveUnion[r].clear(); |
| } |
| |
| // Visit all the live registers. If they are already assigned to a physical |
| // register, unify them with the corresponding LiveIntervalUnion, otherwise push |
| // them on the priority queue for later assignment. |
| void RegAllocBase::seedLiveRegs() { |
| NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled); |
| for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { |
| unsigned RegNum = I->first; |
| LiveInterval &VirtReg = *I->second; |
| if (TargetRegisterInfo::isPhysicalRegister(RegNum)) |
| PhysReg2LiveUnion[RegNum].unify(VirtReg); |
| else |
| enqueue(&VirtReg); |
| } |
| } |
| |
| void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) { |
| DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI) |
| << " to " << PrintReg(PhysReg, TRI) << '\n'); |
| assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment"); |
| VRM->assignVirt2Phys(VirtReg.reg, PhysReg); |
| MRI->setPhysRegUsed(PhysReg); |
| PhysReg2LiveUnion[PhysReg].unify(VirtReg); |
| ++NumAssigned; |
| } |
| |
| void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) { |
| DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI) |
| << " from " << PrintReg(PhysReg, TRI) << '\n'); |
| assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign"); |
| PhysReg2LiveUnion[PhysReg].extract(VirtReg); |
| VRM->clearVirt(VirtReg.reg); |
| ++NumUnassigned; |
| } |
| |
| // Top-level driver to manage the queue of unassigned VirtRegs and call the |
| // selectOrSplit implementation. |
| void RegAllocBase::allocatePhysRegs() { |
| seedLiveRegs(); |
| |
| // Continue assigning vregs one at a time to available physical registers. |
| while (LiveInterval *VirtReg = dequeue()) { |
| assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned"); |
| |
| // Unused registers can appear when the spiller coalesces snippets. |
| if (MRI->reg_nodbg_empty(VirtReg->reg)) { |
| DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n'); |
| LIS->removeInterval(VirtReg->reg); |
| continue; |
| } |
| |
| // Invalidate all interference queries, live ranges could have changed. |
| invalidateVirtRegs(); |
| |
| // selectOrSplit requests the allocator to return an available physical |
| // register if possible and populate a list of new live intervals that |
| // result from splitting. |
| DEBUG(dbgs() << "\nselectOrSplit " |
| << MRI->getRegClass(VirtReg->reg)->getName() |
| << ':' << *VirtReg << '\n'); |
| typedef SmallVector<LiveInterval*, 4> VirtRegVec; |
| VirtRegVec SplitVRegs; |
| unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); |
| |
| if (AvailablePhysReg == ~0u) { |
| // selectOrSplit failed to find a register! |
| const char *Msg = "ran out of registers during register allocation"; |
| // Probably caused by an inline asm. |
| MachineInstr *MI; |
| for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg); |
| (MI = I.skipInstruction());) |
| if (MI->isInlineAsm()) |
| break; |
| if (MI) |
| MI->emitError(Msg); |
| else |
| report_fatal_error(Msg); |
| // Keep going after reporting the error. |
| VRM->assignVirt2Phys(VirtReg->reg, |
| RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front()); |
| continue; |
| } |
| |
| if (AvailablePhysReg) |
| assign(*VirtReg, AvailablePhysReg); |
| |
| for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); |
| I != E; ++I) { |
| LiveInterval *SplitVirtReg = *I; |
| assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned"); |
| if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) { |
| DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n'); |
| LIS->removeInterval(SplitVirtReg->reg); |
| continue; |
| } |
| DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); |
| assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && |
| "expect split value in virtual register"); |
| enqueue(SplitVirtReg); |
| ++NumNewQueued; |
| } |
| } |
| } |
| |
| // Check if this live virtual register interferes with a physical register. If |
| // not, then check for interference on each register that aliases with the |
| // physical register. Return the interfering register. |
| unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, |
| unsigned PhysReg) { |
| for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) |
| if (query(VirtReg, *AliasI).checkInterference()) |
| return *AliasI; |
| return 0; |
| } |
| |
| // Helper for spillInteferences() that spills all interfering vregs currently |
| // assigned to this physical register. |
| void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, |
| SmallVectorImpl<LiveInterval*> &SplitVRegs) { |
| LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); |
| assert(Q.seenAllInterferences() && "need collectInterferences()"); |
| const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs(); |
| |
| for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(), |
| E = PendingSpills.end(); I != E; ++I) { |
| LiveInterval &SpilledVReg = **I; |
| DEBUG(dbgs() << "extracting from " << |
| TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); |
| |
| // Deallocate the interfering vreg by removing it from the union. |
| // A LiveInterval instance may not be in a union during modification! |
| unassign(SpilledVReg, PhysReg); |
| |
| // Spill the extracted interval. |
| LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills); |
| spiller().spill(LRE); |
| } |
| // After extracting segments, the query's results are invalid. But keep the |
| // contents valid until we're done accessing pendingSpills. |
| Q.clear(); |
| } |
| |
| // Spill or split all live virtual registers currently unified under PhysReg |
| // that interfere with VirtReg. The newly spilled or split live intervals are |
| // returned by appending them to SplitVRegs. |
| bool |
| RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, |
| SmallVectorImpl<LiveInterval*> &SplitVRegs) { |
| // Record each interference and determine if all are spillable before mutating |
| // either the union or live intervals. |
| unsigned NumInterferences = 0; |
| // Collect interferences assigned to any alias of the physical register. |
| for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) { |
| LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); |
| NumInterferences += QAlias.collectInterferingVRegs(); |
| if (QAlias.seenUnspillableVReg()) { |
| return false; |
| } |
| } |
| DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << |
| " interferences with " << VirtReg << "\n"); |
| assert(NumInterferences > 0 && "expect interference"); |
| |
| // Spill each interfering vreg allocated to PhysReg or an alias. |
| for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) |
| spillReg(VirtReg, *AliasI, SplitVRegs); |
| return true; |
| } |
| |
| // Add newly allocated physical registers to the MBB live in sets. |
| void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { |
| NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled); |
| SlotIndexes *Indexes = LIS->getSlotIndexes(); |
| if (MF->size() <= 1) |
| return; |
| |
| LiveIntervalUnion::SegmentIter SI; |
| for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { |
| LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; |
| if (LiveUnion.empty()) |
| continue; |
| DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:"); |
| MachineFunction::iterator MBB = llvm::next(MF->begin()); |
| MachineFunction::iterator MFE = MF->end(); |
| SlotIndex Start, Stop; |
| tie(Start, Stop) = Indexes->getMBBRange(MBB); |
| SI.setMap(LiveUnion.getMap()); |
| SI.find(Start); |
| while (SI.valid()) { |
| if (SI.start() <= Start) { |
| if (!MBB->isLiveIn(PhysReg)) |
| MBB->addLiveIn(PhysReg); |
| DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':' |
| << PrintReg(SI.value()->reg, TRI)); |
| } else if (SI.start() > Stop) |
| MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex()); |
| if (++MBB == MFE) |
| break; |
| tie(Start, Stop) = Indexes->getMBBRange(MBB); |
| SI.advanceTo(Start); |
| } |
| DEBUG(dbgs() << '\n'); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // RABasic Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Driver for the register assignment and splitting heuristics. |
| // Manages iteration over the LiveIntervalUnions. |
| // |
| // This is a minimal implementation of register assignment and splitting that |
| // spills whenever we run out of registers. |
| // |
| // selectOrSplit can only be called once per live virtual register. We then do a |
| // single interference test for each register the correct class until we find an |
| // available register. So, the number of interference tests in the worst case is |
| // |vregs| * |machineregs|. And since the number of interference tests is |
| // minimal, there is no value in caching them outside the scope of |
| // selectOrSplit(). |
| unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, |
| SmallVectorImpl<LiveInterval*> &SplitVRegs) { |
| // Populate a list of physical register spill candidates. |
| SmallVector<unsigned, 8> PhysRegSpillCands; |
| |
| // Check for an available register in this class. |
| ArrayRef<unsigned> Order = |
| RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg)); |
| for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E; |
| ++I) { |
| unsigned PhysReg = *I; |
| |
| // Check interference and as a side effect, intialize queries for this |
| // VirtReg and its aliases. |
| unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); |
| if (interfReg == 0) { |
| // Found an available register. |
| return PhysReg; |
| } |
| Queries[interfReg].collectInterferingVRegs(1); |
| LiveInterval *interferingVirtReg = |
| Queries[interfReg].interferingVRegs().front(); |
| |
| // The current VirtReg must either be spillable, or one of its interferences |
| // must have less spill weight. |
| if (interferingVirtReg->weight < VirtReg.weight ) { |
| PhysRegSpillCands.push_back(PhysReg); |
| } |
| } |
| // Try to spill another interfering reg with less spill weight. |
| for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), |
| PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { |
| |
| if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; |
| |
| assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && |
| "Interference after spill."); |
| // Tell the caller to allocate to this newly freed physical register. |
| return *PhysRegI; |
| } |
| |
| // No other spill candidates were found, so spill the current VirtReg. |
| DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); |
| if (!VirtReg.isSpillable()) |
| return ~0u; |
| LiveRangeEdit LRE(VirtReg, SplitVRegs); |
| spiller().spill(LRE); |
| |
| // The live virtual register requesting allocation was spilled, so tell |
| // the caller not to allocate anything during this round. |
| return 0; |
| } |
| |
| bool RABasic::runOnMachineFunction(MachineFunction &mf) { |
| DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" |
| << "********** Function: " |
| << ((Value*)mf.getFunction())->getName() << '\n'); |
| |
| MF = &mf; |
| DEBUG(RMF = &getAnalysis<RenderMachineFunction>()); |
| |
| RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); |
| SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); |
| |
| allocatePhysRegs(); |
| |
| addMBBLiveIns(MF); |
| |
| // Diagnostic output before rewriting |
| DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); |
| |
| // optional HTML output |
| DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); |
| |
| // FIXME: Verification currently must run before VirtRegRewriter. We should |
| // make the rewriter a separate pass and override verifyAnalysis instead. When |
| // that happens, verification naturally falls under VerifyMachineCode. |
| #ifndef NDEBUG |
| if (VerifyEnabled) { |
| // Verify accuracy of LiveIntervals. The standard machine code verifier |
| // ensures that each LiveIntervals covers all uses of the virtual reg. |
| |
| // FIXME: MachineVerifier is badly broken when using the standard |
| // spiller. Always use -spiller=inline with -verify-regalloc. Even with the |
| // inline spiller, some tests fail to verify because the coalescer does not |
| // always generate verifiable code. |
| MF->verify(this, "In RABasic::verify"); |
| |
| // Verify that LiveIntervals are partitioned into unions and disjoint within |
| // the unions. |
| verify(); |
| } |
| #endif // !NDEBUG |
| |
| // Run rewriter |
| VRM->rewrite(LIS->getSlotIndexes()); |
| |
| // Write out new DBG_VALUE instructions. |
| getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); |
| |
| // The pass output is in VirtRegMap. Release all the transient data. |
| releaseMemory(); |
| |
| return true; |
| } |
| |
| FunctionPass* llvm::createBasicRegisterAllocator() |
| { |
| return new RABasic(); |
| } |