| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "ParseHelper.h" |
| |
| #include <limits> |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "glslang.h" |
| #include "preprocessor/SourceLocation.h" |
| #include "ValidateSwitch.h" |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Sub- vector and matrix fields |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| namespace |
| { |
| bool IsVaryingOut(TQualifier qualifier) |
| { |
| switch(qualifier) |
| { |
| case EvqVaryingOut: |
| case EvqSmoothOut: |
| case EvqFlatOut: |
| case EvqCentroidOut: |
| case EvqVertexOut: |
| return true; |
| |
| default: break; |
| } |
| |
| return false; |
| } |
| |
| bool IsVaryingIn(TQualifier qualifier) |
| { |
| switch(qualifier) |
| { |
| case EvqVaryingIn: |
| case EvqSmoothIn: |
| case EvqFlatIn: |
| case EvqCentroidIn: |
| case EvqFragmentIn: |
| return true; |
| |
| default: break; |
| } |
| |
| return false; |
| } |
| |
| bool IsVarying(TQualifier qualifier) |
| { |
| return IsVaryingIn(qualifier) || IsVaryingOut(qualifier); |
| } |
| |
| bool IsAssignment(TOperator op) |
| { |
| switch(op) |
| { |
| case EOpPostIncrement: |
| case EOpPostDecrement: |
| case EOpPreIncrement: |
| case EOpPreDecrement: |
| case EOpAssign: |
| case EOpAddAssign: |
| case EOpSubAssign: |
| case EOpMulAssign: |
| case EOpVectorTimesMatrixAssign: |
| case EOpVectorTimesScalarAssign: |
| case EOpMatrixTimesScalarAssign: |
| case EOpMatrixTimesMatrixAssign: |
| case EOpDivAssign: |
| case EOpIModAssign: |
| case EOpBitShiftLeftAssign: |
| case EOpBitShiftRightAssign: |
| case EOpBitwiseAndAssign: |
| case EOpBitwiseXorAssign: |
| case EOpBitwiseOrAssign: |
| return true; |
| default: |
| return false; |
| } |
| } |
| } |
| |
| // |
| // Look at a '.' field selector string and change it into offsets |
| // for a vector. |
| // |
| bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc &line) |
| { |
| fields.num = (int) compString.size(); |
| if (fields.num > 4) { |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| |
| enum { |
| exyzw, |
| ergba, |
| estpq |
| } fieldSet[4]; |
| |
| for (int i = 0; i < fields.num; ++i) { |
| switch (compString[i]) { |
| case 'x': |
| fields.offsets[i] = 0; |
| fieldSet[i] = exyzw; |
| break; |
| case 'r': |
| fields.offsets[i] = 0; |
| fieldSet[i] = ergba; |
| break; |
| case 's': |
| fields.offsets[i] = 0; |
| fieldSet[i] = estpq; |
| break; |
| case 'y': |
| fields.offsets[i] = 1; |
| fieldSet[i] = exyzw; |
| break; |
| case 'g': |
| fields.offsets[i] = 1; |
| fieldSet[i] = ergba; |
| break; |
| case 't': |
| fields.offsets[i] = 1; |
| fieldSet[i] = estpq; |
| break; |
| case 'z': |
| fields.offsets[i] = 2; |
| fieldSet[i] = exyzw; |
| break; |
| case 'b': |
| fields.offsets[i] = 2; |
| fieldSet[i] = ergba; |
| break; |
| case 'p': |
| fields.offsets[i] = 2; |
| fieldSet[i] = estpq; |
| break; |
| case 'w': |
| fields.offsets[i] = 3; |
| fieldSet[i] = exyzw; |
| break; |
| case 'a': |
| fields.offsets[i] = 3; |
| fieldSet[i] = ergba; |
| break; |
| case 'q': |
| fields.offsets[i] = 3; |
| fieldSet[i] = estpq; |
| break; |
| default: |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| } |
| |
| for (int i = 0; i < fields.num; ++i) { |
| if (fields.offsets[i] >= vecSize) { |
| error(line, "vector field selection out of range", compString.c_str()); |
| return false; |
| } |
| |
| if (i > 0) { |
| if (fieldSet[i] != fieldSet[i-1]) { |
| error(line, "illegal - vector component fields not from the same set", compString.c_str()); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Errors |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Track whether errors have occurred. |
| // |
| void TParseContext::recover() |
| { |
| } |
| |
| // |
| // Used by flex/bison to output all syntax and parsing errors. |
| // |
| void TParseContext::error(const TSourceLoc& loc, |
| const char* reason, const char* token, |
| const char* extraInfo) |
| { |
| pp::SourceLocation srcLoc(loc.first_file, loc.first_line); |
| mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, |
| srcLoc, reason, token, extraInfo); |
| |
| } |
| |
| void TParseContext::warning(const TSourceLoc& loc, |
| const char* reason, const char* token, |
| const char* extraInfo) { |
| pp::SourceLocation srcLoc(loc.first_file, loc.first_line); |
| mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING, |
| srcLoc, reason, token, extraInfo); |
| } |
| |
| void TParseContext::trace(const char* str) |
| { |
| mDiagnostics.writeDebug(str); |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void TParseContext::assignError(const TSourceLoc &line, const char* op, TString left, TString right) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, "", op, extraInfo.c_str()); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void TParseContext::unaryOpError(const TSourceLoc &line, const char* op, TString operand) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand |
| << " (or there is no acceptable conversion)"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " wrong operand type", op, extraInfo.c_str()); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void TParseContext::binaryOpError(const TSourceLoc &line, const char* op, TString left, TString right) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left |
| << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " wrong operand types ", op, extraInfo.c_str()); |
| } |
| |
| bool TParseContext::precisionErrorCheck(const TSourceLoc &line, TPrecision precision, TBasicType type){ |
| if (!mChecksPrecisionErrors) |
| return false; |
| switch( type ){ |
| case EbtFloat: |
| if( precision == EbpUndefined ){ |
| error( line, "No precision specified for (float)", "" ); |
| return true; |
| } |
| break; |
| case EbtInt: |
| if( precision == EbpUndefined ){ |
| error( line, "No precision specified (int)", "" ); |
| return true; |
| } |
| break; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| // |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char* op, TIntermTyped* node) |
| { |
| TIntermSymbol* symNode = node->getAsSymbolNode(); |
| TIntermBinary* binaryNode = node->getAsBinaryNode(); |
| |
| if (binaryNode) { |
| bool errorReturn; |
| |
| switch(binaryNode->getOp()) { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| case EOpIndexDirectStruct: |
| return lValueErrorCheck(line, op, binaryNode->getLeft()); |
| case EOpVectorSwizzle: |
| errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); |
| if (!errorReturn) { |
| int offset[4] = {0,0,0,0}; |
| |
| TIntermTyped* rightNode = binaryNode->getRight(); |
| TIntermAggregate *aggrNode = rightNode->getAsAggregate(); |
| |
| for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); |
| p != aggrNode->getSequence().end(); p++) { |
| int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0); |
| offset[value]++; |
| if (offset[value] > 1) { |
| error(line, " l-value of swizzle cannot have duplicate components", op); |
| |
| return true; |
| } |
| } |
| } |
| |
| return errorReturn; |
| case EOpIndexDirectInterfaceBlock: |
| default: |
| break; |
| } |
| error(line, " l-value required", op); |
| |
| return true; |
| } |
| |
| |
| const char* symbol = 0; |
| if (symNode != 0) |
| symbol = symNode->getSymbol().c_str(); |
| |
| const char* message = 0; |
| switch (node->getQualifier()) { |
| case EvqConstExpr: message = "can't modify a const"; break; |
| case EvqConstReadOnly: message = "can't modify a const"; break; |
| case EvqAttribute: message = "can't modify an attribute"; break; |
| case EvqFragmentIn: message = "can't modify an input"; break; |
| case EvqVertexIn: message = "can't modify an input"; break; |
| case EvqUniform: message = "can't modify a uniform"; break; |
| case EvqSmoothIn: |
| case EvqFlatIn: |
| case EvqCentroidIn: |
| case EvqVaryingIn: message = "can't modify a varying"; break; |
| case EvqInput: message = "can't modify an input"; break; |
| case EvqFragCoord: message = "can't modify gl_FragCoord"; break; |
| case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; |
| case EvqPointCoord: message = "can't modify gl_PointCoord"; break; |
| case EvqInstanceID: message = "can't modify gl_InstanceID"; break; |
| case EvqVertexID: message = "can't modify gl_VertexID"; break; |
| default: |
| |
| // |
| // Type that can't be written to? |
| // |
| if(IsSampler(node->getBasicType())) |
| { |
| message = "can't modify a sampler"; |
| } |
| else if(node->getBasicType() == EbtVoid) |
| { |
| message = "can't modify void"; |
| } |
| } |
| |
| if (message == 0 && binaryNode == 0 && symNode == 0) { |
| error(line, " l-value required", op); |
| |
| return true; |
| } |
| |
| |
| // |
| // Everything else is okay, no error. |
| // |
| if (message == 0) |
| return false; |
| |
| // |
| // If we get here, we have an error and a message. |
| // |
| if (symNode) { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "\"" << symbol << "\" (" << message << ")"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " l-value required", op, extraInfo.c_str()); |
| } |
| else { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "(" << message << ")"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " l-value required", op, extraInfo.c_str()); |
| } |
| |
| return true; |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::constErrorCheck(TIntermTyped* node) |
| { |
| if (node->getQualifier() == EvqConstExpr) |
| return false; |
| |
| error(node->getLine(), "constant expression required", ""); |
| |
| return true; |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token) |
| { |
| if (node->isScalarInt()) |
| return false; |
| |
| error(node->getLine(), "integer expression required", token); |
| |
| return true; |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char* token) |
| { |
| if (global) |
| return false; |
| |
| error(line, "only allowed at global scope", token); |
| |
| return true; |
| } |
| |
| // |
| // For now, keep it simple: if it starts "gl_", it's reserved, independent |
| // of scope. Except, if the symbol table is at the built-in push-level, |
| // which is when we are parsing built-ins. |
| // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a |
| // webgl shader. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString& identifier) |
| { |
| static const char* reservedErrMsg = "reserved built-in name"; |
| if (!symbolTable.atBuiltInLevel()) { |
| if (identifier.compare(0, 3, "gl_") == 0) { |
| error(line, reservedErrMsg, "gl_"); |
| return true; |
| } |
| if (identifier.find("__") != TString::npos) { |
| error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // |
| // Make sure there is enough data provided to the constructor to build |
| // something of the type of the constructor. Also returns the type of |
| // the constructor. |
| // |
| // Returns true if there was an error in construction. |
| // |
| bool TParseContext::constructorErrorCheck(const TSourceLoc &line, TIntermNode* node, TFunction& function, TOperator op, TType* type) |
| { |
| *type = function.getReturnType(); |
| |
| bool constructingMatrix = false; |
| switch(op) { |
| case EOpConstructMat2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4: |
| constructingMatrix = true; |
| break; |
| default: |
| break; |
| } |
| |
| // |
| // Note: It's okay to have too many components available, but not okay to have unused |
| // arguments. 'full' will go to true when enough args have been seen. If we loop |
| // again, there is an extra argument, so 'overfull' will become true. |
| // |
| |
| size_t size = 0; |
| bool full = false; |
| bool overFull = false; |
| bool matrixInMatrix = false; |
| bool arrayArg = false; |
| for (size_t i = 0; i < function.getParamCount(); ++i) { |
| const TParameter& param = function.getParam(i); |
| size += param.type->getObjectSize(); |
| |
| if (constructingMatrix && param.type->isMatrix()) |
| matrixInMatrix = true; |
| if (full) |
| overFull = true; |
| if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) |
| full = true; |
| if (param.type->isArray()) |
| arrayArg = true; |
| } |
| |
| if(type->isArray()) { |
| if(type->getArraySize() == 0) { |
| type->setArraySize(function.getParamCount()); |
| } else if(type->getArraySize() != (int)function.getParamCount()) { |
| error(line, "array constructor needs one argument per array element", "constructor"); |
| return true; |
| } |
| } |
| |
| if (arrayArg && op != EOpConstructStruct) { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return true; |
| } |
| |
| if (matrixInMatrix && !type->isArray()) { |
| if (function.getParamCount() != 1) { |
| error(line, "constructing matrix from matrix can only take one argument", "constructor"); |
| return true; |
| } |
| } |
| |
| if (overFull) { |
| error(line, "too many arguments", "constructor"); |
| return true; |
| } |
| |
| if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) { |
| error(line, "Number of constructor parameters does not match the number of structure fields", "constructor"); |
| return true; |
| } |
| |
| if (!type->isMatrix() || !matrixInMatrix) { |
| if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || |
| (op == EOpConstructStruct && size < type->getObjectSize())) { |
| error(line, "not enough data provided for construction", "constructor"); |
| return true; |
| } |
| } |
| |
| TIntermTyped *typed = node ? node->getAsTyped() : 0; |
| if (typed == 0) { |
| error(line, "constructor argument does not have a type", "constructor"); |
| return true; |
| } |
| if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) { |
| error(line, "cannot convert a sampler", "constructor"); |
| return true; |
| } |
| if (typed->getBasicType() == EbtVoid) { |
| error(line, "cannot convert a void", "constructor"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks to see if a void variable has been declared and raise an error message for such a case |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::voidErrorCheck(const TSourceLoc &line, const TString& identifier, const TBasicType& type) |
| { |
| if(type == EbtVoid) { |
| error(line, "illegal use of type 'void'", identifier.c_str()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression or not |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped* type) |
| { |
| if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { |
| error(line, "boolean expression expected", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression or not |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType& pType) |
| { |
| if (pType.type != EbtBool || pType.array || (pType.primarySize > 1) || (pType.secondarySize > 1)) { |
| error(line, "boolean expression expected", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::samplerErrorCheck(const TSourceLoc &line, const TPublicType& pType, const char* reason) |
| { |
| if (pType.type == EbtStruct) { |
| if (containsSampler(*pType.userDef)) { |
| error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); |
| |
| return true; |
| } |
| |
| return false; |
| } else if (IsSampler(pType.type)) { |
| error(line, reason, getBasicString(pType.type)); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::structQualifierErrorCheck(const TSourceLoc &line, const TPublicType& pType) |
| { |
| switch(pType.qualifier) |
| { |
| case EvqVaryingOut: |
| case EvqSmooth: |
| case EvqFlat: |
| case EvqCentroidOut: |
| case EvqVaryingIn: |
| case EvqSmoothIn: |
| case EvqFlatIn: |
| case EvqCentroidIn: |
| case EvqAttribute: |
| case EvqVertexIn: |
| case EvqFragmentOut: |
| if(pType.type == EbtStruct) |
| { |
| error(line, "cannot be used with a structure", getQualifierString(pType.qualifier)); |
| |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform")) |
| return true; |
| |
| // check for layout qualifier issues |
| if (pType.qualifier != EvqVertexIn && pType.qualifier != EvqFragmentOut && |
| layoutLocationErrorCheck(line, pType.layoutQualifier)) |
| { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // These checks are common for all declarations starting a declarator list, and declarators that follow an empty |
| // declaration. |
| // |
| bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation) |
| { |
| switch(publicType.qualifier) |
| { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| case EvqAttribute: |
| case EvqVertexIn: |
| case EvqFragmentOut: |
| if(publicType.type == EbtStruct) |
| { |
| error(identifierLocation, "cannot be used with a structure", |
| getQualifierString(publicType.qualifier)); |
| return true; |
| } |
| |
| default: break; |
| } |
| |
| if(publicType.qualifier != EvqUniform && samplerErrorCheck(identifierLocation, publicType, |
| "samplers must be uniform")) |
| { |
| return true; |
| } |
| |
| // check for layout qualifier issues |
| const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; |
| |
| if(layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), |
| "only valid for interface blocks"); |
| return true; |
| } |
| |
| if(layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), |
| "only valid for interface blocks"); |
| return true; |
| } |
| |
| if(publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && |
| layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier)) |
| { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) |
| { |
| if(layoutQualifier.location != -1) |
| { |
| error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType) |
| { |
| if(pType.layoutQualifier.location != -1) |
| { |
| error(line, "location must only be specified for a single input or output variable", "location"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line, TQualifier qualifier, const TType& type) |
| { |
| if ((qualifier == EvqOut || qualifier == EvqInOut) && |
| type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { |
| error(line, "samplers cannot be output parameters", type.getBasicString()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::containsSampler(TType& type) |
| { |
| if (IsSampler(type.getBasicType())) |
| return true; |
| |
| if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) { |
| const TFieldList& fields = type.getStruct()->fields(); |
| for(unsigned int i = 0; i < fields.size(); ++i) { |
| if (containsSampler(*fields[i]->type())) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // |
| // Do size checking for an array type's size. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped* expr, int& size) |
| { |
| TIntermConstantUnion* constant = expr->getAsConstantUnion(); |
| |
| if (expr->getQualifier() != EvqConstExpr || constant == 0 || !constant->isScalarInt()) |
| { |
| error(line, "array size must be a constant integer expression", ""); |
| return true; |
| } |
| |
| if (constant->getBasicType() == EbtUInt) |
| { |
| unsigned int uintSize = constant->getUConst(0); |
| if (uintSize > static_cast<unsigned int>(std::numeric_limits<int>::max())) |
| { |
| error(line, "array size too large", ""); |
| size = 1; |
| return true; |
| } |
| |
| size = static_cast<int>(uintSize); |
| } |
| else |
| { |
| size = constant->getIConst(0); |
| |
| if (size < 0) |
| { |
| error(line, "array size must be non-negative", ""); |
| size = 1; |
| return true; |
| } |
| } |
| |
| if(size == 0) |
| { |
| error(line, "array size must be greater than zero", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // See if this qualifier can be an array. |
| // |
| // Returns true if there is an error. |
| // |
| bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, TPublicType type) |
| { |
| if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConstExpr && mShaderVersion < 300)) { |
| error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // See if this type can be an array. |
| // |
| // Returns true if there is an error. |
| // |
| bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, TPublicType type) |
| { |
| // |
| // Can the type be an array? |
| // |
| if (type.array) { |
| error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str()); |
| return true; |
| } |
| |
| // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. |
| // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section 4.3.4). |
| if(mShaderVersion >= 300 && type.type == EbtStruct && IsVarying(type.qualifier)) |
| { |
| error(line, "cannot declare arrays of structs of this qualifier", |
| TType(type).getCompleteString().c_str()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, const TSourceLoc &line) |
| { |
| bool builtIn = false; |
| TSymbol* symbol = symbolTable.find(node->getSymbol(), mShaderVersion, &builtIn); |
| if (symbol == 0) { |
| error(line, " undeclared identifier", node->getSymbol().c_str()); |
| return true; |
| } |
| TVariable* variable = static_cast<TVariable*>(symbol); |
| |
| type->setArrayInformationType(variable->getArrayInformationType()); |
| variable->updateArrayInformationType(type); |
| |
| // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers |
| // its an error |
| if (node->getSymbol() == "gl_FragData") { |
| TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", mShaderVersion, &builtIn); |
| ASSERT(fragData); |
| |
| int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst(); |
| if (fragDataValue <= size) { |
| error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers"); |
| return true; |
| } |
| } |
| |
| // we dont want to update the maxArraySize when this flag is not set, we just want to include this |
| // node type in the chain of node types so that its updated when a higher maxArraySize comes in. |
| if (!updateFlag) |
| return false; |
| |
| size++; |
| variable->getType().setMaxArraySize(size); |
| type->setMaxArraySize(size); |
| TType* tt = type; |
| |
| while(tt->getArrayInformationType() != 0) { |
| tt = tt->getArrayInformationType(); |
| tt->setMaxArraySize(size); |
| } |
| |
| return false; |
| } |
| |
| // |
| // Enforce non-initializer type/qualifier rules. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::nonInitConstErrorCheck(const TSourceLoc &line, TString& identifier, TPublicType& type, bool array) |
| { |
| if (type.qualifier == EvqConstExpr) |
| { |
| // Make the qualifier make sense. |
| type.qualifier = EvqTemporary; |
| |
| if (array) |
| { |
| error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str()); |
| } |
| else if (type.isStructureContainingArrays()) |
| { |
| error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str()); |
| } |
| else |
| { |
| error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // Do semantic checking for a variable declaration that has no initializer, |
| // and update the symbol table. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::nonInitErrorCheck(const TSourceLoc &line, const TString& identifier, TPublicType& type) |
| { |
| if(type.qualifier == EvqConstExpr) |
| { |
| // Make the qualifier make sense. |
| type.qualifier = EvqTemporary; |
| |
| // Generate informative error messages for ESSL1. |
| // In ESSL3 arrays and structures containing arrays can be constant. |
| if(mShaderVersion < 300 && type.isStructureContainingArrays()) |
| { |
| error(line, |
| "structures containing arrays may not be declared constant since they cannot be initialized", |
| identifier.c_str()); |
| } |
| else |
| { |
| error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); |
| } |
| |
| return true; |
| } |
| if(type.isUnsizedArray()) |
| { |
| error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); |
| return true; |
| } |
| return false; |
| } |
| |
| // Do some simple checks that are shared between all variable declarations, |
| // and update the symbol table. |
| // |
| // Returns true if declaring the variable succeeded. |
| // |
| bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type, |
| TVariable **variable) |
| { |
| ASSERT((*variable) == nullptr); |
| |
| // gl_LastFragData may be redeclared with a new precision qualifier |
| if(type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) |
| { |
| const TVariable *maxDrawBuffers = |
| static_cast<const TVariable *>(symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); |
| if(type.getArraySize() != maxDrawBuffers->getConstPointer()->getIConst()) |
| { |
| error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str()); |
| return false; |
| } |
| } |
| |
| if(reservedErrorCheck(line, identifier)) |
| return false; |
| |
| (*variable) = new TVariable(&identifier, type); |
| if(!symbolTable.declare(*variable)) |
| { |
| error(line, "redefinition", identifier.c_str()); |
| delete (*variable); |
| (*variable) = nullptr; |
| return false; |
| } |
| |
| if(voidErrorCheck(line, identifier, type.getBasicType())) |
| return false; |
| |
| return true; |
| } |
| |
| bool TParseContext::paramErrorCheck(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType* type) |
| { |
| if (qualifier != EvqConstReadOnly && qualifier != EvqTemporary) { |
| error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier)); |
| return true; |
| } |
| if (qualifier == EvqConstReadOnly && paramQualifier != EvqIn) { |
| error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); |
| return true; |
| } |
| |
| if (qualifier == EvqConstReadOnly) |
| type->setQualifier(EvqConstReadOnly); |
| else |
| type->setQualifier(paramQualifier); |
| |
| return false; |
| } |
| |
| bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString& extension) |
| { |
| const TExtensionBehavior& extBehavior = extensionBehavior(); |
| TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); |
| if (iter == extBehavior.end()) { |
| error(line, "extension", extension.c_str(), "is not supported"); |
| return true; |
| } |
| // In GLSL ES, an extension's default behavior is "disable". |
| if (iter->second == EBhDisable || iter->second == EBhUndefined) { |
| error(line, "extension", extension.c_str(), "is disabled"); |
| return true; |
| } |
| if (iter->second == EBhWarn) { |
| warning(line, "extension", extension.c_str(), "is being used"); |
| return false; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate) |
| { |
| for(size_t i = 0; i < fnCandidate->getParamCount(); ++i) |
| { |
| TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); |
| if(qual == EvqOut || qual == EvqInOut) |
| { |
| TIntermTyped *node = (aggregate->getSequence())[i]->getAsTyped(); |
| if(lValueErrorCheck(node->getLine(), "assign", node)) |
| { |
| error(node->getLine(), |
| "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); |
| recover(); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier, const TSourceLoc &invariantLocation) |
| { |
| switch(qualifier) |
| { |
| case EvqVaryingOut: |
| case EvqSmoothOut: |
| case EvqFlatOut: |
| case EvqCentroidOut: |
| case EvqVertexOut: |
| case EvqFragmentOut: |
| break; |
| default: |
| error(invariantLocation, "Only out variables can be invariant.", "invariant"); |
| recover(); |
| break; |
| } |
| } |
| |
| bool TParseContext::supportsExtension(const char* extension) |
| { |
| const TExtensionBehavior& extbehavior = extensionBehavior(); |
| TExtensionBehavior::const_iterator iter = extbehavior.find(extension); |
| return (iter != extbehavior.end()); |
| } |
| |
| void TParseContext::handleExtensionDirective(const TSourceLoc &line, const char* extName, const char* behavior) |
| { |
| pp::SourceLocation loc(line.first_file, line.first_line); |
| mDirectiveHandler.handleExtension(loc, extName, behavior); |
| } |
| |
| void TParseContext::handlePragmaDirective(const TSourceLoc &line, const char* name, const char* value, bool stdgl) |
| { |
| pp::SourceLocation loc(line.first_file, line.first_line); |
| mDirectiveHandler.handlePragma(loc, name, value, stdgl); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| // |
| // Non-Errors. |
| // |
| ///////////////////////////////////////////////////////////////////////////////// |
| |
| const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| const TVariable *variable = nullptr; |
| |
| if(!symbol) |
| { |
| error(location, "undeclared identifier", name->c_str()); |
| recover(); |
| } |
| else if(!symbol->isVariable()) |
| { |
| error(location, "variable expected", name->c_str()); |
| recover(); |
| } |
| else |
| { |
| variable = static_cast<const TVariable*>(symbol); |
| |
| if(symbolTable.findBuiltIn(variable->getName(), mShaderVersion)) |
| { |
| recover(); |
| } |
| |
| // Reject shaders using both gl_FragData and gl_FragColor |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if(qualifier == EvqFragData) |
| { |
| mUsesFragData = true; |
| } |
| else if(qualifier == EvqFragColor) |
| { |
| mUsesFragColor = true; |
| } |
| |
| // This validation is not quite correct - it's only an error to write to |
| // both FragData and FragColor. For simplicity, and because users shouldn't |
| // be rewarded for reading from undefined variables, return an error |
| // if they are both referenced, rather than assigned. |
| if(mUsesFragData && mUsesFragColor) |
| { |
| error(location, "cannot use both gl_FragData and gl_FragColor", name->c_str()); |
| recover(); |
| } |
| } |
| |
| if(!variable) |
| { |
| TType type(EbtFloat, EbpUndefined); |
| TVariable *fakeVariable = new TVariable(name, type); |
| symbolTable.declare(fakeVariable); |
| variable = fakeVariable; |
| } |
| |
| return variable; |
| } |
| |
| // |
| // Look up a function name in the symbol table, and make sure it is a function. |
| // |
| // Return the function symbol if found, otherwise 0. |
| // |
| const TFunction* TParseContext::findFunction(const TSourceLoc &line, TFunction* call, bool *builtIn) |
| { |
| // First find by unmangled name to check whether the function name has been |
| // hidden by a variable name or struct typename. |
| const TSymbol* symbol = symbolTable.find(call->getName(), mShaderVersion, builtIn); |
| if (!symbol || symbol->isFunction()) { |
| symbol = symbolTable.find(call->getMangledName(), mShaderVersion, builtIn); |
| } |
| |
| if (!symbol) { |
| error(line, "no matching overloaded function found", call->getName().c_str()); |
| return nullptr; |
| } |
| |
| if (!symbol->isFunction()) { |
| error(line, "function name expected", call->getName().c_str()); |
| return nullptr; |
| } |
| |
| return static_cast<const TFunction*>(symbol); |
| } |
| |
| // |
| // Initializers show up in several places in the grammar. Have one set of |
| // code to handle them here. |
| // |
| bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, const TPublicType& pType, |
| TIntermTyped *initializer, TIntermNode **intermNode) |
| { |
| ASSERT(intermNode != nullptr); |
| TType type = TType(pType); |
| |
| if(type.isUnsizedArray()) |
| { |
| // We have not checked yet whether the initializer actually is an array or not. |
| if(initializer->isArray()) |
| { |
| type.setArraySize(initializer->getArraySize()); |
| } |
| else |
| { |
| // Having a non-array initializer for an unsized array will result in an error later, |
| // so we don't generate an error message here. |
| type.setArraySize(1u); |
| } |
| } |
| |
| TVariable *variable = nullptr; |
| if(!declareVariable(line, identifier, type, &variable)) |
| { |
| return true; |
| } |
| |
| if(symbolTable.atGlobalLevel() && initializer->getQualifier() != EvqConstExpr) |
| { |
| error(line, "global variable initializers must be constant expressions", "="); |
| return true; |
| } |
| |
| // |
| // identifier must be of type constant, a global, or a temporary |
| // |
| TQualifier qualifier = type.getQualifier(); |
| if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConstExpr)) { |
| error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString()); |
| return true; |
| } |
| // |
| // test for and propagate constant |
| // |
| |
| if (qualifier == EvqConstExpr) { |
| if (qualifier != initializer->getQualifier()) { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, " assigning non-constant to", "=", extraInfo.c_str()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| |
| if (type != initializer->getType()) { |
| error(line, " non-matching types for const initializer ", |
| variable->getType().getQualifierString()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| |
| if (initializer->getAsConstantUnion()) { |
| variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); |
| } else if (initializer->getAsSymbolNode()) { |
| const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); |
| const TVariable* tVar = static_cast<const TVariable*>(symbol); |
| |
| ConstantUnion* constArray = tVar->getConstPointer(); |
| variable->shareConstPointer(constArray); |
| } |
| } |
| |
| // Constants which aren't indexable arrays get propagated by value |
| // and thus don't need to initialize the symbol. |
| if (variable->isConstant() && !(type.isArray() && type.getArraySize() > 1)) |
| { |
| *intermNode = nullptr; |
| } |
| else |
| { |
| TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line); |
| *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line); |
| if(*intermNode == nullptr) { |
| assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier) |
| { |
| TPublicType returnType = typeSpecifier; |
| returnType.qualifier = qualifier; |
| returnType.invariant = invariant; |
| returnType.layoutQualifier = layoutQualifier; |
| |
| if(mShaderVersion < 300) |
| { |
| if(typeSpecifier.array) |
| { |
| error(typeSpecifier.line, "not supported", "first-class array"); |
| returnType.clearArrayness(); |
| } |
| |
| if(qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) |
| { |
| error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); |
| recover(); |
| } |
| |
| if((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) && |
| (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) |
| { |
| error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); |
| recover(); |
| } |
| } |
| else |
| { |
| if(!returnType.layoutQualifier.isEmpty()) |
| { |
| globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout"); |
| } |
| |
| if(IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || returnType.qualifier == EvqFragmentOut) |
| { |
| checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, typeSpecifier.line); |
| } |
| } |
| |
| return returnType; |
| } |
| |
| void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, |
| const TPublicType &type, |
| const TSourceLoc &qualifierLocation) |
| { |
| // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. |
| if(type.type == EbtBool) |
| { |
| error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); |
| } |
| |
| // Specific restrictions apply for vertex shader inputs and fragment shader outputs. |
| switch(qualifier) |
| { |
| case EvqVertexIn: |
| // ESSL 3.00 section 4.3.4 |
| if(type.array) |
| { |
| error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); |
| } |
| // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck |
| return; |
| case EvqFragmentOut: |
| // ESSL 3.00 section 4.3.6 |
| if(type.isMatrix()) |
| { |
| error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); |
| } |
| // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck |
| return; |
| default: |
| break; |
| } |
| |
| // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of |
| // restrictions. |
| bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt || |
| type.isStructureContainingType(EbtInt) || |
| type.isStructureContainingType(EbtUInt)); |
| if(typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) |
| { |
| error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier)); |
| } |
| |
| if(type.type == EbtStruct) |
| { |
| // ESSL 3.00 sections 4.3.4 and 4.3.6. |
| // These restrictions are only implied by the ESSL 3.00 spec, but |
| // the ESSL 3.10 spec lists these restrictions explicitly. |
| if(type.array) |
| { |
| error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier)); |
| } |
| if(type.isStructureContainingArrays()) |
| { |
| error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier)); |
| } |
| if(type.isStructureContainingType(EbtStruct)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier)); |
| } |
| if(type.isStructureContainingType(EbtBool)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier)); |
| } |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType, |
| const TSourceLoc &identifierOrTypeLocation, |
| const TString &identifier) |
| { |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation); |
| |
| bool emptyDeclaration = (identifier == ""); |
| |
| mDeferredSingleDeclarationErrorCheck = emptyDeclaration; |
| |
| if(emptyDeclaration) |
| { |
| if(publicType.isUnsizedArray()) |
| { |
| // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an error. |
| // It is assumed that this applies to empty declarations as well. |
| error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str()); |
| } |
| } |
| else |
| { |
| if(singleDeclarationErrorCheck(publicType, identifierOrTypeLocation)) |
| recover(); |
| |
| if(nonInitErrorCheck(identifierOrTypeLocation, identifier, publicType)) |
| recover(); |
| |
| TVariable *variable = nullptr; |
| if(!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable)) |
| recover(); |
| |
| if(variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| } |
| |
| return intermediate.makeAggregate(symbol, identifierOrTypeLocation); |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression) |
| { |
| mDeferredSingleDeclarationErrorCheck = false; |
| |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| |
| if(nonInitErrorCheck(identifierLocation, identifier, publicType)) |
| recover(); |
| |
| if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) |
| { |
| recover(); |
| } |
| |
| TType arrayType(publicType); |
| |
| int size; |
| if(arraySizeErrorCheck(identifierLocation, indexExpression, size)) |
| { |
| recover(); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| TVariable *variable = nullptr; |
| if(!declareVariable(identifierLocation, identifier, arrayType, &variable)) |
| recover(); |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); |
| if(variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| return intermediate.makeAggregate(symbol, identifierLocation); |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredSingleDeclarationErrorCheck = false; |
| |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| |
| TIntermNode *intermNode = nullptr; |
| if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) |
| { |
| // |
| // Build intermediate representation |
| // |
| return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr; |
| } |
| else |
| { |
| recover(); |
| return nullptr; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredSingleDeclarationErrorCheck = false; |
| |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| |
| if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) |
| { |
| recover(); |
| } |
| |
| TPublicType arrayType(publicType); |
| |
| int size = 0; |
| // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer. |
| if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size)) |
| { |
| recover(); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArray(true, size); |
| |
| // initNode will correspond to the whole of "type b[n] = initializer". |
| TIntermNode *initNode = nullptr; |
| if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr; |
| } |
| else |
| { |
| recover(); |
| return nullptr; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc, |
| const TSourceLoc &identifierLoc, |
| const TString *identifier, |
| const TSymbol *symbol) |
| { |
| // invariant declaration |
| if(globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying")) |
| { |
| recover(); |
| } |
| |
| if(!symbol) |
| { |
| error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); |
| recover(); |
| return nullptr; |
| } |
| else |
| { |
| const TString kGlFrontFacing("gl_FrontFacing"); |
| if(*identifier == kGlFrontFacing) |
| { |
| error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str()); |
| recover(); |
| return nullptr; |
| } |
| symbolTable.addInvariantVarying(std::string(identifier->c_str())); |
| const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); |
| ASSERT(variable); |
| const TType &type = variable->getType(); |
| TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(), |
| *identifier, type, identifierLoc); |
| |
| TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc); |
| aggregate->setOp(EOpInvariantDeclaration); |
| return aggregate; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, const TString &identifier) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. |
| if(mDeferredSingleDeclarationErrorCheck) |
| { |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| if(locationDeclaratorListCheck(identifierLocation, publicType)) |
| recover(); |
| |
| if(nonInitErrorCheck(identifierLocation, identifier, publicType)) |
| recover(); |
| |
| TVariable *variable = nullptr; |
| if(!declareVariable(identifierLocation, identifier, TType(publicType), &variable)) |
| recover(); |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); |
| if(variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); |
| } |
| |
| TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, const TString &identifier, |
| const TSourceLoc &arrayLocation, TIntermTyped *indexExpression) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. |
| if(mDeferredSingleDeclarationErrorCheck) |
| { |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| if(locationDeclaratorListCheck(identifierLocation, publicType)) |
| recover(); |
| |
| if(nonInitErrorCheck(identifierLocation, identifier, publicType)) |
| recover(); |
| |
| if(arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType)) |
| { |
| recover(); |
| } |
| else |
| { |
| TType arrayType = TType(publicType); |
| int size; |
| if(arraySizeErrorCheck(arrayLocation, indexExpression, size)) |
| { |
| recover(); |
| } |
| arrayType.setArraySize(size); |
| |
| TVariable *variable = nullptr; |
| if(!declareVariable(identifierLocation, identifier, arrayType, &variable)) |
| recover(); |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); |
| if(variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); |
| } |
| |
| return nullptr; |
| } |
| |
| TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, const TString &identifier, |
| const TSourceLoc &initLocation, TIntermTyped *initializer) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. |
| if(mDeferredSingleDeclarationErrorCheck) |
| { |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| if(locationDeclaratorListCheck(identifierLocation, publicType)) |
| recover(); |
| |
| TIntermNode *intermNode = nullptr; |
| if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) |
| { |
| // |
| // build the intermediate representation |
| // |
| if(intermNode) |
| { |
| return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation); |
| } |
| else |
| { |
| return aggregateDeclaration; |
| } |
| } |
| else |
| { |
| recover(); |
| return nullptr; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, |
| TIntermAggregate *aggregateDeclaration, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression, |
| const TSourceLoc &initLocation, TIntermTyped *initializer) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. |
| if(mDeferredSingleDeclarationErrorCheck) |
| { |
| if(singleDeclarationErrorCheck(publicType, identifierLocation)) |
| recover(); |
| mDeferredSingleDeclarationErrorCheck = false; |
| } |
| |
| if(locationDeclaratorListCheck(identifierLocation, publicType)) |
| recover(); |
| |
| if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) |
| { |
| recover(); |
| } |
| |
| TPublicType arrayType(publicType); |
| |
| int size = 0; |
| // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer. |
| if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size)) |
| { |
| recover(); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArray(true, size); |
| |
| // initNode will correspond to the whole of "b[n] = initializer". |
| TIntermNode *initNode = nullptr; |
| if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| if(initNode) |
| { |
| return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation); |
| } |
| else |
| { |
| return aggregateDeclaration; |
| } |
| } |
| else |
| { |
| recover(); |
| return nullptr; |
| } |
| } |
| |
| void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier) |
| { |
| if(mShaderVersion < 300) |
| { |
| error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout"); |
| recover(); |
| return; |
| } |
| |
| if(typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); |
| recover(); |
| return; |
| } |
| |
| const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; |
| ASSERT(!layoutQualifier.isEmpty()); |
| |
| if(layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier)) |
| { |
| recover(); |
| return; |
| } |
| |
| if(layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| mDefaultMatrixPacking = layoutQualifier.matrixPacking; |
| } |
| |
| if(layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| mDefaultBlockStorage = layoutQualifier.blockStorage; |
| } |
| } |
| |
| TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location) |
| { |
| // Note: symbolTableFunction could be the same as function if this is the first declaration. |
| // Either way the instance in the symbol table is used to track whether the function is declared |
| // multiple times. |
| TFunction *symbolTableFunction = |
| static_cast<TFunction *>(symbolTable.find(function.getMangledName(), getShaderVersion())); |
| if(symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100) |
| { |
| // ESSL 1.00.17 section 4.2.7. |
| // Doesn't apply to ESSL 3.00.4: see section 4.2.3. |
| error(location, "duplicate function prototype declarations are not allowed", "function"); |
| recover(); |
| } |
| symbolTableFunction->setHasPrototypeDeclaration(); |
| |
| TIntermAggregate *prototype = new TIntermAggregate; |
| prototype->setType(function.getReturnType()); |
| prototype->setName(function.getMangledName()); |
| |
| for(size_t i = 0; i < function.getParamCount(); i++) |
| { |
| const TParameter ¶m = function.getParam(i); |
| if(param.name != 0) |
| { |
| TVariable variable(param.name, *param.type); |
| |
| TIntermSymbol *paramSymbol = intermediate.addSymbol( |
| variable.getUniqueId(), variable.getName(), variable.getType(), location); |
| prototype = intermediate.growAggregate(prototype, paramSymbol, location); |
| } |
| else |
| { |
| TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location); |
| prototype = intermediate.growAggregate(prototype, paramSymbol, location); |
| } |
| } |
| |
| prototype->setOp(EOpPrototype); |
| |
| symbolTable.pop(); |
| |
| if(!symbolTable.atGlobalLevel()) |
| { |
| // ESSL 3.00.4 section 4.2.4. |
| error(location, "local function prototype declarations are not allowed", "function"); |
| recover(); |
| } |
| |
| return prototype; |
| } |
| |
| TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location) |
| { |
| //?? Check that all paths return a value if return type != void ? |
| // May be best done as post process phase on intermediate code |
| if(mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) |
| { |
| error(location, "function does not return a value:", "", function.getName().c_str()); |
| recover(); |
| } |
| |
| TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location); |
| intermediate.setAggregateOperator(aggregate, EOpFunction, location); |
| aggregate->setName(function.getMangledName().c_str()); |
| aggregate->setType(function.getReturnType()); |
| |
| // store the pragma information for debug and optimize and other vendor specific |
| // information. This information can be queried from the parse tree |
| aggregate->setOptimize(pragma().optimize); |
| aggregate->setDebug(pragma().debug); |
| |
| if(functionBody && functionBody->getAsAggregate()) |
| aggregate->setEndLine(functionBody->getAsAggregate()->getEndLine()); |
| |
| symbolTable.pop(); |
| return aggregate; |
| } |
| |
| void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut) |
| { |
| const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); |
| |
| if(builtIn) |
| { |
| error(location, "built-in functions cannot be redefined", function->getName().c_str()); |
| recover(); |
| } |
| |
| TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); |
| // |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function |
| // as it would have just been put in the symbol table. Otherwise, we're looking up |
| // an earlier occurance. |
| // |
| if(prevDec->isDefined()) |
| { |
| // Then this function already has a body. |
| error(location, "function already has a body", function->getName().c_str()); |
| recover(); |
| } |
| prevDec->setDefined(); |
| // |
| // Overload the unique ID of the definition to be the same unique ID as the declaration. |
| // Eventually we will probably want to have only a single definition and just swap the |
| // arguments to be the definition's arguments. |
| // |
| function->setUniqueId(prevDec->getUniqueId()); |
| |
| // Raise error message if main function takes any parameters or return anything other than void |
| if(function->getName() == "main") |
| { |
| if(function->getParamCount() > 0) |
| { |
| error(location, "function cannot take any parameter(s)", function->getName().c_str()); |
| recover(); |
| } |
| if(function->getReturnType().getBasicType() != EbtVoid) |
| { |
| error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value"); |
| recover(); |
| } |
| } |
| |
| // |
| // Remember the return type for later checking for RETURN statements. |
| // |
| mCurrentFunctionType = &(prevDec->getReturnType()); |
| mFunctionReturnsValue = false; |
| |
| // |
| // Insert parameters into the symbol table. |
| // If the parameter has no name, it's not an error, just don't insert it |
| // (could be used for unused args). |
| // |
| // Also, accumulate the list of parameters into the HIL, so lower level code |
| // knows where to find parameters. |
| // |
| TIntermAggregate *paramNodes = new TIntermAggregate; |
| for(size_t i = 0; i < function->getParamCount(); i++) |
| { |
| const TParameter ¶m = function->getParam(i); |
| if(param.name != 0) |
| { |
| TVariable *variable = new TVariable(param.name, *param.type); |
| // |
| // Insert the parameters with name in the symbol table. |
| // |
| if(!symbolTable.declare(variable)) |
| { |
| error(location, "redefinition", variable->getName().c_str()); |
| recover(); |
| paramNodes = intermediate.growAggregate( |
| paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); |
| continue; |
| } |
| |
| // |
| // Add the parameter to the HIL |
| // |
| TIntermSymbol *symbol = intermediate.addSymbol( |
| variable->getUniqueId(), variable->getName(), variable->getType(), location); |
| |
| paramNodes = intermediate.growAggregate(paramNodes, symbol, location); |
| } |
| else |
| { |
| paramNodes = intermediate.growAggregate( |
| paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); |
| } |
| } |
| intermediate.setAggregateOperator(paramNodes, EOpParameters, location); |
| *aggregateOut = paramNodes; |
| setLoopNestingLevel(0); |
| } |
| |
| TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) |
| { |
| // |
| // We don't know at this point whether this is a function definition or a prototype. |
| // The definition production code will check for redefinitions. |
| // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. |
| // |
| // Return types and parameter qualifiers must match in all redeclarations, so those are checked |
| // here. |
| // |
| TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); |
| if(getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str())) |
| { |
| // With ESSL 3.00, names of built-in functions cannot be redeclared as functions. |
| // Therefore overloading or redefining builtin functions is an error. |
| error(location, "Name of a built-in function cannot be redeclared as function", function->getName().c_str()); |
| } |
| else if(prevDec) |
| { |
| if(prevDec->getReturnType() != function->getReturnType()) |
| { |
| error(location, "overloaded functions must have the same return type", |
| function->getReturnType().getBasicString()); |
| recover(); |
| } |
| for(size_t i = 0; i < prevDec->getParamCount(); ++i) |
| { |
| if(prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier()) |
| { |
| error(location, "overloaded functions must have the same parameter qualifiers", |
| function->getParam(i).type->getQualifierString()); |
| recover(); |
| } |
| } |
| } |
| |
| // |
| // Check for previously declared variables using the same name. |
| // |
| TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); |
| if(prevSym) |
| { |
| if(!prevSym->isFunction()) |
| { |
| error(location, "redefinition", function->getName().c_str(), "function"); |
| recover(); |
| } |
| } |
| else |
| { |
| // Insert the unmangled name to detect potential future redefinition as a variable. |
| TFunction *unmangledFunction = new TFunction(NewPoolTString(function->getName().c_str()), function->getReturnType()); |
| symbolTable.getOuterLevel()->insertUnmangled(unmangledFunction); |
| } |
| |
| // We're at the inner scope level of the function's arguments and body statement. |
| // Add the function prototype to the surrounding scope instead. |
| symbolTable.getOuterLevel()->insert(function); |
| |
| // |
| // If this is a redeclaration, it could also be a definition, in which case, we want to use the |
| // variable names from this one, and not the one that's |
| // being redeclared. So, pass back up this declaration, not the one in the symbol table. |
| // |
| return function; |
| } |
| |
| TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn) |
| { |
| TPublicType publicType = publicTypeIn; |
| TOperator op = EOpNull; |
| if(publicType.userDef) |
| { |
| op = EOpConstructStruct; |
| } |
| else |
| { |
| op = TypeToConstructorOperator(TType(publicType)); |
| if(op == EOpNull) |
| { |
| error(publicType.line, "cannot construct this type", getBasicString(publicType.type)); |
| recover(); |
| publicType.type = EbtFloat; |
| op = EOpConstructFloat; |
| } |
| } |
| |
| TString tempString; |
| TType type(publicType); |
| return new TFunction(&tempString, type, op); |
| } |
| |
| // This function is used to test for the correctness of the parameters passed to various constructor functions |
| // and also convert them to the right datatype if it is allowed and required. |
| // |
| // Returns 0 for an error or the constructed node (aggregate or typed) for no error. |
| // |
| TIntermTyped* TParseContext::addConstructor(TIntermNode* arguments, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc &line) |
| { |
| TIntermAggregate *aggregateArguments = arguments->getAsAggregate(); |
| |
| if(!aggregateArguments) |
| { |
| aggregateArguments = new TIntermAggregate; |
| aggregateArguments->getSequence().push_back(arguments); |
| } |
| |
| if(type->isArray()) |
| { |
| // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of |
| // the array. |
| for(TIntermNode *&argNode : aggregateArguments->getSequence()) |
| { |
| const TType &argType = argNode->getAsTyped()->getType(); |
| // It has already been checked that the argument is not an array. |
| ASSERT(!argType.isArray()); |
| if(!argType.sameElementType(*type)) |
| { |
| error(line, "Array constructor argument has an incorrect type", "Error"); |
| return nullptr; |
| } |
| } |
| } |
| else if(op == EOpConstructStruct) |
| { |
| const TFieldList &fields = type->getStruct()->fields(); |
| TIntermSequence &args = aggregateArguments->getSequence(); |
| |
| for(size_t i = 0; i < fields.size(); i++) |
| { |
| if(args[i]->getAsTyped()->getType() != *fields[i]->type()) |
| { |
| error(line, "Structure constructor arguments do not match structure fields", "Error"); |
| recover(); |
| |
| return nullptr; |
| } |
| } |
| } |
| |
| // Turn the argument list itself into a constructor |
| TIntermAggregate *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line); |
| TIntermTyped *constConstructor = foldConstConstructor(constructor, *type); |
| if(constConstructor) |
| { |
| return constConstructor; |
| } |
| |
| return constructor; |
| } |
| |
| TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type) |
| { |
| aggrNode->setType(type); |
| if (aggrNode->isConstantFoldable()) { |
| bool returnVal = false; |
| ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()]; |
| if (aggrNode->getSequence().size() == 1) { |
| returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true); |
| } |
| else { |
| returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type); |
| } |
| if (returnVal) |
| return nullptr; |
| |
| return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine()); |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // This function returns the tree representation for the vector field(s) being accessed from contant vector. |
| // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is |
| // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol |
| // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of |
| // a constant matrix. |
| // |
| TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc &line) |
| { |
| TIntermTyped* typedNode; |
| TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); |
| |
| ConstantUnion *unionArray; |
| if (tempConstantNode) { |
| unionArray = tempConstantNode->getUnionArrayPointer(); |
| |
| if (!unionArray) { |
| return node; |
| } |
| } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error |
| error(line, "Cannot offset into the vector", "Error"); |
| recover(); |
| |
| return nullptr; |
| } |
| |
| ConstantUnion* constArray = new ConstantUnion[fields.num]; |
| |
| int objSize = static_cast<int>(node->getType().getObjectSize()); |
| for (int i = 0; i < fields.num; i++) { |
| if (fields.offsets[i] >= objSize) { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, "", "[", extraInfo.c_str()); |
| recover(); |
| fields.offsets[i] = 0; |
| } |
| |
| constArray[i] = unionArray[fields.offsets[i]]; |
| |
| } |
| typedNode = intermediate.addConstantUnion(constArray, node->getType(), line); |
| return typedNode; |
| } |
| |
| // |
| // This function returns the column being accessed from a constant matrix. The values are retrieved from |
| // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input |
| // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a |
| // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure) |
| // |
| TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc &line) |
| { |
| TIntermTyped* typedNode; |
| TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); |
| |
| if (index >= node->getType().getNominalSize()) { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "matrix field selection out of range '" << index << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, "", "[", extraInfo.c_str()); |
| recover(); |
| index = 0; |
| } |
| |
| if (tempConstantNode) { |
| ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); |
| int size = tempConstantNode->getType().getNominalSize(); |
| typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line); |
| } else { |
| error(line, "Cannot offset into the matrix", "Error"); |
| recover(); |
| |
| return nullptr; |
| } |
| |
| return typedNode; |
| } |
| |
| |
| // |
| // This function returns an element of an array accessed from a constant array. The values are retrieved from |
| // the symbol table and parse-tree is built for the type of the element. The input |
| // to the function could either be a symbol node (a[0] where a is a constant array)that represents a |
| // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure) |
| // |
| TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc &line) |
| { |
| TIntermTyped* typedNode; |
| TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); |
| TType arrayElementType = node->getType(); |
| arrayElementType.clearArrayness(); |
| |
| if (index >= node->getType().getArraySize()) { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "array field selection out of range '" << index << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(line, "", "[", extraInfo.c_str()); |
| recover(); |
| index = 0; |
| } |
| |
| size_t arrayElementSize = arrayElementType.getObjectSize(); |
| |
| if (tempConstantNode) { |
| ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); |
| typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line); |
| } else { |
| error(line, "Cannot offset into the array", "Error"); |
| recover(); |
| |
| return nullptr; |
| } |
| |
| return typedNode; |
| } |
| |
| |
| // |
| // This function returns the value of a particular field inside a constant structure from the symbol table. |
| // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr |
| // function and returns the parse-tree with the values of the embedded/nested struct. |
| // |
| TIntermTyped* TParseContext::addConstStruct(const TString& identifier, TIntermTyped* node, const TSourceLoc &line) |
| { |
| const TFieldList &fields = node->getType().getStruct()->fields(); |
| TIntermTyped *typedNode; |
| size_t instanceSize = 0; |
| TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); |
| |
| for(size_t index = 0; index < fields.size(); ++index) { |
| if (fields[index]->name() == identifier) { |
| break; |
| } else { |
| instanceSize += fields[index]->type()->getObjectSize(); |
| } |
| } |
| |
| if (tempConstantNode) { |
| ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer(); |
| |
| typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function |
| } else { |
| error(line, "Cannot offset into the structure", "Error"); |
| recover(); |
| |
| return nullptr; |
| } |
| |
| return typedNode; |
| } |
| |
| // |
| // Interface/uniform blocks |
| // |
| TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList, |
| const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine) |
| { |
| if(reservedErrorCheck(nameLine, blockName)) |
| recover(); |
| |
| if(typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform"); |
| recover(); |
| } |
| |
| TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; |
| if(layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier)) |
| { |
| recover(); |
| } |
| |
| if(blockLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; |
| } |
| |
| if(blockLayoutQualifier.blockStorage == EbsUnspecified) |
| { |
| blockLayoutQualifier.blockStorage = mDefaultBlockStorage; |
| } |
| |
| TSymbol* blockNameSymbol = new TSymbol(&blockName); |
| if(!symbolTable.declare(blockNameSymbol)) { |
| error(nameLine, "redefinition", blockName.c_str(), "interface block name"); |
| recover(); |
| } |
| |
| // check for sampler types and apply layout qualifiers |
| for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { |
| TField* field = (*fieldList)[memberIndex]; |
| TType* fieldType = field->type(); |
| if(IsSampler(fieldType->getBasicType())) { |
| error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks"); |
| recover(); |
| } |
| |
| const TQualifier qualifier = fieldType->getQualifier(); |
| switch(qualifier) |
| { |
| case EvqGlobal: |
| case EvqUniform: |
| break; |
| default: |
| error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier)); |
| recover(); |
| break; |
| } |
| |
| // check layout qualifiers |
| TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); |
| if(layoutLocationErrorCheck(field->line(), fieldLayoutQualifier)) |
| { |
| recover(); |
| } |
| |
| if(fieldLayoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); |
| recover(); |
| } |
| |
| if(fieldLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; |
| } |
| else if(!fieldType->isMatrix() && (fieldType->getBasicType() != EbtStruct)) |
| { |
| warning(field->line(), "extraneous layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "only has an effect on matrix types"); |
| } |
| |
| fieldType->setLayoutQualifier(fieldLayoutQualifier); |
| } |
| |
| // add array index |
| int arraySize = 0; |
| if(arrayIndex) |
| { |
| if(arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize)) |
| recover(); |
| } |
| |
| TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); |
| TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize); |
| |
| TString symbolName = ""; |
| int symbolId = 0; |
| |
| if(!instanceName) |
| { |
| // define symbols for the members of the interface block |
| for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField* field = (*fieldList)[memberIndex]; |
| TType* fieldType = field->type(); |
| |
| // set parent pointer of the field variable |
| fieldType->setInterfaceBlock(interfaceBlock); |
| |
| TVariable* fieldVariable = new TVariable(&field->name(), *fieldType); |
| fieldVariable->setQualifier(typeQualifier.qualifier); |
| |
| if(!symbolTable.declare(fieldVariable)) { |
| error(field->line(), "redefinition", field->name().c_str(), "interface block member name"); |
| recover(); |
| } |
| } |
| } |
| else |
| { |
| if(reservedErrorCheck(nameLine, *instanceName)) |
| recover(); |
| |
| // add a symbol for this interface block |
| TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); |
| instanceTypeDef->setQualifier(typeQualifier.qualifier); |
| |
| if(!symbolTable.declare(instanceTypeDef)) { |
| error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name"); |
| recover(); |
| } |
| |
| symbolId = instanceTypeDef->getUniqueId(); |
| symbolName = instanceTypeDef->getName(); |
| } |
| |
| TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine); |
| aggregate->setOp(EOpDeclaration); |
| |
| exitStructDeclaration(); |
| return aggregate; |
| } |
| |
| // |
| // Parse an array index expression |
| // |
| TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression) |
| { |
| TIntermTyped *indexedExpression = nullptr; |
| |
| if(!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) |
| { |
| if(baseExpression->getAsSymbolNode()) |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", |
| baseExpression->getAsSymbolNode()->getSymbol().c_str()); |
| } |
| else |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); |
| } |
| recover(); |
| } |
| |
| TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); |
| |
| if(indexExpression->getQualifier() == EvqConstExpr && indexConstantUnion) // TODO: Qualifier check redundant? |
| { |
| int index = indexConstantUnion->getIConst(0); |
| if(index < 0) |
| { |
| std::stringstream infoStream; |
| infoStream << index; |
| std::string info = infoStream.str(); |
| error(location, "negative index", info.c_str()); |
| recover(); |
| index = 0; |
| } |
| if(baseExpression->getType().getQualifier() == EvqConstExpr && baseExpression->getAsConstantUnion()) // TODO: Qualifier check redundant? |
| { |
| if(baseExpression->isArray()) |
| { |
| // constant folding for arrays |
| indexedExpression = addConstArrayNode(index, baseExpression, location); |
| } |
| else if(baseExpression->isVector()) |
| { |
| // constant folding for vectors |
| TVectorFields fields; |
| fields.num = 1; |
| fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array |
| indexedExpression = addConstVectorNode(fields, baseExpression, location); |
| } |
| else if(baseExpression->isMatrix()) |
| { |
| // constant folding for matrices |
| indexedExpression = addConstMatrixNode(index, baseExpression, location); |
| } |
| } |
| else |
| { |
| int safeIndex = -1; |
| |
| if(baseExpression->isArray()) |
| { |
| if(index >= baseExpression->getType().getArraySize()) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "array index out of range '" << index << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(location, "", "[", extraInfo.c_str()); |
| recover(); |
| safeIndex = baseExpression->getType().getArraySize() - 1; |
| } |
| } |
| else if((baseExpression->isVector() || baseExpression->isMatrix()) && |
| baseExpression->getType().getNominalSize() <= index) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "field selection out of range '" << index << "'"; |
| std::string extraInfo = extraInfoStream.str(); |
| error(location, "", "[", extraInfo.c_str()); |
| recover(); |
| safeIndex = baseExpression->getType().getNominalSize() - 1; |
| } |
| |
| // Don't modify the data of the previous constant union, because it can point |
| // to builtins, like gl_MaxDrawBuffers. Instead use a new sanitized object. |
| if(safeIndex != -1) |
| { |
| ConstantUnion *safeConstantUnion = new ConstantUnion(); |
| safeConstantUnion->setIConst(safeIndex); |
| indexConstantUnion->replaceConstantUnion(safeConstantUnion); |
| } |
| |
| indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location); |
| } |
| } |
| else |
| { |
| if(baseExpression->isInterfaceBlock()) |
| { |
| error(location, "", |
| "[", "array indexes for interface blocks arrays must be constant integral expressions"); |
| recover(); |
| } |
| else if(baseExpression->getQualifier() == EvqFragmentOut) |
| { |
| error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions"); |
| recover(); |
| } |
| |
| indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location); |
| } |
| |
| if(indexedExpression == 0) |
| { |
| ConstantUnion *unionArray = new ConstantUnion[1]; |
| unionArray->setFConst(0.0f); |
| indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConstExpr), location); |
| } |
| else if(baseExpression->isArray()) |
| { |
| const TType &baseType = baseExpression->getType(); |
| if(baseType.getStruct()) |
| { |
| TType copyOfType(baseType.getStruct()); |
| indexedExpression->setType(copyOfType); |
| } |
| else if(baseType.isInterfaceBlock()) |
| { |
| TType copyOfType(baseType.getInterfaceBlock(), EvqTemporary, baseType.getLayoutQualifier(), 0); |
| indexedExpression->setType(copyOfType); |
| } |
| else |
| { |
| indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), |
| EvqTemporary, static_cast<unsigned char>(baseExpression->getNominalSize()), |
| static_cast<unsigned char>(baseExpression->getSecondarySize()))); |
| } |
| |
| if(baseExpression->getType().getQualifier() == EvqConstExpr) |
| { |
| indexedExpression->getTypePointer()->setQualifier(EvqConstExpr); |
| } |
| } |
| else if(baseExpression->isMatrix()) |
| { |
| TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary; |
| indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), |
| qualifier, static_cast<unsigned char>(baseExpression->getSecondarySize()))); |
| } |
| else if(baseExpression->isVector()) |
| { |
| TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary; |
| indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier)); |
| } |
| else |
| { |
| indexedExpression->setType(baseExpression->getType()); |
| } |
| |
| return indexedExpression; |
| } |
| |
| TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation, |
| const TString &fieldString, const TSourceLoc &fieldLocation) |
| { |
| TIntermTyped *indexedExpression = nullptr; |
| |
| if(baseExpression->isArray()) |
| { |
| error(fieldLocation, "cannot apply dot operator to an array", "."); |
| recover(); |
| } |
| |
| if(baseExpression->isVector()) |
| { |
| TVectorFields fields; |
| if(!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation)) |
| { |
| fields.num = 1; |
| fields.offsets[0] = 0; |
| recover(); |
| } |
| |
| if(baseExpression->getAsConstantUnion()) |
| { |
| // constant folding for vector fields |
| indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation); |
| if(indexedExpression == 0) |
| { |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), |
| EvqConstExpr, (unsigned char)(fieldString).size())); |
| } |
| } |
| else |
| { |
| TString vectorString = fieldString; |
| TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation); |
| indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation); |
| indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), |
| baseExpression->getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary, (unsigned char)vectorString.size())); |
| } |
| } |
| else if(baseExpression->getBasicType() == EbtStruct) |
| { |
| bool fieldFound = false; |
| const TFieldList &fields = baseExpression->getType().getStruct()->fields(); |
| if(fields.empty()) |
| { |
| error(dotLocation, "structure has no fields", "Internal Error"); |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| unsigned int i; |
| for(i = 0; i < fields.size(); ++i) |
| { |
| if(fields[i]->name() == fieldString) |
| { |
| fieldFound = true; |
| break; |
| } |
| } |
| if(fieldFound) |
| { |
| if(baseExpression->getType().getQualifier() == EvqConstExpr) |
| { |
| indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation); |
| if(indexedExpression == 0) |
| { |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| indexedExpression->setType(*fields[i]->type()); |
| // change the qualifier of the return type, not of the structure field |
| // as the structure definition is shared between various structures. |
| indexedExpression->getTypePointer()->setQualifier(EvqConstExpr); |
| } |
| } |
| else |
| { |
| TIntermTyped *index = TIntermTyped::CreateIndexNode(i); |
| index->setLine(fieldLocation); |
| indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation); |
| indexedExpression->setType(*fields[i]->type()); |
| } |
| } |
| else |
| { |
| error(dotLocation, " no such field in structure", fieldString.c_str()); |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| } |
| } |
| else if(baseExpression->isInterfaceBlock()) |
| { |
| bool fieldFound = false; |
| const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); |
| if(fields.empty()) |
| { |
| error(dotLocation, "interface block has no fields", "Internal Error"); |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| else |
| { |
| unsigned int i; |
| for(i = 0; i < fields.size(); ++i) |
| { |
| if(fields[i]->name() == fieldString) |
| { |
| fieldFound = true; |
| break; |
| } |
| } |
| if(fieldFound) |
| { |
| ConstantUnion *unionArray = new ConstantUnion[1]; |
| unionArray->setIConst(i); |
| TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); |
| indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, |
| dotLocation); |
| indexedExpression->setType(*fields[i]->type()); |
| } |
| else |
| { |
| error(dotLocation, " no such field in interface block", fieldString.c_str()); |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| } |
| } |
| else |
| { |
| if(mShaderVersion < 300) |
| { |
| error(dotLocation, " field selection requires structure or vector on left hand side", |
| fieldString.c_str()); |
| } |
| else |
| { |
| error(dotLocation, |
| " field selection requires structure, vector, or interface block on left hand side", |
| fieldString.c_str()); |
| } |
| recover(); |
| indexedExpression = baseExpression; |
| } |
| |
| return indexedExpression; |
| } |
| |
| TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine) |
| { |
| TLayoutQualifier qualifier; |
| |
| qualifier.location = -1; |
| qualifier.matrixPacking = EmpUnspecified; |
| qualifier.blockStorage = EbsUnspecified; |
| |
| if(qualifierType == "shared") |
| { |
| qualifier.blockStorage = EbsShared; |
| } |
| else if(qualifierType == "packed") |
| { |
| qualifier.blockStorage = EbsPacked; |
| } |
| else if(qualifierType == "std140") |
| { |
| qualifier.blockStorage = EbsStd140; |
| } |
| else if(qualifierType == "row_major") |
| { |
| qualifier.matrixPacking = EmpRowMajor; |
| } |
| else if(qualifierType == "column_major") |
| { |
| qualifier.matrixPacking = EmpColumnMajor; |
| } |
| else if(qualifierType == "location") |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument"); |
| recover(); |
| } |
| else |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); |
| recover(); |
| } |
| |
| return qualifier; |
| } |
| |
| TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine) |
| { |
| TLayoutQualifier qualifier; |
| |
| qualifier.location = -1; |
| qualifier.matrixPacking = EmpUnspecified; |
| qualifier.blockStorage = EbsUnspecified; |
| |
| if (qualifierType != "location") |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments"); |
| recover(); |
| } |
| else |
| { |
| // must check that location is non-negative |
| if (intValue < 0) |
| { |
| error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative"); |
| recover(); |
| } |
| else |
| { |
| qualifier.location = intValue; |
| } |
| } |
| |
| return qualifier; |
| } |
| |
| TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier) |
| { |
| TLayoutQualifier joinedQualifier = leftQualifier; |
| |
| if (rightQualifier.location != -1) |
| { |
| joinedQualifier.location = rightQualifier.location; |
| } |
| if(rightQualifier.matrixPacking != EmpUnspecified) |
| { |
| joinedQualifier.matrixPacking = rightQualifier.matrixPacking; |
| } |
| if(rightQualifier.blockStorage != EbsUnspecified) |
| { |
| joinedQualifier.blockStorage = rightQualifier.blockStorage; |
| } |
| |
| return joinedQualifier; |
| } |
| |
| |
| TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier, |
| const TSourceLoc &storageLoc, TQualifier storageQualifier) |
| { |
| TQualifier mergedQualifier = EvqSmoothIn; |
| |
| if(storageQualifier == EvqFragmentIn) { |
| if(interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqSmoothIn; |
| else if(interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatIn; |
| else UNREACHABLE(interpolationQualifier); |
| } |
| else if(storageQualifier == EvqCentroidIn) { |
| if(interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqCentroidIn; |
| else if(interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatIn; |
| else UNREACHABLE(interpolationQualifier); |
| } |
| else if(storageQualifier == EvqVertexOut) { |
| if(interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqSmoothOut; |
| else if(interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatOut; |
| else UNREACHABLE(interpolationQualifier); |
| } |
| else if(storageQualifier == EvqCentroidOut) { |
| if(interpolationQualifier == EvqSmooth) |
| mergedQualifier = EvqCentroidOut; |
| else if(interpolationQualifier == EvqFlat) |
| mergedQualifier = EvqFlatOut; |
| else UNREACHABLE(interpolationQualifier); |
| } |
| else { |
| error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getQualifierString(interpolationQualifier)); |
| recover(); |
| |
| mergedQualifier = storageQualifier; |
| } |
| |
| TPublicType type; |
| type.setBasic(EbtVoid, mergedQualifier, storageLoc); |
| return type; |
| } |
| |
| TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList) |
| { |
| if(voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type)) |
| { |
| recover(); |
| } |
| |
| for(unsigned int i = 0; i < fieldList->size(); ++i) |
| { |
| // |
| // Careful not to replace already known aspects of type, like array-ness |
| // |
| TType *type = (*fieldList)[i]->type(); |
| type->setBasicType(typeSpecifier.type); |
| type->setNominalSize(typeSpecifier.primarySize); |
| type->setSecondarySize(typeSpecifier.secondarySize); |
| type->setPrecision(typeSpecifier.precision); |
| type->setQualifier(typeSpecifier.qualifier); |
| type->setLayoutQualifier(typeSpecifier.layoutQualifier); |
| |
| // don't allow arrays of arrays |
| if(type->isArray()) |
| { |
| if(arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier)) |
| recover(); |
| } |
| if(typeSpecifier.array) |
| type->setArraySize(typeSpecifier.arraySize); |
| if(typeSpecifier.userDef) |
| { |
| type->setStruct(typeSpecifier.userDef->getStruct()); |
| } |
| |
| if(structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) |
| { |
| recover(); |
| } |
| } |
| |
| return fieldList; |
| } |
| |
| TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine, |
| const TString *structName, TFieldList *fieldList) |
| { |
| TStructure *structure = new TStructure(structName, fieldList); |
| TType *structureType = new TType(structure); |
| |
| // Store a bool in the struct if we're at global scope, to allow us to |
| // skip the local struct scoping workaround in HLSL. |
| structure->setUniqueId(TSymbolTableLevel::nextUniqueId()); |
| structure->setAtGlobalScope(symbolTable.atGlobalLevel()); |
| |
| if(!structName->empty()) |
| { |
| if(reservedErrorCheck(nameLine, *structName)) |
| { |
| recover(); |
| } |
| TVariable *userTypeDef = new TVariable(structName, *structureType, true); |
| if(!symbolTable.declare(userTypeDef)) |
| { |
| error(nameLine, "redefinition", structName->c_str(), "struct"); |
| recover(); |
| } |
| } |
| |
| // ensure we do not specify any storage qualifiers on the struct members |
| for(unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) |
| { |
| const TField &field = *(*fieldList)[typeListIndex]; |
| const TQualifier qualifier = field.type()->getQualifier(); |
| switch(qualifier) |
| { |
| case EvqGlobal: |
| case EvqTemporary: |
| break; |
| default: |
| error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier)); |
| recover(); |
| break; |
| } |
| } |
| |
| TPublicType publicType; |
| publicType.setBasic(EbtStruct, EvqTemporary, structLine); |
| publicType.userDef = structureType; |
| exitStructDeclaration(); |
| |
| return publicType; |
| } |
| |
| bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString& identifier) |
| { |
| ++mStructNestingLevel; |
| |
| // Embedded structure definitions are not supported per GLSL ES spec. |
| // They aren't allowed in GLSL either, but we need to detect this here |
| // so we don't rely on the GLSL compiler to catch it. |
| if (mStructNestingLevel > 1) { |
| error(line, "", "Embedded struct definitions are not allowed"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void TParseContext::exitStructDeclaration() |
| { |
| --mStructNestingLevel; |
| } |
| |
| bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field) |
| { |
| static const int kWebGLMaxStructNesting = 4; |
| |
| if(field.type()->getBasicType() != EbtStruct) |
| { |
| return false; |
| } |
| |
| // We're already inside a structure definition at this point, so add |
| // one to the field's struct nesting. |
| if(1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "Reference of struct type " |
| << field.type()->getStruct()->name().c_str() |
| << " exceeds maximum allowed nesting level of " |
| << kWebGLMaxStructNesting; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), field.name().c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType) |
| { |
| if(child == nullptr) |
| { |
| return nullptr; |
| } |
| |
| switch(op) |
| { |
| case EOpLogicalNot: |
| if(child->getBasicType() != EbtBool || |
| child->isMatrix() || |
| child->isArray() || |
| child->isVector()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpBitwiseNot: |
| if((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || |
| child->isMatrix() || |
| child->isArray()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpPostIncrement: |
| case EOpPreIncrement: |
| case EOpPostDecrement: |
| case EOpPreDecrement: |
| case EOpNegative: |
| if(child->getBasicType() == EbtStruct || |
| child->getBasicType() == EbtBool || |
| child->isArray()) |
| { |
| return nullptr; |
| } |
| // Operators for built-ins are already type checked against their prototype. |
| default: |
| break; |
| } |
| |
| return intermediate.addUnaryMath(op, child, loc, funcReturnType); |
| } |
| |
| TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) |
| { |
| TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); |
| if(node == nullptr) |
| { |
| unaryOpError(loc, getOperatorString(op), child->getCompleteString()); |
| recover(); |
| return child; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc) |
| { |
| if(lValueErrorCheck(loc, getOperatorString(op), child)) |
| recover(); |
| return addUnaryMath(op, child, loc); |
| } |
| |
| bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) |
| { |
| if(left->isArray() || right->isArray()) |
| { |
| if(mShaderVersion < 300) |
| { |
| error(loc, "Invalid operation for arrays", getOperatorString(op)); |
| return false; |
| } |
| |
| if(left->isArray() != right->isArray()) |
| { |
| error(loc, "array / non-array mismatch", getOperatorString(op)); |
| return false; |
| } |
| |
| switch(op) |
| { |
| case EOpEqual: |
| case EOpNotEqual: |
| case EOpAssign: |
| case EOpInitialize: |
| break; |
| default: |
| error(loc, "Invalid operation for arrays", getOperatorString(op)); |
| return false; |
| } |
| // At this point, size of implicitly sized arrays should be resolved. |
| if(left->getArraySize() != right->getArraySize()) |
| { |
| error(loc, "array size mismatch", getOperatorString(op)); |
| return false; |
| } |
| } |
| |
| // Check ops which require integer / ivec parameters |
| bool isBitShift = false; |
| switch(op) |
| { |
| case EOpBitShiftLeft: |
| case EOpBitShiftRight: |
| case EOpBitShiftLeftAssign: |
| case EOpBitShiftRightAssign: |
| // Unsigned can be bit-shifted by signed and vice versa, but we need to |
| // check that the basic type is an integer type. |
| isBitShift = true; |
| if(!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) |
| { |
| return false; |
| } |
| break; |
| case EOpBitwiseAnd: |
| case EOpBitwiseXor: |
| case EOpBitwiseOr: |
| case EOpBitwiseAndAssign: |
| case EOpBitwiseXorAssign: |
| case EOpBitwiseOrAssign: |
| // It is enough to check the type of only one operand, since later it |
| // is checked that the operand types match. |
| if(!IsInteger(left->getBasicType())) |
| { |
| return false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| // GLSL ES 1.00 and 3.00 do not support implicit type casting. |
| // So the basic type should usually match. |
| if(!isBitShift && left->getBasicType() != right->getBasicType()) |
| { |
| return false; |
| } |
| |
| // Check that type sizes match exactly on ops that require that. |
| // Also check restrictions for structs that contain arrays or samplers. |
| switch(op) |
| { |
| case EOpAssign: |
| case EOpInitialize: |
| case EOpEqual: |
| case EOpNotEqual: |
| // ESSL 1.00 sections 5.7, 5.8, 5.9 |
| if(mShaderVersion < 300 && left->getType().isStructureContainingArrays()) |
| { |
| error(loc, "undefined operation for structs containing arrays", getOperatorString(op)); |
| return false; |
| } |
| // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, |
| // we interpret the spec so that this extends to structs containing samplers, |
| // similarly to ESSL 1.00 spec. |
| if((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && |
| left->getType().isStructureContainingSamplers()) |
| { |
| error(loc, "undefined operation for structs containing samplers", getOperatorString(op)); |
| return false; |
| } |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| if((left->getNominalSize() != right->getNominalSize()) || |
| (left->getSecondarySize() != right->getSecondarySize())) |
| { |
| return false; |
| } |
| break; |
| case EOpAdd: |
| case EOpSub: |
| case EOpDiv: |
| case EOpIMod: |
| case EOpBitShiftLeft: |
| case EOpBitShiftRight: |
| case EOpBitwiseAnd: |
| case EOpBitwiseXor: |
| case EOpBitwiseOr: |
| case EOpAddAssign: |
| case EOpSubAssign: |
| case EOpDivAssign: |
| case EOpIModAssign: |
| case EOpBitShiftLeftAssign: |
| case EOpBitShiftRightAssign: |
| case EOpBitwiseAndAssign: |
| case EOpBitwiseXorAssign: |
| case EOpBitwiseOrAssign: |
| if((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) |
| { |
| return false; |
| } |
| |
| // Are the sizes compatible? |
| if(left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize()) |
| { |
| // If the nominal sizes of operands do not match: |
| // One of them must be a scalar. |
| if(!left->isScalar() && !right->isScalar()) |
| return false; |
| |
| // In the case of compound assignment other than multiply-assign, |
| // the right side needs to be a scalar. Otherwise a vector/matrix |
| // would be assigned to a scalar. A scalar can't be shifted by a |
| // vector either. |
| if(!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) |
| return false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc) |
| { |
| TBasicType switchType = init->getBasicType(); |
| if((switchType != EbtInt && switchType != EbtUInt) || |
| init->isMatrix() || |
| init->isArray() || |
| init->isVector()) |
| { |
| error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch"); |
| recover(); |
| return nullptr; |
| } |
| |
| if(statementList) |
| { |
| if(!ValidateSwitch::validate(switchType, this, statementList, loc)) |
| { |
| recover(); |
| return nullptr; |
| } |
| } |
| |
| TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); |
| if(node == nullptr) |
| { |
| error(loc, "erroneous switch statement", "switch"); |
| recover(); |
| return nullptr; |
| } |
| return node; |
| } |
| |
| TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) |
| { |
| if(mSwitchNestingLevel == 0) |
| { |
| error(loc, "case labels need to be inside switch statements", "case"); |
| recover(); |
| return nullptr; |
| } |
| if(condition == nullptr) |
| { |
| error(loc, "case label must have a condition", "case"); |
| recover(); |
| return nullptr; |
| } |
| if((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || |
| condition->isMatrix() || |
| condition->isArray() || |
| condition->isVector()) |
| { |
| error(condition->getLine(), "case label must be a scalar integer", "case"); |
| recover(); |
| } |
| TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); |
| if(conditionConst == nullptr) |
| { |
| error(condition->getLine(), "case label must be constant", "case"); |
| recover(); |
| } |
| TIntermCase *node = intermediate.addCase(condition, loc); |
| if(node == nullptr) |
| { |
| error(loc, "erroneous case statement", "case"); |
| recover(); |
| return nullptr; |
| } |
| return node; |
| } |
| |
| TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) |
| { |
| if(mSwitchNestingLevel == 0) |
| { |
| error(loc, "default labels need to be inside switch statements", "default"); |
| recover(); |
| return nullptr; |
| } |
| TIntermCase *node = intermediate.addCase(nullptr, loc); |
| if(node == nullptr) |
| { |
| error(loc, "erroneous default statement", "default"); |
| recover(); |
| return nullptr; |
| } |
| return node; |
| } |
| TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) |
| { |
| if(binaryOpCommonCheck(op, left, right, loc)) |
| { |
| return intermediate.addAssign(op, left, right, loc); |
| } |
| return nullptr; |
| } |
| |
| TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) |
| { |
| TIntermTyped *node = createAssign(op, left, right, loc); |
| if(node == nullptr) |
| { |
| assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); |
| recover(); |
| return left; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| if(!binaryOpCommonCheck(op, left, right, loc)) |
| return nullptr; |
| |
| switch(op) |
| { |
| case EOpEqual: |
| case EOpNotEqual: |
| break; |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| ASSERT(!left->isArray() && !right->isArray()); |
| if(left->isMatrix() || left->isVector() || |
| left->getBasicType() == EbtStruct) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpLogicalOr: |
| case EOpLogicalXor: |
| case EOpLogicalAnd: |
| ASSERT(!left->isArray() && !right->isArray()); |
| if(left->getBasicType() != EbtBool || |
| left->isMatrix() || left->isVector()) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpAdd: |
| case EOpSub: |
| case EOpDiv: |
| case EOpMul: |
| ASSERT(!left->isArray() && !right->isArray()); |
| if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpIMod: |
| ASSERT(!left->isArray() && !right->isArray()); |
| // Note that this is only for the % operator, not for mod() |
| if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) |
| { |
| return nullptr; |
| } |
| break; |
| // Note that for bitwise ops, type checking is done in promote() to |
| // share code between ops and compound assignment |
| default: |
| break; |
| } |
| |
| return intermediate.addBinaryMath(op, left, right, loc); |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) |
| { |
| TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); |
| if(node == 0) |
| { |
| binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString()); |
| recover(); |
| return left; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) |
| { |
| TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); |
| if(node == 0) |
| { |
| binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString()); |
| recover(); |
| ConstantUnion *unionArray = new ConstantUnion[1]; |
| unionArray->setBConst(false); |
| return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConstExpr), loc); |
| } |
| return node; |
| } |
| |
| TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) |
| { |
| switch(op) |
| { |
| case EOpContinue: |
| if(mLoopNestingLevel <= 0) |
| { |
| error(loc, "continue statement only allowed in loops", ""); |
| recover(); |
| } |
| break; |
| case EOpBreak: |
| if(mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) |
| { |
| error(loc, "break statement only allowed in loops and switch statements", ""); |
| recover(); |
| } |
| break; |
| case EOpReturn: |
| if(mCurrentFunctionType->getBasicType() != EbtVoid) |
| { |
| error(loc, "non-void function must return a value", "return"); |
| recover(); |
| } |
| break; |
| default: |
| // No checks for discard |
| break; |
| } |
| return intermediate.addBranch(op, loc); |
| } |
| |
| TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc) |
| { |
| ASSERT(op == EOpReturn); |
| mFunctionReturnsValue = true; |
| if(mCurrentFunctionType->getBasicType() == EbtVoid) |
| { |
| error(loc, "void function cannot return a value", "return"); |
| recover(); |
| } |
| else if(*mCurrentFunctionType != returnValue->getType()) |
| { |
| error(loc, "function return is not matching type:", "return"); |
| recover(); |
| } |
| return intermediate.addBranch(op, returnValue, loc); |
| } |
| |
| TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError) |
| { |
| *fatalError = false; |
| TOperator op = fnCall->getBuiltInOp(); |
| TIntermTyped *callNode = nullptr; |
| |
| if(thisNode != nullptr) |
| { |
| ConstantUnion *unionArray = new ConstantUnion[1]; |
| int arraySize = 0; |
| TIntermTyped *typedThis = thisNode->getAsTyped(); |
| if(fnCall->getName() != "length") |
| { |
| error(loc, "invalid method", fnCall->getName().c_str()); |
| recover(); |
| } |
| else if(paramNode != nullptr) |
| { |
| error(loc, "method takes no parameters", "length"); |
| recover(); |
| } |
| else if(typedThis == nullptr || !typedThis->isArray()) |
| { |
| error(loc, "length can only be called on arrays", "length"); |
| recover(); |
| } |
| else |
| { |
| arraySize = typedThis->getArraySize(); |
| } |
| unionArray->setIConst(arraySize); |
| callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), loc); |
| } |
| else if(op != EOpNull) |
| { |
| // |
| // Then this should be a constructor. |
| // Don't go through the symbol table for constructors. |
| // Their parameters will be verified algorithmically. |
| // |
| TType type(EbtVoid, EbpUndefined); // use this to get the type back |
| if(!constructorErrorCheck(loc, paramNode, *fnCall, op, &type)) |
| { |
| // |
| // It's a constructor, of type 'type'. |
| // |
| callNode = addConstructor(paramNode, &type, op, fnCall, loc); |
| } |
| |
| if(callNode == nullptr) |
| { |
| recover(); |
| callNode = intermediate.setAggregateOperator(nullptr, op, loc); |
| } |
| } |
| else |
| { |
| // |
| // Not a constructor. Find it in the symbol table. |
| // |
| const TFunction *fnCandidate; |
| bool builtIn; |
| fnCandidate = findFunction(loc, fnCall, &builtIn); |
| if(fnCandidate) |
| { |
| // |
| // A declared function. |
| // |
| if(builtIn && !fnCandidate->getExtension().empty() && |
| extensionErrorCheck(loc, fnCandidate->getExtension())) |
| { |
| recover(); |
| } |
| op = fnCandidate->getBuiltInOp(); |
| if(builtIn && op != EOpNull) |
| { |
| // |
| // A function call mapped to a built-in operation. |
| // |
| if(fnCandidate->getParamCount() == 1) |
| { |
| // |
| // Treat it like a built-in unary operator. |
| // |
| callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType()); |
| if(callNode == nullptr) |
| { |
| std::stringstream extraInfoStream; |
| extraInfoStream << "built in unary operator function. Type: " |
| << static_cast<TIntermTyped*>(paramNode)->getCompleteString(); |
| std::string extraInfo = extraInfoStream.str(); |
| error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str()); |
| *fatalError = true; |
| return nullptr; |
| } |
| } |
| else |
| { |
| TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc); |
| aggregate->setType(fnCandidate->getReturnType()); |
| |
| // Some built-in functions have out parameters too. |
| functionCallLValueErrorCheck(fnCandidate, aggregate); |
| |
| callNode = aggregate; |
| |
| if(fnCandidate->getParamCount() == 2) |
| { |
| TIntermSequence ¶meters = paramNode->getAsAggregate()->getSequence(); |
| TIntermTyped *left = parameters[0]->getAsTyped(); |
| TIntermTyped *right = parameters[1]->getAsTyped(); |
| |
| TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion(); |
| TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion(); |
| if (leftTempConstant && rightTempConstant) |
| { |
| TIntermTyped *typedReturnNode = leftTempConstant->fold(op, rightTempConstant, infoSink()); |
| |
| if(typedReturnNode) |
| { |
| callNode = typedReturnNode; |
| } |
| } |
| } |
| } |
| } |
| else |
| { |
| // This is a real function call |
| |
| TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc); |
| aggregate->setType(fnCandidate->getReturnType()); |
| |
| // this is how we know whether the given function is a builtIn function or a user defined function |
| // if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also |
| // if builtIn == true, it's definitely a builtIn function with EOpNull |
| if(!builtIn) |
| aggregate->setUserDefined(); |
| aggregate->setName(fnCandidate->getMangledName()); |
| |
| callNode = aggregate; |
| |
| functionCallLValueErrorCheck(fnCandidate, aggregate); |
| } |
| } |
| else |
| { |
| // error message was put out by findFunction() |
| // Put on a dummy node for error recovery |
| ConstantUnion *unionArray = new ConstantUnion[1]; |
| unionArray->setFConst(0.0f); |
| callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConstExpr), loc); |
| recover(); |
| } |
| } |
| delete fnCall; |
| return callNode; |
| } |
| |
| TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc) |
| { |
| if(boolErrorCheck(loc, cond)) |
| recover(); |
| |
| if(trueBlock->getType() != falseBlock->getType()) |
| { |
| binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString()); |
| recover(); |
| return falseBlock; |
| } |
| // ESSL1 sections 5.2 and 5.7: |
| // ESSL3 section 5.7: |
| // Ternary operator is not among the operators allowed for structures/arrays. |
| if(trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct) |
| { |
| error(loc, "ternary operator is not allowed for structures or arrays", ":"); |
| recover(); |
| return falseBlock; |
| } |
| return intermediate.addSelection(cond, trueBlock, falseBlock, loc); |
| } |
| |
| // |
| // Parse an array of strings using yyparse. |
| // |
| // Returns 0 for success. |
| // |
| int PaParseStrings(int count, const char* const string[], const int length[], |
| TParseContext* context) { |
| if ((count == 0) || !string) |
| return 1; |
| |
| if (glslang_initialize(context)) |
| return 1; |
| |
| int error = glslang_scan(count, string, length, context); |
| if (!error) |
| error = glslang_parse(context); |
| |
| glslang_finalize(context); |
| |
| return (error == 0) && (context->numErrors() == 0) ? 0 : 1; |
| } |
| |
| |
| |