| //===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This class parses the Schedule.td file and produces an API that can be used |
| // to reason about whether an instruction can be added to a packet on a VLIW |
| // architecture. The class internally generates a deterministic finite |
| // automaton (DFA) that models all possible mappings of machine instructions |
| // to functional units as instructions are added to a packet. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "dfa-emitter" |
| |
| #include "CodeGenTarget.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <map> |
| #include <set> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| // -------------------------------------------------------------------- |
| // Definitions shared between DFAPacketizer.cpp and DFAPacketizerEmitter.cpp |
| |
| // DFA_MAX_RESTERMS * DFA_MAX_RESOURCES must fit within sizeof DFAInput. |
| // This is verified in DFAPacketizer.cpp:DFAPacketizer::DFAPacketizer. |
| // |
| // e.g. terms x resource bit combinations that fit in uint32_t: |
| // 4 terms x 8 bits = 32 bits |
| // 3 terms x 10 bits = 30 bits |
| // 2 terms x 16 bits = 32 bits |
| // |
| // e.g. terms x resource bit combinations that fit in uint64_t: |
| // 8 terms x 8 bits = 64 bits |
| // 7 terms x 9 bits = 63 bits |
| // 6 terms x 10 bits = 60 bits |
| // 5 terms x 12 bits = 60 bits |
| // 4 terms x 16 bits = 64 bits <--- current |
| // 3 terms x 21 bits = 63 bits |
| // 2 terms x 32 bits = 64 bits |
| // |
| #define DFA_MAX_RESTERMS 4 // The max # of AND'ed resource terms. |
| #define DFA_MAX_RESOURCES 16 // The max # of resource bits in one term. |
| |
| typedef uint64_t DFAInput; |
| typedef int64_t DFAStateInput; |
| #define DFA_TBLTYPE "int64_t" // For generating DFAStateInputTable. |
| |
| namespace { |
| |
| DFAInput addDFAFuncUnits(DFAInput Inp, unsigned FuncUnits) { |
| return (Inp << DFA_MAX_RESOURCES) | FuncUnits; |
| } |
| |
| /// Return the DFAInput for an instruction class input vector. |
| /// This function is used in both DFAPacketizer.cpp and in |
| /// DFAPacketizerEmitter.cpp. |
| DFAInput getDFAInsnInput(const std::vector<unsigned> &InsnClass) { |
| DFAInput InsnInput = 0; |
| assert((InsnClass.size() <= DFA_MAX_RESTERMS) && |
| "Exceeded maximum number of DFA terms"); |
| for (auto U : InsnClass) |
| InsnInput = addDFAFuncUnits(InsnInput, U); |
| return InsnInput; |
| } |
| |
| } // end anonymous namespace |
| |
| // -------------------------------------------------------------------- |
| |
| #ifndef NDEBUG |
| // To enable debugging, run llvm-tblgen with: "-debug-only dfa-emitter". |
| // |
| // dbgsInsnClass - When debugging, print instruction class stages. |
| // |
| void dbgsInsnClass(const std::vector<unsigned> &InsnClass); |
| // |
| // dbgsStateInfo - When debugging, print the set of state info. |
| // |
| void dbgsStateInfo(const std::set<unsigned> &stateInfo); |
| // |
| // dbgsIndent - When debugging, indent by the specified amount. |
| // |
| void dbgsIndent(unsigned indent); |
| #endif |
| |
| // |
| // class DFAPacketizerEmitter: class that generates and prints out the DFA |
| // for resource tracking. |
| // |
| namespace { |
| |
| class DFAPacketizerEmitter { |
| private: |
| std::string TargetName; |
| // |
| // allInsnClasses is the set of all possible resources consumed by an |
| // InstrStage. |
| // |
| std::vector<std::vector<unsigned>> allInsnClasses; |
| RecordKeeper &Records; |
| |
| public: |
| DFAPacketizerEmitter(RecordKeeper &R); |
| |
| // |
| // collectAllFuncUnits - Construct a map of function unit names to bits. |
| // |
| int collectAllFuncUnits(std::vector<Record*> &ProcItinList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| int &maxResources, |
| raw_ostream &OS); |
| |
| // |
| // collectAllComboFuncs - Construct a map from a combo function unit bit to |
| // the bits of all included functional units. |
| // |
| int collectAllComboFuncs(std::vector<Record*> &ComboFuncList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap, |
| raw_ostream &OS); |
| |
| // |
| // collectOneInsnClass - Populate allInsnClasses with one instruction class. |
| // |
| int collectOneInsnClass(const std::string &ProcName, |
| std::vector<Record*> &ProcItinList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| Record *ItinData, |
| raw_ostream &OS); |
| |
| // |
| // collectAllInsnClasses - Populate allInsnClasses which is a set of units |
| // used in each stage. |
| // |
| int collectAllInsnClasses(const std::string &ProcName, |
| std::vector<Record*> &ProcItinList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| std::vector<Record*> &ItinDataList, |
| int &maxStages, |
| raw_ostream &OS); |
| |
| void run(raw_ostream &OS); |
| }; |
| |
| // |
| // State represents the usage of machine resources if the packet contains |
| // a set of instruction classes. |
| // |
| // Specifically, currentState is a set of bit-masks. |
| // The nth bit in a bit-mask indicates whether the nth resource is being used |
| // by this state. The set of bit-masks in a state represent the different |
| // possible outcomes of transitioning to this state. |
| // For example: consider a two resource architecture: resource L and resource M |
| // with three instruction classes: L, M, and L_or_M. |
| // From the initial state (currentState = 0x00), if we add instruction class |
| // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This |
| // represents the possible resource states that can result from adding a L_or_M |
| // instruction |
| // |
| // Another way of thinking about this transition is we are mapping a NDFA with |
| // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]. |
| // |
| // A State instance also contains a collection of transitions from that state: |
| // a map from inputs to new states. |
| // |
| class State { |
| public: |
| static int currentStateNum; |
| // stateNum is the only member used for equality/ordering, all other members |
| // can be mutated even in const State objects. |
| const int stateNum; |
| mutable bool isInitial; |
| mutable std::set<unsigned> stateInfo; |
| typedef std::map<std::vector<unsigned>, const State *> TransitionMap; |
| mutable TransitionMap Transitions; |
| |
| State(); |
| |
| bool operator<(const State &s) const { |
| return stateNum < s.stateNum; |
| } |
| |
| // |
| // canMaybeAddInsnClass - Quickly verifies if an instruction of type InsnClass |
| // may be a valid transition from this state i.e., can an instruction of type |
| // InsnClass be added to the packet represented by this state. |
| // |
| // Note that for multiple stages, this quick check does not take into account |
| // any possible resource competition between the stages themselves. That is |
| // enforced in AddInsnClassStages which checks the cross product of all |
| // stages for resource availability (which is a more involved check). |
| // |
| bool canMaybeAddInsnClass(std::vector<unsigned> &InsnClass, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap) const; |
| |
| // |
| // AddInsnClass - Return all combinations of resource reservation |
| // which are possible from this state (PossibleStates). |
| // |
| // PossibleStates is the set of valid resource states that ensue from valid |
| // transitions. |
| // |
| void AddInsnClass(std::vector<unsigned> &InsnClass, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap, |
| std::set<unsigned> &PossibleStates) const; |
| |
| // |
| // AddInsnClassStages - Return all combinations of resource reservation |
| // resulting from the cross product of all stages for this InsnClass |
| // which are possible from this state (PossibleStates). |
| // |
| void AddInsnClassStages(std::vector<unsigned> &InsnClass, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap, |
| unsigned chkstage, unsigned numstages, |
| unsigned prevState, unsigned origState, |
| DenseSet<unsigned> &VisitedResourceStates, |
| std::set<unsigned> &PossibleStates) const; |
| |
| // |
| // addTransition - Add a transition from this state given the input InsnClass |
| // |
| void addTransition(std::vector<unsigned> InsnClass, const State *To) const; |
| |
| // |
| // hasTransition - Returns true if there is a transition from this state |
| // given the input InsnClass |
| // |
| bool hasTransition(std::vector<unsigned> InsnClass) const; |
| }; |
| |
| // |
| // class DFA: deterministic finite automaton for processor resource tracking. |
| // |
| class DFA { |
| public: |
| DFA() = default; |
| |
| // Set of states. Need to keep this sorted to emit the transition table. |
| typedef std::set<State> StateSet; |
| StateSet states; |
| |
| State *currentState = nullptr; |
| |
| // |
| // Modify the DFA. |
| // |
| const State &newState(); |
| |
| // |
| // writeTable: Print out a table representing the DFA. |
| // |
| void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName, |
| int numInsnClasses = 0, |
| int maxResources = 0, int numCombos = 0, int maxStages = 0); |
| }; |
| |
| } // end anonymous namespace |
| |
| #ifndef NDEBUG |
| // To enable debugging, run llvm-tblgen with: "-debug-only dfa-emitter". |
| // |
| // dbgsInsnClass - When debugging, print instruction class stages. |
| // |
| void dbgsInsnClass(const std::vector<unsigned> &InsnClass) { |
| LLVM_DEBUG(dbgs() << "InsnClass: "); |
| for (unsigned i = 0; i < InsnClass.size(); ++i) { |
| if (i > 0) { |
| LLVM_DEBUG(dbgs() << ", "); |
| } |
| LLVM_DEBUG(dbgs() << "0x" << Twine::utohexstr(InsnClass[i])); |
| } |
| DFAInput InsnInput = getDFAInsnInput(InsnClass); |
| LLVM_DEBUG(dbgs() << " (input: 0x" << Twine::utohexstr(InsnInput) << ")"); |
| } |
| |
| // |
| // dbgsStateInfo - When debugging, print the set of state info. |
| // |
| void dbgsStateInfo(const std::set<unsigned> &stateInfo) { |
| LLVM_DEBUG(dbgs() << "StateInfo: "); |
| unsigned i = 0; |
| for (std::set<unsigned>::iterator SI = stateInfo.begin(); |
| SI != stateInfo.end(); ++SI, ++i) { |
| unsigned thisState = *SI; |
| if (i > 0) { |
| LLVM_DEBUG(dbgs() << ", "); |
| } |
| LLVM_DEBUG(dbgs() << "0x" << Twine::utohexstr(thisState)); |
| } |
| } |
| |
| // |
| // dbgsIndent - When debugging, indent by the specified amount. |
| // |
| void dbgsIndent(unsigned indent) { |
| for (unsigned i = 0; i < indent; ++i) { |
| LLVM_DEBUG(dbgs() << " "); |
| } |
| } |
| #endif // NDEBUG |
| |
| // |
| // Constructors and destructors for State and DFA |
| // |
| State::State() : |
| stateNum(currentStateNum++), isInitial(false) {} |
| |
| // |
| // addTransition - Add a transition from this state given the input InsnClass |
| // |
| void State::addTransition(std::vector<unsigned> InsnClass, const State *To) |
| const { |
| assert(!Transitions.count(InsnClass) && |
| "Cannot have multiple transitions for the same input"); |
| Transitions[InsnClass] = To; |
| } |
| |
| // |
| // hasTransition - Returns true if there is a transition from this state |
| // given the input InsnClass |
| // |
| bool State::hasTransition(std::vector<unsigned> InsnClass) const { |
| return Transitions.count(InsnClass) > 0; |
| } |
| |
| // |
| // AddInsnClass - Return all combinations of resource reservation |
| // which are possible from this state (PossibleStates). |
| // |
| // PossibleStates is the set of valid resource states that ensue from valid |
| // transitions. |
| // |
| void State::AddInsnClass(std::vector<unsigned> &InsnClass, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap, |
| std::set<unsigned> &PossibleStates) const { |
| // |
| // Iterate over all resource states in currentState. |
| // |
| unsigned numstages = InsnClass.size(); |
| assert((numstages > 0) && "InsnClass has no stages"); |
| |
| for (std::set<unsigned>::iterator SI = stateInfo.begin(); |
| SI != stateInfo.end(); ++SI) { |
| unsigned thisState = *SI; |
| |
| DenseSet<unsigned> VisitedResourceStates; |
| |
| LLVM_DEBUG(dbgs() << " thisState: 0x" << Twine::utohexstr(thisState) |
| << "\n"); |
| AddInsnClassStages(InsnClass, ComboBitToBitsMap, |
| numstages - 1, numstages, |
| thisState, thisState, |
| VisitedResourceStates, PossibleStates); |
| } |
| } |
| |
| void State::AddInsnClassStages(std::vector<unsigned> &InsnClass, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap, |
| unsigned chkstage, unsigned numstages, |
| unsigned prevState, unsigned origState, |
| DenseSet<unsigned> &VisitedResourceStates, |
| std::set<unsigned> &PossibleStates) const { |
| assert((chkstage < numstages) && "AddInsnClassStages: stage out of range"); |
| unsigned thisStage = InsnClass[chkstage]; |
| |
| LLVM_DEBUG({ |
| dbgsIndent((1 + numstages - chkstage) << 1); |
| dbgs() << "AddInsnClassStages " << chkstage << " (0x" |
| << Twine::utohexstr(thisStage) << ") from "; |
| dbgsInsnClass(InsnClass); |
| dbgs() << "\n"; |
| }); |
| |
| // |
| // Iterate over all possible resources used in thisStage. |
| // For ex: for thisStage = 0x11, all resources = {0x01, 0x10}. |
| // |
| for (unsigned int j = 0; j < DFA_MAX_RESOURCES; ++j) { |
| unsigned resourceMask = (0x1 << j); |
| if (resourceMask & thisStage) { |
| unsigned combo = ComboBitToBitsMap[resourceMask]; |
| if (combo && ((~prevState & combo) != combo)) { |
| LLVM_DEBUG(dbgs() << "\tSkipped Add 0x" << Twine::utohexstr(prevState) |
| << " - combo op 0x" << Twine::utohexstr(resourceMask) |
| << " (0x" << Twine::utohexstr(combo) |
| << ") cannot be scheduled\n"); |
| continue; |
| } |
| // |
| // For each possible resource used in thisStage, generate the |
| // resource state if that resource was used. |
| // |
| unsigned ResultingResourceState = prevState | resourceMask | combo; |
| LLVM_DEBUG({ |
| dbgsIndent((2 + numstages - chkstage) << 1); |
| dbgs() << "0x" << Twine::utohexstr(prevState) << " | 0x" |
| << Twine::utohexstr(resourceMask); |
| if (combo) |
| dbgs() << " | 0x" << Twine::utohexstr(combo); |
| dbgs() << " = 0x" << Twine::utohexstr(ResultingResourceState) << " "; |
| }); |
| |
| // |
| // If this is the final stage for this class |
| // |
| if (chkstage == 0) { |
| // |
| // Check if the resulting resource state can be accommodated in this |
| // packet. |
| // We compute resource OR prevState (originally started as origState). |
| // If the result of the OR is different than origState, it implies |
| // that there is at least one resource that can be used to schedule |
| // thisStage in the current packet. |
| // Insert ResultingResourceState into PossibleStates only if we haven't |
| // processed ResultingResourceState before. |
| // |
| if (ResultingResourceState != prevState) { |
| if (VisitedResourceStates.count(ResultingResourceState) == 0) { |
| VisitedResourceStates.insert(ResultingResourceState); |
| PossibleStates.insert(ResultingResourceState); |
| LLVM_DEBUG(dbgs() |
| << "\tResultingResourceState: 0x" |
| << Twine::utohexstr(ResultingResourceState) << "\n"); |
| } else { |
| LLVM_DEBUG(dbgs() << "\tSkipped Add - state already seen\n"); |
| } |
| } else { |
| LLVM_DEBUG(dbgs() |
| << "\tSkipped Add - no final resources available\n"); |
| } |
| } else { |
| // |
| // If the current resource can be accommodated, check the next |
| // stage in InsnClass for available resources. |
| // |
| if (ResultingResourceState != prevState) { |
| LLVM_DEBUG(dbgs() << "\n"); |
| AddInsnClassStages(InsnClass, ComboBitToBitsMap, |
| chkstage - 1, numstages, |
| ResultingResourceState, origState, |
| VisitedResourceStates, PossibleStates); |
| } else { |
| LLVM_DEBUG(dbgs() << "\tSkipped Add - no resources available\n"); |
| } |
| } |
| } |
| } |
| } |
| |
| // |
| // canMaybeAddInsnClass - Quickly verifies if an instruction of type InsnClass |
| // may be a valid transition from this state i.e., can an instruction of type |
| // InsnClass be added to the packet represented by this state. |
| // |
| // Note that this routine is performing conservative checks that can be |
| // quickly executed acting as a filter before calling AddInsnClassStages. |
| // Any cases allowed through here will be caught later in AddInsnClassStages |
| // which performs the more expensive exact check. |
| // |
| bool State::canMaybeAddInsnClass(std::vector<unsigned> &InsnClass, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap) const { |
| for (std::set<unsigned>::const_iterator SI = stateInfo.begin(); |
| SI != stateInfo.end(); ++SI) { |
| // Check to see if all required resources are available. |
| bool available = true; |
| |
| // Inspect each stage independently. |
| // note: This is a conservative check as we aren't checking for |
| // possible resource competition between the stages themselves |
| // The full cross product is examined later in AddInsnClass. |
| for (unsigned i = 0; i < InsnClass.size(); ++i) { |
| unsigned resources = *SI; |
| if ((~resources & InsnClass[i]) == 0) { |
| available = false; |
| break; |
| } |
| // Make sure _all_ resources for a combo function are available. |
| // note: This is a quick conservative check as it won't catch an |
| // unscheduleable combo if this stage is an OR expression |
| // containing a combo. |
| // These cases are caught later in AddInsnClass. |
| unsigned combo = ComboBitToBitsMap[InsnClass[i]]; |
| if (combo && ((~resources & combo) != combo)) { |
| LLVM_DEBUG(dbgs() << "\tSkipped canMaybeAdd 0x" |
| << Twine::utohexstr(resources) << " - combo op 0x" |
| << Twine::utohexstr(InsnClass[i]) << " (0x" |
| << Twine::utohexstr(combo) |
| << ") cannot be scheduled\n"); |
| available = false; |
| break; |
| } |
| } |
| |
| if (available) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| const State &DFA::newState() { |
| auto IterPair = states.insert(State()); |
| assert(IterPair.second && "State already exists"); |
| return *IterPair.first; |
| } |
| |
| int State::currentStateNum = 0; |
| |
| DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R): |
| TargetName(CodeGenTarget(R).getName()), Records(R) {} |
| |
| // |
| // writeTableAndAPI - Print out a table representing the DFA and the |
| // associated API to create a DFA packetizer. |
| // |
| // Format: |
| // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid |
| // transitions. |
| // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for |
| // the ith state. |
| // |
| // |
| void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName, |
| int numInsnClasses, |
| int maxResources, int numCombos, int maxStages) { |
| unsigned numStates = states.size(); |
| |
| LLVM_DEBUG(dbgs() << "-------------------------------------------------------" |
| "----------------------\n"); |
| LLVM_DEBUG(dbgs() << "writeTableAndAPI\n"); |
| LLVM_DEBUG(dbgs() << "Total states: " << numStates << "\n"); |
| |
| OS << "namespace llvm {\n"; |
| |
| OS << "\n// Input format:\n"; |
| OS << "#define DFA_MAX_RESTERMS " << DFA_MAX_RESTERMS |
| << "\t// maximum AND'ed resource terms\n"; |
| OS << "#define DFA_MAX_RESOURCES " << DFA_MAX_RESOURCES |
| << "\t// maximum resource bits in one term\n"; |
| |
| OS << "\n// " << TargetName << "DFAStateInputTable[][2] = " |
| << "pairs of <Input, NextState> for all valid\n"; |
| OS << "// transitions.\n"; |
| OS << "// " << numStates << "\tstates\n"; |
| OS << "// " << numInsnClasses << "\tinstruction classes\n"; |
| OS << "// " << maxResources << "\tresources max\n"; |
| OS << "// " << numCombos << "\tcombo resources\n"; |
| OS << "// " << maxStages << "\tstages max\n"; |
| OS << "const " << DFA_TBLTYPE << " " |
| << TargetName << "DFAStateInputTable[][2] = {\n"; |
| |
| // This table provides a map to the beginning of the transitions for State s |
| // in DFAStateInputTable. |
| std::vector<int> StateEntry(numStates+1); |
| static const std::string SentinelEntry = "{-1, -1}"; |
| |
| // Tracks the total valid transitions encountered so far. It is used |
| // to construct the StateEntry table. |
| int ValidTransitions = 0; |
| DFA::StateSet::iterator SI = states.begin(); |
| for (unsigned i = 0; i < numStates; ++i, ++SI) { |
| assert ((SI->stateNum == (int) i) && "Mismatch in state numbers"); |
| StateEntry[i] = ValidTransitions; |
| for (State::TransitionMap::iterator |
| II = SI->Transitions.begin(), IE = SI->Transitions.end(); |
| II != IE; ++II) { |
| OS << "{0x" << Twine::utohexstr(getDFAInsnInput(II->first)) << ", " |
| << II->second->stateNum << "},\t"; |
| } |
| ValidTransitions += SI->Transitions.size(); |
| |
| // If there are no valid transitions from this stage, we need a sentinel |
| // transition. |
| if (ValidTransitions == StateEntry[i]) { |
| OS << SentinelEntry << ",\t"; |
| ++ValidTransitions; |
| } |
| |
| OS << " // state " << i << ": " << StateEntry[i]; |
| if (StateEntry[i] != (ValidTransitions-1)) { // More than one transition. |
| OS << "-" << (ValidTransitions-1); |
| } |
| OS << "\n"; |
| } |
| |
| // Print out a sentinel entry at the end of the StateInputTable. This is |
| // needed to iterate over StateInputTable in DFAPacketizer::ReadTable() |
| OS << SentinelEntry << "\t"; |
| OS << " // state " << numStates << ": " << ValidTransitions; |
| OS << "\n"; |
| |
| OS << "};\n\n"; |
| OS << "// " << TargetName << "DFAStateEntryTable[i] = " |
| << "Index of the first entry in DFAStateInputTable for\n"; |
| OS << "// " |
| << "the ith state.\n"; |
| OS << "// " << numStates << " states\n"; |
| OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n"; |
| |
| // Multiply i by 2 since each entry in DFAStateInputTable is a set of |
| // two numbers. |
| unsigned lastState = 0; |
| for (unsigned i = 0; i < numStates; ++i) { |
| if (i && ((i % 10) == 0)) { |
| lastState = i-1; |
| OS << " // states " << (i-10) << ":" << lastState << "\n"; |
| } |
| OS << StateEntry[i] << ", "; |
| } |
| |
| // Print out the index to the sentinel entry in StateInputTable |
| OS << ValidTransitions << ", "; |
| OS << " // states " << (lastState+1) << ":" << numStates << "\n"; |
| |
| OS << "};\n"; |
| OS << "} // namespace\n"; |
| |
| // |
| // Emit DFA Packetizer tables if the target is a VLIW machine. |
| // |
| std::string SubTargetClassName = TargetName + "GenSubtargetInfo"; |
| OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n"; |
| OS << "namespace llvm {\n"; |
| OS << "DFAPacketizer *" << SubTargetClassName << "::" |
| << "createDFAPacketizer(const InstrItineraryData *IID) const {\n" |
| << " return new DFAPacketizer(IID, " << TargetName |
| << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n"; |
| OS << "} // End llvm namespace \n"; |
| } |
| |
| // |
| // collectAllFuncUnits - Construct a map of function unit names to bits. |
| // |
| int DFAPacketizerEmitter::collectAllFuncUnits( |
| std::vector<Record*> &ProcItinList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| int &maxFUs, |
| raw_ostream &OS) { |
| LLVM_DEBUG(dbgs() << "-------------------------------------------------------" |
| "----------------------\n"); |
| LLVM_DEBUG(dbgs() << "collectAllFuncUnits"); |
| LLVM_DEBUG(dbgs() << " (" << ProcItinList.size() << " itineraries)\n"); |
| |
| int totalFUs = 0; |
| // Parse functional units for all the itineraries. |
| for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) { |
| Record *Proc = ProcItinList[i]; |
| std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU"); |
| |
| LLVM_DEBUG(dbgs() << " FU:" << i << " (" << FUs.size() << " FUs) " |
| << Proc->getName()); |
| |
| // Convert macros to bits for each stage. |
| unsigned numFUs = FUs.size(); |
| for (unsigned j = 0; j < numFUs; ++j) { |
| assert ((j < DFA_MAX_RESOURCES) && |
| "Exceeded maximum number of representable resources"); |
| unsigned FuncResources = (unsigned) (1U << j); |
| FUNameToBitsMap[FUs[j]->getName()] = FuncResources; |
| LLVM_DEBUG(dbgs() << " " << FUs[j]->getName() << ":0x" |
| << Twine::utohexstr(FuncResources)); |
| } |
| if (((int) numFUs) > maxFUs) { |
| maxFUs = numFUs; |
| } |
| totalFUs += numFUs; |
| LLVM_DEBUG(dbgs() << "\n"); |
| } |
| return totalFUs; |
| } |
| |
| // |
| // collectAllComboFuncs - Construct a map from a combo function unit bit to |
| // the bits of all included functional units. |
| // |
| int DFAPacketizerEmitter::collectAllComboFuncs( |
| std::vector<Record*> &ComboFuncList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| std::map<unsigned, unsigned> &ComboBitToBitsMap, |
| raw_ostream &OS) { |
| LLVM_DEBUG(dbgs() << "-------------------------------------------------------" |
| "----------------------\n"); |
| LLVM_DEBUG(dbgs() << "collectAllComboFuncs"); |
| LLVM_DEBUG(dbgs() << " (" << ComboFuncList.size() << " sets)\n"); |
| |
| int numCombos = 0; |
| for (unsigned i = 0, N = ComboFuncList.size(); i < N; ++i) { |
| Record *Func = ComboFuncList[i]; |
| std::vector<Record*> FUs = Func->getValueAsListOfDefs("CFD"); |
| |
| LLVM_DEBUG(dbgs() << " CFD:" << i << " (" << FUs.size() << " combo FUs) " |
| << Func->getName() << "\n"); |
| |
| // Convert macros to bits for each stage. |
| for (unsigned j = 0, N = FUs.size(); j < N; ++j) { |
| assert ((j < DFA_MAX_RESOURCES) && |
| "Exceeded maximum number of DFA resources"); |
| Record *FuncData = FUs[j]; |
| Record *ComboFunc = FuncData->getValueAsDef("TheComboFunc"); |
| const std::vector<Record*> &FuncList = |
| FuncData->getValueAsListOfDefs("FuncList"); |
| const std::string &ComboFuncName = ComboFunc->getName(); |
| unsigned ComboBit = FUNameToBitsMap[ComboFuncName]; |
| unsigned ComboResources = ComboBit; |
| LLVM_DEBUG(dbgs() << " combo: " << ComboFuncName << ":0x" |
| << Twine::utohexstr(ComboResources) << "\n"); |
| for (unsigned k = 0, M = FuncList.size(); k < M; ++k) { |
| std::string FuncName = FuncList[k]->getName(); |
| unsigned FuncResources = FUNameToBitsMap[FuncName]; |
| LLVM_DEBUG(dbgs() << " " << FuncName << ":0x" |
| << Twine::utohexstr(FuncResources) << "\n"); |
| ComboResources |= FuncResources; |
| } |
| ComboBitToBitsMap[ComboBit] = ComboResources; |
| numCombos++; |
| LLVM_DEBUG(dbgs() << " => combo bits: " << ComboFuncName << ":0x" |
| << Twine::utohexstr(ComboBit) << " = 0x" |
| << Twine::utohexstr(ComboResources) << "\n"); |
| } |
| } |
| return numCombos; |
| } |
| |
| // |
| // collectOneInsnClass - Populate allInsnClasses with one instruction class |
| // |
| int DFAPacketizerEmitter::collectOneInsnClass(const std::string &ProcName, |
| std::vector<Record*> &ProcItinList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| Record *ItinData, |
| raw_ostream &OS) { |
| const std::vector<Record*> &StageList = |
| ItinData->getValueAsListOfDefs("Stages"); |
| |
| // The number of stages. |
| unsigned NStages = StageList.size(); |
| |
| LLVM_DEBUG(dbgs() << " " << ItinData->getValueAsDef("TheClass")->getName() |
| << "\n"); |
| |
| std::vector<unsigned> UnitBits; |
| |
| // Compute the bitwise or of each unit used in this stage. |
| for (unsigned i = 0; i < NStages; ++i) { |
| const Record *Stage = StageList[i]; |
| |
| // Get unit list. |
| const std::vector<Record*> &UnitList = |
| Stage->getValueAsListOfDefs("Units"); |
| |
| LLVM_DEBUG(dbgs() << " stage:" << i << " [" << UnitList.size() |
| << " units]:"); |
| unsigned dbglen = 26; // cursor after stage dbgs |
| |
| // Compute the bitwise or of each unit used in this stage. |
| unsigned UnitBitValue = 0; |
| for (unsigned j = 0, M = UnitList.size(); j < M; ++j) { |
| // Conduct bitwise or. |
| std::string UnitName = UnitList[j]->getName(); |
| LLVM_DEBUG(dbgs() << " " << j << ":" << UnitName); |
| dbglen += 3 + UnitName.length(); |
| assert(FUNameToBitsMap.count(UnitName)); |
| UnitBitValue |= FUNameToBitsMap[UnitName]; |
| } |
| |
| if (UnitBitValue != 0) |
| UnitBits.push_back(UnitBitValue); |
| |
| while (dbglen <= 64) { // line up bits dbgs |
| dbglen += 8; |
| LLVM_DEBUG(dbgs() << "\t"); |
| } |
| LLVM_DEBUG(dbgs() << " (bits: 0x" << Twine::utohexstr(UnitBitValue) |
| << ")\n"); |
| } |
| |
| if (!UnitBits.empty()) |
| allInsnClasses.push_back(UnitBits); |
| |
| LLVM_DEBUG({ |
| dbgs() << " "; |
| dbgsInsnClass(UnitBits); |
| dbgs() << "\n"; |
| }); |
| |
| return NStages; |
| } |
| |
| // |
| // collectAllInsnClasses - Populate allInsnClasses which is a set of units |
| // used in each stage. |
| // |
| int DFAPacketizerEmitter::collectAllInsnClasses(const std::string &ProcName, |
| std::vector<Record*> &ProcItinList, |
| std::map<std::string, unsigned> &FUNameToBitsMap, |
| std::vector<Record*> &ItinDataList, |
| int &maxStages, |
| raw_ostream &OS) { |
| // Collect all instruction classes. |
| unsigned M = ItinDataList.size(); |
| |
| int numInsnClasses = 0; |
| LLVM_DEBUG(dbgs() << "-------------------------------------------------------" |
| "----------------------\n" |
| << "collectAllInsnClasses " << ProcName << " (" << M |
| << " classes)\n"); |
| |
| // Collect stages for each instruction class for all itinerary data |
| for (unsigned j = 0; j < M; j++) { |
| Record *ItinData = ItinDataList[j]; |
| int NStages = collectOneInsnClass(ProcName, ProcItinList, |
| FUNameToBitsMap, ItinData, OS); |
| if (NStages > maxStages) { |
| maxStages = NStages; |
| } |
| numInsnClasses++; |
| } |
| return numInsnClasses; |
| } |
| |
| // |
| // Run the worklist algorithm to generate the DFA. |
| // |
| void DFAPacketizerEmitter::run(raw_ostream &OS) { |
| // Collect processor iteraries. |
| std::vector<Record*> ProcItinList = |
| Records.getAllDerivedDefinitions("ProcessorItineraries"); |
| |
| // |
| // Collect the Functional units. |
| // |
| std::map<std::string, unsigned> FUNameToBitsMap; |
| int maxResources = 0; |
| collectAllFuncUnits(ProcItinList, |
| FUNameToBitsMap, maxResources, OS); |
| |
| // |
| // Collect the Combo Functional units. |
| // |
| std::map<unsigned, unsigned> ComboBitToBitsMap; |
| std::vector<Record*> ComboFuncList = |
| Records.getAllDerivedDefinitions("ComboFuncUnits"); |
| int numCombos = collectAllComboFuncs(ComboFuncList, |
| FUNameToBitsMap, ComboBitToBitsMap, OS); |
| |
| // |
| // Collect the itineraries. |
| // |
| int maxStages = 0; |
| int numInsnClasses = 0; |
| for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) { |
| Record *Proc = ProcItinList[i]; |
| |
| // Get processor itinerary name. |
| const std::string &ProcName = Proc->getName(); |
| |
| // Skip default. |
| if (ProcName == "NoItineraries") |
| continue; |
| |
| // Sanity check for at least one instruction itinerary class. |
| unsigned NItinClasses = |
| Records.getAllDerivedDefinitions("InstrItinClass").size(); |
| if (NItinClasses == 0) |
| return; |
| |
| // Get itinerary data list. |
| std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID"); |
| |
| // Collect all instruction classes |
| numInsnClasses += collectAllInsnClasses(ProcName, ProcItinList, |
| FUNameToBitsMap, ItinDataList, maxStages, OS); |
| } |
| |
| // |
| // Run a worklist algorithm to generate the DFA. |
| // |
| DFA D; |
| const State *Initial = &D.newState(); |
| Initial->isInitial = true; |
| Initial->stateInfo.insert(0x0); |
| SmallVector<const State*, 32> WorkList; |
| std::map<std::set<unsigned>, const State*> Visited; |
| |
| WorkList.push_back(Initial); |
| |
| // |
| // Worklist algorithm to create a DFA for processor resource tracking. |
| // C = {set of InsnClasses} |
| // Begin with initial node in worklist. Initial node does not have |
| // any consumed resources, |
| // ResourceState = 0x0 |
| // Visited = {} |
| // While worklist != empty |
| // S = first element of worklist |
| // For every instruction class C |
| // if we can accommodate C in S: |
| // S' = state with resource states = {S Union C} |
| // Add a new transition: S x C -> S' |
| // If S' is not in Visited: |
| // Add S' to worklist |
| // Add S' to Visited |
| // |
| while (!WorkList.empty()) { |
| const State *current = WorkList.pop_back_val(); |
| LLVM_DEBUG({ |
| dbgs() << "---------------------\n"; |
| dbgs() << "Processing state: " << current->stateNum << " - "; |
| dbgsStateInfo(current->stateInfo); |
| dbgs() << "\n"; |
| }); |
| for (unsigned i = 0; i < allInsnClasses.size(); i++) { |
| std::vector<unsigned> InsnClass = allInsnClasses[i]; |
| LLVM_DEBUG({ |
| dbgs() << i << " "; |
| dbgsInsnClass(InsnClass); |
| dbgs() << "\n"; |
| }); |
| |
| std::set<unsigned> NewStateResources; |
| // |
| // If we haven't already created a transition for this input |
| // and the state can accommodate this InsnClass, create a transition. |
| // |
| if (!current->hasTransition(InsnClass) && |
| current->canMaybeAddInsnClass(InsnClass, ComboBitToBitsMap)) { |
| const State *NewState = nullptr; |
| current->AddInsnClass(InsnClass, ComboBitToBitsMap, NewStateResources); |
| if (NewStateResources.empty()) { |
| LLVM_DEBUG(dbgs() << " Skipped - no new states generated\n"); |
| continue; |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "\t"; |
| dbgsStateInfo(NewStateResources); |
| dbgs() << "\n"; |
| }); |
| |
| // |
| // If we have seen this state before, then do not create a new state. |
| // |
| auto VI = Visited.find(NewStateResources); |
| if (VI != Visited.end()) { |
| NewState = VI->second; |
| LLVM_DEBUG({ |
| dbgs() << "\tFound existing state: " << NewState->stateNum |
| << " - "; |
| dbgsStateInfo(NewState->stateInfo); |
| dbgs() << "\n"; |
| }); |
| } else { |
| NewState = &D.newState(); |
| NewState->stateInfo = NewStateResources; |
| Visited[NewStateResources] = NewState; |
| WorkList.push_back(NewState); |
| LLVM_DEBUG({ |
| dbgs() << "\tAccepted new state: " << NewState->stateNum << " - "; |
| dbgsStateInfo(NewState->stateInfo); |
| dbgs() << "\n"; |
| }); |
| } |
| |
| current->addTransition(InsnClass, NewState); |
| } |
| } |
| } |
| |
| // Print out the table. |
| D.writeTableAndAPI(OS, TargetName, |
| numInsnClasses, maxResources, numCombos, maxStages); |
| } |
| |
| namespace llvm { |
| |
| void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) { |
| emitSourceFileHeader("Target DFA Packetizer Tables", OS); |
| DFAPacketizerEmitter(RK).run(OS); |
| } |
| |
| } // end namespace llvm |