| //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the ImutAVLTree and ImmutableSet classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_IMSET_H |
| #define LLVM_ADT_IMSET_H |
| |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/Support/DataTypes.h" |
| #include <cassert> |
| #include <functional> |
| #include <vector> |
| #include <stdio.h> |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable AVL-Tree Definition. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ImutInfo> class ImutAVLFactory; |
| template <typename ImutInfo> class ImutIntervalAVLFactory; |
| template <typename ImutInfo> class ImutAVLTreeInOrderIterator; |
| template <typename ImutInfo> class ImutAVLTreeGenericIterator; |
| |
| template <typename ImutInfo > |
| class ImutAVLTree { |
| public: |
| typedef typename ImutInfo::key_type_ref key_type_ref; |
| typedef typename ImutInfo::value_type value_type; |
| typedef typename ImutInfo::value_type_ref value_type_ref; |
| |
| typedef ImutAVLFactory<ImutInfo> Factory; |
| friend class ImutAVLFactory<ImutInfo>; |
| friend class ImutIntervalAVLFactory<ImutInfo>; |
| |
| friend class ImutAVLTreeGenericIterator<ImutInfo>; |
| |
| typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator; |
| |
| //===----------------------------------------------------===// |
| // Public Interface. |
| //===----------------------------------------------------===// |
| |
| /// Return a pointer to the left subtree. This value |
| /// is NULL if there is no left subtree. |
| ImutAVLTree *getLeft() const { return left; } |
| |
| /// Return a pointer to the right subtree. This value is |
| /// NULL if there is no right subtree. |
| ImutAVLTree *getRight() const { return right; } |
| |
| /// getHeight - Returns the height of the tree. A tree with no subtrees |
| /// has a height of 1. |
| unsigned getHeight() const { return height; } |
| |
| /// getValue - Returns the data value associated with the tree node. |
| const value_type& getValue() const { return value; } |
| |
| /// find - Finds the subtree associated with the specified key value. |
| /// This method returns NULL if no matching subtree is found. |
| ImutAVLTree* find(key_type_ref K) { |
| ImutAVLTree *T = this; |
| while (T) { |
| key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); |
| if (ImutInfo::isEqual(K,CurrentKey)) |
| return T; |
| else if (ImutInfo::isLess(K,CurrentKey)) |
| T = T->getLeft(); |
| else |
| T = T->getRight(); |
| } |
| return NULL; |
| } |
| |
| /// getMaxElement - Find the subtree associated with the highest ranged |
| /// key value. |
| ImutAVLTree* getMaxElement() { |
| ImutAVLTree *T = this; |
| ImutAVLTree *Right = T->getRight(); |
| while (Right) { T = right; right = T->getRight(); } |
| return T; |
| } |
| |
| /// size - Returns the number of nodes in the tree, which includes |
| /// both leaves and non-leaf nodes. |
| unsigned size() const { |
| unsigned n = 1; |
| if (const ImutAVLTree* L = getLeft()) |
| n += L->size(); |
| if (const ImutAVLTree* R = getRight()) |
| n += R->size(); |
| return n; |
| } |
| |
| /// begin - Returns an iterator that iterates over the nodes of the tree |
| /// in an inorder traversal. The returned iterator thus refers to the |
| /// the tree node with the minimum data element. |
| iterator begin() const { return iterator(this); } |
| |
| /// end - Returns an iterator for the tree that denotes the end of an |
| /// inorder traversal. |
| iterator end() const { return iterator(); } |
| |
| bool isElementEqual(value_type_ref V) const { |
| // Compare the keys. |
| if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), |
| ImutInfo::KeyOfValue(V))) |
| return false; |
| |
| // Also compare the data values. |
| if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), |
| ImutInfo::DataOfValue(V))) |
| return false; |
| |
| return true; |
| } |
| |
| bool isElementEqual(const ImutAVLTree* RHS) const { |
| return isElementEqual(RHS->getValue()); |
| } |
| |
| /// isEqual - Compares two trees for structural equality and returns true |
| /// if they are equal. This worst case performance of this operation is |
| // linear in the sizes of the trees. |
| bool isEqual(const ImutAVLTree& RHS) const { |
| if (&RHS == this) |
| return true; |
| |
| iterator LItr = begin(), LEnd = end(); |
| iterator RItr = RHS.begin(), REnd = RHS.end(); |
| |
| while (LItr != LEnd && RItr != REnd) { |
| if (*LItr == *RItr) { |
| LItr.skipSubTree(); |
| RItr.skipSubTree(); |
| continue; |
| } |
| |
| if (!LItr->isElementEqual(*RItr)) |
| return false; |
| |
| ++LItr; |
| ++RItr; |
| } |
| |
| return LItr == LEnd && RItr == REnd; |
| } |
| |
| /// isNotEqual - Compares two trees for structural inequality. Performance |
| /// is the same is isEqual. |
| bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } |
| |
| /// contains - Returns true if this tree contains a subtree (node) that |
| /// has an data element that matches the specified key. Complexity |
| /// is logarithmic in the size of the tree. |
| bool contains(key_type_ref K) { return (bool) find(K); } |
| |
| /// foreach - A member template the accepts invokes operator() on a functor |
| /// object (specifed by Callback) for every node/subtree in the tree. |
| /// Nodes are visited using an inorder traversal. |
| template <typename Callback> |
| void foreach(Callback& C) { |
| if (ImutAVLTree* L = getLeft()) |
| L->foreach(C); |
| |
| C(value); |
| |
| if (ImutAVLTree* R = getRight()) |
| R->foreach(C); |
| } |
| |
| /// validateTree - A utility method that checks that the balancing and |
| /// ordering invariants of the tree are satisifed. It is a recursive |
| /// method that returns the height of the tree, which is then consumed |
| /// by the enclosing validateTree call. External callers should ignore the |
| /// return value. An invalid tree will cause an assertion to fire in |
| /// a debug build. |
| unsigned validateTree() const { |
| unsigned HL = getLeft() ? getLeft()->validateTree() : 0; |
| unsigned HR = getRight() ? getRight()->validateTree() : 0; |
| (void) HL; |
| (void) HR; |
| |
| assert(getHeight() == ( HL > HR ? HL : HR ) + 1 |
| && "Height calculation wrong"); |
| |
| assert((HL > HR ? HL-HR : HR-HL) <= 2 |
| && "Balancing invariant violated"); |
| |
| assert((!getLeft() || |
| ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), |
| ImutInfo::KeyOfValue(getValue()))) && |
| "Value in left child is not less that current value"); |
| |
| |
| assert(!(getRight() || |
| ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), |
| ImutInfo::KeyOfValue(getRight()->getValue()))) && |
| "Current value is not less that value of right child"); |
| |
| return getHeight(); |
| } |
| |
| //===----------------------------------------------------===// |
| // Internal values. |
| //===----------------------------------------------------===// |
| |
| private: |
| Factory *factory; |
| ImutAVLTree *left; |
| ImutAVLTree *right; |
| ImutAVLTree *prev; |
| ImutAVLTree *next; |
| |
| unsigned height : 28; |
| unsigned IsMutable : 1; |
| unsigned IsDigestCached : 1; |
| unsigned IsCanonicalized : 1; |
| |
| value_type value; |
| uint32_t digest; |
| uint32_t refCount; |
| |
| //===----------------------------------------------------===// |
| // Internal methods (node manipulation; used by Factory). |
| //===----------------------------------------------------===// |
| |
| private: |
| /// ImutAVLTree - Internal constructor that is only called by |
| /// ImutAVLFactory. |
| ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, |
| unsigned height) |
| : factory(f), left(l), right(r), prev(0), next(0), height(height), |
| IsMutable(true), IsDigestCached(false), IsCanonicalized(0), |
| value(v), digest(0), refCount(0) |
| { |
| if (left) left->retain(); |
| if (right) right->retain(); |
| } |
| |
| /// isMutable - Returns true if the left and right subtree references |
| /// (as well as height) can be changed. If this method returns false, |
| /// the tree is truly immutable. Trees returned from an ImutAVLFactory |
| /// object should always have this method return true. Further, if this |
| /// method returns false for an instance of ImutAVLTree, all subtrees |
| /// will also have this method return false. The converse is not true. |
| bool isMutable() const { return IsMutable; } |
| |
| /// hasCachedDigest - Returns true if the digest for this tree is cached. |
| /// This can only be true if the tree is immutable. |
| bool hasCachedDigest() const { return IsDigestCached; } |
| |
| //===----------------------------------------------------===// |
| // Mutating operations. A tree root can be manipulated as |
| // long as its reference has not "escaped" from internal |
| // methods of a factory object (see below). When a tree |
| // pointer is externally viewable by client code, the |
| // internal "mutable bit" is cleared to mark the tree |
| // immutable. Note that a tree that still has its mutable |
| // bit set may have children (subtrees) that are themselves |
| // immutable. |
| //===----------------------------------------------------===// |
| |
| /// markImmutable - Clears the mutable flag for a tree. After this happens, |
| /// it is an error to call setLeft(), setRight(), and setHeight(). |
| void markImmutable() { |
| assert(isMutable() && "Mutable flag already removed."); |
| IsMutable = false; |
| } |
| |
| /// markedCachedDigest - Clears the NoCachedDigest flag for a tree. |
| void markedCachedDigest() { |
| assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); |
| IsDigestCached = true; |
| } |
| |
| /// setHeight - Changes the height of the tree. Used internally by |
| /// ImutAVLFactory. |
| void setHeight(unsigned h) { |
| assert(isMutable() && "Only a mutable tree can have its height changed."); |
| height = h; |
| } |
| |
| static inline |
| uint32_t computeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) { |
| uint32_t digest = 0; |
| |
| if (L) |
| digest += L->computeDigest(); |
| |
| // Compute digest of stored data. |
| FoldingSetNodeID ID; |
| ImutInfo::Profile(ID,V); |
| digest += ID.ComputeHash(); |
| |
| if (R) |
| digest += R->computeDigest(); |
| |
| return digest; |
| } |
| |
| inline uint32_t computeDigest() { |
| // Check the lowest bit to determine if digest has actually been |
| // pre-computed. |
| if (hasCachedDigest()) |
| return digest; |
| |
| uint32_t X = computeDigest(getLeft(), getRight(), getValue()); |
| digest = X; |
| markedCachedDigest(); |
| return X; |
| } |
| |
| //===----------------------------------------------------===// |
| // Reference count operations. |
| //===----------------------------------------------------===// |
| |
| public: |
| void retain() { ++refCount; } |
| void release() { |
| assert(refCount > 0); |
| if (--refCount == 0) |
| destroy(); |
| } |
| void destroy() { |
| if (left) |
| left->release(); |
| if (right) |
| right->release(); |
| if (IsCanonicalized) { |
| if (next) |
| next->prev = prev; |
| |
| if (prev) |
| prev->next = next; |
| else |
| factory->Cache[computeDigest()] = next; |
| } |
| |
| // We need to clear the mutability bit in case we are |
| // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). |
| IsMutable = false; |
| factory->freeNodes.push_back(this); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable AVL-Tree Factory class. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ImutInfo > |
| class ImutAVLFactory { |
| friend class ImutAVLTree<ImutInfo>; |
| typedef ImutAVLTree<ImutInfo> TreeTy; |
| typedef typename TreeTy::value_type_ref value_type_ref; |
| typedef typename TreeTy::key_type_ref key_type_ref; |
| |
| typedef DenseMap<unsigned, TreeTy*> CacheTy; |
| |
| CacheTy Cache; |
| uintptr_t Allocator; |
| std::vector<TreeTy*> createdNodes; |
| std::vector<TreeTy*> freeNodes; |
| |
| bool ownsAllocator() const { |
| return Allocator & 0x1 ? false : true; |
| } |
| |
| BumpPtrAllocator& getAllocator() const { |
| return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); |
| } |
| |
| //===--------------------------------------------------===// |
| // Public interface. |
| //===--------------------------------------------------===// |
| |
| public: |
| ImutAVLFactory() |
| : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} |
| |
| ImutAVLFactory(BumpPtrAllocator& Alloc) |
| : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} |
| |
| ~ImutAVLFactory() { |
| if (ownsAllocator()) delete &getAllocator(); |
| } |
| |
| TreeTy* add(TreeTy* T, value_type_ref V) { |
| T = add_internal(V,T); |
| markImmutable(T); |
| recoverNodes(); |
| return T; |
| } |
| |
| TreeTy* remove(TreeTy* T, key_type_ref V) { |
| T = remove_internal(V,T); |
| markImmutable(T); |
| recoverNodes(); |
| return T; |
| } |
| |
| TreeTy* getEmptyTree() const { return NULL; } |
| |
| protected: |
| |
| //===--------------------------------------------------===// |
| // A bunch of quick helper functions used for reasoning |
| // about the properties of trees and their children. |
| // These have succinct names so that the balancing code |
| // is as terse (and readable) as possible. |
| //===--------------------------------------------------===// |
| |
| bool isEmpty(TreeTy* T) const { return !T; } |
| unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } |
| TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } |
| TreeTy* getRight(TreeTy* T) const { return T->getRight(); } |
| value_type_ref getValue(TreeTy* T) const { return T->value; } |
| |
| unsigned incrementHeight(TreeTy* L, TreeTy* R) const { |
| unsigned hl = getHeight(L); |
| unsigned hr = getHeight(R); |
| return (hl > hr ? hl : hr) + 1; |
| } |
| |
| static bool compareTreeWithSection(TreeTy* T, |
| typename TreeTy::iterator& TI, |
| typename TreeTy::iterator& TE) { |
| typename TreeTy::iterator I = T->begin(), E = T->end(); |
| for ( ; I!=E ; ++I, ++TI) { |
| if (TI == TE || !I->isElementEqual(*TI)) |
| return false; |
| } |
| return true; |
| } |
| |
| //===--------------------------------------------------===// |
| // "createNode" is used to generate new tree roots that link |
| // to other trees. The functon may also simply move links |
| // in an existing root if that root is still marked mutable. |
| // This is necessary because otherwise our balancing code |
| // would leak memory as it would create nodes that are |
| // then discarded later before the finished tree is |
| // returned to the caller. |
| //===--------------------------------------------------===// |
| |
| TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { |
| BumpPtrAllocator& A = getAllocator(); |
| TreeTy* T; |
| if (!freeNodes.empty()) { |
| T = freeNodes.back(); |
| freeNodes.pop_back(); |
| assert(T != L); |
| assert(T != R); |
| } |
| else { |
| T = (TreeTy*) A.Allocate<TreeTy>(); |
| } |
| new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); |
| createdNodes.push_back(T); |
| return T; |
| } |
| |
| TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { |
| return createNode(newLeft, getValue(oldTree), newRight); |
| } |
| |
| void recoverNodes() { |
| for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { |
| TreeTy *N = createdNodes[i]; |
| if (N->isMutable() && N->refCount == 0) |
| N->destroy(); |
| } |
| createdNodes.clear(); |
| } |
| |
| /// balanceTree - Used by add_internal and remove_internal to |
| /// balance a newly created tree. |
| TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { |
| unsigned hl = getHeight(L); |
| unsigned hr = getHeight(R); |
| |
| if (hl > hr + 2) { |
| assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2"); |
| |
| TreeTy *LL = getLeft(L); |
| TreeTy *LR = getRight(L); |
| |
| if (getHeight(LL) >= getHeight(LR)) |
| return createNode(LL, L, createNode(LR,V,R)); |
| |
| assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1"); |
| |
| TreeTy *LRL = getLeft(LR); |
| TreeTy *LRR = getRight(LR); |
| |
| return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); |
| } |
| else if (hr > hl + 2) { |
| assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2"); |
| |
| TreeTy *RL = getLeft(R); |
| TreeTy *RR = getRight(R); |
| |
| if (getHeight(RR) >= getHeight(RL)) |
| return createNode(createNode(L,V,RL), R, RR); |
| |
| assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1"); |
| |
| TreeTy *RLL = getLeft(RL); |
| TreeTy *RLR = getRight(RL); |
| |
| return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); |
| } |
| else |
| return createNode(L,V,R); |
| } |
| |
| /// add_internal - Creates a new tree that includes the specified |
| /// data and the data from the original tree. If the original tree |
| /// already contained the data item, the original tree is returned. |
| TreeTy* add_internal(value_type_ref V, TreeTy* T) { |
| if (isEmpty(T)) |
| return createNode(T, V, T); |
| assert(!T->isMutable()); |
| |
| key_type_ref K = ImutInfo::KeyOfValue(V); |
| key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); |
| |
| if (ImutInfo::isEqual(K,KCurrent)) |
| return createNode(getLeft(T), V, getRight(T)); |
| else if (ImutInfo::isLess(K,KCurrent)) |
| return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); |
| else |
| return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); |
| } |
| |
| /// remove_internal - Creates a new tree that includes all the data |
| /// from the original tree except the specified data. If the |
| /// specified data did not exist in the original tree, the original |
| /// tree is returned. |
| TreeTy* remove_internal(key_type_ref K, TreeTy* T) { |
| if (isEmpty(T)) |
| return T; |
| |
| assert(!T->isMutable()); |
| |
| key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); |
| |
| if (ImutInfo::isEqual(K,KCurrent)) { |
| return combineTrees(getLeft(T), getRight(T)); |
| } else if (ImutInfo::isLess(K,KCurrent)) { |
| return balanceTree(remove_internal(K, getLeft(T)), |
| getValue(T), getRight(T)); |
| } else { |
| return balanceTree(getLeft(T), getValue(T), |
| remove_internal(K, getRight(T))); |
| } |
| } |
| |
| TreeTy* combineTrees(TreeTy* L, TreeTy* R) { |
| if (isEmpty(L)) |
| return R; |
| if (isEmpty(R)) |
| return L; |
| TreeTy* OldNode; |
| TreeTy* newRight = removeMinBinding(R,OldNode); |
| return balanceTree(L, getValue(OldNode), newRight); |
| } |
| |
| TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { |
| assert(!isEmpty(T)); |
| if (isEmpty(getLeft(T))) { |
| Noderemoved = T; |
| return getRight(T); |
| } |
| return balanceTree(removeMinBinding(getLeft(T), Noderemoved), |
| getValue(T), getRight(T)); |
| } |
| |
| /// markImmutable - Clears the mutable bits of a root and all of its |
| /// descendants. |
| void markImmutable(TreeTy* T) { |
| if (!T || !T->isMutable()) |
| return; |
| T->markImmutable(); |
| markImmutable(getLeft(T)); |
| markImmutable(getRight(T)); |
| } |
| |
| public: |
| TreeTy *getCanonicalTree(TreeTy *TNew) { |
| if (!TNew) |
| return 0; |
| |
| if (TNew->IsCanonicalized) |
| return TNew; |
| |
| // Search the hashtable for another tree with the same digest, and |
| // if find a collision compare those trees by their contents. |
| unsigned digest = TNew->computeDigest(); |
| TreeTy *&entry = Cache[digest]; |
| do { |
| if (!entry) |
| break; |
| for (TreeTy *T = entry ; T != 0; T = T->next) { |
| // Compare the Contents('T') with Contents('TNew') |
| typename TreeTy::iterator TI = T->begin(), TE = T->end(); |
| if (!compareTreeWithSection(TNew, TI, TE)) |
| continue; |
| if (TI != TE) |
| continue; // T has more contents than TNew. |
| // Trees did match! Return 'T'. |
| if (TNew->refCount == 0) |
| TNew->destroy(); |
| return T; |
| } |
| entry->prev = TNew; |
| TNew->next = entry; |
| } |
| while (false); |
| |
| entry = TNew; |
| TNew->IsCanonicalized = true; |
| return TNew; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable AVL-Tree Iterators. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ImutInfo> |
| class ImutAVLTreeGenericIterator { |
| SmallVector<uintptr_t,20> stack; |
| public: |
| enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, |
| Flags=0x3 }; |
| |
| typedef ImutAVLTree<ImutInfo> TreeTy; |
| typedef ImutAVLTreeGenericIterator<ImutInfo> _Self; |
| |
| inline ImutAVLTreeGenericIterator() {} |
| inline ImutAVLTreeGenericIterator(const TreeTy* Root) { |
| if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); |
| } |
| |
| TreeTy* operator*() const { |
| assert(!stack.empty()); |
| return reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| } |
| |
| uintptr_t getVisitState() { |
| assert(!stack.empty()); |
| return stack.back() & Flags; |
| } |
| |
| |
| bool atEnd() const { return stack.empty(); } |
| |
| bool atBeginning() const { |
| return stack.size() == 1 && getVisitState() == VisitedNone; |
| } |
| |
| void skipToParent() { |
| assert(!stack.empty()); |
| stack.pop_back(); |
| if (stack.empty()) |
| return; |
| switch (getVisitState()) { |
| case VisitedNone: |
| stack.back() |= VisitedLeft; |
| break; |
| case VisitedLeft: |
| stack.back() |= VisitedRight; |
| break; |
| default: |
| assert(false && "Unreachable."); |
| } |
| } |
| |
| inline bool operator==(const _Self& x) const { |
| if (stack.size() != x.stack.size()) |
| return false; |
| for (unsigned i = 0 ; i < stack.size(); i++) |
| if (stack[i] != x.stack[i]) |
| return false; |
| return true; |
| } |
| |
| inline bool operator!=(const _Self& x) const { return !operator==(x); } |
| |
| _Self& operator++() { |
| assert(!stack.empty()); |
| TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| assert(Current); |
| switch (getVisitState()) { |
| case VisitedNone: |
| if (TreeTy* L = Current->getLeft()) |
| stack.push_back(reinterpret_cast<uintptr_t>(L)); |
| else |
| stack.back() |= VisitedLeft; |
| break; |
| case VisitedLeft: |
| if (TreeTy* R = Current->getRight()) |
| stack.push_back(reinterpret_cast<uintptr_t>(R)); |
| else |
| stack.back() |= VisitedRight; |
| break; |
| case VisitedRight: |
| skipToParent(); |
| break; |
| default: |
| assert(false && "Unreachable."); |
| } |
| return *this; |
| } |
| |
| _Self& operator--() { |
| assert(!stack.empty()); |
| TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| assert(Current); |
| switch (getVisitState()) { |
| case VisitedNone: |
| stack.pop_back(); |
| break; |
| case VisitedLeft: |
| stack.back() &= ~Flags; // Set state to "VisitedNone." |
| if (TreeTy* L = Current->getLeft()) |
| stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); |
| break; |
| case VisitedRight: |
| stack.back() &= ~Flags; |
| stack.back() |= VisitedLeft; |
| if (TreeTy* R = Current->getRight()) |
| stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); |
| break; |
| default: |
| assert(false && "Unreachable."); |
| } |
| return *this; |
| } |
| }; |
| |
| template <typename ImutInfo> |
| class ImutAVLTreeInOrderIterator { |
| typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy; |
| InternalIteratorTy InternalItr; |
| |
| public: |
| typedef ImutAVLTree<ImutInfo> TreeTy; |
| typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self; |
| |
| ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { |
| if (Root) operator++(); // Advance to first element. |
| } |
| |
| ImutAVLTreeInOrderIterator() : InternalItr() {} |
| |
| inline bool operator==(const _Self& x) const { |
| return InternalItr == x.InternalItr; |
| } |
| |
| inline bool operator!=(const _Self& x) const { return !operator==(x); } |
| |
| inline TreeTy* operator*() const { return *InternalItr; } |
| inline TreeTy* operator->() const { return *InternalItr; } |
| |
| inline _Self& operator++() { |
| do ++InternalItr; |
| while (!InternalItr.atEnd() && |
| InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); |
| |
| return *this; |
| } |
| |
| inline _Self& operator--() { |
| do --InternalItr; |
| while (!InternalItr.atBeginning() && |
| InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); |
| |
| return *this; |
| } |
| |
| inline void skipSubTree() { |
| InternalItr.skipToParent(); |
| |
| while (!InternalItr.atEnd() && |
| InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) |
| ++InternalItr; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Trait classes for Profile information. |
| //===----------------------------------------------------------------------===// |
| |
| /// Generic profile template. The default behavior is to invoke the |
| /// profile method of an object. Specializations for primitive integers |
| /// and generic handling of pointers is done below. |
| template <typename T> |
| struct ImutProfileInfo { |
| typedef const T value_type; |
| typedef const T& value_type_ref; |
| |
| static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { |
| FoldingSetTrait<T>::Profile(X,ID); |
| } |
| }; |
| |
| /// Profile traits for integers. |
| template <typename T> |
| struct ImutProfileInteger { |
| typedef const T value_type; |
| typedef const T& value_type_ref; |
| |
| static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { |
| ID.AddInteger(X); |
| } |
| }; |
| |
| #define PROFILE_INTEGER_INFO(X)\ |
| template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {}; |
| |
| PROFILE_INTEGER_INFO(char) |
| PROFILE_INTEGER_INFO(unsigned char) |
| PROFILE_INTEGER_INFO(short) |
| PROFILE_INTEGER_INFO(unsigned short) |
| PROFILE_INTEGER_INFO(unsigned) |
| PROFILE_INTEGER_INFO(signed) |
| PROFILE_INTEGER_INFO(long) |
| PROFILE_INTEGER_INFO(unsigned long) |
| PROFILE_INTEGER_INFO(long long) |
| PROFILE_INTEGER_INFO(unsigned long long) |
| |
| #undef PROFILE_INTEGER_INFO |
| |
| /// Generic profile trait for pointer types. We treat pointers as |
| /// references to unique objects. |
| template <typename T> |
| struct ImutProfileInfo<T*> { |
| typedef const T* value_type; |
| typedef value_type value_type_ref; |
| |
| static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| ID.AddPointer(X); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Trait classes that contain element comparison operators and type |
| // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These |
| // inherit from the profile traits (ImutProfileInfo) to include operations |
| // for element profiling. |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// ImutContainerInfo - Generic definition of comparison operations for |
| /// elements of immutable containers that defaults to using |
| /// std::equal_to<> and std::less<> to perform comparison of elements. |
| template <typename T> |
| struct ImutContainerInfo : public ImutProfileInfo<T> { |
| typedef typename ImutProfileInfo<T>::value_type value_type; |
| typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref; |
| typedef value_type key_type; |
| typedef value_type_ref key_type_ref; |
| typedef bool data_type; |
| typedef bool data_type_ref; |
| |
| static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } |
| static inline data_type_ref DataOfValue(value_type_ref) { return true; } |
| |
| static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { |
| return std::equal_to<key_type>()(LHS,RHS); |
| } |
| |
| static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { |
| return std::less<key_type>()(LHS,RHS); |
| } |
| |
| static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } |
| }; |
| |
| /// ImutContainerInfo - Specialization for pointer values to treat pointers |
| /// as references to unique objects. Pointers are thus compared by |
| /// their addresses. |
| template <typename T> |
| struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { |
| typedef typename ImutProfileInfo<T*>::value_type value_type; |
| typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref; |
| typedef value_type key_type; |
| typedef value_type_ref key_type_ref; |
| typedef bool data_type; |
| typedef bool data_type_ref; |
| |
| static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } |
| static inline data_type_ref DataOfValue(value_type_ref) { return true; } |
| |
| static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { |
| return LHS == RHS; |
| } |
| |
| static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { |
| return LHS < RHS; |
| } |
| |
| static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable Set |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> > |
| class ImmutableSet { |
| public: |
| typedef typename ValInfo::value_type value_type; |
| typedef typename ValInfo::value_type_ref value_type_ref; |
| typedef ImutAVLTree<ValInfo> TreeTy; |
| |
| private: |
| TreeTy *Root; |
| |
| public: |
| /// Constructs a set from a pointer to a tree root. In general one |
| /// should use a Factory object to create sets instead of directly |
| /// invoking the constructor, but there are cases where make this |
| /// constructor public is useful. |
| explicit ImmutableSet(TreeTy* R) : Root(R) { |
| if (Root) { Root->retain(); } |
| } |
| ImmutableSet(const ImmutableSet &X) : Root(X.Root) { |
| if (Root) { Root->retain(); } |
| } |
| ImmutableSet &operator=(const ImmutableSet &X) { |
| if (Root != X.Root) { |
| if (X.Root) { X.Root->retain(); } |
| if (Root) { Root->release(); } |
| Root = X.Root; |
| } |
| return *this; |
| } |
| ~ImmutableSet() { |
| if (Root) { Root->release(); } |
| } |
| |
| class Factory { |
| typename TreeTy::Factory F; |
| const bool Canonicalize; |
| |
| public: |
| Factory(bool canonicalize = true) |
| : Canonicalize(canonicalize) {} |
| |
| Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) |
| : F(Alloc), Canonicalize(canonicalize) {} |
| |
| /// getEmptySet - Returns an immutable set that contains no elements. |
| ImmutableSet getEmptySet() { |
| return ImmutableSet(F.getEmptyTree()); |
| } |
| |
| /// add - Creates a new immutable set that contains all of the values |
| /// of the original set with the addition of the specified value. If |
| /// the original set already included the value, then the original set is |
| /// returned and no memory is allocated. The time and space complexity |
| /// of this operation is logarithmic in the size of the original set. |
| /// The memory allocated to represent the set is released when the |
| /// factory object that created the set is destroyed. |
| ImmutableSet add(ImmutableSet Old, value_type_ref V) { |
| TreeTy *NewT = F.add(Old.Root, V); |
| return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); |
| } |
| |
| /// remove - Creates a new immutable set that contains all of the values |
| /// of the original set with the exception of the specified value. If |
| /// the original set did not contain the value, the original set is |
| /// returned and no memory is allocated. The time and space complexity |
| /// of this operation is logarithmic in the size of the original set. |
| /// The memory allocated to represent the set is released when the |
| /// factory object that created the set is destroyed. |
| ImmutableSet remove(ImmutableSet Old, value_type_ref V) { |
| TreeTy *NewT = F.remove(Old.Root, V); |
| return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); |
| } |
| |
| BumpPtrAllocator& getAllocator() { return F.getAllocator(); } |
| |
| typename TreeTy::Factory *getTreeFactory() const { |
| return const_cast<typename TreeTy::Factory *>(&F); |
| } |
| |
| private: |
| Factory(const Factory& RHS); // DO NOT IMPLEMENT |
| void operator=(const Factory& RHS); // DO NOT IMPLEMENT |
| }; |
| |
| friend class Factory; |
| |
| /// Returns true if the set contains the specified value. |
| bool contains(value_type_ref V) const { |
| return Root ? Root->contains(V) : false; |
| } |
| |
| bool operator==(const ImmutableSet &RHS) const { |
| return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; |
| } |
| |
| bool operator!=(const ImmutableSet &RHS) const { |
| return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; |
| } |
| |
| TreeTy *getRoot() { |
| if (Root) { Root->retain(); } |
| return Root; |
| } |
| |
| TreeTy *getRootWithoutRetain() const { |
| return Root; |
| } |
| |
| /// isEmpty - Return true if the set contains no elements. |
| bool isEmpty() const { return !Root; } |
| |
| /// isSingleton - Return true if the set contains exactly one element. |
| /// This method runs in constant time. |
| bool isSingleton() const { return getHeight() == 1; } |
| |
| template <typename Callback> |
| void foreach(Callback& C) { if (Root) Root->foreach(C); } |
| |
| template <typename Callback> |
| void foreach() { if (Root) { Callback C; Root->foreach(C); } } |
| |
| //===--------------------------------------------------===// |
| // Iterators. |
| //===--------------------------------------------------===// |
| |
| class iterator { |
| typename TreeTy::iterator itr; |
| iterator(TreeTy* t) : itr(t) {} |
| friend class ImmutableSet<ValT,ValInfo>; |
| public: |
| iterator() {} |
| inline value_type_ref operator*() const { return itr->getValue(); } |
| inline iterator& operator++() { ++itr; return *this; } |
| inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } |
| inline iterator& operator--() { --itr; return *this; } |
| inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } |
| inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } |
| inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } |
| inline value_type *operator->() const { return &(operator*()); } |
| }; |
| |
| iterator begin() const { return iterator(Root); } |
| iterator end() const { return iterator(); } |
| |
| //===--------------------------------------------------===// |
| // Utility methods. |
| //===--------------------------------------------------===// |
| |
| unsigned getHeight() const { return Root ? Root->getHeight() : 0; } |
| |
| static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) { |
| ID.AddPointer(S.Root); |
| } |
| |
| inline void Profile(FoldingSetNodeID& ID) const { |
| return Profile(ID,*this); |
| } |
| |
| //===--------------------------------------------------===// |
| // For testing. |
| //===--------------------------------------------------===// |
| |
| void validateTree() const { if (Root) Root->validateTree(); } |
| }; |
| |
| // NOTE: This may some day replace the current ImmutableSet. |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> > |
| class ImmutableSetRef { |
| public: |
| typedef typename ValInfo::value_type value_type; |
| typedef typename ValInfo::value_type_ref value_type_ref; |
| typedef ImutAVLTree<ValInfo> TreeTy; |
| typedef typename TreeTy::Factory FactoryTy; |
| |
| private: |
| TreeTy *Root; |
| FactoryTy *Factory; |
| |
| public: |
| /// Constructs a set from a pointer to a tree root. In general one |
| /// should use a Factory object to create sets instead of directly |
| /// invoking the constructor, but there are cases where make this |
| /// constructor public is useful. |
| explicit ImmutableSetRef(TreeTy* R, FactoryTy *F) |
| : Root(R), |
| Factory(F) { |
| if (Root) { Root->retain(); } |
| } |
| ImmutableSetRef(const ImmutableSetRef &X) |
| : Root(X.Root), |
| Factory(X.Factory) { |
| if (Root) { Root->retain(); } |
| } |
| ImmutableSetRef &operator=(const ImmutableSetRef &X) { |
| if (Root != X.Root) { |
| if (X.Root) { X.Root->retain(); } |
| if (Root) { Root->release(); } |
| Root = X.Root; |
| Factory = X.Factory; |
| } |
| return *this; |
| } |
| ~ImmutableSetRef() { |
| if (Root) { Root->release(); } |
| } |
| |
| static inline ImmutableSetRef getEmptySet(FactoryTy *F) { |
| return ImmutableSetRef(0, F); |
| } |
| |
| ImmutableSetRef add(value_type_ref V) { |
| return ImmutableSetRef(Factory->add(Root, V), Factory); |
| } |
| |
| ImmutableSetRef remove(value_type_ref V) { |
| return ImmutableSetRef(Factory->remove(Root, V), Factory); |
| } |
| |
| /// Returns true if the set contains the specified value. |
| bool contains(value_type_ref V) const { |
| return Root ? Root->contains(V) : false; |
| } |
| |
| ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const { |
| return ImmutableSet<ValT>(canonicalize ? |
| Factory->getCanonicalTree(Root) : Root); |
| } |
| |
| TreeTy *getRootWithoutRetain() const { |
| return Root; |
| } |
| |
| bool operator==(const ImmutableSetRef &RHS) const { |
| return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; |
| } |
| |
| bool operator!=(const ImmutableSetRef &RHS) const { |
| return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; |
| } |
| |
| /// isEmpty - Return true if the set contains no elements. |
| bool isEmpty() const { return !Root; } |
| |
| /// isSingleton - Return true if the set contains exactly one element. |
| /// This method runs in constant time. |
| bool isSingleton() const { return getHeight() == 1; } |
| |
| //===--------------------------------------------------===// |
| // Iterators. |
| //===--------------------------------------------------===// |
| |
| class iterator { |
| typename TreeTy::iterator itr; |
| iterator(TreeTy* t) : itr(t) {} |
| friend class ImmutableSetRef<ValT,ValInfo>; |
| public: |
| iterator() {} |
| inline value_type_ref operator*() const { return itr->getValue(); } |
| inline iterator& operator++() { ++itr; return *this; } |
| inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } |
| inline iterator& operator--() { --itr; return *this; } |
| inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } |
| inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } |
| inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } |
| inline value_type *operator->() const { return &(operator*()); } |
| }; |
| |
| iterator begin() const { return iterator(Root); } |
| iterator end() const { return iterator(); } |
| |
| //===--------------------------------------------------===// |
| // Utility methods. |
| //===--------------------------------------------------===// |
| |
| unsigned getHeight() const { return Root ? Root->getHeight() : 0; } |
| |
| static inline void Profile(FoldingSetNodeID& ID, const ImmutableSetRef& S) { |
| ID.AddPointer(S.Root); |
| } |
| |
| inline void Profile(FoldingSetNodeID& ID) const { |
| return Profile(ID,*this); |
| } |
| |
| //===--------------------------------------------------===// |
| // For testing. |
| //===--------------------------------------------------===// |
| |
| void validateTree() const { if (Root) Root->validateTree(); } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif |