| //=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the machine model for AMD btver2 (Jaguar) to support |
| // instruction scheduling and other instruction cost heuristics. Based off AMD Software |
| // Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| def BtVer2Model : SchedMachineModel { |
| // All x86 instructions are modeled as a single micro-op, and btver2 can |
| // decode 2 instructions per cycle. |
| let IssueWidth = 2; |
| let MicroOpBufferSize = 64; // Retire Control Unit |
| let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency) |
| let HighLatency = 25; |
| let MispredictPenalty = 14; // Minimum branch misdirection penalty |
| let PostRAScheduler = 1; |
| |
| // FIXME: SSE4/AVX is unimplemented. This flag is set to allow |
| // the scheduler to assign a default model to unrecognized opcodes. |
| let CompleteModel = 0; |
| } |
| |
| let SchedModel = BtVer2Model in { |
| |
| // Jaguar can issue up to 6 micro-ops in one cycle |
| def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam) |
| def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV |
| def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU |
| def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA) |
| def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA |
| def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM |
| |
| // The Integer PRF for Jaguar is 64 entries, and it holds the architectural and |
| // speculative version of the 64-bit integer registers. |
| // Reference: www.realworldtech.com/jaguar/4/ |
| // |
| // The processor always keeps the different parts of an integer register |
| // together. An instruction that writes to a part of a register will therefore |
| // have a false dependence on any previous write to the same register or any |
| // part of it. |
| // Reference: Section 21.10 "AMD Bobcat and Jaguar pipeline: Partial register |
| // access" - Agner Fog's "microarchitecture.pdf". |
| def JIntegerPRF : RegisterFile<64, [GR64, CCR], [1, 1], [1, 0], |
| 0, // Max moves that can be eliminated per cycle. |
| 1>; // Restrict move elimination to zero regs. |
| |
| // The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE |
| // registers. Operations on 256-bit data types are cracked into two COPs. |
| // Reference: www.realworldtech.com/jaguar/4/ |
| |
| // The PRF in the floating point unit can eliminate a move from a MMX or SSE |
| // register that is know to be zero (i.e. it has been zeroed using a zero-idiom |
| // dependency breaking instruction, or via VZEROALL). |
| // Reference: Section 21.8 "AMD Bobcat and Jaguar pipeline: Dependency-breaking |
| // instructions" - Agner Fog's "microarchitecture.pdf" |
| def JFpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2], [1, 1, 0], |
| 0, // Max moves that can be eliminated per cycle. |
| 1>; // Restrict move elimination to zero regs. |
| |
| // The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can |
| // retire up to two macro-ops per cycle. |
| // Reference: "Software Optimization Guide for AMD Family 16h Processors" |
| def JRCU : RetireControlUnit<64, 2>; |
| |
| // Integer Pipe Scheduler |
| def JALU01 : ProcResGroup<[JALU0, JALU1]> { |
| let BufferSize=20; |
| } |
| |
| // AGU Pipe Scheduler |
| def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> { |
| let BufferSize=12; |
| } |
| |
| // Fpu Pipe Scheduler |
| def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> { |
| let BufferSize=18; |
| } |
| |
| // Functional units |
| def JDiv : ProcResource<1>; // integer division |
| def JMul : ProcResource<1>; // integer multiplication |
| def JVALU0 : ProcResource<1>; // vector integer |
| def JVALU1 : ProcResource<1>; // vector integer |
| def JVIMUL : ProcResource<1>; // vector integer multiplication |
| def JSTC : ProcResource<1>; // vector store/convert |
| def JFPM : ProcResource<1>; // FP multiplication |
| def JFPA : ProcResource<1>; // FP addition |
| |
| // Functional unit groups |
| def JFPX : ProcResGroup<[JFPA, JFPM]>; |
| def JVALU : ProcResGroup<[JVALU0, JVALU1]>; |
| |
| // Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 |
| // cycles after the memory operand. |
| def : ReadAdvance<ReadAfterLd, 3>; |
| |
| // Vector loads are 5 cycles, so ReadAfterVec*Ld registers needn't be available until 5 |
| // cycles after the memory operand. |
| def : ReadAdvance<ReadAfterVecLd, 5>; |
| def : ReadAdvance<ReadAfterVecXLd, 5>; |
| def : ReadAdvance<ReadAfterVecYLd, 5>; |
| |
| /// "Additional 6 cycle transfer operation which moves a floating point |
| /// operation input value from the integer unit to the floating point unit. |
| /// Reference: AMDfam16h SOG (Appendix A "Instruction Latencies", Section A.2). |
| def : ReadAdvance<ReadInt2Fpu, -6>; |
| |
| // Many SchedWrites are defined in pairs with and without a folded load. |
| // Instructions with folded loads are usually micro-fused, so they only appear |
| // as two micro-ops when dispatched by the schedulers. |
| // This multiclass defines the resource usage for variants with and without |
| // folded loads. |
| multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW, |
| list<ProcResourceKind> ExePorts, |
| int Lat, list<int> Res = [], int UOps = 1, |
| int LoadUOps = 0> { |
| // Register variant is using a single cycle on ExePort. |
| def : WriteRes<SchedRW, ExePorts> { |
| let Latency = Lat; |
| let ResourceCycles = Res; |
| let NumMicroOps = UOps; |
| } |
| |
| // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the |
| // latency. |
| def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> { |
| let Latency = !add(Lat, 3); |
| let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res)); |
| let NumMicroOps = !add(UOps, LoadUOps); |
| } |
| } |
| |
| multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW, |
| list<ProcResourceKind> ExePorts, |
| int Lat, list<int> Res = [], int UOps = 1, |
| int LoadUOps = 0> { |
| // Register variant is using a single cycle on ExePort. |
| def : WriteRes<SchedRW, ExePorts> { |
| let Latency = Lat; |
| let ResourceCycles = Res; |
| let NumMicroOps = UOps; |
| } |
| |
| // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the |
| // latency. |
| def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> { |
| let Latency = !add(Lat, 5); |
| let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res)); |
| let NumMicroOps = !add(UOps, LoadUOps); |
| } |
| } |
| |
| multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW, |
| list<ProcResourceKind> ExePorts, |
| int Lat, list<int> Res = [2], int UOps = 2, |
| int LoadUOps = 0> { |
| // Register variant is using a single cycle on ExePort. |
| def : WriteRes<SchedRW, ExePorts> { |
| let Latency = Lat; |
| let ResourceCycles = Res; |
| let NumMicroOps = UOps; |
| } |
| |
| // Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the |
| // latency. |
| def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> { |
| let Latency = !add(Lat, 5); |
| let ResourceCycles = !listconcat([2], Res); |
| let NumMicroOps = !add(UOps, LoadUOps); |
| } |
| } |
| |
| // Instructions that have local forwarding disabled have an extra +1cy latency. |
| |
| // A folded store needs a cycle on the SAGU for the store data, most RMW |
| // instructions don't need an extra uop. ALU RMW operations don't seem to |
| // benefit from STLF, and their observed latency is 6cy. That is the reason why |
| // this write adds two extra cycles (instead of just 1cy for the store). |
| defm : X86WriteRes<WriteRMW, [JSAGU], 2, [1], 0>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Arithmetic. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResIntPair<WriteALU, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteADC, [JALU01], 1, [2]>; |
| |
| defm : X86WriteRes<WriteBSWAP32, [JALU01], 1, [1], 1>; |
| defm : X86WriteRes<WriteBSWAP64, [JALU01], 1, [1], 1>; |
| defm : X86WriteRes<WriteCMPXCHG, [JALU01], 3, [3], 5>; |
| defm : X86WriteRes<WriteCMPXCHGRMW, [JALU01, JSAGU, JLAGU], 11, [3, 1, 1], 6>; |
| defm : X86WriteRes<WriteXCHG, [JALU01], 1, [2], 2>; |
| |
| defm : JWriteResIntPair<WriteIMul8, [JALU1, JMul], 3, [1, 1], 1>; |
| defm : JWriteResIntPair<WriteIMul16, [JALU1, JMul], 3, [1, 3], 3>; |
| defm : JWriteResIntPair<WriteIMul16Imm, [JALU1, JMul], 4, [1, 2], 2>; |
| defm : JWriteResIntPair<WriteIMul16Reg, [JALU1, JMul], 3, [1, 1], 1>; |
| defm : JWriteResIntPair<WriteIMul32, [JALU1, JMul], 3, [1, 2], 2>; |
| defm : JWriteResIntPair<WriteIMul32Imm, [JALU1, JMul], 3, [1, 1], 1>; |
| defm : JWriteResIntPair<WriteIMul32Reg, [JALU1, JMul], 3, [1, 1], 1>; |
| defm : JWriteResIntPair<WriteIMul64, [JALU1, JMul], 6, [1, 4], 2>; |
| defm : JWriteResIntPair<WriteIMul64Imm, [JALU1, JMul], 6, [1, 4], 1>; |
| defm : JWriteResIntPair<WriteIMul64Reg, [JALU1, JMul], 6, [1, 4], 1>; |
| defm : X86WriteRes<WriteIMulH, [JALU1], 6, [4], 1>; |
| |
| defm : JWriteResIntPair<WriteDiv8, [JALU1, JDiv], 12, [1, 12], 1>; |
| defm : JWriteResIntPair<WriteDiv16, [JALU1, JDiv], 17, [1, 17], 2>; |
| defm : JWriteResIntPair<WriteDiv32, [JALU1, JDiv], 25, [1, 25], 2>; |
| defm : JWriteResIntPair<WriteDiv64, [JALU1, JDiv], 41, [1, 41], 2>; |
| defm : JWriteResIntPair<WriteIDiv8, [JALU1, JDiv], 12, [1, 12], 1>; |
| defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>; |
| defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>; |
| defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>; |
| |
| defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>; |
| |
| defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move. |
| defm : X86WriteRes<WriteFCMOV, [JFPU0, JFPA], 3, [1,1], 1>; // x87 conditional move. |
| def : WriteRes<WriteSETCC, [JALU01]>; // Setcc. |
| def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>; |
| def : WriteRes<WriteLAHFSAHF, [JALU01]>; |
| |
| defm : X86WriteRes<WriteBitTest, [JALU01], 1, [1], 1>; |
| defm : X86WriteRes<WriteBitTestImmLd, [JALU01,JLAGU], 4, [1,1], 1>; |
| defm : X86WriteRes<WriteBitTestRegLd, [JALU01,JLAGU], 4, [1,1], 5>; |
| defm : X86WriteRes<WriteBitTestSet, [JALU01], 1, [1], 2>; |
| defm : X86WriteRes<WriteBitTestSetImmLd, [JALU01,JLAGU], 4, [1,1], 4>; |
| defm : X86WriteRes<WriteBitTestSetRegLd, [JALU01,JLAGU], 4, [1,1], 8>; |
| |
| // This is for simple LEAs with one or two input operands. |
| def : WriteRes<WriteLEA, [JALU01]>; |
| |
| // Bit counts. |
| defm : JWriteResIntPair<WriteBSF, [JALU01], 4, [8], 7>; |
| defm : JWriteResIntPair<WriteBSR, [JALU01], 5, [8], 8>; |
| defm : JWriteResIntPair<WritePOPCNT, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteLZCNT, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteTZCNT, [JALU01], 2, [2], 2>; |
| |
| // BMI1 BEXTR/BLS, BMI2 BZHI |
| defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteBLS, [JALU01], 2, [2], 2>; |
| defm : X86WriteResPairUnsupported<WriteBZHI>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Integer shifts and rotates. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResIntPair<WriteShift, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteShiftCL, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteRotate, [JALU01], 1>; |
| defm : JWriteResIntPair<WriteRotateCL, [JALU01], 1>; |
| |
| // SHLD/SHRD. |
| defm : X86WriteRes<WriteSHDrri, [JALU01], 3, [6], 6>; |
| defm : X86WriteRes<WriteSHDrrcl,[JALU01], 4, [8], 7>; |
| defm : X86WriteRes<WriteSHDmri, [JLAGU, JALU01], 9, [1, 22], 8>; |
| defm : X86WriteRes<WriteSHDmrcl,[JLAGU, JALU01], 9, [1, 22], 8>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Loads, stores, and moves, not folded with other operations. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 3; } |
| def : WriteRes<WriteStore, [JSAGU]>; |
| def : WriteRes<WriteStoreNT, [JSAGU]>; |
| def : WriteRes<WriteMove, [JALU01]>; |
| |
| // Load/store MXCSR. |
| def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 3; } |
| def : WriteRes<WriteSTMXCSR, [JSAGU]>; |
| |
| // Treat misc copies as a move. |
| def : InstRW<[WriteMove], (instrs COPY)>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Idioms that clear a register, like xorps %xmm0, %xmm0. |
| // These can often bypass execution ports completely. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| def : WriteRes<WriteZero, []>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Branches don't produce values, so they have no latency, but they still |
| // consume resources. Indirect branches can fold loads. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResIntPair<WriteJump, [JALU01], 1>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Special case scheduling classes. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; } |
| def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; } |
| def : WriteRes<WriteFence, [JSAGU]>; |
| |
| // Nops don't have dependencies, so there's no actual latency, but we set this |
| // to '1' to tell the scheduler that the nop uses an ALU slot for a cycle. |
| def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; } |
| |
| def JWriteCMPXCHG8rr : SchedWriteRes<[JALU01]> { |
| let Latency = 3; |
| let ResourceCycles = [3]; |
| let NumMicroOps = 3; |
| } |
| |
| def JWriteLOCK_CMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 16; |
| let ResourceCycles = [3,16,16]; |
| let NumMicroOps = 5; |
| } |
| |
| def JWriteLOCK_CMPXCHGrm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 17; |
| let ResourceCycles = [3,17,17]; |
| let NumMicroOps = 6; |
| } |
| |
| def JWriteCMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 11; |
| let ResourceCycles = [3,1,1]; |
| let NumMicroOps = 5; |
| } |
| |
| def JWriteCMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 11; |
| let ResourceCycles = [3,1,1]; |
| let NumMicroOps = 18; |
| } |
| |
| def JWriteCMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 32; |
| let ResourceCycles = [6,1,1]; |
| let NumMicroOps = 28; |
| } |
| |
| def JWriteLOCK_CMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 19; |
| let ResourceCycles = [3,19,19]; |
| let NumMicroOps = 18; |
| } |
| |
| def JWriteLOCK_CMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 38; |
| let ResourceCycles = [6,38,38]; |
| let NumMicroOps = 28; |
| } |
| |
| def JWriteCMPXCHGVariant : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap8B>, [JWriteLOCK_CMPXCHG8B]>, |
| SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap16B>, [JWriteLOCK_CMPXCHG16B]>, |
| SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap_8>, [JWriteLOCK_CMPXCHG8rm]>, |
| SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap>, [JWriteLOCK_CMPXCHGrm]>, |
| SchedVar<MCSchedPredicate<IsCompareAndSwap8B>, [JWriteCMPXCHG8B]>, |
| SchedVar<MCSchedPredicate<IsCompareAndSwap16B>, [JWriteCMPXCHG16B]>, |
| SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap_8>, [JWriteCMPXCHG8rm]>, |
| SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap>, [WriteCMPXCHGRMW]>, |
| SchedVar<MCSchedPredicate<IsRegRegCompareAndSwap_8>, [JWriteCMPXCHG8rr]>, |
| SchedVar<NoSchedPred, [WriteCMPXCHG]> |
| ]>; |
| |
| // The first five reads are contributed by the memory load operand. |
| // We ignore those reads and set a read-advance for the other input operands |
| // including the implicit read of RAX. |
| def : InstRW<[JWriteCMPXCHGVariant, |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8, LCMPXCHG16, |
| LCMPXCHG32, LCMPXCHG64, |
| CMPXCHG8rm, CMPXCHG16rm, |
| CMPXCHG32rm, CMPXCHG64rm)>; |
| |
| def : InstRW<[JWriteCMPXCHGVariant], (instrs CMPXCHG8rr, CMPXCHG16rr, |
| CMPXCHG32rr, CMPXCHG64rr)>; |
| |
| def : InstRW<[JWriteCMPXCHGVariant, |
| // Ignore reads contributed by the memory operand. |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| // Add a read-advance to every implicit register read. |
| ReadAfterLd, ReadAfterLd, ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8B, LCMPXCHG16B, |
| CMPXCHG8B, CMPXCHG16B)>; |
| |
| def JWriteLOCK_ALURMW : SchedWriteRes<[JALU01, JLAGU, JSAGU]> { |
| let Latency = 19; |
| let ResourceCycles = [1,19,19]; |
| let NumMicroOps = 1; |
| } |
| |
| def JWriteLOCK_ALURMWVariant : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_ALURMW]>, |
| SchedVar<NoSchedPred, [WriteALURMW]> |
| ]>; |
| def : InstRW<[JWriteLOCK_ALURMWVariant], (instrs INC8m, INC16m, INC32m, INC64m, |
| DEC8m, DEC16m, DEC32m, DEC64m, |
| NOT8m, NOT16m, NOT32m, NOT64m, |
| NEG8m, NEG16m, NEG32m, NEG64m)>; |
| |
| def JWriteXCHG8rr_XADDrr : SchedWriteRes<[JALU01]> { |
| let Latency = 2; |
| let ResourceCycles = [3]; |
| let NumMicroOps = 3; |
| } |
| def : InstRW<[JWriteXCHG8rr_XADDrr], (instrs XCHG8rr, XADD8rr, XADD16rr, |
| XADD32rr, XADD64rr)>; |
| |
| // This write defines the latency of the in/out register operand of a non-atomic |
| // XADDrm. This is the first of a pair of writes that model non-atomic |
| // XADDrm instructions (the second write definition is JWriteXADDrm_LdSt_Part). |
| // |
| // We need two writes because the instruction latency differs from the output |
| // register operand latency. In particular, the first write describes the first |
| // (and only) output register operand of the instruction. However, the |
| // instruction latency is set to the MAX of all the write latencies. That's why |
| // a second write is needed in this case (see example below). |
| // |
| // Example: |
| // XADD %ecx, (%rsp) ## Instruction latency: 11cy |
| // ## ECX write Latency: 3cy |
| // |
| // Register ECX becomes available in 3 cycles. That is because the value of ECX |
| // is exchanged with the value read from the stack pointer, and the load-to-use |
| // latency is assumed to be 3cy. |
| def JWriteXADDrm_XCHG_Part : SchedWriteRes<[JALU01]> { |
| let Latency = 3; // load-to-use latency |
| let ResourceCycles = [3]; |
| let NumMicroOps = 3; |
| } |
| |
| // This write defines the latency of the in/out register operand of an atomic |
| // XADDrm. This is the first of a sequence of two writes used to model atomic |
| // XADD instructions. The second write of the sequence is JWriteXCHGrm_LdSt_Part. |
| // |
| // |
| // Example: |
| // LOCK XADD %ecx, (%rsp) ## Instruction Latency: 16cy |
| // ## ECX write Latency: 11cy |
| // |
| // The value of ECX becomes available only after 11cy from the start of |
| // execution. This write is used to specifically set that operand latency. |
| def JWriteLOCK_XADDrm_XCHG_Part : SchedWriteRes<[JALU01]> { |
| let Latency = 11; |
| let ResourceCycles = [3]; |
| let NumMicroOps = 3; |
| } |
| |
| // This write defines the latency of the in/out register operand of an atomic |
| // XCHGrm. This write is the first of a sequence of two writes that describe |
| // atomic XCHG operations. We need two writes because the instruction latency |
| // differs from the output register write latency. We want to make sure that |
| // the output register operand becomes visible after 11cy. However, we want to |
| // set the instruction latency to 16cy. |
| def JWriteXCHGrm_XCHG_Part : SchedWriteRes<[JALU01]> { |
| let Latency = 11; |
| let ResourceCycles = [2]; |
| let NumMicroOps = 2; |
| } |
| |
| def JWriteXADDrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> { |
| let Latency = 11; |
| let ResourceCycles = [1, 1]; |
| let NumMicroOps = 1; |
| } |
| |
| def JWriteXCHGrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> { |
| let Latency = 16; |
| let ResourceCycles = [16, 16]; |
| let NumMicroOps = 1; |
| } |
| |
| def JWriteXADDrm_Part1 : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_XADDrm_XCHG_Part]>, |
| SchedVar<NoSchedPred, [JWriteXADDrm_XCHG_Part]> |
| ]>; |
| |
| def JWriteXADDrm_Part2 : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteXCHGrm_LdSt_Part]>, |
| SchedVar<NoSchedPred, [JWriteXADDrm_LdSt_Part]> |
| ]>; |
| |
| def : InstRW<[JWriteXADDrm_Part1, JWriteXADDrm_Part2, ReadAfterLd], |
| (instrs XADD8rm, XADD16rm, XADD32rm, XADD64rm, |
| LXADD8, LXADD16, LXADD32, LXADD64)>; |
| |
| def : InstRW<[JWriteXCHGrm_XCHG_Part, JWriteXCHGrm_LdSt_Part, ReadAfterLd], |
| (instrs XCHG8rm, XCHG16rm, XCHG32rm, XCHG64rm)>; |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Floating point. This covers both scalar and vector operations. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : X86WriteRes<WriteFLD0, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : X86WriteRes<WriteFLD1, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : X86WriteRes<WriteFLDC, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : X86WriteRes<WriteFLoad, [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteFLoadX, [JLAGU], 5, [1], 1>; |
| defm : X86WriteRes<WriteFLoadY, [JLAGU], 5, [2], 2>; |
| defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>; |
| defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>; |
| |
| defm : X86WriteRes<WriteFStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteFStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteFStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>; |
| defm : X86WriteRes<WriteFStoreNT, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteFStoreNTX, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteFStoreNTY, [JSAGU, JFPU1, JSTC], 3, [2, 2, 2], 1>; |
| |
| defm : X86WriteRes<WriteFMaskedStore32, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 5, 5,4,4,4], 19>; |
| defm : X86WriteRes<WriteFMaskedStore64, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 13, [1,1, 2, 2,2,2,2], 10>; |
| defm : X86WriteRes<WriteFMaskedStore32Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 22, [1,1,10,10,8,8,8], 36>; |
| defm : X86WriteRes<WriteFMaskedStore64Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 4, 4,4,4,4], 18>; |
| |
| defm : X86WriteRes<WriteFMove, [JFPU01, JFPX], 1, [1, 1], 1>; |
| defm : X86WriteRes<WriteFMoveX, [JFPU01, JFPX], 1, [1, 1], 1>; |
| defm : X86WriteRes<WriteFMoveY, [JFPU01, JFPX], 1, [2, 2], 2>; |
| |
| defm : X86WriteRes<WriteEMMS, [JFPU01, JFPX], 2, [1, 1], 1>; |
| |
| defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>; |
| defm : JWriteResFpuPair<WriteFAddX, [JFPU0, JFPA], 3>; |
| defm : JWriteResYMMPair<WriteFAddY, [JFPU0, JFPA], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFAddZ>; |
| defm : JWriteResFpuPair<WriteFAdd64, [JFPU0, JFPA], 3>; |
| defm : JWriteResFpuPair<WriteFAdd64X, [JFPU0, JFPA], 3>; |
| defm : JWriteResYMMPair<WriteFAdd64Y, [JFPU0, JFPA], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFAdd64Z>; |
| defm : JWriteResFpuPair<WriteFCmp, [JFPU0, JFPA], 2>; |
| defm : JWriteResFpuPair<WriteFCmpX, [JFPU0, JFPA], 2>; |
| defm : JWriteResYMMPair<WriteFCmpY, [JFPU0, JFPA], 2, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFCmpZ>; |
| defm : JWriteResFpuPair<WriteFCmp64, [JFPU0, JFPA], 2>; |
| defm : JWriteResFpuPair<WriteFCmp64X, [JFPU0, JFPA], 2>; |
| defm : JWriteResYMMPair<WriteFCmp64Y, [JFPU0, JFPA], 2, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFCmp64Z>; |
| defm : JWriteResFpuPair<WriteFCom, [JFPU0, JFPA, JALU0], 3>; |
| defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>; |
| defm : JWriteResFpuPair<WriteFMulX, [JFPU1, JFPM], 2>; |
| defm : JWriteResYMMPair<WriteFMulY, [JFPU1, JFPM], 2, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFMulZ>; |
| defm : JWriteResFpuPair<WriteFMul64, [JFPU1, JFPM], 4, [1,2]>; |
| defm : JWriteResFpuPair<WriteFMul64X, [JFPU1, JFPM], 4, [1,2]>; |
| defm : JWriteResYMMPair<WriteFMul64Y, [JFPU1, JFPM], 4, [2,4], 2>; |
| defm : X86WriteResPairUnsupported<WriteFMul64Z>; |
| defm : X86WriteResPairUnsupported<WriteFMA>; |
| defm : X86WriteResPairUnsupported<WriteFMAX>; |
| defm : X86WriteResPairUnsupported<WriteFMAY>; |
| defm : X86WriteResPairUnsupported<WriteFMAZ>; |
| defm : JWriteResFpuPair<WriteDPPD, [JFPU1, JFPM, JFPA], 9, [1, 3, 3], 3>; |
| defm : JWriteResFpuPair<WriteDPPS, [JFPU1, JFPM, JFPA], 11, [1, 3, 3], 5>; |
| defm : JWriteResYMMPair<WriteDPPSY, [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>; |
| defm : X86WriteResPairUnsupported<WriteDPPSZ>; |
| defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>; |
| defm : JWriteResFpuPair<WriteFRcpX, [JFPU1, JFPM], 2>; |
| defm : JWriteResYMMPair<WriteFRcpY, [JFPU1, JFPM], 2, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFRcpZ>; |
| defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>; |
| defm : JWriteResFpuPair<WriteFRsqrtX, [JFPU1, JFPM], 2>; |
| defm : JWriteResYMMPair<WriteFRsqrtY, [JFPU1, JFPM], 2, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFRsqrtZ>; |
| defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>; |
| defm : JWriteResFpuPair<WriteFDivX, [JFPU1, JFPM], 19, [1, 19]>; |
| defm : JWriteResYMMPair<WriteFDivY, [JFPU1, JFPM], 38, [2, 38], 2>; |
| defm : X86WriteResPairUnsupported<WriteFDivZ>; |
| defm : JWriteResFpuPair<WriteFDiv64, [JFPU1, JFPM], 19, [1, 19]>; |
| defm : JWriteResFpuPair<WriteFDiv64X, [JFPU1, JFPM], 19, [1, 19]>; |
| defm : JWriteResYMMPair<WriteFDiv64Y, [JFPU1, JFPM], 38, [2, 38], 2>; |
| defm : X86WriteResPairUnsupported<WriteFDiv64Z>; |
| defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>; |
| defm : JWriteResFpuPair<WriteFSqrtX, [JFPU1, JFPM], 21, [1, 21]>; |
| defm : JWriteResYMMPair<WriteFSqrtY, [JFPU1, JFPM], 42, [2, 42], 2>; |
| defm : X86WriteResPairUnsupported<WriteFSqrtZ>; |
| defm : JWriteResFpuPair<WriteFSqrt64, [JFPU1, JFPM], 27, [1, 27]>; |
| defm : JWriteResFpuPair<WriteFSqrt64X, [JFPU1, JFPM], 27, [1, 27]>; |
| defm : JWriteResYMMPair<WriteFSqrt64Y, [JFPU1, JFPM], 54, [2, 54], 2>; |
| defm : X86WriteResPairUnsupported<WriteFSqrt64Z>; |
| defm : JWriteResFpuPair<WriteFSqrt80, [JFPU1, JFPM], 35, [1, 35]>; |
| defm : JWriteResFpuPair<WriteFSign, [JFPU1, JFPM], 2>; |
| defm : JWriteResFpuPair<WriteFRnd, [JFPU1, JSTC], 3>; |
| defm : JWriteResYMMPair<WriteFRndY, [JFPU1, JSTC], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFRndZ>; |
| defm : JWriteResFpuPair<WriteFLogic, [JFPU01, JFPX], 1>; |
| defm : JWriteResYMMPair<WriteFLogicY, [JFPU01, JFPX], 1, [2, 2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFLogicZ>; |
| defm : JWriteResFpuPair<WriteFTest, [JFPU0, JFPA, JALU0], 3>; |
| defm : JWriteResYMMPair<WriteFTestY , [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>; |
| defm : X86WriteResPairUnsupported<WriteFTestZ>; |
| defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>; |
| defm : JWriteResYMMPair<WriteFShuffleY, [JFPU01, JFPX], 1, [2, 2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFShuffleZ>; |
| defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX], 3, [1, 4], 3>; // +1cy latency. |
| defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX], 4, [2, 6], 6>; // +1cy latency. |
| defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>; |
| defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>; |
| defm : JWriteResYMMPair<WriteFBlendY, [JFPU01, JFPX], 1, [2, 2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFBlendZ>; |
| defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [4, 4], 3>; |
| defm : JWriteResYMMPair<WriteFVarBlendY, [JFPU01, JFPX], 3, [6, 6], 6>; |
| defm : X86WriteResPairUnsupported<WriteFVarBlendZ>; |
| defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1, [2, 2], 2>; |
| defm : X86WriteResPairUnsupported<WriteFVarShuffle256>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Conversions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResFpuPair<WriteCvtSS2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>; |
| defm : JWriteResFpuPair<WriteCvtPS2I, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtPS2IY, [JFPU1, JSTC], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>; |
| defm : JWriteResFpuPair<WriteCvtSD2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>; |
| defm : JWriteResFpuPair<WriteCvtPD2I, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtPD2IY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>; |
| defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>; |
| |
| defm : X86WriteRes<WriteCvtI2SS, [JFPU1, JSTC], 4, [1,1], 2>; |
| defm : X86WriteRes<WriteCvtI2SSLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>; |
| defm : JWriteResFpuPair<WriteCvtI2PS, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtI2PSY, [JFPU1, JSTC], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>; |
| defm : X86WriteRes<WriteCvtI2SD, [JFPU1, JSTC], 4, [1,1], 2>; |
| defm : X86WriteRes<WriteCvtI2SDLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>; |
| defm : JWriteResFpuPair<WriteCvtI2PD, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtI2PDY, [JFPU1, JSTC], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>; |
| |
| defm : JWriteResFpuPair<WriteCvtSS2SD, [JFPU1, JSTC], 7, [1,2], 2>; |
| defm : JWriteResFpuPair<WriteCvtPS2PD, [JFPU1, JSTC], 2, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtPS2PDY, [JFPU1, JSTC], 2, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>; |
| |
| defm : JWriteResFpuPair<WriteCvtSD2SS, [JFPU1, JSTC], 7, [1,2], 2>; |
| defm : JWriteResFpuPair<WriteCvtPD2PS, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtPD2PSY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>; |
| defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>; |
| |
| defm : JWriteResFpuPair<WriteCvtPH2PS, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : JWriteResYMMPair<WriteCvtPH2PSY, [JFPU1, JSTC], 3, [2,2], 2>; |
| defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>; |
| |
| defm : X86WriteRes<WriteCvtPS2PH, [JFPU1, JSTC], 3, [1,1], 1>; |
| defm : X86WriteRes<WriteCvtPS2PHY, [JFPU1, JSTC, JFPX], 6, [2,2,2], 3>; |
| defm : X86WriteResUnsupported<WriteCvtPS2PHZ>; |
| defm : X86WriteRes<WriteCvtPS2PHSt, [JFPU1, JSTC, JSAGU], 4, [1,1,1], 1>; |
| defm : X86WriteRes<WriteCvtPS2PHYSt, [JFPU1, JSTC, JFPX, JSAGU], 7, [2,2,2,1], 3>; |
| defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Vector integer operations. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : X86WriteRes<WriteVecLoad, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecLoadX, [JLAGU], 5, [1], 1>; |
| defm : X86WriteRes<WriteVecLoadY, [JLAGU], 5, [2], 2>; |
| defm : X86WriteRes<WriteVecLoadNT, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecLoadNTY, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecMaskedLoad, [JLAGU, JFPU01, JVALU], 6, [1, 2, 2], 1>; |
| defm : X86WriteRes<WriteVecMaskedLoadY, [JLAGU, JFPU01, JVALU], 6, [2, 4, 4], 2>; |
| |
| defm : X86WriteRes<WriteVecStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>; |
| defm : X86WriteRes<WriteVecStoreNT, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecStoreNTY, [JSAGU, JFPU1, JSTC], 2, [2, 2, 2], 1>; |
| defm : X86WriteRes<WriteVecMaskedStore, [JSAGU, JFPU01, JVALU], 6, [1, 1, 4], 1>; |
| defm : X86WriteRes<WriteVecMaskedStoreY, [JSAGU, JFPU01, JVALU], 6, [2, 2, 4], 2>; |
| |
| defm : X86WriteRes<WriteVecMove, [JFPU01, JVALU], 1, [1, 1], 1>; |
| defm : X86WriteRes<WriteVecMoveX, [JFPU01, JVALU], 1, [1, 1], 1>; |
| defm : X86WriteRes<WriteVecMoveY, [JFPU01, JVALU], 1, [2, 2], 2>; |
| defm : X86WriteRes<WriteVecMoveToGpr, [JFPU0, JFPA, JALU0], 4, [1, 1, 1], 1>; |
| defm : X86WriteRes<WriteVecMoveFromGpr, [JFPU01, JFPX], 8, [1, 1], 2>; |
| |
| defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>; |
| defm : JWriteResFpuPair<WriteVecALUX, [JFPU01, JVALU], 1>; |
| defm : X86WriteResPairUnsupported<WriteVecALUY>; |
| defm : X86WriteResPairUnsupported<WriteVecALUZ>; |
| defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>; |
| defm : JWriteResFpuPair<WriteVecShiftX, [JFPU01, JVALU], 2>; // +1cy latency. |
| defm : X86WriteResPairUnsupported<WriteVecShiftY>; |
| defm : X86WriteResPairUnsupported<WriteVecShiftZ>; |
| defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>; |
| defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 2>; // +1cy latency. |
| defm : X86WriteResPairUnsupported<WriteVecShiftImmY>; |
| defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>; |
| defm : X86WriteResPairUnsupported<WriteVarVecShift>; |
| defm : X86WriteResPairUnsupported<WriteVarVecShiftY>; |
| defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>; |
| defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>; |
| defm : JWriteResFpuPair<WriteVecIMulX, [JFPU0, JVIMUL], 2>; |
| defm : X86WriteResPairUnsupported<WriteVecIMulY>; |
| defm : X86WriteResPairUnsupported<WriteVecIMulZ>; |
| defm : JWriteResFpuPair<WritePMULLD, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>; |
| defm : X86WriteResPairUnsupported<WritePMULLDY>; |
| defm : X86WriteResPairUnsupported<WritePMULLDZ>; |
| defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2], 3>; |
| defm : X86WriteResPairUnsupported<WriteMPSADY>; |
| defm : X86WriteResPairUnsupported<WriteMPSADZ>; |
| defm : JWriteResFpuPair<WritePSADBW, [JFPU01, JVALU], 2>; |
| defm : JWriteResFpuPair<WritePSADBWX, [JFPU01, JVALU], 2>; |
| defm : X86WriteResPairUnsupported<WritePSADBWY>; |
| defm : X86WriteResPairUnsupported<WritePSADBWZ>; |
| defm : JWriteResFpuPair<WritePHMINPOS, [JFPU01, JVALU], 2>; |
| defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>; |
| defm : JWriteResFpuPair<WriteShuffleX, [JFPU01, JVALU], 1>; |
| defm : X86WriteResPairUnsupported<WriteShuffleY>; |
| defm : X86WriteResPairUnsupported<WriteShuffleZ>; |
| defm : JWriteResFpuPair<WriteVarShuffle, [JFPU01, JVALU], 2, [1, 1], 1>; |
| defm : JWriteResFpuPair<WriteVarShuffleX, [JFPU01, JVALU], 2, [1, 4], 3>; |
| defm : X86WriteResPairUnsupported<WriteVarShuffleY>; |
| defm : X86WriteResPairUnsupported<WriteVarShuffleZ>; |
| defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>; |
| defm : X86WriteResPairUnsupported<WriteBlendY>; |
| defm : X86WriteResPairUnsupported<WriteBlendZ>; |
| defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [4, 4], 3>; |
| defm : X86WriteResPairUnsupported<WriteVarBlendY>; |
| defm : X86WriteResPairUnsupported<WriteVarBlendZ>; |
| defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>; |
| defm : JWriteResFpuPair<WriteVecLogicX, [JFPU01, JVALU], 1>; |
| defm : X86WriteResPairUnsupported<WriteVecLogicY>; |
| defm : X86WriteResPairUnsupported<WriteVecLogicZ>; |
| defm : JWriteResFpuPair<WriteVecTest, [JFPU0, JFPA, JALU0], 3>; |
| defm : JWriteResYMMPair<WriteVecTestY, [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>; |
| defm : X86WriteResPairUnsupported<WriteVecTestZ>; |
| defm : X86WriteResPairUnsupported<WriteShuffle256>; |
| defm : X86WriteResPairUnsupported<WriteVarShuffle256>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Vector insert/extract operations. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : X86WriteRes<WriteVecInsert, [JFPU01, JVALU], 1, [1,1], 2>; |
| defm : X86WriteRes<WriteVecInsertLd, [JFPU01, JVALU, JLAGU], 4, [1,1,1], 1>; |
| defm : X86WriteRes<WriteVecExtract, [JFPU0, JFPA, JALU0], 3, [1,1,1], 1>; |
| defm : X86WriteRes<WriteVecExtractSt, [JFPU1, JSTC, JSAGU], 3, [1,1,1], 1>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // SSE42 String instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 7, [2, 2, 1, 1, 1], 3>; |
| defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 8, [2, 2, 1, 1, 1], 3>; |
| defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>; |
| defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // MOVMSK Instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| def : WriteRes<WriteFMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; } |
| def : WriteRes<WriteVecMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; } |
| defm : X86WriteResUnsupported<WriteVecMOVMSKY>; |
| def : WriteRes<WriteMMXMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // AES Instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>; |
| defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>; |
| defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU01, JVALU, JFPU0, JVIMUL], 3, [1,1,1,1], 2>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Horizontal add/sub instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 4>; // +1cy latency. |
| defm : JWriteResYMMPair<WriteFHAddY, [JFPU0, JFPA], 4, [2,2], 2>; // +1cy latency. |
| defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>; |
| defm : JWriteResFpuPair<WritePHAddX, [JFPU01, JVALU], 2>; // +1cy latency. |
| defm : X86WriteResPairUnsupported<WritePHAddY>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Carry-less multiplication instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // SSE4A instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> { |
| let Latency = 2; |
| let ResourceCycles = [1, 4]; |
| } |
| def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // AVX instructions. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| def JWriteVecExtractF128: SchedWriteRes<[JFPU01, JFPX]>; |
| def : InstRW<[JWriteVecExtractF128], (instrs VEXTRACTF128rr)>; |
| |
| def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> { |
| let Latency = 6; |
| let ResourceCycles = [1, 2, 4]; |
| let NumMicroOps = 2; |
| } |
| def : InstRW<[JWriteVBROADCASTYLd], (instrs VBROADCASTSDYrm, |
| VBROADCASTSSYrm, |
| VBROADCASTF128)>; |
| |
| def JWriteJVZEROALL: SchedWriteRes<[]> { |
| let Latency = 90; |
| let NumMicroOps = 73; |
| } |
| def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>; |
| |
| def JWriteJVZEROUPPER: SchedWriteRes<[]> { |
| let Latency = 46; |
| let NumMicroOps = 37; |
| } |
| def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // SSE2/AVX Store Selected Bytes of Double Quadword - (V)MASKMOVDQ |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| def JWriteMASKMOVDQU: SchedWriteRes<[JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01]> { |
| let Latency = 34; |
| let ResourceCycles = [1, 1, 2, 2, 2, 16, 42]; |
| let NumMicroOps = 63; |
| } |
| def : InstRW<[JWriteMASKMOVDQU], (instrs MASKMOVDQU, MASKMOVDQU64, |
| VMASKMOVDQU, VMASKMOVDQU64)>; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // SchedWriteVariant definitions. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| def JWriteZeroLatency : SchedWriteRes<[]> { |
| let Latency = 0; |
| } |
| |
| def JWriteZeroIdiomYmm : SchedWriteRes<[JFPU01, JFPX]> { |
| let NumMicroOps = 2; |
| } |
| |
| // Certain instructions that use the same register for both source |
| // operands do not have a real dependency on the previous contents of the |
| // register, and thus, do not have to wait before completing. They can be |
| // optimized out at register renaming stage. |
| // Reference: Section 10.8 of the "Software Optimization Guide for AMD Family |
| // 15h Processors". |
| // Reference: Agner's Fog "The microarchitecture of Intel, AMD and VIA CPUs", |
| // Section 21.8 [Dependency-breaking instructions]. |
| |
| def JWriteZeroIdiom : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>, |
| SchedVar<NoSchedPred, [WriteALU]> |
| ]>; |
| def : InstRW<[JWriteZeroIdiom], (instrs SUB32rr, SUB64rr, |
| XOR32rr, XOR64rr)>; |
| |
| def JWriteFZeroIdiom : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>, |
| SchedVar<NoSchedPred, [WriteFLogic]> |
| ]>; |
| def : InstRW<[JWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr, XORPDrr, VXORPDrr, |
| ANDNPSrr, VANDNPSrr, |
| ANDNPDrr, VANDNPDrr)>; |
| |
| def JWriteFZeroIdiomY : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroIdiomYmm]>, |
| SchedVar<NoSchedPred, [WriteFLogicY]> |
| ]>; |
| def : InstRW<[JWriteFZeroIdiomY], (instrs VXORPSYrr, VXORPDYrr, |
| VANDNPSYrr, VANDNPDYrr)>; |
| |
| def JWriteVZeroIdiomLogic : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>, |
| SchedVar<NoSchedPred, [WriteVecLogic]> |
| ]>; |
| def : InstRW<[JWriteVZeroIdiomLogic], (instrs MMX_PXORirr, MMX_PANDNirr)>; |
| |
| def JWriteVZeroIdiomLogicX : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>, |
| SchedVar<NoSchedPred, [WriteVecLogicX]> |
| ]>; |
| def : InstRW<[JWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr, |
| PANDNrr, VPANDNrr)>; |
| |
| def JWriteVZeroIdiomALU : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>, |
| SchedVar<NoSchedPred, [WriteVecALU]> |
| ]>; |
| def : InstRW<[JWriteVZeroIdiomALU], (instrs MMX_PSUBBirr, MMX_PSUBDirr, |
| MMX_PSUBQirr, MMX_PSUBWirr, |
| MMX_PSUBSBirr, MMX_PSUBSWirr, |
| MMX_PSUBUSBirr, MMX_PSUBUSWirr, |
| MMX_PCMPGTBirr, MMX_PCMPGTDirr, |
| MMX_PCMPGTWirr)>; |
| |
| def JWriteVZeroIdiomALUX : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>, |
| SchedVar<NoSchedPred, [WriteVecALUX]> |
| ]>; |
| def : InstRW<[JWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr, |
| PSUBDrr, VPSUBDrr, |
| PSUBQrr, VPSUBQrr, |
| PSUBWrr, VPSUBWrr, |
| PSUBSBrr, VPSUBSBrr, |
| PSUBSWrr, VPSUBSWrr, |
| PSUBUSBrr, VPSUBUSBrr, |
| PSUBUSWrr, VPSUBUSWrr, |
| PCMPGTBrr, VPCMPGTBrr, |
| PCMPGTDrr, VPCMPGTDrr, |
| PCMPGTQrr, VPCMPGTQrr, |
| PCMPGTWrr, VPCMPGTWrr)>; |
| |
| def JWriteVPERM2F128 : SchedWriteVariant<[ |
| SchedVar<MCSchedPredicate<ZeroIdiomVPERMPredicate>, [JWriteZeroIdiomYmm]>, |
| SchedVar<NoSchedPred, [WriteFShuffle256]> |
| ]>; |
| def : InstRW<[JWriteVPERM2F128], (instrs VPERM2F128rr)>; |
| |
| // This write is used for slow LEA instructions. |
| def JWrite3OpsLEA : SchedWriteRes<[JALU1, JSAGU]> { |
| let Latency = 2; |
| } |
| |
| // On Jaguar, a slow LEA is either a 3Ops LEA (base, index, offset), or an LEA |
| // with a `Scale` value different than 1. |
| def JSlowLEAPredicate : MCSchedPredicate< |
| CheckAny<[ |
| // A 3-operand LEA (base, index, offset). |
| IsThreeOperandsLEAFn, |
| // An LEA with a "Scale" different than 1. |
| CheckAll<[ |
| CheckIsImmOperand<2>, |
| CheckNot<CheckImmOperand<2, 1>> |
| ]> |
| ]> |
| >; |
| |
| def JWriteLEA : SchedWriteVariant<[ |
| SchedVar<JSlowLEAPredicate, [JWrite3OpsLEA]>, |
| SchedVar<NoSchedPred, [WriteLEA]> |
| ]>; |
| |
| def : InstRW<[JWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>; |
| |
| def JSlowLEA16r : SchedWriteRes<[JALU01]> { |
| let Latency = 3; |
| let ResourceCycles = [4]; |
| } |
| |
| def : InstRW<[JSlowLEA16r], (instrs LEA16r)>; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Dependency breaking instructions. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| def : IsZeroIdiomFunction<[ |
| // GPR Zero-idioms. |
| DepBreakingClass<[ SUB32rr, SUB64rr, XOR32rr, XOR64rr ], ZeroIdiomPredicate>, |
| |
| // MMX Zero-idioms. |
| DepBreakingClass<[ |
| MMX_PXORirr, MMX_PANDNirr, MMX_PSUBBirr, |
| MMX_PSUBDirr, MMX_PSUBQirr, MMX_PSUBWirr, |
| MMX_PSUBSBirr, MMX_PSUBSWirr, MMX_PSUBUSBirr, MMX_PSUBUSWirr, |
| MMX_PCMPGTBirr, MMX_PCMPGTDirr, MMX_PCMPGTWirr |
| ], ZeroIdiomPredicate>, |
| |
| // SSE Zero-idioms. |
| DepBreakingClass<[ |
| // fp variants. |
| XORPSrr, XORPDrr, ANDNPSrr, ANDNPDrr, |
| |
| // int variants. |
| PXORrr, PANDNrr, |
| PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr, |
| PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr, |
| PCMPGTBrr, PCMPGTDrr, PCMPGTQrr, PCMPGTWrr |
| ], ZeroIdiomPredicate>, |
| |
| // AVX Zero-idioms. |
| DepBreakingClass<[ |
| // xmm fp variants. |
| VXORPSrr, VXORPDrr, VANDNPSrr, VANDNPDrr, |
| |
| // xmm int variants. |
| VPXORrr, VPANDNrr, |
| VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr, |
| VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr, |
| VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr, |
| |
| // ymm variants. |
| VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr |
| ], ZeroIdiomPredicate>, |
| |
| DepBreakingClass<[ VPERM2F128rr ], ZeroIdiomVPERMPredicate> |
| ]>; |
| |
| def : IsDepBreakingFunction<[ |
| // GPR |
| DepBreakingClass<[ SBB32rr, SBB64rr ], ZeroIdiomPredicate>, |
| DepBreakingClass<[ CMP32rr, CMP64rr ], CheckSameRegOperand<0, 1> >, |
| |
| // MMX |
| DepBreakingClass<[ |
| MMX_PCMPEQBirr, MMX_PCMPEQDirr, MMX_PCMPEQWirr |
| ], ZeroIdiomPredicate>, |
| |
| // SSE |
| DepBreakingClass<[ |
| PCMPEQBrr, PCMPEQWrr, PCMPEQDrr, PCMPEQQrr |
| ], ZeroIdiomPredicate>, |
| |
| // AVX |
| DepBreakingClass<[ |
| VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr, VPCMPEQQrr |
| ], ZeroIdiomPredicate> |
| ]>; |
| |
| def : IsOptimizableRegisterMove<[ |
| InstructionEquivalenceClass<[ |
| // GPR variants. |
| MOV32rr, MOV64rr, |
| |
| // MMX variants. |
| MMX_MOVQ64rr, |
| |
| // SSE variants. |
| MOVAPSrr, MOVUPSrr, |
| MOVAPDrr, MOVUPDrr, |
| MOVDQArr, MOVDQUrr, |
| |
| // AVX variants. |
| VMOVAPSrr, VMOVUPSrr, |
| VMOVAPDrr, VMOVUPDrr, |
| VMOVDQArr, VMOVDQUrr |
| ], TruePred > |
| ]>; |
| |
| } // SchedModel |