|  | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the DenseMap class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_DENSEMAP_H | 
|  | #define LLVM_ADT_DENSEMAP_H | 
|  |  | 
|  | #include "llvm/ADT/DenseMapInfo.h" | 
|  | #include "llvm/ADT/EpochTracker.h" | 
|  | #include "llvm/Support/AlignOf.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/type_traits.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstring> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <new> | 
|  | #include <utility> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | namespace detail { | 
|  |  | 
|  | // We extend a pair to allow users to override the bucket type with their own | 
|  | // implementation without requiring two members. | 
|  | template <typename KeyT, typename ValueT> | 
|  | struct DenseMapPair : public std::pair<KeyT, ValueT> { | 
|  | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } | 
|  | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } | 
|  | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } | 
|  | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } | 
|  | }; | 
|  |  | 
|  | } // end namespace detail | 
|  |  | 
|  | template < | 
|  | typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>, | 
|  | typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false> | 
|  | class DenseMapIterator; | 
|  |  | 
|  | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, | 
|  | typename BucketT> | 
|  | class DenseMapBase : public DebugEpochBase { | 
|  | public: | 
|  | typedef unsigned size_type; | 
|  | typedef KeyT key_type; | 
|  | typedef ValueT mapped_type; | 
|  | typedef BucketT value_type; | 
|  |  | 
|  | typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT> iterator; | 
|  | typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true> | 
|  | const_iterator; | 
|  | inline iterator begin() { | 
|  | // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets(). | 
|  | return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this); | 
|  | } | 
|  | inline iterator end() { | 
|  | return iterator(getBucketsEnd(), getBucketsEnd(), *this, true); | 
|  | } | 
|  | inline const_iterator begin() const { | 
|  | return empty() ? end() | 
|  | : const_iterator(getBuckets(), getBucketsEnd(), *this); | 
|  | } | 
|  | inline const_iterator end() const { | 
|  | return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true); | 
|  | } | 
|  |  | 
|  | LLVM_NODISCARD bool empty() const { | 
|  | return getNumEntries() == 0; | 
|  | } | 
|  | unsigned size() const { return getNumEntries(); } | 
|  |  | 
|  | /// Grow the densemap so that it can contain at least \p NumEntries items | 
|  | /// before resizing again. | 
|  | void reserve(size_type NumEntries) { | 
|  | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); | 
|  | incrementEpoch(); | 
|  | if (NumBuckets > getNumBuckets()) | 
|  | grow(NumBuckets); | 
|  | } | 
|  |  | 
|  | void clear() { | 
|  | incrementEpoch(); | 
|  | if (getNumEntries() == 0 && getNumTombstones() == 0) return; | 
|  |  | 
|  | // If the capacity of the array is huge, and the # elements used is small, | 
|  | // shrink the array. | 
|  | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { | 
|  | shrink_and_clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); | 
|  | unsigned NumEntries = getNumEntries(); | 
|  | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { | 
|  | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { | 
|  | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { | 
|  | P->getSecond().~ValueT(); | 
|  | --NumEntries; | 
|  | } | 
|  | P->getFirst() = EmptyKey; | 
|  | } | 
|  | } | 
|  | assert(NumEntries == 0 && "Node count imbalance!"); | 
|  | setNumEntries(0); | 
|  | setNumTombstones(0); | 
|  | } | 
|  |  | 
|  | /// Return 1 if the specified key is in the map, 0 otherwise. | 
|  | size_type count(const KeyT &Val) const { | 
|  | const BucketT *TheBucket; | 
|  | return LookupBucketFor(Val, TheBucket) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | iterator find(const KeyT &Val) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Val, TheBucket)) | 
|  | return iterator(TheBucket, getBucketsEnd(), *this, true); | 
|  | return end(); | 
|  | } | 
|  | const_iterator find(const KeyT &Val) const { | 
|  | const BucketT *TheBucket; | 
|  | if (LookupBucketFor(Val, TheBucket)) | 
|  | return const_iterator(TheBucket, getBucketsEnd(), *this, true); | 
|  | return end(); | 
|  | } | 
|  |  | 
|  | /// Alternate version of find() which allows a different, and possibly | 
|  | /// less expensive, key type. | 
|  | /// The DenseMapInfo is responsible for supplying methods | 
|  | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key | 
|  | /// type used. | 
|  | template<class LookupKeyT> | 
|  | iterator find_as(const LookupKeyT &Val) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Val, TheBucket)) | 
|  | return iterator(TheBucket, getBucketsEnd(), *this, true); | 
|  | return end(); | 
|  | } | 
|  | template<class LookupKeyT> | 
|  | const_iterator find_as(const LookupKeyT &Val) const { | 
|  | const BucketT *TheBucket; | 
|  | if (LookupBucketFor(Val, TheBucket)) | 
|  | return const_iterator(TheBucket, getBucketsEnd(), *this, true); | 
|  | return end(); | 
|  | } | 
|  |  | 
|  | /// lookup - Return the entry for the specified key, or a default | 
|  | /// constructed value if no such entry exists. | 
|  | ValueT lookup(const KeyT &Val) const { | 
|  | const BucketT *TheBucket; | 
|  | if (LookupBucketFor(Val, TheBucket)) | 
|  | return TheBucket->getSecond(); | 
|  | return ValueT(); | 
|  | } | 
|  |  | 
|  | // Inserts key,value pair into the map if the key isn't already in the map. | 
|  | // If the key is already in the map, it returns false and doesn't update the | 
|  | // value. | 
|  | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { | 
|  | return try_emplace(KV.first, KV.second); | 
|  | } | 
|  |  | 
|  | // Inserts key,value pair into the map if the key isn't already in the map. | 
|  | // If the key is already in the map, it returns false and doesn't update the | 
|  | // value. | 
|  | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { | 
|  | return try_emplace(std::move(KV.first), std::move(KV.second)); | 
|  | } | 
|  |  | 
|  | // Inserts key,value pair into the map if the key isn't already in the map. | 
|  | // The value is constructed in-place if the key is not in the map, otherwise | 
|  | // it is not moved. | 
|  | template <typename... Ts> | 
|  | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Key, TheBucket)) | 
|  | return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
|  | false); // Already in map. | 
|  |  | 
|  | // Otherwise, insert the new element. | 
|  | TheBucket = | 
|  | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); | 
|  | return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
|  | true); | 
|  | } | 
|  |  | 
|  | // Inserts key,value pair into the map if the key isn't already in the map. | 
|  | // The value is constructed in-place if the key is not in the map, otherwise | 
|  | // it is not moved. | 
|  | template <typename... Ts> | 
|  | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Key, TheBucket)) | 
|  | return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
|  | false); // Already in map. | 
|  |  | 
|  | // Otherwise, insert the new element. | 
|  | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); | 
|  | return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
|  | true); | 
|  | } | 
|  |  | 
|  | /// Alternate version of insert() which allows a different, and possibly | 
|  | /// less expensive, key type. | 
|  | /// The DenseMapInfo is responsible for supplying methods | 
|  | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key | 
|  | /// type used. | 
|  | template <typename LookupKeyT> | 
|  | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, | 
|  | const LookupKeyT &Val) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Val, TheBucket)) | 
|  | return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
|  | false); // Already in map. | 
|  |  | 
|  | // Otherwise, insert the new element. | 
|  | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), | 
|  | std::move(KV.second), Val); | 
|  | return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
|  | true); | 
|  | } | 
|  |  | 
|  | /// insert - Range insertion of pairs. | 
|  | template<typename InputIt> | 
|  | void insert(InputIt I, InputIt E) { | 
|  | for (; I != E; ++I) | 
|  | insert(*I); | 
|  | } | 
|  |  | 
|  | bool erase(const KeyT &Val) { | 
|  | BucketT *TheBucket; | 
|  | if (!LookupBucketFor(Val, TheBucket)) | 
|  | return false; // not in map. | 
|  |  | 
|  | TheBucket->getSecond().~ValueT(); | 
|  | TheBucket->getFirst() = getTombstoneKey(); | 
|  | decrementNumEntries(); | 
|  | incrementNumTombstones(); | 
|  | return true; | 
|  | } | 
|  | void erase(iterator I) { | 
|  | BucketT *TheBucket = &*I; | 
|  | TheBucket->getSecond().~ValueT(); | 
|  | TheBucket->getFirst() = getTombstoneKey(); | 
|  | decrementNumEntries(); | 
|  | incrementNumTombstones(); | 
|  | } | 
|  |  | 
|  | value_type& FindAndConstruct(const KeyT &Key) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Key, TheBucket)) | 
|  | return *TheBucket; | 
|  |  | 
|  | return *InsertIntoBucket(TheBucket, Key); | 
|  | } | 
|  |  | 
|  | ValueT &operator[](const KeyT &Key) { | 
|  | return FindAndConstruct(Key).second; | 
|  | } | 
|  |  | 
|  | value_type& FindAndConstruct(KeyT &&Key) { | 
|  | BucketT *TheBucket; | 
|  | if (LookupBucketFor(Key, TheBucket)) | 
|  | return *TheBucket; | 
|  |  | 
|  | return *InsertIntoBucket(TheBucket, std::move(Key)); | 
|  | } | 
|  |  | 
|  | ValueT &operator[](KeyT &&Key) { | 
|  | return FindAndConstruct(std::move(Key)).second; | 
|  | } | 
|  |  | 
|  | /// isPointerIntoBucketsArray - Return true if the specified pointer points | 
|  | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or | 
|  | /// value in the DenseMap). | 
|  | bool isPointerIntoBucketsArray(const void *Ptr) const { | 
|  | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); | 
|  | } | 
|  |  | 
|  | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets | 
|  | /// array.  In conjunction with the previous method, this can be used to | 
|  | /// determine whether an insertion caused the DenseMap to reallocate. | 
|  | const void *getPointerIntoBucketsArray() const { return getBuckets(); } | 
|  |  | 
|  | protected: | 
|  | DenseMapBase() = default; | 
|  |  | 
|  | void destroyAll() { | 
|  | if (getNumBuckets() == 0) // Nothing to do. | 
|  | return; | 
|  |  | 
|  | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); | 
|  | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { | 
|  | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && | 
|  | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) | 
|  | P->getSecond().~ValueT(); | 
|  | P->getFirst().~KeyT(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void initEmpty() { | 
|  | setNumEntries(0); | 
|  | setNumTombstones(0); | 
|  |  | 
|  | assert((getNumBuckets() & (getNumBuckets()-1)) == 0 && | 
|  | "# initial buckets must be a power of two!"); | 
|  | const KeyT EmptyKey = getEmptyKey(); | 
|  | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) | 
|  | ::new (&B->getFirst()) KeyT(EmptyKey); | 
|  | } | 
|  |  | 
|  | /// Returns the number of buckets to allocate to ensure that the DenseMap can | 
|  | /// accommodate \p NumEntries without need to grow(). | 
|  | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { | 
|  | // Ensure that "NumEntries * 4 < NumBuckets * 3" | 
|  | if (NumEntries == 0) | 
|  | return 0; | 
|  | // +1 is required because of the strict equality. | 
|  | // For example if NumEntries is 48, we need to return 401. | 
|  | return NextPowerOf2(NumEntries * 4 / 3 + 1); | 
|  | } | 
|  |  | 
|  | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { | 
|  | initEmpty(); | 
|  |  | 
|  | // Insert all the old elements. | 
|  | const KeyT EmptyKey = getEmptyKey(); | 
|  | const KeyT TombstoneKey = getTombstoneKey(); | 
|  | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { | 
|  | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && | 
|  | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { | 
|  | // Insert the key/value into the new table. | 
|  | BucketT *DestBucket; | 
|  | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); | 
|  | (void)FoundVal; // silence warning. | 
|  | assert(!FoundVal && "Key already in new map?"); | 
|  | DestBucket->getFirst() = std::move(B->getFirst()); | 
|  | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); | 
|  | incrementNumEntries(); | 
|  |  | 
|  | // Free the value. | 
|  | B->getSecond().~ValueT(); | 
|  | } | 
|  | B->getFirst().~KeyT(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename OtherBaseT> | 
|  | void copyFrom( | 
|  | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { | 
|  | assert(&other != this); | 
|  | assert(getNumBuckets() == other.getNumBuckets()); | 
|  |  | 
|  | setNumEntries(other.getNumEntries()); | 
|  | setNumTombstones(other.getNumTombstones()); | 
|  |  | 
|  | if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) | 
|  | memcpy(getBuckets(), other.getBuckets(), | 
|  | getNumBuckets() * sizeof(BucketT)); | 
|  | else | 
|  | for (size_t i = 0; i < getNumBuckets(); ++i) { | 
|  | ::new (&getBuckets()[i].getFirst()) | 
|  | KeyT(other.getBuckets()[i].getFirst()); | 
|  | if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && | 
|  | !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) | 
|  | ::new (&getBuckets()[i].getSecond()) | 
|  | ValueT(other.getBuckets()[i].getSecond()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const KeyT &Val) { | 
|  | return KeyInfoT::getHashValue(Val); | 
|  | } | 
|  | template<typename LookupKeyT> | 
|  | static unsigned getHashValue(const LookupKeyT &Val) { | 
|  | return KeyInfoT::getHashValue(Val); | 
|  | } | 
|  | static const KeyT getEmptyKey() { | 
|  | return KeyInfoT::getEmptyKey(); | 
|  | } | 
|  | static const KeyT getTombstoneKey() { | 
|  | return KeyInfoT::getTombstoneKey(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | unsigned getNumEntries() const { | 
|  | return static_cast<const DerivedT *>(this)->getNumEntries(); | 
|  | } | 
|  | void setNumEntries(unsigned Num) { | 
|  | static_cast<DerivedT *>(this)->setNumEntries(Num); | 
|  | } | 
|  | void incrementNumEntries() { | 
|  | setNumEntries(getNumEntries() + 1); | 
|  | } | 
|  | void decrementNumEntries() { | 
|  | setNumEntries(getNumEntries() - 1); | 
|  | } | 
|  | unsigned getNumTombstones() const { | 
|  | return static_cast<const DerivedT *>(this)->getNumTombstones(); | 
|  | } | 
|  | void setNumTombstones(unsigned Num) { | 
|  | static_cast<DerivedT *>(this)->setNumTombstones(Num); | 
|  | } | 
|  | void incrementNumTombstones() { | 
|  | setNumTombstones(getNumTombstones() + 1); | 
|  | } | 
|  | void decrementNumTombstones() { | 
|  | setNumTombstones(getNumTombstones() - 1); | 
|  | } | 
|  | const BucketT *getBuckets() const { | 
|  | return static_cast<const DerivedT *>(this)->getBuckets(); | 
|  | } | 
|  | BucketT *getBuckets() { | 
|  | return static_cast<DerivedT *>(this)->getBuckets(); | 
|  | } | 
|  | unsigned getNumBuckets() const { | 
|  | return static_cast<const DerivedT *>(this)->getNumBuckets(); | 
|  | } | 
|  | BucketT *getBucketsEnd() { | 
|  | return getBuckets() + getNumBuckets(); | 
|  | } | 
|  | const BucketT *getBucketsEnd() const { | 
|  | return getBuckets() + getNumBuckets(); | 
|  | } | 
|  |  | 
|  | void grow(unsigned AtLeast) { | 
|  | static_cast<DerivedT *>(this)->grow(AtLeast); | 
|  | } | 
|  |  | 
|  | void shrink_and_clear() { | 
|  | static_cast<DerivedT *>(this)->shrink_and_clear(); | 
|  | } | 
|  |  | 
|  | template <typename KeyArg, typename... ValueArgs> | 
|  | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, | 
|  | ValueArgs &&... Values) { | 
|  | TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); | 
|  |  | 
|  | TheBucket->getFirst() = std::forward<KeyArg>(Key); | 
|  | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); | 
|  | return TheBucket; | 
|  | } | 
|  |  | 
|  | template <typename LookupKeyT> | 
|  | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, | 
|  | ValueT &&Value, LookupKeyT &Lookup) { | 
|  | TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); | 
|  |  | 
|  | TheBucket->getFirst() = std::move(Key); | 
|  | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); | 
|  | return TheBucket; | 
|  | } | 
|  |  | 
|  | template <typename LookupKeyT> | 
|  | BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, | 
|  | BucketT *TheBucket) { | 
|  | incrementEpoch(); | 
|  |  | 
|  | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of | 
|  | // the buckets are empty (meaning that many are filled with tombstones), | 
|  | // grow the table. | 
|  | // | 
|  | // The later case is tricky.  For example, if we had one empty bucket with | 
|  | // tons of tombstones, failing lookups (e.g. for insertion) would have to | 
|  | // probe almost the entire table until it found the empty bucket.  If the | 
|  | // table completely filled with tombstones, no lookup would ever succeed, | 
|  | // causing infinite loops in lookup. | 
|  | unsigned NewNumEntries = getNumEntries() + 1; | 
|  | unsigned NumBuckets = getNumBuckets(); | 
|  | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { | 
|  | this->grow(NumBuckets * 2); | 
|  | LookupBucketFor(Lookup, TheBucket); | 
|  | NumBuckets = getNumBuckets(); | 
|  | } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <= | 
|  | NumBuckets/8)) { | 
|  | this->grow(NumBuckets); | 
|  | LookupBucketFor(Lookup, TheBucket); | 
|  | } | 
|  | assert(TheBucket); | 
|  |  | 
|  | // Only update the state after we've grown our bucket space appropriately | 
|  | // so that when growing buckets we have self-consistent entry count. | 
|  | incrementNumEntries(); | 
|  |  | 
|  | // If we are writing over a tombstone, remember this. | 
|  | const KeyT EmptyKey = getEmptyKey(); | 
|  | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) | 
|  | decrementNumTombstones(); | 
|  |  | 
|  | return TheBucket; | 
|  | } | 
|  |  | 
|  | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in | 
|  | /// FoundBucket.  If the bucket contains the key and a value, this returns | 
|  | /// true, otherwise it returns a bucket with an empty marker or tombstone and | 
|  | /// returns false. | 
|  | template<typename LookupKeyT> | 
|  | bool LookupBucketFor(const LookupKeyT &Val, | 
|  | const BucketT *&FoundBucket) const { | 
|  | const BucketT *BucketsPtr = getBuckets(); | 
|  | const unsigned NumBuckets = getNumBuckets(); | 
|  |  | 
|  | if (NumBuckets == 0) { | 
|  | FoundBucket = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FoundTombstone - Keep track of whether we find a tombstone while probing. | 
|  | const BucketT *FoundTombstone = nullptr; | 
|  | const KeyT EmptyKey = getEmptyKey(); | 
|  | const KeyT TombstoneKey = getTombstoneKey(); | 
|  | assert(!KeyInfoT::isEqual(Val, EmptyKey) && | 
|  | !KeyInfoT::isEqual(Val, TombstoneKey) && | 
|  | "Empty/Tombstone value shouldn't be inserted into map!"); | 
|  |  | 
|  | unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); | 
|  | unsigned ProbeAmt = 1; | 
|  | while (true) { | 
|  | const BucketT *ThisBucket = BucketsPtr + BucketNo; | 
|  | // Found Val's bucket?  If so, return it. | 
|  | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { | 
|  | FoundBucket = ThisBucket; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we found an empty bucket, the key doesn't exist in the set. | 
|  | // Insert it and return the default value. | 
|  | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { | 
|  | // If we've already seen a tombstone while probing, fill it in instead | 
|  | // of the empty bucket we eventually probed to. | 
|  | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this is a tombstone, remember it.  If Val ends up not in the map, we | 
|  | // prefer to return it than something that would require more probing. | 
|  | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && | 
|  | !FoundTombstone) | 
|  | FoundTombstone = ThisBucket;  // Remember the first tombstone found. | 
|  |  | 
|  | // Otherwise, it's a hash collision or a tombstone, continue quadratic | 
|  | // probing. | 
|  | BucketNo += ProbeAmt++; | 
|  | BucketNo &= (NumBuckets-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename LookupKeyT> | 
|  | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { | 
|  | const BucketT *ConstFoundBucket; | 
|  | bool Result = const_cast<const DenseMapBase *>(this) | 
|  | ->LookupBucketFor(Val, ConstFoundBucket); | 
|  | FoundBucket = const_cast<BucketT *>(ConstFoundBucket); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Return the approximate size (in bytes) of the actual map. | 
|  | /// This is just the raw memory used by DenseMap. | 
|  | /// If entries are pointers to objects, the size of the referenced objects | 
|  | /// are not included. | 
|  | size_t getMemorySize() const { | 
|  | return getNumBuckets() * sizeof(BucketT); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename KeyT, typename ValueT, | 
|  | typename KeyInfoT = DenseMapInfo<KeyT>, | 
|  | typename BucketT = detail::DenseMapPair<KeyT, ValueT>> | 
|  | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, | 
|  | KeyT, ValueT, KeyInfoT, BucketT> { | 
|  | // Lift some types from the dependent base class into this class for | 
|  | // simplicity of referring to them. | 
|  | typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT; | 
|  | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; | 
|  |  | 
|  | BucketT *Buckets; | 
|  | unsigned NumEntries; | 
|  | unsigned NumTombstones; | 
|  | unsigned NumBuckets; | 
|  |  | 
|  | public: | 
|  | /// Create a DenseMap wth an optional \p InitialReserve that guarantee that | 
|  | /// this number of elements can be inserted in the map without grow() | 
|  | explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } | 
|  |  | 
|  | DenseMap(const DenseMap &other) : BaseT() { | 
|  | init(0); | 
|  | copyFrom(other); | 
|  | } | 
|  |  | 
|  | DenseMap(DenseMap &&other) : BaseT() { | 
|  | init(0); | 
|  | swap(other); | 
|  | } | 
|  |  | 
|  | template<typename InputIt> | 
|  | DenseMap(const InputIt &I, const InputIt &E) { | 
|  | init(std::distance(I, E)); | 
|  | this->insert(I, E); | 
|  | } | 
|  |  | 
|  | ~DenseMap() { | 
|  | this->destroyAll(); | 
|  | operator delete(Buckets); | 
|  | } | 
|  |  | 
|  | void swap(DenseMap& RHS) { | 
|  | this->incrementEpoch(); | 
|  | RHS.incrementEpoch(); | 
|  | std::swap(Buckets, RHS.Buckets); | 
|  | std::swap(NumEntries, RHS.NumEntries); | 
|  | std::swap(NumTombstones, RHS.NumTombstones); | 
|  | std::swap(NumBuckets, RHS.NumBuckets); | 
|  | } | 
|  |  | 
|  | DenseMap& operator=(const DenseMap& other) { | 
|  | if (&other != this) | 
|  | copyFrom(other); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | DenseMap& operator=(DenseMap &&other) { | 
|  | this->destroyAll(); | 
|  | operator delete(Buckets); | 
|  | init(0); | 
|  | swap(other); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void copyFrom(const DenseMap& other) { | 
|  | this->destroyAll(); | 
|  | operator delete(Buckets); | 
|  | if (allocateBuckets(other.NumBuckets)) { | 
|  | this->BaseT::copyFrom(other); | 
|  | } else { | 
|  | NumEntries = 0; | 
|  | NumTombstones = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void init(unsigned InitNumEntries) { | 
|  | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); | 
|  | if (allocateBuckets(InitBuckets)) { | 
|  | this->BaseT::initEmpty(); | 
|  | } else { | 
|  | NumEntries = 0; | 
|  | NumTombstones = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void grow(unsigned AtLeast) { | 
|  | unsigned OldNumBuckets = NumBuckets; | 
|  | BucketT *OldBuckets = Buckets; | 
|  |  | 
|  | allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); | 
|  | assert(Buckets); | 
|  | if (!OldBuckets) { | 
|  | this->BaseT::initEmpty(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); | 
|  |  | 
|  | // Free the old table. | 
|  | operator delete(OldBuckets); | 
|  | } | 
|  |  | 
|  | void shrink_and_clear() { | 
|  | unsigned OldNumEntries = NumEntries; | 
|  | this->destroyAll(); | 
|  |  | 
|  | // Reduce the number of buckets. | 
|  | unsigned NewNumBuckets = 0; | 
|  | if (OldNumEntries) | 
|  | NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); | 
|  | if (NewNumBuckets == NumBuckets) { | 
|  | this->BaseT::initEmpty(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | operator delete(Buckets); | 
|  | init(NewNumBuckets); | 
|  | } | 
|  |  | 
|  | private: | 
|  | unsigned getNumEntries() const { | 
|  | return NumEntries; | 
|  | } | 
|  | void setNumEntries(unsigned Num) { | 
|  | NumEntries = Num; | 
|  | } | 
|  |  | 
|  | unsigned getNumTombstones() const { | 
|  | return NumTombstones; | 
|  | } | 
|  | void setNumTombstones(unsigned Num) { | 
|  | NumTombstones = Num; | 
|  | } | 
|  |  | 
|  | BucketT *getBuckets() const { | 
|  | return Buckets; | 
|  | } | 
|  |  | 
|  | unsigned getNumBuckets() const { | 
|  | return NumBuckets; | 
|  | } | 
|  |  | 
|  | bool allocateBuckets(unsigned Num) { | 
|  | NumBuckets = Num; | 
|  | if (NumBuckets == 0) { | 
|  | Buckets = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets)); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, | 
|  | typename KeyInfoT = DenseMapInfo<KeyT>, | 
|  | typename BucketT = detail::DenseMapPair<KeyT, ValueT>> | 
|  | class SmallDenseMap | 
|  | : public DenseMapBase< | 
|  | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, | 
|  | ValueT, KeyInfoT, BucketT> { | 
|  | // Lift some types from the dependent base class into this class for | 
|  | // simplicity of referring to them. | 
|  | typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT; | 
|  | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; | 
|  | static_assert(isPowerOf2_64(InlineBuckets), | 
|  | "InlineBuckets must be a power of 2."); | 
|  |  | 
|  | unsigned Small : 1; | 
|  | unsigned NumEntries : 31; | 
|  | unsigned NumTombstones; | 
|  |  | 
|  | struct LargeRep { | 
|  | BucketT *Buckets; | 
|  | unsigned NumBuckets; | 
|  | }; | 
|  |  | 
|  | /// A "union" of an inline bucket array and the struct representing | 
|  | /// a large bucket. This union will be discriminated by the 'Small' bit. | 
|  | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; | 
|  |  | 
|  | public: | 
|  | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { | 
|  | init(NumInitBuckets); | 
|  | } | 
|  |  | 
|  | SmallDenseMap(const SmallDenseMap &other) : BaseT() { | 
|  | init(0); | 
|  | copyFrom(other); | 
|  | } | 
|  |  | 
|  | SmallDenseMap(SmallDenseMap &&other) : BaseT() { | 
|  | init(0); | 
|  | swap(other); | 
|  | } | 
|  |  | 
|  | template<typename InputIt> | 
|  | SmallDenseMap(const InputIt &I, const InputIt &E) { | 
|  | init(NextPowerOf2(std::distance(I, E))); | 
|  | this->insert(I, E); | 
|  | } | 
|  |  | 
|  | ~SmallDenseMap() { | 
|  | this->destroyAll(); | 
|  | deallocateBuckets(); | 
|  | } | 
|  |  | 
|  | void swap(SmallDenseMap& RHS) { | 
|  | unsigned TmpNumEntries = RHS.NumEntries; | 
|  | RHS.NumEntries = NumEntries; | 
|  | NumEntries = TmpNumEntries; | 
|  | std::swap(NumTombstones, RHS.NumTombstones); | 
|  |  | 
|  | const KeyT EmptyKey = this->getEmptyKey(); | 
|  | const KeyT TombstoneKey = this->getTombstoneKey(); | 
|  | if (Small && RHS.Small) { | 
|  | // If we're swapping inline bucket arrays, we have to cope with some of | 
|  | // the tricky bits of DenseMap's storage system: the buckets are not | 
|  | // fully initialized. Thus we swap every key, but we may have | 
|  | // a one-directional move of the value. | 
|  | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { | 
|  | BucketT *LHSB = &getInlineBuckets()[i], | 
|  | *RHSB = &RHS.getInlineBuckets()[i]; | 
|  | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && | 
|  | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); | 
|  | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && | 
|  | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); | 
|  | if (hasLHSValue && hasRHSValue) { | 
|  | // Swap together if we can... | 
|  | std::swap(*LHSB, *RHSB); | 
|  | continue; | 
|  | } | 
|  | // Swap separately and handle any assymetry. | 
|  | std::swap(LHSB->getFirst(), RHSB->getFirst()); | 
|  | if (hasLHSValue) { | 
|  | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); | 
|  | LHSB->getSecond().~ValueT(); | 
|  | } else if (hasRHSValue) { | 
|  | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); | 
|  | RHSB->getSecond().~ValueT(); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (!Small && !RHS.Small) { | 
|  | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); | 
|  | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallDenseMap &SmallSide = Small ? *this : RHS; | 
|  | SmallDenseMap &LargeSide = Small ? RHS : *this; | 
|  |  | 
|  | // First stash the large side's rep and move the small side across. | 
|  | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); | 
|  | LargeSide.getLargeRep()->~LargeRep(); | 
|  | LargeSide.Small = true; | 
|  | // This is similar to the standard move-from-old-buckets, but the bucket | 
|  | // count hasn't actually rotated in this case. So we have to carefully | 
|  | // move construct the keys and values into their new locations, but there | 
|  | // is no need to re-hash things. | 
|  | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { | 
|  | BucketT *NewB = &LargeSide.getInlineBuckets()[i], | 
|  | *OldB = &SmallSide.getInlineBuckets()[i]; | 
|  | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); | 
|  | OldB->getFirst().~KeyT(); | 
|  | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && | 
|  | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { | 
|  | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); | 
|  | OldB->getSecond().~ValueT(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The hard part of moving the small buckets across is done, just move | 
|  | // the TmpRep into its new home. | 
|  | SmallSide.Small = false; | 
|  | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); | 
|  | } | 
|  |  | 
|  | SmallDenseMap& operator=(const SmallDenseMap& other) { | 
|  | if (&other != this) | 
|  | copyFrom(other); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallDenseMap& operator=(SmallDenseMap &&other) { | 
|  | this->destroyAll(); | 
|  | deallocateBuckets(); | 
|  | init(0); | 
|  | swap(other); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void copyFrom(const SmallDenseMap& other) { | 
|  | this->destroyAll(); | 
|  | deallocateBuckets(); | 
|  | Small = true; | 
|  | if (other.getNumBuckets() > InlineBuckets) { | 
|  | Small = false; | 
|  | new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); | 
|  | } | 
|  | this->BaseT::copyFrom(other); | 
|  | } | 
|  |  | 
|  | void init(unsigned InitBuckets) { | 
|  | Small = true; | 
|  | if (InitBuckets > InlineBuckets) { | 
|  | Small = false; | 
|  | new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); | 
|  | } | 
|  | this->BaseT::initEmpty(); | 
|  | } | 
|  |  | 
|  | void grow(unsigned AtLeast) { | 
|  | if (AtLeast >= InlineBuckets) | 
|  | AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); | 
|  |  | 
|  | if (Small) { | 
|  | if (AtLeast < InlineBuckets) | 
|  | return; // Nothing to do. | 
|  |  | 
|  | // First move the inline buckets into a temporary storage. | 
|  | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; | 
|  | BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer); | 
|  | BucketT *TmpEnd = TmpBegin; | 
|  |  | 
|  | // Loop over the buckets, moving non-empty, non-tombstones into the | 
|  | // temporary storage. Have the loop move the TmpEnd forward as it goes. | 
|  | const KeyT EmptyKey = this->getEmptyKey(); | 
|  | const KeyT TombstoneKey = this->getTombstoneKey(); | 
|  | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { | 
|  | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && | 
|  | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { | 
|  | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && | 
|  | "Too many inline buckets!"); | 
|  | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); | 
|  | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); | 
|  | ++TmpEnd; | 
|  | P->getSecond().~ValueT(); | 
|  | } | 
|  | P->getFirst().~KeyT(); | 
|  | } | 
|  |  | 
|  | // Now make this map use the large rep, and move all the entries back | 
|  | // into it. | 
|  | Small = false; | 
|  | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); | 
|  | this->moveFromOldBuckets(TmpBegin, TmpEnd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LargeRep OldRep = std::move(*getLargeRep()); | 
|  | getLargeRep()->~LargeRep(); | 
|  | if (AtLeast <= InlineBuckets) { | 
|  | Small = true; | 
|  | } else { | 
|  | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); | 
|  | } | 
|  |  | 
|  | this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); | 
|  |  | 
|  | // Free the old table. | 
|  | operator delete(OldRep.Buckets); | 
|  | } | 
|  |  | 
|  | void shrink_and_clear() { | 
|  | unsigned OldSize = this->size(); | 
|  | this->destroyAll(); | 
|  |  | 
|  | // Reduce the number of buckets. | 
|  | unsigned NewNumBuckets = 0; | 
|  | if (OldSize) { | 
|  | NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); | 
|  | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) | 
|  | NewNumBuckets = 64; | 
|  | } | 
|  | if ((Small && NewNumBuckets <= InlineBuckets) || | 
|  | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { | 
|  | this->BaseT::initEmpty(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | deallocateBuckets(); | 
|  | init(NewNumBuckets); | 
|  | } | 
|  |  | 
|  | private: | 
|  | unsigned getNumEntries() const { | 
|  | return NumEntries; | 
|  | } | 
|  | void setNumEntries(unsigned Num) { | 
|  | // NumEntries is hardcoded to be 31 bits wide. | 
|  | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries"); | 
|  | NumEntries = Num; | 
|  | } | 
|  |  | 
|  | unsigned getNumTombstones() const { | 
|  | return NumTombstones; | 
|  | } | 
|  | void setNumTombstones(unsigned Num) { | 
|  | NumTombstones = Num; | 
|  | } | 
|  |  | 
|  | const BucketT *getInlineBuckets() const { | 
|  | assert(Small); | 
|  | // Note that this cast does not violate aliasing rules as we assert that | 
|  | // the memory's dynamic type is the small, inline bucket buffer, and the | 
|  | // 'storage.buffer' static type is 'char *'. | 
|  | return reinterpret_cast<const BucketT *>(storage.buffer); | 
|  | } | 
|  | BucketT *getInlineBuckets() { | 
|  | return const_cast<BucketT *>( | 
|  | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); | 
|  | } | 
|  | const LargeRep *getLargeRep() const { | 
|  | assert(!Small); | 
|  | // Note, same rule about aliasing as with getInlineBuckets. | 
|  | return reinterpret_cast<const LargeRep *>(storage.buffer); | 
|  | } | 
|  | LargeRep *getLargeRep() { | 
|  | return const_cast<LargeRep *>( | 
|  | const_cast<const SmallDenseMap *>(this)->getLargeRep()); | 
|  | } | 
|  |  | 
|  | const BucketT *getBuckets() const { | 
|  | return Small ? getInlineBuckets() : getLargeRep()->Buckets; | 
|  | } | 
|  | BucketT *getBuckets() { | 
|  | return const_cast<BucketT *>( | 
|  | const_cast<const SmallDenseMap *>(this)->getBuckets()); | 
|  | } | 
|  | unsigned getNumBuckets() const { | 
|  | return Small ? InlineBuckets : getLargeRep()->NumBuckets; | 
|  | } | 
|  |  | 
|  | void deallocateBuckets() { | 
|  | if (Small) | 
|  | return; | 
|  |  | 
|  | operator delete(getLargeRep()->Buckets); | 
|  | getLargeRep()->~LargeRep(); | 
|  | } | 
|  |  | 
|  | LargeRep allocateBuckets(unsigned Num) { | 
|  | assert(Num > InlineBuckets && "Must allocate more buckets than are inline"); | 
|  | LargeRep Rep = { | 
|  | static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num | 
|  | }; | 
|  | return Rep; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, | 
|  | bool IsConst> | 
|  | class DenseMapIterator : DebugEpochBase::HandleBase { | 
|  | typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true> ConstIterator; | 
|  | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; | 
|  | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; | 
|  |  | 
|  | public: | 
|  | typedef ptrdiff_t difference_type; | 
|  | typedef typename std::conditional<IsConst, const Bucket, Bucket>::type | 
|  | value_type; | 
|  | typedef value_type *pointer; | 
|  | typedef value_type &reference; | 
|  | typedef std::forward_iterator_tag iterator_category; | 
|  |  | 
|  | private: | 
|  | pointer Ptr, End; | 
|  |  | 
|  | public: | 
|  | DenseMapIterator() : Ptr(nullptr), End(nullptr) {} | 
|  |  | 
|  | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, | 
|  | bool NoAdvance = false) | 
|  | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { | 
|  | assert(isHandleInSync() && "invalid construction!"); | 
|  | if (!NoAdvance) AdvancePastEmptyBuckets(); | 
|  | } | 
|  |  | 
|  | // Converting ctor from non-const iterators to const iterators. SFINAE'd out | 
|  | // for const iterator destinations so it doesn't end up as a user defined copy | 
|  | // constructor. | 
|  | template <bool IsConstSrc, | 
|  | typename = typename std::enable_if<!IsConstSrc && IsConst>::type> | 
|  | DenseMapIterator( | 
|  | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) | 
|  | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} | 
|  |  | 
|  | reference operator*() const { | 
|  | assert(isHandleInSync() && "invalid iterator access!"); | 
|  | return *Ptr; | 
|  | } | 
|  | pointer operator->() const { | 
|  | assert(isHandleInSync() && "invalid iterator access!"); | 
|  | return Ptr; | 
|  | } | 
|  |  | 
|  | bool operator==(const ConstIterator &RHS) const { | 
|  | assert((!Ptr || isHandleInSync()) && "handle not in sync!"); | 
|  | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); | 
|  | assert(getEpochAddress() == RHS.getEpochAddress() && | 
|  | "comparing incomparable iterators!"); | 
|  | return Ptr == RHS.Ptr; | 
|  | } | 
|  | bool operator!=(const ConstIterator &RHS) const { | 
|  | assert((!Ptr || isHandleInSync()) && "handle not in sync!"); | 
|  | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); | 
|  | assert(getEpochAddress() == RHS.getEpochAddress() && | 
|  | "comparing incomparable iterators!"); | 
|  | return Ptr != RHS.Ptr; | 
|  | } | 
|  |  | 
|  | inline DenseMapIterator& operator++() {  // Preincrement | 
|  | assert(isHandleInSync() && "invalid iterator access!"); | 
|  | ++Ptr; | 
|  | AdvancePastEmptyBuckets(); | 
|  | return *this; | 
|  | } | 
|  | DenseMapIterator operator++(int) {  // Postincrement | 
|  | assert(isHandleInSync() && "invalid iterator access!"); | 
|  | DenseMapIterator tmp = *this; ++*this; return tmp; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void AdvancePastEmptyBuckets() { | 
|  | const KeyT Empty = KeyInfoT::getEmptyKey(); | 
|  | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); | 
|  |  | 
|  | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || | 
|  | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) | 
|  | ++Ptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename KeyT, typename ValueT, typename KeyInfoT> | 
|  | static inline size_t | 
|  | capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { | 
|  | return X.getMemorySize(); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_ADT_DENSEMAP_H |