| //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // It contains the tablegen backend that emits the decoder functions for | 
 | // targets with fixed length instruction set. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "decoder-emitter" | 
 |  | 
 | #include "FixedLenDecoderEmitter.h" | 
 | #include "CodeGenTarget.h" | 
 | #include "llvm/TableGen/Record.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | #include <vector> | 
 | #include <map> | 
 | #include <string> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system | 
 | // for a bit value. | 
 | // | 
 | // BIT_UNFILTERED is used as the init value for a filter position.  It is used | 
 | // only for filter processings. | 
 | typedef enum { | 
 |   BIT_TRUE,      // '1' | 
 |   BIT_FALSE,     // '0' | 
 |   BIT_UNSET,     // '?' | 
 |   BIT_UNFILTERED // unfiltered | 
 | } bit_value_t; | 
 |  | 
 | static bool ValueSet(bit_value_t V) { | 
 |   return (V == BIT_TRUE || V == BIT_FALSE); | 
 | } | 
 | static bool ValueNotSet(bit_value_t V) { | 
 |   return (V == BIT_UNSET); | 
 | } | 
 | static int Value(bit_value_t V) { | 
 |   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); | 
 | } | 
 | static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { | 
 |   if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) | 
 |     return bit->getValue() ? BIT_TRUE : BIT_FALSE; | 
 |  | 
 |   // The bit is uninitialized. | 
 |   return BIT_UNSET; | 
 | } | 
 | // Prints the bit value for each position. | 
 | static void dumpBits(raw_ostream &o, BitsInit &bits) { | 
 |   unsigned index; | 
 |  | 
 |   for (index = bits.getNumBits(); index > 0; index--) { | 
 |     switch (bitFromBits(bits, index - 1)) { | 
 |     case BIT_TRUE: | 
 |       o << "1"; | 
 |       break; | 
 |     case BIT_FALSE: | 
 |       o << "0"; | 
 |       break; | 
 |     case BIT_UNSET: | 
 |       o << "_"; | 
 |       break; | 
 |     default: | 
 |       assert(0 && "unexpected return value from bitFromBits"); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static BitsInit &getBitsField(const Record &def, const char *str) { | 
 |   BitsInit *bits = def.getValueAsBitsInit(str); | 
 |   return *bits; | 
 | } | 
 |  | 
 | // Forward declaration. | 
 | class FilterChooser; | 
 |  | 
 | // Representation of the instruction to work on. | 
 | typedef std::vector<bit_value_t> insn_t; | 
 |  | 
 | /// Filter - Filter works with FilterChooser to produce the decoding tree for | 
 | /// the ISA. | 
 | /// | 
 | /// It is useful to think of a Filter as governing the switch stmts of the | 
 | /// decoding tree in a certain level.  Each case stmt delegates to an inferior | 
 | /// FilterChooser to decide what further decoding logic to employ, or in another | 
 | /// words, what other remaining bits to look at.  The FilterChooser eventually | 
 | /// chooses a best Filter to do its job. | 
 | /// | 
 | /// This recursive scheme ends when the number of Opcodes assigned to the | 
 | /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when | 
 | /// the Filter/FilterChooser combo does not know how to distinguish among the | 
 | /// Opcodes assigned. | 
 | /// | 
 | /// An example of a conflict is | 
 | /// | 
 | /// Conflict: | 
 | ///                     111101000.00........00010000.... | 
 | ///                     111101000.00........0001........ | 
 | ///                     1111010...00........0001........ | 
 | ///                     1111010...00.................... | 
 | ///                     1111010......................... | 
 | ///                     1111............................ | 
 | ///                     ................................ | 
 | ///     VST4q8a         111101000_00________00010000____ | 
 | ///     VST4q8b         111101000_00________00010000____ | 
 | /// | 
 | /// The Debug output shows the path that the decoding tree follows to reach the | 
 | /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced | 
 | /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. | 
 | /// | 
 | /// The encoding info in the .td files does not specify this meta information, | 
 | /// which could have been used by the decoder to resolve the conflict.  The | 
 | /// decoder could try to decode the even/odd register numbering and assign to | 
 | /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" | 
 | /// version and return the Opcode since the two have the same Asm format string. | 
 | class Filter { | 
 | protected: | 
 |   FilterChooser *Owner; // points to the FilterChooser who owns this filter | 
 |   unsigned StartBit; // the starting bit position | 
 |   unsigned NumBits; // number of bits to filter | 
 |   bool Mixed; // a mixed region contains both set and unset bits | 
 |  | 
 |   // Map of well-known segment value to the set of uid's with that value. | 
 |   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; | 
 |  | 
 |   // Set of uid's with non-constant segment values. | 
 |   std::vector<unsigned> VariableInstructions; | 
 |  | 
 |   // Map of well-known segment value to its delegate. | 
 |   std::map<unsigned, FilterChooser*> FilterChooserMap; | 
 |  | 
 |   // Number of instructions which fall under FilteredInstructions category. | 
 |   unsigned NumFiltered; | 
 |  | 
 |   // Keeps track of the last opcode in the filtered bucket. | 
 |   unsigned LastOpcFiltered; | 
 |  | 
 |   // Number of instructions which fall under VariableInstructions category. | 
 |   unsigned NumVariable; | 
 |  | 
 | public: | 
 |   unsigned getNumFiltered() { return NumFiltered; } | 
 |   unsigned getNumVariable() { return NumVariable; } | 
 |   unsigned getSingletonOpc() { | 
 |     assert(NumFiltered == 1); | 
 |     return LastOpcFiltered; | 
 |   } | 
 |   // Return the filter chooser for the group of instructions without constant | 
 |   // segment values. | 
 |   FilterChooser &getVariableFC() { | 
 |     assert(NumFiltered == 1); | 
 |     assert(FilterChooserMap.size() == 1); | 
 |     return *(FilterChooserMap.find((unsigned)-1)->second); | 
 |   } | 
 |  | 
 |   Filter(const Filter &f); | 
 |   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); | 
 |  | 
 |   ~Filter(); | 
 |  | 
 |   // Divides the decoding task into sub tasks and delegates them to the | 
 |   // inferior FilterChooser's. | 
 |   // | 
 |   // A special case arises when there's only one entry in the filtered | 
 |   // instructions.  In order to unambiguously decode the singleton, we need to | 
 |   // match the remaining undecoded encoding bits against the singleton. | 
 |   void recurse(); | 
 |  | 
 |   // Emit code to decode instructions given a segment or segments of bits. | 
 |   void emit(raw_ostream &o, unsigned &Indentation); | 
 |  | 
 |   // Returns the number of fanout produced by the filter.  More fanout implies | 
 |   // the filter distinguishes more categories of instructions. | 
 |   unsigned usefulness() const; | 
 | }; // End of class Filter | 
 |  | 
 | // These are states of our finite state machines used in FilterChooser's | 
 | // filterProcessor() which produces the filter candidates to use. | 
 | typedef enum { | 
 |   ATTR_NONE, | 
 |   ATTR_FILTERED, | 
 |   ATTR_ALL_SET, | 
 |   ATTR_ALL_UNSET, | 
 |   ATTR_MIXED | 
 | } bitAttr_t; | 
 |  | 
 | /// FilterChooser - FilterChooser chooses the best filter among a set of Filters | 
 | /// in order to perform the decoding of instructions at the current level. | 
 | /// | 
 | /// Decoding proceeds from the top down.  Based on the well-known encoding bits | 
 | /// of instructions available, FilterChooser builds up the possible Filters that | 
 | /// can further the task of decoding by distinguishing among the remaining | 
 | /// candidate instructions. | 
 | /// | 
 | /// Once a filter has been chosen, it is called upon to divide the decoding task | 
 | /// into sub-tasks and delegates them to its inferior FilterChoosers for further | 
 | /// processings. | 
 | /// | 
 | /// It is useful to think of a Filter as governing the switch stmts of the | 
 | /// decoding tree.  And each case is delegated to an inferior FilterChooser to | 
 | /// decide what further remaining bits to look at. | 
 | class FilterChooser { | 
 | protected: | 
 |   friend class Filter; | 
 |  | 
 |   // Vector of codegen instructions to choose our filter. | 
 |   const std::vector<const CodeGenInstruction*> &AllInstructions; | 
 |  | 
 |   // Vector of uid's for this filter chooser to work on. | 
 |   const std::vector<unsigned> Opcodes; | 
 |  | 
 |   // Lookup table for the operand decoding of instructions. | 
 |   std::map<unsigned, std::vector<OperandInfo> > &Operands; | 
 |  | 
 |   // Vector of candidate filters. | 
 |   std::vector<Filter> Filters; | 
 |  | 
 |   // Array of bit values passed down from our parent. | 
 |   // Set to all BIT_UNFILTERED's for Parent == NULL. | 
 |   std::vector<bit_value_t> FilterBitValues; | 
 |  | 
 |   // Links to the FilterChooser above us in the decoding tree. | 
 |   FilterChooser *Parent; | 
 |  | 
 |   // Index of the best filter from Filters. | 
 |   int BestIndex; | 
 |  | 
 |   // Width of instructions | 
 |   unsigned BitWidth; | 
 |  | 
 |   // Parent emitter | 
 |   const FixedLenDecoderEmitter *Emitter; | 
 |  | 
 | public: | 
 |   FilterChooser(const FilterChooser &FC) : | 
 |     AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), | 
 |       Operands(FC.Operands), Filters(FC.Filters), | 
 |       FilterBitValues(FC.FilterBitValues), Parent(FC.Parent), | 
 |     BestIndex(FC.BestIndex), BitWidth(FC.BitWidth), | 
 |     Emitter(FC.Emitter) { } | 
 |  | 
 |   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, | 
 |                 const std::vector<unsigned> &IDs, | 
 |     std::map<unsigned, std::vector<OperandInfo> > &Ops, | 
 |                 unsigned BW, | 
 |                 const FixedLenDecoderEmitter *E) : | 
 |       AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), | 
 |       Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) { | 
 |     for (unsigned i = 0; i < BitWidth; ++i) | 
 |       FilterBitValues.push_back(BIT_UNFILTERED); | 
 |  | 
 |     doFilter(); | 
 |   } | 
 |  | 
 |   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, | 
 |                 const std::vector<unsigned> &IDs, | 
 |         std::map<unsigned, std::vector<OperandInfo> > &Ops, | 
 |                 std::vector<bit_value_t> &ParentFilterBitValues, | 
 |                 FilterChooser &parent) : | 
 |       AllInstructions(Insts), Opcodes(IDs), Operands(Ops), | 
 |       Filters(), FilterBitValues(ParentFilterBitValues), | 
 |       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth), | 
 |       Emitter(parent.Emitter) { | 
 |     doFilter(); | 
 |   } | 
 |  | 
 |   // The top level filter chooser has NULL as its parent. | 
 |   bool isTopLevel() { return Parent == NULL; } | 
 |  | 
 |   // Emit the top level typedef and decodeInstruction() function. | 
 |   void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace); | 
 |  | 
 | protected: | 
 |   // Populates the insn given the uid. | 
 |   void insnWithID(insn_t &Insn, unsigned Opcode) const { | 
 |     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); | 
 |  | 
 |     for (unsigned i = 0; i < BitWidth; ++i) | 
 |       Insn.push_back(bitFromBits(Bits, i)); | 
 |   } | 
 |  | 
 |   // Returns the record name. | 
 |   const std::string &nameWithID(unsigned Opcode) const { | 
 |     return AllInstructions[Opcode]->TheDef->getName(); | 
 |   } | 
 |  | 
 |   // Populates the field of the insn given the start position and the number of | 
 |   // consecutive bits to scan for. | 
 |   // | 
 |   // Returns false if there exists any uninitialized bit value in the range. | 
 |   // Returns true, otherwise. | 
 |   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, | 
 |       unsigned NumBits) const; | 
 |  | 
 |   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given | 
 |   /// filter array as a series of chars. | 
 |   void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter); | 
 |  | 
 |   /// dumpStack - dumpStack traverses the filter chooser chain and calls | 
 |   /// dumpFilterArray on each filter chooser up to the top level one. | 
 |   void dumpStack(raw_ostream &o, const char *prefix); | 
 |  | 
 |   Filter &bestFilter() { | 
 |     assert(BestIndex != -1 && "BestIndex not set"); | 
 |     return Filters[BestIndex]; | 
 |   } | 
 |  | 
 |   // Called from Filter::recurse() when singleton exists.  For debug purpose. | 
 |   void SingletonExists(unsigned Opc); | 
 |  | 
 |   bool PositionFiltered(unsigned i) { | 
 |     return ValueSet(FilterBitValues[i]); | 
 |   } | 
 |  | 
 |   // Calculates the island(s) needed to decode the instruction. | 
 |   // This returns a lit of undecoded bits of an instructions, for example, | 
 |   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be | 
 |   // decoded bits in order to verify that the instruction matches the Opcode. | 
 |   unsigned getIslands(std::vector<unsigned> &StartBits, | 
 |       std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, | 
 |       insn_t &Insn); | 
 |  | 
 |   // Emits code to check the Predicates member of an instruction are true. | 
 |   // Returns true if predicate matches were emitted, false otherwise. | 
 |   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc); | 
 |  | 
 |   // Emits code to decode the singleton.  Return true if we have matched all the | 
 |   // well-known bits. | 
 |   bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); | 
 |  | 
 |   // Emits code to decode the singleton, and then to decode the rest. | 
 |   void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best); | 
 |  | 
 |   void emitBinaryParser(raw_ostream &o , unsigned &Indentation, | 
 |                         OperandInfo &OpInfo); | 
 |  | 
 |   // Assign a single filter and run with it. | 
 |   void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, | 
 |       bool mixed); | 
 |  | 
 |   // reportRegion is a helper function for filterProcessor to mark a region as | 
 |   // eligible for use as a filter region. | 
 |   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, | 
 |       bool AllowMixed); | 
 |  | 
 |   // FilterProcessor scans the well-known encoding bits of the instructions and | 
 |   // builds up a list of candidate filters.  It chooses the best filter and | 
 |   // recursively descends down the decoding tree. | 
 |   bool filterProcessor(bool AllowMixed, bool Greedy = true); | 
 |  | 
 |   // Decides on the best configuration of filter(s) to use in order to decode | 
 |   // the instructions.  A conflict of instructions may occur, in which case we | 
 |   // dump the conflict set to the standard error. | 
 |   void doFilter(); | 
 |  | 
 |   // Emits code to decode our share of instructions.  Returns true if the | 
 |   // emitted code causes a return, which occurs if we know how to decode | 
 |   // the instruction at this level or the instruction is not decodeable. | 
 |   bool emit(raw_ostream &o, unsigned &Indentation); | 
 | }; | 
 |  | 
 | /////////////////////////// | 
 | //                       // | 
 | // Filter Implmenetation // | 
 | //                       // | 
 | /////////////////////////// | 
 |  | 
 | Filter::Filter(const Filter &f) : | 
 |   Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), | 
 |   FilteredInstructions(f.FilteredInstructions), | 
 |   VariableInstructions(f.VariableInstructions), | 
 |   FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), | 
 |   LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { | 
 | } | 
 |  | 
 | Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, | 
 |     bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), | 
 |                   Mixed(mixed) { | 
 |   assert(StartBit + NumBits - 1 < Owner->BitWidth); | 
 |  | 
 |   NumFiltered = 0; | 
 |   LastOpcFiltered = 0; | 
 |   NumVariable = 0; | 
 |  | 
 |   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { | 
 |     insn_t Insn; | 
 |  | 
 |     // Populates the insn given the uid. | 
 |     Owner->insnWithID(Insn, Owner->Opcodes[i]); | 
 |  | 
 |     uint64_t Field; | 
 |     // Scans the segment for possibly well-specified encoding bits. | 
 |     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); | 
 |  | 
 |     if (ok) { | 
 |       // The encoding bits are well-known.  Lets add the uid of the | 
 |       // instruction into the bucket keyed off the constant field value. | 
 |       LastOpcFiltered = Owner->Opcodes[i]; | 
 |       FilteredInstructions[Field].push_back(LastOpcFiltered); | 
 |       ++NumFiltered; | 
 |     } else { | 
 |       // Some of the encoding bit(s) are unspecfied.  This contributes to | 
 |       // one additional member of "Variable" instructions. | 
 |       VariableInstructions.push_back(Owner->Opcodes[i]); | 
 |       ++NumVariable; | 
 |     } | 
 |   } | 
 |  | 
 |   assert((FilteredInstructions.size() + VariableInstructions.size() > 0) | 
 |          && "Filter returns no instruction categories"); | 
 | } | 
 |  | 
 | Filter::~Filter() { | 
 |   std::map<unsigned, FilterChooser*>::iterator filterIterator; | 
 |   for (filterIterator = FilterChooserMap.begin(); | 
 |        filterIterator != FilterChooserMap.end(); | 
 |        filterIterator++) { | 
 |     delete filterIterator->second; | 
 |   } | 
 | } | 
 |  | 
 | // Divides the decoding task into sub tasks and delegates them to the | 
 | // inferior FilterChooser's. | 
 | // | 
 | // A special case arises when there's only one entry in the filtered | 
 | // instructions.  In order to unambiguously decode the singleton, we need to | 
 | // match the remaining undecoded encoding bits against the singleton. | 
 | void Filter::recurse() { | 
 |   std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; | 
 |  | 
 |   // Starts by inheriting our parent filter chooser's filter bit values. | 
 |   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); | 
 |  | 
 |   unsigned bitIndex; | 
 |  | 
 |   if (VariableInstructions.size()) { | 
 |     // Conservatively marks each segment position as BIT_UNSET. | 
 |     for (bitIndex = 0; bitIndex < NumBits; bitIndex++) | 
 |       BitValueArray[StartBit + bitIndex] = BIT_UNSET; | 
 |  | 
 |     // Delegates to an inferior filter chooser for further processing on this | 
 |     // group of instructions whose segment values are variable. | 
 |     FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( | 
 |                               (unsigned)-1, | 
 |                               new FilterChooser(Owner->AllInstructions, | 
 |                                                 VariableInstructions, | 
 |                                                 Owner->Operands, | 
 |                                                 BitValueArray, | 
 |                                                 *Owner) | 
 |                               )); | 
 |   } | 
 |  | 
 |   // No need to recurse for a singleton filtered instruction. | 
 |   // See also Filter::emit(). | 
 |   if (getNumFiltered() == 1) { | 
 |     //Owner->SingletonExists(LastOpcFiltered); | 
 |     assert(FilterChooserMap.size() == 1); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, create sub choosers. | 
 |   for (mapIterator = FilteredInstructions.begin(); | 
 |        mapIterator != FilteredInstructions.end(); | 
 |        mapIterator++) { | 
 |  | 
 |     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. | 
 |     for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { | 
 |       if (mapIterator->first & (1ULL << bitIndex)) | 
 |         BitValueArray[StartBit + bitIndex] = BIT_TRUE; | 
 |       else | 
 |         BitValueArray[StartBit + bitIndex] = BIT_FALSE; | 
 |     } | 
 |  | 
 |     // Delegates to an inferior filter chooser for further processing on this | 
 |     // category of instructions. | 
 |     FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( | 
 |                               mapIterator->first, | 
 |                               new FilterChooser(Owner->AllInstructions, | 
 |                                                 mapIterator->second, | 
 |                                                 Owner->Operands, | 
 |                                                 BitValueArray, | 
 |                                                 *Owner) | 
 |                               )); | 
 |   } | 
 | } | 
 |  | 
 | // Emit code to decode instructions given a segment or segments of bits. | 
 | void Filter::emit(raw_ostream &o, unsigned &Indentation) { | 
 |   o.indent(Indentation) << "// Check Inst{"; | 
 |  | 
 |   if (NumBits > 1) | 
 |     o << (StartBit + NumBits - 1) << '-'; | 
 |  | 
 |   o << StartBit << "} ...\n"; | 
 |  | 
 |   o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth | 
 |                         << "(insn, " << StartBit << ", " | 
 |                         << NumBits << ")) {\n"; | 
 |  | 
 |   std::map<unsigned, FilterChooser*>::iterator filterIterator; | 
 |  | 
 |   bool DefaultCase = false; | 
 |   for (filterIterator = FilterChooserMap.begin(); | 
 |        filterIterator != FilterChooserMap.end(); | 
 |        filterIterator++) { | 
 |  | 
 |     // Field value -1 implies a non-empty set of variable instructions. | 
 |     // See also recurse(). | 
 |     if (filterIterator->first == (unsigned)-1) { | 
 |       DefaultCase = true; | 
 |  | 
 |       o.indent(Indentation) << "default:\n"; | 
 |       o.indent(Indentation) << "  break; // fallthrough\n"; | 
 |  | 
 |       // Closing curly brace for the switch statement. | 
 |       // This is unconventional because we want the default processing to be | 
 |       // performed for the fallthrough cases as well, i.e., when the "cases" | 
 |       // did not prove a decoded instruction. | 
 |       o.indent(Indentation) << "}\n"; | 
 |  | 
 |     } else | 
 |       o.indent(Indentation) << "case " << filterIterator->first << ":\n"; | 
 |  | 
 |     // We arrive at a category of instructions with the same segment value. | 
 |     // Now delegate to the sub filter chooser for further decodings. | 
 |     // The case may fallthrough, which happens if the remaining well-known | 
 |     // encoding bits do not match exactly. | 
 |     if (!DefaultCase) { ++Indentation; ++Indentation; } | 
 |  | 
 |     bool finished = filterIterator->second->emit(o, Indentation); | 
 |     // For top level default case, there's no need for a break statement. | 
 |     if (Owner->isTopLevel() && DefaultCase) | 
 |       break; | 
 |     if (!finished) | 
 |       o.indent(Indentation) << "break;\n"; | 
 |  | 
 |     if (!DefaultCase) { --Indentation; --Indentation; } | 
 |   } | 
 |  | 
 |   // If there is no default case, we still need to supply a closing brace. | 
 |   if (!DefaultCase) { | 
 |     // Closing curly brace for the switch statement. | 
 |     o.indent(Indentation) << "}\n"; | 
 |   } | 
 | } | 
 |  | 
 | // Returns the number of fanout produced by the filter.  More fanout implies | 
 | // the filter distinguishes more categories of instructions. | 
 | unsigned Filter::usefulness() const { | 
 |   if (VariableInstructions.size()) | 
 |     return FilteredInstructions.size(); | 
 |   else | 
 |     return FilteredInstructions.size() + 1; | 
 | } | 
 |  | 
 | ////////////////////////////////// | 
 | //                              // | 
 | // Filterchooser Implementation // | 
 | //                              // | 
 | ////////////////////////////////// | 
 |  | 
 | // Emit the top level typedef and decodeInstruction() function. | 
 | void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation, | 
 |                             std::string Namespace) { | 
 |   o.indent(Indentation) << | 
 |     "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth | 
 |     << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, " | 
 |     << "const void *Decoder, const MCSubtargetInfo &STI) {\n"; | 
 |   o.indent(Indentation) << "  unsigned tmp = 0;\n  (void)tmp;\n" << Emitter->Locals << "\n"; | 
 |   o.indent(Indentation) << "  uint64_t Bits = STI.getFeatureBits();\n"; | 
 |  | 
 |   ++Indentation; ++Indentation; | 
 |   // Emits code to decode the instructions. | 
 |   emit(o, Indentation); | 
 |  | 
 |   o << '\n'; | 
 |   o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n"; | 
 |   --Indentation; --Indentation; | 
 |  | 
 |   o.indent(Indentation) << "}\n"; | 
 |  | 
 |   o << '\n'; | 
 | } | 
 |  | 
 | // Populates the field of the insn given the start position and the number of | 
 | // consecutive bits to scan for. | 
 | // | 
 | // Returns false if and on the first uninitialized bit value encountered. | 
 | // Returns true, otherwise. | 
 | bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, | 
 |     unsigned StartBit, unsigned NumBits) const { | 
 |   Field = 0; | 
 |  | 
 |   for (unsigned i = 0; i < NumBits; ++i) { | 
 |     if (Insn[StartBit + i] == BIT_UNSET) | 
 |       return false; | 
 |  | 
 |     if (Insn[StartBit + i] == BIT_TRUE) | 
 |       Field = Field | (1ULL << i); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given | 
 | /// filter array as a series of chars. | 
 | void FilterChooser::dumpFilterArray(raw_ostream &o, | 
 |                                     std::vector<bit_value_t> &filter) { | 
 |   unsigned bitIndex; | 
 |  | 
 |   for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) { | 
 |     switch (filter[bitIndex - 1]) { | 
 |     case BIT_UNFILTERED: | 
 |       o << "."; | 
 |       break; | 
 |     case BIT_UNSET: | 
 |       o << "_"; | 
 |       break; | 
 |     case BIT_TRUE: | 
 |       o << "1"; | 
 |       break; | 
 |     case BIT_FALSE: | 
 |       o << "0"; | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// dumpStack - dumpStack traverses the filter chooser chain and calls | 
 | /// dumpFilterArray on each filter chooser up to the top level one. | 
 | void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) { | 
 |   FilterChooser *current = this; | 
 |  | 
 |   while (current) { | 
 |     o << prefix; | 
 |     dumpFilterArray(o, current->FilterBitValues); | 
 |     o << '\n'; | 
 |     current = current->Parent; | 
 |   } | 
 | } | 
 |  | 
 | // Called from Filter::recurse() when singleton exists.  For debug purpose. | 
 | void FilterChooser::SingletonExists(unsigned Opc) { | 
 |   insn_t Insn0; | 
 |   insnWithID(Insn0, Opc); | 
 |  | 
 |   errs() << "Singleton exists: " << nameWithID(Opc) | 
 |          << " with its decoding dominating "; | 
 |   for (unsigned i = 0; i < Opcodes.size(); ++i) { | 
 |     if (Opcodes[i] == Opc) continue; | 
 |     errs() << nameWithID(Opcodes[i]) << ' '; | 
 |   } | 
 |   errs() << '\n'; | 
 |  | 
 |   dumpStack(errs(), "\t\t"); | 
 |   for (unsigned i = 0; i < Opcodes.size(); i++) { | 
 |     const std::string &Name = nameWithID(Opcodes[i]); | 
 |  | 
 |     errs() << '\t' << Name << " "; | 
 |     dumpBits(errs(), | 
 |              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); | 
 |     errs() << '\n'; | 
 |   } | 
 | } | 
 |  | 
 | // Calculates the island(s) needed to decode the instruction. | 
 | // This returns a list of undecoded bits of an instructions, for example, | 
 | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be | 
 | // decoded bits in order to verify that the instruction matches the Opcode. | 
 | unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, | 
 |     std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, | 
 |     insn_t &Insn) { | 
 |   unsigned Num, BitNo; | 
 |   Num = BitNo = 0; | 
 |  | 
 |   uint64_t FieldVal = 0; | 
 |  | 
 |   // 0: Init | 
 |   // 1: Water (the bit value does not affect decoding) | 
 |   // 2: Island (well-known bit value needed for decoding) | 
 |   int State = 0; | 
 |   int Val = -1; | 
 |  | 
 |   for (unsigned i = 0; i < BitWidth; ++i) { | 
 |     Val = Value(Insn[i]); | 
 |     bool Filtered = PositionFiltered(i); | 
 |     switch (State) { | 
 |     default: | 
 |       assert(0 && "Unreachable code!"); | 
 |       break; | 
 |     case 0: | 
 |     case 1: | 
 |       if (Filtered || Val == -1) | 
 |         State = 1; // Still in Water | 
 |       else { | 
 |         State = 2; // Into the Island | 
 |         BitNo = 0; | 
 |         StartBits.push_back(i); | 
 |         FieldVal = Val; | 
 |       } | 
 |       break; | 
 |     case 2: | 
 |       if (Filtered || Val == -1) { | 
 |         State = 1; // Into the Water | 
 |         EndBits.push_back(i - 1); | 
 |         FieldVals.push_back(FieldVal); | 
 |         ++Num; | 
 |       } else { | 
 |         State = 2; // Still in Island | 
 |         ++BitNo; | 
 |         FieldVal = FieldVal | Val << BitNo; | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |   // If we are still in Island after the loop, do some housekeeping. | 
 |   if (State == 2) { | 
 |     EndBits.push_back(BitWidth - 1); | 
 |     FieldVals.push_back(FieldVal); | 
 |     ++Num; | 
 |   } | 
 |  | 
 |   assert(StartBits.size() == Num && EndBits.size() == Num && | 
 |          FieldVals.size() == Num); | 
 |   return Num; | 
 | } | 
 |  | 
 | void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, | 
 |                          OperandInfo &OpInfo) { | 
 |   std::string &Decoder = OpInfo.Decoder; | 
 |  | 
 |   if (OpInfo.numFields() == 1) { | 
 |     OperandInfo::iterator OI = OpInfo.begin(); | 
 |     o.indent(Indentation) << "  tmp = fieldFromInstruction" << BitWidth | 
 |                             << "(insn, " << OI->Base << ", " << OI->Width | 
 |                             << ");\n"; | 
 |   } else { | 
 |     o.indent(Indentation) << "  tmp = 0;\n"; | 
 |     for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end(); | 
 |          OI != OE; ++OI) { | 
 |       o.indent(Indentation) << "  tmp |= (fieldFromInstruction" << BitWidth | 
 |                             << "(insn, " << OI->Base << ", " << OI->Width | 
 |                             << ") << " << OI->Offset << ");\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Decoder != "") | 
 |     o.indent(Indentation) << "  " << Emitter->GuardPrefix << Decoder | 
 |                           << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n"; | 
 |   else | 
 |     o.indent(Indentation) << "  MI.addOperand(MCOperand::CreateImm(tmp));\n"; | 
 |  | 
 | } | 
 |  | 
 | static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, | 
 |                                      std::string PredicateNamespace) { | 
 |   if (str[0] == '!') | 
 |     o << "!(Bits & " << PredicateNamespace << "::" | 
 |       << str.slice(1,str.size()) << ")"; | 
 |   else | 
 |     o << "(Bits & " << PredicateNamespace << "::" << str << ")"; | 
 | } | 
 |  | 
 | bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, | 
 |                                            unsigned Opc) { | 
 |   ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); | 
 |   for (unsigned i = 0; i < Predicates->getSize(); ++i) { | 
 |     Record *Pred = Predicates->getElementAsRecord(i); | 
 |     if (!Pred->getValue("AssemblerMatcherPredicate")) | 
 |       continue; | 
 |  | 
 |     std::string P = Pred->getValueAsString("AssemblerCondString"); | 
 |  | 
 |     if (!P.length()) | 
 |       continue; | 
 |  | 
 |     if (i != 0) | 
 |       o << " && "; | 
 |  | 
 |     StringRef SR(P); | 
 |     std::pair<StringRef, StringRef> pairs = SR.split(','); | 
 |     while (pairs.second.size()) { | 
 |       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); | 
 |       o << " && "; | 
 |       pairs = pairs.second.split(','); | 
 |     } | 
 |     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); | 
 |   } | 
 |   return Predicates->getSize() > 0; | 
 | } | 
 |  | 
 | // Emits code to decode the singleton.  Return true if we have matched all the | 
 | // well-known bits. | 
 | bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, | 
 |                                          unsigned Opc) { | 
 |   std::vector<unsigned> StartBits; | 
 |   std::vector<unsigned> EndBits; | 
 |   std::vector<uint64_t> FieldVals; | 
 |   insn_t Insn; | 
 |   insnWithID(Insn, Opc); | 
 |  | 
 |   // Look for islands of undecoded bits of the singleton. | 
 |   getIslands(StartBits, EndBits, FieldVals, Insn); | 
 |  | 
 |   unsigned Size = StartBits.size(); | 
 |   unsigned I, NumBits; | 
 |  | 
 |   // If we have matched all the well-known bits, just issue a return. | 
 |   if (Size == 0) { | 
 |     o.indent(Indentation) << "if ("; | 
 |     if (!emitPredicateMatch(o, Indentation, Opc)) | 
 |       o << "1"; | 
 |     o << ") {\n"; | 
 |     o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n"; | 
 |     std::vector<OperandInfo>& InsnOperands = Operands[Opc]; | 
 |     for (std::vector<OperandInfo>::iterator | 
 |          I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { | 
 |       // If a custom instruction decoder was specified, use that. | 
 |       if (I->numFields() == 0 && I->Decoder.size()) { | 
 |         o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder | 
 |                               << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n"; | 
 |         break; | 
 |       } | 
 |  | 
 |       emitBinaryParser(o, Indentation, *I); | 
 |     } | 
 |  | 
 |     o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // " << nameWithID(Opc) | 
 |                           << '\n'; | 
 |     o.indent(Indentation) << "}\n"; // Closing predicate block. | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Otherwise, there are more decodings to be done! | 
 |  | 
 |   // Emit code to match the island(s) for the singleton. | 
 |   o.indent(Indentation) << "// Check "; | 
 |  | 
 |   for (I = Size; I != 0; --I) { | 
 |     o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; | 
 |     if (I > 1) | 
 |       o << " && "; | 
 |     else | 
 |       o << "for singleton decoding...\n"; | 
 |   } | 
 |  | 
 |   o.indent(Indentation) << "if ("; | 
 |   if (emitPredicateMatch(o, Indentation, Opc)) { | 
 |     o << " &&\n"; | 
 |     o.indent(Indentation+4); | 
 |   } | 
 |  | 
 |   for (I = Size; I != 0; --I) { | 
 |     NumBits = EndBits[I-1] - StartBits[I-1] + 1; | 
 |     o << "fieldFromInstruction" << BitWidth << "(insn, " | 
 |       << StartBits[I-1] << ", " << NumBits | 
 |       << ") == " << FieldVals[I-1]; | 
 |     if (I > 1) | 
 |       o << " && "; | 
 |     else | 
 |       o << ") {\n"; | 
 |   } | 
 |   o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n"; | 
 |   std::vector<OperandInfo>& InsnOperands = Operands[Opc]; | 
 |   for (std::vector<OperandInfo>::iterator | 
 |        I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { | 
 |     // If a custom instruction decoder was specified, use that. | 
 |     if (I->numFields() == 0 && I->Decoder.size()) { | 
 |       o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder | 
 |                             << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n"; | 
 |       break; | 
 |     } | 
 |  | 
 |     emitBinaryParser(o, Indentation, *I); | 
 |   } | 
 |   o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // " << nameWithID(Opc) | 
 |                         << '\n'; | 
 |   o.indent(Indentation) << "}\n"; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Emits code to decode the singleton, and then to decode the rest. | 
 | void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, | 
 |     Filter &Best) { | 
 |  | 
 |   unsigned Opc = Best.getSingletonOpc(); | 
 |  | 
 |   emitSingletonDecoder(o, Indentation, Opc); | 
 |  | 
 |   // Emit code for the rest. | 
 |   o.indent(Indentation) << "else\n"; | 
 |  | 
 |   Indentation += 2; | 
 |   Best.getVariableFC().emit(o, Indentation); | 
 |   Indentation -= 2; | 
 | } | 
 |  | 
 | // Assign a single filter and run with it.  Top level API client can initialize | 
 | // with a single filter to start the filtering process. | 
 | void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit, | 
 |     unsigned numBit, bool mixed) { | 
 |   Filters.clear(); | 
 |   Filter F(*this, startBit, numBit, true); | 
 |   Filters.push_back(F); | 
 |   BestIndex = 0; // Sole Filter instance to choose from. | 
 |   bestFilter().recurse(); | 
 | } | 
 |  | 
 | // reportRegion is a helper function for filterProcessor to mark a region as | 
 | // eligible for use as a filter region. | 
 | void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, | 
 |     unsigned BitIndex, bool AllowMixed) { | 
 |   if (RA == ATTR_MIXED && AllowMixed) | 
 |     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true)); | 
 |   else if (RA == ATTR_ALL_SET && !AllowMixed) | 
 |     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false)); | 
 | } | 
 |  | 
 | // FilterProcessor scans the well-known encoding bits of the instructions and | 
 | // builds up a list of candidate filters.  It chooses the best filter and | 
 | // recursively descends down the decoding tree. | 
 | bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { | 
 |   Filters.clear(); | 
 |   BestIndex = -1; | 
 |   unsigned numInstructions = Opcodes.size(); | 
 |  | 
 |   assert(numInstructions && "Filter created with no instructions"); | 
 |  | 
 |   // No further filtering is necessary. | 
 |   if (numInstructions == 1) | 
 |     return true; | 
 |  | 
 |   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of | 
 |   // instructions is 3. | 
 |   if (AllowMixed && !Greedy) { | 
 |     assert(numInstructions == 3); | 
 |  | 
 |     for (unsigned i = 0; i < Opcodes.size(); ++i) { | 
 |       std::vector<unsigned> StartBits; | 
 |       std::vector<unsigned> EndBits; | 
 |       std::vector<uint64_t> FieldVals; | 
 |       insn_t Insn; | 
 |  | 
 |       insnWithID(Insn, Opcodes[i]); | 
 |  | 
 |       // Look for islands of undecoded bits of any instruction. | 
 |       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { | 
 |         // Found an instruction with island(s).  Now just assign a filter. | 
 |         runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, | 
 |                         true); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned BitIndex, InsnIndex; | 
 |  | 
 |   // We maintain BIT_WIDTH copies of the bitAttrs automaton. | 
 |   // The automaton consumes the corresponding bit from each | 
 |   // instruction. | 
 |   // | 
 |   //   Input symbols: 0, 1, and _ (unset). | 
 |   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. | 
 |   //   Initial state: NONE. | 
 |   // | 
 |   // (NONE) ------- [01] -> (ALL_SET) | 
 |   // (NONE) ------- _ ----> (ALL_UNSET) | 
 |   // (ALL_SET) ---- [01] -> (ALL_SET) | 
 |   // (ALL_SET) ---- _ ----> (MIXED) | 
 |   // (ALL_UNSET) -- [01] -> (MIXED) | 
 |   // (ALL_UNSET) -- _ ----> (ALL_UNSET) | 
 |   // (MIXED) ------ . ----> (MIXED) | 
 |   // (FILTERED)---- . ----> (FILTERED) | 
 |  | 
 |   std::vector<bitAttr_t> bitAttrs; | 
 |  | 
 |   // FILTERED bit positions provide no entropy and are not worthy of pursuing. | 
 |   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. | 
 |   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) | 
 |     if (FilterBitValues[BitIndex] == BIT_TRUE || | 
 |         FilterBitValues[BitIndex] == BIT_FALSE) | 
 |       bitAttrs.push_back(ATTR_FILTERED); | 
 |     else | 
 |       bitAttrs.push_back(ATTR_NONE); | 
 |  | 
 |   for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { | 
 |     insn_t insn; | 
 |  | 
 |     insnWithID(insn, Opcodes[InsnIndex]); | 
 |  | 
 |     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { | 
 |       switch (bitAttrs[BitIndex]) { | 
 |       case ATTR_NONE: | 
 |         if (insn[BitIndex] == BIT_UNSET) | 
 |           bitAttrs[BitIndex] = ATTR_ALL_UNSET; | 
 |         else | 
 |           bitAttrs[BitIndex] = ATTR_ALL_SET; | 
 |         break; | 
 |       case ATTR_ALL_SET: | 
 |         if (insn[BitIndex] == BIT_UNSET) | 
 |           bitAttrs[BitIndex] = ATTR_MIXED; | 
 |         break; | 
 |       case ATTR_ALL_UNSET: | 
 |         if (insn[BitIndex] != BIT_UNSET) | 
 |           bitAttrs[BitIndex] = ATTR_MIXED; | 
 |         break; | 
 |       case ATTR_MIXED: | 
 |       case ATTR_FILTERED: | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // The regionAttr automaton consumes the bitAttrs automatons' state, | 
 |   // lowest-to-highest. | 
 |   // | 
 |   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) | 
 |   //   States:        NONE, ALL_SET, MIXED | 
 |   //   Initial state: NONE | 
 |   // | 
 |   // (NONE) ----- F --> (NONE) | 
 |   // (NONE) ----- S --> (ALL_SET)     ; and set region start | 
 |   // (NONE) ----- U --> (NONE) | 
 |   // (NONE) ----- M --> (MIXED)       ; and set region start | 
 |   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region | 
 |   // (ALL_SET) -- S --> (ALL_SET) | 
 |   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region | 
 |   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region | 
 |   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region | 
 |   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region | 
 |   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region | 
 |   // (MIXED) ---- M --> (MIXED) | 
 |  | 
 |   bitAttr_t RA = ATTR_NONE; | 
 |   unsigned StartBit = 0; | 
 |  | 
 |   for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) { | 
 |     bitAttr_t bitAttr = bitAttrs[BitIndex]; | 
 |  | 
 |     assert(bitAttr != ATTR_NONE && "Bit without attributes"); | 
 |  | 
 |     switch (RA) { | 
 |     case ATTR_NONE: | 
 |       switch (bitAttr) { | 
 |       case ATTR_FILTERED: | 
 |         break; | 
 |       case ATTR_ALL_SET: | 
 |         StartBit = BitIndex; | 
 |         RA = ATTR_ALL_SET; | 
 |         break; | 
 |       case ATTR_ALL_UNSET: | 
 |         break; | 
 |       case ATTR_MIXED: | 
 |         StartBit = BitIndex; | 
 |         RA = ATTR_MIXED; | 
 |         break; | 
 |       default: | 
 |         assert(0 && "Unexpected bitAttr!"); | 
 |       } | 
 |       break; | 
 |     case ATTR_ALL_SET: | 
 |       switch (bitAttr) { | 
 |       case ATTR_FILTERED: | 
 |         reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |         RA = ATTR_NONE; | 
 |         break; | 
 |       case ATTR_ALL_SET: | 
 |         break; | 
 |       case ATTR_ALL_UNSET: | 
 |         reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |         RA = ATTR_NONE; | 
 |         break; | 
 |       case ATTR_MIXED: | 
 |         reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |         StartBit = BitIndex; | 
 |         RA = ATTR_MIXED; | 
 |         break; | 
 |       default: | 
 |         assert(0 && "Unexpected bitAttr!"); | 
 |       } | 
 |       break; | 
 |     case ATTR_MIXED: | 
 |       switch (bitAttr) { | 
 |       case ATTR_FILTERED: | 
 |         reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |         StartBit = BitIndex; | 
 |         RA = ATTR_NONE; | 
 |         break; | 
 |       case ATTR_ALL_SET: | 
 |         reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |         StartBit = BitIndex; | 
 |         RA = ATTR_ALL_SET; | 
 |         break; | 
 |       case ATTR_ALL_UNSET: | 
 |         reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |         RA = ATTR_NONE; | 
 |         break; | 
 |       case ATTR_MIXED: | 
 |         break; | 
 |       default: | 
 |         assert(0 && "Unexpected bitAttr!"); | 
 |       } | 
 |       break; | 
 |     case ATTR_ALL_UNSET: | 
 |       assert(0 && "regionAttr state machine has no ATTR_UNSET state"); | 
 |     case ATTR_FILTERED: | 
 |       assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); | 
 |     } | 
 |   } | 
 |  | 
 |   // At the end, if we're still in ALL_SET or MIXED states, report a region | 
 |   switch (RA) { | 
 |   case ATTR_NONE: | 
 |     break; | 
 |   case ATTR_FILTERED: | 
 |     break; | 
 |   case ATTR_ALL_SET: | 
 |     reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |     break; | 
 |   case ATTR_ALL_UNSET: | 
 |     break; | 
 |   case ATTR_MIXED: | 
 |     reportRegion(RA, StartBit, BitIndex, AllowMixed); | 
 |     break; | 
 |   } | 
 |  | 
 |   // We have finished with the filter processings.  Now it's time to choose | 
 |   // the best performing filter. | 
 |   BestIndex = 0; | 
 |   bool AllUseless = true; | 
 |   unsigned BestScore = 0; | 
 |  | 
 |   for (unsigned i = 0, e = Filters.size(); i != e; ++i) { | 
 |     unsigned Usefulness = Filters[i].usefulness(); | 
 |  | 
 |     if (Usefulness) | 
 |       AllUseless = false; | 
 |  | 
 |     if (Usefulness > BestScore) { | 
 |       BestIndex = i; | 
 |       BestScore = Usefulness; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!AllUseless) | 
 |     bestFilter().recurse(); | 
 |  | 
 |   return !AllUseless; | 
 | } // end of FilterChooser::filterProcessor(bool) | 
 |  | 
 | // Decides on the best configuration of filter(s) to use in order to decode | 
 | // the instructions.  A conflict of instructions may occur, in which case we | 
 | // dump the conflict set to the standard error. | 
 | void FilterChooser::doFilter() { | 
 |   unsigned Num = Opcodes.size(); | 
 |   assert(Num && "FilterChooser created with no instructions"); | 
 |  | 
 |   // Try regions of consecutive known bit values first. | 
 |   if (filterProcessor(false)) | 
 |     return; | 
 |  | 
 |   // Then regions of mixed bits (both known and unitialized bit values allowed). | 
 |   if (filterProcessor(true)) | 
 |     return; | 
 |  | 
 |   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where | 
 |   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a | 
 |   // well-known encoding pattern.  In such case, we backtrack and scan for the | 
 |   // the very first consecutive ATTR_ALL_SET region and assign a filter to it. | 
 |   if (Num == 3 && filterProcessor(true, false)) | 
 |     return; | 
 |  | 
 |   // If we come to here, the instruction decoding has failed. | 
 |   // Set the BestIndex to -1 to indicate so. | 
 |   BestIndex = -1; | 
 | } | 
 |  | 
 | // Emits code to decode our share of instructions.  Returns true if the | 
 | // emitted code causes a return, which occurs if we know how to decode | 
 | // the instruction at this level or the instruction is not decodeable. | 
 | bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) { | 
 |   if (Opcodes.size() == 1) | 
 |     // There is only one instruction in the set, which is great! | 
 |     // Call emitSingletonDecoder() to see whether there are any remaining | 
 |     // encodings bits. | 
 |     return emitSingletonDecoder(o, Indentation, Opcodes[0]); | 
 |  | 
 |   // Choose the best filter to do the decodings! | 
 |   if (BestIndex != -1) { | 
 |     Filter &Best = bestFilter(); | 
 |     if (Best.getNumFiltered() == 1) | 
 |       emitSingletonDecoder(o, Indentation, Best); | 
 |     else | 
 |       bestFilter().emit(o, Indentation); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We don't know how to decode these instructions!  Return 0 and dump the | 
 |   // conflict set! | 
 |   o.indent(Indentation) << "return 0;" << " // Conflict set: "; | 
 |   for (int i = 0, N = Opcodes.size(); i < N; ++i) { | 
 |     o << nameWithID(Opcodes[i]); | 
 |     if (i < (N - 1)) | 
 |       o << ", "; | 
 |     else | 
 |       o << '\n'; | 
 |   } | 
 |  | 
 |   // Print out useful conflict information for postmortem analysis. | 
 |   errs() << "Decoding Conflict:\n"; | 
 |  | 
 |   dumpStack(errs(), "\t\t"); | 
 |  | 
 |   for (unsigned i = 0; i < Opcodes.size(); i++) { | 
 |     const std::string &Name = nameWithID(Opcodes[i]); | 
 |  | 
 |     errs() << '\t' << Name << " "; | 
 |     dumpBits(errs(), | 
 |              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); | 
 |     errs() << '\n'; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool populateInstruction(const CodeGenInstruction &CGI, | 
 |                                 unsigned Opc, | 
 |                       std::map<unsigned, std::vector<OperandInfo> >& Operands){ | 
 |   const Record &Def = *CGI.TheDef; | 
 |   // If all the bit positions are not specified; do not decode this instruction. | 
 |   // We are bound to fail!  For proper disassembly, the well-known encoding bits | 
 |   // of the instruction must be fully specified. | 
 |   // | 
 |   // This also removes pseudo instructions from considerations of disassembly, | 
 |   // which is a better design and less fragile than the name matchings. | 
 |   // Ignore "asm parser only" instructions. | 
 |   if (Def.getValueAsBit("isAsmParserOnly") || | 
 |       Def.getValueAsBit("isCodeGenOnly")) | 
 |     return false; | 
 |  | 
 |   BitsInit &Bits = getBitsField(Def, "Inst"); | 
 |   if (Bits.allInComplete()) return false; | 
 |  | 
 |   std::vector<OperandInfo> InsnOperands; | 
 |  | 
 |   // If the instruction has specified a custom decoding hook, use that instead | 
 |   // of trying to auto-generate the decoder. | 
 |   std::string InstDecoder = Def.getValueAsString("DecoderMethod"); | 
 |   if (InstDecoder != "") { | 
 |     InsnOperands.push_back(OperandInfo(InstDecoder)); | 
 |     Operands[Opc] = InsnOperands; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Generate a description of the operand of the instruction that we know | 
 |   // how to decode automatically. | 
 |   // FIXME: We'll need to have a way to manually override this as needed. | 
 |  | 
 |   // Gather the outputs/inputs of the instruction, so we can find their | 
 |   // positions in the encoding.  This assumes for now that they appear in the | 
 |   // MCInst in the order that they're listed. | 
 |   std::vector<std::pair<Init*, std::string> > InOutOperands; | 
 |   DagInit *Out  = Def.getValueAsDag("OutOperandList"); | 
 |   DagInit *In  = Def.getValueAsDag("InOperandList"); | 
 |   for (unsigned i = 0; i < Out->getNumArgs(); ++i) | 
 |     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i))); | 
 |   for (unsigned i = 0; i < In->getNumArgs(); ++i) | 
 |     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i))); | 
 |  | 
 |   // Search for tied operands, so that we can correctly instantiate | 
 |   // operands that are not explicitly represented in the encoding. | 
 |   std::map<std::string, std::string> TiedNames; | 
 |   for (unsigned i = 0; i < CGI.Operands.size(); ++i) { | 
 |     int tiedTo = CGI.Operands[i].getTiedRegister(); | 
 |     if (tiedTo != -1) { | 
 |       TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second; | 
 |       TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second; | 
 |     } | 
 |   } | 
 |  | 
 |   // For each operand, see if we can figure out where it is encoded. | 
 |   for (std::vector<std::pair<Init*, std::string> >::iterator | 
 |        NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) { | 
 |     std::string Decoder = ""; | 
 |  | 
 |     // At this point, we can locate the field, but we need to know how to | 
 |     // interpret it.  As a first step, require the target to provide callbacks | 
 |     // for decoding register classes. | 
 |     // FIXME: This need to be extended to handle instructions with custom | 
 |     // decoder methods, and operands with (simple) MIOperandInfo's. | 
 |     TypedInit *TI = dynamic_cast<TypedInit*>(NI->first); | 
 |     RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType()); | 
 |     Record *TypeRecord = Type->getRecord(); | 
 |     bool isReg = false; | 
 |     if (TypeRecord->isSubClassOf("RegisterOperand")) | 
 |       TypeRecord = TypeRecord->getValueAsDef("RegClass"); | 
 |     if (TypeRecord->isSubClassOf("RegisterClass")) { | 
 |       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; | 
 |       isReg = true; | 
 |     } | 
 |  | 
 |     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); | 
 |     StringInit *String = DecoderString ? | 
 |       dynamic_cast<StringInit*>(DecoderString->getValue()) : 0; | 
 |     if (!isReg && String && String->getValue() != "") | 
 |       Decoder = String->getValue(); | 
 |  | 
 |     OperandInfo OpInfo(Decoder); | 
 |     unsigned Base = ~0U; | 
 |     unsigned Width = 0; | 
 |     unsigned Offset = 0; | 
 |  | 
 |     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { | 
 |       VarInit *Var = 0; | 
 |       VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi)); | 
 |       if (BI) | 
 |         Var = dynamic_cast<VarInit*>(BI->getVariable()); | 
 |       else | 
 |         Var = dynamic_cast<VarInit*>(Bits.getBit(bi)); | 
 |  | 
 |       if (!Var) { | 
 |         if (Base != ~0U) { | 
 |           OpInfo.addField(Base, Width, Offset); | 
 |           Base = ~0U; | 
 |           Width = 0; | 
 |           Offset = 0; | 
 |         } | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (Var->getName() != NI->second && | 
 |           Var->getName() != TiedNames[NI->second]) { | 
 |         if (Base != ~0U) { | 
 |           OpInfo.addField(Base, Width, Offset); | 
 |           Base = ~0U; | 
 |           Width = 0; | 
 |           Offset = 0; | 
 |         } | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (Base == ~0U) { | 
 |         Base = bi; | 
 |         Width = 1; | 
 |         Offset = BI ? BI->getBitNum() : 0; | 
 |       } else if (BI && BI->getBitNum() != Offset + Width) { | 
 |         OpInfo.addField(Base, Width, Offset); | 
 |         Base = bi; | 
 |         Width = 1; | 
 |         Offset = BI->getBitNum(); | 
 |       } else { | 
 |         ++Width; | 
 |       } | 
 |     } | 
 |  | 
 |     if (Base != ~0U) | 
 |       OpInfo.addField(Base, Width, Offset); | 
 |  | 
 |     if (OpInfo.numFields() > 0) | 
 |       InsnOperands.push_back(OpInfo); | 
 |   } | 
 |  | 
 |   Operands[Opc] = InsnOperands; | 
 |  | 
 |  | 
 | #if 0 | 
 |   DEBUG({ | 
 |       // Dumps the instruction encoding bits. | 
 |       dumpBits(errs(), Bits); | 
 |  | 
 |       errs() << '\n'; | 
 |  | 
 |       // Dumps the list of operand info. | 
 |       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { | 
 |         const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; | 
 |         const std::string &OperandName = Info.Name; | 
 |         const Record &OperandDef = *Info.Rec; | 
 |  | 
 |         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; | 
 |       } | 
 |     }); | 
 | #endif | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) { | 
 |   unsigned Indentation = 0; | 
 |   std::string WidthStr = "uint" + utostr(BitWidth) + "_t"; | 
 |  | 
 |   o << '\n'; | 
 |  | 
 |   o.indent(Indentation) << "static " << WidthStr << | 
 |     " fieldFromInstruction" << BitWidth << | 
 |     "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n"; | 
 |  | 
 |   o.indent(Indentation) << "{\n"; | 
 |  | 
 |   ++Indentation; ++Indentation; | 
 |   o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth | 
 |                         << " && \"Instruction field out of bounds!\");\n"; | 
 |   o << '\n'; | 
 |   o.indent(Indentation) << WidthStr << " fieldMask;\n"; | 
 |   o << '\n'; | 
 |   o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n"; | 
 |  | 
 |   ++Indentation; ++Indentation; | 
 |   o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n"; | 
 |   --Indentation; --Indentation; | 
 |  | 
 |   o.indent(Indentation) << "else\n"; | 
 |  | 
 |   ++Indentation; ++Indentation; | 
 |   o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; | 
 |   --Indentation; --Indentation; | 
 |  | 
 |   o << '\n'; | 
 |   o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; | 
 |   --Indentation; --Indentation; | 
 |  | 
 |   o.indent(Indentation) << "}\n"; | 
 |  | 
 |   o << '\n'; | 
 | } | 
 |  | 
 | // Emits disassembler code for instruction decoding. | 
 | void FixedLenDecoderEmitter::run(raw_ostream &o) | 
 | { | 
 |   o << "#include \"llvm/MC/MCInst.h\"\n"; | 
 |   o << "#include \"llvm/Support/DataTypes.h\"\n"; | 
 |   o << "#include <assert.h>\n"; | 
 |   o << '\n'; | 
 |   o << "namespace llvm {\n\n"; | 
 |  | 
 |   // Parameterize the decoders based on namespace and instruction width. | 
 |   NumberedInstructions = Target.getInstructionsByEnumValue(); | 
 |   std::map<std::pair<std::string, unsigned>, | 
 |            std::vector<unsigned> > OpcMap; | 
 |   std::map<unsigned, std::vector<OperandInfo> > Operands; | 
 |  | 
 |   for (unsigned i = 0; i < NumberedInstructions.size(); ++i) { | 
 |     const CodeGenInstruction *Inst = NumberedInstructions[i]; | 
 |     Record *Def = Inst->TheDef; | 
 |     unsigned Size = Def->getValueAsInt("Size"); | 
 |     if (Def->getValueAsString("Namespace") == "TargetOpcode" || | 
 |         Def->getValueAsBit("isPseudo") || | 
 |         Def->getValueAsBit("isAsmParserOnly") || | 
 |         Def->getValueAsBit("isCodeGenOnly")) | 
 |       continue; | 
 |  | 
 |     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace"); | 
 |  | 
 |     if (Size) { | 
 |       if (populateInstruction(*Inst, i, Operands)) { | 
 |         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   std::set<unsigned> Sizes; | 
 |   for (std::map<std::pair<std::string, unsigned>, | 
 |                 std::vector<unsigned> >::iterator | 
 |        I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) { | 
 |     // If we haven't visited this instruction width before, emit the | 
 |     // helper method to extract fields. | 
 |     if (!Sizes.count(I->first.second)) { | 
 |       emitHelper(o, 8*I->first.second); | 
 |       Sizes.insert(I->first.second); | 
 |     } | 
 |  | 
 |     // Emit the decoder for this namespace+width combination. | 
 |     FilterChooser FC(NumberedInstructions, I->second, Operands, | 
 |                      8*I->first.second, this); | 
 |     FC.emitTop(o, 0, I->first.first); | 
 |   } | 
 |  | 
 |   o << "\n} // End llvm namespace \n"; | 
 | } |