blob: 48ac589ec8b217bd4e84c83b1493fd1a3191d2f6 [file] [log] [blame]
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_obfuscate_constants.h"
#include <algorithm>
#include <cmath>
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/transformation_replace_boolean_constant_with_constant_binary.h"
#include "source/fuzz/transformation_replace_constant_with_uniform.h"
#include "source/fuzz/uniform_buffer_element_descriptor.h"
#include "source/opt/ir_context.h"
namespace spvtools {
namespace fuzz {
FuzzerPassObfuscateConstants::FuzzerPassObfuscateConstants(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassObfuscateConstants::ObfuscateBoolConstantViaConstantPair(
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
const std::vector<spv::Op>& greater_than_opcodes,
const std::vector<spv::Op>& less_than_opcodes, uint32_t constant_id_1,
uint32_t constant_id_2, bool first_constant_is_larger) {
auto bool_constant_opcode = GetIRContext()
->get_def_use_mgr()
->GetDef(bool_constant_use.id_of_interest())
->opcode();
assert((bool_constant_opcode == spv::Op::OpConstantFalse ||
bool_constant_opcode == spv::Op::OpConstantTrue) &&
"Precondition: this must be a usage of a boolean constant.");
// Pick an opcode at random. First randomly decide whether to generate
// a 'greater than' or 'less than' kind of opcode, and then select a
// random opcode from the resulting subset.
spv::Op comparison_opcode;
if (GetFuzzerContext()->ChooseEven()) {
comparison_opcode = greater_than_opcodes[GetFuzzerContext()->RandomIndex(
greater_than_opcodes)];
} else {
comparison_opcode =
less_than_opcodes[GetFuzzerContext()->RandomIndex(less_than_opcodes)];
}
// We now need to decide how to order constant_id_1 and constant_id_2 such
// that 'constant_id_1 comparison_opcode constant_id_2' evaluates to the
// boolean constant.
const bool is_greater_than_opcode =
std::find(greater_than_opcodes.begin(), greater_than_opcodes.end(),
comparison_opcode) != greater_than_opcodes.end();
uint32_t lhs_id;
uint32_t rhs_id;
if ((bool_constant_opcode == spv::Op::OpConstantTrue &&
first_constant_is_larger == is_greater_than_opcode) ||
(bool_constant_opcode == spv::Op::OpConstantFalse &&
first_constant_is_larger != is_greater_than_opcode)) {
lhs_id = constant_id_1;
rhs_id = constant_id_2;
} else {
lhs_id = constant_id_2;
rhs_id = constant_id_1;
}
// We can now make a transformation that will replace |bool_constant_use|
// with an expression of the form (written using infix notation):
// |lhs_id| |comparison_opcode| |rhs_id|
auto transformation = TransformationReplaceBooleanConstantWithConstantBinary(
bool_constant_use, lhs_id, rhs_id, comparison_opcode,
GetFuzzerContext()->GetFreshId());
// The transformation should be applicable by construction.
assert(
transformation.IsApplicable(GetIRContext(), *GetTransformationContext()));
// Applying this transformation yields a pointer to the new instruction that
// computes the result of the binary expression.
auto binary_operator_instruction = transformation.ApplyWithResult(
GetIRContext(), GetTransformationContext());
// Add this transformation to the sequence of transformations that have been
// applied.
*GetTransformations()->add_transformation() = transformation.ToMessage();
// Having made a binary expression, there may now be opportunities to further
// obfuscate the constants used as the LHS and RHS of the expression (e.g. by
// replacing them with loads from known uniforms).
//
// We thus consider operands 0 and 1 (LHS and RHS in turn).
for (uint32_t index : {0u, 1u}) {
// We randomly decide, based on the current depth of obfuscation, whether
// to further obfuscate this operand.
if (GetFuzzerContext()->GoDeeperInConstantObfuscation(depth)) {
auto in_operand_use = MakeIdUseDescriptor(
binary_operator_instruction->GetSingleWordInOperand(index),
MakeInstructionDescriptor(binary_operator_instruction->result_id(),
binary_operator_instruction->opcode(), 0),
index);
ObfuscateConstant(depth + 1, in_operand_use);
}
}
}
void FuzzerPassObfuscateConstants::ObfuscateBoolConstantViaFloatConstantPair(
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
uint32_t float_constant_id_1, uint32_t float_constant_id_2) {
auto float_constant_1 = GetIRContext()
->get_constant_mgr()
->FindDeclaredConstant(float_constant_id_1)
->AsFloatConstant();
auto float_constant_2 = GetIRContext()
->get_constant_mgr()
->FindDeclaredConstant(float_constant_id_2)
->AsFloatConstant();
assert(float_constant_1->words() != float_constant_2->words() &&
"The constants should not be identical.");
assert(std::isfinite(float_constant_1->GetValueAsDouble()) &&
"The constants must be finite numbers.");
assert(std::isfinite(float_constant_2->GetValueAsDouble()) &&
"The constants must be finite numbers.");
bool first_constant_is_larger;
assert(float_constant_1->type()->AsFloat()->width() ==
float_constant_2->type()->AsFloat()->width() &&
"First and second floating-point constants must have the same width.");
if (float_constant_1->type()->AsFloat()->width() == 32) {
first_constant_is_larger =
float_constant_1->GetFloat() > float_constant_2->GetFloat();
} else {
assert(float_constant_1->type()->AsFloat()->width() == 64 &&
"Supported floating-point widths are 32 and 64.");
first_constant_is_larger =
float_constant_1->GetDouble() > float_constant_2->GetDouble();
}
std::vector<spv::Op> greater_than_opcodes{
spv::Op::OpFOrdGreaterThan, spv::Op::OpFOrdGreaterThanEqual,
spv::Op::OpFUnordGreaterThan, spv::Op::OpFUnordGreaterThanEqual};
std::vector<spv::Op> less_than_opcodes{
spv::Op::OpFOrdGreaterThan, spv::Op::OpFOrdGreaterThanEqual,
spv::Op::OpFUnordGreaterThan, spv::Op::OpFUnordGreaterThanEqual};
ObfuscateBoolConstantViaConstantPair(
depth, bool_constant_use, greater_than_opcodes, less_than_opcodes,
float_constant_id_1, float_constant_id_2, first_constant_is_larger);
}
void FuzzerPassObfuscateConstants::
ObfuscateBoolConstantViaSignedIntConstantPair(
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
uint32_t signed_int_constant_id_1, uint32_t signed_int_constant_id_2) {
auto signed_int_constant_1 =
GetIRContext()
->get_constant_mgr()
->FindDeclaredConstant(signed_int_constant_id_1)
->AsIntConstant();
auto signed_int_constant_2 =
GetIRContext()
->get_constant_mgr()
->FindDeclaredConstant(signed_int_constant_id_2)
->AsIntConstant();
assert(signed_int_constant_1->words() != signed_int_constant_2->words() &&
"The constants should not be identical.");
bool first_constant_is_larger;
assert(signed_int_constant_1->type()->AsInteger()->width() ==
signed_int_constant_2->type()->AsInteger()->width() &&
"First and second floating-point constants must have the same width.");
assert(signed_int_constant_1->type()->AsInteger()->IsSigned());
assert(signed_int_constant_2->type()->AsInteger()->IsSigned());
if (signed_int_constant_1->type()->AsFloat()->width() == 32) {
first_constant_is_larger =
signed_int_constant_1->GetS32() > signed_int_constant_2->GetS32();
} else {
assert(signed_int_constant_1->type()->AsFloat()->width() == 64 &&
"Supported integer widths are 32 and 64.");
first_constant_is_larger =
signed_int_constant_1->GetS64() > signed_int_constant_2->GetS64();
}
std::vector<spv::Op> greater_than_opcodes{spv::Op::OpSGreaterThan,
spv::Op::OpSGreaterThanEqual};
std::vector<spv::Op> less_than_opcodes{spv::Op::OpSLessThan,
spv::Op::OpSLessThanEqual};
ObfuscateBoolConstantViaConstantPair(
depth, bool_constant_use, greater_than_opcodes, less_than_opcodes,
signed_int_constant_id_1, signed_int_constant_id_2,
first_constant_is_larger);
}
void FuzzerPassObfuscateConstants::
ObfuscateBoolConstantViaUnsignedIntConstantPair(
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
uint32_t unsigned_int_constant_id_1,
uint32_t unsigned_int_constant_id_2) {
auto unsigned_int_constant_1 =
GetIRContext()
->get_constant_mgr()
->FindDeclaredConstant(unsigned_int_constant_id_1)
->AsIntConstant();
auto unsigned_int_constant_2 =
GetIRContext()
->get_constant_mgr()
->FindDeclaredConstant(unsigned_int_constant_id_2)
->AsIntConstant();
assert(unsigned_int_constant_1->words() != unsigned_int_constant_2->words() &&
"The constants should not be identical.");
bool first_constant_is_larger;
assert(unsigned_int_constant_1->type()->AsInteger()->width() ==
unsigned_int_constant_2->type()->AsInteger()->width() &&
"First and second floating-point constants must have the same width.");
assert(!unsigned_int_constant_1->type()->AsInteger()->IsSigned());
assert(!unsigned_int_constant_2->type()->AsInteger()->IsSigned());
if (unsigned_int_constant_1->type()->AsFloat()->width() == 32) {
first_constant_is_larger =
unsigned_int_constant_1->GetU32() > unsigned_int_constant_2->GetU32();
} else {
assert(unsigned_int_constant_1->type()->AsFloat()->width() == 64 &&
"Supported integer widths are 32 and 64.");
first_constant_is_larger =
unsigned_int_constant_1->GetU64() > unsigned_int_constant_2->GetU64();
}
std::vector<spv::Op> greater_than_opcodes{spv::Op::OpUGreaterThan,
spv::Op::OpUGreaterThanEqual};
std::vector<spv::Op> less_than_opcodes{spv::Op::OpULessThan,
spv::Op::OpULessThanEqual};
ObfuscateBoolConstantViaConstantPair(
depth, bool_constant_use, greater_than_opcodes, less_than_opcodes,
unsigned_int_constant_id_1, unsigned_int_constant_id_2,
first_constant_is_larger);
}
std::vector<std::vector<uint32_t>>
FuzzerPassObfuscateConstants::GetConstantWordsFromUniformsForType(
uint32_t type_id) {
assert(type_id && "Type id can't be 0");
std::vector<std::vector<uint32_t>> result;
for (const auto& facts_and_types : GetTransformationContext()
->GetFactManager()
->GetConstantUniformFactsAndTypes()) {
if (facts_and_types.second != type_id) {
continue;
}
std::vector<uint32_t> words(facts_and_types.first.constant_word().begin(),
facts_and_types.first.constant_word().end());
if (std::find(result.begin(), result.end(), words) == result.end()) {
result.push_back(std::move(words));
}
}
return result;
}
void FuzzerPassObfuscateConstants::ObfuscateBoolConstant(
uint32_t depth, const protobufs::IdUseDescriptor& constant_use) {
// We want to replace the boolean constant use with a binary expression over
// scalar constants, but only if we can then potentially replace the constants
// with uniforms of the same value.
auto available_types_with_uniforms =
GetTransformationContext()
->GetFactManager()
->GetTypesForWhichUniformValuesAreKnown();
if (available_types_with_uniforms.empty()) {
// Do not try to obfuscate if we do not have access to any uniform
// elements with known values.
return;
}
auto chosen_type_id =
available_types_with_uniforms[GetFuzzerContext()->RandomIndex(
available_types_with_uniforms)];
auto available_constant_words =
GetConstantWordsFromUniformsForType(chosen_type_id);
if (available_constant_words.size() == 1) {
// TODO(afd): for now we only obfuscate a boolean if there are at least
// two constants available from uniforms, so that we can do a
// comparison between them. It would be good to be able to do the
// obfuscation even if there is only one such constant, if there is
// also another regular constant available.
return;
}
assert(!available_constant_words.empty() &&
"There exists a fact but no constants - impossible");
// We know we have at least two known-to-be-constant uniforms of the chosen
// type. Pick one of them at random.
auto constant_index_1 =
GetFuzzerContext()->RandomIndex(available_constant_words);
uint32_t constant_index_2;
// Now choose another one distinct from the first one.
do {
constant_index_2 =
GetFuzzerContext()->RandomIndex(available_constant_words);
} while (constant_index_1 == constant_index_2);
auto constant_id_1 = FindOrCreateConstant(
available_constant_words[constant_index_1], chosen_type_id, false);
auto constant_id_2 = FindOrCreateConstant(
available_constant_words[constant_index_2], chosen_type_id, false);
assert(constant_id_1 != 0 && constant_id_2 != 0 &&
"We should not find an available constant with an id of 0.");
// Now perform the obfuscation, according to whether the type of the constants
// is float, signed int, or unsigned int.
auto chosen_type = GetIRContext()->get_type_mgr()->GetType(chosen_type_id);
if (chosen_type->AsFloat()) {
ObfuscateBoolConstantViaFloatConstantPair(depth, constant_use,
constant_id_1, constant_id_2);
} else {
assert(chosen_type->AsInteger() &&
"We should only have uniform facts about ints and floats.");
if (chosen_type->AsInteger()->IsSigned()) {
ObfuscateBoolConstantViaSignedIntConstantPair(
depth, constant_use, constant_id_1, constant_id_2);
} else {
ObfuscateBoolConstantViaUnsignedIntConstantPair(
depth, constant_use, constant_id_1, constant_id_2);
}
}
}
void FuzzerPassObfuscateConstants::ObfuscateScalarConstant(
uint32_t /*depth*/, const protobufs::IdUseDescriptor& constant_use) {
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2670): consider
// additional ways to obfuscate scalar constants.
// Check whether we know that any uniforms are guaranteed to be equal to the
// scalar constant associated with |constant_use|.
auto uniform_descriptors =
GetTransformationContext()
->GetFactManager()
->GetUniformDescriptorsForConstant(constant_use.id_of_interest());
if (uniform_descriptors.empty()) {
// No relevant uniforms, so do not obfuscate.
return;
}
// Choose a random available uniform known to be equal to the constant.
const auto& uniform_descriptor =
uniform_descriptors[GetFuzzerContext()->RandomIndex(uniform_descriptors)];
// Make sure the module has OpConstant instructions for each index used to
// access a uniform.
for (auto index : uniform_descriptor.index()) {
FindOrCreateIntegerConstant({index}, 32, true, false);
}
// Make sure the module has OpTypePointer that points to the element type of
// the uniform.
const auto* uniform_variable_instr =
FindUniformVariable(uniform_descriptor, GetIRContext(), true);
assert(uniform_variable_instr &&
"Uniform variable does not exist or not unique.");
const auto* uniform_variable_type_intr =
GetIRContext()->get_def_use_mgr()->GetDef(
uniform_variable_instr->type_id());
assert(uniform_variable_type_intr && "Uniform variable has invalid type");
auto element_type_id = fuzzerutil::WalkCompositeTypeIndices(
GetIRContext(), uniform_variable_type_intr->GetSingleWordInOperand(1),
uniform_descriptor.index());
assert(element_type_id && "Type of uniform variable is invalid");
FindOrCreatePointerType(element_type_id, spv::StorageClass::Uniform);
// Create, apply and record a transformation to replace the constant use with
// the result of a load from the chosen uniform.
ApplyTransformation(TransformationReplaceConstantWithUniform(
constant_use, uniform_descriptor, GetFuzzerContext()->GetFreshId(),
GetFuzzerContext()->GetFreshId()));
}
void FuzzerPassObfuscateConstants::ObfuscateConstant(
uint32_t depth, const protobufs::IdUseDescriptor& constant_use) {
switch (GetIRContext()
->get_def_use_mgr()
->GetDef(constant_use.id_of_interest())
->opcode()) {
case spv::Op::OpConstantTrue:
case spv::Op::OpConstantFalse:
ObfuscateBoolConstant(depth, constant_use);
break;
case spv::Op::OpConstant:
ObfuscateScalarConstant(depth, constant_use);
break;
default:
assert(false && "The opcode should be one of the above.");
break;
}
}
void FuzzerPassObfuscateConstants::MaybeAddConstantIdUse(
const opt::Instruction& inst, uint32_t in_operand_index,
uint32_t base_instruction_result_id,
const std::map<spv::Op, uint32_t>& skipped_opcode_count,
std::vector<protobufs::IdUseDescriptor>* constant_uses) {
if (inst.GetInOperand(in_operand_index).type != SPV_OPERAND_TYPE_ID) {
// The operand is not an id, so it cannot be a constant id.
return;
}
auto operand_id = inst.GetSingleWordInOperand(in_operand_index);
auto operand_definition =
GetIRContext()->get_def_use_mgr()->GetDef(operand_id);
switch (operand_definition->opcode()) {
case spv::Op::OpConstantFalse:
case spv::Op::OpConstantTrue:
case spv::Op::OpConstant: {
// The operand is a constant id, so make an id use descriptor and record
// it.
protobufs::IdUseDescriptor id_use_descriptor;
id_use_descriptor.set_id_of_interest(operand_id);
id_use_descriptor.mutable_enclosing_instruction()
->set_target_instruction_opcode(uint32_t(inst.opcode()));
id_use_descriptor.mutable_enclosing_instruction()
->set_base_instruction_result_id(base_instruction_result_id);
id_use_descriptor.mutable_enclosing_instruction()
->set_num_opcodes_to_ignore(
skipped_opcode_count.find(inst.opcode()) ==
skipped_opcode_count.end()
? 0
: skipped_opcode_count.at(inst.opcode()));
id_use_descriptor.set_in_operand_index(in_operand_index);
constant_uses->push_back(id_use_descriptor);
} break;
default:
break;
}
}
void FuzzerPassObfuscateConstants::Apply() {
// First, gather up all the constant uses available in the module, by going
// through each block in each function.
std::vector<protobufs::IdUseDescriptor> constant_uses;
for (auto& function : *GetIRContext()->module()) {
for (auto& block : function) {
// For each constant use we encounter we are going to make an id use
// descriptor. An id use is described with respect to a base instruction;
// if there are instructions at the start of the block without result ids,
// the base instruction will have to be the block's label.
uint32_t base_instruction_result_id = block.id();
// An id use descriptor also records how many instructions of a particular
// opcode need to be skipped in order to find the instruction of interest
// from the base instruction. We maintain a mapping that records a skip
// count for each relevant opcode.
std::map<spv::Op, uint32_t> skipped_opcode_count;
// Go through each instruction in the block.
for (auto& inst : block) {
if (inst.HasResultId()) {
// The instruction has a result id, so can be used as the base
// instruction from now on, until another instruction with a result id
// is encountered.
base_instruction_result_id = inst.result_id();
// Opcode skip counts were with respect to the previous base
// instruction and are now irrelevant.
skipped_opcode_count.clear();
}
// The instruction must not be an OpVariable, the only id that an
// OpVariable uses is an initializer id, which has to remain
// constant.
if (inst.opcode() != spv::Op::OpVariable) {
// Consider each operand of the instruction, and add a constant id
// use for the operand if relevant.
for (uint32_t in_operand_index = 0;
in_operand_index < inst.NumInOperands(); in_operand_index++) {
MaybeAddConstantIdUse(inst, in_operand_index,
base_instruction_result_id,
skipped_opcode_count, &constant_uses);
}
}
if (!inst.HasResultId()) {
// The instruction has no result id, so in order to identify future id
// uses for instructions with this opcode from the existing base
// instruction, we need to increase the skip count for this opcode.
skipped_opcode_count[inst.opcode()] =
skipped_opcode_count.find(inst.opcode()) ==
skipped_opcode_count.end()
? 1
: skipped_opcode_count[inst.opcode()] + 1;
}
}
}
}
// Go through the constant uses in a random order by repeatedly pulling out a
// constant use at a random index.
while (!constant_uses.empty()) {
auto index = GetFuzzerContext()->RandomIndex(constant_uses);
auto constant_use = std::move(constant_uses[index]);
constant_uses.erase(constant_uses.begin() + index);
// Decide probabilistically whether to skip or obfuscate this constant use.
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfObfuscatingConstant())) {
continue;
}
ObfuscateConstant(0, constant_use);
}
}
} // namespace fuzz
} // namespace spvtools