blob: 230d2d0c36cfacf19b6ab04767a0348c181b914e [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkDevice.hpp"
#include "VkConfig.h"
#include "VkDebug.hpp"
#include "VkDescriptorSetLayout.hpp"
#include "VkFence.hpp"
#include "VkQueue.hpp"
#include "Device/Blitter.hpp"
#include <chrono>
#include <climits>
#include <new> // Must #include this to use "placement new"
namespace
{
std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds> now()
{
return std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now());
}
}
namespace vk
{
std::shared_ptr<rr::Routine> Device::SamplingRoutineCache::query(const vk::Device::SamplingRoutineCache::Key& key) const
{
return cache.query(hash(key));
}
void Device::SamplingRoutineCache::add(const vk::Device::SamplingRoutineCache::Key& key, const std::shared_ptr<rr::Routine>& routine)
{
ASSERT(routine);
cache.add(hash(key), routine);
}
std::shared_ptr<rr::Routine> Device::SamplingRoutineCache::queryConst(const vk::Device::SamplingRoutineCache::Key& key) const
{
return cache.queryConstCache(hash(key));
}
void Device::SamplingRoutineCache::updateConstCache()
{
cache.updateConstCache();
}
std::size_t Device::SamplingRoutineCache::hash(const vk::Device::SamplingRoutineCache::Key &key)
{
return (key.instruction << 16) ^ (key.sampler << 8) ^ key.imageView;
}
Device::Device(const VkDeviceCreateInfo* pCreateInfo, void* mem, PhysicalDevice *physicalDevice, const VkPhysicalDeviceFeatures *enabledFeatures)
: physicalDevice(physicalDevice),
queues(reinterpret_cast<Queue*>(mem)),
enabledExtensionCount(pCreateInfo->enabledExtensionCount),
enabledFeatures(enabledFeatures ? *enabledFeatures : VkPhysicalDeviceFeatures{}) // "Setting pEnabledFeatures to NULL and not including a VkPhysicalDeviceFeatures2 in the pNext member of VkDeviceCreateInfo is equivalent to setting all members of the structure to VK_FALSE."
{
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
const VkDeviceQueueCreateInfo& queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
queueCount += queueCreateInfo.queueCount;
}
uint32_t queueID = 0;
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
const VkDeviceQueueCreateInfo& queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
for(uint32_t j = 0; j < queueCreateInfo.queueCount; j++, queueID++)
{
new (&queues[queueID]) Queue(this);
}
}
extensions = reinterpret_cast<ExtensionName*>(static_cast<uint8_t*>(mem) + (sizeof(Queue) * queueCount));
for(uint32_t i = 0; i < enabledExtensionCount; i++)
{
strncpy(extensions[i], pCreateInfo->ppEnabledExtensionNames[i], VK_MAX_EXTENSION_NAME_SIZE);
}
if(pCreateInfo->enabledLayerCount)
{
// "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations."
UNIMPLEMENTED("enabledLayerCount"); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here.
}
// FIXME (b/119409619): use an allocator here so we can control all memory allocations
blitter.reset(new sw::Blitter());
samplingRoutineCache.reset(new SamplingRoutineCache());
}
void Device::destroy(const VkAllocationCallbacks* pAllocator)
{
for(uint32_t i = 0; i < queueCount; i++)
{
queues[i].~Queue();
}
vk::deallocate(queues, pAllocator);
}
size_t Device::ComputeRequiredAllocationSize(const VkDeviceCreateInfo* pCreateInfo)
{
uint32_t queueCount = 0;
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
queueCount += pCreateInfo->pQueueCreateInfos[i].queueCount;
}
return (sizeof(Queue) * queueCount) + (pCreateInfo->enabledExtensionCount * sizeof(ExtensionName));
}
bool Device::hasExtension(const char* extensionName) const
{
for(uint32_t i = 0; i < enabledExtensionCount; i++)
{
if(strncmp(extensions[i], extensionName, VK_MAX_EXTENSION_NAME_SIZE) == 0)
{
return true;
}
}
return false;
}
VkQueue Device::getQueue(uint32_t queueFamilyIndex, uint32_t queueIndex) const
{
ASSERT(queueFamilyIndex == 0);
return queues[queueIndex];
}
VkResult Device::waitForFences(uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout)
{
using time_point = std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds>;
const time_point start = now();
const uint64_t max_timeout = (LLONG_MAX - start.time_since_epoch().count());
bool infiniteTimeout = (timeout > max_timeout);
const time_point end_ns = start + std::chrono::nanoseconds(std::min(max_timeout, timeout));
if(waitAll != VK_FALSE) // All fences must be signaled
{
for(uint32_t i = 0; i < fenceCount; i++)
{
if(timeout == 0)
{
if(Cast(pFences[i])->getStatus() != VK_SUCCESS) // At least one fence is not signaled
{
return VK_TIMEOUT;
}
}
else if(infiniteTimeout)
{
if(Cast(pFences[i])->wait() != VK_SUCCESS) // At least one fence is not signaled
{
return VK_TIMEOUT;
}
}
else
{
if(Cast(pFences[i])->wait(end_ns) != VK_SUCCESS) // At least one fence is not signaled
{
return VK_TIMEOUT;
}
}
}
return VK_SUCCESS;
}
else // At least one fence must be signaled
{
// Start by quickly checking the status of all fences, as only one is required
for(uint32_t i = 0; i < fenceCount; i++)
{
if(Cast(pFences[i])->getStatus() == VK_SUCCESS) // At least one fence is signaled
{
return VK_SUCCESS;
}
}
if(timeout > 0)
{
for(uint32_t i = 0; i < fenceCount; i++)
{
if(infiniteTimeout)
{
if(Cast(pFences[i])->wait() == VK_SUCCESS) // At least one fence is signaled
{
return VK_SUCCESS;
}
}
else
{
if(Cast(pFences[i])->wait(end_ns) == VK_SUCCESS) // At least one fence is signaled
{
return VK_SUCCESS;
}
}
}
}
return VK_TIMEOUT;
}
}
VkResult Device::waitIdle()
{
for(uint32_t i = 0; i < queueCount; i++)
{
queues[i].waitIdle();
}
return VK_SUCCESS;
}
void Device::getDescriptorSetLayoutSupport(const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
VkDescriptorSetLayoutSupport* pSupport) const
{
// Mark everything as unsupported
pSupport->supported = VK_FALSE;
}
void Device::updateDescriptorSets(uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites,
uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies)
{
for(uint32_t i = 0; i < descriptorWriteCount; i++)
{
DescriptorSetLayout::WriteDescriptorSet(this, pDescriptorWrites[i]);
}
for(uint32_t i = 0; i < descriptorCopyCount; i++)
{
DescriptorSetLayout::CopyDescriptorSet(pDescriptorCopies[i]);
}
}
Device::SamplingRoutineCache* Device::getSamplingRoutineCache() const
{
return samplingRoutineCache.get();
}
std::shared_ptr<rr::Routine> Device::findInConstCache(const SamplingRoutineCache::Key& key) const
{
return samplingRoutineCache->queryConst(key);
}
void Device::updateSamplingRoutineConstCache()
{
std::unique_lock<std::mutex> lock(samplingRoutineCacheMutex);
samplingRoutineCache->updateConstCache();
}
std::mutex& Device::getSamplingRoutineCacheMutex()
{
return samplingRoutineCacheMutex;
}
} // namespace vk