blob: 0fc6b2c2aebd9833559674553f35959da4f98ea8 [file] [log] [blame]
//===- OperationsTest.cpp - Tests for fuzzer operations -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <iostream>
// Define some pretty printers to help with debugging failures.
namespace llvm {
void PrintTo(Type *T, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
T->print(ROS);
}
void PrintTo(BasicBlock *BB, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
ROS << BB << " (" << BB->getName() << ")";
}
void PrintTo(Value *V, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
ROS << V << " (";
V->print(ROS);
ROS << ")";
}
void PrintTo(Constant *C, ::std::ostream *OS) { PrintTo(cast<Value>(C), OS); }
} // namespace llvm
using namespace llvm;
using testing::AllOf;
using testing::AnyOf;
using testing::ElementsAre;
using testing::Eq;
using testing::Ge;
using testing::Each;
using testing::Truly;
using testing::NotNull;
using testing::PrintToString;
using testing::SizeIs;
namespace {
std::unique_ptr<Module> parseAssembly(
const char *Assembly, LLVMContext &Context) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
assert(M && !verifyModule(*M, &errs()));
return M;
}
MATCHER_P(TypesMatch, V, "has type " + PrintToString(V->getType())) {
return arg->getType() == V->getType();
}
MATCHER_P(HasType, T, "") { return arg->getType() == T; }
TEST(OperationsTest, SourcePreds) {
using namespace llvm::fuzzerop;
LLVMContext Ctx;
Constant *i1 = ConstantInt::getFalse(Ctx);
Constant *i8 = ConstantInt::get(Type::getInt8Ty(Ctx), 3);
Constant *i16 = ConstantInt::get(Type::getInt16Ty(Ctx), 1 << 15);
Constant *i32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
Constant *i64 = ConstantInt::get(Type::getInt64Ty(Ctx),
std::numeric_limits<uint64_t>::max());
Constant *f16 = ConstantFP::getInfinity(Type::getHalfTy(Ctx));
Constant *f32 = ConstantFP::get(Type::getFloatTy(Ctx), 0.0);
Constant *f64 = ConstantFP::get(Type::getDoubleTy(Ctx), 123.45);
Constant *s =
ConstantStruct::get(StructType::create(Ctx, "OpaqueStruct"));
Constant *a =
ConstantArray::get(ArrayType::get(i32->getType(), 2), {i32, i32});
Constant *v8i8 = ConstantVector::getSplat(8, i8);
Constant *v4f16 = ConstantVector::getSplat(4, f16);
Constant *p0i32 =
ConstantPointerNull::get(PointerType::get(i32->getType(), 0));
auto OnlyI32 = onlyType(i32->getType());
EXPECT_TRUE(OnlyI32.matches({}, i32));
EXPECT_FALSE(OnlyI32.matches({}, i64));
EXPECT_FALSE(OnlyI32.matches({}, p0i32));
EXPECT_FALSE(OnlyI32.matches({}, a));
EXPECT_THAT(OnlyI32.generate({}, {}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
auto AnyType = anyType();
EXPECT_TRUE(AnyType.matches({}, i1));
EXPECT_TRUE(AnyType.matches({}, f64));
EXPECT_TRUE(AnyType.matches({}, s));
EXPECT_TRUE(AnyType.matches({}, v8i8));
EXPECT_TRUE(AnyType.matches({}, p0i32));
EXPECT_THAT(
AnyType.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
Each(AnyOf(TypesMatch(i32), TypesMatch(f16), TypesMatch(v8i8))));
auto AnyInt = anyIntType();
EXPECT_TRUE(AnyInt.matches({}, i1));
EXPECT_TRUE(AnyInt.matches({}, i64));
EXPECT_FALSE(AnyInt.matches({}, f32));
EXPECT_FALSE(AnyInt.matches({}, v4f16));
EXPECT_THAT(
AnyInt.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
auto AnyFP = anyFloatType();
EXPECT_TRUE(AnyFP.matches({}, f16));
EXPECT_TRUE(AnyFP.matches({}, f32));
EXPECT_FALSE(AnyFP.matches({}, i16));
EXPECT_FALSE(AnyFP.matches({}, p0i32));
EXPECT_FALSE(AnyFP.matches({}, v4f16));
EXPECT_THAT(
AnyFP.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(f16))));
auto AnyPtr = anyPtrType();
EXPECT_TRUE(AnyPtr.matches({}, p0i32));
EXPECT_FALSE(AnyPtr.matches({}, i8));
EXPECT_FALSE(AnyPtr.matches({}, a));
EXPECT_FALSE(AnyPtr.matches({}, v8i8));
auto isPointer = [](Value *V) { return V->getType()->isPointerTy(); };
EXPECT_THAT(
AnyPtr.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(3u)), Each(Truly(isPointer))));
auto AnyVec = anyVectorType();
EXPECT_TRUE(AnyVec.matches({}, v8i8));
EXPECT_TRUE(AnyVec.matches({}, v4f16));
EXPECT_FALSE(AnyVec.matches({}, i8));
EXPECT_FALSE(AnyVec.matches({}, a));
EXPECT_FALSE(AnyVec.matches({}, s));
EXPECT_THAT(AnyVec.generate({}, {v8i8->getType()}),
ElementsAre(TypesMatch(v8i8)));
auto First = matchFirstType();
EXPECT_TRUE(First.matches({i8}, i8));
EXPECT_TRUE(First.matches({s, a}, s));
EXPECT_FALSE(First.matches({f16}, f32));
EXPECT_FALSE(First.matches({v4f16, f64}, f64));
EXPECT_THAT(First.generate({i8}, {}), Each(TypesMatch(i8)));
EXPECT_THAT(First.generate({f16}, {i8->getType()}),
Each(TypesMatch(f16)));
EXPECT_THAT(First.generate({v8i8, i32}, {}), Each(TypesMatch(v8i8)));
}
TEST(OperationsTest, SplitBlock) {
LLVMContext Ctx;
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto SBOp = fuzzerop::splitBlockDescriptor(1);
// Create a block with only a return and split it on the return.
auto *BB = BasicBlock::Create(Ctx, "BB", F);
auto *RI = ReturnInst::Create(Ctx, BB);
SBOp.BuilderFunc({UndefValue::get(Type::getInt1Ty(Ctx))}, RI);
// We should end up with an unconditional branch from BB to BB1, and the
// return ends up in BB1.
auto *UncondBr = cast<BranchInst>(BB->getTerminator());
ASSERT_TRUE(UncondBr->isUnconditional());
auto *BB1 = UncondBr->getSuccessor(0);
ASSERT_THAT(RI->getParent(), Eq(BB1));
// Now add an instruction to BB1 and split on that.
auto *AI = new AllocaInst(Type::getInt8Ty(Ctx), 0, "a", RI);
Value *Cond = ConstantInt::getFalse(Ctx);
SBOp.BuilderFunc({Cond}, AI);
// We should end up with a loop back on BB1 and the instruction we split on
// moves to BB2.
auto *CondBr = cast<BranchInst>(BB1->getTerminator());
EXPECT_THAT(CondBr->getCondition(), Eq(Cond));
ASSERT_THAT(CondBr->getNumSuccessors(), Eq(2u));
ASSERT_THAT(CondBr->getSuccessor(0), Eq(BB1));
auto *BB2 = CondBr->getSuccessor(1);
EXPECT_THAT(AI->getParent(), Eq(BB2));
EXPECT_THAT(RI->getParent(), Eq(BB2));
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, SplitEHBlock) {
// Check that we will not try to branch back to the landingpad block using
// regular branch instruction
LLVMContext Ctx;
const char *SourceCode =
"declare i32* @f()"
"declare i32 @personality_function()"
"define i32* @test() personality i32 ()* @personality_function {\n"
"entry:\n"
" %val = invoke i32* @f()\n"
" to label %normal unwind label %exceptional\n"
"normal:\n"
" ret i32* %val\n"
"exceptional:\n"
" %landing_pad4 = landingpad token cleanup\n"
" ret i32* undef\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
// Get the landingpad block
BasicBlock &BB = *std::next(M->getFunction("test")->begin(), 2);
fuzzerop::OpDescriptor Descr = fuzzerop::splitBlockDescriptor(1);
Descr.BuilderFunc({ConstantInt::getTrue(Ctx)},&*BB.getFirstInsertionPt());
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
TEST(OperationsTest, SplitBlockWithPhis) {
LLVMContext Ctx;
Type *Int8Ty = Type::getInt8Ty(Ctx);
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto SBOp = fuzzerop::splitBlockDescriptor(1);
// Create 3 blocks with an if-then branch.
auto *BB1 = BasicBlock::Create(Ctx, "BB1", F);
auto *BB2 = BasicBlock::Create(Ctx, "BB2", F);
auto *BB3 = BasicBlock::Create(Ctx, "BB3", F);
BranchInst::Create(BB2, BB3, ConstantInt::getFalse(Ctx), BB1);
BranchInst::Create(BB3, BB2);
// Set up phi nodes selecting values for the incoming edges.
auto *PHI1 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p1", BB3);
PHI1->addIncoming(ConstantInt::get(Int8Ty, 0), BB1);
PHI1->addIncoming(ConstantInt::get(Int8Ty, 1), BB2);
auto *PHI2 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p2", BB3);
PHI2->addIncoming(ConstantInt::get(Int8Ty, 1), BB1);
PHI2->addIncoming(ConstantInt::get(Int8Ty, 0), BB2);
auto *RI = ReturnInst::Create(Ctx, BB3);
// Now we split the block with PHI nodes, making sure they're all updated.
Value *Cond = ConstantInt::getFalse(Ctx);
SBOp.BuilderFunc({Cond}, RI);
// Make sure the PHIs are updated with a value for the third incoming edge.
EXPECT_THAT(PHI1->getNumIncomingValues(), Eq(3u));
EXPECT_THAT(PHI2->getNumIncomingValues(), Eq(3u));
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, GEP) {
LLVMContext Ctx;
Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
Type *Int32Ty = Type::getInt32Ty(Ctx);
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto *BB = BasicBlock::Create(Ctx, "BB", F);
auto *RI = ReturnInst::Create(Ctx, BB);
auto GEPOp = fuzzerop::gepDescriptor(1);
EXPECT_TRUE(GEPOp.SourcePreds[0].matches({}, UndefValue::get(Int8PtrTy)));
EXPECT_TRUE(GEPOp.SourcePreds[1].matches({UndefValue::get(Int8PtrTy)},
ConstantInt::get(Int32Ty, 0)));
GEPOp.BuilderFunc({UndefValue::get(Int8PtrTy), ConstantInt::get(Int32Ty, 0)},
RI);
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, GEPPointerOperand) {
// Check that we only pick sized pointers for the GEP instructions
LLVMContext Ctx;
const char *SourceCode =
"declare void @f()\n"
"define void @test() {\n"
" %v = bitcast void ()* @f to i64 (i8 addrspace(4)*)*\n"
" %a = alloca i64, i32 10\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
// Don't match %v
ASSERT_FALSE(Descr.SourcePreds[0].matches({}, &*BB.begin()));
// Match %a
ASSERT_TRUE(Descr.SourcePreds[0].matches({}, &*std::next(BB.begin())));
}
TEST(OperationsTest, ExtractAndInsertValue) {
LLVMContext Ctx;
Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
Type *Int32Ty = Type::getInt32Ty(Ctx);
Type *Int64Ty = Type::getInt64Ty(Ctx);
Type *StructTy = StructType::create(Ctx, {Int8PtrTy, Int32Ty});
Type *OpaqueTy = StructType::create(Ctx, "OpaqueStruct");
Type *ZeroSizedArrayTy = ArrayType::get(Int64Ty, 0);
Type *ArrayTy = ArrayType::get(Int64Ty, 4);
Type *VectorTy = VectorType::get(Int32Ty, 2);
auto EVOp = fuzzerop::extractValueDescriptor(1);
auto IVOp = fuzzerop::insertValueDescriptor(1);
// Sanity check the source preds.
Constant *SVal = UndefValue::get(StructTy);
Constant *OVal = UndefValue::get(OpaqueTy);
Constant *AVal = UndefValue::get(ArrayTy);
Constant *ZAVal = UndefValue::get(ZeroSizedArrayTy);
Constant *VVal = UndefValue::get(VectorTy);
EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, SVal));
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, OVal));
EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, AVal));
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, VVal));
EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, SVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, OVal));
EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, AVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, VVal));
// Don't consider zero sized arrays as viable sources
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, ZAVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, ZAVal));
// Make sure we're range checking appropriately.
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 1)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 2)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 65536)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 3)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 4)));
EXPECT_THAT(
EVOp.SourcePreds[1].generate({SVal}, {}),
ElementsAre(ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1)));
// InsertValue should accept any type in the struct, but only in positions
// where it makes sense.
EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int8PtrTy)));
EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int32Ty)));
EXPECT_FALSE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int64Ty)));
EXPECT_FALSE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
ConstantInt::get(Int32Ty, 1)));
EXPECT_THAT(IVOp.SourcePreds[1].generate({SVal}, {}),
Each(AnyOf(HasType(Int32Ty), HasType(Int8PtrTy))));
EXPECT_THAT(
IVOp.SourcePreds[2].generate({SVal, ConstantInt::get(Int32Ty, 0)}, {}),
ElementsAre(ConstantInt::get(Int32Ty, 1)));
}
}