| //===- HexagonBlockRanges.cpp ---------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonBlockRanges.h" |
| #include "HexagonInstrInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "hbr" |
| |
| bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { |
| // If A contains start(), or "this" contains A.start(), then overlap. |
| IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); |
| if (AS == S) |
| return true; |
| bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE. |
| bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E. |
| if ((AS < S && SbAE) || (S < AS && ASbE)) |
| return true; |
| // Otherwise no overlap. |
| return false; |
| } |
| |
| bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { |
| if (start() <= A.start()) { |
| // Treat "None" in the range end as equal to the range start. |
| IndexType E = (end() != IndexType::None) ? end() : start(); |
| IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); |
| if (AE <= E) |
| return true; |
| } |
| return false; |
| } |
| |
| void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { |
| // Allow merging adjacent ranges. |
| assert(end() == A.start() || overlaps(A)); |
| IndexType AS = A.start(), AE = A.end(); |
| if (AS < start() || start() == IndexType::None) |
| setStart(AS); |
| if (end() < AE || end() == IndexType::None) { |
| setEnd(AE); |
| TiedEnd = A.TiedEnd; |
| } else { |
| if (end() == AE) |
| TiedEnd |= A.TiedEnd; |
| } |
| if (A.Fixed) |
| Fixed = true; |
| } |
| |
| void HexagonBlockRanges::RangeList::include(const RangeList &RL) { |
| for (auto &R : RL) |
| if (!is_contained(*this, R)) |
| push_back(R); |
| } |
| |
| // Merge all overlapping ranges in the list, so that all that remains |
| // is a list of disjoint ranges. |
| void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { |
| if (empty()) |
| return; |
| |
| llvm::sort(begin(), end()); |
| iterator Iter = begin(); |
| |
| while (Iter != end()-1) { |
| iterator Next = std::next(Iter); |
| // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. |
| // This allows merging dead ranges, but is not valid for live ranges. |
| bool Merge = MergeAdjacent && (Iter->end() == Next->start()); |
| if (Merge || Iter->overlaps(*Next)) { |
| Iter->merge(*Next); |
| erase(Next); |
| continue; |
| } |
| ++Iter; |
| } |
| } |
| |
| // Compute a range A-B and add it to the list. |
| void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, |
| const IndexRange &B) { |
| // Exclusion of non-overlapping ranges makes some checks simpler |
| // later in this function. |
| if (!A.overlaps(B)) { |
| // A - B = A. |
| add(A); |
| return; |
| } |
| |
| IndexType AS = A.start(), AE = A.end(); |
| IndexType BS = B.start(), BE = B.end(); |
| |
| // If AE is None, then A is included in B, since A and B overlap. |
| // The result of subtraction if empty, so just return. |
| if (AE == IndexType::None) |
| return; |
| |
| if (AS < BS) { |
| // A starts before B. |
| // AE cannot be None since A and B overlap. |
| assert(AE != IndexType::None); |
| // Add the part of A that extends on the "less" side of B. |
| add(AS, BS, A.Fixed, false); |
| } |
| |
| if (BE < AE) { |
| // BE cannot be Exit here. |
| if (BE == IndexType::None) |
| add(BS, AE, A.Fixed, false); |
| else |
| add(BE, AE, A.Fixed, false); |
| } |
| } |
| |
| // Subtract a given range from each element in the list. |
| void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { |
| // Cannot assume that the list is unionized (i.e. contains only non- |
| // overlapping ranges. |
| RangeList T; |
| for (iterator Next, I = begin(); I != end(); I = Next) { |
| IndexRange &Rg = *I; |
| if (Rg.overlaps(Range)) { |
| T.addsub(Rg, Range); |
| Next = this->erase(I); |
| } else { |
| Next = std::next(I); |
| } |
| } |
| include(T); |
| } |
| |
| HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) |
| : Block(B) { |
| IndexType Idx = IndexType::First; |
| First = Idx; |
| for (auto &In : B) { |
| if (In.isDebugInstr()) |
| continue; |
| assert(getIndex(&In) == IndexType::None && "Instruction already in map"); |
| Map.insert(std::make_pair(Idx, &In)); |
| ++Idx; |
| } |
| Last = B.empty() ? IndexType::None : unsigned(Idx)-1; |
| } |
| |
| MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { |
| auto F = Map.find(Idx); |
| return (F != Map.end()) ? F->second : nullptr; |
| } |
| |
| HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( |
| MachineInstr *MI) const { |
| for (auto &I : Map) |
| if (I.second == MI) |
| return I.first; |
| return IndexType::None; |
| } |
| |
| HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( |
| IndexType Idx) const { |
| assert (Idx != IndexType::None); |
| if (Idx == IndexType::Entry) |
| return IndexType::None; |
| if (Idx == IndexType::Exit) |
| return Last; |
| if (Idx == First) |
| return IndexType::Entry; |
| return unsigned(Idx)-1; |
| } |
| |
| HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( |
| IndexType Idx) const { |
| assert (Idx != IndexType::None); |
| if (Idx == IndexType::Entry) |
| return IndexType::First; |
| if (Idx == IndexType::Exit || Idx == Last) |
| return IndexType::None; |
| return unsigned(Idx)+1; |
| } |
| |
| void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, |
| MachineInstr *NewMI) { |
| for (auto &I : Map) { |
| if (I.second != OldMI) |
| continue; |
| if (NewMI != nullptr) |
| I.second = NewMI; |
| else |
| Map.erase(I.first); |
| break; |
| } |
| } |
| |
| HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) |
| : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), |
| TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), |
| Reserved(TRI.getReservedRegs(mf)) { |
| // Consider all non-allocatable registers as reserved. |
| for (const TargetRegisterClass *RC : TRI.regclasses()) { |
| if (RC->isAllocatable()) |
| continue; |
| for (unsigned R : *RC) |
| Reserved[R] = true; |
| } |
| } |
| |
| HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( |
| const MachineBasicBlock &B, const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI) { |
| RegisterSet LiveIns; |
| RegisterSet Tmp; |
| |
| for (auto I : B.liveins()) { |
| MCSubRegIndexIterator S(I.PhysReg, &TRI); |
| if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) { |
| Tmp.insert({I.PhysReg, 0}); |
| continue; |
| } |
| for (; S.isValid(); ++S) { |
| unsigned SI = S.getSubRegIndex(); |
| if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SI)).any()) |
| Tmp.insert({S.getSubReg(), 0}); |
| } |
| } |
| |
| for (auto R : Tmp) { |
| if (!Reserved[R.Reg]) |
| LiveIns.insert(R); |
| for (auto S : expandToSubRegs(R, MRI, TRI)) |
| if (!Reserved[S.Reg]) |
| LiveIns.insert(S); |
| } |
| return LiveIns; |
| } |
| |
| HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( |
| RegisterRef R, const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI) { |
| RegisterSet SRs; |
| |
| if (R.Sub != 0) { |
| SRs.insert(R); |
| return SRs; |
| } |
| |
| if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) { |
| MCSubRegIterator I(R.Reg, &TRI); |
| if (!I.isValid()) |
| SRs.insert({R.Reg, 0}); |
| for (; I.isValid(); ++I) |
| SRs.insert({*I, 0}); |
| } else { |
| assert(TargetRegisterInfo::isVirtualRegister(R.Reg)); |
| auto &RC = *MRI.getRegClass(R.Reg); |
| unsigned PReg = *RC.begin(); |
| MCSubRegIndexIterator I(PReg, &TRI); |
| if (!I.isValid()) |
| SRs.insert({R.Reg, 0}); |
| for (; I.isValid(); ++I) |
| SRs.insert({R.Reg, I.getSubRegIndex()}); |
| } |
| return SRs; |
| } |
| |
| void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, |
| RegToRangeMap &LiveMap) { |
| std::map<RegisterRef,IndexType> LastDef, LastUse; |
| RegisterSet LiveOnEntry; |
| MachineBasicBlock &B = IndexMap.getBlock(); |
| MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); |
| |
| for (auto R : getLiveIns(B, MRI, TRI)) |
| LiveOnEntry.insert(R); |
| |
| for (auto R : LiveOnEntry) |
| LastDef[R] = IndexType::Entry; |
| |
| auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { |
| auto LD = LastDef[R], LU = LastUse[R]; |
| if (LD == IndexType::None) |
| LD = IndexType::Entry; |
| if (LU == IndexType::None) |
| LU = IndexType::Exit; |
| LiveMap[R].add(LD, LU, false, false); |
| LastUse[R] = LastDef[R] = IndexType::None; |
| }; |
| |
| RegisterSet Defs, Clobbers; |
| |
| for (auto &In : B) { |
| if (In.isDebugInstr()) |
| continue; |
| IndexType Index = IndexMap.getIndex(&In); |
| // Process uses first. |
| for (auto &Op : In.operands()) { |
| if (!Op.isReg() || !Op.isUse() || Op.isUndef()) |
| continue; |
| RegisterRef R = { Op.getReg(), Op.getSubReg() }; |
| if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg]) |
| continue; |
| bool IsKill = Op.isKill(); |
| for (auto S : expandToSubRegs(R, MRI, TRI)) { |
| LastUse[S] = Index; |
| if (IsKill) |
| closeRange(S); |
| } |
| } |
| // Process defs and clobbers. |
| Defs.clear(); |
| Clobbers.clear(); |
| for (auto &Op : In.operands()) { |
| if (!Op.isReg() || !Op.isDef() || Op.isUndef()) |
| continue; |
| RegisterRef R = { Op.getReg(), Op.getSubReg() }; |
| for (auto S : expandToSubRegs(R, MRI, TRI)) { |
| if (TargetRegisterInfo::isPhysicalRegister(S.Reg) && Reserved[S.Reg]) |
| continue; |
| if (Op.isDead()) |
| Clobbers.insert(S); |
| else |
| Defs.insert(S); |
| } |
| } |
| |
| for (auto &Op : In.operands()) { |
| if (!Op.isRegMask()) |
| continue; |
| const uint32_t *BM = Op.getRegMask(); |
| for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) { |
| // Skip registers that have subregisters. A register is preserved |
| // iff its bit is set in the regmask, so if R1:0 was preserved, both |
| // R1 and R0 would also be present. |
| if (MCSubRegIterator(PR, &TRI, false).isValid()) |
| continue; |
| if (Reserved[PR]) |
| continue; |
| if (BM[PR/32] & (1u << (PR%32))) |
| continue; |
| RegisterRef R = { PR, 0 }; |
| if (!Defs.count(R)) |
| Clobbers.insert(R); |
| } |
| } |
| // Defs and clobbers can overlap, e.g. |
| // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1 |
| for (RegisterRef R : Defs) |
| Clobbers.erase(R); |
| |
| // Update maps for defs. |
| for (RegisterRef S : Defs) { |
| // Defs should already be expanded into subregs. |
| assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || |
| !MCSubRegIterator(S.Reg, &TRI, false).isValid()); |
| if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) |
| closeRange(S); |
| LastDef[S] = Index; |
| } |
| // Update maps for clobbers. |
| for (RegisterRef S : Clobbers) { |
| // Clobbers should already be expanded into subregs. |
| assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || |
| !MCSubRegIterator(S.Reg, &TRI, false).isValid()); |
| if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) |
| closeRange(S); |
| // Create a single-instruction range. |
| LastDef[S] = LastUse[S] = Index; |
| closeRange(S); |
| } |
| } |
| |
| // Collect live-on-exit. |
| RegisterSet LiveOnExit; |
| for (auto *SB : B.successors()) |
| for (auto R : getLiveIns(*SB, MRI, TRI)) |
| LiveOnExit.insert(R); |
| |
| for (auto R : LiveOnExit) |
| LastUse[R] = IndexType::Exit; |
| |
| // Process remaining registers. |
| RegisterSet Left; |
| for (auto &I : LastUse) |
| if (I.second != IndexType::None) |
| Left.insert(I.first); |
| for (auto &I : LastDef) |
| if (I.second != IndexType::None) |
| Left.insert(I.first); |
| for (auto R : Left) |
| closeRange(R); |
| |
| // Finalize the live ranges. |
| for (auto &P : LiveMap) |
| P.second.unionize(); |
| } |
| |
| HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( |
| InstrIndexMap &IndexMap) { |
| RegToRangeMap LiveMap; |
| LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); |
| computeInitialLiveRanges(IndexMap, LiveMap); |
| LLVM_DEBUG(dbgs() << __func__ << ": live map\n" |
| << PrintRangeMap(LiveMap, TRI) << '\n'); |
| return LiveMap; |
| } |
| |
| HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( |
| InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { |
| RegToRangeMap DeadMap; |
| |
| auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { |
| auto F = LiveMap.find(R); |
| if (F == LiveMap.end() || F->second.empty()) { |
| DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false); |
| return; |
| } |
| |
| RangeList &RL = F->second; |
| RangeList::iterator A = RL.begin(), Z = RL.end()-1; |
| |
| // Try to create the initial range. |
| if (A->start() != IndexType::Entry) { |
| IndexType DE = IndexMap.getPrevIndex(A->start()); |
| if (DE != IndexType::Entry) |
| DeadMap[R].add(IndexType::Entry, DE, false, false); |
| } |
| |
| while (A != Z) { |
| // Creating a dead range that follows A. Pay attention to empty |
| // ranges (i.e. those ending with "None"). |
| IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); |
| IndexType DS = IndexMap.getNextIndex(AE); |
| ++A; |
| IndexType DE = IndexMap.getPrevIndex(A->start()); |
| if (DS < DE) |
| DeadMap[R].add(DS, DE, false, false); |
| } |
| |
| // Try to create the final range. |
| if (Z->end() != IndexType::Exit) { |
| IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); |
| IndexType DS = IndexMap.getNextIndex(ZE); |
| if (DS < IndexType::Exit) |
| DeadMap[R].add(DS, IndexType::Exit, false, false); |
| } |
| }; |
| |
| MachineFunction &MF = *IndexMap.getBlock().getParent(); |
| auto &MRI = MF.getRegInfo(); |
| unsigned NumRegs = TRI.getNumRegs(); |
| BitVector Visited(NumRegs); |
| for (unsigned R = 1; R < NumRegs; ++R) { |
| for (auto S : expandToSubRegs({R,0}, MRI, TRI)) { |
| if (Reserved[S.Reg] || Visited[S.Reg]) |
| continue; |
| addDeadRanges(S); |
| Visited[S.Reg] = true; |
| } |
| } |
| for (auto &P : LiveMap) |
| if (TargetRegisterInfo::isVirtualRegister(P.first.Reg)) |
| addDeadRanges(P.first); |
| |
| LLVM_DEBUG(dbgs() << __func__ << ": dead map\n" |
| << PrintRangeMap(DeadMap, TRI) << '\n'); |
| return DeadMap; |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, |
| HexagonBlockRanges::IndexType Idx) { |
| if (Idx == HexagonBlockRanges::IndexType::None) |
| return OS << '-'; |
| if (Idx == HexagonBlockRanges::IndexType::Entry) |
| return OS << 'n'; |
| if (Idx == HexagonBlockRanges::IndexType::Exit) |
| return OS << 'x'; |
| return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; |
| } |
| |
| // A mapping to translate between instructions and their indices. |
| raw_ostream &llvm::operator<<(raw_ostream &OS, |
| const HexagonBlockRanges::IndexRange &IR) { |
| OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); |
| if (IR.Fixed) |
| OS << '!'; |
| return OS; |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, |
| const HexagonBlockRanges::RangeList &RL) { |
| for (auto &R : RL) |
| OS << R << " "; |
| return OS; |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, |
| const HexagonBlockRanges::InstrIndexMap &M) { |
| for (auto &In : M.Block) { |
| HexagonBlockRanges::IndexType Idx = M.getIndex(&In); |
| OS << Idx << (Idx == M.Last ? ". " : " ") << In; |
| } |
| return OS; |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, |
| const HexagonBlockRanges::PrintRangeMap &P) { |
| for (auto &I : P.Map) { |
| const HexagonBlockRanges::RangeList &RL = I.second; |
| OS << printReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n"; |
| } |
| return OS; |
| } |