| //===- Parsing, selection, and construction of pass pipelines -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This file provides the implementation of the PassBuilder based on our |
| /// static pass registry as well as related functionality. It also provides |
| /// helpers to aid in analyzing, debugging, and testing passes and pass |
| /// pipelines. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Passes/PassBuilder.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AliasAnalysisEvaluator.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/CFGPrinter.h" |
| #include "llvm/Analysis/CFLAndersAliasAnalysis.h" |
| #include "llvm/Analysis/CFLSteensAliasAnalysis.h" |
| #include "llvm/Analysis/CGSCCPassManager.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/DependenceAnalysis.h" |
| #include "llvm/Analysis/DominanceFrontier.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/Analysis/ModuleSummaryAnalysis.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/PhiValues.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/RegionInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| #include "llvm/Analysis/ScopedNoAliasAA.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/TypeBasedAliasAnalysis.h" |
| #include "llvm/CodeGen/PreISelIntrinsicLowering.h" |
| #include "llvm/CodeGen/UnreachableBlockElim.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRPrintingPasses.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Regex.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" |
| #include "llvm/Transforms/Instrumentation/CGProfile.h" |
| #include "llvm/Transforms/IPO/AlwaysInliner.h" |
| #include "llvm/Transforms/IPO/ArgumentPromotion.h" |
| #include "llvm/Transforms/IPO/CalledValuePropagation.h" |
| #include "llvm/Transforms/IPO/ConstantMerge.h" |
| #include "llvm/Transforms/IPO/CrossDSOCFI.h" |
| #include "llvm/Transforms/IPO/DeadArgumentElimination.h" |
| #include "llvm/Transforms/IPO/ElimAvailExtern.h" |
| #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" |
| #include "llvm/Transforms/IPO/FunctionAttrs.h" |
| #include "llvm/Transforms/IPO/FunctionImport.h" |
| #include "llvm/Transforms/IPO/GlobalDCE.h" |
| #include "llvm/Transforms/IPO/GlobalOpt.h" |
| #include "llvm/Transforms/IPO/GlobalSplit.h" |
| #include "llvm/Transforms/IPO/InferFunctionAttrs.h" |
| #include "llvm/Transforms/IPO/Inliner.h" |
| #include "llvm/Transforms/IPO/Internalize.h" |
| #include "llvm/Transforms/IPO/LowerTypeTests.h" |
| #include "llvm/Transforms/IPO/PartialInlining.h" |
| #include "llvm/Transforms/IPO/SCCP.h" |
| #include "llvm/Transforms/IPO/SampleProfile.h" |
| #include "llvm/Transforms/IPO/StripDeadPrototypes.h" |
| #include "llvm/Transforms/IPO/SyntheticCountsPropagation.h" |
| #include "llvm/Transforms/IPO/WholeProgramDevirt.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/Instrumentation/BoundsChecking.h" |
| #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" |
| #include "llvm/Transforms/Instrumentation/InstrProfiling.h" |
| #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" |
| #include "llvm/Transforms/Scalar/ADCE.h" |
| #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" |
| #include "llvm/Transforms/Scalar/BDCE.h" |
| #include "llvm/Transforms/Scalar/CallSiteSplitting.h" |
| #include "llvm/Transforms/Scalar/ConstantHoisting.h" |
| #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" |
| #include "llvm/Transforms/Scalar/DCE.h" |
| #include "llvm/Transforms/Scalar/DeadStoreElimination.h" |
| #include "llvm/Transforms/Scalar/DivRemPairs.h" |
| #include "llvm/Transforms/Scalar/EarlyCSE.h" |
| #include "llvm/Transforms/Scalar/Float2Int.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Scalar/GuardWidening.h" |
| #include "llvm/Transforms/Scalar/IVUsersPrinter.h" |
| #include "llvm/Transforms/Scalar/IndVarSimplify.h" |
| #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" |
| #include "llvm/Transforms/Scalar/InstSimplifyPass.h" |
| #include "llvm/Transforms/Scalar/JumpThreading.h" |
| #include "llvm/Transforms/Scalar/LICM.h" |
| #include "llvm/Transforms/Scalar/LoopAccessAnalysisPrinter.h" |
| #include "llvm/Transforms/Scalar/LoopDataPrefetch.h" |
| #include "llvm/Transforms/Scalar/LoopDeletion.h" |
| #include "llvm/Transforms/Scalar/LoopDistribute.h" |
| #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" |
| #include "llvm/Transforms/Scalar/LoopInstSimplify.h" |
| #include "llvm/Transforms/Scalar/LoopLoadElimination.h" |
| #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| #include "llvm/Transforms/Scalar/LoopPredication.h" |
| #include "llvm/Transforms/Scalar/LoopRotation.h" |
| #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" |
| #include "llvm/Transforms/Scalar/LoopSink.h" |
| #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" |
| #include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h" |
| #include "llvm/Transforms/Scalar/LoopUnrollPass.h" |
| #include "llvm/Transforms/Scalar/LowerAtomic.h" |
| #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" |
| #include "llvm/Transforms/Scalar/LowerGuardIntrinsic.h" |
| #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" |
| #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h" |
| #include "llvm/Transforms/Scalar/NaryReassociate.h" |
| #include "llvm/Transforms/Scalar/NewGVN.h" |
| #include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h" |
| #include "llvm/Transforms/Scalar/Reassociate.h" |
| #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" |
| #include "llvm/Transforms/Scalar/SCCP.h" |
| #include "llvm/Transforms/Scalar/SROA.h" |
| #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
| #include "llvm/Transforms/Scalar/SimplifyCFG.h" |
| #include "llvm/Transforms/Scalar/Sink.h" |
| #include "llvm/Transforms/Scalar/SpeculateAroundPHIs.h" |
| #include "llvm/Transforms/Scalar/SpeculativeExecution.h" |
| #include "llvm/Transforms/Scalar/TailRecursionElimination.h" |
| #include "llvm/Transforms/Utils/AddDiscriminators.h" |
| #include "llvm/Transforms/Utils/BreakCriticalEdges.h" |
| #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" |
| #include "llvm/Transforms/Utils/LCSSA.h" |
| #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h" |
| #include "llvm/Transforms/Utils/LoopSimplify.h" |
| #include "llvm/Transforms/Utils/LowerInvoke.h" |
| #include "llvm/Transforms/Utils/Mem2Reg.h" |
| #include "llvm/Transforms/Utils/NameAnonGlobals.h" |
| #include "llvm/Transforms/Utils/SymbolRewriter.h" |
| #include "llvm/Transforms/Vectorize/LoopVectorize.h" |
| #include "llvm/Transforms/Vectorize/SLPVectorizer.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<unsigned> MaxDevirtIterations("pm-max-devirt-iterations", |
| cl::ReallyHidden, cl::init(4)); |
| static cl::opt<bool> |
| RunPartialInlining("enable-npm-partial-inlining", cl::init(false), |
| cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Run Partial inlinining pass")); |
| |
| static cl::opt<bool> |
| RunNewGVN("enable-npm-newgvn", cl::init(false), |
| cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Run NewGVN instead of GVN")); |
| |
| static cl::opt<bool> EnableEarlyCSEMemSSA( |
| "enable-npm-earlycse-memssa", cl::init(true), cl::Hidden, |
| cl::desc("Enable the EarlyCSE w/ MemorySSA pass for the new PM (default = on)")); |
| |
| static cl::opt<bool> EnableGVNHoist( |
| "enable-npm-gvn-hoist", cl::init(false), cl::Hidden, |
| cl::desc("Enable the GVN hoisting pass for the new PM (default = off)")); |
| |
| static cl::opt<bool> EnableGVNSink( |
| "enable-npm-gvn-sink", cl::init(false), cl::Hidden, |
| cl::desc("Enable the GVN hoisting pass for the new PM (default = off)")); |
| |
| static cl::opt<bool> EnableUnrollAndJam( |
| "enable-npm-unroll-and-jam", cl::init(false), cl::Hidden, |
| cl::desc("Enable the Unroll and Jam pass for the new PM (default = off)")); |
| |
| static cl::opt<bool> EnableSyntheticCounts( |
| "enable-npm-synthetic-counts", cl::init(false), cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Run synthetic function entry count generation " |
| "pass")); |
| |
| static Regex DefaultAliasRegex( |
| "^(default|thinlto-pre-link|thinlto|lto-pre-link|lto)<(O[0123sz])>$"); |
| |
| static bool isOptimizingForSize(PassBuilder::OptimizationLevel Level) { |
| switch (Level) { |
| case PassBuilder::O0: |
| case PassBuilder::O1: |
| case PassBuilder::O2: |
| case PassBuilder::O3: |
| return false; |
| |
| case PassBuilder::Os: |
| case PassBuilder::Oz: |
| return true; |
| } |
| llvm_unreachable("Invalid optimization level!"); |
| } |
| |
| namespace { |
| |
| /// No-op module pass which does nothing. |
| struct NoOpModulePass { |
| PreservedAnalyses run(Module &M, ModuleAnalysisManager &) { |
| return PreservedAnalyses::all(); |
| } |
| static StringRef name() { return "NoOpModulePass"; } |
| }; |
| |
| /// No-op module analysis. |
| class NoOpModuleAnalysis : public AnalysisInfoMixin<NoOpModuleAnalysis> { |
| friend AnalysisInfoMixin<NoOpModuleAnalysis>; |
| static AnalysisKey Key; |
| |
| public: |
| struct Result {}; |
| Result run(Module &, ModuleAnalysisManager &) { return Result(); } |
| static StringRef name() { return "NoOpModuleAnalysis"; } |
| }; |
| |
| /// No-op CGSCC pass which does nothing. |
| struct NoOpCGSCCPass { |
| PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &, |
| LazyCallGraph &, CGSCCUpdateResult &UR) { |
| return PreservedAnalyses::all(); |
| } |
| static StringRef name() { return "NoOpCGSCCPass"; } |
| }; |
| |
| /// No-op CGSCC analysis. |
| class NoOpCGSCCAnalysis : public AnalysisInfoMixin<NoOpCGSCCAnalysis> { |
| friend AnalysisInfoMixin<NoOpCGSCCAnalysis>; |
| static AnalysisKey Key; |
| |
| public: |
| struct Result {}; |
| Result run(LazyCallGraph::SCC &, CGSCCAnalysisManager &, LazyCallGraph &G) { |
| return Result(); |
| } |
| static StringRef name() { return "NoOpCGSCCAnalysis"; } |
| }; |
| |
| /// No-op function pass which does nothing. |
| struct NoOpFunctionPass { |
| PreservedAnalyses run(Function &F, FunctionAnalysisManager &) { |
| return PreservedAnalyses::all(); |
| } |
| static StringRef name() { return "NoOpFunctionPass"; } |
| }; |
| |
| /// No-op function analysis. |
| class NoOpFunctionAnalysis : public AnalysisInfoMixin<NoOpFunctionAnalysis> { |
| friend AnalysisInfoMixin<NoOpFunctionAnalysis>; |
| static AnalysisKey Key; |
| |
| public: |
| struct Result {}; |
| Result run(Function &, FunctionAnalysisManager &) { return Result(); } |
| static StringRef name() { return "NoOpFunctionAnalysis"; } |
| }; |
| |
| /// No-op loop pass which does nothing. |
| struct NoOpLoopPass { |
| PreservedAnalyses run(Loop &L, LoopAnalysisManager &, |
| LoopStandardAnalysisResults &, LPMUpdater &) { |
| return PreservedAnalyses::all(); |
| } |
| static StringRef name() { return "NoOpLoopPass"; } |
| }; |
| |
| /// No-op loop analysis. |
| class NoOpLoopAnalysis : public AnalysisInfoMixin<NoOpLoopAnalysis> { |
| friend AnalysisInfoMixin<NoOpLoopAnalysis>; |
| static AnalysisKey Key; |
| |
| public: |
| struct Result {}; |
| Result run(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &) { |
| return Result(); |
| } |
| static StringRef name() { return "NoOpLoopAnalysis"; } |
| }; |
| |
| AnalysisKey NoOpModuleAnalysis::Key; |
| AnalysisKey NoOpCGSCCAnalysis::Key; |
| AnalysisKey NoOpFunctionAnalysis::Key; |
| AnalysisKey NoOpLoopAnalysis::Key; |
| |
| } // End anonymous namespace. |
| |
| void PassBuilder::invokePeepholeEPCallbacks( |
| FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { |
| for (auto &C : PeepholeEPCallbacks) |
| C(FPM, Level); |
| } |
| |
| void PassBuilder::registerModuleAnalyses(ModuleAnalysisManager &MAM) { |
| #define MODULE_ANALYSIS(NAME, CREATE_PASS) \ |
| MAM.registerPass([&] { return CREATE_PASS; }); |
| #include "PassRegistry.def" |
| |
| for (auto &C : ModuleAnalysisRegistrationCallbacks) |
| C(MAM); |
| } |
| |
| void PassBuilder::registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM) { |
| #define CGSCC_ANALYSIS(NAME, CREATE_PASS) \ |
| CGAM.registerPass([&] { return CREATE_PASS; }); |
| #include "PassRegistry.def" |
| |
| for (auto &C : CGSCCAnalysisRegistrationCallbacks) |
| C(CGAM); |
| } |
| |
| void PassBuilder::registerFunctionAnalyses(FunctionAnalysisManager &FAM) { |
| #define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \ |
| FAM.registerPass([&] { return CREATE_PASS; }); |
| #include "PassRegistry.def" |
| |
| for (auto &C : FunctionAnalysisRegistrationCallbacks) |
| C(FAM); |
| } |
| |
| void PassBuilder::registerLoopAnalyses(LoopAnalysisManager &LAM) { |
| #define LOOP_ANALYSIS(NAME, CREATE_PASS) \ |
| LAM.registerPass([&] { return CREATE_PASS; }); |
| #include "PassRegistry.def" |
| |
| for (auto &C : LoopAnalysisRegistrationCallbacks) |
| C(LAM); |
| } |
| |
| FunctionPassManager |
| PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level, |
| ThinLTOPhase Phase, |
| bool DebugLogging) { |
| assert(Level != O0 && "Must request optimizations!"); |
| FunctionPassManager FPM(DebugLogging); |
| |
| // Form SSA out of local memory accesses after breaking apart aggregates into |
| // scalars. |
| FPM.addPass(SROA()); |
| |
| // Catch trivial redundancies |
| FPM.addPass(EarlyCSEPass(EnableEarlyCSEMemSSA)); |
| |
| // Hoisting of scalars and load expressions. |
| if (EnableGVNHoist) |
| FPM.addPass(GVNHoistPass()); |
| |
| // Global value numbering based sinking. |
| if (EnableGVNSink) { |
| FPM.addPass(GVNSinkPass()); |
| FPM.addPass(SimplifyCFGPass()); |
| } |
| |
| // Speculative execution if the target has divergent branches; otherwise nop. |
| FPM.addPass(SpeculativeExecutionPass()); |
| |
| // Optimize based on known information about branches, and cleanup afterward. |
| FPM.addPass(JumpThreadingPass()); |
| FPM.addPass(CorrelatedValuePropagationPass()); |
| FPM.addPass(SimplifyCFGPass()); |
| if (Level == O3) |
| FPM.addPass(AggressiveInstCombinePass()); |
| FPM.addPass(InstCombinePass()); |
| |
| if (!isOptimizingForSize(Level)) |
| FPM.addPass(LibCallsShrinkWrapPass()); |
| |
| invokePeepholeEPCallbacks(FPM, Level); |
| |
| // For PGO use pipeline, try to optimize memory intrinsics such as memcpy |
| // using the size value profile. Don't perform this when optimizing for size. |
| if (PGOOpt && !PGOOpt->ProfileUseFile.empty() && |
| !isOptimizingForSize(Level)) |
| FPM.addPass(PGOMemOPSizeOpt()); |
| |
| FPM.addPass(TailCallElimPass()); |
| FPM.addPass(SimplifyCFGPass()); |
| |
| // Form canonically associated expression trees, and simplify the trees using |
| // basic mathematical properties. For example, this will form (nearly) |
| // minimal multiplication trees. |
| FPM.addPass(ReassociatePass()); |
| |
| // Add the primary loop simplification pipeline. |
| // FIXME: Currently this is split into two loop pass pipelines because we run |
| // some function passes in between them. These can and should be removed |
| // and/or replaced by scheduling the loop pass equivalents in the correct |
| // positions. But those equivalent passes aren't powerful enough yet. |
| // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still |
| // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to |
| // fully replace `SimplifyCFGPass`, and the closest to the other we have is |
| // `LoopInstSimplify`. |
| LoopPassManager LPM1(DebugLogging), LPM2(DebugLogging); |
| |
| // Simplify the loop body. We do this initially to clean up after other loop |
| // passes run, either when iterating on a loop or on inner loops with |
| // implications on the outer loop. |
| LPM1.addPass(LoopInstSimplifyPass()); |
| LPM1.addPass(LoopSimplifyCFGPass()); |
| |
| // Rotate Loop - disable header duplication at -Oz |
| LPM1.addPass(LoopRotatePass(Level != Oz)); |
| LPM1.addPass(LICMPass()); |
| LPM1.addPass(SimpleLoopUnswitchPass()); |
| LPM2.addPass(IndVarSimplifyPass()); |
| LPM2.addPass(LoopIdiomRecognizePass()); |
| |
| for (auto &C : LateLoopOptimizationsEPCallbacks) |
| C(LPM2, Level); |
| |
| LPM2.addPass(LoopDeletionPass()); |
| // Do not enable unrolling in PreLinkThinLTO phase during sample PGO |
| // because it changes IR to makes profile annotation in back compile |
| // inaccurate. |
| if (Phase != ThinLTOPhase::PreLink || |
| !PGOOpt || PGOOpt->SampleProfileFile.empty()) |
| LPM2.addPass(LoopFullUnrollPass(Level)); |
| |
| for (auto &C : LoopOptimizerEndEPCallbacks) |
| C(LPM2, Level); |
| |
| // We provide the opt remark emitter pass for LICM to use. We only need to do |
| // this once as it is immutable. |
| FPM.addPass(RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>()); |
| FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1), DebugLogging)); |
| FPM.addPass(SimplifyCFGPass()); |
| FPM.addPass(InstCombinePass()); |
| FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2), DebugLogging)); |
| |
| // Eliminate redundancies. |
| if (Level != O1) { |
| // These passes add substantial compile time so skip them at O1. |
| FPM.addPass(MergedLoadStoreMotionPass()); |
| if (RunNewGVN) |
| FPM.addPass(NewGVNPass()); |
| else |
| FPM.addPass(GVN()); |
| } |
| |
| // Specially optimize memory movement as it doesn't look like dataflow in SSA. |
| FPM.addPass(MemCpyOptPass()); |
| |
| // Sparse conditional constant propagation. |
| // FIXME: It isn't clear why we do this *after* loop passes rather than |
| // before... |
| FPM.addPass(SCCPPass()); |
| |
| // Delete dead bit computations (instcombine runs after to fold away the dead |
| // computations, and then ADCE will run later to exploit any new DCE |
| // opportunities that creates). |
| FPM.addPass(BDCEPass()); |
| |
| // Run instcombine after redundancy and dead bit elimination to exploit |
| // opportunities opened up by them. |
| FPM.addPass(InstCombinePass()); |
| invokePeepholeEPCallbacks(FPM, Level); |
| |
| // Re-consider control flow based optimizations after redundancy elimination, |
| // redo DCE, etc. |
| FPM.addPass(JumpThreadingPass()); |
| FPM.addPass(CorrelatedValuePropagationPass()); |
| FPM.addPass(DSEPass()); |
| FPM.addPass(createFunctionToLoopPassAdaptor(LICMPass(), DebugLogging)); |
| |
| for (auto &C : ScalarOptimizerLateEPCallbacks) |
| C(FPM, Level); |
| |
| // Finally, do an expensive DCE pass to catch all the dead code exposed by |
| // the simplifications and basic cleanup after all the simplifications. |
| FPM.addPass(ADCEPass()); |
| FPM.addPass(SimplifyCFGPass()); |
| FPM.addPass(InstCombinePass()); |
| invokePeepholeEPCallbacks(FPM, Level); |
| |
| return FPM; |
| } |
| |
| void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM, bool DebugLogging, |
| PassBuilder::OptimizationLevel Level, |
| bool RunProfileGen, |
| std::string ProfileGenFile, |
| std::string ProfileUseFile) { |
| // Generally running simplification passes and the inliner with an high |
| // threshold results in smaller executables, but there may be cases where |
| // the size grows, so let's be conservative here and skip this simplification |
| // at -Os/Oz. |
| if (!isOptimizingForSize(Level)) { |
| InlineParams IP; |
| |
| // In the old pass manager, this is a cl::opt. Should still this be one? |
| IP.DefaultThreshold = 75; |
| |
| // FIXME: The hint threshold has the same value used by the regular inliner. |
| // This should probably be lowered after performance testing. |
| // FIXME: this comment is cargo culted from the old pass manager, revisit). |
| IP.HintThreshold = 325; |
| |
| CGSCCPassManager CGPipeline(DebugLogging); |
| |
| CGPipeline.addPass(InlinerPass(IP)); |
| |
| FunctionPassManager FPM; |
| FPM.addPass(SROA()); |
| FPM.addPass(EarlyCSEPass()); // Catch trivial redundancies. |
| FPM.addPass(SimplifyCFGPass()); // Merge & remove basic blocks. |
| FPM.addPass(InstCombinePass()); // Combine silly sequences. |
| invokePeepholeEPCallbacks(FPM, Level); |
| |
| CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); |
| |
| MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPipeline))); |
| } |
| |
| // Delete anything that is now dead to make sure that we don't instrument |
| // dead code. Instrumentation can end up keeping dead code around and |
| // dramatically increase code size. |
| MPM.addPass(GlobalDCEPass()); |
| |
| if (RunProfileGen) { |
| MPM.addPass(PGOInstrumentationGen()); |
| |
| FunctionPassManager FPM; |
| FPM.addPass( |
| createFunctionToLoopPassAdaptor(LoopRotatePass(), DebugLogging)); |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); |
| |
| // Add the profile lowering pass. |
| InstrProfOptions Options; |
| if (!ProfileGenFile.empty()) |
| Options.InstrProfileOutput = ProfileGenFile; |
| Options.DoCounterPromotion = true; |
| MPM.addPass(InstrProfiling(Options)); |
| } |
| |
| if (!ProfileUseFile.empty()) |
| MPM.addPass(PGOInstrumentationUse(ProfileUseFile)); |
| } |
| |
| static InlineParams |
| getInlineParamsFromOptLevel(PassBuilder::OptimizationLevel Level) { |
| auto O3 = PassBuilder::O3; |
| unsigned OptLevel = Level > O3 ? 2 : Level; |
| unsigned SizeLevel = Level > O3 ? Level - O3 : 0; |
| return getInlineParams(OptLevel, SizeLevel); |
| } |
| |
| ModulePassManager |
| PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level, |
| ThinLTOPhase Phase, |
| bool DebugLogging) { |
| ModulePassManager MPM(DebugLogging); |
| |
| // Do basic inference of function attributes from known properties of system |
| // libraries and other oracles. |
| MPM.addPass(InferFunctionAttrsPass()); |
| |
| // Create an early function pass manager to cleanup the output of the |
| // frontend. |
| FunctionPassManager EarlyFPM(DebugLogging); |
| EarlyFPM.addPass(SimplifyCFGPass()); |
| EarlyFPM.addPass(SROA()); |
| EarlyFPM.addPass(EarlyCSEPass()); |
| EarlyFPM.addPass(LowerExpectIntrinsicPass()); |
| if (Level == O3) |
| EarlyFPM.addPass(CallSiteSplittingPass()); |
| |
| // In SamplePGO ThinLTO backend, we need instcombine before profile annotation |
| // to convert bitcast to direct calls so that they can be inlined during the |
| // profile annotation prepration step. |
| // More details about SamplePGO design can be found in: |
| // https://research.google.com/pubs/pub45290.html |
| // FIXME: revisit how SampleProfileLoad/Inliner/ICP is structured. |
| if (PGOOpt && !PGOOpt->SampleProfileFile.empty() && |
| Phase == ThinLTOPhase::PostLink) |
| EarlyFPM.addPass(InstCombinePass()); |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM))); |
| |
| if (PGOOpt && !PGOOpt->SampleProfileFile.empty()) { |
| // Annotate sample profile right after early FPM to ensure freshness of |
| // the debug info. |
| MPM.addPass(SampleProfileLoaderPass(PGOOpt->SampleProfileFile, |
| Phase == ThinLTOPhase::PreLink)); |
| // Do not invoke ICP in the ThinLTOPrelink phase as it makes it hard |
| // for the profile annotation to be accurate in the ThinLTO backend. |
| if (Phase != ThinLTOPhase::PreLink) |
| // We perform early indirect call promotion here, before globalopt. |
| // This is important for the ThinLTO backend phase because otherwise |
| // imported available_externally functions look unreferenced and are |
| // removed. |
| MPM.addPass(PGOIndirectCallPromotion(Phase == ThinLTOPhase::PostLink, |
| true)); |
| } |
| |
| // Interprocedural constant propagation now that basic cleanup has occurred |
| // and prior to optimizing globals. |
| // FIXME: This position in the pipeline hasn't been carefully considered in |
| // years, it should be re-analyzed. |
| MPM.addPass(IPSCCPPass()); |
| |
| // Attach metadata to indirect call sites indicating the set of functions |
| // they may target at run-time. This should follow IPSCCP. |
| MPM.addPass(CalledValuePropagationPass()); |
| |
| // Optimize globals to try and fold them into constants. |
| MPM.addPass(GlobalOptPass()); |
| |
| // Promote any localized globals to SSA registers. |
| // FIXME: Should this instead by a run of SROA? |
| // FIXME: We should probably run instcombine and simplify-cfg afterward to |
| // delete control flows that are dead once globals have been folded to |
| // constants. |
| MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass())); |
| |
| // Remove any dead arguments exposed by cleanups and constand folding |
| // globals. |
| MPM.addPass(DeadArgumentEliminationPass()); |
| |
| // Create a small function pass pipeline to cleanup after all the global |
| // optimizations. |
| FunctionPassManager GlobalCleanupPM(DebugLogging); |
| GlobalCleanupPM.addPass(InstCombinePass()); |
| invokePeepholeEPCallbacks(GlobalCleanupPM, Level); |
| |
| GlobalCleanupPM.addPass(SimplifyCFGPass()); |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM))); |
| |
| // Add all the requested passes for instrumentation PGO, if requested. |
| if (PGOOpt && Phase != ThinLTOPhase::PostLink && |
| (!PGOOpt->ProfileGenFile.empty() || !PGOOpt->ProfileUseFile.empty())) { |
| addPGOInstrPasses(MPM, DebugLogging, Level, PGOOpt->RunProfileGen, |
| PGOOpt->ProfileGenFile, PGOOpt->ProfileUseFile); |
| MPM.addPass(PGOIndirectCallPromotion(false, false)); |
| } |
| |
| // Synthesize function entry counts for non-PGO compilation. |
| if (EnableSyntheticCounts && !PGOOpt) |
| MPM.addPass(SyntheticCountsPropagation()); |
| |
| // Require the GlobalsAA analysis for the module so we can query it within |
| // the CGSCC pipeline. |
| MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); |
| |
| // Require the ProfileSummaryAnalysis for the module so we can query it within |
| // the inliner pass. |
| MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>()); |
| |
| // Now begin the main postorder CGSCC pipeline. |
| // FIXME: The current CGSCC pipeline has its origins in the legacy pass |
| // manager and trying to emulate its precise behavior. Much of this doesn't |
| // make a lot of sense and we should revisit the core CGSCC structure. |
| CGSCCPassManager MainCGPipeline(DebugLogging); |
| |
| // Note: historically, the PruneEH pass was run first to deduce nounwind and |
| // generally clean up exception handling overhead. It isn't clear this is |
| // valuable as the inliner doesn't currently care whether it is inlining an |
| // invoke or a call. |
| |
| // Run the inliner first. The theory is that we are walking bottom-up and so |
| // the callees have already been fully optimized, and we want to inline them |
| // into the callers so that our optimizations can reflect that. |
| // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO |
| // because it makes profile annotation in the backend inaccurate. |
| InlineParams IP = getInlineParamsFromOptLevel(Level); |
| if (Phase == ThinLTOPhase::PreLink && |
| PGOOpt && !PGOOpt->SampleProfileFile.empty()) |
| IP.HotCallSiteThreshold = 0; |
| MainCGPipeline.addPass(InlinerPass(IP)); |
| |
| // Now deduce any function attributes based in the current code. |
| MainCGPipeline.addPass(PostOrderFunctionAttrsPass()); |
| |
| // When at O3 add argument promotion to the pass pipeline. |
| // FIXME: It isn't at all clear why this should be limited to O3. |
| if (Level == O3) |
| MainCGPipeline.addPass(ArgumentPromotionPass()); |
| |
| // Lastly, add the core function simplification pipeline nested inside the |
| // CGSCC walk. |
| MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor( |
| buildFunctionSimplificationPipeline(Level, Phase, DebugLogging))); |
| |
| for (auto &C : CGSCCOptimizerLateEPCallbacks) |
| C(MainCGPipeline, Level); |
| |
| // We wrap the CGSCC pipeline in a devirtualization repeater. This will try |
| // to detect when we devirtualize indirect calls and iterate the SCC passes |
| // in that case to try and catch knock-on inlining or function attrs |
| // opportunities. Then we add it to the module pipeline by walking the SCCs |
| // in postorder (or bottom-up). |
| MPM.addPass( |
| createModuleToPostOrderCGSCCPassAdaptor(createDevirtSCCRepeatedPass( |
| std::move(MainCGPipeline), MaxDevirtIterations))); |
| |
| return MPM; |
| } |
| |
| ModulePassManager |
| PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level, |
| bool DebugLogging) { |
| ModulePassManager MPM(DebugLogging); |
| |
| // Optimize globals now that the module is fully simplified. |
| MPM.addPass(GlobalOptPass()); |
| MPM.addPass(GlobalDCEPass()); |
| |
| // Run partial inlining pass to partially inline functions that have |
| // large bodies. |
| if (RunPartialInlining) |
| MPM.addPass(PartialInlinerPass()); |
| |
| // Remove avail extern fns and globals definitions since we aren't compiling |
| // an object file for later LTO. For LTO we want to preserve these so they |
| // are eligible for inlining at link-time. Note if they are unreferenced they |
| // will be removed by GlobalDCE later, so this only impacts referenced |
| // available externally globals. Eventually they will be suppressed during |
| // codegen, but eliminating here enables more opportunity for GlobalDCE as it |
| // may make globals referenced by available external functions dead and saves |
| // running remaining passes on the eliminated functions. |
| MPM.addPass(EliminateAvailableExternallyPass()); |
| |
| // Do RPO function attribute inference across the module to forward-propagate |
| // attributes where applicable. |
| // FIXME: Is this really an optimization rather than a canonicalization? |
| MPM.addPass(ReversePostOrderFunctionAttrsPass()); |
| |
| // Re-require GloblasAA here prior to function passes. This is particularly |
| // useful as the above will have inlined, DCE'ed, and function-attr |
| // propagated everything. We should at this point have a reasonably minimal |
| // and richly annotated call graph. By computing aliasing and mod/ref |
| // information for all local globals here, the late loop passes and notably |
| // the vectorizer will be able to use them to help recognize vectorizable |
| // memory operations. |
| MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); |
| |
| FunctionPassManager OptimizePM(DebugLogging); |
| OptimizePM.addPass(Float2IntPass()); |
| // FIXME: We need to run some loop optimizations to re-rotate loops after |
| // simplify-cfg and others undo their rotation. |
| |
| // Optimize the loop execution. These passes operate on entire loop nests |
| // rather than on each loop in an inside-out manner, and so they are actually |
| // function passes. |
| |
| for (auto &C : VectorizerStartEPCallbacks) |
| C(OptimizePM, Level); |
| |
| // First rotate loops that may have been un-rotated by prior passes. |
| OptimizePM.addPass( |
| createFunctionToLoopPassAdaptor(LoopRotatePass(), DebugLogging)); |
| |
| // Distribute loops to allow partial vectorization. I.e. isolate dependences |
| // into separate loop that would otherwise inhibit vectorization. This is |
| // currently only performed for loops marked with the metadata |
| // llvm.loop.distribute=true or when -enable-loop-distribute is specified. |
| OptimizePM.addPass(LoopDistributePass()); |
| |
| // Now run the core loop vectorizer. |
| OptimizePM.addPass(LoopVectorizePass()); |
| |
| // Eliminate loads by forwarding stores from the previous iteration to loads |
| // of the current iteration. |
| OptimizePM.addPass(LoopLoadEliminationPass()); |
| |
| // Cleanup after the loop optimization passes. |
| OptimizePM.addPass(InstCombinePass()); |
| |
| // Now that we've formed fast to execute loop structures, we do further |
| // optimizations. These are run afterward as they might block doing complex |
| // analyses and transforms such as what are needed for loop vectorization. |
| |
| // Cleanup after loop vectorization, etc. Simplification passes like CVP and |
| // GVN, loop transforms, and others have already run, so it's now better to |
| // convert to more optimized IR using more aggressive simplify CFG options. |
| // The extra sinking transform can create larger basic blocks, so do this |
| // before SLP vectorization. |
| OptimizePM.addPass(SimplifyCFGPass(SimplifyCFGOptions(). |
| forwardSwitchCondToPhi(true). |
| convertSwitchToLookupTable(true). |
| needCanonicalLoops(false). |
| sinkCommonInsts(true))); |
| |
| // Optimize parallel scalar instruction chains into SIMD instructions. |
| OptimizePM.addPass(SLPVectorizerPass()); |
| |
| OptimizePM.addPass(InstCombinePass()); |
| |
| // Unroll small loops to hide loop backedge latency and saturate any parallel |
| // execution resources of an out-of-order processor. We also then need to |
| // clean up redundancies and loop invariant code. |
| // FIXME: It would be really good to use a loop-integrated instruction |
| // combiner for cleanup here so that the unrolling and LICM can be pipelined |
| // across the loop nests. |
| // We do UnrollAndJam in a separate LPM to ensure it happens before unroll |
| if (EnableUnrollAndJam) { |
| OptimizePM.addPass( |
| createFunctionToLoopPassAdaptor(LoopUnrollAndJamPass(Level))); |
| } |
| OptimizePM.addPass(LoopUnrollPass(Level)); |
| OptimizePM.addPass(InstCombinePass()); |
| OptimizePM.addPass(RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>()); |
| OptimizePM.addPass(createFunctionToLoopPassAdaptor(LICMPass(), DebugLogging)); |
| |
| // Now that we've vectorized and unrolled loops, we may have more refined |
| // alignment information, try to re-derive it here. |
| OptimizePM.addPass(AlignmentFromAssumptionsPass()); |
| |
| // LoopSink pass sinks instructions hoisted by LICM, which serves as a |
| // canonicalization pass that enables other optimizations. As a result, |
| // LoopSink pass needs to be a very late IR pass to avoid undoing LICM |
| // result too early. |
| OptimizePM.addPass(LoopSinkPass()); |
| |
| // And finally clean up LCSSA form before generating code. |
| OptimizePM.addPass(InstSimplifyPass()); |
| |
| // This hoists/decomposes div/rem ops. It should run after other sink/hoist |
| // passes to avoid re-sinking, but before SimplifyCFG because it can allow |
| // flattening of blocks. |
| OptimizePM.addPass(DivRemPairsPass()); |
| |
| // LoopSink (and other loop passes since the last simplifyCFG) might have |
| // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. |
| OptimizePM.addPass(SimplifyCFGPass()); |
| |
| // Optimize PHIs by speculating around them when profitable. Note that this |
| // pass needs to be run after any PRE or similar pass as it is essentially |
| // inserting redudnancies into the progrem. This even includes SimplifyCFG. |
| OptimizePM.addPass(SpeculateAroundPHIsPass()); |
| |
| // Add the core optimizing pipeline. |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM))); |
| |
| MPM.addPass(CGProfilePass()); |
| |
| // Now we need to do some global optimization transforms. |
| // FIXME: It would seem like these should come first in the optimization |
| // pipeline and maybe be the bottom of the canonicalization pipeline? Weird |
| // ordering here. |
| MPM.addPass(GlobalDCEPass()); |
| MPM.addPass(ConstantMergePass()); |
| |
| return MPM; |
| } |
| |
| ModulePassManager |
| PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level, |
| bool DebugLogging) { |
| assert(Level != O0 && "Must request optimizations for the default pipeline!"); |
| |
| ModulePassManager MPM(DebugLogging); |
| |
| // Force any function attributes we want the rest of the pipeline to observe. |
| MPM.addPass(ForceFunctionAttrsPass()); |
| |
| // Apply module pipeline start EP callback. |
| for (auto &C : PipelineStartEPCallbacks) |
| C(MPM); |
| |
| if (PGOOpt && PGOOpt->SamplePGOSupport) |
| MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass())); |
| |
| // Add the core simplification pipeline. |
| MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::None, |
| DebugLogging)); |
| |
| // Now add the optimization pipeline. |
| MPM.addPass(buildModuleOptimizationPipeline(Level, DebugLogging)); |
| |
| return MPM; |
| } |
| |
| ModulePassManager |
| PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level, |
| bool DebugLogging) { |
| assert(Level != O0 && "Must request optimizations for the default pipeline!"); |
| |
| ModulePassManager MPM(DebugLogging); |
| |
| // Force any function attributes we want the rest of the pipeline to observe. |
| MPM.addPass(ForceFunctionAttrsPass()); |
| |
| if (PGOOpt && PGOOpt->SamplePGOSupport) |
| MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass())); |
| |
| // Apply module pipeline start EP callback. |
| for (auto &C : PipelineStartEPCallbacks) |
| C(MPM); |
| |
| // If we are planning to perform ThinLTO later, we don't bloat the code with |
| // unrolling/vectorization/... now. Just simplify the module as much as we |
| // can. |
| MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::PreLink, |
| DebugLogging)); |
| |
| // Run partial inlining pass to partially inline functions that have |
| // large bodies. |
| // FIXME: It isn't clear whether this is really the right place to run this |
| // in ThinLTO. Because there is another canonicalization and simplification |
| // phase that will run after the thin link, running this here ends up with |
| // less information than will be available later and it may grow functions in |
| // ways that aren't beneficial. |
| if (RunPartialInlining) |
| MPM.addPass(PartialInlinerPass()); |
| |
| // Reduce the size of the IR as much as possible. |
| MPM.addPass(GlobalOptPass()); |
| |
| return MPM; |
| } |
| |
| ModulePassManager PassBuilder::buildThinLTODefaultPipeline( |
| OptimizationLevel Level, bool DebugLogging, |
| const ModuleSummaryIndex *ImportSummary) { |
| ModulePassManager MPM(DebugLogging); |
| |
| if (ImportSummary) { |
| // These passes import type identifier resolutions for whole-program |
| // devirtualization and CFI. They must run early because other passes may |
| // disturb the specific instruction patterns that these passes look for, |
| // creating dependencies on resolutions that may not appear in the summary. |
| // |
| // For example, GVN may transform the pattern assume(type.test) appearing in |
| // two basic blocks into assume(phi(type.test, type.test)), which would |
| // transform a dependency on a WPD resolution into a dependency on a type |
| // identifier resolution for CFI. |
| // |
| // Also, WPD has access to more precise information than ICP and can |
| // devirtualize more effectively, so it should operate on the IR first. |
| MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary)); |
| MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary)); |
| } |
| |
| // Force any function attributes we want the rest of the pipeline to observe. |
| MPM.addPass(ForceFunctionAttrsPass()); |
| |
| // During the ThinLTO backend phase we perform early indirect call promotion |
| // here, before globalopt. Otherwise imported available_externally functions |
| // look unreferenced and are removed. |
| // FIXME: move this into buildModuleSimplificationPipeline to merge the logic |
| // with SamplePGO. |
| if (!PGOOpt || PGOOpt->SampleProfileFile.empty()) |
| MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, |
| false /* SamplePGO */)); |
| |
| // Add the core simplification pipeline. |
| MPM.addPass(buildModuleSimplificationPipeline(Level, ThinLTOPhase::PostLink, |
| DebugLogging)); |
| |
| // Now add the optimization pipeline. |
| MPM.addPass(buildModuleOptimizationPipeline(Level, DebugLogging)); |
| |
| return MPM; |
| } |
| |
| ModulePassManager |
| PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level, |
| bool DebugLogging) { |
| assert(Level != O0 && "Must request optimizations for the default pipeline!"); |
| // FIXME: We should use a customized pre-link pipeline! |
| return buildPerModuleDefaultPipeline(Level, DebugLogging); |
| } |
| |
| ModulePassManager |
| PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level, bool DebugLogging, |
| ModuleSummaryIndex *ExportSummary) { |
| assert(Level != O0 && "Must request optimizations for the default pipeline!"); |
| ModulePassManager MPM(DebugLogging); |
| |
| // Remove unused virtual tables to improve the quality of code generated by |
| // whole-program devirtualization and bitset lowering. |
| MPM.addPass(GlobalDCEPass()); |
| |
| // Force any function attributes we want the rest of the pipeline to observe. |
| MPM.addPass(ForceFunctionAttrsPass()); |
| |
| // Do basic inference of function attributes from known properties of system |
| // libraries and other oracles. |
| MPM.addPass(InferFunctionAttrsPass()); |
| |
| if (Level > 1) { |
| FunctionPassManager EarlyFPM(DebugLogging); |
| EarlyFPM.addPass(CallSiteSplittingPass()); |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM))); |
| |
| // Indirect call promotion. This should promote all the targets that are |
| // left by the earlier promotion pass that promotes intra-module targets. |
| // This two-step promotion is to save the compile time. For LTO, it should |
| // produce the same result as if we only do promotion here. |
| MPM.addPass(PGOIndirectCallPromotion( |
| true /* InLTO */, PGOOpt && !PGOOpt->SampleProfileFile.empty())); |
| // Propagate constants at call sites into the functions they call. This |
| // opens opportunities for globalopt (and inlining) by substituting function |
| // pointers passed as arguments to direct uses of functions. |
| MPM.addPass(IPSCCPPass()); |
| |
| // Attach metadata to indirect call sites indicating the set of functions |
| // they may target at run-time. This should follow IPSCCP. |
| MPM.addPass(CalledValuePropagationPass()); |
| } |
| |
| // Now deduce any function attributes based in the current code. |
| MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( |
| PostOrderFunctionAttrsPass())); |
| |
| // Do RPO function attribute inference across the module to forward-propagate |
| // attributes where applicable. |
| // FIXME: Is this really an optimization rather than a canonicalization? |
| MPM.addPass(ReversePostOrderFunctionAttrsPass()); |
| |
| // Use inragne annotations on GEP indices to split globals where beneficial. |
| MPM.addPass(GlobalSplitPass()); |
| |
| // Run whole program optimization of virtual call when the list of callees |
| // is fixed. |
| MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr)); |
| |
| // Stop here at -O1. |
| if (Level == 1) { |
| // The LowerTypeTestsPass needs to run to lower type metadata and the |
| // type.test intrinsics. The pass does nothing if CFI is disabled. |
| MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr)); |
| return MPM; |
| } |
| |
| // Optimize globals to try and fold them into constants. |
| MPM.addPass(GlobalOptPass()); |
| |
| // Promote any localized globals to SSA registers. |
| MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass())); |
| |
| // Linking modules together can lead to duplicate global constant, only |
| // keep one copy of each constant. |
| MPM.addPass(ConstantMergePass()); |
| |
| // Remove unused arguments from functions. |
| MPM.addPass(DeadArgumentEliminationPass()); |
| |
| // Reduce the code after globalopt and ipsccp. Both can open up significant |
| // simplification opportunities, and both can propagate functions through |
| // function pointers. When this happens, we often have to resolve varargs |
| // calls, etc, so let instcombine do this. |
| FunctionPassManager PeepholeFPM(DebugLogging); |
| if (Level == O3) |
| PeepholeFPM.addPass(AggressiveInstCombinePass()); |
| PeepholeFPM.addPass(InstCombinePass()); |
| invokePeepholeEPCallbacks(PeepholeFPM, Level); |
| |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM))); |
| |
| // Note: historically, the PruneEH pass was run first to deduce nounwind and |
| // generally clean up exception handling overhead. It isn't clear this is |
| // valuable as the inliner doesn't currently care whether it is inlining an |
| // invoke or a call. |
| // Run the inliner now. |
| MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( |
| InlinerPass(getInlineParamsFromOptLevel(Level)))); |
| |
| // Optimize globals again after we ran the inliner. |
| MPM.addPass(GlobalOptPass()); |
| |
| // Garbage collect dead functions. |
| // FIXME: Add ArgumentPromotion pass after once it's ported. |
| MPM.addPass(GlobalDCEPass()); |
| |
| FunctionPassManager FPM(DebugLogging); |
| // The IPO Passes may leave cruft around. Clean up after them. |
| FPM.addPass(InstCombinePass()); |
| invokePeepholeEPCallbacks(FPM, Level); |
| |
| FPM.addPass(JumpThreadingPass()); |
| |
| // Break up allocas |
| FPM.addPass(SROA()); |
| |
| // Run a few AA driver optimizations here and now to cleanup the code. |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); |
| |
| MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( |
| PostOrderFunctionAttrsPass())); |
| // FIXME: here we run IP alias analysis in the legacy PM. |
| |
| FunctionPassManager MainFPM; |
| |
| // FIXME: once we fix LoopPass Manager, add LICM here. |
| // FIXME: once we provide support for enabling MLSM, add it here. |
| // FIXME: once we provide support for enabling NewGVN, add it here. |
| if (RunNewGVN) |
| MainFPM.addPass(NewGVNPass()); |
| else |
| MainFPM.addPass(GVN()); |
| |
| // Remove dead memcpy()'s. |
| MainFPM.addPass(MemCpyOptPass()); |
| |
| // Nuke dead stores. |
| MainFPM.addPass(DSEPass()); |
| |
| // FIXME: at this point, we run a bunch of loop passes: |
| // indVarSimplify, loopDeletion, loopInterchange, loopUnrool, |
| // loopVectorize. Enable them once the remaining issue with LPM |
| // are sorted out. |
| |
| MainFPM.addPass(InstCombinePass()); |
| MainFPM.addPass(SimplifyCFGPass()); |
| MainFPM.addPass(SCCPPass()); |
| MainFPM.addPass(InstCombinePass()); |
| MainFPM.addPass(BDCEPass()); |
| |
| // FIXME: We may want to run SLPVectorizer here. |
| // After vectorization, assume intrinsics may tell us more |
| // about pointer alignments. |
| #if 0 |
| MainFPM.add(AlignmentFromAssumptionsPass()); |
| #endif |
| |
| // FIXME: Conditionally run LoadCombine here, after it's ported |
| // (in case we still have this pass, given its questionable usefulness). |
| |
| MainFPM.addPass(InstCombinePass()); |
| invokePeepholeEPCallbacks(MainFPM, Level); |
| MainFPM.addPass(JumpThreadingPass()); |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM))); |
| |
| // Create a function that performs CFI checks for cross-DSO calls with |
| // targets in the current module. |
| MPM.addPass(CrossDSOCFIPass()); |
| |
| // Lower type metadata and the type.test intrinsic. This pass supports |
| // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs |
| // to be run at link time if CFI is enabled. This pass does nothing if |
| // CFI is disabled. |
| MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr)); |
| |
| // Add late LTO optimization passes. |
| // Delete basic blocks, which optimization passes may have killed. |
| MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass())); |
| |
| // Drop bodies of available eternally objects to improve GlobalDCE. |
| MPM.addPass(EliminateAvailableExternallyPass()); |
| |
| // Now that we have optimized the program, discard unreachable functions. |
| MPM.addPass(GlobalDCEPass()); |
| |
| // FIXME: Enable MergeFuncs, conditionally, after ported, maybe. |
| return MPM; |
| } |
| |
| AAManager PassBuilder::buildDefaultAAPipeline() { |
| AAManager AA; |
| |
| // The order in which these are registered determines their priority when |
| // being queried. |
| |
| // First we register the basic alias analysis that provides the majority of |
| // per-function local AA logic. This is a stateless, on-demand local set of |
| // AA techniques. |
| AA.registerFunctionAnalysis<BasicAA>(); |
| |
| // Next we query fast, specialized alias analyses that wrap IR-embedded |
| // information about aliasing. |
| AA.registerFunctionAnalysis<ScopedNoAliasAA>(); |
| AA.registerFunctionAnalysis<TypeBasedAA>(); |
| |
| // Add support for querying global aliasing information when available. |
| // Because the `AAManager` is a function analysis and `GlobalsAA` is a module |
| // analysis, all that the `AAManager` can do is query for any *cached* |
| // results from `GlobalsAA` through a readonly proxy. |
| AA.registerModuleAnalysis<GlobalsAA>(); |
| |
| return AA; |
| } |
| |
| static Optional<int> parseRepeatPassName(StringRef Name) { |
| if (!Name.consume_front("repeat<") || !Name.consume_back(">")) |
| return None; |
| int Count; |
| if (Name.getAsInteger(0, Count) || Count <= 0) |
| return None; |
| return Count; |
| } |
| |
| static Optional<int> parseDevirtPassName(StringRef Name) { |
| if (!Name.consume_front("devirt<") || !Name.consume_back(">")) |
| return None; |
| int Count; |
| if (Name.getAsInteger(0, Count) || Count <= 0) |
| return None; |
| return Count; |
| } |
| |
| /// Tests whether a pass name starts with a valid prefix for a default pipeline |
| /// alias. |
| static bool startsWithDefaultPipelineAliasPrefix(StringRef Name) { |
| return Name.startswith("default") || Name.startswith("thinlto") || |
| Name.startswith("lto"); |
| } |
| |
| /// Tests whether registered callbacks will accept a given pass name. |
| /// |
| /// When parsing a pipeline text, the type of the outermost pipeline may be |
| /// omitted, in which case the type is automatically determined from the first |
| /// pass name in the text. This may be a name that is handled through one of the |
| /// callbacks. We check this through the oridinary parsing callbacks by setting |
| /// up a dummy PassManager in order to not force the client to also handle this |
| /// type of query. |
| template <typename PassManagerT, typename CallbacksT> |
| static bool callbacksAcceptPassName(StringRef Name, CallbacksT &Callbacks) { |
| if (!Callbacks.empty()) { |
| PassManagerT DummyPM; |
| for (auto &CB : Callbacks) |
| if (CB(Name, DummyPM, {})) |
| return true; |
| } |
| return false; |
| } |
| |
| template <typename CallbacksT> |
| static bool isModulePassName(StringRef Name, CallbacksT &Callbacks) { |
| // Manually handle aliases for pre-configured pipeline fragments. |
| if (startsWithDefaultPipelineAliasPrefix(Name)) |
| return DefaultAliasRegex.match(Name); |
| |
| // Explicitly handle pass manager names. |
| if (Name == "module") |
| return true; |
| if (Name == "cgscc") |
| return true; |
| if (Name == "function") |
| return true; |
| |
| // Explicitly handle custom-parsed pass names. |
| if (parseRepeatPassName(Name)) |
| return true; |
| |
| #define MODULE_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) \ |
| return true; |
| #define MODULE_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ |
| return true; |
| #include "PassRegistry.def" |
| |
| return callbacksAcceptPassName<ModulePassManager>(Name, Callbacks); |
| } |
| |
| template <typename CallbacksT> |
| static bool isCGSCCPassName(StringRef Name, CallbacksT &Callbacks) { |
| // Explicitly handle pass manager names. |
| if (Name == "cgscc") |
| return true; |
| if (Name == "function") |
| return true; |
| |
| // Explicitly handle custom-parsed pass names. |
| if (parseRepeatPassName(Name)) |
| return true; |
| if (parseDevirtPassName(Name)) |
| return true; |
| |
| #define CGSCC_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) \ |
| return true; |
| #define CGSCC_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ |
| return true; |
| #include "PassRegistry.def" |
| |
| return callbacksAcceptPassName<CGSCCPassManager>(Name, Callbacks); |
| } |
| |
| template <typename CallbacksT> |
| static bool isFunctionPassName(StringRef Name, CallbacksT &Callbacks) { |
| // Explicitly handle pass manager names. |
| if (Name == "function") |
| return true; |
| if (Name == "loop") |
| return true; |
| |
| // Explicitly handle custom-parsed pass names. |
| if (parseRepeatPassName(Name)) |
| return true; |
| |
| #define FUNCTION_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) \ |
| return true; |
| #define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ |
| return true; |
| #include "PassRegistry.def" |
| |
| return callbacksAcceptPassName<FunctionPassManager>(Name, Callbacks); |
| } |
| |
| template <typename CallbacksT> |
| static bool isLoopPassName(StringRef Name, CallbacksT &Callbacks) { |
| // Explicitly handle pass manager names. |
| if (Name == "loop") |
| return true; |
| |
| // Explicitly handle custom-parsed pass names. |
| if (parseRepeatPassName(Name)) |
| return true; |
| |
| #define LOOP_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) \ |
| return true; |
| #define LOOP_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \ |
| return true; |
| #include "PassRegistry.def" |
| |
| return callbacksAcceptPassName<LoopPassManager>(Name, Callbacks); |
| } |
| |
| Optional<std::vector<PassBuilder::PipelineElement>> |
| PassBuilder::parsePipelineText(StringRef Text) { |
| std::vector<PipelineElement> ResultPipeline; |
| |
| SmallVector<std::vector<PipelineElement> *, 4> PipelineStack = { |
| &ResultPipeline}; |
| for (;;) { |
| std::vector<PipelineElement> &Pipeline = *PipelineStack.back(); |
| size_t Pos = Text.find_first_of(",()"); |
| Pipeline.push_back({Text.substr(0, Pos), {}}); |
| |
| // If we have a single terminating name, we're done. |
| if (Pos == Text.npos) |
| break; |
| |
| char Sep = Text[Pos]; |
| Text = Text.substr(Pos + 1); |
| if (Sep == ',') |
| // Just a name ending in a comma, continue. |
| continue; |
| |
| if (Sep == '(') { |
| // Push the inner pipeline onto the stack to continue processing. |
| PipelineStack.push_back(&Pipeline.back().InnerPipeline); |
| continue; |
| } |
| |
| assert(Sep == ')' && "Bogus separator!"); |
| // When handling the close parenthesis, we greedily consume them to avoid |
| // empty strings in the pipeline. |
| do { |
| // If we try to pop the outer pipeline we have unbalanced parentheses. |
| if (PipelineStack.size() == 1) |
| return None; |
| |
| PipelineStack.pop_back(); |
| } while (Text.consume_front(")")); |
| |
| // Check if we've finished parsing. |
| if (Text.empty()) |
| break; |
| |
| // Otherwise, the end of an inner pipeline always has to be followed by |
| // a comma, and then we can continue. |
| if (!Text.consume_front(",")) |
| return None; |
| } |
| |
| if (PipelineStack.size() > 1) |
| // Unbalanced paretheses. |
| return None; |
| |
| assert(PipelineStack.back() == &ResultPipeline && |
| "Wrong pipeline at the bottom of the stack!"); |
| return {std::move(ResultPipeline)}; |
| } |
| |
| bool PassBuilder::parseModulePass(ModulePassManager &MPM, |
| const PipelineElement &E, bool VerifyEachPass, |
| bool DebugLogging) { |
| auto &Name = E.Name; |
| auto &InnerPipeline = E.InnerPipeline; |
| |
| // First handle complex passes like the pass managers which carry pipelines. |
| if (!InnerPipeline.empty()) { |
| if (Name == "module") { |
| ModulePassManager NestedMPM(DebugLogging); |
| if (!parseModulePassPipeline(NestedMPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| MPM.addPass(std::move(NestedMPM)); |
| return true; |
| } |
| if (Name == "cgscc") { |
| CGSCCPassManager CGPM(DebugLogging); |
| if (!parseCGSCCPassPipeline(CGPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); |
| return true; |
| } |
| if (Name == "function") { |
| FunctionPassManager FPM(DebugLogging); |
| if (!parseFunctionPassPipeline(FPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); |
| return true; |
| } |
| if (auto Count = parseRepeatPassName(Name)) { |
| ModulePassManager NestedMPM(DebugLogging); |
| if (!parseModulePassPipeline(NestedMPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| MPM.addPass(createRepeatedPass(*Count, std::move(NestedMPM))); |
| return true; |
| } |
| |
| for (auto &C : ModulePipelineParsingCallbacks) |
| if (C(Name, MPM, InnerPipeline)) |
| return true; |
| |
| // Normal passes can't have pipelines. |
| return false; |
| } |
| |
| // Manually handle aliases for pre-configured pipeline fragments. |
| if (startsWithDefaultPipelineAliasPrefix(Name)) { |
| SmallVector<StringRef, 3> Matches; |
| if (!DefaultAliasRegex.match(Name, &Matches)) |
| return false; |
| assert(Matches.size() == 3 && "Must capture two matched strings!"); |
| |
| OptimizationLevel L = StringSwitch<OptimizationLevel>(Matches[2]) |
| .Case("O0", O0) |
| .Case("O1", O1) |
| .Case("O2", O2) |
| .Case("O3", O3) |
| .Case("Os", Os) |
| .Case("Oz", Oz); |
| if (L == O0) |
| // At O0 we do nothing at all! |
| return true; |
| |
| if (Matches[1] == "default") { |
| MPM.addPass(buildPerModuleDefaultPipeline(L, DebugLogging)); |
| } else if (Matches[1] == "thinlto-pre-link") { |
| MPM.addPass(buildThinLTOPreLinkDefaultPipeline(L, DebugLogging)); |
| } else if (Matches[1] == "thinlto") { |
| MPM.addPass(buildThinLTODefaultPipeline(L, DebugLogging, nullptr)); |
| } else if (Matches[1] == "lto-pre-link") { |
| MPM.addPass(buildLTOPreLinkDefaultPipeline(L, DebugLogging)); |
| } else { |
| assert(Matches[1] == "lto" && "Not one of the matched options!"); |
| MPM.addPass(buildLTODefaultPipeline(L, DebugLogging, nullptr)); |
| } |
| return true; |
| } |
| |
| // Finally expand the basic registered passes from the .inc file. |
| #define MODULE_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) { \ |
| MPM.addPass(CREATE_PASS); \ |
| return true; \ |
| } |
| #define MODULE_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">") { \ |
| MPM.addPass( \ |
| RequireAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type, Module>()); \ |
| return true; \ |
| } \ |
| if (Name == "invalidate<" NAME ">") { \ |
| MPM.addPass(InvalidateAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type>()); \ |
| return true; \ |
| } |
| #include "PassRegistry.def" |
| |
| for (auto &C : ModulePipelineParsingCallbacks) |
| if (C(Name, MPM, InnerPipeline)) |
| return true; |
| return false; |
| } |
| |
| bool PassBuilder::parseCGSCCPass(CGSCCPassManager &CGPM, |
| const PipelineElement &E, bool VerifyEachPass, |
| bool DebugLogging) { |
| auto &Name = E.Name; |
| auto &InnerPipeline = E.InnerPipeline; |
| |
| // First handle complex passes like the pass managers which carry pipelines. |
| if (!InnerPipeline.empty()) { |
| if (Name == "cgscc") { |
| CGSCCPassManager NestedCGPM(DebugLogging); |
| if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| // Add the nested pass manager with the appropriate adaptor. |
| CGPM.addPass(std::move(NestedCGPM)); |
| return true; |
| } |
| if (Name == "function") { |
| FunctionPassManager FPM(DebugLogging); |
| if (!parseFunctionPassPipeline(FPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| // Add the nested pass manager with the appropriate adaptor. |
| CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); |
| return true; |
| } |
| if (auto Count = parseRepeatPassName(Name)) { |
| CGSCCPassManager NestedCGPM(DebugLogging); |
| if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| CGPM.addPass(createRepeatedPass(*Count, std::move(NestedCGPM))); |
| return true; |
| } |
| if (auto MaxRepetitions = parseDevirtPassName(Name)) { |
| CGSCCPassManager NestedCGPM(DebugLogging); |
| if (!parseCGSCCPassPipeline(NestedCGPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| CGPM.addPass( |
| createDevirtSCCRepeatedPass(std::move(NestedCGPM), *MaxRepetitions)); |
| return true; |
| } |
| |
| for (auto &C : CGSCCPipelineParsingCallbacks) |
| if (C(Name, CGPM, InnerPipeline)) |
| return true; |
| |
| // Normal passes can't have pipelines. |
| return false; |
| } |
| |
| // Now expand the basic registered passes from the .inc file. |
| #define CGSCC_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) { \ |
| CGPM.addPass(CREATE_PASS); \ |
| return true; \ |
| } |
| #define CGSCC_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">") { \ |
| CGPM.addPass(RequireAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type, \ |
| LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, \ |
| CGSCCUpdateResult &>()); \ |
| return true; \ |
| } \ |
| if (Name == "invalidate<" NAME ">") { \ |
| CGPM.addPass(InvalidateAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type>()); \ |
| return true; \ |
| } |
| #include "PassRegistry.def" |
| |
| for (auto &C : CGSCCPipelineParsingCallbacks) |
| if (C(Name, CGPM, InnerPipeline)) |
| return true; |
| return false; |
| } |
| |
| bool PassBuilder::parseFunctionPass(FunctionPassManager &FPM, |
| const PipelineElement &E, |
| bool VerifyEachPass, bool DebugLogging) { |
| auto &Name = E.Name; |
| auto &InnerPipeline = E.InnerPipeline; |
| |
| // First handle complex passes like the pass managers which carry pipelines. |
| if (!InnerPipeline.empty()) { |
| if (Name == "function") { |
| FunctionPassManager NestedFPM(DebugLogging); |
| if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| // Add the nested pass manager with the appropriate adaptor. |
| FPM.addPass(std::move(NestedFPM)); |
| return true; |
| } |
| if (Name == "loop") { |
| LoopPassManager LPM(DebugLogging); |
| if (!parseLoopPassPipeline(LPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| // Add the nested pass manager with the appropriate adaptor. |
| FPM.addPass( |
| createFunctionToLoopPassAdaptor(std::move(LPM), DebugLogging)); |
| return true; |
| } |
| if (auto Count = parseRepeatPassName(Name)) { |
| FunctionPassManager NestedFPM(DebugLogging); |
| if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| FPM.addPass(createRepeatedPass(*Count, std::move(NestedFPM))); |
| return true; |
| } |
| |
| for (auto &C : FunctionPipelineParsingCallbacks) |
| if (C(Name, FPM, InnerPipeline)) |
| return true; |
| |
| // Normal passes can't have pipelines. |
| return false; |
| } |
| |
| // Now expand the basic registered passes from the .inc file. |
| #define FUNCTION_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) { \ |
| FPM.addPass(CREATE_PASS); \ |
| return true; \ |
| } |
| #define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">") { \ |
| FPM.addPass( \ |
| RequireAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type, Function>()); \ |
| return true; \ |
| } \ |
| if (Name == "invalidate<" NAME ">") { \ |
| FPM.addPass(InvalidateAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type>()); \ |
| return true; \ |
| } |
| #include "PassRegistry.def" |
| |
| for (auto &C : FunctionPipelineParsingCallbacks) |
| if (C(Name, FPM, InnerPipeline)) |
| return true; |
| return false; |
| } |
| |
| bool PassBuilder::parseLoopPass(LoopPassManager &LPM, const PipelineElement &E, |
| bool VerifyEachPass, bool DebugLogging) { |
| StringRef Name = E.Name; |
| auto &InnerPipeline = E.InnerPipeline; |
| |
| // First handle complex passes like the pass managers which carry pipelines. |
| if (!InnerPipeline.empty()) { |
| if (Name == "loop") { |
| LoopPassManager NestedLPM(DebugLogging); |
| if (!parseLoopPassPipeline(NestedLPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| // Add the nested pass manager with the appropriate adaptor. |
| LPM.addPass(std::move(NestedLPM)); |
| return true; |
| } |
| if (auto Count = parseRepeatPassName(Name)) { |
| LoopPassManager NestedLPM(DebugLogging); |
| if (!parseLoopPassPipeline(NestedLPM, InnerPipeline, VerifyEachPass, |
| DebugLogging)) |
| return false; |
| LPM.addPass(createRepeatedPass(*Count, std::move(NestedLPM))); |
| return true; |
| } |
| |
| for (auto &C : LoopPipelineParsingCallbacks) |
| if (C(Name, LPM, InnerPipeline)) |
| return true; |
| |
| // Normal passes can't have pipelines. |
| return false; |
| } |
| |
| // Now expand the basic registered passes from the .inc file. |
| #define LOOP_PASS(NAME, CREATE_PASS) \ |
| if (Name == NAME) { \ |
| LPM.addPass(CREATE_PASS); \ |
| return true; \ |
| } |
| #define LOOP_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == "require<" NAME ">") { \ |
| LPM.addPass(RequireAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type, Loop, \ |
| LoopAnalysisManager, LoopStandardAnalysisResults &, \ |
| LPMUpdater &>()); \ |
| return true; \ |
| } \ |
| if (Name == "invalidate<" NAME ">") { \ |
| LPM.addPass(InvalidateAnalysisPass< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type>()); \ |
| return true; \ |
| } |
| #include "PassRegistry.def" |
| |
| for (auto &C : LoopPipelineParsingCallbacks) |
| if (C(Name, LPM, InnerPipeline)) |
| return true; |
| return false; |
| } |
| |
| bool PassBuilder::parseAAPassName(AAManager &AA, StringRef Name) { |
| #define MODULE_ALIAS_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == NAME) { \ |
| AA.registerModuleAnalysis< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type>(); \ |
| return true; \ |
| } |
| #define FUNCTION_ALIAS_ANALYSIS(NAME, CREATE_PASS) \ |
| if (Name == NAME) { \ |
| AA.registerFunctionAnalysis< \ |
| std::remove_reference<decltype(CREATE_PASS)>::type>(); \ |
| return true; \ |
| } |
| #include "PassRegistry.def" |
| |
| for (auto &C : AAParsingCallbacks) |
| if (C(Name, AA)) |
| return true; |
| return false; |
| } |
| |
| bool PassBuilder::parseLoopPassPipeline(LoopPassManager &LPM, |
| ArrayRef<PipelineElement> Pipeline, |
| bool VerifyEachPass, |
| bool DebugLogging) { |
| for (const auto &Element : Pipeline) { |
| if (!parseLoopPass(LPM, Element, VerifyEachPass, DebugLogging)) |
| return false; |
| // FIXME: No verifier support for Loop passes! |
| } |
| return true; |
| } |
| |
| bool PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM, |
| ArrayRef<PipelineElement> Pipeline, |
| bool VerifyEachPass, |
| bool DebugLogging) { |
| for (const auto &Element : Pipeline) { |
| if (!parseFunctionPass(FPM, Element, VerifyEachPass, DebugLogging)) |
| return false; |
| if (VerifyEachPass) |
| FPM.addPass(VerifierPass()); |
| } |
| return true; |
| } |
| |
| bool PassBuilder::parseCGSCCPassPipeline(CGSCCPassManager &CGPM, |
| ArrayRef<PipelineElement> Pipeline, |
| bool VerifyEachPass, |
| bool DebugLogging) { |
| for (const auto &Element : Pipeline) { |
| if (!parseCGSCCPass(CGPM, Element, VerifyEachPass, DebugLogging)) |
| return false; |
| // FIXME: No verifier support for CGSCC passes! |
| } |
| return true; |
| } |
| |
| void PassBuilder::crossRegisterProxies(LoopAnalysisManager &LAM, |
| FunctionAnalysisManager &FAM, |
| CGSCCAnalysisManager &CGAM, |
| ModuleAnalysisManager &MAM) { |
| MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); }); |
| MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); }); |
| CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); }); |
| FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); }); |
| FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); }); |
| FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); }); |
| LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); }); |
| } |
| |
| bool PassBuilder::parseModulePassPipeline(ModulePassManager &MPM, |
| ArrayRef<PipelineElement> Pipeline, |
| bool VerifyEachPass, |
| bool DebugLogging) { |
| for (const auto &Element : Pipeline) { |
| if (!parseModulePass(MPM, Element, VerifyEachPass, DebugLogging)) |
| return false; |
| if (VerifyEachPass) |
| MPM.addPass(VerifierPass()); |
| } |
| return true; |
| } |
| |
| // Primary pass pipeline description parsing routine for a \c ModulePassManager |
| // FIXME: Should this routine accept a TargetMachine or require the caller to |
| // pre-populate the analysis managers with target-specific stuff? |
| bool PassBuilder::parsePassPipeline(ModulePassManager &MPM, |
| StringRef PipelineText, bool VerifyEachPass, |
| bool DebugLogging) { |
| auto Pipeline = parsePipelineText(PipelineText); |
| if (!Pipeline || Pipeline->empty()) |
| return false; |
| |
| // If the first name isn't at the module layer, wrap the pipeline up |
| // automatically. |
| StringRef FirstName = Pipeline->front().Name; |
| |
| if (!isModulePassName(FirstName, ModulePipelineParsingCallbacks)) { |
| if (isCGSCCPassName(FirstName, CGSCCPipelineParsingCallbacks)) { |
| Pipeline = {{"cgscc", std::move(*Pipeline)}}; |
| } else if (isFunctionPassName(FirstName, |
| FunctionPipelineParsingCallbacks)) { |
| Pipeline = {{"function", std::move(*Pipeline)}}; |
| } else if (isLoopPassName(FirstName, LoopPipelineParsingCallbacks)) { |
| Pipeline = {{"function", {{"loop", std::move(*Pipeline)}}}}; |
| } else { |
| for (auto &C : TopLevelPipelineParsingCallbacks) |
| if (C(MPM, *Pipeline, VerifyEachPass, DebugLogging)) |
| return true; |
| |
| // Unknown pass name! |
| return false; |
| } |
| } |
| |
| return parseModulePassPipeline(MPM, *Pipeline, VerifyEachPass, DebugLogging); |
| } |
| |
| // Primary pass pipeline description parsing routine for a \c CGSCCPassManager |
| bool PassBuilder::parsePassPipeline(CGSCCPassManager &CGPM, |
| StringRef PipelineText, bool VerifyEachPass, |
| bool DebugLogging) { |
| auto Pipeline = parsePipelineText(PipelineText); |
| if (!Pipeline || Pipeline->empty()) |
| return false; |
| |
| StringRef FirstName = Pipeline->front().Name; |
| if (!isCGSCCPassName(FirstName, CGSCCPipelineParsingCallbacks)) |
| return false; |
| |
| return parseCGSCCPassPipeline(CGPM, *Pipeline, VerifyEachPass, DebugLogging); |
| } |
| |
| // Primary pass pipeline description parsing routine for a \c |
| // FunctionPassManager |
| bool PassBuilder::parsePassPipeline(FunctionPassManager &FPM, |
| StringRef PipelineText, bool VerifyEachPass, |
| bool DebugLogging) { |
| auto Pipeline = parsePipelineText(PipelineText); |
| if (!Pipeline || Pipeline->empty()) |
| return false; |
| |
| StringRef FirstName = Pipeline->front().Name; |
| if (!isFunctionPassName(FirstName, FunctionPipelineParsingCallbacks)) |
| return false; |
| |
| return parseFunctionPassPipeline(FPM, *Pipeline, VerifyEachPass, |
| DebugLogging); |
| } |
| |
| // Primary pass pipeline description parsing routine for a \c LoopPassManager |
| bool PassBuilder::parsePassPipeline(LoopPassManager &CGPM, |
| StringRef PipelineText, bool VerifyEachPass, |
| bool DebugLogging) { |
| auto Pipeline = parsePipelineText(PipelineText); |
| if (!Pipeline || Pipeline->empty()) |
| return false; |
| |
| return parseLoopPassPipeline(CGPM, *Pipeline, VerifyEachPass, DebugLogging); |
| } |
| |
| bool PassBuilder::parseAAPipeline(AAManager &AA, StringRef PipelineText) { |
| // If the pipeline just consists of the word 'default' just replace the AA |
| // manager with our default one. |
| if (PipelineText == "default") { |
| AA = buildDefaultAAPipeline(); |
| return true; |
| } |
| |
| while (!PipelineText.empty()) { |
| StringRef Name; |
| std::tie(Name, PipelineText) = PipelineText.split(','); |
| if (!parseAAPassName(AA, Name)) |
| return false; |
| } |
| |
| return true; |
| } |