| //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file lowers exception-related instructions and setjmp/longjmp |
| /// function calls in order to use Emscripten's JavaScript try and catch |
| /// mechanism. |
| /// |
| /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's |
| /// try and catch syntax and relevant exception-related libraries implemented |
| /// in JavaScript glue code that will be produced by Emscripten. This is similar |
| /// to the current Emscripten asm.js exception handling in fastcomp. For |
| /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: |
| /// (Location: https://github.com/kripken/emscripten-fastcomp) |
| /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp |
| /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp |
| /// lib/Target/JSBackend/JSBackend.cpp |
| /// lib/Target/JSBackend/CallHandlers.h |
| /// |
| /// * Exception handling |
| /// This pass lowers invokes and landingpads into library functions in JS glue |
| /// code. Invokes are lowered into function wrappers called invoke wrappers that |
| /// exist in JS side, which wraps the original function call with JS try-catch. |
| /// If an exception occurred, cxa_throw() function in JS side sets some |
| /// variables (see below) so we can check whether an exception occurred from |
| /// wasm code and handle it appropriately. |
| /// |
| /// * Setjmp-longjmp handling |
| /// This pass lowers setjmp to a reasonably-performant approach for emscripten. |
| /// The idea is that each block with a setjmp is broken up into two parts: the |
| /// part containing setjmp and the part right after the setjmp. The latter part |
| /// is either reached from the setjmp, or later from a longjmp. To handle the |
| /// longjmp, all calls that might longjmp are also called using invoke wrappers |
| /// and thus JS / try-catch. JS longjmp() function also sets some variables so |
| /// we can check / whether a longjmp occurred from wasm code. Each block with a |
| /// function call that might longjmp is also split up after the longjmp call. |
| /// After the longjmp call, we check whether a longjmp occurred, and if it did, |
| /// which setjmp it corresponds to, and jump to the right post-setjmp block. |
| /// We assume setjmp-longjmp handling always run after EH handling, which means |
| /// we don't expect any exception-related instructions when SjLj runs. |
| /// FIXME Currently this scheme does not support indirect call of setjmp, |
| /// because of the limitation of the scheme itself. fastcomp does not support it |
| /// either. |
| /// |
| /// In detail, this pass does following things: |
| /// |
| /// 1) Assumes the existence of global variables: __THREW__, __threwValue |
| /// __THREW__ and __threwValue will be set in invoke wrappers |
| /// in JS glue code. For what invoke wrappers are, refer to 3). These |
| /// variables are used for both exceptions and setjmp/longjmps. |
| /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 |
| /// means nothing occurred, 1 means an exception occurred, and other numbers |
| /// mean a longjmp occurred. In the case of longjmp, __threwValue variable |
| /// indicates the corresponding setjmp buffer the longjmp corresponds to. |
| /// |
| /// * Exception handling |
| /// |
| /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions |
| /// at link time. |
| /// The global variables in 1) will exist in wasm address space, |
| /// but their values should be set in JS code, so these functions |
| /// as interfaces to JS glue code. These functions are equivalent to the |
| /// following JS functions, which actually exist in asm.js version of JS |
| /// library. |
| /// |
| /// function setThrew(threw, value) { |
| /// if (__THREW__ == 0) { |
| /// __THREW__ = threw; |
| /// __threwValue = value; |
| /// } |
| /// } |
| // |
| /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. |
| /// |
| /// In exception handling, getTempRet0 indicates the type of an exception |
| /// caught, and in setjmp/longjmp, it means the second argument to longjmp |
| /// function. |
| /// |
| /// 3) Lower |
| /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad |
| /// into |
| /// __THREW__ = 0; |
| /// call @__invoke_SIG(func, arg1, arg2) |
| /// %__THREW__.val = __THREW__; |
| /// __THREW__ = 0; |
| /// if (%__THREW__.val == 1) |
| /// goto %lpad |
| /// else |
| /// goto %invoke.cont |
| /// SIG is a mangled string generated based on the LLVM IR-level function |
| /// signature. After LLVM IR types are lowered to the target wasm types, |
| /// the names for these wrappers will change based on wasm types as well, |
| /// as in invoke_vi (function takes an int and returns void). The bodies of |
| /// these wrappers will be generated in JS glue code, and inside those |
| /// wrappers we use JS try-catch to generate actual exception effects. It |
| /// also calls the original callee function. An example wrapper in JS code |
| /// would look like this: |
| /// function invoke_vi(index,a1) { |
| /// try { |
| /// Module["dynCall_vi"](index,a1); // This calls original callee |
| /// } catch(e) { |
| /// if (typeof e !== 'number' && e !== 'longjmp') throw e; |
| /// asm["setThrew"](1, 0); // setThrew is called here |
| /// } |
| /// } |
| /// If an exception is thrown, __THREW__ will be set to true in a wrapper, |
| /// so we can jump to the right BB based on this value. |
| /// |
| /// 4) Lower |
| /// %val = landingpad catch c1 catch c2 catch c3 ... |
| /// ... use %val ... |
| /// into |
| /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) |
| /// %val = {%fmc, getTempRet0()} |
| /// ... use %val ... |
| /// Here N is a number calculated based on the number of clauses. |
| /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. |
| /// |
| /// 5) Lower |
| /// resume {%a, %b} |
| /// into |
| /// call @__resumeException(%a) |
| /// where __resumeException() is a function in JS glue code. |
| /// |
| /// 6) Lower |
| /// call @llvm.eh.typeid.for(type) (intrinsic) |
| /// into |
| /// call @llvm_eh_typeid_for(type) |
| /// llvm_eh_typeid_for function will be generated in JS glue code. |
| /// |
| /// * Setjmp / Longjmp handling |
| /// |
| /// In case calls to longjmp() exists |
| /// |
| /// 1) Lower |
| /// longjmp(buf, value) |
| /// into |
| /// emscripten_longjmp_jmpbuf(buf, value) |
| /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. |
| /// |
| /// In case calls to setjmp() exists |
| /// |
| /// 2) In the function entry that calls setjmp, initialize setjmpTable and |
| /// sejmpTableSize as follows: |
| /// setjmpTableSize = 4; |
| /// setjmpTable = (int *) malloc(40); |
| /// setjmpTable[0] = 0; |
| /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS |
| /// code. |
| /// |
| /// 3) Lower |
| /// setjmp(buf) |
| /// into |
| /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); |
| /// setjmpTableSize = getTempRet0(); |
| /// For each dynamic setjmp call, setjmpTable stores its ID (a number which |
| /// is incrementally assigned from 0) and its label (a unique number that |
| /// represents each callsite of setjmp). When we need more entries in |
| /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will |
| /// return the new table address, and assign the new table size in |
| /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer |
| /// buf. A BB with setjmp is split into two after setjmp call in order to |
| /// make the post-setjmp BB the possible destination of longjmp BB. |
| /// |
| /// |
| /// 4) Lower every call that might longjmp into |
| /// __THREW__ = 0; |
| /// call @__invoke_SIG(func, arg1, arg2) |
| /// %__THREW__.val = __THREW__; |
| /// __THREW__ = 0; |
| /// if (%__THREW__.val != 0 & __threwValue != 0) { |
| /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, |
| /// setjmpTableSize); |
| /// if (%label == 0) |
| /// emscripten_longjmp(%__THREW__.val, __threwValue); |
| /// setTempRet0(__threwValue); |
| /// } else { |
| /// %label = -1; |
| /// } |
| /// longjmp_result = getTempRet0(); |
| /// switch label { |
| /// label 1: goto post-setjmp BB 1 |
| /// label 2: goto post-setjmp BB 2 |
| /// ... |
| /// default: goto splitted next BB |
| /// } |
| /// testSetjmp examines setjmpTable to see if there is a matching setjmp |
| /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ |
| /// will be the address of matching jmp_buf buffer and __threwValue be the |
| /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is |
| /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to |
| /// each setjmp callsite. Label 0 means this longjmp buffer does not |
| /// correspond to one of the setjmp callsites in this function, so in this |
| /// case we just chain the longjmp to the caller. (Here we call |
| /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. |
| /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while |
| /// emscripten_longjmp takes an int. Both of them will eventually be lowered |
| /// to emscripten_longjmp in s2wasm, but here we need two signatures - we |
| /// can't translate an int value to a jmp_buf.) |
| /// Label -1 means no longjmp occurred. Otherwise we jump to the right |
| /// post-setjmp BB based on the label. |
| /// |
| ///===----------------------------------------------------------------------===// |
| |
| #include "WebAssembly.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "wasm-lower-em-ehsjlj" |
| |
| static cl::list<std::string> |
| EHWhitelist("emscripten-cxx-exceptions-whitelist", |
| cl::desc("The list of function names in which Emscripten-style " |
| "exception handling is enabled (see emscripten " |
| "EMSCRIPTEN_CATCHING_WHITELIST options)"), |
| cl::CommaSeparated); |
| |
| namespace { |
| class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { |
| bool EnableEH; // Enable exception handling |
| bool EnableSjLj; // Enable setjmp/longjmp handling |
| |
| GlobalVariable *ThrewGV = nullptr; |
| GlobalVariable *ThrewValueGV = nullptr; |
| Function *GetTempRet0Func = nullptr; |
| Function *SetTempRet0Func = nullptr; |
| Function *ResumeF = nullptr; |
| Function *EHTypeIDF = nullptr; |
| Function *EmLongjmpF = nullptr; |
| Function *EmLongjmpJmpbufF = nullptr; |
| Function *SaveSetjmpF = nullptr; |
| Function *TestSetjmpF = nullptr; |
| |
| // __cxa_find_matching_catch_N functions. |
| // Indexed by the number of clauses in an original landingpad instruction. |
| DenseMap<int, Function *> FindMatchingCatches; |
| // Map of <function signature string, invoke_ wrappers> |
| StringMap<Function *> InvokeWrappers; |
| // Set of whitelisted function names for exception handling |
| std::set<std::string> EHWhitelistSet; |
| |
| StringRef getPassName() const override { |
| return "WebAssembly Lower Emscripten Exceptions"; |
| } |
| |
| bool runEHOnFunction(Function &F); |
| bool runSjLjOnFunction(Function &F); |
| Function *getFindMatchingCatch(Module &M, unsigned NumClauses); |
| |
| template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); |
| void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, |
| Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, |
| Value *&LongjmpResult, BasicBlock *&EndBB); |
| template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); |
| |
| bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } |
| bool canLongjmp(Module &M, const Value *Callee) const; |
| bool isEmAsmCall(Module &M, const Value *Callee) const; |
| |
| void rebuildSSA(Function &F); |
| |
| public: |
| static char ID; |
| |
| WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) |
| : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { |
| EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); |
| } |
| bool runOnModule(Module &M) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| } |
| }; |
| } // End anonymous namespace |
| |
| char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; |
| INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, |
| "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", |
| false, false) |
| |
| ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, |
| bool EnableSjLj) { |
| return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); |
| } |
| |
| static bool canThrow(const Value *V) { |
| if (const auto *F = dyn_cast<const Function>(V)) { |
| // Intrinsics cannot throw |
| if (F->isIntrinsic()) |
| return false; |
| StringRef Name = F->getName(); |
| // leave setjmp and longjmp (mostly) alone, we process them properly later |
| if (Name == "setjmp" || Name == "longjmp") |
| return false; |
| return !F->doesNotThrow(); |
| } |
| // not a function, so an indirect call - can throw, we can't tell |
| return true; |
| } |
| |
| // Get a global variable with the given name. If it doesn't exist declare it, |
| // which will generate an import and asssumes that it will exist at link time. |
| static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, |
| const char *Name) { |
| |
| auto *GV = |
| dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty())); |
| if (!GV) |
| report_fatal_error(Twine("unable to create global: ") + Name); |
| |
| return GV; |
| } |
| |
| // Simple function name mangler. |
| // This function simply takes LLVM's string representation of parameter types |
| // and concatenate them with '_'. There are non-alphanumeric characters but llc |
| // is ok with it, and we need to postprocess these names after the lowering |
| // phase anyway. |
| static std::string getSignature(FunctionType *FTy) { |
| std::string Sig; |
| raw_string_ostream OS(Sig); |
| OS << *FTy->getReturnType(); |
| for (Type *ParamTy : FTy->params()) |
| OS << "_" << *ParamTy; |
| if (FTy->isVarArg()) |
| OS << "_..."; |
| Sig = OS.str(); |
| Sig.erase(remove_if(Sig, isspace), Sig.end()); |
| // When s2wasm parses .s file, a comma means the end of an argument. So a |
| // mangled function name can contain any character but a comma. |
| std::replace(Sig.begin(), Sig.end(), ',', '.'); |
| return Sig; |
| } |
| |
| // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. |
| // This is because a landingpad instruction contains two more arguments, a |
| // personality function and a cleanup bit, and __cxa_find_matching_catch_N |
| // functions are named after the number of arguments in the original landingpad |
| // instruction. |
| Function * |
| WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, |
| unsigned NumClauses) { |
| if (FindMatchingCatches.count(NumClauses)) |
| return FindMatchingCatches[NumClauses]; |
| PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); |
| SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); |
| FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); |
| Function *F = Function::Create( |
| FTy, GlobalValue::ExternalLinkage, |
| "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); |
| FindMatchingCatches[NumClauses] = F; |
| return F; |
| } |
| |
| // Generate invoke wrapper seqence with preamble and postamble |
| // Preamble: |
| // __THREW__ = 0; |
| // Postamble: |
| // %__THREW__.val = __THREW__; __THREW__ = 0; |
| // Returns %__THREW__.val, which indicates whether an exception is thrown (or |
| // whether longjmp occurred), for future use. |
| template <typename CallOrInvoke> |
| Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { |
| LLVMContext &C = CI->getModule()->getContext(); |
| |
| // If we are calling a function that is noreturn, we must remove that |
| // attribute. The code we insert here does expect it to return, after we |
| // catch the exception. |
| if (CI->doesNotReturn()) { |
| if (auto *F = dyn_cast<Function>(CI->getCalledValue())) |
| F->removeFnAttr(Attribute::NoReturn); |
| CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); |
| } |
| |
| IRBuilder<> IRB(C); |
| IRB.SetInsertPoint(CI); |
| |
| // Pre-invoke |
| // __THREW__ = 0; |
| IRB.CreateStore(IRB.getInt32(0), ThrewGV); |
| |
| // Invoke function wrapper in JavaScript |
| SmallVector<Value *, 16> Args; |
| // Put the pointer to the callee as first argument, so it can be called |
| // within the invoke wrapper later |
| Args.push_back(CI->getCalledValue()); |
| Args.append(CI->arg_begin(), CI->arg_end()); |
| CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); |
| NewCall->takeName(CI); |
| NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); |
| NewCall->setDebugLoc(CI->getDebugLoc()); |
| |
| // Because we added the pointer to the callee as first argument, all |
| // argument attribute indices have to be incremented by one. |
| SmallVector<AttributeSet, 8> ArgAttributes; |
| const AttributeList &InvokeAL = CI->getAttributes(); |
| |
| // No attributes for the callee pointer. |
| ArgAttributes.push_back(AttributeSet()); |
| // Copy the argument attributes from the original |
| for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) |
| ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); |
| |
| AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); |
| if (FnAttrs.contains(Attribute::AllocSize)) { |
| // The allocsize attribute (if any) referes to parameters by index and needs |
| // to be adjusted. |
| unsigned SizeArg; |
| Optional<unsigned> NEltArg; |
| std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); |
| SizeArg += 1; |
| if (NEltArg.hasValue()) |
| NEltArg = NEltArg.getValue() + 1; |
| FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); |
| } |
| |
| // Reconstruct the AttributesList based on the vector we constructed. |
| AttributeList NewCallAL = |
| AttributeList::get(C, AttributeSet::get(C, FnAttrs), |
| InvokeAL.getRetAttributes(), ArgAttributes); |
| NewCall->setAttributes(NewCallAL); |
| |
| CI->replaceAllUsesWith(NewCall); |
| |
| // Post-invoke |
| // %__THREW__.val = __THREW__; __THREW__ = 0; |
| Value *Threw = |
| IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); |
| IRB.CreateStore(IRB.getInt32(0), ThrewGV); |
| return Threw; |
| } |
| |
| // Get matching invoke wrapper based on callee signature |
| template <typename CallOrInvoke> |
| Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { |
| Module *M = CI->getModule(); |
| SmallVector<Type *, 16> ArgTys; |
| Value *Callee = CI->getCalledValue(); |
| FunctionType *CalleeFTy; |
| if (auto *F = dyn_cast<Function>(Callee)) |
| CalleeFTy = F->getFunctionType(); |
| else { |
| auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); |
| CalleeFTy = cast<FunctionType>(CalleeTy); |
| } |
| |
| std::string Sig = getSignature(CalleeFTy); |
| if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) |
| return InvokeWrappers[Sig]; |
| |
| // Put the pointer to the callee as first argument |
| ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); |
| // Add argument types |
| ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); |
| |
| FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, |
| CalleeFTy->isVarArg()); |
| Function *F = |
| Function::Create(FTy, GlobalValue::ExternalLinkage, "__invoke_" + Sig, M); |
| InvokeWrappers[Sig] = F; |
| return F; |
| } |
| |
| bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, |
| const Value *Callee) const { |
| if (auto *CalleeF = dyn_cast<Function>(Callee)) |
| if (CalleeF->isIntrinsic()) |
| return false; |
| |
| // Attempting to transform inline assembly will result in something like: |
| // call void @__invoke_void(void ()* asm ...) |
| // which is invalid because inline assembly blocks do not have addresses |
| // and can't be passed by pointer. The result is a crash with illegal IR. |
| if (isa<InlineAsm>(Callee)) |
| return false; |
| StringRef CalleeName = Callee->getName(); |
| |
| // The reason we include malloc/free here is to exclude the malloc/free |
| // calls generated in setjmp prep / cleanup routines. |
| if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") |
| return false; |
| |
| // There are functions in JS glue code |
| if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || |
| CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || |
| CalleeName == "getTempRet0" || CalleeName == "setTempRet0") |
| return false; |
| |
| // __cxa_find_matching_catch_N functions cannot longjmp |
| if (Callee->getName().startswith("__cxa_find_matching_catch_")) |
| return false; |
| |
| // Exception-catching related functions |
| if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || |
| CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || |
| CalleeName == "__clang_call_terminate") |
| return false; |
| |
| // Otherwise we don't know |
| return true; |
| } |
| |
| bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M, |
| const Value *Callee) const { |
| StringRef CalleeName = Callee->getName(); |
| // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. |
| return CalleeName == "emscripten_asm_const_int" || |
| CalleeName == "emscripten_asm_const_double" || |
| CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || |
| CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || |
| CalleeName == "emscripten_asm_const_async_on_main_thread"; |
| } |
| |
| // Generate testSetjmp function call seqence with preamble and postamble. |
| // The code this generates is equivalent to the following JavaScript code: |
| // if (%__THREW__.val != 0 & threwValue != 0) { |
| // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); |
| // if (%label == 0) |
| // emscripten_longjmp(%__THREW__.val, threwValue); |
| // setTempRet0(threwValue); |
| // } else { |
| // %label = -1; |
| // } |
| // %longjmp_result = getTempRet0(); |
| // |
| // As output parameters. returns %label, %longjmp_result, and the BB the last |
| // instruction (%longjmp_result = ...) is in. |
| void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( |
| BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, |
| Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, |
| BasicBlock *&EndBB) { |
| Function *F = BB->getParent(); |
| LLVMContext &C = BB->getModule()->getContext(); |
| IRBuilder<> IRB(C); |
| IRB.SetInsertPoint(InsertPt); |
| |
| // if (%__THREW__.val != 0 & threwValue != 0) |
| IRB.SetInsertPoint(BB); |
| BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); |
| BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); |
| BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); |
| Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); |
| Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, |
| ThrewValueGV->getName() + ".val"); |
| Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); |
| Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); |
| IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); |
| |
| // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); |
| // if (%label == 0) |
| IRB.SetInsertPoint(ThenBB1); |
| BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); |
| BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); |
| Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), |
| Threw->getName() + ".i32p"); |
| Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, |
| ThrewInt->getName() + ".loaded"); |
| Value *ThenLabel = IRB.CreateCall( |
| TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); |
| Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); |
| IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); |
| |
| // emscripten_longjmp(%__THREW__.val, threwValue); |
| IRB.SetInsertPoint(ThenBB2); |
| IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); |
| IRB.CreateUnreachable(); |
| |
| // setTempRet0(threwValue); |
| IRB.SetInsertPoint(EndBB2); |
| IRB.CreateCall(SetTempRet0Func, ThrewValue); |
| IRB.CreateBr(EndBB1); |
| |
| IRB.SetInsertPoint(ElseBB1); |
| IRB.CreateBr(EndBB1); |
| |
| // longjmp_result = getTempRet0(); |
| IRB.SetInsertPoint(EndBB1); |
| PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); |
| LabelPHI->addIncoming(ThenLabel, EndBB2); |
| |
| LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); |
| |
| // Output parameter assignment |
| Label = LabelPHI; |
| EndBB = EndBB1; |
| LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); |
| } |
| |
| void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); |
| DT.recalculate(F); // CFG has been changed |
| SSAUpdater SSA; |
| for (BasicBlock &BB : F) { |
| for (Instruction &I : BB) { |
| SSA.Initialize(I.getType(), I.getName()); |
| SSA.AddAvailableValue(&BB, &I); |
| for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { |
| Use &U = *UI; |
| ++UI; |
| auto *User = cast<Instruction>(U.getUser()); |
| if (auto *UserPN = dyn_cast<PHINode>(User)) |
| if (UserPN->getIncomingBlock(U) == &BB) |
| continue; |
| |
| if (DT.dominates(&I, User)) |
| continue; |
| SSA.RewriteUseAfterInsertions(U); |
| } |
| } |
| } |
| } |
| |
| bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { |
| LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); |
| |
| LLVMContext &C = M.getContext(); |
| IRBuilder<> IRB(C); |
| |
| Function *SetjmpF = M.getFunction("setjmp"); |
| Function *LongjmpF = M.getFunction("longjmp"); |
| bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); |
| bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); |
| bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); |
| |
| // Declare (or get) global variables __THREW__, __threwValue, and |
| // getTempRet0/setTempRet0 function which are used in common for both |
| // exception handling and setjmp/longjmp handling |
| ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); |
| ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); |
| GetTempRet0Func = |
| Function::Create(FunctionType::get(IRB.getInt32Ty(), false), |
| GlobalValue::ExternalLinkage, "getTempRet0", &M); |
| SetTempRet0Func = Function::Create( |
| FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), |
| GlobalValue::ExternalLinkage, "setTempRet0", &M); |
| GetTempRet0Func->setDoesNotThrow(); |
| SetTempRet0Func->setDoesNotThrow(); |
| |
| bool Changed = false; |
| |
| // Exception handling |
| if (EnableEH) { |
| // Register __resumeException function |
| FunctionType *ResumeFTy = |
| FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); |
| ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, |
| "__resumeException", &M); |
| |
| // Register llvm_eh_typeid_for function |
| FunctionType *EHTypeIDTy = |
| FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); |
| EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, |
| "llvm_eh_typeid_for", &M); |
| |
| for (Function &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| Changed |= runEHOnFunction(F); |
| } |
| } |
| |
| // Setjmp/longjmp handling |
| if (DoSjLj) { |
| Changed = true; // We have setjmp or longjmp somewhere |
| |
| if (LongjmpF) { |
| // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is |
| // defined in JS code |
| EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), |
| GlobalValue::ExternalLinkage, |
| "emscripten_longjmp_jmpbuf", &M); |
| |
| LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); |
| } |
| |
| if (SetjmpF) { |
| // Register saveSetjmp function |
| FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); |
| SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), |
| IRB.getInt32Ty(), Type::getInt32PtrTy(C), |
| IRB.getInt32Ty()}; |
| FunctionType *FTy = |
| FunctionType::get(Type::getInt32PtrTy(C), Params, false); |
| SaveSetjmpF = |
| Function::Create(FTy, GlobalValue::ExternalLinkage, "saveSetjmp", &M); |
| |
| // Register testSetjmp function |
| Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; |
| FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); |
| TestSetjmpF = |
| Function::Create(FTy, GlobalValue::ExternalLinkage, "testSetjmp", &M); |
| |
| FTy = FunctionType::get(IRB.getVoidTy(), |
| {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); |
| EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, |
| "emscripten_longjmp", &M); |
| |
| // Only traverse functions that uses setjmp in order not to insert |
| // unnecessary prep / cleanup code in every function |
| SmallPtrSet<Function *, 8> SetjmpUsers; |
| for (User *U : SetjmpF->users()) { |
| auto *UI = cast<Instruction>(U); |
| SetjmpUsers.insert(UI->getFunction()); |
| } |
| for (Function *F : SetjmpUsers) |
| runSjLjOnFunction(*F); |
| } |
| } |
| |
| if (!Changed) { |
| // Delete unused global variables and functions |
| if (ResumeF) |
| ResumeF->eraseFromParent(); |
| if (EHTypeIDF) |
| EHTypeIDF->eraseFromParent(); |
| if (EmLongjmpF) |
| EmLongjmpF->eraseFromParent(); |
| if (SaveSetjmpF) |
| SaveSetjmpF->eraseFromParent(); |
| if (TestSetjmpF) |
| TestSetjmpF->eraseFromParent(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { |
| Module &M = *F.getParent(); |
| LLVMContext &C = F.getContext(); |
| IRBuilder<> IRB(C); |
| bool Changed = false; |
| SmallVector<Instruction *, 64> ToErase; |
| SmallPtrSet<LandingPadInst *, 32> LandingPads; |
| bool AllowExceptions = |
| areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); |
| |
| for (BasicBlock &BB : F) { |
| auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); |
| if (!II) |
| continue; |
| Changed = true; |
| LandingPads.insert(II->getLandingPadInst()); |
| IRB.SetInsertPoint(II); |
| |
| bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); |
| if (NeedInvoke) { |
| // Wrap invoke with invoke wrapper and generate preamble/postamble |
| Value *Threw = wrapInvoke(II); |
| ToErase.push_back(II); |
| |
| // Insert a branch based on __THREW__ variable |
| Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); |
| IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); |
| |
| } else { |
| // This can't throw, and we don't need this invoke, just replace it with a |
| // call+branch |
| SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); |
| CallInst *NewCall = |
| IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args); |
| NewCall->takeName(II); |
| NewCall->setCallingConv(II->getCallingConv()); |
| NewCall->setDebugLoc(II->getDebugLoc()); |
| NewCall->setAttributes(II->getAttributes()); |
| II->replaceAllUsesWith(NewCall); |
| ToErase.push_back(II); |
| |
| IRB.CreateBr(II->getNormalDest()); |
| |
| // Remove any PHI node entries from the exception destination |
| II->getUnwindDest()->removePredecessor(&BB); |
| } |
| } |
| |
| // Process resume instructions |
| for (BasicBlock &BB : F) { |
| // Scan the body of the basic block for resumes |
| for (Instruction &I : BB) { |
| auto *RI = dyn_cast<ResumeInst>(&I); |
| if (!RI) |
| continue; |
| Changed = true; |
| |
| // Split the input into legal values |
| Value *Input = RI->getValue(); |
| IRB.SetInsertPoint(RI); |
| Value *Low = IRB.CreateExtractValue(Input, 0, "low"); |
| // Create a call to __resumeException function |
| IRB.CreateCall(ResumeF, {Low}); |
| // Add a terminator to the block |
| IRB.CreateUnreachable(); |
| ToErase.push_back(RI); |
| } |
| } |
| |
| // Process llvm.eh.typeid.for intrinsics |
| for (BasicBlock &BB : F) { |
| for (Instruction &I : BB) { |
| auto *CI = dyn_cast<CallInst>(&I); |
| if (!CI) |
| continue; |
| const Function *Callee = CI->getCalledFunction(); |
| if (!Callee) |
| continue; |
| if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) |
| continue; |
| Changed = true; |
| |
| IRB.SetInsertPoint(CI); |
| CallInst *NewCI = |
| IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); |
| CI->replaceAllUsesWith(NewCI); |
| ToErase.push_back(CI); |
| } |
| } |
| |
| // Look for orphan landingpads, can occur in blocks with no predecessors |
| for (BasicBlock &BB : F) { |
| Instruction *I = BB.getFirstNonPHI(); |
| if (auto *LPI = dyn_cast<LandingPadInst>(I)) |
| LandingPads.insert(LPI); |
| } |
| Changed |= !LandingPads.empty(); |
| |
| // Handle all the landingpad for this function together, as multiple invokes |
| // may share a single lp |
| for (LandingPadInst *LPI : LandingPads) { |
| IRB.SetInsertPoint(LPI); |
| SmallVector<Value *, 16> FMCArgs; |
| for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { |
| Constant *Clause = LPI->getClause(I); |
| // As a temporary workaround for the lack of aggregate varargs support |
| // in the interface between JS and wasm, break out filter operands into |
| // their component elements. |
| if (LPI->isFilter(I)) { |
| auto *ATy = cast<ArrayType>(Clause->getType()); |
| for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { |
| Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); |
| FMCArgs.push_back(EV); |
| } |
| } else |
| FMCArgs.push_back(Clause); |
| } |
| |
| // Create a call to __cxa_find_matching_catch_N function |
| Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); |
| CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); |
| Value *Undef = UndefValue::get(LPI->getType()); |
| Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); |
| Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); |
| Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); |
| |
| LPI->replaceAllUsesWith(Pair1); |
| ToErase.push_back(LPI); |
| } |
| |
| // Erase everything we no longer need in this function |
| for (Instruction *I : ToErase) |
| I->eraseFromParent(); |
| |
| return Changed; |
| } |
| |
| bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { |
| Module &M = *F.getParent(); |
| LLVMContext &C = F.getContext(); |
| IRBuilder<> IRB(C); |
| SmallVector<Instruction *, 64> ToErase; |
| // Vector of %setjmpTable values |
| std::vector<Instruction *> SetjmpTableInsts; |
| // Vector of %setjmpTableSize values |
| std::vector<Instruction *> SetjmpTableSizeInsts; |
| |
| // Setjmp preparation |
| |
| // This instruction effectively means %setjmpTableSize = 4. |
| // We create this as an instruction intentionally, and we don't want to fold |
| // this instruction to a constant 4, because this value will be used in |
| // SSAUpdater.AddAvailableValue(...) later. |
| BasicBlock &EntryBB = F.getEntryBlock(); |
| BinaryOperator *SetjmpTableSize = BinaryOperator::Create( |
| Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", |
| &*EntryBB.getFirstInsertionPt()); |
| // setjmpTable = (int *) malloc(40); |
| Instruction *SetjmpTable = CallInst::CreateMalloc( |
| SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), |
| nullptr, nullptr, "setjmpTable"); |
| // setjmpTable[0] = 0; |
| IRB.SetInsertPoint(SetjmpTableSize); |
| IRB.CreateStore(IRB.getInt32(0), SetjmpTable); |
| SetjmpTableInsts.push_back(SetjmpTable); |
| SetjmpTableSizeInsts.push_back(SetjmpTableSize); |
| |
| // Setjmp transformation |
| std::vector<PHINode *> SetjmpRetPHIs; |
| Function *SetjmpF = M.getFunction("setjmp"); |
| for (User *U : SetjmpF->users()) { |
| auto *CI = dyn_cast<CallInst>(U); |
| if (!CI) |
| report_fatal_error("Does not support indirect calls to setjmp"); |
| |
| BasicBlock *BB = CI->getParent(); |
| if (BB->getParent() != &F) // in other function |
| continue; |
| |
| // The tail is everything right after the call, and will be reached once |
| // when setjmp is called, and later when longjmp returns to the setjmp |
| BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); |
| // Add a phi to the tail, which will be the output of setjmp, which |
| // indicates if this is the first call or a longjmp back. The phi directly |
| // uses the right value based on where we arrive from |
| IRB.SetInsertPoint(Tail->getFirstNonPHI()); |
| PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); |
| |
| // setjmp initial call returns 0 |
| SetjmpRet->addIncoming(IRB.getInt32(0), BB); |
| // The proper output is now this, not the setjmp call itself |
| CI->replaceAllUsesWith(SetjmpRet); |
| // longjmp returns to the setjmp will add themselves to this phi |
| SetjmpRetPHIs.push_back(SetjmpRet); |
| |
| // Fix call target |
| // Our index in the function is our place in the array + 1 to avoid index |
| // 0, because index 0 means the longjmp is not ours to handle. |
| IRB.SetInsertPoint(CI); |
| Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), |
| SetjmpTable, SetjmpTableSize}; |
| Instruction *NewSetjmpTable = |
| IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); |
| Instruction *NewSetjmpTableSize = |
| IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); |
| SetjmpTableInsts.push_back(NewSetjmpTable); |
| SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); |
| ToErase.push_back(CI); |
| } |
| |
| // Update each call that can longjmp so it can return to a setjmp where |
| // relevant. |
| |
| // Because we are creating new BBs while processing and don't want to make |
| // all these newly created BBs candidates again for longjmp processing, we |
| // first make the vector of candidate BBs. |
| std::vector<BasicBlock *> BBs; |
| for (BasicBlock &BB : F) |
| BBs.push_back(&BB); |
| |
| // BBs.size() will change within the loop, so we query it every time |
| for (unsigned I = 0; I < BBs.size(); I++) { |
| BasicBlock *BB = BBs[I]; |
| for (Instruction &I : *BB) { |
| assert(!isa<InvokeInst>(&I)); |
| auto *CI = dyn_cast<CallInst>(&I); |
| if (!CI) |
| continue; |
| |
| const Value *Callee = CI->getCalledValue(); |
| if (!canLongjmp(M, Callee)) |
| continue; |
| if (isEmAsmCall(M, Callee)) |
| report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + |
| F.getName() + |
| ". Please consider using EM_JS, or move the " |
| "EM_ASM into another function.", |
| false); |
| |
| Value *Threw = nullptr; |
| BasicBlock *Tail; |
| if (Callee->getName().startswith("__invoke_")) { |
| // If invoke wrapper has already been generated for this call in |
| // previous EH phase, search for the load instruction |
| // %__THREW__.val = __THREW__; |
| // in postamble after the invoke wrapper call |
| LoadInst *ThrewLI = nullptr; |
| StoreInst *ThrewResetSI = nullptr; |
| for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); |
| I != IE; ++I) { |
| if (auto *LI = dyn_cast<LoadInst>(I)) |
| if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) |
| if (GV == ThrewGV) { |
| Threw = ThrewLI = LI; |
| break; |
| } |
| } |
| // Search for the store instruction after the load above |
| // __THREW__ = 0; |
| for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); |
| I != IE; ++I) { |
| if (auto *SI = dyn_cast<StoreInst>(I)) |
| if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) |
| if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { |
| ThrewResetSI = SI; |
| break; |
| } |
| } |
| assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); |
| assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); |
| Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); |
| |
| } else { |
| // Wrap call with invoke wrapper and generate preamble/postamble |
| Threw = wrapInvoke(CI); |
| ToErase.push_back(CI); |
| Tail = SplitBlock(BB, CI->getNextNode()); |
| } |
| |
| // We need to replace the terminator in Tail - SplitBlock makes BB go |
| // straight to Tail, we need to check if a longjmp occurred, and go to the |
| // right setjmp-tail if so |
| ToErase.push_back(BB->getTerminator()); |
| |
| // Generate a function call to testSetjmp function and preamble/postamble |
| // code to figure out (1) whether longjmp occurred (2) if longjmp |
| // occurred, which setjmp it corresponds to |
| Value *Label = nullptr; |
| Value *LongjmpResult = nullptr; |
| BasicBlock *EndBB = nullptr; |
| wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, |
| LongjmpResult, EndBB); |
| assert(Label && LongjmpResult && EndBB); |
| |
| // Create switch instruction |
| IRB.SetInsertPoint(EndBB); |
| SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); |
| // -1 means no longjmp happened, continue normally (will hit the default |
| // switch case). 0 means a longjmp that is not ours to handle, needs a |
| // rethrow. Otherwise the index is the same as the index in P+1 (to avoid |
| // 0). |
| for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { |
| SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); |
| SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); |
| } |
| |
| // We are splitting the block here, and must continue to find other calls |
| // in the block - which is now split. so continue to traverse in the Tail |
| BBs.push_back(Tail); |
| } |
| } |
| |
| // Erase everything we no longer need in this function |
| for (Instruction *I : ToErase) |
| I->eraseFromParent(); |
| |
| // Free setjmpTable buffer before each return instruction |
| for (BasicBlock &BB : F) { |
| Instruction *TI = BB.getTerminator(); |
| if (isa<ReturnInst>(TI)) |
| CallInst::CreateFree(SetjmpTable, TI); |
| } |
| |
| // Every call to saveSetjmp can change setjmpTable and setjmpTableSize |
| // (when buffer reallocation occurs) |
| // entry: |
| // setjmpTableSize = 4; |
| // setjmpTable = (int *) malloc(40); |
| // setjmpTable[0] = 0; |
| // ... |
| // somebb: |
| // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); |
| // setjmpTableSize = getTempRet0(); |
| // So we need to make sure the SSA for these variables is valid so that every |
| // saveSetjmp and testSetjmp calls have the correct arguments. |
| SSAUpdater SetjmpTableSSA; |
| SSAUpdater SetjmpTableSizeSSA; |
| SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); |
| SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); |
| for (Instruction *I : SetjmpTableInsts) |
| SetjmpTableSSA.AddAvailableValue(I->getParent(), I); |
| for (Instruction *I : SetjmpTableSizeInsts) |
| SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); |
| |
| for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); |
| UI != UE;) { |
| // Grab the use before incrementing the iterator. |
| Use &U = *UI; |
| // Increment the iterator before removing the use from the list. |
| ++UI; |
| if (auto *I = dyn_cast<Instruction>(U.getUser())) |
| if (I->getParent() != &EntryBB) |
| SetjmpTableSSA.RewriteUse(U); |
| } |
| for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); |
| UI != UE;) { |
| Use &U = *UI; |
| ++UI; |
| if (auto *I = dyn_cast<Instruction>(U.getUser())) |
| if (I->getParent() != &EntryBB) |
| SetjmpTableSizeSSA.RewriteUse(U); |
| } |
| |
| // Finally, our modifications to the cfg can break dominance of SSA variables. |
| // For example, in this code, |
| // if (x()) { .. setjmp() .. } |
| // if (y()) { .. longjmp() .. } |
| // We must split the longjmp block, and it can jump into the block splitted |
| // from setjmp one. But that means that when we split the setjmp block, it's |
| // first part no longer dominates its second part - there is a theoretically |
| // possible control flow path where x() is false, then y() is true and we |
| // reach the second part of the setjmp block, without ever reaching the first |
| // part. So, we rebuild SSA form here. |
| rebuildSSA(F); |
| return true; |
| } |