| //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the Sparc instructions in TableGen format. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction format superclass |
| //===----------------------------------------------------------------------===// |
| |
| include "SparcInstrFormats.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Feature predicates. |
| //===----------------------------------------------------------------------===// |
| |
| // True when generating 32-bit code. |
| def Is32Bit : Predicate<"!Subtarget->is64Bit()">; |
| |
| // True when generating 64-bit code. This also implies HasV9. |
| def Is64Bit : Predicate<"Subtarget->is64Bit()">; |
| |
| def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">, |
| AssemblerPredicate<"FeatureSoftMulDiv">; |
| |
| // HasV9 - This predicate is true when the target processor supports V9 |
| // instructions. Note that the machine may be running in 32-bit mode. |
| def HasV9 : Predicate<"Subtarget->isV9()">, |
| AssemblerPredicate<"FeatureV9">; |
| |
| // HasNoV9 - This predicate is true when the target doesn't have V9 |
| // instructions. Use of this is just a hack for the isel not having proper |
| // costs for V8 instructions that are more expensive than their V9 ones. |
| def HasNoV9 : Predicate<"!Subtarget->isV9()">; |
| |
| // HasVIS - This is true when the target processor has VIS extensions. |
| def HasVIS : Predicate<"Subtarget->isVIS()">, |
| AssemblerPredicate<"FeatureVIS">; |
| def HasVIS2 : Predicate<"Subtarget->isVIS2()">, |
| AssemblerPredicate<"FeatureVIS2">; |
| def HasVIS3 : Predicate<"Subtarget->isVIS3()">, |
| AssemblerPredicate<"FeatureVIS3">; |
| |
| // HasHardQuad - This is true when the target processor supports quad floating |
| // point instructions. |
| def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; |
| |
| // HasLeonCASA - This is true when the target processor supports the CASA |
| // instruction |
| def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">; |
| |
| // HasPWRPSR - This is true when the target processor supports partial |
| // writes to the PSR register that only affects the ET field. |
| def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">, |
| AssemblerPredicate<"FeaturePWRPSR">; |
| |
| // HasUMAC_SMAC - This is true when the target processor supports the |
| // UMAC and SMAC instructions |
| def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">; |
| |
| def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">; |
| def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">; |
| def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">; |
| |
| // UseDeprecatedInsts - This predicate is true when the target processor is a |
| // V8, or when it is V9 but the V8 deprecated instructions are efficient enough |
| // to use when appropriate. In either of these cases, the instruction selector |
| // will pick deprecated instructions. |
| def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Pattern Stuff |
| //===----------------------------------------------------------------------===// |
| |
| def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; |
| |
| def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; |
| |
| def LO10 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N), |
| MVT::i32); |
| }]>; |
| |
| def HI22 : SDNodeXForm<imm, [{ |
| // Transformation function: shift the immediate value down into the low bits. |
| return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N), |
| MVT::i32); |
| }]>; |
| |
| // Return the complement of a HI22 immediate value. |
| def HI22_not : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N), |
| MVT::i32); |
| }]>; |
| |
| def SETHIimm : PatLeaf<(imm), [{ |
| return isShiftedUInt<22, 10>(N->getZExtValue()); |
| }], HI22>; |
| |
| // The N->hasOneUse() prevents the immediate from being instantiated in both |
| // normal and complement form. |
| def SETHIimm_not : PatLeaf<(i32 imm), [{ |
| return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue()); |
| }], HI22_not>; |
| |
| // Addressing modes. |
| def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; |
| def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>; |
| |
| // Address operands |
| def SparcMEMrrAsmOperand : AsmOperandClass { |
| let Name = "MEMrr"; |
| let ParserMethod = "parseMEMOperand"; |
| } |
| |
| def SparcMEMriAsmOperand : AsmOperandClass { |
| let Name = "MEMri"; |
| let ParserMethod = "parseMEMOperand"; |
| } |
| |
| def MEMrr : Operand<iPTR> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops ptr_rc, ptr_rc); |
| let ParserMatchClass = SparcMEMrrAsmOperand; |
| } |
| def MEMri : Operand<iPTR> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops ptr_rc, i32imm); |
| let ParserMatchClass = SparcMEMriAsmOperand; |
| } |
| |
| def TLSSym : Operand<iPTR>; |
| |
| def SparcMembarTagAsmOperand : AsmOperandClass { |
| let Name = "MembarTag"; |
| let ParserMethod = "parseMembarTag"; |
| } |
| |
| def MembarTag : Operand<i32> { |
| let PrintMethod = "printMembarTag"; |
| let ParserMatchClass = SparcMembarTagAsmOperand; |
| } |
| |
| // Branch targets have OtherVT type. |
| def brtarget : Operand<OtherVT> { |
| let EncoderMethod = "getBranchTargetOpValue"; |
| } |
| |
| def bprtarget : Operand<OtherVT> { |
| let EncoderMethod = "getBranchPredTargetOpValue"; |
| } |
| |
| def bprtarget16 : Operand<OtherVT> { |
| let EncoderMethod = "getBranchOnRegTargetOpValue"; |
| } |
| |
| def calltarget : Operand<i32> { |
| let EncoderMethod = "getCallTargetOpValue"; |
| let DecoderMethod = "DecodeCall"; |
| } |
| |
| def simm13Op : Operand<i32> { |
| let DecoderMethod = "DecodeSIMM13"; |
| } |
| |
| // Operand for printing out a condition code. |
| let PrintMethod = "printCCOperand" in |
| def CCOp : Operand<i32>; |
| |
| def SDTSPcmpicc : |
| SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; |
| def SDTSPcmpfcc : |
| SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; |
| def SDTSPbrcc : |
| SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; |
| def SDTSPselectcc : |
| SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; |
| def SDTSPFTOI : |
| SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; |
| def SDTSPITOF : |
| SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; |
| def SDTSPFTOX : |
| SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; |
| def SDTSPXTOF : |
| SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; |
| |
| def SDTSPtlsadd : |
| SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| def SDTSPtlsld : |
| SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; |
| |
| def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; |
| def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; |
| def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; |
| def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; |
| def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; |
| |
| def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; |
| def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; |
| |
| def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; |
| def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; |
| def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; |
| def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; |
| |
| def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; |
| def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; |
| def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; |
| |
| // These are target-independent nodes, but have target-specific formats. |
| def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, |
| SDTCisVT<1, i32> ]>; |
| def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, |
| SDTCisVT<1, i32> ]>; |
| |
| def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, |
| [SDNPHasChain, SDNPOutGlue]>; |
| def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; |
| |
| def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; |
| def call : SDNode<"SPISD::CALL", SDT_SPCall, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; |
| def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| |
| def flushw : SDNode<"SPISD::FLUSHW", SDTNone, |
| [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; |
| |
| def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; |
| def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; |
| def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def getPCX : Operand<iPTR> { |
| let PrintMethod = "printGetPCX"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SPARC Flag Conditions |
| //===----------------------------------------------------------------------===// |
| |
| // Note that these values must be kept in sync with the CCOp::CondCode enum |
| // values. |
| class ICC_VAL<int N> : PatLeaf<(i32 N)>; |
| def ICC_NE : ICC_VAL< 9>; // Not Equal |
| def ICC_E : ICC_VAL< 1>; // Equal |
| def ICC_G : ICC_VAL<10>; // Greater |
| def ICC_LE : ICC_VAL< 2>; // Less or Equal |
| def ICC_GE : ICC_VAL<11>; // Greater or Equal |
| def ICC_L : ICC_VAL< 3>; // Less |
| def ICC_GU : ICC_VAL<12>; // Greater Unsigned |
| def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned |
| def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned |
| def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned |
| def ICC_POS : ICC_VAL<14>; // Positive |
| def ICC_NEG : ICC_VAL< 6>; // Negative |
| def ICC_VC : ICC_VAL<15>; // Overflow Clear |
| def ICC_VS : ICC_VAL< 7>; // Overflow Set |
| |
| class FCC_VAL<int N> : PatLeaf<(i32 N)>; |
| def FCC_U : FCC_VAL<23>; // Unordered |
| def FCC_G : FCC_VAL<22>; // Greater |
| def FCC_UG : FCC_VAL<21>; // Unordered or Greater |
| def FCC_L : FCC_VAL<20>; // Less |
| def FCC_UL : FCC_VAL<19>; // Unordered or Less |
| def FCC_LG : FCC_VAL<18>; // Less or Greater |
| def FCC_NE : FCC_VAL<17>; // Not Equal |
| def FCC_E : FCC_VAL<25>; // Equal |
| def FCC_UE : FCC_VAL<26>; // Unordered or Equal |
| def FCC_GE : FCC_VAL<27>; // Greater or Equal |
| def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal |
| def FCC_LE : FCC_VAL<29>; // Less or Equal |
| def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal |
| def FCC_O : FCC_VAL<31>; // Ordered |
| |
| class CPCC_VAL<int N> : PatLeaf<(i32 N)>; |
| def CPCC_3 : CPCC_VAL<39>; // 3 |
| def CPCC_2 : CPCC_VAL<38>; // 2 |
| def CPCC_23 : CPCC_VAL<37>; // 2 or 3 |
| def CPCC_1 : CPCC_VAL<36>; // 1 |
| def CPCC_13 : CPCC_VAL<35>; // 1 or 3 |
| def CPCC_12 : CPCC_VAL<34>; // 1 or 2 |
| def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3 |
| def CPCC_0 : CPCC_VAL<41>; // 0 |
| def CPCC_03 : CPCC_VAL<42>; // 0 or 3 |
| def CPCC_02 : CPCC_VAL<43>; // 0 or 2 |
| def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3 |
| def CPCC_01 : CPCC_VAL<45>; // 0 or 1 |
| def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3 |
| def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2 |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Class Templates |
| //===----------------------------------------------------------------------===// |
| |
| /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. |
| multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, |
| RegisterClass RC, ValueType Ty, Operand immOp, |
| InstrItinClass itin = IIC_iu_instr> { |
| def rr : F3_1<2, Op3Val, |
| (outs RC:$rd), (ins RC:$rs1, RC:$rs2), |
| !strconcat(OpcStr, " $rs1, $rs2, $rd"), |
| [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))], |
| itin>; |
| def ri : F3_2<2, Op3Val, |
| (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), |
| !strconcat(OpcStr, " $rs1, $simm13, $rd"), |
| [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))], |
| itin>; |
| } |
| |
| /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no |
| /// pattern. |
| multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> { |
| def rr : F3_1<2, Op3Val, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), |
| !strconcat(OpcStr, " $rs1, $rs2, $rd"), [], |
| itin>; |
| def ri : F3_2<2, Op3Val, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), |
| !strconcat(OpcStr, " $rs1, $simm13, $rd"), [], |
| itin>; |
| } |
| |
| // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. |
| multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, |
| RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> { |
| def rr : F3_1<3, Op3Val, |
| (outs RC:$dst), (ins MEMrr:$addr), |
| !strconcat(OpcStr, " [$addr], $dst"), |
| [(set Ty:$dst, (OpNode ADDRrr:$addr))], |
| itin>; |
| def ri : F3_2<3, Op3Val, |
| (outs RC:$dst), (ins MEMri:$addr), |
| !strconcat(OpcStr, " [$addr], $dst"), |
| [(set Ty:$dst, (OpNode ADDRri:$addr))], |
| itin>; |
| } |
| |
| // TODO: Instructions of the LoadASI class are currently asm only; hooking up |
| // CodeGen's address spaces to use these is a future task. |
| class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, |
| RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> : |
| F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi), |
| !strconcat(OpcStr, "a [$addr] $asi, $dst"), |
| []>; |
| |
| // LoadA multiclass - As above, but also define alternate address space variant |
| multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val, |
| SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, |
| InstrItinClass itin = NoItinerary> : |
| Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> { |
| def Arr : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>; |
| } |
| |
| // The LDSTUB instruction is supported for asm only. |
| // It is unlikely that general-purpose code could make use of it. |
| // CAS is preferred for sparc v9. |
| def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "ldstub [$addr], $dst", []>; |
| def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr), |
| "ldstub [$addr], $dst", []>; |
| def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst), |
| (ins MEMrr:$addr, i8imm:$asi), |
| "ldstuba [$addr] $asi, $dst", []>; |
| |
| // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. |
| multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, |
| RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> { |
| def rr : F3_1<3, Op3Val, |
| (outs), (ins MEMrr:$addr, RC:$rd), |
| !strconcat(OpcStr, " $rd, [$addr]"), |
| [(OpNode Ty:$rd, ADDRrr:$addr)], |
| itin>; |
| def ri : F3_2<3, Op3Val, |
| (outs), (ins MEMri:$addr, RC:$rd), |
| !strconcat(OpcStr, " $rd, [$addr]"), |
| [(OpNode Ty:$rd, ADDRri:$addr)], |
| itin>; |
| } |
| |
| // TODO: Instructions of the StoreASI class are currently asm only; hooking up |
| // CodeGen's address spaces to use these is a future task. |
| class StoreASI<string OpcStr, bits<6> Op3Val, |
| SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, |
| InstrItinClass itin = IIC_st> : |
| F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi), |
| !strconcat(OpcStr, "a $rd, [$addr] $asi"), |
| [], |
| itin>; |
| |
| multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val, |
| SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, |
| InstrItinClass itin = IIC_st> : |
| Store<OpcStr, Op3Val, OpNode, RC, Ty> { |
| def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Pseudo instructions. |
| class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> |
| : InstSP<outs, ins, asmstr, pattern> { |
| let isCodeGenOnly = 1; |
| let isPseudo = 1; |
| } |
| |
| // GETPCX for PIC |
| let Defs = [O7] in { |
| def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; |
| } |
| |
| let Defs = [O6], Uses = [O6] in { |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "!ADJCALLSTACKDOWN $amt1, $amt2", |
| [(callseq_start timm:$amt1, timm:$amt2)]>; |
| def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "!ADJCALLSTACKUP $amt1", |
| [(callseq_end timm:$amt1, timm:$amt2)]>; |
| } |
| |
| let hasSideEffects = 1, mayStore = 1 in { |
| let rd = 0, rs1 = 0, rs2 = 0 in |
| def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), |
| "flushw", |
| [(flushw)]>, Requires<[HasV9]>; |
| let rd = 8, rs1 = 0, simm13 = 3 in |
| def TA3 : F3_2<0b10, 0b111010, (outs), (ins), |
| "ta 3", |
| [(flushw)]>; |
| } |
| |
| // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after |
| // instruction selection into a branch sequence. This has to handle all |
| // permutations of selection between i32/f32/f64 on ICC and FCC. |
| // Expanded after instruction selection. |
| let Uses = [ICC], usesCustomInserter = 1 in { |
| def SELECT_CC_Int_ICC |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_Int_ICC PSEUDO!", |
| [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; |
| def SELECT_CC_FP_ICC |
| : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_FP_ICC PSEUDO!", |
| [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; |
| |
| def SELECT_CC_DFP_ICC |
| : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_DFP_ICC PSEUDO!", |
| [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; |
| |
| def SELECT_CC_QFP_ICC |
| : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_QFP_ICC PSEUDO!", |
| [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; |
| } |
| |
| let usesCustomInserter = 1, Uses = [FCC0] in { |
| |
| def SELECT_CC_Int_FCC |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_Int_FCC PSEUDO!", |
| [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; |
| |
| def SELECT_CC_FP_FCC |
| : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_FP_FCC PSEUDO!", |
| [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; |
| def SELECT_CC_DFP_FCC |
| : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_DFP_FCC PSEUDO!", |
| [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; |
| def SELECT_CC_QFP_FCC |
| : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_QFP_FCC PSEUDO!", |
| [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; |
| } |
| |
| // Section B.1 - Load Integer Instructions, p. 90 |
| let DecoderMethod = "DecodeLoadInt" in { |
| defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; |
| defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>; |
| defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>; |
| defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>; |
| defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>; |
| } |
| |
| let DecoderMethod = "DecodeLoadIntPair" in |
| defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>; |
| |
| // Section B.2 - Load Floating-point Instructions, p. 92 |
| let DecoderMethod = "DecodeLoadFP" in { |
| defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>; |
| def LDFArr : LoadASI<"ld", 0b110000, load, FPRegs, f32, IIC_iu_or_fpu_instr>, |
| Requires<[HasV9]>; |
| } |
| let DecoderMethod = "DecodeLoadDFP" in { |
| defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>; |
| def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>, |
| Requires<[HasV9]>; |
| } |
| let DecoderMethod = "DecodeLoadQFP" in |
| defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>, |
| Requires<[HasV9, HasHardQuad]>; |
| |
| let DecoderMethod = "DecodeLoadCP" in |
| defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>; |
| let DecoderMethod = "DecodeLoadCPPair" in |
| defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>; |
| |
| let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in { |
| let rd = 0 in { |
| def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr), |
| "ld [$addr], %csr", []>; |
| def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr), |
| "ld [$addr], %csr", []>; |
| } |
| } |
| |
| let DecoderMethod = "DecodeLoadFP" in |
| let Defs = [FSR] in { |
| let rd = 0 in { |
| def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr), |
| "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; |
| def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr), |
| "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; |
| } |
| let rd = 1 in { |
| def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr), |
| "ldx [$addr], %fsr", []>, Requires<[HasV9]>; |
| def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr), |
| "ldx [$addr], %fsr", []>, Requires<[HasV9]>; |
| } |
| } |
| |
| // Section B.4 - Store Integer Instructions, p. 95 |
| let DecoderMethod = "DecodeStoreInt" in { |
| defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>; |
| defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>; |
| defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>; |
| } |
| |
| let DecoderMethod = "DecodeStoreIntPair" in |
| defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>; |
| |
| // Section B.5 - Store Floating-point Instructions, p. 97 |
| let DecoderMethod = "DecodeStoreFP" in { |
| defm STF : Store<"st", 0b100100, store, FPRegs, f32>; |
| def STFArr : StoreASI<"st", 0b110100, store, FPRegs, f32>, |
| Requires<[HasV9]>; |
| } |
| let DecoderMethod = "DecodeStoreDFP" in { |
| defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>; |
| def STDFArr : StoreASI<"std", 0b110111, store, DFPRegs, f64>, |
| Requires<[HasV9]>; |
| } |
| let DecoderMethod = "DecodeStoreQFP" in |
| defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>, |
| Requires<[HasV9, HasHardQuad]>; |
| |
| let DecoderMethod = "DecodeStoreCP" in |
| defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>; |
| |
| let DecoderMethod = "DecodeStoreCPPair" in |
| defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>; |
| |
| let DecoderMethod = "DecodeStoreCP", rd = 0 in { |
| let Defs = [CPSR] in { |
| def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins), |
| "st %csr, [$addr]", [], IIC_st>; |
| def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins), |
| "st %csr, [$addr]", [], IIC_st>; |
| } |
| let Defs = [CPQ] in { |
| def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins), |
| "std %cq, [$addr]", [], IIC_std>; |
| def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins), |
| "std %cq, [$addr]", [], IIC_std>; |
| } |
| } |
| |
| let DecoderMethod = "DecodeStoreFP" in { |
| let rd = 0 in { |
| let Defs = [FSR] in { |
| def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins), |
| "st %fsr, [$addr]", [], IIC_st>; |
| def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins), |
| "st %fsr, [$addr]", [], IIC_st>; |
| } |
| let Defs = [FQ] in { |
| def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins), |
| "std %fq, [$addr]", [], IIC_std>; |
| def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins), |
| "std %fq, [$addr]", [], IIC_std>; |
| } |
| } |
| let rd = 1, Defs = [FSR] in { |
| def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins), |
| "stx %fsr, [$addr]", []>, Requires<[HasV9]>; |
| def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins), |
| "stx %fsr, [$addr]", []>, Requires<[HasV9]>; |
| } |
| } |
| |
| // Section B.8 - SWAP Register with Memory Instruction |
| // (Atomic swap) |
| let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in { |
| def SWAPrr : F3_1<3, 0b001111, |
| (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val), |
| "swap [$addr], $dst", |
| [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; |
| def SWAPri : F3_2<3, 0b001111, |
| (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val), |
| "swap [$addr], $dst", |
| [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; |
| def SWAPArr : F3_1_asi<3, 0b011111, |
| (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val), |
| "swapa [$addr] $asi, $dst", |
| [/*FIXME: pattern?*/]>; |
| } |
| |
| |
| // Section B.9 - SETHI Instruction, p. 104 |
| def SETHIi: F2_1<0b100, |
| (outs IntRegs:$rd), (ins i32imm:$imm22), |
| "sethi $imm22, $rd", |
| [(set i32:$rd, SETHIimm:$imm22)], |
| IIC_iu_instr>; |
| |
| // Section B.10 - NOP Instruction, p. 105 |
| // (It's a special case of SETHI) |
| let rd = 0, imm22 = 0 in |
| def NOP : F2_1<0b100, (outs), (ins), "nop", []>; |
| |
| // Section B.11 - Logical Instructions, p. 106 |
| defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; |
| |
| def ANDNrr : F3_1<2, 0b000101, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "andn $rs1, $rs2, $rd", |
| [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; |
| def ANDNri : F3_2<2, 0b000101, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "andn $rs1, $simm13, $rd", []>; |
| |
| defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; |
| |
| def ORNrr : F3_1<2, 0b000110, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "orn $rs1, $rs2, $rd", |
| [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; |
| def ORNri : F3_2<2, 0b000110, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "orn $rs1, $simm13, $rd", []>; |
| defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; |
| |
| def XNORrr : F3_1<2, 0b000111, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "xnor $rs1, $rs2, $rd", |
| [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; |
| def XNORri : F3_2<2, 0b000111, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "xnor $rs1, $simm13, $rd", []>; |
| |
| def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2), |
| (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; |
| |
| def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2), |
| (ORNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; |
| |
| let Defs = [ICC] in { |
| defm ANDCC : F3_12np<"andcc", 0b010001>; |
| defm ANDNCC : F3_12np<"andncc", 0b010101>; |
| defm ORCC : F3_12np<"orcc", 0b010010>; |
| defm ORNCC : F3_12np<"orncc", 0b010110>; |
| defm XORCC : F3_12np<"xorcc", 0b010011>; |
| defm XNORCC : F3_12np<"xnorcc", 0b010111>; |
| } |
| |
| // Section B.12 - Shift Instructions, p. 107 |
| defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>; |
| defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>; |
| defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>; |
| |
| // Section B.13 - Add Instructions, p. 108 |
| defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; |
| |
| // "LEA" forms of add (patterns to make tblgen happy) |
| let Predicates = [Is32Bit], isCodeGenOnly = 1 in |
| def LEA_ADDri : F3_2<2, 0b000000, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "add ${addr:arith}, $dst", |
| [(set iPTR:$dst, ADDRri:$addr)]>; |
| |
| let Defs = [ICC] in |
| defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; |
| |
| let Uses = [ICC] in |
| defm ADDC : F3_12np<"addx", 0b001000>; |
| |
| let Uses = [ICC], Defs = [ICC] in |
| defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; |
| |
| // Section B.15 - Subtract Instructions, p. 110 |
| defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; |
| let Uses = [ICC], Defs = [ICC] in |
| defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; |
| |
| let Defs = [ICC] in |
| defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; |
| |
| let Uses = [ICC] in |
| defm SUBC : F3_12np <"subx", 0b001100>; |
| |
| // cmp (from Section A.3) is a specialized alias for subcc |
| let Defs = [ICC], rd = 0 in { |
| def CMPrr : F3_1<2, 0b010100, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "cmp $rs1, $rs2", |
| [(SPcmpicc i32:$rs1, i32:$rs2)]>; |
| def CMPri : F3_2<2, 0b010100, |
| (outs), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "cmp $rs1, $simm13", |
| [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>; |
| } |
| |
| // Section B.18 - Multiply Instructions, p. 113 |
| let Defs = [Y] in { |
| defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>; |
| defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>; |
| } |
| |
| let Defs = [Y, ICC] in { |
| defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>; |
| defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>; |
| } |
| |
| let Defs = [Y, ICC], Uses = [Y, ICC] in { |
| defm MULSCC : F3_12np<"mulscc", 0b100100>; |
| } |
| |
| // Section B.19 - Divide Instructions, p. 115 |
| let Uses = [Y], Defs = [Y] in { |
| defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>; |
| defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>; |
| } |
| |
| let Uses = [Y], Defs = [Y, ICC] in { |
| defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>; |
| defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>; |
| } |
| |
| // Section B.20 - SAVE and RESTORE, p. 117 |
| defm SAVE : F3_12np<"save" , 0b111100>; |
| defm RESTORE : F3_12np<"restore", 0b111101>; |
| |
| // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 |
| |
| // unconditional branch class. |
| class BranchAlways<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b010, 0, (outs), ins, asmstr, pattern> { |
| let isBranch = 1; |
| let isTerminator = 1; |
| let hasDelaySlot = 1; |
| let isBarrier = 1; |
| } |
| |
| let cond = 8 in |
| def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; |
| |
| |
| let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { |
| |
| // conditional branch class: |
| class BranchSP<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>; |
| |
| // conditional branch with annul class: |
| class BranchSPA<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>; |
| |
| // Conditional branch class on %icc|%xcc with predication: |
| multiclass IPredBranch<string regstr, list<dag> CCPattern> { |
| def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), |
| !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), |
| CCPattern, |
| IIC_iu_instr>; |
| def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), |
| !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), |
| [], |
| IIC_iu_instr>; |
| def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), |
| !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), |
| [], |
| IIC_iu_instr>; |
| def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), |
| !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), |
| [], |
| IIC_iu_instr>; |
| } |
| |
| } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 |
| |
| |
| // Indirect branch instructions. |
| let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, |
| isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { |
| def BINDrr : F3_1<2, 0b111000, |
| (outs), (ins MEMrr:$ptr), |
| "jmp $ptr", |
| [(brind ADDRrr:$ptr)]>; |
| def BINDri : F3_2<2, 0b111000, |
| (outs), (ins MEMri:$ptr), |
| "jmp $ptr", |
| [(brind ADDRri:$ptr)]>; |
| } |
| |
| let Uses = [ICC] in { |
| def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), |
| "b$cond $imm22", |
| [(SPbricc bb:$imm22, imm:$cond)]>; |
| def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), |
| "b$cond,a $imm22", []>; |
| |
| let Predicates = [HasV9], cc = 0b00 in |
| defm BPI : IPredBranch<"%icc", []>; |
| } |
| |
| // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 |
| |
| let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { |
| |
| // floating-point conditional branch class: |
| class FPBranchSP<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; |
| |
| // floating-point conditional branch with annul class: |
| class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; |
| |
| // Conditional branch class on %fcc0-%fcc3 with predication: |
| multiclass FPredBranch { |
| def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, |
| FCCRegs:$cc), |
| "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>; |
| def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, |
| FCCRegs:$cc), |
| "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>; |
| def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, |
| FCCRegs:$cc), |
| "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>; |
| def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, |
| FCCRegs:$cc), |
| "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>; |
| } |
| } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 |
| |
| let Uses = [FCC0] in { |
| def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), |
| "fb$cond $imm22", |
| [(SPbrfcc bb:$imm22, imm:$cond)]>; |
| def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), |
| "fb$cond,a $imm22", []>; |
| } |
| |
| let Predicates = [HasV9] in |
| defm BPF : FPredBranch; |
| |
| // Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123 |
| let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { |
| |
| // co-processor conditional branch class: |
| class CPBranchSP<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b111, 0, (outs), ins, asmstr, pattern>; |
| |
| // co-processor conditional branch with annul class: |
| class CPBranchSPA<dag ins, string asmstr, list<dag> pattern> |
| : F2_2<0b111, 1, (outs), ins, asmstr, pattern>; |
| |
| } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 |
| |
| def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond), |
| "cb$cond $imm22", |
| [(SPbrfcc bb:$imm22, imm:$cond)]>; |
| def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), |
| "cb$cond,a $imm22", []>; |
| |
| // Section B.24 - Call and Link Instruction, p. 125 |
| // This is the only Format 1 instruction |
| let Uses = [O6], |
| hasDelaySlot = 1, isCall = 1 in { |
| def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), |
| "call $disp", |
| [], |
| IIC_jmp_or_call> { |
| bits<30> disp; |
| let op = 1; |
| let Inst{29-0} = disp; |
| } |
| |
| // indirect calls: special cases of JMPL. |
| let isCodeGenOnly = 1, rd = 15 in { |
| def CALLrr : F3_1<2, 0b111000, |
| (outs), (ins MEMrr:$ptr, variable_ops), |
| "call $ptr", |
| [(call ADDRrr:$ptr)], |
| IIC_jmp_or_call>; |
| def CALLri : F3_2<2, 0b111000, |
| (outs), (ins MEMri:$ptr, variable_ops), |
| "call $ptr", |
| [(call ADDRri:$ptr)], |
| IIC_jmp_or_call>; |
| } |
| } |
| |
| // Section B.25 - Jump and Link Instruction |
| |
| // JMPL Instruction. |
| let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, |
| DecoderMethod = "DecodeJMPL" in { |
| def JMPLrr: F3_1<2, 0b111000, |
| (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "jmpl $addr, $dst", |
| [], |
| IIC_jmp_or_call>; |
| def JMPLri: F3_2<2, 0b111000, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "jmpl $addr, $dst", |
| [], |
| IIC_jmp_or_call>; |
| } |
| |
| // Section A.3 - Synthetic Instructions, p. 85 |
| // special cases of JMPL: |
| let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, |
| isCodeGenOnly = 1 in { |
| let rd = 0, rs1 = 15 in |
| def RETL: F3_2<2, 0b111000, |
| (outs), (ins i32imm:$val), |
| "jmp %o7+$val", |
| [(retflag simm13:$val)], |
| IIC_jmp_or_call>; |
| |
| let rd = 0, rs1 = 31 in |
| def RET: F3_2<2, 0b111000, |
| (outs), (ins i32imm:$val), |
| "jmp %i7+$val", |
| [], |
| IIC_jmp_or_call>; |
| } |
| |
| // Section B.26 - Return from Trap Instruction |
| let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, |
| isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in { |
| def RETTrr : F3_1<2, 0b111001, |
| (outs), (ins MEMrr:$addr), |
| "rett $addr", |
| [], |
| IIC_jmp_or_call>; |
| def RETTri : F3_2<2, 0b111001, |
| (outs), (ins MEMri:$addr), |
| "rett $addr", |
| [], |
| IIC_jmp_or_call>; |
| } |
| |
| |
| // Section B.27 - Trap on Integer Condition Codes Instruction |
| // conditional branch class: |
| let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in |
| { |
| def TRAPrr : TRAPSPrr<0b111010, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), |
| "t$cond $rs1 + $rs2", |
| []>; |
| def TRAPri : TRAPSPri<0b111010, |
| (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), |
| "t$cond $rs1 + $imm", |
| []>; |
| } |
| |
| multiclass TRAP<string regStr> { |
| def rr : TRAPSPrr<0b111010, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), |
| !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), |
| []>; |
| def ri : TRAPSPri<0b111010, |
| (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), |
| !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), |
| []>; |
| } |
| |
| let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in |
| defm TICC : TRAP<"%icc">; |
| |
| |
| let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in |
| def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; |
| |
| let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in |
| def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>; |
| |
| // Section B.28 - Read State Register Instructions |
| let rs2 = 0 in |
| def RDASR : F3_1<2, 0b101000, |
| (outs IntRegs:$rd), (ins ASRRegs:$rs1), |
| "rd $rs1, $rd", []>; |
| |
| // PSR, WIM, and TBR don't exist on the SparcV9, only the V8. |
| let Predicates = [HasNoV9] in { |
| let rs2 = 0, rs1 = 0, Uses=[PSR] in |
| def RDPSR : F3_1<2, 0b101001, |
| (outs IntRegs:$rd), (ins), |
| "rd %psr, $rd", []>; |
| |
| let rs2 = 0, rs1 = 0, Uses=[WIM] in |
| def RDWIM : F3_1<2, 0b101010, |
| (outs IntRegs:$rd), (ins), |
| "rd %wim, $rd", []>; |
| |
| let rs2 = 0, rs1 = 0, Uses=[TBR] in |
| def RDTBR : F3_1<2, 0b101011, |
| (outs IntRegs:$rd), (ins), |
| "rd %tbr, $rd", []>; |
| } |
| |
| // Section B.29 - Write State Register Instructions |
| def WRASRrr : F3_1<2, 0b110000, |
| (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "wr $rs1, $rs2, $rd", []>; |
| def WRASRri : F3_2<2, 0b110000, |
| (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "wr $rs1, $simm13, $rd", []>; |
| |
| // PSR, WIM, and TBR don't exist on the SparcV9, only the V8. |
| let Predicates = [HasNoV9] in { |
| let Defs = [PSR], rd=0 in { |
| def WRPSRrr : F3_1<2, 0b110001, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "wr $rs1, $rs2, %psr", []>; |
| def WRPSRri : F3_2<2, 0b110001, |
| (outs), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "wr $rs1, $simm13, %psr", []>; |
| } |
| |
| let Defs = [WIM], rd=0 in { |
| def WRWIMrr : F3_1<2, 0b110010, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "wr $rs1, $rs2, %wim", []>; |
| def WRWIMri : F3_2<2, 0b110010, |
| (outs), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "wr $rs1, $simm13, %wim", []>; |
| } |
| |
| let Defs = [TBR], rd=0 in { |
| def WRTBRrr : F3_1<2, 0b110011, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "wr $rs1, $rs2, %tbr", []>; |
| def WRTBRri : F3_2<2, 0b110011, |
| (outs), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "wr $rs1, $simm13, %tbr", []>; |
| } |
| } |
| |
| // Section B.30 - STBAR Instruction |
| let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in |
| def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; |
| |
| |
| // Section B.31 - Unimplmented Instruction |
| let rd = 0 in |
| def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), |
| "unimp $imm22", []>; |
| |
| // Section B.32 - Flush Instruction Memory |
| let rd = 0 in { |
| def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr), |
| "flush $addr", []>; |
| def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr), |
| "flush $addr", []>; |
| |
| // The no-arg FLUSH is only here for the benefit of the InstAlias |
| // "flush", which cannot seem to use FLUSHrr, due to the inability |
| // to construct a MEMrr with fixed G0 registers. |
| let rs1 = 0, rs2 = 0 in |
| def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>; |
| } |
| |
| // Section B.33 - Floating-point Operate (FPop) Instructions |
| |
| // Convert Integer to Floating-point Instructions, p. 141 |
| def FITOS : F3_3u<2, 0b110100, 0b011000100, |
| (outs FPRegs:$rd), (ins FPRegs:$rs2), |
| "fitos $rs2, $rd", |
| [(set FPRegs:$rd, (SPitof FPRegs:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FITOD : F3_3u<2, 0b110100, 0b011001000, |
| (outs DFPRegs:$rd), (ins FPRegs:$rs2), |
| "fitod $rs2, $rd", |
| [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FITOQ : F3_3u<2, 0b110100, 0b011001100, |
| (outs QFPRegs:$rd), (ins FPRegs:$rs2), |
| "fitoq $rs2, $rd", |
| [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| // Convert Floating-point to Integer Instructions, p. 142 |
| def FSTOI : F3_3u<2, 0b110100, 0b011010001, |
| (outs FPRegs:$rd), (ins FPRegs:$rs2), |
| "fstoi $rs2, $rd", |
| [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FDTOI : F3_3u<2, 0b110100, 0b011010010, |
| (outs FPRegs:$rd), (ins DFPRegs:$rs2), |
| "fdtoi $rs2, $rd", |
| [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FQTOI : F3_3u<2, 0b110100, 0b011010011, |
| (outs FPRegs:$rd), (ins QFPRegs:$rs2), |
| "fqtoi $rs2, $rd", |
| [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| // Convert between Floating-point Formats Instructions, p. 143 |
| def FSTOD : F3_3u<2, 0b110100, 0b011001001, |
| (outs DFPRegs:$rd), (ins FPRegs:$rs2), |
| "fstod $rs2, $rd", |
| [(set f64:$rd, (fpextend f32:$rs2))], |
| IIC_fpu_stod>; |
| def FSTOQ : F3_3u<2, 0b110100, 0b011001101, |
| (outs QFPRegs:$rd), (ins FPRegs:$rs2), |
| "fstoq $rs2, $rd", |
| [(set f128:$rd, (fpextend f32:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| def FDTOS : F3_3u<2, 0b110100, 0b011000110, |
| (outs FPRegs:$rd), (ins DFPRegs:$rs2), |
| "fdtos $rs2, $rd", |
| [(set f32:$rd, (fpround f64:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FDTOQ : F3_3u<2, 0b110100, 0b011001110, |
| (outs QFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fdtoq $rs2, $rd", |
| [(set f128:$rd, (fpextend f64:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| def FQTOS : F3_3u<2, 0b110100, 0b011000111, |
| (outs FPRegs:$rd), (ins QFPRegs:$rs2), |
| "fqtos $rs2, $rd", |
| [(set f32:$rd, (fpround f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| def FQTOD : F3_3u<2, 0b110100, 0b011001011, |
| (outs DFPRegs:$rd), (ins QFPRegs:$rs2), |
| "fqtod $rs2, $rd", |
| [(set f64:$rd, (fpround f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| // Floating-point Move Instructions, p. 144 |
| def FMOVS : F3_3u<2, 0b110100, 0b000000001, |
| (outs FPRegs:$rd), (ins FPRegs:$rs2), |
| "fmovs $rs2, $rd", []>; |
| def FNEGS : F3_3u<2, 0b110100, 0b000000101, |
| (outs FPRegs:$rd), (ins FPRegs:$rs2), |
| "fnegs $rs2, $rd", |
| [(set f32:$rd, (fneg f32:$rs2))], |
| IIC_fpu_negs>; |
| def FABSS : F3_3u<2, 0b110100, 0b000001001, |
| (outs FPRegs:$rd), (ins FPRegs:$rs2), |
| "fabss $rs2, $rd", |
| [(set f32:$rd, (fabs f32:$rs2))], |
| IIC_fpu_abs>; |
| |
| |
| // Floating-point Square Root Instructions, p.145 |
| // FSQRTS generates an erratum on LEON processors, so by disabling this instruction |
| // this will be promoted to use FSQRTD with doubles instead. |
| let Predicates = [HasNoFdivSqrtFix] in |
| def FSQRTS : F3_3u<2, 0b110100, 0b000101001, |
| (outs FPRegs:$rd), (ins FPRegs:$rs2), |
| "fsqrts $rs2, $rd", |
| [(set f32:$rd, (fsqrt f32:$rs2))], |
| IIC_fpu_sqrts>; |
| def FSQRTD : F3_3u<2, 0b110100, 0b000101010, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fsqrtd $rs2, $rd", |
| [(set f64:$rd, (fsqrt f64:$rs2))], |
| IIC_fpu_sqrtd>; |
| def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs2), |
| "fsqrtq $rs2, $rd", |
| [(set f128:$rd, (fsqrt f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| |
| |
| // Floating-point Add and Subtract Instructions, p. 146 |
| def FADDS : F3_3<2, 0b110100, 0b001000001, |
| (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fadds $rs1, $rs2, $rd", |
| [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FADDD : F3_3<2, 0b110100, 0b001000010, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "faddd $rs1, $rs2, $rd", |
| [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FADDQ : F3_3<2, 0b110100, 0b001000011, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "faddq $rs1, $rs2, $rd", |
| [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| def FSUBS : F3_3<2, 0b110100, 0b001000101, |
| (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fsubs $rs1, $rs2, $rd", |
| [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FSUBD : F3_3<2, 0b110100, 0b001000110, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fsubd $rs1, $rs2, $rd", |
| [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))], |
| IIC_fpu_fast_instr>; |
| def FSUBQ : F3_3<2, 0b110100, 0b001000111, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "fsubq $rs1, $rs2, $rd", |
| [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| |
| // Floating-point Multiply and Divide Instructions, p. 147 |
| def FMULS : F3_3<2, 0b110100, 0b001001001, |
| (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fmuls $rs1, $rs2, $rd", |
| [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))], |
| IIC_fpu_muls>, |
| Requires<[HasFMULS]>; |
| def FMULD : F3_3<2, 0b110100, 0b001001010, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fmuld $rs1, $rs2, $rd", |
| [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))], |
| IIC_fpu_muld>; |
| def FMULQ : F3_3<2, 0b110100, 0b001001011, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "fmulq $rs1, $rs2, $rd", |
| [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| def FSMULD : F3_3<2, 0b110100, 0b001101001, |
| (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fsmuld $rs1, $rs2, $rd", |
| [(set f64:$rd, (fmul (fpextend f32:$rs1), |
| (fpextend f32:$rs2)))], |
| IIC_fpu_muld>, |
| Requires<[HasFSMULD]>; |
| def FDMULQ : F3_3<2, 0b110100, 0b001101110, |
| (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fdmulq $rs1, $rs2, $rd", |
| [(set f128:$rd, (fmul (fpextend f64:$rs1), |
| (fpextend f64:$rs2)))]>, |
| Requires<[HasHardQuad]>; |
| |
| // FDIVS generates an erratum on LEON processors, so by disabling this instruction |
| // this will be promoted to use FDIVD with doubles instead. |
| def FDIVS : F3_3<2, 0b110100, 0b001001101, |
| (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fdivs $rs1, $rs2, $rd", |
| [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))], |
| IIC_fpu_divs>; |
| def FDIVD : F3_3<2, 0b110100, 0b001001110, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fdivd $rs1, $rs2, $rd", |
| [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))], |
| IIC_fpu_divd>; |
| def FDIVQ : F3_3<2, 0b110100, 0b001001111, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "fdivq $rs1, $rs2, $rd", |
| [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| // Floating-point Compare Instructions, p. 148 |
| // Note: the 2nd template arg is different for these guys. |
| // Note 2: the result of a FCMP is not available until the 2nd cycle |
| // after the instr is retired, but there is no interlock in Sparc V8. |
| // This behavior is modeled with a forced noop after the instruction in |
| // DelaySlotFiller. |
| |
| let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { |
| def FCMPS : F3_3c<2, 0b110101, 0b001010001, |
| (outs), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fcmps $rs1, $rs2", |
| [(SPcmpfcc f32:$rs1, f32:$rs2)], |
| IIC_fpu_fast_instr>; |
| def FCMPD : F3_3c<2, 0b110101, 0b001010010, |
| (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fcmpd $rs1, $rs2", |
| [(SPcmpfcc f64:$rs1, f64:$rs2)], |
| IIC_fpu_fast_instr>; |
| def FCMPQ : F3_3c<2, 0b110101, 0b001010011, |
| (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "fcmpq $rs1, $rs2", |
| [(SPcmpfcc f128:$rs1, f128:$rs2)]>, |
| Requires<[HasHardQuad]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions for Thread Local Storage(TLS). |
| //===----------------------------------------------------------------------===// |
| let isAsmParserOnly = 1 in { |
| def TLS_ADDrr : F3_1<2, 0b000000, |
| (outs IntRegs:$rd), |
| (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym), |
| "add $rs1, $rs2, $rd, $sym", |
| [(set i32:$rd, |
| (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; |
| |
| let mayLoad = 1 in |
| def TLS_LDrr : F3_1<3, 0b000000, |
| (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), |
| "ld [$addr], $dst, $sym", |
| [(set i32:$dst, |
| (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; |
| |
| let Uses = [O6], isCall = 1, hasDelaySlot = 1 in |
| def TLS_CALL : InstSP<(outs), |
| (ins calltarget:$disp, TLSSym:$sym, variable_ops), |
| "call $disp, $sym", |
| [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)], |
| IIC_jmp_or_call> { |
| bits<30> disp; |
| let op = 1; |
| let Inst{29-0} = disp; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // V9 Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // V9 Conditional Moves. |
| let Predicates = [HasV9], Constraints = "$f = $rd" in { |
| // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. |
| let Uses = [ICC], intcc = 1, cc = 0b00 in { |
| def MOVICCrr |
| : F4_1<0b101100, (outs IntRegs:$rd), |
| (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), |
| "mov$cond %icc, $rs2, $rd", |
| [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; |
| |
| def MOVICCri |
| : F4_2<0b101100, (outs IntRegs:$rd), |
| (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), |
| "mov$cond %icc, $simm11, $rd", |
| [(set i32:$rd, |
| (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; |
| } |
| |
| let Uses = [FCC0], intcc = 0, cc = 0b00 in { |
| def MOVFCCrr |
| : F4_1<0b101100, (outs IntRegs:$rd), |
| (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), |
| "mov$cond %fcc0, $rs2, $rd", |
| [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; |
| def MOVFCCri |
| : F4_2<0b101100, (outs IntRegs:$rd), |
| (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), |
| "mov$cond %fcc0, $simm11, $rd", |
| [(set i32:$rd, |
| (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; |
| } |
| |
| let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { |
| def FMOVS_ICC |
| : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), |
| (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), |
| "fmovs$cond %icc, $rs2, $rd", |
| [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; |
| def FMOVD_ICC |
| : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), |
| (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), |
| "fmovd$cond %icc, $rs2, $rd", |
| [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; |
| def FMOVQ_ICC |
| : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), |
| (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), |
| "fmovq$cond %icc, $rs2, $rd", |
| [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>, |
| Requires<[HasHardQuad]>; |
| } |
| |
| let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { |
| def FMOVS_FCC |
| : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), |
| (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), |
| "fmovs$cond %fcc0, $rs2, $rd", |
| [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; |
| def FMOVD_FCC |
| : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), |
| (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), |
| "fmovd$cond %fcc0, $rs2, $rd", |
| [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; |
| def FMOVQ_FCC |
| : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), |
| (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), |
| "fmovq$cond %fcc0, $rs2, $rd", |
| [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>, |
| Requires<[HasHardQuad]>; |
| } |
| |
| } |
| |
| // Floating-Point Move Instructions, p. 164 of the V9 manual. |
| let Predicates = [HasV9] in { |
| def FMOVD : F3_3u<2, 0b110100, 0b000000010, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fmovd $rs2, $rd", []>; |
| def FMOVQ : F3_3u<2, 0b110100, 0b000000011, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs2), |
| "fmovq $rs2, $rd", []>, |
| Requires<[HasHardQuad]>; |
| def FNEGD : F3_3u<2, 0b110100, 0b000000110, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fnegd $rs2, $rd", |
| [(set f64:$rd, (fneg f64:$rs2))]>; |
| def FNEGQ : F3_3u<2, 0b110100, 0b000000111, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs2), |
| "fnegq $rs2, $rd", |
| [(set f128:$rd, (fneg f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| def FABSD : F3_3u<2, 0b110100, 0b000001010, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fabsd $rs2, $rd", |
| [(set f64:$rd, (fabs f64:$rs2))]>; |
| def FABSQ : F3_3u<2, 0b110100, 0b000001011, |
| (outs QFPRegs:$rd), (ins QFPRegs:$rs2), |
| "fabsq $rs2, $rd", |
| [(set f128:$rd, (fabs f128:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| } |
| |
| // Floating-point compare instruction with %fcc0-%fcc3. |
| def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, |
| (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fcmps $rd, $rs1, $rs2", []>; |
| def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, |
| (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fcmpd $rd, $rs1, $rs2", []>; |
| def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, |
| (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "fcmpq $rd, $rs1, $rs2", []>, |
| Requires<[HasHardQuad]>; |
| |
| let hasSideEffects = 1 in { |
| def V9FCMPES : F3_3c<2, 0b110101, 0b001010101, |
| (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), |
| "fcmpes $rd, $rs1, $rs2", []>; |
| def V9FCMPED : F3_3c<2, 0b110101, 0b001010110, |
| (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), |
| "fcmped $rd, $rs1, $rs2", []>; |
| def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111, |
| (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), |
| "fcmpeq $rd, $rs1, $rs2", []>, |
| Requires<[HasHardQuad]>; |
| } |
| |
| // Floating point conditional move instrucitons with %fcc0-%fcc3. |
| let Predicates = [HasV9] in { |
| let Constraints = "$f = $rd", intcc = 0 in { |
| def V9MOVFCCrr |
| : F4_1<0b101100, (outs IntRegs:$rd), |
| (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), |
| "mov$cond $cc, $rs2, $rd", []>; |
| def V9MOVFCCri |
| : F4_2<0b101100, (outs IntRegs:$rd), |
| (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), |
| "mov$cond $cc, $simm11, $rd", []>; |
| def V9FMOVS_FCC |
| : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), |
| (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), |
| "fmovs$cond $opf_cc, $rs2, $rd", []>; |
| def V9FMOVD_FCC |
| : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), |
| (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), |
| "fmovd$cond $opf_cc, $rs2, $rd", []>; |
| def V9FMOVQ_FCC |
| : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), |
| (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), |
| "fmovq$cond $opf_cc, $rs2, $rd", []>, |
| Requires<[HasHardQuad]>; |
| } // Constraints = "$f = $rd", ... |
| } // let Predicates = [hasV9] |
| |
| |
| // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear |
| // the top 32-bits before using it. To do this clearing, we use a SRLri X,0. |
| let rs1 = 0 in |
| def POPCrr : F3_1<2, 0b101110, |
| (outs IntRegs:$rd), (ins IntRegs:$rs2), |
| "popc $rs2, $rd", []>, Requires<[HasV9]>; |
| def : Pat<(i32 (ctpop i32:$src)), |
| (POPCrr (SRLri $src, 0))>; |
| |
| let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in |
| def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13), |
| "membar $simm13", []>; |
| |
| // The CAS instruction, unlike other instructions, only comes in a |
| // form which requires an ASI be provided. The ASI value hardcoded |
| // here is ASI_PRIMARY, the default unprivileged ASI for SparcV9. |
| let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in |
| def CASrr: F3_1_asi<3, 0b111100, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, |
| IntRegs:$swap), |
| "cas [$rs1], $rs2, $rd", |
| [(set i32:$rd, |
| (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>; |
| |
| |
| // CASA is supported as an instruction on some LEON3 and all LEON4 processors. |
| // This version can be automatically lowered from C code, selecting ASI 10 |
| let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in |
| def CASAasi10: F3_1_asi<3, 0b111100, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, |
| IntRegs:$swap), |
| "casa [$rs1] 10, $rs2, $rd", |
| [(set i32:$rd, |
| (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>; |
| |
| // CASA supported on some LEON3 and all LEON4 processors. Same pattern as |
| // CASrr, above, but with a different ASI. This version is supported for |
| // inline assembly lowering only. |
| let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in |
| def CASArr: F3_1_asi<3, 0b111100, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, |
| IntRegs:$swap, i8imm:$asi), |
| "casa [$rs1] $asi, $rs2, $rd", []>; |
| |
| // TODO: Add DAG sequence to lower these instructions. Currently, only provided |
| // as inline assembler-supported instructions. |
| let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in { |
| def SMACrr : F3_1<2, 0b111111, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), |
| "smac $rs1, $rs2, $rd", |
| [], IIC_smac_umac>; |
| |
| def SMACri : F3_2<2, 0b111111, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), |
| "smac $rs1, $simm13, $rd", |
| [], IIC_smac_umac>; |
| |
| def UMACrr : F3_1<2, 0b111110, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), |
| "umac $rs1, $rs2, $rd", |
| [], IIC_smac_umac>; |
| |
| def UMACri : F3_2<2, 0b111110, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), |
| "umac $rs1, $simm13, $rd", |
| [], IIC_smac_umac>; |
| } |
| |
| // The partial write WRPSR instruction has a non-zero destination |
| // register value to separate it from the standard instruction. |
| let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in { |
| def PWRPSRrr : F3_1<2, 0b110001, |
| (outs), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "pwr $rs1, $rs2, %psr", []>; |
| def PWRPSRri : F3_2<2, 0b110001, |
| (outs), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "pwr $rs1, $simm13, %psr", []>; |
| } |
| |
| let Defs = [ICC] in { |
| defm TADDCC : F3_12np<"taddcc", 0b100000>; |
| defm TSUBCC : F3_12np<"tsubcc", 0b100001>; |
| |
| let hasSideEffects = 1 in { |
| defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; |
| defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; |
| } |
| } |
| |
| |
| // Section A.43 - Read Privileged Register Instructions |
| let Predicates = [HasV9] in { |
| let rs2 = 0 in |
| def RDPR : F3_1<2, 0b101010, |
| (outs IntRegs:$rd), (ins PRRegs:$rs1), |
| "rdpr $rs1, $rd", []>; |
| } |
| |
| // Section A.62 - Write Privileged Register Instructions |
| let Predicates = [HasV9] in { |
| def WRPRrr : F3_1<2, 0b110010, |
| (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), |
| "wrpr $rs1, $rs2, $rd", []>; |
| def WRPRri : F3_2<2, 0b110010, |
| (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), |
| "wrpr $rs1, $simm13, $rd", []>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Non-Instruction Patterns |
| //===----------------------------------------------------------------------===// |
| |
| // Zero immediate. |
| def : Pat<(i32 0), |
| (ORrr (i32 G0), (i32 G0))>; |
| // Small immediates. |
| def : Pat<(i32 simm13:$val), |
| (ORri (i32 G0), imm:$val)>; |
| // Arbitrary immediates. |
| def : Pat<(i32 imm:$val), |
| (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; |
| |
| |
| // Global addresses, constant pool entries |
| let Predicates = [Is32Bit] in { |
| |
| def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; |
| def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; |
| def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; |
| def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; |
| |
| // GlobalTLS addresses |
| def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; |
| def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; |
| def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), |
| (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; |
| def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), |
| (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; |
| |
| // Blockaddress |
| def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; |
| def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; |
| |
| // Add reg, lo. This is used when taking the addr of a global/constpool entry. |
| def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; |
| def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; |
| def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), |
| (ADDri $r, tblockaddress:$in)>; |
| } |
| |
| // Calls: |
| def : Pat<(call tglobaladdr:$dst), |
| (CALL tglobaladdr:$dst)>; |
| def : Pat<(call texternalsym:$dst), |
| (CALL texternalsym:$dst)>; |
| |
| // Map integer extload's to zextloads. |
| def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; |
| def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; |
| def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; |
| def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; |
| |
| // zextload bool -> zextload byte |
| def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; |
| |
| // store 0, addr -> store %g0, addr |
| def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; |
| def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; |
| |
| // store bar for all atomic_fence in V8. |
| let Predicates = [HasNoV9] in |
| def : Pat<(atomic_fence timm, timm), (STBAR)>; |
| |
| let Predicates = [HasV9] in |
| def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>; |
| |
| // atomic_load addr -> load addr |
| def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>; |
| def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; |
| def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>; |
| def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>; |
| def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>; |
| |
| // atomic_store val, addr -> store val, addr |
| def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>; |
| def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>; |
| def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>; |
| def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>; |
| def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>; |
| def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>; |
| |
| // extract_vector |
| def : Pat<(extractelt (v2i32 IntPair:$Rn), 0), |
| (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>; |
| def : Pat<(extractelt (v2i32 IntPair:$Rn), 1), |
| (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>; |
| |
| // build_vector |
| def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)), |
| (INSERT_SUBREG |
| (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even), |
| (i32 IntRegs:$a2), sub_odd)>; |
| |
| |
| include "SparcInstr64Bit.td" |
| include "SparcInstrVIS.td" |
| include "SparcInstrAliases.td" |