| //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that Mips uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MipsISelLowering.h" |
| #include "MCTargetDesc/MipsBaseInfo.h" |
| #include "MCTargetDesc/MipsInstPrinter.h" |
| #include "MCTargetDesc/MipsMCTargetDesc.h" |
| #include "MipsCCState.h" |
| #include "MipsInstrInfo.h" |
| #include "MipsMachineFunction.h" |
| #include "MipsRegisterInfo.h" |
| #include "MipsSubtarget.h" |
| #include "MipsTargetMachine.h" |
| #include "MipsTargetObjectFile.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cstdint> |
| #include <deque> |
| #include <iterator> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "mips-lower" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| static cl::opt<bool> |
| NoZeroDivCheck("mno-check-zero-division", cl::Hidden, |
| cl::desc("MIPS: Don't trap on integer division by zero."), |
| cl::init(false)); |
| |
| extern cl::opt<bool> EmitJalrReloc; |
| |
| static const MCPhysReg Mips64DPRegs[8] = { |
| Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, |
| Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 |
| }; |
| |
| // If I is a shifted mask, set the size (Size) and the first bit of the |
| // mask (Pos), and return true. |
| // For example, if I is 0x003ff800, (Pos, Size) = (11, 11). |
| static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { |
| if (!isShiftedMask_64(I)) |
| return false; |
| |
| Size = countPopulation(I); |
| Pos = countTrailingZeros(I); |
| return true; |
| } |
| |
| // The MIPS MSA ABI passes vector arguments in the integer register set. |
| // The number of integer registers used is dependant on the ABI used. |
| MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return getRegisterType(Context, VT); |
| |
| return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32 |
| : MVT::i64; |
| } |
| |
| unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (VT.isVector()) |
| return std::max(((unsigned)VT.getSizeInBits() / |
| (Subtarget.isABI_O32() ? 32 : 64)), |
| 1U); |
| return MipsTargetLowering::getNumRegisters(Context, VT); |
| } |
| |
| unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv( |
| LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, |
| unsigned &NumIntermediates, MVT &RegisterVT) const { |
| // Break down vector types to either 2 i64s or 4 i32s. |
| RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT); |
| IntermediateVT = RegisterVT; |
| NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits() |
| ? VT.getVectorNumElements() |
| : VT.getSizeInBits() / RegisterVT.getSizeInBits(); |
| |
| return NumIntermediates; |
| } |
| |
| SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { |
| MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); |
| return DAG.getRegister(FI->getGlobalBaseReg(), Ty); |
| } |
| |
| SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); |
| } |
| |
| SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); |
| } |
| |
| SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); |
| } |
| |
| SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); |
| } |
| |
| SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), |
| N->getOffset(), Flag); |
| } |
| |
| const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((MipsISD::NodeType)Opcode) { |
| case MipsISD::FIRST_NUMBER: break; |
| case MipsISD::JmpLink: return "MipsISD::JmpLink"; |
| case MipsISD::TailCall: return "MipsISD::TailCall"; |
| case MipsISD::Highest: return "MipsISD::Highest"; |
| case MipsISD::Higher: return "MipsISD::Higher"; |
| case MipsISD::Hi: return "MipsISD::Hi"; |
| case MipsISD::Lo: return "MipsISD::Lo"; |
| case MipsISD::GotHi: return "MipsISD::GotHi"; |
| case MipsISD::TlsHi: return "MipsISD::TlsHi"; |
| case MipsISD::GPRel: return "MipsISD::GPRel"; |
| case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; |
| case MipsISD::Ret: return "MipsISD::Ret"; |
| case MipsISD::ERet: return "MipsISD::ERet"; |
| case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; |
| case MipsISD::FMS: return "MipsISD::FMS"; |
| case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; |
| case MipsISD::FPCmp: return "MipsISD::FPCmp"; |
| case MipsISD::FSELECT: return "MipsISD::FSELECT"; |
| case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64"; |
| case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; |
| case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; |
| case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; |
| case MipsISD::MFHI: return "MipsISD::MFHI"; |
| case MipsISD::MFLO: return "MipsISD::MFLO"; |
| case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; |
| case MipsISD::Mult: return "MipsISD::Mult"; |
| case MipsISD::Multu: return "MipsISD::Multu"; |
| case MipsISD::MAdd: return "MipsISD::MAdd"; |
| case MipsISD::MAddu: return "MipsISD::MAddu"; |
| case MipsISD::MSub: return "MipsISD::MSub"; |
| case MipsISD::MSubu: return "MipsISD::MSubu"; |
| case MipsISD::DivRem: return "MipsISD::DivRem"; |
| case MipsISD::DivRemU: return "MipsISD::DivRemU"; |
| case MipsISD::DivRem16: return "MipsISD::DivRem16"; |
| case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; |
| case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; |
| case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; |
| case MipsISD::Wrapper: return "MipsISD::Wrapper"; |
| case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; |
| case MipsISD::Sync: return "MipsISD::Sync"; |
| case MipsISD::Ext: return "MipsISD::Ext"; |
| case MipsISD::Ins: return "MipsISD::Ins"; |
| case MipsISD::CIns: return "MipsISD::CIns"; |
| case MipsISD::LWL: return "MipsISD::LWL"; |
| case MipsISD::LWR: return "MipsISD::LWR"; |
| case MipsISD::SWL: return "MipsISD::SWL"; |
| case MipsISD::SWR: return "MipsISD::SWR"; |
| case MipsISD::LDL: return "MipsISD::LDL"; |
| case MipsISD::LDR: return "MipsISD::LDR"; |
| case MipsISD::SDL: return "MipsISD::SDL"; |
| case MipsISD::SDR: return "MipsISD::SDR"; |
| case MipsISD::EXTP: return "MipsISD::EXTP"; |
| case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; |
| case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; |
| case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; |
| case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; |
| case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; |
| case MipsISD::SHILO: return "MipsISD::SHILO"; |
| case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; |
| case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; |
| case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; |
| case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; |
| case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; |
| case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; |
| case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; |
| case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; |
| case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; |
| case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; |
| case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; |
| case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; |
| case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; |
| case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; |
| case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; |
| case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; |
| case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; |
| case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; |
| case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; |
| case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; |
| case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; |
| case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; |
| case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; |
| case MipsISD::MULT: return "MipsISD::MULT"; |
| case MipsISD::MULTU: return "MipsISD::MULTU"; |
| case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; |
| case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; |
| case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; |
| case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; |
| case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; |
| case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; |
| case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; |
| case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; |
| case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; |
| case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; |
| case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; |
| case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; |
| case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; |
| case MipsISD::VCEQ: return "MipsISD::VCEQ"; |
| case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; |
| case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; |
| case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; |
| case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; |
| case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; |
| case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; |
| case MipsISD::VNOR: return "MipsISD::VNOR"; |
| case MipsISD::VSHF: return "MipsISD::VSHF"; |
| case MipsISD::SHF: return "MipsISD::SHF"; |
| case MipsISD::ILVEV: return "MipsISD::ILVEV"; |
| case MipsISD::ILVOD: return "MipsISD::ILVOD"; |
| case MipsISD::ILVL: return "MipsISD::ILVL"; |
| case MipsISD::ILVR: return "MipsISD::ILVR"; |
| case MipsISD::PCKEV: return "MipsISD::PCKEV"; |
| case MipsISD::PCKOD: return "MipsISD::PCKOD"; |
| case MipsISD::INSVE: return "MipsISD::INSVE"; |
| } |
| return nullptr; |
| } |
| |
| MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, |
| const MipsSubtarget &STI) |
| : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { |
| // Mips does not have i1 type, so use i32 for |
| // setcc operations results (slt, sgt, ...). |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA |
| // does. Integer booleans still use 0 and 1. |
| if (Subtarget.hasMips32r6()) |
| setBooleanContents(ZeroOrOneBooleanContent, |
| ZeroOrNegativeOneBooleanContent); |
| |
| // Load extented operations for i1 types must be promoted |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| } |
| |
| // MIPS doesn't have extending float->double load/store. Set LoadExtAction |
| // for f32, f16 |
| for (MVT VT : MVT::fp_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); |
| } |
| |
| // Set LoadExtAction for f16 vectors to Expand |
| for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { |
| MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); |
| if (F16VT.isValid()) |
| setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); |
| } |
| |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // Used by legalize types to correctly generate the setcc result. |
| // Without this, every float setcc comes with a AND/OR with the result, |
| // we don't want this, since the fpcmp result goes to a flag register, |
| // which is used implicitly by brcond and select operations. |
| AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); |
| |
| // Mips Custom Operations |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::f32, Custom); |
| setOperationAction(ISD::SETCC, MVT::f64, Custom); |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| |
| if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) { |
| setOperationAction(ISD::FABS, MVT::f32, Custom); |
| setOperationAction(ISD::FABS, MVT::f64, Custom); |
| } |
| |
| if (Subtarget.isGP64bit()) { |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| setOperationAction(ISD::LOAD, MVT::i64, Custom); |
| setOperationAction(ISD::STORE, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); |
| } |
| |
| if (!Subtarget.isGP64bit()) { |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| } |
| |
| setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); |
| if (Subtarget.isGP64bit()) |
| setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIV, MVT::i64, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::UDIV, MVT::i64, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| |
| // Operations not directly supported by Mips. |
| setOperationAction(ISD::BR_CC, MVT::f32, Expand); |
| setOperationAction(ISD::BR_CC, MVT::f64, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| if (Subtarget.hasCnMips()) { |
| setOperationAction(ISD::CTPOP, MVT::i32, Legal); |
| setOperationAction(ISD::CTPOP, MVT::i64, Legal); |
| } else { |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| } |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i64, Expand); |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| |
| if (!Subtarget.hasMips32r2()) |
| setOperationAction(ISD::ROTR, MVT::i32, Expand); |
| |
| if (!Subtarget.hasMips64r2()) |
| setOperationAction(ISD::ROTR, MVT::i64, Expand); |
| |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::f32, Expand); |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| |
| // Lower f16 conversion operations into library calls |
| setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); |
| |
| setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| // Use the default for now |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| if (!Subtarget.isGP64bit()) { |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); |
| } |
| |
| if (!Subtarget.hasMips32r2()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| } |
| |
| // MIPS16 lacks MIPS32's clz and clo instructions. |
| if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| if (!Subtarget.hasMips64()) |
| setOperationAction(ISD::CTLZ, MVT::i64, Expand); |
| |
| if (!Subtarget.hasMips32r2()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| if (!Subtarget.hasMips64r2()) |
| setOperationAction(ISD::BSWAP, MVT::i64, Expand); |
| |
| if (Subtarget.isGP64bit()) { |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); |
| setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); |
| setTruncStoreAction(MVT::i64, MVT::i32, Custom); |
| } |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| setTargetDAGCombine(ISD::SDIVREM); |
| setTargetDAGCombine(ISD::UDIVREM); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::AssertZext); |
| setTargetDAGCombine(ISD::SHL); |
| |
| if (ABI.IsO32()) { |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| } |
| |
| setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4)); |
| |
| // The arguments on the stack are defined in terms of 4-byte slots on O32 |
| // and 8-byte slots on N32/N64. |
| setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8) |
| : Align(4)); |
| |
| setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); |
| |
| MaxStoresPerMemcpy = 16; |
| |
| isMicroMips = Subtarget.inMicroMipsMode(); |
| } |
| |
| const MipsTargetLowering * |
| MipsTargetLowering::create(const MipsTargetMachine &TM, |
| const MipsSubtarget &STI) { |
| if (STI.inMips16Mode()) |
| return createMips16TargetLowering(TM, STI); |
| |
| return createMipsSETargetLowering(TM, STI); |
| } |
| |
| // Create a fast isel object. |
| FastISel * |
| MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) const { |
| const MipsTargetMachine &TM = |
| static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget()); |
| |
| // We support only the standard encoding [MIPS32,MIPS32R5] ISAs. |
| bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() && |
| !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() && |
| !Subtarget.inMicroMipsMode(); |
| |
| // Disable if either of the following is true: |
| // We do not generate PIC, the ABI is not O32, XGOT is being used. |
| if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || |
| Subtarget.useXGOT()) |
| UseFastISel = false; |
| |
| return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr; |
| } |
| |
| EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| EVT Ty = N->getValueType(0); |
| unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; |
| unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; |
| unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : |
| MipsISD::DivRemU16; |
| SDLoc DL(N); |
| |
| SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, |
| N->getOperand(0), N->getOperand(1)); |
| SDValue InChain = DAG.getEntryNode(); |
| SDValue InGlue = DivRem; |
| |
| // insert MFLO |
| if (N->hasAnyUseOfValue(0)) { |
| SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, |
| InGlue); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); |
| InChain = CopyFromLo.getValue(1); |
| InGlue = CopyFromLo.getValue(2); |
| } |
| |
| // insert MFHI |
| if (N->hasAnyUseOfValue(1)) { |
| SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, |
| HI, Ty, InGlue); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); |
| } |
| |
| return SDValue(); |
| } |
| |
| static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown fp condition code!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: return Mips::FCOND_OEQ; |
| case ISD::SETUNE: return Mips::FCOND_UNE; |
| case ISD::SETLT: |
| case ISD::SETOLT: return Mips::FCOND_OLT; |
| case ISD::SETGT: |
| case ISD::SETOGT: return Mips::FCOND_OGT; |
| case ISD::SETLE: |
| case ISD::SETOLE: return Mips::FCOND_OLE; |
| case ISD::SETGE: |
| case ISD::SETOGE: return Mips::FCOND_OGE; |
| case ISD::SETULT: return Mips::FCOND_ULT; |
| case ISD::SETULE: return Mips::FCOND_ULE; |
| case ISD::SETUGT: return Mips::FCOND_UGT; |
| case ISD::SETUGE: return Mips::FCOND_UGE; |
| case ISD::SETUO: return Mips::FCOND_UN; |
| case ISD::SETO: return Mips::FCOND_OR; |
| case ISD::SETNE: |
| case ISD::SETONE: return Mips::FCOND_ONE; |
| case ISD::SETUEQ: return Mips::FCOND_UEQ; |
| } |
| } |
| |
| /// This function returns true if the floating point conditional branches and |
| /// conditional moves which use condition code CC should be inverted. |
| static bool invertFPCondCodeUser(Mips::CondCode CC) { |
| if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) |
| return false; |
| |
| assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && |
| "Illegal Condition Code"); |
| |
| return true; |
| } |
| |
| // Creates and returns an FPCmp node from a setcc node. |
| // Returns Op if setcc is not a floating point comparison. |
| static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { |
| // must be a SETCC node |
| if (Op.getOpcode() != ISD::SETCC) |
| return Op; |
| |
| SDValue LHS = Op.getOperand(0); |
| |
| if (!LHS.getValueType().isFloatingPoint()) |
| return Op; |
| |
| SDValue RHS = Op.getOperand(1); |
| SDLoc DL(Op); |
| |
| // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of |
| // node if necessary. |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, |
| DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); |
| } |
| |
| // Creates and returns a CMovFPT/F node. |
| static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, |
| SDValue False, const SDLoc &DL) { |
| ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); |
| bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); |
| SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); |
| |
| return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, |
| True.getValueType(), True, FCC0, False, Cond); |
| } |
| |
| static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue SetCC = N->getOperand(0); |
| |
| if ((SetCC.getOpcode() != ISD::SETCC) || |
| !SetCC.getOperand(0).getValueType().isInteger()) |
| return SDValue(); |
| |
| SDValue False = N->getOperand(2); |
| EVT FalseTy = False.getValueType(); |
| |
| if (!FalseTy.isInteger()) |
| return SDValue(); |
| |
| ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); |
| |
| // If the RHS (False) is 0, we swap the order of the operands |
| // of ISD::SELECT (obviously also inverting the condition) so that we can |
| // take advantage of conditional moves using the $0 register. |
| // Example: |
| // return (a != 0) ? x : 0; |
| // load $reg, x |
| // movz $reg, $0, a |
| if (!FalseC) |
| return SDValue(); |
| |
| const SDLoc DL(N); |
| |
| if (!FalseC->getZExtValue()) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); |
| SDValue True = N->getOperand(1); |
| |
| SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), |
| SetCC.getOperand(1), |
| ISD::getSetCCInverse(CC, SetCC.getValueType())); |
| |
| return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); |
| } |
| |
| // If both operands are integer constants there's a possibility that we |
| // can do some interesting optimizations. |
| SDValue True = N->getOperand(1); |
| ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); |
| |
| if (!TrueC || !True.getValueType().isInteger()) |
| return SDValue(); |
| |
| // We'll also ignore MVT::i64 operands as this optimizations proves |
| // to be ineffective because of the required sign extensions as the result |
| // of a SETCC operator is always MVT::i32 for non-vector types. |
| if (True.getValueType() == MVT::i64) |
| return SDValue(); |
| |
| int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); |
| |
| // 1) (a < x) ? y : y-1 |
| // slti $reg1, a, x |
| // addiu $reg2, $reg1, y-1 |
| if (Diff == 1) |
| return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); |
| |
| // 2) (a < x) ? y-1 : y |
| // slti $reg1, a, x |
| // xor $reg1, $reg1, 1 |
| // addiu $reg2, $reg1, y-1 |
| if (Diff == -1) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); |
| SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), |
| SetCC.getOperand(1), |
| ISD::getSetCCInverse(CC, SetCC.getValueType())); |
| return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); |
| } |
| |
| // Could not optimize. |
| return SDValue(); |
| } |
| |
| static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); |
| |
| ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); |
| if (!FalseC || FalseC->getZExtValue()) |
| return SDValue(); |
| |
| // Since RHS (False) is 0, we swap the order of the True/False operands |
| // (obviously also inverting the condition) so that we can |
| // take advantage of conditional moves using the $0 register. |
| // Example: |
| // return (a != 0) ? x : 0; |
| // load $reg, x |
| // movz $reg, $0, a |
| unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : |
| MipsISD::CMovFP_T; |
| |
| SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); |
| return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), |
| ValueIfFalse, FCC, ValueIfTrue, Glue); |
| } |
| |
| static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) |
| return SDValue(); |
| |
| SDValue FirstOperand = N->getOperand(0); |
| unsigned FirstOperandOpc = FirstOperand.getOpcode(); |
| SDValue Mask = N->getOperand(1); |
| EVT ValTy = N->getValueType(0); |
| SDLoc DL(N); |
| |
| uint64_t Pos = 0, SMPos, SMSize; |
| ConstantSDNode *CN; |
| SDValue NewOperand; |
| unsigned Opc; |
| |
| // Op's second operand must be a shifted mask. |
| if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || |
| !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) |
| return SDValue(); |
| |
| if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) { |
| // Pattern match EXT. |
| // $dst = and ((sra or srl) $src , pos), (2**size - 1) |
| // => ext $dst, $src, pos, size |
| |
| // The second operand of the shift must be an immediate. |
| if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) |
| return SDValue(); |
| |
| Pos = CN->getZExtValue(); |
| |
| // Return if the shifted mask does not start at bit 0 or the sum of its size |
| // and Pos exceeds the word's size. |
| if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) |
| return SDValue(); |
| |
| Opc = MipsISD::Ext; |
| NewOperand = FirstOperand.getOperand(0); |
| } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) { |
| // Pattern match CINS. |
| // $dst = and (shl $src , pos), mask |
| // => cins $dst, $src, pos, size |
| // mask is a shifted mask with consecutive 1's, pos = shift amount, |
| // size = population count. |
| |
| // The second operand of the shift must be an immediate. |
| if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) |
| return SDValue(); |
| |
| Pos = CN->getZExtValue(); |
| |
| if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 || |
| Pos + SMSize > ValTy.getSizeInBits()) |
| return SDValue(); |
| |
| NewOperand = FirstOperand.getOperand(0); |
| // SMSize is 'location' (position) in this case, not size. |
| SMSize--; |
| Opc = MipsISD::CIns; |
| } else { |
| // Pattern match EXT. |
| // $dst = and $src, (2**size - 1) , if size > 16 |
| // => ext $dst, $src, pos, size , pos = 0 |
| |
| // If the mask is <= 0xffff, andi can be used instead. |
| if (CN->getZExtValue() <= 0xffff) |
| return SDValue(); |
| |
| // Return if the mask doesn't start at position 0. |
| if (SMPos) |
| return SDValue(); |
| |
| Opc = MipsISD::Ext; |
| NewOperand = FirstOperand; |
| } |
| return DAG.getNode(Opc, DL, ValTy, NewOperand, |
| DAG.getConstant(Pos, DL, MVT::i32), |
| DAG.getConstant(SMSize, DL, MVT::i32)); |
| } |
| |
| static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| // Pattern match INS. |
| // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), |
| // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 |
| // => ins $dst, $src, size, pos, $src1 |
| if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) |
| return SDValue(); |
| |
| SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); |
| uint64_t SMPos0, SMSize0, SMPos1, SMSize1; |
| ConstantSDNode *CN, *CN1; |
| |
| // See if Op's first operand matches (and $src1 , mask0). |
| if (And0.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || |
| !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) |
| return SDValue(); |
| |
| // See if Op's second operand matches (and (shl $src, pos), mask1). |
| if (And1.getOpcode() == ISD::AND && |
| And1.getOperand(0).getOpcode() == ISD::SHL) { |
| |
| if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || |
| !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) |
| return SDValue(); |
| |
| // The shift masks must have the same position and size. |
| if (SMPos0 != SMPos1 || SMSize0 != SMSize1) |
| return SDValue(); |
| |
| SDValue Shl = And1.getOperand(0); |
| |
| if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) |
| return SDValue(); |
| |
| unsigned Shamt = CN->getZExtValue(); |
| |
| // Return if the shift amount and the first bit position of mask are not the |
| // same. |
| EVT ValTy = N->getValueType(0); |
| if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), |
| DAG.getConstant(SMPos0, DL, MVT::i32), |
| DAG.getConstant(SMSize0, DL, MVT::i32), |
| And0.getOperand(0)); |
| } else { |
| // Pattern match DINS. |
| // $dst = or (and $src, mask0), mask1 |
| // where mask0 = ((1 << SMSize0) -1) << SMPos0 |
| // => dins $dst, $src, pos, size |
| if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) && |
| ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) || |
| (SMSize0 + SMPos0 <= 32))) { |
| // Check if AND instruction has constant as argument |
| bool isConstCase = And1.getOpcode() != ISD::AND; |
| if (And1.getOpcode() == ISD::AND) { |
| if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1)))) |
| return SDValue(); |
| } else { |
| if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)))) |
| return SDValue(); |
| } |
| // Don't generate INS if constant OR operand doesn't fit into bits |
| // cleared by constant AND operand. |
| if (CN->getSExtValue() & CN1->getSExtValue()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT ValTy = N->getOperand(0)->getValueType(0); |
| SDValue Const1; |
| SDValue SrlX; |
| if (!isConstCase) { |
| Const1 = DAG.getConstant(SMPos0, DL, MVT::i32); |
| SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1); |
| } |
| return DAG.getNode( |
| MipsISD::Ins, DL, N->getValueType(0), |
| isConstCase |
| ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy) |
| : SrlX, |
| DAG.getConstant(SMPos0, DL, MVT::i32), |
| DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31 |
| : SMSize0, |
| DL, MVT::i32), |
| And0->getOperand(0)); |
| |
| } |
| return SDValue(); |
| } |
| } |
| |
| static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG, |
| const MipsSubtarget &Subtarget) { |
| // ROOTNode must have a multiplication as an operand for the match to be |
| // successful. |
| if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL && |
| ROOTNode->getOperand(1).getOpcode() != ISD::MUL) |
| return SDValue(); |
| |
| // We don't handle vector types here. |
| if (ROOTNode->getValueType(0).isVector()) |
| return SDValue(); |
| |
| // For MIPS64, madd / msub instructions are inefficent to use with 64 bit |
| // arithmetic. E.g. |
| // (add (mul a b) c) => |
| // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in |
| // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32) |
| // or |
| // MIPS64R2: (dins (mflo res) (mfhi res) 32 32) |
| // |
| // The overhead of setting up the Hi/Lo registers and reassembling the |
| // result makes this a dubious optimzation for MIPS64. The core of the |
| // problem is that Hi/Lo contain the upper and lower 32 bits of the |
| // operand and result. |
| // |
| // It requires a chain of 4 add/mul for MIPS64R2 to get better code |
| // density than doing it naively, 5 for MIPS64. Additionally, using |
| // madd/msub on MIPS64 requires the operands actually be 32 bit sign |
| // extended operands, not true 64 bit values. |
| // |
| // FIXME: For the moment, disable this completely for MIPS64. |
| if (Subtarget.hasMips64()) |
| return SDValue(); |
| |
| SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL |
| ? ROOTNode->getOperand(0) |
| : ROOTNode->getOperand(1); |
| |
| SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL |
| ? ROOTNode->getOperand(1) |
| : ROOTNode->getOperand(0); |
| |
| // Transform this to a MADD only if the user of this node is the add. |
| // If there are other users of the mul, this function returns here. |
| if (!Mult.hasOneUse()) |
| return SDValue(); |
| |
| // maddu and madd are unusual instructions in that on MIPS64 bits 63..31 |
| // must be in canonical form, i.e. sign extended. For MIPS32, the operands |
| // of the multiply must have 32 or more sign bits, otherwise we cannot |
| // perform this optimization. We have to check this here as we're performing |
| // this optimization pre-legalization. |
| SDValue MultLHS = Mult->getOperand(0); |
| SDValue MultRHS = Mult->getOperand(1); |
| |
| bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND && |
| MultRHS->getOpcode() == ISD::SIGN_EXTEND; |
| bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND && |
| MultRHS->getOpcode() == ISD::ZERO_EXTEND; |
| |
| if (!IsSigned && !IsUnsigned) |
| return SDValue(); |
| |
| // Initialize accumulator. |
| SDLoc DL(ROOTNode); |
| SDValue TopHalf; |
| SDValue BottomHalf; |
| BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, |
| CurDAG.getIntPtrConstant(0, DL)); |
| |
| TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, |
| CurDAG.getIntPtrConstant(1, DL)); |
| SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, |
| BottomHalf, |
| TopHalf); |
| |
| // Create MipsMAdd(u) / MipsMSub(u) node. |
| bool IsAdd = ROOTNode->getOpcode() == ISD::ADD; |
| unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd) |
| : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub); |
| SDValue MAddOps[3] = { |
| CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)), |
| CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn}; |
| EVT VTs[2] = {MVT::i32, MVT::i32}; |
| SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps); |
| |
| SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd); |
| SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd); |
| SDValue Combined = |
| CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi); |
| return Combined; |
| } |
| |
| static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| // (sub v0 (mul v1, v2)) => (msub v1, v2, v0) |
| if (DCI.isBeforeLegalizeOps()) { |
| if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && |
| !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) |
| return performMADD_MSUBCombine(N, DAG, Subtarget); |
| |
| return SDValue(); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| // (add v0 (mul v1, v2)) => (madd v1, v2, v0) |
| if (DCI.isBeforeLegalizeOps()) { |
| if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && |
| !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) |
| return performMADD_MSUBCombine(N, DAG, Subtarget); |
| |
| return SDValue(); |
| } |
| |
| // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) |
| SDValue Add = N->getOperand(1); |
| |
| if (Add.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| SDValue Lo = Add.getOperand(1); |
| |
| if ((Lo.getOpcode() != MipsISD::Lo) || |
| (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) |
| return SDValue(); |
| |
| EVT ValTy = N->getValueType(0); |
| SDLoc DL(N); |
| |
| SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), |
| Add.getOperand(0)); |
| return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); |
| } |
| |
| static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget &Subtarget) { |
| // Pattern match CINS. |
| // $dst = shl (and $src , imm), pos |
| // => cins $dst, $src, pos, size |
| |
| if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips()) |
| return SDValue(); |
| |
| SDValue FirstOperand = N->getOperand(0); |
| unsigned FirstOperandOpc = FirstOperand.getOpcode(); |
| SDValue SecondOperand = N->getOperand(1); |
| EVT ValTy = N->getValueType(0); |
| SDLoc DL(N); |
| |
| uint64_t Pos = 0, SMPos, SMSize; |
| ConstantSDNode *CN; |
| SDValue NewOperand; |
| |
| // The second operand of the shift must be an immediate. |
| if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand))) |
| return SDValue(); |
| |
| Pos = CN->getZExtValue(); |
| |
| if (Pos >= ValTy.getSizeInBits()) |
| return SDValue(); |
| |
| if (FirstOperandOpc != ISD::AND) |
| return SDValue(); |
| |
| // AND's second operand must be a shifted mask. |
| if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) || |
| !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) |
| return SDValue(); |
| |
| // Return if the shifted mask does not start at bit 0 or the sum of its size |
| // and Pos exceeds the word's size. |
| if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits()) |
| return SDValue(); |
| |
| NewOperand = FirstOperand.getOperand(0); |
| // SMSize is 'location' (position) in this case, not size. |
| SMSize--; |
| |
| return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand, |
| DAG.getConstant(Pos, DL, MVT::i32), |
| DAG.getConstant(SMSize, DL, MVT::i32)); |
| } |
| |
| SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) |
| const { |
| SelectionDAG &DAG = DCI.DAG; |
| unsigned Opc = N->getOpcode(); |
| |
| switch (Opc) { |
| default: break; |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| return performDivRemCombine(N, DAG, DCI, Subtarget); |
| case ISD::SELECT: |
| return performSELECTCombine(N, DAG, DCI, Subtarget); |
| case MipsISD::CMovFP_F: |
| case MipsISD::CMovFP_T: |
| return performCMovFPCombine(N, DAG, DCI, Subtarget); |
| case ISD::AND: |
| return performANDCombine(N, DAG, DCI, Subtarget); |
| case ISD::OR: |
| return performORCombine(N, DAG, DCI, Subtarget); |
| case ISD::ADD: |
| return performADDCombine(N, DAG, DCI, Subtarget); |
| case ISD::SHL: |
| return performSHLCombine(N, DAG, DCI, Subtarget); |
| case ISD::SUB: |
| return performSUBCombine(N, DAG, DCI, Subtarget); |
| } |
| |
| return SDValue(); |
| } |
| |
| bool MipsTargetLowering::isCheapToSpeculateCttz() const { |
| return Subtarget.hasMips32(); |
| } |
| |
| bool MipsTargetLowering::isCheapToSpeculateCtlz() const { |
| return Subtarget.hasMips32(); |
| } |
| |
| bool MipsTargetLowering::shouldFoldConstantShiftPairToMask( |
| const SDNode *N, CombineLevel Level) const { |
| if (N->getOperand(0).getValueType().isVector()) |
| return false; |
| return true; |
| } |
| |
| void |
| MipsTargetLowering::LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| |
| if (Res) |
| for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) |
| Results.push_back(Res.getValue(I)); |
| } |
| |
| void |
| MipsTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| return LowerOperationWrapper(N, Results, DAG); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerOperation(SDValue Op, SelectionDAG &DAG) const |
| { |
| switch (Op.getOpcode()) |
| { |
| case ISD::BRCOND: return lowerBRCOND(Op, DAG); |
| case ISD::ConstantPool: return lowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); |
| case ISD::JumpTable: return lowerJumpTable(Op, DAG); |
| case ISD::SELECT: return lowerSELECT(Op, DAG); |
| case ISD::SETCC: return lowerSETCC(Op, DAG); |
| case ISD::VASTART: return lowerVASTART(Op, DAG); |
| case ISD::VAARG: return lowerVAARG(Op, DAG); |
| case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); |
| case ISD::FABS: return lowerFABS(Op, DAG); |
| case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); |
| case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); |
| case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); |
| case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); |
| case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); |
| case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); |
| case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); |
| case ISD::LOAD: return lowerLOAD(Op, DAG); |
| case ISD::STORE: return lowerSTORE(Op, DAG); |
| case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG); |
| case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lower helper functions |
| //===----------------------------------------------------------------------===// |
| |
| // addLiveIn - This helper function adds the specified physical register to the |
| // MachineFunction as a live in value. It also creates a corresponding |
| // virtual register for it. |
| static unsigned |
| addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) |
| { |
| Register VReg = MF.getRegInfo().createVirtualRegister(RC); |
| MF.getRegInfo().addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| const TargetInstrInfo &TII, |
| bool Is64Bit, bool IsMicroMips) { |
| if (NoZeroDivCheck) |
| return &MBB; |
| |
| // Insert instruction "teq $divisor_reg, $zero, 7". |
| MachineBasicBlock::iterator I(MI); |
| MachineInstrBuilder MIB; |
| MachineOperand &Divisor = MI.getOperand(2); |
| MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(), |
| TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ)) |
| .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) |
| .addReg(Mips::ZERO) |
| .addImm(7); |
| |
| // Use the 32-bit sub-register if this is a 64-bit division. |
| if (Is64Bit) |
| MIB->getOperand(0).setSubReg(Mips::sub_32); |
| |
| // Clear Divisor's kill flag. |
| Divisor.setIsKill(false); |
| |
| // We would normally delete the original instruction here but in this case |
| // we only needed to inject an additional instruction rather than replace it. |
| |
| return &MBB; |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected instr type to insert"); |
| case Mips::ATOMIC_LOAD_ADD_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_ADD_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_ADD_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_ADD_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_AND_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_AND_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_AND_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_AND_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_OR_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_OR_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_OR_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_OR_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_XOR_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_XOR_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_XOR_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_XOR_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_NAND_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_NAND_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_NAND_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_NAND_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_SUB_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_SUB_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_SUB_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_SUB_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_SWAP_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_SWAP_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_SWAP_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_SWAP_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_CMP_SWAP_I8: |
| return emitAtomicCmpSwapPartword(MI, BB, 1); |
| case Mips::ATOMIC_CMP_SWAP_I16: |
| return emitAtomicCmpSwapPartword(MI, BB, 2); |
| case Mips::ATOMIC_CMP_SWAP_I32: |
| return emitAtomicCmpSwap(MI, BB); |
| case Mips::ATOMIC_CMP_SWAP_I64: |
| return emitAtomicCmpSwap(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_MIN_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_MIN_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_MIN_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_MIN_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_MAX_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_MAX_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_MAX_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_MAX_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_UMIN_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_UMIN_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_UMIN_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_UMIN_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::ATOMIC_LOAD_UMAX_I8: |
| return emitAtomicBinaryPartword(MI, BB, 1); |
| case Mips::ATOMIC_LOAD_UMAX_I16: |
| return emitAtomicBinaryPartword(MI, BB, 2); |
| case Mips::ATOMIC_LOAD_UMAX_I32: |
| return emitAtomicBinary(MI, BB); |
| case Mips::ATOMIC_LOAD_UMAX_I64: |
| return emitAtomicBinary(MI, BB); |
| |
| case Mips::PseudoSDIV: |
| case Mips::PseudoUDIV: |
| case Mips::DIV: |
| case Mips::DIVU: |
| case Mips::MOD: |
| case Mips::MODU: |
| return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, |
| false); |
| case Mips::SDIV_MM_Pseudo: |
| case Mips::UDIV_MM_Pseudo: |
| case Mips::SDIV_MM: |
| case Mips::UDIV_MM: |
| case Mips::DIV_MMR6: |
| case Mips::DIVU_MMR6: |
| case Mips::MOD_MMR6: |
| case Mips::MODU_MMR6: |
| return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true); |
| case Mips::PseudoDSDIV: |
| case Mips::PseudoDUDIV: |
| case Mips::DDIV: |
| case Mips::DDIVU: |
| case Mips::DMOD: |
| case Mips::DMODU: |
| return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false); |
| |
| case Mips::PseudoSELECT_I: |
| case Mips::PseudoSELECT_I64: |
| case Mips::PseudoSELECT_S: |
| case Mips::PseudoSELECT_D32: |
| case Mips::PseudoSELECT_D64: |
| return emitPseudoSELECT(MI, BB, false, Mips::BNE); |
| case Mips::PseudoSELECTFP_F_I: |
| case Mips::PseudoSELECTFP_F_I64: |
| case Mips::PseudoSELECTFP_F_S: |
| case Mips::PseudoSELECTFP_F_D32: |
| case Mips::PseudoSELECTFP_F_D64: |
| return emitPseudoSELECT(MI, BB, true, Mips::BC1F); |
| case Mips::PseudoSELECTFP_T_I: |
| case Mips::PseudoSELECTFP_T_I64: |
| case Mips::PseudoSELECTFP_T_S: |
| case Mips::PseudoSELECTFP_T_D32: |
| case Mips::PseudoSELECTFP_T_D64: |
| return emitPseudoSELECT(MI, BB, true, Mips::BC1T); |
| case Mips::PseudoD_SELECT_I: |
| case Mips::PseudoD_SELECT_I64: |
| return emitPseudoD_SELECT(MI, BB); |
| } |
| } |
| |
| // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and |
| // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) |
| MachineBasicBlock * |
| MipsTargetLowering::emitAtomicBinary(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| unsigned AtomicOp; |
| bool NeedsAdditionalReg = false; |
| switch (MI.getOpcode()) { |
| case Mips::ATOMIC_LOAD_ADD_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_SUB_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_AND_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_OR_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_XOR_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_NAND_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_SWAP_I32: |
| AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_ADD_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_SUB_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_AND_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_OR_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_XOR_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_NAND_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_SWAP_I64: |
| AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_MIN_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_MAX_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMIN_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMAX_I32: |
| AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_MIN_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_MAX_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMIN_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMAX_I64: |
| AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| default: |
| llvm_unreachable("Unknown pseudo atomic for replacement!"); |
| } |
| |
| Register OldVal = MI.getOperand(0).getReg(); |
| Register Ptr = MI.getOperand(1).getReg(); |
| Register Incr = MI.getOperand(2).getReg(); |
| Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); |
| |
| MachineBasicBlock::iterator II(MI); |
| |
| // The scratch registers here with the EarlyClobber | Define | Implicit |
| // flags is used to persuade the register allocator and the machine |
| // verifier to accept the usage of this register. This has to be a real |
| // register which has an UNDEF value but is dead after the instruction which |
| // is unique among the registers chosen for the instruction. |
| |
| // The EarlyClobber flag has the semantic properties that the operand it is |
| // attached to is clobbered before the rest of the inputs are read. Hence it |
| // must be unique among the operands to the instruction. |
| // The Define flag is needed to coerce the machine verifier that an Undef |
| // value isn't a problem. |
| // The Dead flag is needed as the value in scratch isn't used by any other |
| // instruction. Kill isn't used as Dead is more precise. |
| // The implicit flag is here due to the interaction between the other flags |
| // and the machine verifier. |
| |
| // For correctness purpose, a new pseudo is introduced here. We need this |
| // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence |
| // that is spread over >1 basic blocks. A register allocator which |
| // introduces (or any codegen infact) a store, can violate the expectations |
| // of the hardware. |
| // |
| // An atomic read-modify-write sequence starts with a linked load |
| // instruction and ends with a store conditional instruction. The atomic |
| // read-modify-write sequence fails if any of the following conditions |
| // occur between the execution of ll and sc: |
| // * A coherent store is completed by another process or coherent I/O |
| // module into the block of synchronizable physical memory containing |
| // the word. The size and alignment of the block is |
| // implementation-dependent. |
| // * A coherent store is executed between an LL and SC sequence on the |
| // same processor to the block of synchornizable physical memory |
| // containing the word. |
| // |
| |
| Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr)); |
| Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr)); |
| |
| BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr); |
| BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); |
| |
| MachineInstrBuilder MIB = |
| BuildMI(*BB, II, DL, TII->get(AtomicOp)) |
| .addReg(OldVal, RegState::Define | RegState::EarlyClobber) |
| .addReg(PtrCopy) |
| .addReg(IncrCopy) |
| .addReg(Scratch, RegState::Define | RegState::EarlyClobber | |
| RegState::Implicit | RegState::Dead); |
| if (NeedsAdditionalReg) { |
| Register Scratch2 = |
| RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); |
| MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber | |
| RegState::Implicit | RegState::Dead); |
| } |
| |
| MI.eraseFromParent(); |
| |
| return BB; |
| } |
| |
| MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( |
| MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, |
| unsigned SrcReg) const { |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| if (Subtarget.hasMips32r2() && Size == 1) { |
| BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); |
| return BB; |
| } |
| |
| if (Subtarget.hasMips32r2() && Size == 2) { |
| BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); |
| return BB; |
| } |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| Register ScrReg = RegInfo.createVirtualRegister(RC); |
| |
| assert(Size < 32); |
| int64_t ShiftImm = 32 - (Size * 8); |
| |
| BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); |
| BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); |
| |
| return BB; |
| } |
| |
| MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( |
| MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { |
| assert((Size == 1 || Size == 2) && |
| "Unsupported size for EmitAtomicBinaryPartial."); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| const bool ArePtrs64bit = ABI.ArePtrs64bit(); |
| const TargetRegisterClass *RCp = |
| getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| Register Dest = MI.getOperand(0).getReg(); |
| Register Ptr = MI.getOperand(1).getReg(); |
| Register Incr = MI.getOperand(2).getReg(); |
| |
| Register AlignedAddr = RegInfo.createVirtualRegister(RCp); |
| Register ShiftAmt = RegInfo.createVirtualRegister(RC); |
| Register Mask = RegInfo.createVirtualRegister(RC); |
| Register Mask2 = RegInfo.createVirtualRegister(RC); |
| Register Incr2 = RegInfo.createVirtualRegister(RC); |
| Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); |
| Register PtrLSB2 = RegInfo.createVirtualRegister(RC); |
| Register MaskUpper = RegInfo.createVirtualRegister(RC); |
| Register Scratch = RegInfo.createVirtualRegister(RC); |
| Register Scratch2 = RegInfo.createVirtualRegister(RC); |
| Register Scratch3 = RegInfo.createVirtualRegister(RC); |
| |
| unsigned AtomicOp = 0; |
| bool NeedsAdditionalReg = false; |
| switch (MI.getOpcode()) { |
| case Mips::ATOMIC_LOAD_NAND_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_NAND_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_SWAP_I8: |
| AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_SWAP_I16: |
| AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_ADD_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_ADD_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_SUB_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_SUB_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_AND_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_AND_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_OR_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_OR_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_XOR_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_XOR_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA; |
| break; |
| case Mips::ATOMIC_LOAD_MIN_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_MIN_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_MAX_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_MAX_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMIN_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMIN_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMAX_I8: |
| AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| case Mips::ATOMIC_LOAD_UMAX_I16: |
| AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA; |
| NeedsAdditionalReg = true; |
| break; |
| default: |
| llvm_unreachable("Unknown subword atomic pseudo for expansion!"); |
| } |
| |
| // insert new blocks after the current block |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(exitMBB, BranchProbability::getOne()); |
| |
| // thisMBB: |
| // addiu masklsb2,$0,-4 # 0xfffffffc |
| // and alignedaddr,ptr,masklsb2 |
| // andi ptrlsb2,ptr,3 |
| // sll shiftamt,ptrlsb2,3 |
| // ori maskupper,$0,255 # 0xff |
| // sll mask,maskupper,shiftamt |
| // nor mask2,$0,mask |
| // sll incr2,incr,shiftamt |
| |
| int64_t MaskImm = (Size == 1) ? 255 : 65535; |
| BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2) |
| .addReg(ABI.GetNullPtr()).addImm(-4); |
| BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr) |
| .addReg(Ptr).addReg(MaskLSB2); |
| BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) |
| .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); |
| if (Subtarget.isLittle()) { |
| BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); |
| } else { |
| Register Off = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, DL, TII->get(Mips::XORi), Off) |
| .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); |
| BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); |
| } |
| BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) |
| .addReg(Mips::ZERO).addImm(MaskImm); |
| BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) |
| .addReg(MaskUpper).addReg(ShiftAmt); |
| BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); |
| BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); |
| |
| |
| // The purposes of the flags on the scratch registers is explained in |
| // emitAtomicBinary. In summary, we need a scratch register which is going to |
| // be undef, that is unique among registers chosen for the instruction. |
| |
| MachineInstrBuilder MIB = |
| BuildMI(BB, DL, TII->get(AtomicOp)) |
| .addReg(Dest, RegState::Define | RegState::EarlyClobber) |
| .addReg(AlignedAddr) |
| .addReg(Incr2) |
| .addReg(Mask) |
| .addReg(Mask2) |
| .addReg(ShiftAmt) |
| .addReg(Scratch, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit) |
| .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit) |
| .addReg(Scratch3, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit); |
| if (NeedsAdditionalReg) { |
| Register Scratch4 = RegInfo.createVirtualRegister(RC); |
| MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit); |
| } |
| |
| MI.eraseFromParent(); // The instruction is gone now. |
| |
| return exitMBB; |
| } |
| |
| // Lower atomic compare and swap to a pseudo instruction, taking care to |
| // define a scratch register for the pseudo instruction's expansion. The |
| // instruction is expanded after the register allocator as to prevent |
| // the insertion of stores between the linked load and the store conditional. |
| |
| MachineBasicBlock * |
| MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| |
| assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 || |
| MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) && |
| "Unsupported atomic pseudo for EmitAtomicCmpSwap."); |
| |
| const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8; |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 |
| ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA |
| : Mips::ATOMIC_CMP_SWAP_I64_POSTRA; |
| Register Dest = MI.getOperand(0).getReg(); |
| Register Ptr = MI.getOperand(1).getReg(); |
| Register OldVal = MI.getOperand(2).getReg(); |
| Register NewVal = MI.getOperand(3).getReg(); |
| |
| Register Scratch = MRI.createVirtualRegister(RC); |
| MachineBasicBlock::iterator II(MI); |
| |
| // We need to create copies of the various registers and kill them at the |
| // atomic pseudo. If the copies are not made, when the atomic is expanded |
| // after fast register allocation, the spills will end up outside of the |
| // blocks that their values are defined in, causing livein errors. |
| |
| Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr)); |
| Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal)); |
| Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal)); |
| |
| BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); |
| BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal); |
| BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal); |
| |
| // The purposes of the flags on the scratch registers is explained in |
| // emitAtomicBinary. In summary, we need a scratch register which is going to |
| // be undef, that is unique among registers chosen for the instruction. |
| |
| BuildMI(*BB, II, DL, TII->get(AtomicOp)) |
| .addReg(Dest, RegState::Define | RegState::EarlyClobber) |
| .addReg(PtrCopy, RegState::Kill) |
| .addReg(OldValCopy, RegState::Kill) |
| .addReg(NewValCopy, RegState::Kill) |
| .addReg(Scratch, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit); |
| |
| MI.eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword( |
| MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { |
| assert((Size == 1 || Size == 2) && |
| "Unsupported size for EmitAtomicCmpSwapPartial."); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| const bool ArePtrs64bit = ABI.ArePtrs64bit(); |
| const TargetRegisterClass *RCp = |
| getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| Register Dest = MI.getOperand(0).getReg(); |
| Register Ptr = MI.getOperand(1).getReg(); |
| Register CmpVal = MI.getOperand(2).getReg(); |
| Register NewVal = MI.getOperand(3).getReg(); |
| |
| Register AlignedAddr = RegInfo.createVirtualRegister(RCp); |
| Register ShiftAmt = RegInfo.createVirtualRegister(RC); |
| Register Mask = RegInfo.createVirtualRegister(RC); |
| Register Mask2 = RegInfo.createVirtualRegister(RC); |
| Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC); |
| Register ShiftedNewVal = RegInfo.createVirtualRegister(RC); |
| Register MaskLSB2 = RegInfo.createVirtualRegister(RCp); |
| Register PtrLSB2 = RegInfo.createVirtualRegister(RC); |
| Register MaskUpper = RegInfo.createVirtualRegister(RC); |
| Register MaskedCmpVal = RegInfo.createVirtualRegister(RC); |
| Register MaskedNewVal = RegInfo.createVirtualRegister(RC); |
| unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8 |
| ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA |
| : Mips::ATOMIC_CMP_SWAP_I16_POSTRA; |
| |
| // The scratch registers here with the EarlyClobber | Define | Dead | Implicit |
| // flags are used to coerce the register allocator and the machine verifier to |
| // accept the usage of these registers. |
| // The EarlyClobber flag has the semantic properties that the operand it is |
| // attached to is clobbered before the rest of the inputs are read. Hence it |
| // must be unique among the operands to the instruction. |
| // The Define flag is needed to coerce the machine verifier that an Undef |
| // value isn't a problem. |
| // The Dead flag is needed as the value in scratch isn't used by any other |
| // instruction. Kill isn't used as Dead is more precise. |
| Register Scratch = RegInfo.createVirtualRegister(RC); |
| Register Scratch2 = RegInfo.createVirtualRegister(RC); |
| |
| // insert new blocks after the current block |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(exitMBB, BranchProbability::getOne()); |
| |
| // thisMBB: |
| // addiu masklsb2,$0,-4 # 0xfffffffc |
| // and alignedaddr,ptr,masklsb2 |
| // andi ptrlsb2,ptr,3 |
| // xori ptrlsb2,ptrlsb2,3 # Only for BE |
| // sll shiftamt,ptrlsb2,3 |
| // ori maskupper,$0,255 # 0xff |
| // sll mask,maskupper,shiftamt |
| // nor mask2,$0,mask |
| // andi maskedcmpval,cmpval,255 |
| // sll shiftedcmpval,maskedcmpval,shiftamt |
| // andi maskednewval,newval,255 |
| // sll shiftednewval,maskednewval,shiftamt |
| int64_t MaskImm = (Size == 1) ? 255 : 65535; |
| BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2) |
| .addReg(ABI.GetNullPtr()).addImm(-4); |
| BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr) |
| .addReg(Ptr).addReg(MaskLSB2); |
| BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) |
| .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); |
| if (Subtarget.isLittle()) { |
| BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); |
| } else { |
| Register Off = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, DL, TII->get(Mips::XORi), Off) |
| .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); |
| BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); |
| } |
| BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) |
| .addReg(Mips::ZERO).addImm(MaskImm); |
| BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) |
| .addReg(MaskUpper).addReg(ShiftAmt); |
| BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); |
| BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) |
| .addReg(CmpVal).addImm(MaskImm); |
| BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) |
| .addReg(MaskedCmpVal).addReg(ShiftAmt); |
| BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) |
| .addReg(NewVal).addImm(MaskImm); |
| BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) |
| .addReg(MaskedNewVal).addReg(ShiftAmt); |
| |
| // The purposes of the flags on the scratch registers are explained in |
| // emitAtomicBinary. In summary, we need a scratch register which is going to |
| // be undef, that is unique among the register chosen for the instruction. |
| |
| BuildMI(BB, DL, TII->get(AtomicOp)) |
| .addReg(Dest, RegState::Define | RegState::EarlyClobber) |
| .addReg(AlignedAddr) |
| .addReg(Mask) |
| .addReg(ShiftedCmpVal) |
| .addReg(Mask2) |
| .addReg(ShiftedNewVal) |
| .addReg(ShiftAmt) |
| .addReg(Scratch, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit) |
| .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | |
| RegState::Dead | RegState::Implicit); |
| |
| MI.eraseFromParent(); // The instruction is gone now. |
| |
| return exitMBB; |
| } |
| |
| SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| // The first operand is the chain, the second is the condition, the third is |
| // the block to branch to if the condition is true. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Dest = Op.getOperand(2); |
| SDLoc DL(Op); |
| |
| assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); |
| SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); |
| |
| // Return if flag is not set by a floating point comparison. |
| if (CondRes.getOpcode() != MipsISD::FPCmp) |
| return Op; |
| |
| SDValue CCNode = CondRes.getOperand(2); |
| Mips::CondCode CC = |
| (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); |
| unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; |
| SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); |
| SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); |
| return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, |
| FCC0, Dest, CondRes); |
| } |
| |
| SDValue MipsTargetLowering:: |
| lowerSELECT(SDValue Op, SelectionDAG &DAG) const |
| { |
| assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); |
| SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); |
| |
| // Return if flag is not set by a floating point comparison. |
| if (Cond.getOpcode() != MipsISD::FPCmp) |
| return Op; |
| |
| return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), |
| SDLoc(Op)); |
| } |
| |
| SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); |
| SDValue Cond = createFPCmp(DAG, Op); |
| |
| assert(Cond.getOpcode() == MipsISD::FPCmp && |
| "Floating point operand expected."); |
| |
| SDLoc DL(Op); |
| SDValue True = DAG.getConstant(1, DL, MVT::i32); |
| SDValue False = DAG.getConstant(0, DL, MVT::i32); |
| |
| return createCMovFP(DAG, Cond, True, False, DL); |
| } |
| |
| SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT Ty = Op.getValueType(); |
| GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = N->getGlobal(); |
| |
| if (!isPositionIndependent()) { |
| const MipsTargetObjectFile *TLOF = |
| static_cast<const MipsTargetObjectFile *>( |
| getTargetMachine().getObjFileLowering()); |
| const GlobalObject *GO = GV->getBaseObject(); |
| if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine())) |
| // %gp_rel relocation |
| return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); |
| |
| // %hi/%lo relocation |
| return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) |
| // %highest/%higher/%hi/%lo relocation |
| : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); |
| } |
| |
| // Every other architecture would use shouldAssumeDSOLocal in here, but |
| // mips is special. |
| // * In PIC code mips requires got loads even for local statics! |
| // * To save on got entries, for local statics the got entry contains the |
| // page and an additional add instruction takes care of the low bits. |
| // * It is legal to access a hidden symbol with a non hidden undefined, |
| // so one cannot guarantee that all access to a hidden symbol will know |
| // it is hidden. |
| // * Mips linkers don't support creating a page and a full got entry for |
| // the same symbol. |
| // * Given all that, we have to use a full got entry for hidden symbols :-( |
| if (GV->hasLocalLinkage()) |
| return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); |
| |
| if (Subtarget.useXGOT()) |
| return getAddrGlobalLargeGOT( |
| N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, |
| DAG.getEntryNode(), |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| |
| return getAddrGlobal( |
| N, SDLoc(N), Ty, DAG, |
| (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT, |
| DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } |
| |
| SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); |
| EVT Ty = Op.getValueType(); |
| |
| if (!isPositionIndependent()) |
| return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) |
| : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); |
| |
| return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); |
| } |
| |
| SDValue MipsTargetLowering:: |
| lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const |
| { |
| // If the relocation model is PIC, use the General Dynamic TLS Model or |
| // Local Dynamic TLS model, otherwise use the Initial Exec or |
| // Local Exec TLS Model. |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(GA, DAG); |
| |
| SDLoc DL(GA); |
| const GlobalValue *GV = GA->getGlobal(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| TLSModel::Model model = getTargetMachine().getTLSModel(GV); |
| |
| if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { |
| // General Dynamic and Local Dynamic TLS Model. |
| unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM |
| : MipsII::MO_TLSGD; |
| |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); |
| SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, |
| getGlobalReg(DAG, PtrVT), TGA); |
| unsigned PtrSize = PtrVT.getSizeInBits(); |
| IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); |
| |
| SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); |
| |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = PtrTy; |
| Args.push_back(Entry); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(DL) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args)); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| |
| SDValue Ret = CallResult.first; |
| |
| if (model != TLSModel::LocalDynamic) |
| return Ret; |
| |
| SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| MipsII::MO_DTPREL_HI); |
| SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); |
| SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| MipsII::MO_DTPREL_LO); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); |
| return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); |
| } |
| |
| SDValue Offset; |
| if (model == TLSModel::InitialExec) { |
| // Initial Exec TLS Model |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| MipsII::MO_GOTTPREL); |
| TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), |
| TGA); |
| Offset = |
| DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo()); |
| } else { |
| // Local Exec TLS Model |
| assert(model == TLSModel::LocalExec); |
| SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| MipsII::MO_TPREL_HI); |
| SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| MipsII::MO_TPREL_LO); |
| SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); |
| Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); |
| } |
| |
| SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); |
| return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue MipsTargetLowering:: |
| lowerJumpTable(SDValue Op, SelectionDAG &DAG) const |
| { |
| JumpTableSDNode *N = cast<JumpTableSDNode>(Op); |
| EVT Ty = Op.getValueType(); |
| |
| if (!isPositionIndependent()) |
| return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) |
| : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); |
| |
| return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); |
| } |
| |
| SDValue MipsTargetLowering:: |
| lowerConstantPool(SDValue Op, SelectionDAG &DAG) const |
| { |
| ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); |
| EVT Ty = Op.getValueType(); |
| |
| if (!isPositionIndependent()) { |
| const MipsTargetObjectFile *TLOF = |
| static_cast<const MipsTargetObjectFile *>( |
| getTargetMachine().getObjFileLowering()); |
| |
| if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), |
| getTargetMachine())) |
| // %gp_rel relocation |
| return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); |
| |
| return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) |
| : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); |
| } |
| |
| return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); |
| } |
| |
| SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); |
| |
| SDLoc DL(Op); |
| SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy(MF.getDataLayout())); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| EVT VT = Node->getValueType(0); |
| SDValue Chain = Node->getOperand(0); |
| SDValue VAListPtr = Node->getOperand(1); |
| const Align Align = |
| llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne(); |
| const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| SDLoc DL(Node); |
| unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; |
| |
| SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, |
| VAListPtr, MachinePointerInfo(SV)); |
| SDValue VAList = VAListLoad; |
| |
| // Re-align the pointer if necessary. |
| // It should only ever be necessary for 64-bit types on O32 since the minimum |
| // argument alignment is the same as the maximum type alignment for N32/N64. |
| // |
| // FIXME: We currently align too often. The code generator doesn't notice |
| // when the pointer is still aligned from the last va_arg (or pair of |
| // va_args for the i64 on O32 case). |
| if (Align > getMinStackArgumentAlignment()) { |
| VAList = DAG.getNode( |
| ISD::ADD, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(Align.value() - 1, DL, VAList.getValueType())); |
| |
| VAList = DAG.getNode( |
| ISD::AND, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType())); |
| } |
| |
| // Increment the pointer, VAList, to the next vaarg. |
| auto &TD = DAG.getDataLayout(); |
| unsigned ArgSizeInBytes = |
| TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); |
| SDValue Tmp3 = |
| DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes), |
| DL, VAList.getValueType())); |
| // Store the incremented VAList to the legalized pointer |
| Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, |
| MachinePointerInfo(SV)); |
| |
| // In big-endian mode we must adjust the pointer when the load size is smaller |
| // than the argument slot size. We must also reduce the known alignment to |
| // match. For example in the N64 ABI, we must add 4 bytes to the offset to get |
| // the correct half of the slot, and reduce the alignment from 8 (slot |
| // alignment) down to 4 (type alignment). |
| if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { |
| unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; |
| VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, |
| DAG.getIntPtrConstant(Adjustment, DL)); |
| } |
| // Load the actual argument out of the pointer VAList |
| return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo()); |
| } |
| |
| static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, |
| bool HasExtractInsert) { |
| EVT TyX = Op.getOperand(0).getValueType(); |
| EVT TyY = Op.getOperand(1).getValueType(); |
| SDLoc DL(Op); |
| SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); |
| SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); |
| SDValue Res; |
| |
| // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it |
| // to i32. |
| SDValue X = (TyX == MVT::f32) ? |
| DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : |
| DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), |
| Const1); |
| SDValue Y = (TyY == MVT::f32) ? |
| DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : |
| DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), |
| Const1); |
| |
| if (HasExtractInsert) { |
| // ext E, Y, 31, 1 ; extract bit31 of Y |
| // ins X, E, 31, 1 ; insert extracted bit at bit31 of X |
| SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); |
| Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); |
| } else { |
| // sll SllX, X, 1 |
| // srl SrlX, SllX, 1 |
| // srl SrlY, Y, 31 |
| // sll SllY, SrlX, 31 |
| // or Or, SrlX, SllY |
| SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); |
| SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); |
| SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); |
| SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); |
| Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); |
| } |
| |
| if (TyX == MVT::f32) |
| return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); |
| |
| SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, |
| Op.getOperand(0), |
| DAG.getConstant(0, DL, MVT::i32)); |
| return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); |
| } |
| |
| static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, |
| bool HasExtractInsert) { |
| unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); |
| unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); |
| EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); |
| SDLoc DL(Op); |
| SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); |
| |
| // Bitcast to integer nodes. |
| SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); |
| SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); |
| |
| if (HasExtractInsert) { |
| // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y |
| // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X |
| SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, |
| DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); |
| |
| if (WidthX > WidthY) |
| E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); |
| else if (WidthY > WidthX) |
| E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); |
| |
| SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, |
| DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, |
| X); |
| return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); |
| } |
| |
| // (d)sll SllX, X, 1 |
| // (d)srl SrlX, SllX, 1 |
| // (d)srl SrlY, Y, width(Y)-1 |
| // (d)sll SllY, SrlX, width(Y)-1 |
| // or Or, SrlX, SllY |
| SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); |
| SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); |
| SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, |
| DAG.getConstant(WidthY - 1, DL, MVT::i32)); |
| |
| if (WidthX > WidthY) |
| SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); |
| else if (WidthY > WidthX) |
| SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); |
| |
| SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, |
| DAG.getConstant(WidthX - 1, DL, MVT::i32)); |
| SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); |
| return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); |
| } |
| |
| SDValue |
| MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { |
| if (Subtarget.isGP64bit()) |
| return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); |
| |
| return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); |
| } |
| |
| static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, |
| bool HasExtractInsert) { |
| SDLoc DL(Op); |
| SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); |
| |
| // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it |
| // to i32. |
| SDValue X = (Op.getValueType() == MVT::f32) |
| ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) |
| : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, |
| Op.getOperand(0), Const1); |
| |
| // Clear MSB. |
| if (HasExtractInsert) |
| Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, |
| DAG.getRegister(Mips::ZERO, MVT::i32), |
| DAG.getConstant(31, DL, MVT::i32), Const1, X); |
| else { |
| // TODO: Provide DAG patterns which transform (and x, cst) |
| // back to a (shl (srl x (clz cst)) (clz cst)) sequence. |
| SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); |
| Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); |
| } |
| |
| if (Op.getValueType() == MVT::f32) |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res); |
| |
| // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64 |
| // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we |
| // should be able to drop the usage of mfc1/mtc1 and rewrite the register in |
| // place. |
| SDValue LowX = |
| DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(0, DL, MVT::i32)); |
| return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); |
| } |
| |
| static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, |
| bool HasExtractInsert) { |
| SDLoc DL(Op); |
| SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32); |
| |
| // Bitcast to integer node. |
| SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0)); |
| |
| // Clear MSB. |
| if (HasExtractInsert) |
| Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64, |
| DAG.getRegister(Mips::ZERO_64, MVT::i64), |
| DAG.getConstant(63, DL, MVT::i32), Const1, X); |
| else { |
| SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1); |
| Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1); |
| } |
| |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res); |
| } |
| |
| SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const { |
| if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64)) |
| return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert()); |
| |
| return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert()); |
| } |
| |
| SDValue MipsTargetLowering:: |
| lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| // check the depth |
| if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { |
| DAG.getContext()->emitError( |
| "return address can be determined only for current frame"); |
| return SDValue(); |
| } |
| |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue FrameAddr = DAG.getCopyFromReg( |
| DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); |
| return FrameAddr; |
| } |
| |
| SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| // check the depth |
| if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) { |
| DAG.getContext()->emitError( |
| "return address can be determined only for current frame"); |
| return SDValue(); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MVT VT = Op.getSimpleValueType(); |
| unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; |
| MFI.setReturnAddressIsTaken(true); |
| |
| // Return RA, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); |
| } |
| |
| // An EH_RETURN is the result of lowering llvm.eh.return which in turn is |
| // generated from __builtin_eh_return (offset, handler) |
| // The effect of this is to adjust the stack pointer by "offset" |
| // and then branch to "handler". |
| SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) |
| const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| MipsFI->setCallsEhReturn(); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Offset = Op.getOperand(1); |
| SDValue Handler = Op.getOperand(2); |
| SDLoc DL(Op); |
| EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; |
| |
| // Store stack offset in V1, store jump target in V0. Glue CopyToReg and |
| // EH_RETURN nodes, so that instructions are emitted back-to-back. |
| unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; |
| unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; |
| Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); |
| Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); |
| return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, |
| DAG.getRegister(OffsetReg, Ty), |
| DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), |
| Chain.getValue(1)); |
| } |
| |
| SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| // FIXME: Need pseudo-fence for 'singlethread' fences |
| // FIXME: Set SType for weaker fences where supported/appropriate. |
| unsigned SType = 0; |
| SDLoc DL(Op); |
| return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(SType, DL, MVT::i32)); |
| } |
| |
| SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; |
| |
| SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); |
| SDValue Shamt = Op.getOperand(2); |
| // if shamt < (VT.bits): |
| // lo = (shl lo, shamt) |
| // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) |
| // else: |
| // lo = 0 |
| // hi = (shl lo, shamt[4:0]) |
| SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, |
| DAG.getConstant(-1, DL, MVT::i32)); |
| SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, |
| DAG.getConstant(1, DL, VT)); |
| SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); |
| SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); |
| SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); |
| SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); |
| SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, |
| DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); |
| Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| DAG.getConstant(0, DL, VT), ShiftLeftLo); |
| Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); |
| |
| SDValue Ops[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, |
| bool IsSRA) const { |
| SDLoc DL(Op); |
| SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); |
| SDValue Shamt = Op.getOperand(2); |
| MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; |
| |
| // if shamt < (VT.bits): |
| // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) |
| // if isSRA: |
| // hi = (sra hi, shamt) |
| // else: |
| // hi = (srl hi, shamt) |
| // else: |
| // if isSRA: |
| // lo = (sra hi, shamt[4:0]) |
| // hi = (sra hi, 31) |
| // else: |
| // lo = (srl hi, shamt[4:0]) |
| // hi = 0 |
| SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, |
| DAG.getConstant(-1, DL, MVT::i32)); |
| SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, |
| DAG.getConstant(1, DL, VT)); |
| SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); |
| SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); |
| SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); |
| SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, |
| DL, VT, Hi, Shamt); |
| SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, |
| DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); |
| SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, |
| DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); |
| |
| if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) { |
| SDVTList VTList = DAG.getVTList(VT, VT); |
| return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64 |
| : Mips::PseudoD_SELECT_I, |
| DL, VTList, Cond, ShiftRightHi, |
| IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or, |
| ShiftRightHi); |
| } |
| |
| Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); |
| Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); |
| |
| SDValue Ops[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, |
| SDValue Chain, SDValue Src, unsigned Offset) { |
| SDValue Ptr = LD->getBasePtr(); |
| EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); |
| EVT BasePtrVT = Ptr.getValueType(); |
| SDLoc DL(LD); |
| SDVTList VTList = DAG.getVTList(VT, MVT::Other); |
| |
| if (Offset) |
| Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, |
| DAG.getConstant(Offset, DL, BasePtrVT)); |
| |
| SDValue Ops[] = { Chain, Ptr, Src }; |
| return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, |
| LD->getMemOperand()); |
| } |
| |
| // Expand an unaligned 32 or 64-bit integer load node. |
| SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| EVT MemVT = LD->getMemoryVT(); |
| |
| if (Subtarget.systemSupportsUnalignedAccess()) |
| return Op; |
| |
| // Return if load is aligned or if MemVT is neither i32 nor i64. |
| if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || |
| ((MemVT != MVT::i32) && (MemVT != MVT::i64))) |
| return SDValue(); |
| |
| bool IsLittle = Subtarget.isLittle(); |
| EVT VT = Op.getValueType(); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); |
| |
| assert((VT == MVT::i32) || (VT == MVT::i64)); |
| |
| // Expand |
| // (set dst, (i64 (load baseptr))) |
| // to |
| // (set tmp, (ldl (add baseptr, 7), undef)) |
| // (set dst, (ldr baseptr, tmp)) |
| if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { |
| SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, |
| IsLittle ? 7 : 0); |
| return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, |
| IsLittle ? 0 : 7); |
| } |
| |
| SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, |
| IsLittle ? 3 : 0); |
| SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, |
| IsLittle ? 0 : 3); |
| |
| // Expand |
| // (set dst, (i32 (load baseptr))) or |
| // (set dst, (i64 (sextload baseptr))) or |
| // (set dst, (i64 (extload baseptr))) |
| // to |
| // (set tmp, (lwl (add baseptr, 3), undef)) |
| // (set dst, (lwr baseptr, tmp)) |
| if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || |
| (ExtType == ISD::EXTLOAD)) |
| return LWR; |
| |
| assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); |
| |
| // Expand |
| // (set dst, (i64 (zextload baseptr))) |
| // to |
| // (set tmp0, (lwl (add baseptr, 3), undef)) |
| // (set tmp1, (lwr baseptr, tmp0)) |
| // (set tmp2, (shl tmp1, 32)) |
| // (set dst, (srl tmp2, 32)) |
| SDLoc DL(LD); |
| SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); |
| SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); |
| SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); |
| SDValue Ops[] = { SRL, LWR.getValue(1) }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, |
| SDValue Chain, unsigned Offset) { |
| SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); |
| EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); |
| SDLoc DL(SD); |
| SDVTList VTList = DAG.getVTList(MVT::Other); |
| |
| if (Offset) |
| Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, |
| DAG.getConstant(Offset, DL, BasePtrVT)); |
| |
| SDValue Ops[] = { Chain, Value, Ptr }; |
| return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, |
| SD->getMemOperand()); |
| } |
| |
| // Expand an unaligned 32 or 64-bit integer store node. |
| static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, |
| bool IsLittle) { |
| SDValue Value = SD->getValue(), Chain = SD->getChain(); |
| EVT VT = Value.getValueType(); |
| |
| // Expand |
| // (store val, baseptr) or |
| // (truncstore val, baseptr) |
| // to |
| // (swl val, (add baseptr, 3)) |
| // (swr val, baseptr) |
| if ((VT == MVT::i32) || SD->isTruncatingStore()) { |
| SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, |
| IsLittle ? 3 : 0); |
| return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); |
| } |
| |
| assert(VT == MVT::i64); |
| |
| // Expand |
| // (store val, baseptr) |
| // to |
| // (sdl val, (add baseptr, 7)) |
| // (sdr val, baseptr) |
| SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); |
| return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); |
| } |
| |
| // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). |
| static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG, |
| bool SingleFloat) { |
| SDValue Val = SD->getValue(); |
| |
| if (Val.getOpcode() != ISD::FP_TO_SINT || |
| (Val.getValueSizeInBits() > 32 && SingleFloat)) |
| return SDValue(); |
| |
| EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); |
| SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, |
| Val.getOperand(0)); |
| return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), |
| SD->getPointerInfo(), SD->getAlignment(), |
| SD->getMemOperand()->getFlags()); |
| } |
| |
| SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| StoreSDNode *SD = cast<StoreSDNode>(Op); |
| EVT MemVT = SD->getMemoryVT(); |
| |
| // Lower unaligned integer stores. |
| if (!Subtarget.systemSupportsUnalignedAccess() && |
| (SD->getAlignment() < MemVT.getSizeInBits() / 8) && |
| ((MemVT == MVT::i32) || (MemVT == MVT::i64))) |
| return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); |
| |
| return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat()); |
| } |
| |
| SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| // Return a fixed StackObject with offset 0 which points to the old stack |
| // pointer. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| EVT ValTy = Op->getValueType(0); |
| int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); |
| return DAG.getFrameIndex(FI, ValTy); |
| } |
| |
| SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat()) |
| return SDValue(); |
| |
| EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); |
| SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, |
| Op.getOperand(0)); |
| return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // TODO: Implement a generic logic using tblgen that can support this. |
| // Mips O32 ABI rules: |
| // --- |
| // i32 - Passed in A0, A1, A2, A3 and stack |
| // f32 - Only passed in f32 registers if no int reg has been used yet to hold |
| // an argument. Otherwise, passed in A1, A2, A3 and stack. |
| // f64 - Only passed in two aliased f32 registers if no int reg has been used |
| // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is |
| // not used, it must be shadowed. If only A3 is available, shadow it and |
| // go to stack. |
| // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack. |
| // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3} |
| // with the remainder spilled to the stack. |
| // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases |
| // spilling the remainder to the stack. |
| // |
| // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. |
| //===----------------------------------------------------------------------===// |
| |
| static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, |
| CCState &State, ArrayRef<MCPhysReg> F64Regs) { |
| const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( |
| State.getMachineFunction().getSubtarget()); |
| |
| static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; |
| |
| const MipsCCState * MipsState = static_cast<MipsCCState *>(&State); |
| |
| static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; |
| |
| static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 }; |
| |
| // Do not process byval args here. |
| if (ArgFlags.isByVal()) |
| return true; |
| |
| // Promote i8 and i16 |
| if (ArgFlags.isInReg() && !Subtarget.isLittle()) { |
| if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { |
| LocVT = MVT::i32; |
| if (ArgFlags.isSExt()) |
| LocInfo = CCValAssign::SExtUpper; |
| else if (ArgFlags.isZExt()) |
| LocInfo = CCValAssign::ZExtUpper; |
| else |
| LocInfo = CCValAssign::AExtUpper; |
| } |
| } |
| |
| // Promote i8 and i16 |
| if (LocVT == MVT::i8 || LocVT == MVT::i16) { |
| LocVT = MVT::i32; |
| if (ArgFlags.isSExt()) |
| LocInfo = CCValAssign::SExt; |
| else if (ArgFlags.isZExt()) |
| LocInfo = CCValAssign::ZExt; |
| else |
| LocInfo = CCValAssign::AExt; |
| } |
| |
| unsigned Reg; |
| |
| // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following |
| // is true: function is vararg, argument is 3rd or higher, there is previous |
| // argument which is not f32 or f64. |
| bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || |
| State.getFirstUnallocated(F32Regs) != ValNo; |
| unsigned OrigAlign = ArgFlags.getOrigAlign(); |
| bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); |
| bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo); |
| |
| // The MIPS vector ABI for floats passes them in a pair of registers |
| if (ValVT == MVT::i32 && isVectorFloat) { |
| // This is the start of an vector that was scalarized into an unknown number |
| // of components. It doesn't matter how many there are. Allocate one of the |
| // notional 8 byte aligned registers which map onto the argument stack, and |
| // shadow the register lost to alignment requirements. |
| if (ArgFlags.isSplit()) { |
| Reg = State.AllocateReg(FloatVectorIntRegs); |
| if (Reg == Mips::A2) |
| State.AllocateReg(Mips::A1); |
| else if (Reg == 0) |
| State.AllocateReg(Mips::A3); |
| } else { |
| // If we're an intermediate component of the split, we can just attempt to |
| // allocate a register directly. |
| Reg = State.AllocateReg(IntRegs); |
| } |
| } else if (ValVT == MVT::i32 || |
| (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { |
| Reg = State.AllocateReg(IntRegs); |
| // If this is the first part of an i64 arg, |
| // the allocated register must be either A0 or A2. |
| if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) |
| Reg = State.AllocateReg(IntRegs); |
| LocVT = MVT::i32; |
| } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { |
| // Allocate int register and shadow next int register. If first |
| // available register is Mips::A1 or Mips::A3, shadow it too. |
| Reg = State.AllocateReg(IntRegs); |
| if (Reg == Mips::A1 || Reg == Mips::A3) |
| Reg = State.AllocateReg(IntRegs); |
| State.AllocateReg(IntRegs); |
| LocVT = MVT::i32; |
| } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { |
| // we are guaranteed to find an available float register |
| if (ValVT == MVT::f32) { |
| Reg = State.AllocateReg(F32Regs); |
| // Shadow int register |
| State.AllocateReg(IntRegs); |
| } else { |
| Reg = State.AllocateReg(F64Regs); |
| // Shadow int registers |
| unsigned Reg2 = State.AllocateReg(IntRegs); |
| if (Reg2 == Mips::A1 || Reg2 == Mips::A3) |
| State.AllocateReg(IntRegs); |
| State.AllocateReg(IntRegs); |
| } |
| } else |
| llvm_unreachable("Cannot handle this ValVT."); |
| |
| if (!Reg) { |
| unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| } else |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| |
| return false; |
| } |
| |
| static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; |
| |
| return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); |
| } |
| |
| static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; |
| |
| return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); |
| } |
| |
| static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, |
| CCState &State) LLVM_ATTRIBUTE_UNUSED; |
| |
| #include "MipsGenCallingConv.inc" |
| |
| CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{ |
| return CC_Mips_FixedArg; |
| } |
| |
| CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{ |
| return RetCC_Mips; |
| } |
| //===----------------------------------------------------------------------===// |
| // Call Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Return next O32 integer argument register. |
| static unsigned getNextIntArgReg(unsigned Reg) { |
| assert((Reg == Mips::A0) || (Reg == Mips::A2)); |
| return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; |
| } |
| |
| SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, |
| SDValue Chain, SDValue Arg, |
| const SDLoc &DL, bool IsTailCall, |
| SelectionDAG &DAG) const { |
| if (!IsTailCall) { |
| SDValue PtrOff = |
| DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()); |
| } |
| |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), |
| /* Alignment = */ 0, MachineMemOperand::MOVolatile); |
| } |
| |
| void MipsTargetLowering:: |
| getOpndList(SmallVectorImpl<SDValue> &Ops, |
| std::deque<std::pair<unsigned, SDValue>> &RegsToPass, |
| bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, |
| bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, |
| SDValue Chain) const { |
| // Insert node "GP copy globalreg" before call to function. |
| // |
| // R_MIPS_CALL* operators (emitted when non-internal functions are called |
| // in PIC mode) allow symbols to be resolved via lazy binding. |
| // The lazy binding stub requires GP to point to the GOT. |
| // Note that we don't need GP to point to the GOT for indirect calls |
| // (when R_MIPS_CALL* is not used for the call) because Mips linker generates |
| // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs |
| // used for the function (that is, Mips linker doesn't generate lazy binding |
| // stub for a function whose address is taken in the program). |
| if (IsPICCall && !InternalLinkage && IsCallReloc) { |
| unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; |
| EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; |
| RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token |
| // chain and flag operands which copy the outgoing args into registers. |
| // The InFlag in necessary since all emitted instructions must be |
| // stuck together. |
| SDValue InFlag; |
| |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = |
| TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| if (Subtarget.inMips16HardFloat()) { |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { |
| StringRef Sym = G->getGlobal()->getName(); |
| Function *F = G->getGlobal()->getParent()->getFunction(Sym); |
| if (F && F->hasFnAttribute("__Mips16RetHelper")) { |
| Mask = MipsRegisterInfo::getMips16RetHelperMask(); |
| } |
| } |
| } |
| Ops.push_back(CLI.DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| } |
| |
| void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| SDNode *Node) const { |
| switch (MI.getOpcode()) { |
| default: |
| return; |
| case Mips::JALR: |
| case Mips::JALRPseudo: |
| case Mips::JALR64: |
| case Mips::JALR64Pseudo: |
| case Mips::JALR16_MM: |
| case Mips::JALRC16_MMR6: |
| case Mips::TAILCALLREG: |
| case Mips::TAILCALLREG64: |
| case Mips::TAILCALLR6REG: |
| case Mips::TAILCALL64R6REG: |
| case Mips::TAILCALLREG_MM: |
| case Mips::TAILCALLREG_MMR6: { |
| if (!EmitJalrReloc || |
| Subtarget.inMips16Mode() || |
| !isPositionIndependent() || |
| Node->getNumOperands() < 1 || |
| Node->getOperand(0).getNumOperands() < 2) { |
| return; |
| } |
| // We are after the callee address, set by LowerCall(). |
| // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the |
| // symbol. |
| const SDValue TargetAddr = Node->getOperand(0).getOperand(1); |
| StringRef Sym; |
| if (const GlobalAddressSDNode *G = |
| dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) { |
| // We must not emit the R_MIPS_JALR relocation against data symbols |
| // since this will cause run-time crashes if the linker replaces the |
| // call instruction with a relative branch to the data symbol. |
| if (!isa<Function>(G->getGlobal())) { |
| LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol " |
| << G->getGlobal()->getName() << "\n"); |
| return; |
| } |
| Sym = G->getGlobal()->getName(); |
| } |
| else if (const ExternalSymbolSDNode *ES = |
| dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) { |
| Sym = ES->getSymbol(); |
| } |
| |
| if (Sym.empty()) |
| return; |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym); |
| LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n"); |
| MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR)); |
| } |
| } |
| } |
| |
| /// LowerCall - functions arguments are copied from virtual regs to |
| /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. |
| SDValue |
| MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); |
| MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); |
| bool IsPIC = isPositionIndependent(); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| MipsCCState CCInfo( |
| CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), |
| MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); |
| |
| const ExternalSymbolSDNode *ES = |
| dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode()); |
| |
| // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which |
| // is during the lowering of a call with a byval argument which produces |
| // a call to memcpy. For the O32 case, this causes the caller to allocate |
| // stack space for the reserved argument area for the callee, then recursively |
| // again for the memcpy call. In the NEWABI case, this doesn't occur as those |
| // ABIs mandate that the callee allocates the reserved argument area. We do |
| // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though. |
| // |
| // If the callee has a byval argument and memcpy is used, we are mandated |
| // to already have produced a reserved argument area for the callee for O32. |
| // Therefore, the reserved argument area can be reused for both calls. |
| // |
| // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START |
| // present, as we have yet to hook that node onto the chain. |
| // |
| // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this |
| // case. GCC does a similar trick, in that wherever possible, it calculates |
| // the maximum out going argument area (including the reserved area), and |
| // preallocates the stack space on entrance to the caller. |
| // |
| // FIXME: We should do the same for efficiency and space. |
| |
| // Note: The check on the calling convention below must match |
| // MipsABIInfo::GetCalleeAllocdArgSizeInBytes(). |
| bool MemcpyInByVal = ES && |
| StringRef(ES->getSymbol()) == StringRef("memcpy") && |
| CallConv != CallingConv::Fast && |
| Chain.getOpcode() == ISD::CALLSEQ_START; |
| |
| // Allocate the reserved argument area. It seems strange to do this from the |
| // caller side but removing it breaks the frame size calculation. |
| unsigned ReservedArgArea = |
| MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv); |
| CCInfo.AllocateStack(ReservedArgArea, 1); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), |
| ES ? ES->getSymbol() : nullptr); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NextStackOffset = CCInfo.getNextStackOffset(); |
| |
| // Check if it's really possible to do a tail call. Restrict it to functions |
| // that are part of this compilation unit. |
| bool InternalLinkage = false; |
| if (IsTailCall) { |
| IsTailCall = isEligibleForTailCallOptimization( |
| CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| InternalLinkage = G->getGlobal()->hasInternalLinkage(); |
| IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() || |
| G->getGlobal()->hasPrivateLinkage() || |
| G->getGlobal()->hasHiddenVisibility() || |
| G->getGlobal()->hasProtectedVisibility()); |
| } |
| } |
| if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| |
| if (IsTailCall) |
| ++NumTailCalls; |
| |
| // Chain is the output chain of the last Load/Store or CopyToReg node. |
| // ByValChain is the output chain of the last Memcpy node created for copying |
| // byval arguments to the stack. |
| unsigned StackAlignment = TFL->getStackAlignment(); |
| NextStackOffset = alignTo(NextStackOffset, StackAlignment); |
| SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); |
| |
| if (!(IsTailCall || MemcpyInByVal)) |
| Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL); |
| |
| SDValue StackPtr = |
| DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, |
| getPointerTy(DAG.getDataLayout())); |
| |
| std::deque<std::pair<unsigned, SDValue>> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| CCInfo.rewindByValRegsInfo(); |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| SDValue Arg = OutVals[i]; |
| CCValAssign &VA = ArgLocs[i]; |
| MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| bool UseUpperBits = false; |
| |
| // ByVal Arg. |
| if (Flags.isByVal()) { |
| unsigned FirstByValReg, LastByValReg; |
| unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); |
| CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); |
| |
| assert(Flags.getByValSize() && |
| "ByVal args of size 0 should have been ignored by front-end."); |
| assert(ByValIdx < CCInfo.getInRegsParamsCount()); |
| assert(!IsTailCall && |
| "Do not tail-call optimize if there is a byval argument."); |
| passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, |
| FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), |
| VA); |
| CCInfo.nextInRegsParam(); |
| continue; |
| } |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| if (VA.isRegLoc()) { |
| if ((ValVT == MVT::f32 && LocVT == MVT::i32) || |
| (ValVT == MVT::f64 && LocVT == MVT::i64) || |
| (ValVT == MVT::i64 && LocVT == MVT::f64)) |
| Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); |
| else if (ValVT == MVT::f64 && LocVT == MVT::i32) { |
| SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, |
| Arg, DAG.getConstant(0, DL, MVT::i32)); |
| SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, |
| Arg, DAG.getConstant(1, DL, MVT::i32)); |
| if (!Subtarget.isLittle()) |
| std::swap(Lo, Hi); |
| Register LocRegLo = VA.getLocReg(); |
| unsigned LocRegHigh = getNextIntArgReg(LocRegLo); |
| RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); |
| RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); |
| continue; |
| } |
| } |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); |
| break; |
| case CCValAssign::SExtUpper: |
| UseUpperBits = true; |
| LLVM_FALLTHROUGH; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); |
| break; |
| case CCValAssign::ZExtUpper: |
| UseUpperBits = true; |
| LLVM_FALLTHROUGH; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); |
| break; |
| case CCValAssign::AExtUpper: |
| UseUpperBits = true; |
| LLVM_FALLTHROUGH; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); |
| break; |
| } |
| |
| if (UseUpperBits) { |
| unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); |
| unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); |
| Arg = DAG.getNode( |
| ISD::SHL, DL, VA.getLocVT(), Arg, |
| DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); |
| } |
| |
| // Arguments that can be passed on register must be kept at |
| // RegsToPass vector |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| |
| // Register can't get to this point... |
| assert(VA.isMemLoc()); |
| |
| // emit ISD::STORE whichs stores the |
| // parameter value to a stack Location |
| MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), |
| Chain, Arg, DL, IsTailCall, DAG)); |
| } |
| |
| // Transform all store nodes into one single node because all store |
| // nodes are independent of each other. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| |
| EVT Ty = Callee.getValueType(); |
| bool GlobalOrExternal = false, IsCallReloc = false; |
| |
| // The long-calls feature is ignored in case of PIC. |
| // While we do not support -mshared / -mno-shared properly, |
| // ignore long-calls in case of -mabicalls too. |
| if (!Subtarget.isABICalls() && !IsPIC) { |
| // If the function should be called using "long call", |
| // get its address into a register to prevent using |
| // of the `jal` instruction for the direct call. |
| if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| if (Subtarget.useLongCalls()) |
| Callee = Subtarget.hasSym32() |
| ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) |
| : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); |
| } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| bool UseLongCalls = Subtarget.useLongCalls(); |
| // If the function has long-call/far/near attribute |
| // it overrides command line switch pased to the backend. |
| if (auto *F = dyn_cast<Function>(N->getGlobal())) { |
| if (F->hasFnAttribute("long-call")) |
| UseLongCalls = true; |
| else if (F->hasFnAttribute("short-call")) |
| UseLongCalls = false; |
| } |
| if (UseLongCalls) |
| Callee = Subtarget.hasSym32() |
| ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) |
| : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); |
| } |
| } |
| |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| if (IsPIC) { |
| const GlobalValue *Val = G->getGlobal(); |
| InternalLinkage = Val->hasInternalLinkage(); |
| |
| if (InternalLinkage) |
| Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); |
| else if (Subtarget.useXGOT()) { |
| Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, |
| MipsII::MO_CALL_LO16, Chain, |
| FuncInfo->callPtrInfo(Val)); |
| IsCallReloc = true; |
| } else { |
| Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, |
| FuncInfo->callPtrInfo(Val)); |
| IsCallReloc = true; |
| } |
| } else |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, |
| getPointerTy(DAG.getDataLayout()), 0, |
| MipsII::MO_NO_FLAG); |
| GlobalOrExternal = true; |
| } |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const char *Sym = S->getSymbol(); |
| |
| if (!IsPIC) // static |
| Callee = DAG.getTargetExternalSymbol( |
| Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); |
| else if (Subtarget.useXGOT()) { |
| Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, |
| MipsII::MO_CALL_LO16, Chain, |
| FuncInfo->callPtrInfo(Sym)); |
| IsCallReloc = true; |
| } else { // PIC |
| Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, |
| FuncInfo->callPtrInfo(Sym)); |
| IsCallReloc = true; |
| } |
| |
| GlobalOrExternal = true; |
| } |
| |
| SmallVector<SDValue, 8> Ops(1, Chain); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage, |
| IsCallReloc, CLI, Callee, Chain); |
| |
| if (IsTailCall) { |
| MF.getFrameInfo().setHasTailCall(); |
| return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); |
| } |
| |
| Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); |
| SDValue InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node in the case of where it is not a call to |
| // memcpy. |
| if (!(MemcpyInByVal)) { |
| Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, |
| DAG.getIntPtrConstant(0, DL, true), InFlag, DL); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, |
| InVals, CLI); |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| SDValue MipsTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| TargetLowering::CallLoweringInfo &CLI) const { |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| const ExternalSymbolSDNode *ES = |
| dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy, |
| ES ? ES->getSymbol() : nullptr); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), |
| RVLocs[i].getLocVT(), InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| |
| if (VA.isUpperBitsInLoc()) { |
| unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); |
| unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); |
| unsigned Shift = |
| VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; |
| Val = DAG.getNode( |
| Shift, DL, VA.getLocVT(), Val, |
| DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::AExt: |
| case CCValAssign::AExtUpper: |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::ZExt: |
| case CCValAssign::ZExtUpper: |
| Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::SExt: |
| case CCValAssign::SExtUpper: |
| Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, |
| EVT ArgVT, const SDLoc &DL, |
| SelectionDAG &DAG) { |
| MVT LocVT = VA.getLocVT(); |
| EVT ValVT = VA.getValVT(); |
| |
| // Shift into the upper bits if necessary. |
| switch (VA.getLocInfo()) { |
| default: |
| break; |
| case CCValAssign::AExtUpper: |
| case CCValAssign::SExtUpper: |
| case CCValAssign::ZExtUpper: { |
| unsigned ValSizeInBits = ArgVT.getSizeInBits(); |
| unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); |
| unsigned Opcode = |
| VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; |
| Val = DAG.getNode( |
| Opcode, DL, VA.getLocVT(), Val, |
| DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); |
| break; |
| } |
| } |
| |
| // If this is an value smaller than the argument slot size (32-bit for O32, |
| // 64-bit for N32/N64), it has been promoted in some way to the argument slot |
| // size. Extract the value and insert any appropriate assertions regarding |
| // sign/zero extension. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::AExtUpper: |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::SExtUpper: |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::ZExtUpper: |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); |
| break; |
| } |
| |
| return Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Formal Arguments Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| /// LowerFormalArguments - transform physical registers into virtual registers |
| /// and generate load operations for arguments places on the stack. |
| SDValue MipsTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| MipsFI->setVarArgsFrameIndex(0); |
| |
| // Used with vargs to acumulate store chains. |
| std::vector<SDValue> OutChains; |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); |
| const Function &Func = DAG.getMachineFunction().getFunction(); |
| Function::const_arg_iterator FuncArg = Func.arg_begin(); |
| |
| if (Func.hasFnAttribute("interrupt") && !Func.arg_empty()) |
| report_fatal_error( |
| "Functions with the interrupt attribute cannot have arguments!"); |
| |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); |
| MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), |
| CCInfo.getInRegsParamsCount() > 0); |
| |
| unsigned CurArgIdx = 0; |
| CCInfo.rewindByValRegsInfo(); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (Ins[i].isOrigArg()) { |
| std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); |
| CurArgIdx = Ins[i].getOrigArgIndex(); |
| } |
| EVT ValVT = VA.getValVT(); |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| bool IsRegLoc = VA.isRegLoc(); |
| |
| if (Flags.isByVal()) { |
| assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); |
| unsigned FirstByValReg, LastByValReg; |
| unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); |
| CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); |
| |
| assert(Flags.getByValSize() && |
| "ByVal args of size 0 should have been ignored by front-end."); |
| assert(ByValIdx < CCInfo.getInRegsParamsCount()); |
| copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, |
| FirstByValReg, LastByValReg, VA, CCInfo); |
| CCInfo.nextInRegsParam(); |
| continue; |
| } |
| |
| // Arguments stored on registers |
| if (IsRegLoc) { |
| MVT RegVT = VA.getLocVT(); |
| Register ArgReg = VA.getLocReg(); |
| const TargetRegisterClass *RC = getRegClassFor(RegVT); |
| |
| // Transform the arguments stored on |
| // physical registers into virtual ones |
| unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); |
| |
| ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); |
| |
| // Handle floating point arguments passed in integer registers and |
| // long double arguments passed in floating point registers. |
| if ((RegVT == MVT::i32 && ValVT == MVT::f32) || |
| (RegVT == MVT::i64 && ValVT == MVT::f64) || |
| (RegVT == MVT::f64 && ValVT == MVT::i64)) |
| ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); |
| else if (ABI.IsO32() && RegVT == MVT::i32 && |
| ValVT == MVT::f64) { |
| unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), |
| getNextIntArgReg(ArgReg), RC); |
| SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); |
| if (!Subtarget.isLittle()) |
| std::swap(ArgValue, ArgValue2); |
| ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, |
| ArgValue, ArgValue2); |
| } |
| |
| InVals.push_back(ArgValue); |
| } else { // VA.isRegLoc() |
| MVT LocVT = VA.getLocVT(); |
| |
| if (ABI.IsO32()) { |
| // We ought to be able to use LocVT directly but O32 sets it to i32 |
| // when allocating floating point values to integer registers. |
| // This shouldn't influence how we load the value into registers unless |
| // we are targeting softfloat. |
| if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) |
| LocVT = VA.getValVT(); |
| } |
| |
| // sanity check |
| assert(VA.isMemLoc()); |
| |
| // The stack pointer offset is relative to the caller stack frame. |
| int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, |
| VA.getLocMemOffset(), true); |
| |
| // Create load nodes to retrieve arguments from the stack |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue ArgValue = DAG.getLoad( |
| LocVT, DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); |
| OutChains.push_back(ArgValue.getValue(1)); |
| |
| ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); |
| |
| InVals.push_back(ArgValue); |
| } |
| } |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| // The mips ABIs for returning structs by value requires that we copy |
| // the sret argument into $v0 for the return. Save the argument into |
| // a virtual register so that we can access it from the return points. |
| if (Ins[i].Flags.isSRet()) { |
| unsigned Reg = MipsFI->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MF.getRegInfo().createVirtualRegister( |
| getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); |
| MipsFI->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); |
| break; |
| } |
| } |
| |
| if (IsVarArg) |
| writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); |
| |
| // All stores are grouped in one node to allow the matching between |
| // the size of Ins and InVals. This only happens when on varg functions |
| if (!OutChains.empty()) { |
| OutChains.push_back(Chain); |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| bool |
| MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, RetCC_Mips); |
| } |
| |
| bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, |
| bool IsSigned) const { |
| if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32) |
| return true; |
| |
| return IsSigned; |
| } |
| |
| SDValue |
| MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, |
| const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| MipsFI->setISR(); |
| |
| return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); |
| } |
| |
| SDValue |
| MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of |
| // the return value to a location |
| SmallVector<CCValAssign, 16> RVLocs; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // CCState - Info about the registers and stack slot. |
| MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); |
| |
| // Analyze return values. |
| CCInfo.AnalyzeReturn(Outs, RetCC_Mips); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| SDValue Val = OutVals[i]; |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| bool UseUpperBits = false; |
| |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); |
| break; |
| case CCValAssign::AExtUpper: |
| UseUpperBits = true; |
| LLVM_FALLTHROUGH; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); |
| break; |
| case CCValAssign::ZExtUpper: |
| UseUpperBits = true; |
| LLVM_FALLTHROUGH; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); |
| break; |
| case CCValAssign::SExtUpper: |
| UseUpperBits = true; |
| LLVM_FALLTHROUGH; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); |
| break; |
| } |
| |
| if (UseUpperBits) { |
| unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); |
| unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); |
| Val = DAG.getNode( |
| ISD::SHL, DL, VA.getLocVT(), Val, |
| DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // The mips ABIs for returning structs by value requires that we copy |
| // the sret argument into $v0 for the return. We saved the argument into |
| // a virtual register in the entry block, so now we copy the value out |
| // and into $v0. |
| if (MF.getFunction().hasStructRetAttr()) { |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| unsigned Reg = MipsFI->getSRetReturnReg(); |
| |
| if (!Reg) |
| llvm_unreachable("sret virtual register not created in the entry block"); |
| SDValue Val = |
| DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); |
| unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; |
| |
| Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| // ISRs must use "eret". |
| if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt")) |
| return LowerInterruptReturn(RetOps, DL, DAG); |
| |
| // Standard return on Mips is a "jr $ra" |
| return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Mips Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| MipsTargetLowering::ConstraintType |
| MipsTargetLowering::getConstraintType(StringRef Constraint) const { |
| // Mips specific constraints |
| // GCC config/mips/constraints.md |
| // |
| // 'd' : An address register. Equivalent to r |
| // unless generating MIPS16 code. |
| // 'y' : Equivalent to r; retained for |
| // backwards compatibility. |
| // 'c' : A register suitable for use in an indirect |
| // jump. This will always be $25 for -mabicalls. |
| // 'l' : The lo register. 1 word storage. |
| // 'x' : The hilo register pair. Double word storage. |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default : break; |
| case 'd': |
| case 'y': |
| case 'f': |
| case 'c': |
| case 'l': |
| case 'x': |
| return C_RegisterClass; |
| case 'R': |
| return C_Memory; |
| } |
| } |
| |
| if (Constraint == "ZC") |
| return C_Memory; |
| |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| MipsTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'd': |
| case 'y': |
| if (type->isIntegerTy()) |
| weight = CW_Register; |
| break; |
| case 'f': // FPU or MSA register |
| if (Subtarget.hasMSA() && type->isVectorTy() && |
| cast<VectorType>(type)->getBitWidth() == 128) |
| weight = CW_Register; |
| else if (type->isFloatTy()) |
| weight = CW_Register; |
| break; |
| case 'c': // $25 for indirect jumps |
| case 'l': // lo register |
| case 'x': // hilo register pair |
| if (type->isIntegerTy()) |
| weight = CW_SpecificReg; |
| break; |
| case 'I': // signed 16 bit immediate |
| case 'J': // integer zero |
| case 'K': // unsigned 16 bit immediate |
| case 'L': // signed 32 bit immediate where lower 16 bits are 0 |
| case 'N': // immediate in the range of -65535 to -1 (inclusive) |
| case 'O': // signed 15 bit immediate (+- 16383) |
| case 'P': // immediate in the range of 65535 to 1 (inclusive) |
| if (isa<ConstantInt>(CallOperandVal)) |
| weight = CW_Constant; |
| break; |
| case 'R': |
| weight = CW_Memory; |
| break; |
| } |
| return weight; |
| } |
| |
| /// This is a helper function to parse a physical register string and split it |
| /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag |
| /// that is returned indicates whether parsing was successful. The second flag |
| /// is true if the numeric part exists. |
| static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, |
| unsigned long long &Reg) { |
| if (C.front() != '{' || C.back() != '}') |
| return std::make_pair(false, false); |
| |
| // Search for the first numeric character. |
| StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; |
| I = std::find_if(B, E, isdigit); |
| |
| Prefix = StringRef(B, I - B); |
| |
| // The second flag is set to false if no numeric characters were found. |
| if (I == E) |
| return std::make_pair(true, false); |
| |
| // Parse the numeric characters. |
| return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), |
| true); |
| } |
| |
| EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, |
| ISD::NodeType) const { |
| bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32; |
| EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32); |
| return VT.bitsLT(MinVT) ? MinVT : VT; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: |
| parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { |
| const TargetRegisterInfo *TRI = |
| Subtarget.getRegisterInfo(); |
| const TargetRegisterClass *RC; |
| StringRef Prefix; |
| unsigned long long Reg; |
| |
| std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); |
| |
| if (!R.first) |
| return std::make_pair(0U, nullptr); |
| |
| if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. |
| // No numeric characters follow "hi" or "lo". |
| if (R.second) |
| return std::make_pair(0U, nullptr); |
| |
| RC = TRI->getRegClass(Prefix == "hi" ? |
| Mips::HI32RegClassID : Mips::LO32RegClassID); |
| return std::make_pair(*(RC->begin()), RC); |
| } else if (Prefix.startswith("$msa")) { |
| // Parse $msa(ir|csr|access|save|modify|request|map|unmap) |
| |
| // No numeric characters follow the name. |
| if (R.second) |
| return std::make_pair(0U, nullptr); |
| |
| Reg = StringSwitch<unsigned long long>(Prefix) |
| .Case("$msair", Mips::MSAIR) |
| .Case("$msacsr", Mips::MSACSR) |
| .Case("$msaaccess", Mips::MSAAccess) |
| .Case("$msasave", Mips::MSASave) |
| .Case("$msamodify", Mips::MSAModify) |
| .Case("$msarequest", Mips::MSARequest) |
| .Case("$msamap", Mips::MSAMap) |
| .Case("$msaunmap", Mips::MSAUnmap) |
| .Default(0); |
| |
| if (!Reg) |
| return std::make_pair(0U, nullptr); |
| |
| RC = TRI->getRegClass(Mips::MSACtrlRegClassID); |
| return std::make_pair(Reg, RC); |
| } |
| |
| if (!R.second) |
| return std::make_pair(0U, nullptr); |
| |
| if (Prefix == "$f") { // Parse $f0-$f31. |
| // If the size of FP registers is 64-bit or Reg is an even number, select |
| // the 64-bit register class. Otherwise, select the 32-bit register class. |
| if (VT == MVT::Other) |
| VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; |
| |
| RC = getRegClassFor(VT); |
| |
| if (RC == &Mips::AFGR64RegClass) { |
| assert(Reg % 2 == 0); |
| Reg >>= 1; |
| } |
| } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. |
| RC = TRI->getRegClass(Mips::FCCRegClassID); |
| else if (Prefix == "$w") { // Parse $w0-$w31. |
| RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); |
| } else { // Parse $0-$31. |
| assert(Prefix == "$"); |
| RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); |
| } |
| |
| assert(Reg < RC->getNumRegs()); |
| return std::make_pair(*(RC->begin() + Reg), RC); |
| } |
| |
| /// Given a register class constraint, like 'r', if this corresponds directly |
| /// to an LLVM register class, return a register of 0 and the register class |
| /// pointer. |
| std::pair<unsigned, const TargetRegisterClass *> |
| MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'd': // Address register. Same as 'r' unless generating MIPS16 code. |
| case 'y': // Same as 'r'. Exists for compatibility. |
| case 'r': |
| if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { |
| if (Subtarget.inMips16Mode()) |
| return std::make_pair(0U, &Mips::CPU16RegsRegClass); |
| return std::make_pair(0U, &Mips::GPR32RegClass); |
| } |
| if (VT == MVT::i64 && !Subtarget.isGP64bit()) |
| return std::make_pair(0U, &Mips::GPR32RegClass); |
| if (VT == MVT::i64 && Subtarget.isGP64bit()) |
| return std::make_pair(0U, &Mips::GPR64RegClass); |
| // This will generate an error message |
| return std::make_pair(0U, nullptr); |
| case 'f': // FPU or MSA register |
| if (VT == MVT::v16i8) |
| return std::make_pair(0U, &Mips::MSA128BRegClass); |
| else if (VT == MVT::v8i16 || VT == MVT::v8f16) |
| return std::make_pair(0U, &Mips::MSA128HRegClass); |
| else if (VT == MVT::v4i32 || VT == MVT::v4f32) |
| return std::make_pair(0U, &Mips::MSA128WRegClass); |
| else if (VT == MVT::v2i64 || VT == MVT::v2f64) |
| return std::make_pair(0U, &Mips::MSA128DRegClass); |
| else if (VT == MVT::f32) |
| return std::make_pair(0U, &Mips::FGR32RegClass); |
| else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { |
| if (Subtarget.isFP64bit()) |
| return std::make_pair(0U, &Mips::FGR64RegClass); |
| return std::make_pair(0U, &Mips::AFGR64RegClass); |
| } |
| break; |
| case 'c': // register suitable for indirect jump |
| if (VT == MVT::i32) |
| return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); |
| if (VT == MVT::i64) |
| return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); |
| // This will generate an error message |
| return std::make_pair(0U, nullptr); |
| case 'l': // use the `lo` register to store values |
| // that are no bigger than a word |
| if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) |
| return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); |
| return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); |
| case 'x': // use the concatenated `hi` and `lo` registers |
| // to store doubleword values |
| // Fixme: Not triggering the use of both hi and low |
| // This will generate an error message |
| return std::make_pair(0U, nullptr); |
| } |
| } |
| |
| if (!Constraint.empty()) { |
| std::pair<unsigned, const TargetRegisterClass *> R; |
| R = parseRegForInlineAsmConstraint(Constraint, VT); |
| |
| if (R.second) |
| return R; |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Result; |
| |
| // Only support length 1 constraints for now. |
| if (Constraint.length() > 1) return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; // This will fall through to the generic implementation |
| case 'I': // Signed 16 bit constant |
| // If this fails, the parent routine will give an error |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| int64_t Val = C->getSExtValue(); |
| if (isInt<16>(Val)) { |
| Result = DAG.getTargetConstant(Val, DL, Type); |
| break; |
| } |
| } |
| return; |
| case 'J': // integer zero |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| int64_t Val = C->getZExtValue(); |
| if (Val == 0) { |
| Result = DAG.getTargetConstant(0, DL, Type); |
| break; |
| } |
| } |
| return; |
| case 'K': // unsigned 16 bit immediate |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| uint64_t Val = (uint64_t)C->getZExtValue(); |
| if (isUInt<16>(Val)) { |
| Result = DAG.getTargetConstant(Val, DL, Type); |
| break; |
| } |
| } |
| return; |
| case 'L': // signed 32 bit immediate where lower 16 bits are 0 |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| int64_t Val = C->getSExtValue(); |
| if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ |
| Result = DAG.getTargetConstant(Val, DL, Type); |
| break; |
| } |
| } |
| return; |
| case 'N': // immediate in the range of -65535 to -1 (inclusive) |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| int64_t Val = C->getSExtValue(); |
| if ((Val >= -65535) && (Val <= -1)) { |
| Result = DAG.getTargetConstant(Val, DL, Type); |
| break; |
| } |
| } |
| return; |
| case 'O': // signed 15 bit immediate |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| int64_t Val = C->getSExtValue(); |
| if ((isInt<15>(Val))) { |
| Result = DAG.getTargetConstant(Val, DL, Type); |
| break; |
| } |
| } |
| return; |
| case 'P': // immediate in the range of 1 to 65535 (inclusive) |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| EVT Type = Op.getValueType(); |
| int64_t Val = C->getSExtValue(); |
| if ((Val <= 65535) && (Val >= 1)) { |
| Result = DAG.getTargetConstant(Val, DL, Type); |
| break; |
| } |
| } |
| return; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, |
| Instruction *I) const { |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (!AM.HasBaseReg) // allow "r+i". |
| break; |
| return false; // disallow "r+r" or "r+r+i". |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The Mips target isn't yet aware of offsets. |
| return false; |
| } |
| |
| EVT MipsTargetLowering::getOptimalMemOpType( |
| uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, |
| bool ZeroMemset, bool MemcpyStrSrc, |
| const AttributeList &FuncAttributes) const { |
| if (Subtarget.hasMips64()) |
| return MVT::i64; |
| |
| return MVT::i32; |
| } |
| |
| bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const { |
| if (VT != MVT::f32 && VT != MVT::f64) |
| return false; |
| if (Imm.isNegZero()) |
| return false; |
| return Imm.isZero(); |
| } |
| |
| unsigned MipsTargetLowering::getJumpTableEncoding() const { |
| |
| // FIXME: For space reasons this should be: EK_GPRel32BlockAddress. |
| if (ABI.IsN64() && isPositionIndependent()) |
| return MachineJumpTableInfo::EK_GPRel64BlockAddress; |
| |
| return TargetLowering::getJumpTableEncoding(); |
| } |
| |
| bool MipsTargetLowering::useSoftFloat() const { |
| return Subtarget.useSoftFloat(); |
| } |
| |
| void MipsTargetLowering::copyByValRegs( |
| SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains, |
| SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, |
| SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg, |
| unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, |
| MipsCCState &State) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); |
| unsigned NumRegs = LastReg - FirstReg; |
| unsigned RegAreaSize = NumRegs * GPRSizeInBytes; |
| unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); |
| int FrameObjOffset; |
| ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); |
| |
| if (RegAreaSize) |
| FrameObjOffset = |
| (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - |
| (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); |
| else |
| FrameObjOffset = VA.getLocMemOffset(); |
| |
| // Create frame object. |
| EVT PtrTy = getPointerTy(DAG.getDataLayout()); |
| // Make the fixed object stored to mutable so that the load instructions |
| // referencing it have their memory dependencies added. |
| // Set the frame object as isAliased which clears the underlying objects |
| // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all |
| // stores as dependencies for loads referencing this fixed object. |
| int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrTy); |
| InVals.push_back(FIN); |
| |
| if (!NumRegs) |
| return; |
| |
| // Copy arg registers. |
| MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); |
| const TargetRegisterClass *RC = getRegClassFor(RegTy); |
| |
| for (unsigned I = 0; I < NumRegs; ++I) { |
| unsigned ArgReg = ByValArgRegs[FirstReg + I]; |
| unsigned VReg = addLiveIn(MF, ArgReg, RC); |
| unsigned Offset = I * GPRSizeInBytes; |
| SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, |
| DAG.getConstant(Offset, DL, PtrTy)); |
| SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), |
| StorePtr, MachinePointerInfo(FuncArg, Offset)); |
| OutChains.push_back(Store); |
| } |
| } |
| |
| // Copy byVal arg to registers and stack. |
| void MipsTargetLowering::passByValArg( |
| SDValue Chain, const SDLoc &DL, |
| std::deque<std::pair<unsigned, SDValue>> &RegsToPass, |
| SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, |
| MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, |
| unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, |
| const CCValAssign &VA) const { |
| unsigned ByValSizeInBytes = Flags.getByValSize(); |
| unsigned OffsetInBytes = 0; // From beginning of struct |
| unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); |
| unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); |
| EVT PtrTy = getPointerTy(DAG.getDataLayout()), |
| RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); |
| unsigned NumRegs = LastReg - FirstReg; |
| |
| if (NumRegs) { |
| ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); |
| bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); |
| unsigned I = 0; |
| |
| // Copy words to registers. |
| for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { |
| SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, |
| DAG.getConstant(OffsetInBytes, DL, PtrTy)); |
| SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, |
| MachinePointerInfo(), Alignment); |
| MemOpChains.push_back(LoadVal.getValue(1)); |
| unsigned ArgReg = ArgRegs[FirstReg + I]; |
| RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); |
| } |
| |
| // Return if the struct has been fully copied. |
| if (ByValSizeInBytes == OffsetInBytes) |
| return; |
| |
| // Copy the remainder of the byval argument with sub-word loads and shifts. |
| if (LeftoverBytes) { |
| SDValue Val; |
| |
| for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; |
| OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { |
| unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; |
| |
| if (RemainingSizeInBytes < LoadSizeInBytes) |
| continue; |
| |
| // Load subword. |
| SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, |
| DAG.getConstant(OffsetInBytes, DL, |
| PtrTy)); |
| SDValue LoadVal = DAG.getExtLoad( |
| ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), |
| MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment); |
| MemOpChains.push_back(LoadVal.getValue(1)); |
| |
| // Shift the loaded value. |
| unsigned Shamt; |
| |
| if (isLittle) |
| Shamt = TotalBytesLoaded * 8; |
| else |
| Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; |
| |
| SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, |
| DAG.getConstant(Shamt, DL, MVT::i32)); |
| |
| if (Val.getNode()) |
| Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); |
| else |
| Val = Shift; |
| |
| OffsetInBytes += LoadSizeInBytes; |
| TotalBytesLoaded += LoadSizeInBytes; |
| Alignment = std::min(Alignment, LoadSizeInBytes); |
| } |
| |
| unsigned ArgReg = ArgRegs[FirstReg + I]; |
| RegsToPass.push_back(std::make_pair(ArgReg, Val)); |
| return; |
| } |
| } |
| |
| // Copy remainder of byval arg to it with memcpy. |
| unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; |
| SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, |
| DAG.getConstant(OffsetInBytes, DL, PtrTy)); |
| SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, |
| DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); |
| Chain = DAG.getMemcpy(Chain, DL, Dst, Src, |
| DAG.getConstant(MemCpySize, DL, PtrTy), |
| Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, |
| /*isTailCall=*/false, |
| MachinePointerInfo(), MachinePointerInfo()); |
| MemOpChains.push_back(Chain); |
| } |
| |
| void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, |
| SDValue Chain, const SDLoc &DL, |
| SelectionDAG &DAG, |
| CCState &State) const { |
| ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); |
| unsigned Idx = State.getFirstUnallocated(ArgRegs); |
| unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); |
| MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); |
| const TargetRegisterClass *RC = getRegClassFor(RegTy); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| // Offset of the first variable argument from stack pointer. |
| int VaArgOffset; |
| |
| if (ArgRegs.size() == Idx) |
| VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes); |
| else { |
| VaArgOffset = |
| (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - |
| (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); |
| } |
| |
| // Record the frame index of the first variable argument |
| // which is a value necessary to VASTART. |
| int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); |
| MipsFI->setVarArgsFrameIndex(FI); |
| |
| // Copy the integer registers that have not been used for argument passing |
| // to the argument register save area. For O32, the save area is allocated |
| // in the caller's stack frame, while for N32/64, it is allocated in the |
| // callee's stack frame. |
| for (unsigned I = Idx; I < ArgRegs.size(); |
| ++I, VaArgOffset += RegSizeInBytes) { |
| unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); |
| FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); |
| SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue Store = |
| DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo()); |
| cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( |
| (Value *)nullptr); |
| OutChains.push_back(Store); |
| } |
| } |
| |
| void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, |
| unsigned Align) const { |
| const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); |
| |
| assert(Size && "Byval argument's size shouldn't be 0."); |
| |
| Align = std::min(Align, TFL->getStackAlignment()); |
| |
| unsigned FirstReg = 0; |
| unsigned NumRegs = 0; |
| |
| if (State->getCallingConv() != CallingConv::Fast) { |
| unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); |
| ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); |
| // FIXME: The O32 case actually describes no shadow registers. |
| const MCPhysReg *ShadowRegs = |
| ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; |
| |
| // We used to check the size as well but we can't do that anymore since |
| // CCState::HandleByVal() rounds up the size after calling this function. |
| assert(!(Align % RegSizeInBytes) && |
| "Byval argument's alignment should be a multiple of" |
| "RegSizeInBytes."); |
| |
| FirstReg = State->getFirstUnallocated(IntArgRegs); |
| |
| // If Align > RegSizeInBytes, the first arg register must be even. |
| // FIXME: This condition happens to do the right thing but it's not the |
| // right way to test it. We want to check that the stack frame offset |
| // of the register is aligned. |
| if ((Align > RegSizeInBytes) && (FirstReg % 2)) { |
| State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); |
| ++FirstReg; |
| } |
| |
| // Mark the registers allocated. |
| Size = alignTo(Size, RegSizeInBytes); |
| for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); |
| Size -= RegSizeInBytes, ++I, ++NumRegs) |
| State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); |
| } |
| |
| State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); |
| } |
| |
| MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI, |
| MachineBasicBlock *BB, |
| bool isFPCmp, |
| unsigned Opc) const { |
| assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && |
| "Subtarget already supports SELECT nodes with the use of" |
| "conditional-move instructions."); |
| |
| const TargetInstrInfo *TII = |
| Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| // To "insert" a SELECT instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // setcc r1, r2, r3 |
| // bNE r1, r0, copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| if (isFPCmp) { |
| // bc1[tf] cc, sinkMBB |
| BuildMI(BB, DL, TII->get(Opc)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(sinkMBB); |
| } else { |
| // bne rs, $0, sinkMBB |
| BuildMI(BB, DL, TII->get(Opc)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addReg(Mips::ZERO) |
| .addMBB(sinkMBB); |
| } |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] |
| // ... |
| BB = sinkMBB; |
| |
| BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(2).getReg()) |
| .addMBB(thisMBB) |
| .addReg(MI.getOperand(3).getReg()) |
| .addMBB(copy0MBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && |
| "Subtarget already supports SELECT nodes with the use of" |
| "conditional-move instructions."); |
| |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| // D_SELECT substitutes two SELECT nodes that goes one after another and |
| // have the same condition operand. On machines which don't have |
| // conditional-move instruction, it reduces unnecessary branch instructions |
| // which are result of using two diamond patterns that are result of two |
| // SELECT pseudo instructions. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // setcc r1, r2, r3 |
| // bNE r1, r0, copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // bne rs, $0, sinkMBB |
| BuildMI(BB, DL, TII->get(Mips::BNE)) |
| .addReg(MI.getOperand(2).getReg()) |
| .addReg(Mips::ZERO) |
| .addMBB(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] |
| // ... |
| BB = sinkMBB; |
| |
| // Use two PHI nodes to select two reults |
| BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(3).getReg()) |
| .addMBB(thisMBB) |
| .addReg(MI.getOperand(5).getReg()) |
| .addMBB(copy0MBB); |
| BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg()) |
| .addReg(MI.getOperand(4).getReg()) |
| .addMBB(thisMBB) |
| .addReg(MI.getOperand(6).getReg()) |
| .addMBB(copy0MBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| |
| return BB; |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| Register |
| MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| const MachineFunction &MF) const { |
| // Named registers is expected to be fairly rare. For now, just support $28 |
| // since the linux kernel uses it. |
| if (Subtarget.isGP64bit()) { |
| Register Reg = StringSwitch<Register>(RegName) |
| .Case("$28", Mips::GP_64) |
| .Default(Register()); |
| if (Reg) |
| return Reg; |
| } else { |
| Register Reg = StringSwitch<Register>(RegName) |
| .Case("$28", Mips::GP) |
| .Default(Register()); |
| if (Reg) |
| return Reg; |
| } |
| report_fatal_error("Invalid register name global variable"); |
| } |