| //===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // This describes the calling conventions for Mips architecture. |
| //===----------------------------------------------------------------------===// |
| |
| /// CCIfSubtarget - Match if the current subtarget has a feature F. |
| class CCIfSubtarget<string F, CCAction A, string Invert = ""> |
| : CCIf<!strconcat(Invert, |
| "static_cast<const MipsSubtarget&>" |
| "(State.getMachineFunction().getSubtarget()).", |
| F), |
| A>; |
| |
| // The inverse of CCIfSubtarget |
| class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">; |
| |
| /// Match if the original argument (before lowering) was a float. |
| /// For example, this is true for i32's that were lowered from soft-float. |
| class CCIfOrigArgWasNotFloat<CCAction A> |
| : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)", |
| A>; |
| |
| /// Match if the original argument (before lowering) was a 128-bit float (i.e. |
| /// long double). |
| class CCIfOrigArgWasF128<CCAction A> |
| : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>; |
| |
| /// Match if this specific argument is a vararg. |
| /// This is slightly different fro CCIfIsVarArg which matches if any argument is |
| /// a vararg. |
| class CCIfArgIsVarArg<CCAction A> |
| : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>; |
| |
| /// Match if the return was a floating point vector. |
| class CCIfOrigArgWasNotVectorFloat<CCAction A> |
| : CCIf<"!static_cast<MipsCCState *>(&State)" |
| "->WasOriginalRetVectorFloat(ValNo)", A>; |
| |
| /// Match if the special calling conv is the specified value. |
| class CCIfSpecialCallingConv<string CC, CCAction A> |
| : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == " |
| "MipsCCState::" # CC, A>; |
| |
| // For soft-float, f128 values are returned in A0_64 rather than V1_64. |
| def RetCC_F128SoftFloat : CallingConv<[ |
| CCAssignToReg<[V0_64, A0_64]> |
| ]>; |
| |
| // For hard-float, f128 values are returned as a pair of f64's rather than a |
| // pair of i64's. |
| def RetCC_F128HardFloat : CallingConv<[ |
| CCBitConvertToType<f64>, |
| |
| // Contrary to the ABI documentation, a struct containing a long double is |
| // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to |
| // match the de facto ABI as implemented by GCC. |
| CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>, |
| |
| CCAssignToReg<[D0_64, D2_64]> |
| ]>; |
| |
| // Handle F128 specially since we can't identify the original type during the |
| // tablegen-erated code. |
| def RetCC_F128 : CallingConv<[ |
| CCIfSubtarget<"useSoftFloat()", |
| CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>, |
| CCIfSubtargetNot<"useSoftFloat()", |
| CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Mips O32 Calling Convention |
| //===----------------------------------------------------------------------===// |
| |
| def CC_MipsO32 : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, |
| |
| // Integer values get stored in stack slots that are 4 bytes in |
| // size and 4-byte aligned. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, |
| |
| // Integer values get stored in stack slots that are 8 bytes in |
| // size and 8-byte aligned. |
| CCIfType<[f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| // Only the return rules are defined here for O32. The rules for argument |
| // passing are defined in MipsISelLowering.cpp. |
| def RetCC_MipsO32 : CallingConv<[ |
| // Promote i1/i8/i16 return values to i32. |
| CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, |
| |
| // i32 are returned in registers V0, V1, A0, A1, unless the original return |
| // type was a vector of floats. |
| CCIfOrigArgWasNotVectorFloat<CCIfType<[i32], |
| CCAssignToReg<[V0, V1, A0, A1]>>>, |
| |
| // f32 are returned in registers F0, F2 |
| CCIfType<[f32], CCAssignToReg<[F0, F2]>>, |
| |
| // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or |
| // in D0 and D1 in FP32bit mode. |
| CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>, |
| CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>> |
| ]>; |
| |
| def CC_MipsO32_FP32 : CustomCallingConv; |
| def CC_MipsO32_FP64 : CustomCallingConv; |
| |
| def CC_MipsO32_FP : CallingConv<[ |
| CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>, |
| CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Mips N32/64 Calling Convention |
| //===----------------------------------------------------------------------===// |
| |
| def CC_MipsN_SoftFloat : CallingConv<[ |
| CCAssignToRegWithShadow<[A0, A1, A2, A3, |
| T0, T1, T2, T3], |
| [D12_64, D13_64, D14_64, D15_64, |
| D16_64, D17_64, D18_64, D19_64]>, |
| CCAssignToStack<4, 8> |
| ]>; |
| |
| def CC_MipsN : CallingConv<[ |
| CCIfType<[i8, i16, i32, i64], |
| CCIfSubtargetNot<"isLittle()", |
| CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, |
| |
| // All integers (except soft-float integers) are promoted to 64-bit. |
| CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>, |
| |
| // The only i32's we have left are soft-float arguments. |
| CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], |
| CCDelegateTo<CC_MipsN_SoftFloat>>>, |
| |
| // Integer arguments are passed in integer registers. |
| CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64, |
| T0_64, T1_64, T2_64, T3_64], |
| [D12_64, D13_64, D14_64, D15_64, |
| D16_64, D17_64, D18_64, D19_64]>>, |
| |
| // f32 arguments are passed in single precision FP registers. |
| CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15, |
| F16, F17, F18, F19], |
| [A0_64, A1_64, A2_64, A3_64, |
| T0_64, T1_64, T2_64, T3_64]>>, |
| |
| // f64 arguments are passed in double precision FP registers. |
| CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64, |
| D16_64, D17_64, D18_64, D19_64], |
| [A0_64, A1_64, A2_64, A3_64, |
| T0_64, T1_64, T2_64, T3_64]>>, |
| |
| // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. |
| CCIfType<[f32], CCAssignToStack<4, 8>>, |
| CCIfType<[i64, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| // N32/64 variable arguments. |
| // All arguments are passed in integer registers. |
| def CC_MipsN_VarArg : CallingConv<[ |
| CCIfType<[i8, i16, i32, i64], |
| CCIfSubtargetNot<"isLittle()", |
| CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, |
| |
| // All integers are promoted to 64-bit. |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>, |
| |
| CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, |
| T0_64, T1_64, T2_64, T3_64]>>, |
| |
| // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. |
| CCIfType<[f32], CCAssignToStack<4, 8>>, |
| CCIfType<[i64, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| def RetCC_MipsN : CallingConv<[ |
| // f128 needs to be handled similarly to f32 and f64. However, f128 is not |
| // legal and is lowered to i128 which is further lowered to a pair of i64's. |
| // This presents us with a problem for the calling convention since hard-float |
| // still needs to pass them in FPU registers, and soft-float needs to use $v0, |
| // and $a0 instead of the usual $v0, and $v1. We therefore resort to a |
| // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on |
| // whether the result was originally an f128 into the tablegen-erated code. |
| // |
| // f128 should only occur for the N64 ABI where long double is 128-bit. On |
| // N32, long double is equivalent to double. |
| CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>, |
| |
| // Aggregate returns are positioned at the lowest address in the slot for |
| // both little and big-endian targets. When passing in registers, this |
| // requires that big-endian targets shift the value into the upper bits. |
| CCIfSubtarget<"isLittle()", |
| CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>, |
| CCIfSubtargetNot<"isLittle()", |
| CCIfType<[i8, i16, i32, i64], |
| CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, |
| |
| // i64 are returned in registers V0_64, V1_64 |
| CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>, |
| |
| // f32 are returned in registers F0, F2 |
| CCIfType<[f32], CCAssignToReg<[F0, F2]>>, |
| |
| // f64 are returned in registers D0, D2 |
| CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Mips FastCC Calling Convention |
| //===----------------------------------------------------------------------===// |
| def CC_MipsO32_FastCC : CallingConv<[ |
| // f64 arguments are passed in double-precision floating pointer registers. |
| CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", |
| CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, |
| D7, D8, D9]>>>, |
| CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()", |
| CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, |
| D4_64, D5_64, D6_64, D7_64, |
| D8_64, D9_64, D10_64, D11_64, |
| D12_64, D13_64, D14_64, D15_64, |
| D16_64, D17_64, D18_64, |
| D19_64]>>>>, |
| CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()", |
| CCAssignToReg<[D0_64, D2_64, D4_64, D6_64, |
| D8_64, D10_64, D12_64, D14_64, |
| D16_64, D18_64]>>>>, |
| |
| // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned. |
| CCIfType<[f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| def CC_MipsN_FastCC : CallingConv<[ |
| // Integer arguments are passed in integer registers. |
| CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, |
| T2_64, T3_64, T4_64, T5_64, T6_64, T7_64, |
| T8_64, V1_64]>>, |
| |
| // f64 arguments are passed in double-precision floating pointer registers. |
| CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64, |
| D6_64, D7_64, D8_64, D9_64, D10_64, D11_64, |
| D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, |
| D18_64, D19_64]>>, |
| |
| // Stack parameter slots for i64 and f64 are 64-bit doublewords and |
| // 8-byte aligned. |
| CCIfType<[i64, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| def CC_Mips_FastCC : CallingConv<[ |
| // Handles byval parameters. |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Integer arguments are passed in integer registers. All scratch registers, |
| // except for AT, V0 and T9, are available to be used as argument registers. |
| CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()", |
| CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>, |
| |
| // In NaCl, T6, T7 and T8 are reserved and not available as argument |
| // registers for fastcc. T6 contains the mask for sandboxing control flow |
| // (indirect jumps and calls). T7 contains the mask for sandboxing memory |
| // accesses (loads and stores). T8 contains the thread pointer. |
| CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()", |
| CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>, |
| |
| // f32 arguments are passed in single-precision floating pointer registers. |
| CCIfType<[f32], CCIfSubtarget<"useOddSPReg()", |
| CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, |
| F14, F15, F16, F17, F18, F19]>>>, |
| |
| // Don't use odd numbered single-precision registers for -mno-odd-spreg. |
| CCIfType<[f32], CCIfSubtarget<"noOddSPReg()", |
| CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>, |
| |
| // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, |
| |
| CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>, |
| CCDelegateTo<CC_MipsN_FastCC> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Mips Calling Convention Dispatch |
| //===----------------------------------------------------------------------===// |
| |
| def RetCC_Mips : CallingConv<[ |
| CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>, |
| CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>, |
| CCDelegateTo<RetCC_MipsO32> |
| ]>; |
| |
| def CC_Mips_ByVal : CallingConv<[ |
| CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>, |
| CCIfByVal<CCPassByVal<8, 8>> |
| ]>; |
| |
| def CC_Mips16RetHelper : CallingConv<[ |
| CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, |
| |
| // Integer arguments are passed in integer registers. |
| CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>> |
| ]>; |
| |
| def CC_Mips_FixedArg : CallingConv<[ |
| // Mips16 needs special handling on some functions. |
| CCIf<"State.getCallingConv() != CallingConv::Fast", |
| CCIfSpecialCallingConv<"Mips16RetHelperConv", |
| CCDelegateTo<CC_Mips16RetHelper>>>, |
| |
| CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, |
| |
| // f128 needs to be handled similarly to f32 and f64 on hard-float. However, |
| // f128 is not legal and is lowered to i128 which is further lowered to a pair |
| // of i64's. |
| // This presents us with a problem for the calling convention since hard-float |
| // still needs to pass them in FPU registers. We therefore resort to a |
| // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on |
| // whether the argument was originally an f128 into the tablegen-erated code. |
| // |
| // f128 should only occur for the N64 ABI where long double is 128-bit. On |
| // N32, long double is equivalent to double. |
| CCIfType<[i64], |
| CCIfSubtargetNot<"useSoftFloat()", |
| CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>, |
| |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>, |
| |
| CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, |
| CCDelegateTo<CC_MipsN> |
| ]>; |
| |
| def CC_Mips_VarArg : CallingConv<[ |
| CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, |
| |
| CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, |
| CCDelegateTo<CC_MipsN_VarArg> |
| ]>; |
| |
| def CC_Mips : CallingConv<[ |
| CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>, |
| CCDelegateTo<CC_Mips_FixedArg> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Callee-saved register lists. |
| //===----------------------------------------------------------------------===// |
| |
| def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP, |
| (sequence "S%u", 7, 0))>; |
| |
| def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, |
| (sequence "S%u", 7, 0))> { |
| let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2)); |
| } |
| |
| def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, |
| (sequence "S%u", 7, 0))>; |
| |
| def CSR_O32_FP64 : |
| CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP, |
| (sequence "S%u", 7, 0))>; |
| |
| def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64, |
| D30_64, RA_64, FP_64, GP_64, |
| (sequence "S%u_64", 7, 0))>; |
| |
| def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64, |
| GP_64, (sequence "S%u_64", 7, 0))>; |
| |
| def CSR_Mips16RetHelper : |
| CalleeSavedRegs<(add V0, V1, FP, |
| (sequence "A%u", 3, 0), (sequence "S%u", 7, 0), |
| (sequence "D%u", 15, 10))>; |
| |
| def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), |
| (sequence "S%u", 7, 0), |
| (sequence "V%u", 1, 0), |
| (sequence "T%u", 9, 0), |
| RA, FP, GP, AT)>; |
| |
| def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), |
| (sequence "S%u", 7, 0), |
| (sequence "V%u", 1, 0), |
| (sequence "T%u", 9, 0), |
| RA, FP, GP, AT, LO0, HI0)>; |
| |
| def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), |
| (sequence "V%u_64", 1, 0), |
| (sequence "S%u_64", 7, 0), |
| (sequence "T%u_64", 9, 0), |
| RA_64, FP_64, GP_64, AT_64)>; |
| |
| def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), |
| (sequence "S%u_64", 7, 0), |
| (sequence "T%u_64", 9, 0), |
| (sequence "V%u_64", 1, 0), |
| RA_64, FP_64, GP_64, AT_64, |
| LO0_64, HI0_64)>; |