blob: 23f05eaad944873433217f9ac3e0910fdd35d51e [file] [log] [blame]
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "AArch64ISelLowering.h"
#include "AArch64CallingConvention.h"
#include "AArch64ExpandImm.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64PerfectShuffle.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "aarch64-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
static cl::opt<bool>
EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
cl::desc("Allow AArch64 SLI/SRI formation"),
cl::init(false));
// FIXME: The necessary dtprel relocations don't seem to be supported
// well in the GNU bfd and gold linkers at the moment. Therefore, by
// default, for now, fall back to GeneralDynamic code generation.
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
"aarch64-elf-ldtls-generation", cl::Hidden,
cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
cl::init(false));
static cl::opt<bool>
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
cl::desc("Enable AArch64 logical imm instruction "
"optimization"),
cl::init(true));
/// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32;
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
// AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
// we have to make something up. Arbitrarily, choose ZeroOrOne.
setBooleanContents(ZeroOrOneBooleanContent);
// When comparing vectors the result sets the different elements in the
// vector to all-one or all-zero.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Set up the register classes.
addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
if (Subtarget->hasFPARMv8()) {
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
}
if (Subtarget->hasNEON()) {
addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
// Someone set us up the NEON.
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
addDRTypeForNEON(MVT::v4i16);
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addDRTypeForNEON(MVT::v1f64);
addDRTypeForNEON(MVT::v4f16);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
addQRTypeForNEON(MVT::v16i8);
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
addQRTypeForNEON(MVT::v8f16);
}
if (Subtarget->hasSVE()) {
// Add legal sve predicate types
addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
// Add legal sve data types
addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) {
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
}
for (auto VT :
{ MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);
}
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget->getRegisterInfo());
// Provide all sorts of operation actions
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::f16, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f16, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f80, Expand);
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// Custom lowering hooks are needed for XOR
// to fold it into CSINC/CSINV.
setOperationAction(ISD::XOR, MVT::i32, Custom);
setOperationAction(ISD::XOR, MVT::i64, Custom);
// Virtually no operation on f128 is legal, but LLVM can't expand them when
// there's a valid register class, so we need custom operations in most cases.
setOperationAction(ISD::FABS, MVT::f128, Expand);
setOperationAction(ISD::FADD, MVT::f128, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOS, MVT::f128, Expand);
setOperationAction(ISD::FDIV, MVT::f128, Custom);
setOperationAction(ISD::FMA, MVT::f128, Expand);
setOperationAction(ISD::FMUL, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Expand);
setOperationAction(ISD::FPOW, MVT::f128, Expand);
setOperationAction(ISD::FREM, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
setOperationAction(ISD::FSIN, MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
setOperationAction(ISD::FSUB, MVT::f128, Custom);
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT, MVT::f128, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
// Lowering for many of the conversions is actually specified by the non-f128
// type. The LowerXXX function will be trivial when f128 isn't involved.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
// Variable arguments.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Variable-sized objects.
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->isTargetWindows())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
// Constant pool entries
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
// BlockAddress
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
// Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
setOperationAction(ISD::ADDC, MVT::i32, Custom);
setOperationAction(ISD::ADDE, MVT::i32, Custom);
setOperationAction(ISD::SUBC, MVT::i32, Custom);
setOperationAction(ISD::SUBE, MVT::i32, Custom);
setOperationAction(ISD::ADDC, MVT::i64, Custom);
setOperationAction(ISD::ADDE, MVT::i64, Custom);
setOperationAction(ISD::SUBC, MVT::i64, Custom);
setOperationAction(ISD::SUBE, MVT::i64, Custom);
// AArch64 lacks both left-rotate and popcount instructions.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
}
// AArch64 doesn't have {U|S}MUL_LOHI.
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
}
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Custom lower Add/Sub/Mul with overflow.
setOperationAction(ISD::SADDO, MVT::i32, Custom);
setOperationAction(ISD::SADDO, MVT::i64, Custom);
setOperationAction(ISD::UADDO, MVT::i32, Custom);
setOperationAction(ISD::UADDO, MVT::i64, Custom);
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
setOperationAction(ISD::SSUBO, MVT::i64, Custom);
setOperationAction(ISD::USUBO, MVT::i32, Custom);
setOperationAction(ISD::USUBO, MVT::i64, Custom);
setOperationAction(ISD::SMULO, MVT::i32, Custom);
setOperationAction(ISD::SMULO, MVT::i64, Custom);
setOperationAction(ISD::UMULO, MVT::i32, Custom);
setOperationAction(ISD::UMULO, MVT::i64, Custom);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
if (Subtarget->hasFullFP16())
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
else
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
setOperationAction(ISD::FREM, MVT::f16, Promote);
setOperationAction(ISD::FREM, MVT::v4f16, Expand);
setOperationAction(ISD::FREM, MVT::v8f16, Expand);
setOperationAction(ISD::FPOW, MVT::f16, Promote);
setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
setOperationAction(ISD::FEXP, MVT::f16, Promote);
setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
setOperationAction(ISD::FLOG, MVT::f16, Promote);
setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
if (!Subtarget->hasFullFP16()) {
setOperationAction(ISD::SELECT, MVT::f16, Promote);
setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
setOperationAction(ISD::SETCC, MVT::f16, Promote);
setOperationAction(ISD::BR_CC, MVT::f16, Promote);
setOperationAction(ISD::FADD, MVT::f16, Promote);
setOperationAction(ISD::FSUB, MVT::f16, Promote);
setOperationAction(ISD::FMUL, MVT::f16, Promote);
setOperationAction(ISD::FDIV, MVT::f16, Promote);
setOperationAction(ISD::FMA, MVT::f16, Promote);
setOperationAction(ISD::FNEG, MVT::f16, Promote);
setOperationAction(ISD::FABS, MVT::f16, Promote);
setOperationAction(ISD::FCEIL, MVT::f16, Promote);
setOperationAction(ISD::FSQRT, MVT::f16, Promote);
setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
setOperationAction(ISD::FRINT, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::f16, Promote);
setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
// promote v4f16 to v4f32 when that is known to be safe.
setOperationAction(ISD::FADD, MVT::v4f16, Promote);
setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
setOperationAction(ISD::FABS, MVT::v4f16, Expand);
setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
setOperationAction(ISD::FMA, MVT::v4f16, Expand);
setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
setOperationAction(ISD::FABS, MVT::v8f16, Expand);
setOperationAction(ISD::FADD, MVT::v8f16, Expand);
setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
setOperationAction(ISD::FMA, MVT::v8f16, Expand);
setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
}
// AArch64 has implementations of a lot of rounding-like FP operations.
for (MVT Ty : {MVT::f32, MVT::f64}) {
setOperationAction(ISD::FFLOOR, Ty, Legal);
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
setOperationAction(ISD::FCEIL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FTRUNC, Ty, Legal);
setOperationAction(ISD::FROUND, Ty, Legal);
setOperationAction(ISD::FMINNUM, Ty, Legal);
setOperationAction(ISD::FMAXNUM, Ty, Legal);
setOperationAction(ISD::FMINIMUM, Ty, Legal);
setOperationAction(ISD::FMAXIMUM, Ty, Legal);
setOperationAction(ISD::LROUND, Ty, Legal);
setOperationAction(ISD::LLROUND, Ty, Legal);
setOperationAction(ISD::LRINT, Ty, Legal);
setOperationAction(ISD::LLRINT, Ty, Legal);
}
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
setOperationAction(ISD::FCEIL, MVT::f16, Legal);
setOperationAction(ISD::FRINT, MVT::f16, Legal);
setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
setOperationAction(ISD::FROUND, MVT::f16, Legal);
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
}
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
// 128-bit loads and stores can be done without expanding
setOperationAction(ISD::LOAD, MVT::i128, Custom);
setOperationAction(ISD::STORE, MVT::i128, Custom);
// Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
// This requires the Performance Monitors extension.
if (Subtarget->hasPerfMon())
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
// Issue __sincos_stret if available.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
} else {
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
}
if (Subtarget->getTargetTriple().isOSMSVCRT()) {
// MSVCRT doesn't have powi; fall back to pow
setLibcallName(RTLIB::POWI_F32, nullptr);
setLibcallName(RTLIB::POWI_F64, nullptr);
}
// Make floating-point constants legal for the large code model, so they don't
// become loads from the constant pool.
if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
}
// AArch64 does not have floating-point extending loads, i1 sign-extending
// load, floating-point truncating stores, or v2i32->v2i16 truncating store.
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
}
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f128, MVT::f80, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
// Indexed loads and stores are supported.
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedLoadAction(im, MVT::i64, Legal);
setIndexedLoadAction(im, MVT::f64, Legal);
setIndexedLoadAction(im, MVT::f32, Legal);
setIndexedLoadAction(im, MVT::f16, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i64, Legal);
setIndexedStoreAction(im, MVT::f64, Legal);
setIndexedStoreAction(im, MVT::f32, Legal);
setIndexedStoreAction(im, MVT::f16, Legal);
}
// Trap.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
if (Subtarget->isTargetWindows())
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// We combine OR nodes for bitfield operations.
setTargetDAGCombine(ISD::OR);
// Try to create BICs for vector ANDs.
setTargetDAGCombine(ISD::AND);
// Vector add and sub nodes may conceal a high-half opportunity.
// Also, try to fold ADD into CSINC/CSINV..
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::XOR);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::FP_TO_UINT);
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::CONCAT_VECTORS);
setTargetDAGCombine(ISD::STORE);
if (Subtarget->supportsAddressTopByteIgnored())
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
setTargetDAGCombine(ISD::GlobalAddress);
// In case of strict alignment, avoid an excessive number of byte wide stores.
MaxStoresPerMemsetOptSize = 8;
MaxStoresPerMemset = Subtarget->requiresStrictAlign()
? MaxStoresPerMemsetOptSize : 32;
MaxGluedStoresPerMemcpy = 4;
MaxStoresPerMemcpyOptSize = 4;
MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
? MaxStoresPerMemcpyOptSize : 16;
MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
MaxLoadsPerMemcmpOptSize = 4;
MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
? MaxLoadsPerMemcmpOptSize : 8;
setStackPointerRegisterToSaveRestore(AArch64::SP);
setSchedulingPreference(Sched::Hybrid);
EnableExtLdPromotion = true;
// Set required alignment.
setMinFunctionAlignment(Align(4));
// Set preferred alignments.
setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));
// Only change the limit for entries in a jump table if specified by
// the sub target, but not at the command line.
unsigned MaxJT = STI.getMaximumJumpTableSize();
if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
setMaximumJumpTableSize(MaxJT);
setHasExtractBitsInsn(true);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
if (Subtarget->hasNEON()) {
// FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
// silliness like this:
setOperationAction(ISD::FABS, MVT::v1f64, Expand);
setOperationAction(ISD::FADD, MVT::v1f64, Expand);
setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
setOperationAction(ISD::FMA, MVT::v1f64, Expand);
setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
setOperationAction(ISD::FREM, MVT::v1f64, Expand);
setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
// AArch64 doesn't have a direct vector ->f32 conversion instructions for
// elements smaller than i32, so promote the input to i32 first.
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
// i8 vector elements also need promotion to i32 for v8i8
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
// Similarly, there is no direct i32 -> f64 vector conversion instruction.
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
// Or, direct i32 -> f16 vector conversion. Set it so custom, so the
// conversion happens in two steps: v4i32 -> v4f32 -> v4f16
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
} else {
// when AArch64 doesn't have fullfp16 support, promote the input
// to i32 first.
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
}
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
// AArch64 doesn't have MUL.2d:
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
// Custom handling for some quad-vector types to detect MULL.
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
// Vector reductions
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
// Saturates
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
}
for (MVT VT : { MVT::v4f16, MVT::v2f32,
MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
}
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
// Likewise, narrowing and extending vector loads/stores aren't handled
// directly.
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
setOperationAction(ISD::MULHS, VT, Legal);
setOperationAction(ISD::MULHU, VT, Legal);
} else {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
}
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
// AArch64 has implementations of a lot of rounding-like FP operations.
for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
setOperationAction(ISD::FFLOOR, Ty, Legal);
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
setOperationAction(ISD::FCEIL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FTRUNC, Ty, Legal);
setOperationAction(ISD::FROUND, Ty, Legal);
}
if (Subtarget->hasFullFP16()) {
for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
setOperationAction(ISD::FFLOOR, Ty, Legal);
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
setOperationAction(ISD::FCEIL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FTRUNC, Ty, Legal);
setOperationAction(ISD::FROUND, Ty, Legal);
}
}
setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
}
if (Subtarget->hasSVE()) {
// FIXME: Add custom lowering of MLOAD to handle different passthrus (not a
// splat of 0 or undef) once vector selects supported in SVE codegen. See
// D68877 for more details.
for (MVT VT : MVT::integer_scalable_vector_valuetypes()) {
if (isTypeLegal(VT))
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
}
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
}
PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
}
void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
assert(VT.isVector() && "VT should be a vector type");
if (VT.isFloatingPoint()) {
MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
}
// Mark vector float intrinsics as expand.
if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
// But we do support custom-lowering for FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
}
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
for (MVT InnerVT : MVT::all_valuetypes())
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
// CNT supports only B element sizes, then use UADDLP to widen.
if (VT != MVT::v8i8 && VT != MVT::v16i8)
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
if (!VT.isFloatingPoint())
setOperationAction(ISD::ABS, VT, Legal);
// [SU][MIN|MAX] are available for all NEON types apart from i64.
if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
setOperationAction(Opcode, VT, Legal);
// F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
if (VT.isFloatingPoint() &&
(VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
for (unsigned Opcode :
{ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
setOperationAction(Opcode, VT, Legal);
if (Subtarget->isLittleEndian()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
}
}
}
void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
addRegisterClass(VT, &AArch64::FPR64RegClass);
addTypeForNEON(VT, MVT::v2i32);
}
void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
addRegisterClass(VT, &AArch64::FPR128RegClass);
addTypeForNEON(VT, MVT::v4i32);
}
EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
const APInt &Demanded,
TargetLowering::TargetLoweringOpt &TLO,
unsigned NewOpc) {
uint64_t OldImm = Imm, NewImm, Enc;
uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
// Return if the immediate is already all zeros, all ones, a bimm32 or a
// bimm64.
if (Imm == 0 || Imm == Mask ||
AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
return false;
unsigned EltSize = Size;
uint64_t DemandedBits = Demanded.getZExtValue();
// Clear bits that are not demanded.
Imm &= DemandedBits;
while (true) {
// The goal here is to set the non-demanded bits in a way that minimizes
// the number of switching between 0 and 1. In order to achieve this goal,
// we set the non-demanded bits to the value of the preceding demanded bits.
// For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
// non-demanded bit), we copy bit0 (1) to the least significant 'x',
// bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
// The final result is 0b11000011.
uint64_t NonDemandedBits = ~DemandedBits;
uint64_t InvertedImm = ~Imm & DemandedBits;
uint64_t RotatedImm =
((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
NonDemandedBits;
uint64_t Sum = RotatedImm + NonDemandedBits;
bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
uint64_t Ones = (Sum + Carry) & NonDemandedBits;
NewImm = (Imm | Ones) & Mask;
// If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
// or all-ones or all-zeros, in which case we can stop searching. Otherwise,
// we halve the element size and continue the search.
if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
break;
// We cannot shrink the element size any further if it is 2-bits.
if (EltSize == 2)
return false;
EltSize /= 2;
Mask >>= EltSize;
uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
// Return if there is mismatch in any of the demanded bits of Imm and Hi.
if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
return false;
// Merge the upper and lower halves of Imm and DemandedBits.
Imm |= Hi;
DemandedBits |= DemandedBitsHi;
}
++NumOptimizedImms;
// Replicate the element across the register width.
while (EltSize < Size) {
NewImm |= NewImm << EltSize;
EltSize *= 2;
}
(void)OldImm;
assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
"demanded bits should never be altered");
assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
// Create the new constant immediate node.
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue New;
// If the new constant immediate is all-zeros or all-ones, let the target
// independent DAG combine optimize this node.
if (NewImm == 0 || NewImm == OrigMask) {
New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
TLO.DAG.getConstant(NewImm, DL, VT));
// Otherwise, create a machine node so that target independent DAG combine
// doesn't undo this optimization.
} else {
Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
New = SDValue(
TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
}
return TLO.CombineTo(Op, New);
}
bool AArch64TargetLowering::targetShrinkDemandedConstant(
SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
// Delay this optimization to as late as possible.
if (!TLO.LegalOps)
return false;
if (!EnableOptimizeLogicalImm)
return false;
EVT VT = Op.getValueType();
if (VT.isVector())
return false;
unsigned Size = VT.getSizeInBits();
assert((Size == 32 || Size == 64) &&
"i32 or i64 is expected after legalization.");
// Exit early if we demand all bits.
if (Demanded.countPopulation() == Size)
return false;
unsigned NewOpc;
switch (Op.getOpcode()) {
default:
return false;
case ISD::AND:
NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
break;
case ISD::OR:
NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
break;
case ISD::XOR:
NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
break;
}
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
uint64_t Imm = C->getZExtValue();
return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
}
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them Known.
void AArch64TargetLowering::computeKnownBitsForTargetNode(
const SDValue Op, KnownBits &Known,
const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
case AArch64ISD::CSEL: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
break;
}
case AArch64ISD::LOADgot:
case AArch64ISD::ADDlow: {
if (!Subtarget->isTargetILP32())
break;
// In ILP32 mode all valid pointers are in the low 4GB of the address-space.
Known.Zero = APInt::getHighBitsSet(64, 32);
break;
}
case ISD::INTRINSIC_W_CHAIN: {
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
switch (IntID) {
default: return;
case Intrinsic::aarch64_ldaxr:
case Intrinsic::aarch64_ldxr: {
unsigned BitWidth = Known.getBitWidth();
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
return;
}
}
break;
}
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID: {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_neon_umaxv:
case Intrinsic::aarch64_neon_uminv: {
// Figure out the datatype of the vector operand. The UMINV instruction
// will zero extend the result, so we can mark as known zero all the
// bits larger than the element datatype. 32-bit or larget doesn't need
// this as those are legal types and will be handled by isel directly.
MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
unsigned BitWidth = Known.getBitWidth();
if (VT == MVT::v8i8 || VT == MVT::v16i8) {
assert(BitWidth >= 8 && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
Known.Zero |= Mask;
} else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
assert(BitWidth >= 16 && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
Known.Zero |= Mask;
}
break;
} break;
}
}
}
}
MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
EVT) const {
return MVT::i64;
}
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
bool *Fast) const {
if (Subtarget->requiresStrictAlign())
return false;
if (Fast) {
// Some CPUs are fine with unaligned stores except for 128-bit ones.
*Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
// See comments in performSTORECombine() for more details about
// these conditions.
// Code that uses clang vector extensions can mark that it
// wants unaligned accesses to be treated as fast by
// underspecifying alignment to be 1 or 2.
Align <= 2 ||
// Disregard v2i64. Memcpy lowering produces those and splitting
// them regresses performance on micro-benchmarks and olden/bh.
VT == MVT::v2i64;
}
return true;
}
// Same as above but handling LLTs instead.
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
bool *Fast) const {
if (Subtarget->requiresStrictAlign())
return false;
if (Fast) {
// Some CPUs are fine with unaligned stores except for 128-bit ones.
*Fast = !Subtarget->isMisaligned128StoreSlow() ||
Ty.getSizeInBytes() != 16 ||
// See comments in performSTORECombine() for more details about
// these conditions.
// Code that uses clang vector extensions can mark that it
// wants unaligned accesses to be treated as fast by
// underspecifying alignment to be 1 or 2.
Align <= 2 ||
// Disregard v2i64. Memcpy lowering produces those and splitting
// them regresses performance on micro-benchmarks and olden/bh.
Ty == LLT::vector(2, 64);
}
return true;
}
FastISel *
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return AArch64::createFastISel(funcInfo, libInfo);
}
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((AArch64ISD::NodeType)Opcode) {
case AArch64ISD::FIRST_NUMBER: break;
case AArch64ISD::CALL: return "AArch64ISD::CALL";
case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
case AArch64ISD::ADR: return "AArch64ISD::ADR";
case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
case AArch64ISD::ADC: return "AArch64ISD::ADC";
case AArch64ISD::SBC: return "AArch64ISD::SBC";
case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
case AArch64ISD::STRICT_FCMP: return "AArch64ISD::STRICT_FCMP";
case AArch64ISD::STRICT_FCMPE: return "AArch64ISD::STRICT_FCMPE";
case AArch64ISD::DUP: return "AArch64ISD::DUP";
case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
case AArch64ISD::BICi: return "AArch64ISD::BICi";
case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
case AArch64ISD::BSL: return "AArch64ISD::BSL";
case AArch64ISD::NEG: return "AArch64ISD::NEG";
case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
case AArch64ISD::REV16: return "AArch64ISD::REV16";
case AArch64ISD::REV32: return "AArch64ISD::REV32";
case AArch64ISD::REV64: return "AArch64ISD::REV64";
case AArch64ISD::EXT: return "AArch64ISD::EXT";
case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
case AArch64ISD::SMAXV_PRED: return "AArch64ISD::SMAXV_PRED";
case AArch64ISD::UMAXV_PRED: return "AArch64ISD::UMAXV_PRED";
case AArch64ISD::SMINV_PRED: return "AArch64ISD::SMINV_PRED";
case AArch64ISD::UMINV_PRED: return "AArch64ISD::UMINV_PRED";
case AArch64ISD::ORV_PRED: return "AArch64ISD::ORV_PRED";
case AArch64ISD::EORV_PRED: return "AArch64ISD::EORV_PRED";
case AArch64ISD::ANDV_PRED: return "AArch64ISD::ANDV_PRED";
case AArch64ISD::CLASTA_N: return "AArch64ISD::CLASTA_N";
case AArch64ISD::CLASTB_N: return "AArch64ISD::CLASTB_N";
case AArch64ISD::LASTA: return "AArch64ISD::LASTA";
case AArch64ISD::LASTB: return "AArch64ISD::LASTB";
case AArch64ISD::REV: return "AArch64ISD::REV";
case AArch64ISD::TBL: return "AArch64ISD::TBL";
case AArch64ISD::NOT: return "AArch64ISD::NOT";
case AArch64ISD::BIT: return "AArch64ISD::BIT";
case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS";
case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS";
case AArch64ISD::STG: return "AArch64ISD::STG";
case AArch64ISD::STZG: return "AArch64ISD::STZG";
case AArch64ISD::ST2G: return "AArch64ISD::ST2G";
case AArch64ISD::STZ2G: return "AArch64ISD::STZ2G";
case AArch64ISD::SUNPKHI: return "AArch64ISD::SUNPKHI";
case AArch64ISD::SUNPKLO: return "AArch64ISD::SUNPKLO";
case AArch64ISD::UUNPKHI: return "AArch64ISD::UUNPKHI";
case AArch64ISD::UUNPKLO: return "AArch64ISD::UUNPKLO";
case AArch64ISD::INSR: return "AArch64ISD::INSR";
case AArch64ISD::PTEST: return "AArch64ISD::PTEST";
case AArch64ISD::PTRUE: return "AArch64ISD::PTRUE";
case AArch64ISD::GLD1: return "AArch64ISD::GLD1";
case AArch64ISD::GLD1_SCALED: return "AArch64ISD::GLD1_SCALED";
case AArch64ISD::GLD1_SXTW: return "AArch64ISD::GLD1_SXTW";
case AArch64ISD::GLD1_UXTW: return "AArch64ISD::GLD1_UXTW";
case AArch64ISD::GLD1_SXTW_SCALED: return "AArch64ISD::GLD1_SXTW_SCALED";
case AArch64ISD::GLD1_UXTW_SCALED: return "AArch64ISD::GLD1_UXTW_SCALED";
case AArch64ISD::GLD1_IMM: return "AArch64ISD::GLD1_IMM";
case AArch64ISD::GLD1S: return "AArch64ISD::GLD1S";
case AArch64ISD::GLD1S_SCALED: return "AArch64ISD::GLD1S_SCALED";
case AArch64ISD::GLD1S_SXTW: return "AArch64ISD::GLD1S_SXTW";
case AArch64ISD::GLD1S_UXTW: return "AArch64ISD::GLD1S_UXTW";
case AArch64ISD::GLD1S_SXTW_SCALED: return "AArch64ISD::GLD1S_SXTW_SCALED";
case AArch64ISD::GLD1S_UXTW_SCALED: return "AArch64ISD::GLD1S_UXTW_SCALED";
case AArch64ISD::GLD1S_IMM: return "AArch64ISD::GLD1S_IMM";
case AArch64ISD::SST1: return "AArch64ISD::SST1";
case AArch64ISD::SST1_SCALED: return "AArch64ISD::SST1_SCALED";
case AArch64ISD::SST1_SXTW: return "AArch64ISD::SST1_SXTW";
case AArch64ISD::SST1_UXTW: return "AArch64ISD::SST1_UXTW";
case AArch64ISD::SST1_SXTW_SCALED: return "AArch64ISD::SST1_SXTW_SCALED";
case AArch64ISD::SST1_UXTW_SCALED: return "AArch64ISD::SST1_UXTW_SCALED";
case AArch64ISD::SST1_IMM: return "AArch64ISD::SST1_IMM";
case AArch64ISD::LDP: return "AArch64ISD::LDP";
case AArch64ISD::STP: return "AArch64ISD::STP";
}
return nullptr;
}
MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
MachineBasicBlock *MBB) const {
// We materialise the F128CSEL pseudo-instruction as some control flow and a
// phi node:
// OrigBB:
// [... previous instrs leading to comparison ...]
// b.ne TrueBB
// b EndBB
// TrueBB:
// ; Fallthrough
// EndBB:
// Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
DebugLoc DL = MI.getDebugLoc();
MachineFunction::iterator It = ++MBB->getIterator();
Register DestReg = MI.getOperand(0).getReg();
Register IfTrueReg = MI.getOperand(1).getReg();
Register IfFalseReg = MI.getOperand(2).getReg();
unsigned CondCode = MI.getOperand(3).getImm();
bool NZCVKilled = MI.getOperand(4).isKill();
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, TrueBB);
MF->insert(It, EndBB);
// Transfer rest of current basic-block to EndBB
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
MBB->end());
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
MBB->addSuccessor(TrueBB);
MBB->addSuccessor(EndBB);
// TrueBB falls through to the end.
TrueBB->addSuccessor(EndBB);
if (!NZCVKilled) {
TrueBB->addLiveIn(AArch64::NZCV);
EndBB->addLiveIn(AArch64::NZCV);
}
BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
.addReg(IfTrueReg)
.addMBB(TrueBB)
.addReg(IfFalseReg)
.addMBB(MBB);
MI.eraseFromParent();
return EndBB;
}
MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
MachineInstr &MI, MachineBasicBlock *BB) const {
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
BB->getParent()->getFunction().getPersonalityFn())) &&
"SEH does not use catchret!");
return BB;
}
MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
MachineInstr &MI, MachineBasicBlock *BB) const {
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default:
#ifndef NDEBUG
MI.dump();
#endif
llvm_unreachable("Unexpected instruction for custom inserter!");
case AArch64::F128CSEL:
return EmitF128CSEL(MI, BB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
case AArch64::CATCHRET:
return EmitLoweredCatchRet(MI, BB);
case AArch64::CATCHPAD:
return EmitLoweredCatchPad(MI, BB);
}
}
//===----------------------------------------------------------------------===//
// AArch64 Lowering private implementation.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
/// CC
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unknown condition code!");
case ISD::SETNE:
return AArch64CC::NE;
case ISD::SETEQ:
return AArch64CC::EQ;
case ISD::SETGT:
return AArch64CC::GT;
case ISD::SETGE:
return AArch64CC::GE;
case ISD::SETLT:
return AArch64CC::LT;
case ISD::SETLE:
return AArch64CC::LE;
case ISD::SETUGT:
return AArch64CC::HI;
case ISD::SETUGE:
return AArch64CC::HS;
case ISD::SETULT:
return AArch64CC::LO;
case ISD::SETULE:
return AArch64CC::LS;
}
}
/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
static void changeFPCCToAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (CC) {
default:
llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ:
CondCode = AArch64CC::EQ;
break;
case ISD::SETGT:
case ISD::SETOGT:
CondCode = AArch64CC::GT;
break;
case ISD::SETGE:
case ISD::SETOGE:
CondCode = AArch64CC::GE;
break;
case ISD::SETOLT:
CondCode = AArch64CC::MI;
break;
case ISD::SETOLE:
CondCode = AArch64CC::LS;
break;
case ISD::SETONE:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GT;
break;
case ISD::SETO:
CondCode = AArch64CC::VC;
break;
case ISD::SETUO:
CondCode = AArch64CC::VS;
break;
case ISD::SETUEQ:
CondCode = AArch64CC::EQ;
CondCode2 = AArch64CC::VS;
break;
case ISD::SETUGT:
CondCode = AArch64CC::HI;
break;
case ISD::SETUGE:
CondCode = AArch64CC::PL;
break;
case ISD::SETLT:
case ISD::SETULT:
CondCode = AArch64CC::LT;
break;
case ISD::SETLE:
case ISD::SETULE:
CondCode = AArch64CC::LE;
break;
case ISD::SETNE:
case ISD::SETUNE:
CondCode = AArch64CC::NE;
break;
}
}
/// Convert a DAG fp condition code to an AArch64 CC.
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
/// should be AND'ed instead of OR'ed.
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (CC) {
default:
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
assert(CondCode2 == AArch64CC::AL);
break;
case ISD::SETONE:
// (a one b)
// == ((a olt b) || (a ogt b))
// == ((a ord b) && (a une b))
CondCode = AArch64CC::VC;
CondCode2 = AArch64CC::NE;
break;
case ISD::SETUEQ:
// (a ueq b)
// == ((a uno b) || (a oeq b))
// == ((a ule b) && (a uge b))
CondCode = AArch64CC::PL;
CondCode2 = AArch64CC::LE;
break;
}
}
/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
/// CC usable with the vector instructions. Fewer operations are available
/// without a real NZCV register, so we have to use less efficient combinations
/// to get the same effect.
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2,
bool &Invert) {
Invert = false;
switch (CC) {
default:
// Mostly the scalar mappings work fine.
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
break;
case ISD::SETUO:
Invert = true;
LLVM_FALLTHROUGH;
case ISD::SETO:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GE;
break;
case ISD::SETUEQ:
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE:
// All of the compare-mask comparisons are ordered, but we can switch
// between the two by a double inversion. E.g. ULE == !OGT.
Invert = true;
changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
CondCode, CondCode2);
break;
}
}
static bool isLegalArithImmed(uint64_t C) {
// Matches AArch64DAGToDAGISel::SelectArithImmed().
bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
LLVM_DEBUG(dbgs() << "Is imm " << C
<< " legal: " << (IsLegal ? "yes\n" : "no\n"));
return IsLegal;
}
// Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
// the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
// can be set differently by this operation. It comes down to whether
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
// everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
//
// So, finally, the only LLVM-native comparisons that don't mention C and V
// are SETEQ and SETNE. They're the only ones we can safely use CMN for in
// the absence of information about op2.
static bool isCMN(SDValue Op, ISD::CondCode CC) {
return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
(CC == ISD::SETEQ || CC == ISD::SETNE);
}
static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl,
SelectionDAG &DAG, SDValue Chain,
bool IsSignaling) {
EVT VT = LHS.getValueType();
assert(VT != MVT::f128);
assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented");
unsigned Opcode =
IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP;
return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS});
}
static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG) {
EVT VT = LHS.getValueType();
const bool FullFP16 =
static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
if (VT.isFloatingPoint()) {
assert(VT != MVT::f128);
if (VT == MVT::f16 && !FullFP16) {
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
VT = MVT::f32;
}
return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
}
// The CMP instruction is just an alias for SUBS, and representing it as
// SUBS means that it's possible to get CSE with subtract operations.
// A later phase can perform the optimization of setting the destination
// register to WZR/XZR if it ends up being unused.
unsigned Opcode = AArch64ISD::SUBS;
if (isCMN(RHS, CC)) {
// Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
Opcode = AArch64ISD::ADDS;
RHS = RHS.getOperand(1);
} else if (isCMN(LHS, CC)) {
// As we are looking for EQ/NE compares, the operands can be commuted ; can
// we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
Opcode = AArch64ISD::ADDS;
LHS = LHS.getOperand(1);
} else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
!isUnsignedIntSetCC(CC)) {
// Similarly, (CMP (and X, Y), 0) can be implemented with a TST
// (a.k.a. ANDS) except that the flags are only guaranteed to work for one
// of the signed comparisons.
Opcode = AArch64ISD::ANDS;
RHS = LHS.getOperand(1);
LHS = LHS.getOperand(0);
}
return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
.getValue(1);
}
/// \defgroup AArch64CCMP CMP;CCMP matching
///
/// These functions deal with the formation of CMP;CCMP;... sequences.
/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
/// a comparison. They set the NZCV flags to a predefined value if their
/// predicate is false. This allows to express arbitrary conjunctions, for
/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
/// expressed as:
/// cmp A
/// ccmp B, inv(CB), CA
/// check for CB flags
///
/// This naturally lets us implement chains of AND operations with SETCC
/// operands. And we can even implement some other situations by transforming
/// them:
/// - We can implement (NEG SETCC) i.e. negating a single comparison by
/// negating the flags used in a CCMP/FCCMP operations.
/// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
/// by negating the flags we test for afterwards. i.e.
/// NEG (CMP CCMP CCCMP ...) can be implemented.
/// - Note that we can only ever negate all previously processed results.
/// What we can not implement by flipping the flags to test is a negation
/// of two sub-trees (because the negation affects all sub-trees emitted so
/// far, so the 2nd sub-tree we emit would also affect the first).
/// With those tools we can implement some OR operations:
/// - (OR (SETCC A) (SETCC B)) can be implemented via:
/// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
/// - After transforming OR to NEG/AND combinations we may be able to use NEG
/// elimination rules from earlier to implement the whole thing as a
/// CCMP/FCCMP chain.
///
/// As complete example:
/// or (or (setCA (cmp A)) (setCB (cmp B)))
/// (and (setCC (cmp C)) (setCD (cmp D)))"
/// can be reassociated to:
/// or (and (setCC (cmp C)) setCD (cmp D))
// (or (setCA (cmp A)) (setCB (cmp B)))
/// can be transformed to:
/// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
/// which can be implemented as:
/// cmp C
/// ccmp D, inv(CD), CC
/// ccmp A, CA, inv(CD)
/// ccmp B, CB, inv(CA)
/// check for CB flags
///
/// A counterexample is "or (and A B) (and C D)" which translates to
/// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
/// can only implement 1 of the inner (not) operations, but not both!
/// @{
/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue CCOp,
AArch64CC::CondCode Predicate,
AArch64CC::CondCode OutCC,
const SDLoc &DL, SelectionDAG &DAG) {
unsigned Opcode = 0;
const bool FullFP16 =
static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
if (LHS.getValueType().isFloatingPoint()) {
assert(LHS.getValueType() != MVT::f128);
if (LHS.getValueType() == MVT::f16 && !FullFP16) {
LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
}
Opcode = AArch64ISD::FCCMP;
} else if (RHS.getOpcode() == ISD::SUB) {
SDValue SubOp0 = RHS.getOperand(0);
if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
// See emitComparison() on why we can only do this for SETEQ and SETNE.
Opcode = AArch64ISD::CCMN;
RHS = RHS.getOperand(1);
}
}
if (Opcode == 0)
Opcode = AArch64ISD::CCMP;
SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
}
/// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
/// expressed as a conjunction. See \ref AArch64CCMP.
/// \param CanNegate Set to true if we can negate the whole sub-tree just by
/// changing the conditions on the SETCC tests.
/// (this means we can call emitConjunctionRec() with
/// Negate==true on this sub-tree)
/// \param MustBeFirst Set to true if this subtree needs to be negated and we
/// cannot do the negation naturally. We are required to
/// emit the subtree first in this case.
/// \param WillNegate Is true if are called when the result of this
/// subexpression must be negated. This happens when the
/// outer expression is an OR. We can use this fact to know
/// that we have a double negation (or (or ...) ...) that
/// can be implemented for free.
static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
bool &MustBeFirst, bool WillNegate,
unsigned Depth = 0) {
if (!Val.hasOneUse())
return false;
unsigned Opcode = Val->getOpcode();
if (Opcode == ISD::SETCC) {
if (Val->getOperand(0).getValueType() == MVT::f128)
return false;
CanNegate = true;
MustBeFirst = false;
return true;
}
// Protect against exponential runtime and stack overflow.
if (Depth > 6)
return false;
if (Opcode == ISD::AND || Opcode == ISD::OR) {
bool IsOR = Opcode == ISD::OR;
SDValue O0 = Val->getOperand(0);
SDValue O1 = Val->getOperand(1);
bool CanNegateL;
bool MustBeFirstL;
if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
return false;
bool CanNegateR;
bool MustBeFirstR;
if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
return false;
if (MustBeFirstL && MustBeFirstR)
return false;
if (IsOR) {
// For an OR expression we need to be able to naturally negate at least
// one side or we cannot do the transformation at all.
if (!CanNegateL && !CanNegateR)
return false;
// If we the result of the OR will be negated and we can naturally negate
// the leafs, then this sub-tree as a whole negates naturally.
CanNegate = WillNegate && CanNegateL && CanNegateR;
// If we cannot naturally negate the whole sub-tree, then this must be
// emitted first.
MustBeFirst = !CanNegate;
} else {
assert(Opcode == ISD::AND && "Must be OR or AND");
// We cannot naturally negate an AND operation.
CanNegate = false;
MustBeFirst = MustBeFirstL || MustBeFirstR;
}
return true;
}
return false;
}
/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
/// Tries to transform the given i1 producing node @p Val to a series compare
/// and conditional compare operations. @returns an NZCV flags producing node
/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
/// transformation was not possible.
/// \p Negate is true if we want this sub-tree being negated just by changing
/// SETCC conditions.
static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
AArch64CC::CondCode Predicate) {
// We're at a tree leaf, produce a conditional comparison operation.
unsigned Opcode = Val->getOpcode();
if (Opcode == ISD::SETCC) {
SDValue LHS = Val->getOperand(0);
SDValue RHS = Val->getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
bool isInteger = LHS.getValueType().isInteger();
if (Negate)
CC = getSetCCInverse(CC, LHS.getValueType());
SDLoc DL(Val);
// Determine OutCC and handle FP special case.
if (isInteger) {
OutCC = changeIntCCToAArch64CC(CC);
} else {
assert(LHS.getValueType().isFloatingPoint());
AArch64CC::CondCode ExtraCC;
changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
// Some floating point conditions can't be tested with a single condition
// code. Construct an additional comparison in this case.
if (ExtraCC != AArch64CC::AL) {
SDValue ExtraCmp;
if (!CCOp.getNode())
ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
else
ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
ExtraCC, DL, DAG);
CCOp = ExtraCmp;
Predicate = ExtraCC;
}
}
// Produce a normal comparison if we are first in the chain
if (!CCOp)
return emitComparison(LHS, RHS, CC, DL, DAG);
// Otherwise produce a ccmp.
return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
DAG);
}
assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
bool IsOR = Opcode == ISD::OR;
SDValue LHS = Val->getOperand(0);
bool CanNegateL;
bool MustBeFirstL;
bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
assert(ValidL && "Valid conjunction/disjunction tree");
(void)ValidL;
SDValue RHS = Val->getOperand(1);
bool CanNegateR;
bool MustBeFirstR;
bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
assert(ValidR && "Valid conjunction/disjunction tree");
(void)ValidR;
// Swap sub-tree that must come first to the right side.
if (MustBeFirstL) {
assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
std::swap(LHS, RHS);
std::swap(CanNegateL, CanNegateR);
std::swap(MustBeFirstL, MustBeFirstR);
}
bool NegateR;
bool NegateAfterR;
bool NegateL;
bool NegateAfterAll;
if (Opcode == ISD::OR) {
// Swap the sub-tree that we can negate naturally to the left.
if (!CanNegateL) {
assert(CanNegateR && "at least one side must be negatable");
assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
assert(!Negate);
std::swap(LHS, RHS);
NegateR = false;
NegateAfterR = true;
} else {
// Negate the left sub-tree if possible, otherwise negate the result.
NegateR = CanNegateR;
NegateAfterR = !CanNegateR;
}
NegateL = true;
NegateAfterAll = !Negate;
} else {
assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
assert(!Negate && "Valid conjunction/disjunction tree");
NegateL = false;
NegateR = false;
NegateAfterR = false;
NegateAfterAll = false;
}
// Emit sub-trees.
AArch64CC::CondCode RHSCC;
SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
if (NegateAfterR)
RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
if (NegateAfterAll)
OutCC = AArch64CC::getInvertedCondCode(OutCC);
return CmpL;
}
/// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
/// In some cases this is even possible with OR operations in the expression.
/// See \ref AArch64CCMP.
/// \see emitConjunctionRec().
static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
AArch64CC::CondCode &OutCC) {
bool DummyCanNegate;
bool DummyMustBeFirst;
if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
return SDValue();
return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
}
/// @}
/// Returns how profitable it is to fold a comparison's operand's shift and/or
/// extension operations.
static unsigned getCmpOperandFoldingProfit(SDValue Op) {
auto isSupportedExtend = [&](SDValue V) {
if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
return true;
if (V.getOpcode() == ISD::AND)
if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
uint64_t Mask = MaskCst->getZExtValue();
return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
}
return false;
};
if (!Op.hasOneUse())
return 0;
if (isSupportedExtend(Op))
return 1;
unsigned Opc = Op.getOpcode();
if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t Shift = ShiftCst->getZExtValue();
if (isSupportedExtend(Op.getOperand(0)))
return (Shift <= 4) ? 2 : 1;
EVT VT = Op.getValueType();
if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
return 1;
}
return 0;
}
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &AArch64cc, SelectionDAG &DAG,
const SDLoc &dl) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
EVT VT = RHS.getValueType();
uint64_t C = RHSC->getZExtValue();
if (!isLegalArithImmed(C)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default:
break;
case ISD::SETLT:
case ISD::SETGE:
if ((VT == MVT::i32 && C != 0x80000000 &&
isLegalArithImmed((uint32_t)(C - 1))) ||
(VT == MVT::i64 && C != 0x80000000ULL &&
isLegalArithImmed(C - 1ULL))) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if ((VT == MVT::i32 && C != 0 &&
isLegalArithImmed((uint32_t)(C - 1))) ||
(VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if ((VT == MVT::i32 && C != INT32_MAX &&
isLegalArithImmed((uint32_t)(C + 1))) ||
(VT == MVT::i64 && C != INT64_MAX &&
isLegalArithImmed(C + 1ULL))) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if ((VT == MVT::i32 && C != UINT32_MAX &&
isLegalArithImmed((uint32_t)(C + 1))) ||
(VT == MVT::i64 && C != UINT64_MAX &&
isLegalArithImmed(C + 1ULL))) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
}
}
}
// Comparisons are canonicalized so that the RHS operand is simpler than the
// LHS one, the extreme case being when RHS is an immediate. However, AArch64
// can fold some shift+extend operations on the RHS operand, so swap the
// operands if that can be done.
//
// For example:
// lsl w13, w11, #1
// cmp w13, w12
// can be turned into:
// cmp w12, w11, lsl #1
if (!isa<ConstantSDNode>(RHS) ||
!isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
std::swap(LHS, RHS);
CC = ISD::getSetCCSwappedOperands(CC);
}
}
SDValue Cmp;
AArch64CC::CondCode AArch64CC;
if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
// The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
// For the i8 operand, the largest immediate is 255, so this can be easily
// encoded in the compare instruction. For the i16 operand, however, the
// largest immediate cannot be encoded in the compare.
// Therefore, use a sign extending load and cmn to avoid materializing the
// -1 constant. For example,
// movz w1, #65535
// ldrh w0, [x0, #0]
// cmp w0, w1
// >
// ldrsh w0, [x0, #0]
// cmn w0, #1
// Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
// if and only if (sext LHS) == (sext RHS). The checks are in place to
// ensure both the LHS and RHS are truly zero extended and to make sure the
// transformation is profitable.
if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
LHS.getNode()->hasNUsesOfValue(1, 0)) {
int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
SDValue SExt =
DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
DAG.getValueType(MVT::i16));
Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
RHS.getValueType()),
CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
}
}
if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
}
}
}
if (!Cmp) {
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
}
AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
return Cmp;
}
static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
"Unsupported value type");
SDValue Value, Overflow;
SDLoc DL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
unsigned Opc = 0;
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::SADDO:
Opc = AArch64ISD::ADDS;
CC = AArch64CC::VS;
break;
case ISD::UADDO:
Opc = AArch64ISD::ADDS;
CC = AArch64CC::HS;
break;
case ISD::SSUBO:
Opc = AArch64ISD::SUBS;
CC = AArch64CC::VS;
break;
case ISD::USUBO:
Opc = AArch64ISD::SUBS;
CC = AArch64CC::LO;
break;
// Multiply needs a little bit extra work.
case ISD::SMULO:
case ISD::UMULO: {
CC = AArch64CC::NE;
bool IsSigned = Op.getOpcode() == ISD::SMULO;
if (Op.getValueType() == MVT::i32) {
unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
// For a 32 bit multiply with overflow check we want the instruction
// selector to generate a widening multiply (SMADDL/UMADDL). For that we
// need to generate the following pattern:
// (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
DAG.getConstant(0, DL, MVT::i64));
// On AArch64 the upper 32 bits are always zero extended for a 32 bit
// operation. We need to clear out the upper 32 bits, because we used a
// widening multiply that wrote all 64 bits. In the end this should be a
// noop.
Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
if (IsSigned) {
// The signed overflow check requires more than just a simple check for
// any bit set in the upper 32 bits of the result. These bits could be
// just the sign bits of a negative number. To perform the overflow
// check we have to arithmetic shift right the 32nd bit of the result by
// 31 bits. Then we compare the result to the upper 32 bits.
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
DAG.getConstant(32, DL, MVT::i64));
UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
DAG.getConstant(31, DL, MVT::i64));
// It is important that LowerBits is last, otherwise the arithmetic
// shift will not be folded into the compare (SUBS).
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
.getValue(1);
} else {
// The overflow check for unsigned multiply is easy. We only need to
// check if any of the upper 32 bits are set. This can be done with a
// CMP (shifted register). For that we need to generate the following
// pattern:
// (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
DAG.getConstant(32, DL, MVT::i64));
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
Overflow =
DAG.getNode(AArch64ISD::SUBS, DL, VTs,
DAG.getConstant(0, DL, MVT::i64),
UpperBits).getValue(1);
}
break;
}
assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
// For the 64 bit multiply
Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
if (IsSigned) {
SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
DAG.getConstant(63, DL, MVT::i64));
// It is important that LowerBits is last, otherwise the arithmetic
// shift will not be folded into the compare (SUBS).
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
.getValue(1);
} else {
SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
Overflow =
DAG.getNode(AArch64ISD::SUBS, DL, VTs,
DAG.getConstant(0, DL, MVT::i64),
UpperBits).getValue(1);
}
break;
}
} // switch (...)
if (Opc) {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
// Emit the AArch64 operation with overflow check.
Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
Overflow = Value.getValue(1);
}
return std::make_pair(Value, Overflow);
}
SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
RTLIB::Libcall Call) const {
bool IsStrict = Op->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end());
MakeLibCallOptions CallOptions;
SDValue Result;
SDLoc dl(Op);
std::tie(Result, Chain) = makeLibCall(DAG, Call, Op.getValueType(), Ops,
CallOptions, dl, Chain);
return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result;
}
// Returns true if the given Op is the overflow flag result of an overflow
// intrinsic operation.
static bool isOverflowIntrOpRes(SDValue Op) {
unsigned Opc = Op.getOpcode();
return (Op.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
}
static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
SDValue Sel = Op.getOperand(0);
SDValue Other = Op.getOperand(1);
SDLoc dl(Sel);
// If the operand is an overflow checking operation, invert the condition
// code and kill the Not operation. I.e., transform:
// (xor (overflow_op_bool, 1))
// -->
// (csel 1, 0, invert(cc), overflow_op_bool)
// ... which later gets transformed to just a cset instruction with an
// inverted condition code, rather than a cset + eor sequence.
if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
return SDValue();
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
AArch64CC::CondCode CC;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
CCVal, Overflow);
}
// If neither operand is a SELECT_CC, give up.
if (Sel.getOpcode() != ISD::SELECT_CC)
std::swap(Sel, Other);
if (Sel.getOpcode() != ISD::SELECT_CC)
return Op;
// The folding we want to perform is:
// (xor x, (select_cc a, b, cc, 0, -1) )
// -->
// (csel x, (xor x, -1), cc ...)
//
// The latter will get matched to a CSINV instruction.
ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
SDValue LHS = Sel.getOperand(0);
SDValue RHS = Sel.getOperand(1);
SDValue TVal = Sel.getOperand(2);
SDValue FVal = Sel.getOperand(3);
// FIXME: This could be generalized to non-integer comparisons.
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
return Op;
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
// The values aren't constants, this isn't the pattern we're looking for.
if (!CFVal || !CTVal)
return Op;
// We can commute the SELECT_CC by inverting the condition. This
// might be needed to make this fit into a CSINV pattern.
if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
// If the constants line up, perform the transform!
if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
FVal = Other;
TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
DAG.getConstant(-1ULL, dl, Other.getValueType()));
return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
CCVal, Cmp);
}
return Op;
}
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
unsigned Opc;
bool ExtraOp = false;
switch (Op.getOpcode()) {
default:
llvm_unreachable("Invalid code");
case ISD::ADDC:
Opc = AArch64ISD::ADDS;
break;
case ISD::SUBC:
Opc = AArch64ISD::SUBS;
break;
case ISD::ADDE:
Opc = AArch64ISD::ADCS;
ExtraOp = true;
break;
case ISD::SUBE:
Opc = AArch64ISD::SBCS;
ExtraOp = true;
break;
}
if (!ExtraOp)
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
Op.getOperand(2));
}
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDLoc dl(Op);
AArch64CC::CondCode CC;
// The actual operation that sets the overflow or carry flag.
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
// We use 0 and 1 as false and true values.
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
// We use an inverted condition, because the conditional select is inverted
// too. This will allow it to be selected to a single instruction:
// CSINC Wd, WZR, WZR, invert(cond).
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
CCVal, Overflow);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
// Prefetch operands are:
// 1: Address to prefetch
// 2: bool isWrite
// 3: int locality (0 = no locality ... 3 = extreme locality)
// 4: bool isDataCache
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
bool IsStream = !Locality;
// When the locality number is set
if (Locality) {
// The front-end should have filtered out the out-of-range values
assert(Locality <= 3 && "Prefetch locality out-of-range");
// The locality degree is the opposite of the cache speed.
// Put the number the other way around.
// The encoding starts at 0 for level 1
Locality = 3 - Locality;
}
// built the mask value encoding the expected behavior.
unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
(!IsData << 3) | // IsDataCache bit
(Locality << 1) | // Cache level bits
(unsigned)IsStream; // Stream bit
return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
}
SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
RTLIB::Libcall LC;
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128Call(Op, DAG, LC);
}
SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
if (SrcVal.getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
RTLIB::Libcall LC;
LC = RTLIB::getFPROUND(SrcVal.getValueType(), Op.getValueType());
// FP_ROUND node has a second operand indicating whether it is known to be
// precise. That doesn't take part in the LibCall so we can't directly use
// LowerF128Call.
MakeLibCallOptions CallOptions;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
SDValue Result;
SDLoc dl(Op);
std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
CallOptions, dl, Chain);
return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result;
}
SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
SelectionDAG &DAG) const {
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
// Any additional optimization in this function should be recorded
// in the cost tables.
EVT InVT = Op.getOperand(0).getValueType();
EVT VT = Op.getValueType();
unsigned NumElts = InVT.getVectorNumElements();
// f16 conversions are promoted to f32 when full fp16 is not supported.
if (InVT.getVectorElementType() == MVT::f16 &&
!Subtarget->hasFullFP16()) {
MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
SDLoc dl(Op);
return DAG.getNode(
Op.getOpcode(), dl, Op.getValueType(),
DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
}
if (VT.getSizeInBits() < InVT.getSizeInBits()) {
SDLoc dl(Op);
SDValue Cv =
DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
Op.getOperand(0));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
}
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
SDLoc dl(Op);
MVT ExtVT =
MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
VT.getVectorNumElements());
SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
}
// Type changing conversions are illegal.
return Op;
}
SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
if (SrcVal.getValueType().isVector())
return LowerVectorFP_TO_INT(Op, DAG);
// f16 conversions are promoted to f32 when full fp16 is not supported.
if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
SDLoc dl(Op);
return DAG.getNode(
Op.getOpcode(), dl, Op.getValueType(),
DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal));
}
if (SrcVal.getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::FP_TO_SINT ||
Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType());
else
LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType());
return LowerF128Call(Op, DAG, LC);
}
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
// Any additional optimization in this function should be recorded
// in the cost tables.
EVT VT = Op.getValueType();
SDLoc dl(Op);
SDValue In = Op.getOperand(0);
EVT InVT = In.getValueType();
if (VT.getSizeInBits() < InVT.getSizeInBits()) {
MVT CastVT =
MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
InVT.getVectorNumElements());
In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
}
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
unsigned CastOpc =
Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
EVT CastVT = VT.changeVectorElementTypeToInteger();
In = DAG.getNode(CastOpc, dl, CastVT, In);
return DAG.getNode(Op.getOpcode(), dl, VT, In);
}
return Op;
}
SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return LowerVectorINT_TO_FP(Op, DAG);
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
// f16 conversions are promoted to f32 when full fp16 is not supported.
if (Op.getValueType() == MVT::f16 &&
!Subtarget->hasFullFP16()) {
assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
SDLoc dl(Op);
return DAG.getNode(
ISD::FP_ROUND, dl, MVT::f16,
DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal),
DAG.getIntPtrConstant(0, dl));
}
// i128 conversions are libcalls.
if (SrcVal.getValueType() == MVT::i128)
return SDValue();
// Other conversions are legal, unless it's to the completely software-based
// fp128.
if (Op.getValueType() != MVT::f128)
return Op;
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::SINT_TO_FP ||
Op.getOpcode() == ISD::STRICT_SINT_TO_FP)
LC = RTLIB::getSINTTOFP(SrcVal.getValueType(), Op.getValueType());
else
LC = RTLIB::getUINTTOFP(SrcVal.getValueType(), Op.getValueType());
return LowerF128Call(Op, DAG, LC);
}
SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
SelectionDAG &DAG) const {
// For iOS, we want to call an alternative entry point: __sincos_stret,
// which returns the values in two S / D registers.
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32;
const char *LibcallName = getLibcallName(LC);
SDValue Callee =
DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
StructType *RetTy = StructType::get(ArgTy, ArgTy);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.first;
}
static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType() != MVT::f16)
return SDValue();
assert(Op.getOperand(0).getValueType() == MVT::i16);
SDLoc DL(Op);
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
return SDValue(
DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
0);
}
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
if (OrigVT.getSizeInBits() >= 64)
return OrigVT;
assert(OrigVT.isSimple() && "Expecting a simple value type");
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
switch (OrigSimpleTy) {
default: llvm_unreachable("Unexpected Vector Type");
case MVT::v2i8:
case MVT::v2i16:
return MVT::v2i32;
case MVT::v4i8:
return MVT::v4i16;
}
}
static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
const EVT &OrigTy,
const EVT &ExtTy,
unsigned ExtOpcode) {
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
// 64-bits we need to insert a new extension so that it will be 64-bits.
assert(ExtTy.is128BitVector() && "Unexpected extension size");
if (OrigTy.getSizeInBits() >= 64)
return N;
// Must extend size to at least 64 bits to be used as an operand for VMULL.
EVT NewVT = getExtensionTo64Bits(OrigTy);
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
bool isSigned) {
EVT VT = N->getValueType(0);
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (const SDValue &Elt : N->op_values()) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
unsigned EltSize = VT.getScalarSizeInBits();
unsigned HalfSize = EltSize / 2;
if (isSigned) {
if (!isIntN(HalfSize, C->getSExtValue()))
return false;
} else {
if (!isUIntN(HalfSize, C->getZExtValue()))
return false;
}
continue;
}
return false;
}
return true;
}
static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
N->getOperand(0)->getValueType(0),
N->getValueType(0),
N->getOpcode());
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
EVT VT = N->getValueType(0);
SDLoc dl(N);
unsigned EltSize = VT.getScalarSizeInBits() / 2;
unsigned NumElts = VT.getVectorNumElements();
MVT TruncVT = MVT::getIntegerVT(EltSize);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i != NumElts; ++i) {
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
const APInt &CInt = C->getAPIntValue();
// Element types smaller than 32 bits are not legal, so use i32 elements.
// The values are implicitly truncated so sext vs. zext doesn't matter.
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
}
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
return N->getOpcode() == ISD::SIGN_EXTEND ||
isExtendedBUILD_VECTOR(N, DAG, true);
}
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
return N->getOpcode() == ISD::ZERO_EXTEND ||
isExtendedBUILD_VECTOR(N, DAG, false);
}
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
}
return false;
}
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
}
return false;
}
SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
// The rounding mode is in bits 23:22 of the FPSCR.
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
// so that the shift + and get folded into a bitfield extract.
SDLoc dl(Op);
SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
MVT::i64));
SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
DAG.getConstant(1U << 22, dl, MVT::i32));
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
DAG.getConstant(22, dl, MVT::i32));
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
DAG.getConstant(3, dl, MVT::i32));
}
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
// Multiplications are only custom-lowered for 128-bit vectors so that
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
EVT VT = Op.getValueType();
assert(VT.is128BitVector() && VT.isInteger() &&
"unexpected type for custom-lowering ISD::MUL");
SDNode *N0 = Op.getOperand(0).getNode();
SDNode *N1 = Op.getOperand(1).getNode();
unsigned NewOpc = 0;
bool isMLA = false;
bool isN0SExt = isSignExtended(N0, DAG);
bool isN1SExt = isSignExtended(N1, DAG);
if (isN0SExt && isN1SExt)
NewOpc = AArch64ISD::SMULL;
else {
bool isN0ZExt = isZeroExtended(N0, DAG);
bool isN1ZExt = isZeroExtended(N1, DAG);
if (isN0ZExt && isN1ZExt)
NewOpc = AArch64ISD::UMULL;
else if (isN1SExt || isN1ZExt) {
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
if (isN1SExt && isAddSubSExt(N0, DAG)) {
NewOpc = AArch64ISD::SMULL;
isMLA = true;
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
NewOpc = AArch64ISD::UMULL;
isMLA = true;
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
std::swap(N0, N1);
NewOpc = AArch64ISD::UMULL;
isMLA = true;
}
}
if (!NewOpc) {
if (VT == MVT::v2i64)
// Fall through to expand this. It is not legal.
return SDValue();
else
// Other vector multiplications are legal.
return Op;
}
}
// Legalize to a S/UMULL instruction
SDLoc DL(Op);
SDValue Op0;
SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
if (!isMLA) {
Op0 = skipExtensionForVectorMULL(N0, DAG);
assert(Op0.getValueType().is64BitVector() &&
Op1.getValueType().is64BitVector() &&
"unexpected types for extended operands to VMULL");
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
}
// Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
// isel lowering to take advantage of no-stall back to back s/umul + s/umla.
// This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
EVT Op1VT = Op1.getValueType();
return DAG.getNode(N0->getOpcode(), DL, VT,
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}
SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
}
case Intrinsic::aarch64_neon_abs: {
EVT Ty = Op.getValueType();
if (Ty == MVT::i64) {
SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
Op.getOperand(1));
Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
} else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
} else {
report_fatal_error("Unexpected type for AArch64 NEON intrinic");
}
}
case Intrinsic::aarch64_neon_smax:
return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_umax:
return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_smin:
return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_umin:
return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_sunpkhi:
return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_sunpklo:
return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uunpkhi:
return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uunpklo:
return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_clasta_n:
return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::aarch64_sve_clastb_n:
return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::aarch64_sve_lasta:
return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_lastb:
return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_rev:
return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_tbl:
return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_trn1:
return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_trn2:
return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_uzp1:
return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_uzp2:
return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_zip1:
return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_zip2:
return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_ptrue:
return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_insr: {
SDValue Scalar = Op.getOperand(2);
EVT ScalarTy = Scalar.getValueType();
if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);
return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(),
Op.getOperand(1), Scalar);
}
case Intrinsic::localaddress: {
const auto &MF = DAG.getMachineFunction();
const auto *RegInfo = Subtarget->getRegisterInfo();
unsigned Reg = RegInfo->getLocalAddressRegister(MF);
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
Op.getSimpleValueType());
}
case Intrinsic::eh_recoverfp: {
// FIXME: This needs to be implemented to correctly handle highly aligned
// stack objects. For now we simply return the incoming FP. Refer D53541
// for more details.
SDValue FnOp = Op.getOperand(1);
SDValue IncomingFPOp = Op.getOperand(2);
GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
if (!Fn)
report_fatal_error(
"llvm.eh.recoverfp must take a function as the first argument");
return IncomingFPOp;
}
}
}
bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
return ExtVal.getValueType().isScalableVector();
}
// Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
EVT VT, EVT MemVT,
SelectionDAG &DAG) {
assert(VT.isVector() && "VT should be a vector type");
assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
SDValue Value = ST->getValue();
// It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
// the word lane which represent the v4i8 subvector. It optimizes the store
// to:
//
// xtn v0.8b, v0.8h
// str s0, [x0]
SDValue Undef = DAG.getUNDEF(MVT::i16);
SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
{Undef, Undef, Undef, Undef});
SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
Value, UndefVec);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
Trunc, DAG.getConstant(0, DL, MVT::i64));
return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
ST->getBasePtr(), ST->getMemOperand());
}
// Custom lowering for any store, vector or scalar and/or default or with
// a truncate operations. Currently only custom lower truncate operation
// from vector v4i16 to v4i8 or volatile stores of i128.
SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc Dl(Op);
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
assert (StoreNode && "Can only custom lower store nodes");
SDValue Value = StoreNode->getValue();
EVT VT = Value.getValueType();
EVT MemVT = StoreNode->getMemoryVT();
if (VT.isVector()) {
unsigned AS = StoreNode->getAddressSpace();
unsigned Align = StoreNode->getAlignment();
if (Align < MemVT.getStoreSize() &&
!allowsMisalignedMemoryAccesses(MemVT, AS, Align,
StoreNode->getMemOperand()->getFlags(),
nullptr)) {
return scalarizeVectorStore(StoreNode, DAG);
}
if (StoreNode->isTruncatingStore()) {
return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
}
} else if (MemVT == MVT::i128 && StoreNode->isVolatile()) {
assert(StoreNode->getValue()->getValueType(0) == MVT::i128);
SDValue Lo =
DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
DAG.getConstant(0, Dl, MVT::i64));
SDValue Hi =
DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
DAG.getConstant(1, Dl, MVT::i64));
SDValue Result = DAG.getMemIntrinsicNode(
AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other),
{StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
StoreNode->getMemoryVT(), StoreNode->getMemOperand());
return Result;
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
LLVM_DEBUG(dbgs() << "Custom lowering: ");
LLVM_DEBUG(Op.dump());
switch (Op.getOpcode()) {
default:
llvm_unreachable("unimplemented operand");
return SDValue();
case ISD::BITCAST:
return LowerBITCAST(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress:
return LowerGlobalTLSAddress(Op, DAG);
case ISD::SETCC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
return LowerSETCC(Op, DAG);
case ISD::BR_CC:
return LowerBR_CC(Op, DAG);
case ISD::SELECT:
return LowerSELECT(Op, DAG);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG);
case ISD::JumpTable:
return LowerJumpTable(Op, DAG);
case ISD::BR_JT:
return LowerBR_JT(Op, DAG);
case ISD::ConstantPool:
return LowerConstantPool(Op, DAG);
case ISD::BlockAddress:
return LowerBlockAddress(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG);
case ISD::VACOPY:
return LowerVACOPY(Op, DAG);
case ISD::VAARG:
return LowerVAARG(Op, DAG);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE:
return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
return LowerXALUO(Op, DAG);
case ISD::FADD:
return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
case ISD::FSUB:
return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
case ISD::FMUL:
return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
case ISD::FDIV:
return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND:
return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND:
return LowerFP_EXTEND(Op, DAG);
case ISD::FRAMEADDR:
return LowerFRAMEADDR(Op, DAG);
case ISD::SPONENTRY:
return LowerSPONENTRY(Op, DAG);
case ISD::RETURNADDR:
return LowerRETURNADDR(Op, DAG);
case ISD::ADDROFRETURNADDR:
return LowerADDROFRETURNADDR(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SPLAT_VECTOR:
return LowerSPLAT_VECTOR(Op, DAG);
case ISD::EXTRACT_SUBVECTOR:
return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::SRA:
case ISD::SRL:
case ISD::SHL:
return LowerVectorSRA_SRL_SHL(Op, DAG);
case ISD::SHL_PARTS:
return LowerShiftLeftParts(Op, DAG);
case ISD::SRL_PARTS:
case ISD::SRA_PARTS:
return LowerShiftRightParts(Op, DAG);
case ISD::CTPOP:
return LowerCTPOP(Op, DAG);
case ISD::FCOPYSIGN:
return LowerFCOPYSIGN(Op, DAG);
case ISD::OR:
return LowerVectorOR(Op, DAG);
case ISD::XOR:
return LowerXOR(Op, DAG);
case ISD::PREFETCH:
return LowerPREFETCH(Op, DAG);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
return LowerFP_TO_INT(Op, DAG);
case ISD::FSINCOS:
return LowerFSINCOS(Op, DAG);
case ISD::FLT_ROUNDS_:
return LowerFLT_ROUNDS_(Op, DAG);
case ISD::MUL:
return LowerMUL(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN:
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::STORE:
return LowerSTORE(Op, DAG);
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
return LowerVECREDUCE(Op, DAG);
case ISD::ATOMIC_LOAD_SUB:
return LowerATOMIC_LOAD_SUB(Op, DAG);
case ISD::ATOMIC_LOAD_AND:
return LowerATOMIC_LOAD_AND(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG);
}
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) const {
switch (CC) {
default:
report_fatal_error("Unsupported calling convention.");
case CallingConv::AArch64_SVE_VectorCall:
// Calling SVE functions is currently not yet supported.
report_fatal_error("Unsupported calling convention.");
case CallingConv::WebKit_JS:
return CC_AArch64_WebKit_JS;
case CallingConv::GHC:
return CC_AArch64_GHC;
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::PreserveMost:
case CallingConv::CXX_FAST_TLS:
case CallingConv::Swift:
if (Subtarget->isTargetWindows() && IsVarArg)
return CC_AArch64_Win64_VarArg;
if (!Subtarget->isTargetDarwin())
return CC_AArch64_AAPCS;
if (!IsVarArg)
return CC_AArch64_DarwinPCS;
return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
: CC_AArch64_DarwinPCS_VarArg;
case CallingConv::Win64:
return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
case CallingConv::CFGuard_Check:
return CC_AArch64_Win64_CFGuard_Check;
case CallingConv::AArch64_VectorCall:
return CC_AArch64_AAPCS;
}
}
CCAssignFn *
AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
}
SDValue AArch64TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
DenseMap<unsigned, SDValue> CopiedRegs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// At this point, Ins[].VT may already be promoted to i32. To correctly
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
// Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
// we use a special version of AnalyzeFormalArguments to pass in ValVT and
// LocVT.
unsigned NumArgs = Ins.size();
Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
unsigned CurArgIdx = 0;
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ValVT = Ins[i].VT;
if (Ins[i].isOrigArg()) {
std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[i].getOrigArgIndex();
// Get type of the original argument.
EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
/*AllowUnknown*/ true);
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
ValVT = MVT::i8;
else if (ActualMVT == MVT::i16)
ValVT = MVT::i16;
}
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
bool Res =
AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
assert(!Res && "Call operand has unhandled type");
(void)Res;
}
assert(ArgLocs.size() == Ins.size());
SmallVector<SDValue, 16> ArgValues;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (Ins[i].Flags.isByVal()) {
// Byval is used for HFAs in the PCS, but the system should work in a
// non-compliant manner for larger structs.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
int Size = Ins[i].Flags.getByValSize();
unsigned NumRegs = (Size + 7) / 8;
// FIXME: This works on big-endian for composite byvals, which are the common
// case. It should also work for fundamental types too.
unsigned FrameIdx =
MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
InVals.push_back(FrameIdxN);
continue;
}
SDValue ArgValue;
if (VA.isRegLoc()) {
// Arguments stored in registers.
EVT RegVT = VA.getLocVT();
const TargetRegisterClass *RC;
if (RegVT == MVT::i32)
RC = &AArch64::GPR32RegClass;
else if (RegVT == MVT::i64)
RC = &AArch64::GPR64RegClass;
else if (RegVT == MVT::f16)
RC = &AArch64::FPR16RegClass;
else if (RegVT == MVT::f32)
RC = &AArch64::FPR32RegClass;
else if (RegVT == MVT::f64 || RegVT.is64BitVector())
RC = &AArch64::FPR64RegClass;
else if (RegVT == MVT::f128 || RegVT.is128BitVector())
RC = &AArch64::FPR128RegClass;
else if (RegVT.isScalableVector() &&
RegVT.getVectorElementType() == MVT::i1)
RC = &AArch64::PPRRegClass;
else if (RegVT.isScalableVector())
RC = &AArch64::ZPRRegClass;
else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
// If this is an 8, 16 or 32-bit value, it is really passed promoted
// to 64 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::Indirect:
assert(VA.getValVT().isScalableVector() &&
"Only scalable vectors can be passed indirectly");
llvm_unreachable("Spilling of SVE vectors not yet implemented");
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
break;
case CCValAssign::AExt:
case CCValAssign::SExt:
case CCValAssign::ZExt:
break;
case CCValAssign::AExtUpper:
ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
DAG.getConstant(32, DL, RegVT));
ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
break;
}
} else { // VA.isRegLoc()
assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
unsigned ArgOffset = VA.getLocMemOffset();
unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
uint32_t BEAlign = 0;
if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
!Ins[i].Flags.isInConsecutiveRegs())
BEAlign = 8 - ArgSize;
int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
// For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
MVT MemVT = VA.getValVT();
switch (VA.getLocInfo()) {
default:
break;
case CCValAssign::Trunc:
case CCValAssign::BCvt:
MemVT = VA.getLocVT();
break;
case CCValAssign::Indirect:
assert(VA.getValVT().isScalableVector() &&
"Only scalable vectors can be passed indirectly");
llvm_unreachable("Spilling of SVE vectors not yet implemented");
case CCValAssign::SExt:
ExtType = ISD::SEXTLOAD;
break;
case CCValAssign::ZExt:
ExtType = ISD::ZEXTLOAD;
break;
case CCValAssign::AExt:
ExtType = ISD::EXTLOAD;
break;
}
ArgValue = DAG.getExtLoad(
ExtType, DL, VA.getLocVT(), Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
MemVT);
}
if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
ArgValue, DAG.getValueType(MVT::i32));
InVals.push_back(ArgValue);
}
// varargs
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
if (isVarArg) {
if (!Subtarget->isTargetDarwin() || IsWin64) {
// The AAPCS variadic function ABI is identical to the non-variadic
// one. As a result there may be more arguments in registers and we should
// save them for future reference.
// Win64 variadic functions also pass arguments in registers, but all float
// arguments are passed in integer registers.
saveVarArgRegisters(CCInfo, DAG, DL, Chain);
}
// This will point to the next argument passed via stack.
unsigned StackOffset = CCInfo.getNextStackOffset();
// We currently pass all varargs at 8-byte alignment, or 4 for ILP32
StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8);
FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
if (MFI.hasMustTailInVarArgFunc()) {
SmallVector<MVT, 2> RegParmTypes;
RegParmTypes.push_back(MVT::i64);
RegParmTypes.push_back(MVT::f128);
// Compute the set of forwarded registers. The rest are scratch.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
CC_AArch64_AAPCS);
// Conservatively forward X8, since it might be used for aggregate return.
if (!CCInfo.isAllocated(AArch64::X8)) {
unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
}
}
}
// On Windows, InReg pointers must be returned, so record the pointer in a
// virtual register at the start of the function so it can be returned in the
// epilogue.
if (IsWin64) {
for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
if (Ins[I].Flags.isInReg()) {
assert(!FuncInfo->getSRetReturnReg());
MVT PtrTy = getPointerTy(DAG.getDataLayout());
Register Reg =
MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
FuncInfo->setSRetReturnReg(Reg);
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
break;
}
}
}
unsigned StackArgSize = CCInfo.getNextStackOffset();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
// This is a non-standard ABI so by fiat I say we're allowed to make full
// use of the stack area to be popped, which must be aligned to 16 bytes in
// any case:
StackArgSize = alignTo(StackArgSize, 16);
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
// a multiple of 16.
FuncInfo->setArgumentStackToRestore(StackArgSize);
// This realignment carries over to the available bytes below. Our own
// callers will guarantee the space is free by giving an aligned value to
// CALLSEQ_START.
}
// Even if we're not expected to free up the space, it's useful to know how
// much is there while considering tail calls (because we can reuse it).
FuncInfo->setBytesInStackArgArea(StackArgSize);
if (Subtarget->hasCustomCallingConv())
Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
return Chain;
}
void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
SelectionDAG &DAG,
const SDLoc &DL,
SDValue &Chain) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
auto PtrVT = getPointerTy(DAG.getDataLayout());
bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
SmallVector<SDValue, 8> MemOps;
static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
AArch64::X3, AArch64::X4, AArch64::X5,
AArch64::X6, AArch64::X7 };
static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
int GPRIdx = 0;
if (GPRSaveSize != 0) {
if (IsWin64) {
GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
if (GPRSaveSize & 15)
// The extra size here, if triggered, will always be 8.
MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
} else
GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
SDValue Store = DAG.getStore(
Val.getValue(1), DL, Val, FIN,
IsWin64
? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
GPRIdx,
(i - FirstVariadicGPR) * 8)
: MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
MemOps.push_back(Store);
FIN =
DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
}
}
FuncInfo->setVarArgsGPRIndex(GPRIdx);
FuncInfo->setVarArgsGPRSize(GPRSaveSize);
if (Subtarget->hasFPARMv8() && !IsWin64) {
static const MCPhysReg FPRArgRegs[] = {
AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
int FPRIdx = 0;
if (FPRSaveSize != 0) {
FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
SDValue Store = DAG.getStore(
Val.getValue(1), DL, Val, FIN,
MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
DAG.getConstant(16, DL, PtrVT));
}
}
FuncInfo->setVarArgsFPRIndex(FPRIdx);
FuncInfo->setVarArgsFPRSize(FPRSaveSize);
}
if (!MemOps.empty()) {
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue AArch64TargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal) const {
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
DenseMap<unsigned, SDValue> CopiedRegs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Pass 'this' value directly from the argument to return value, to avoid
// reg unit interference
if (i == 0 && isThisReturn) {
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
"unexpected return calling convention register assignment");
InVals.push_back(ThisVal);
continue;
}
// Avoid copying a physreg twice since RegAllocFast is incompetent and only
// allows one use of a physreg per block.
SDValue Val = CopiedRegs.lookup(VA.getLocReg());
if (!Val) {
Val =
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
CopiedRegs[VA.getLocReg()] = Val;
}
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
case CCValAssign::AExtUpper:
Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
DAG.getConstant(32, DL, VA.getLocVT()));
LLVM_FALLTHROUGH;
case CCValAssign::AExt:
LLVM_FALLTHROUGH;
case CCValAssign::ZExt:
Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
break;
}
InVals.push_back(Val);
}
return Chain;
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
return CC == CallingConv::Fast;
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
case CallingConv::PreserveMost:
case CallingConv::Swift:
return true;
default:
return canGuaranteeTCO(CC);
}
}
bool AArch64TargetLowering::isEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
if (!mayTailCallThisCC(CalleeCC))
return false;
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible (see
// X86) but less efficient and uglier in LowerCall.
for (Function::const_arg_iterator i = CallerF.arg_begin(),
e = CallerF.arg_end();
i != e; ++i) {
if (i->hasByValAttr())
return false;
// On Windows, "inreg" attributes signify non-aggregate indirect returns.
// In this case, it is necessary to save/restore X0 in the callee. Tail
// call opt interferes with this. So we disable tail call opt when the
// caller has an argument with "inreg" attribute.
// FIXME: Check whether the callee also has an "inreg" argument.
if (i->hasInRegAttr())
return false;
}
if (getTargetMachine().Options.GuaranteedTailCallOpt)
return canGuaranteeTCO(CalleeCC) && CCMatch;
// Externally-defined functions with weak linkage should not be
// tail-called on AArch64 when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
const Triple &TT = getTargetMachine().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
return false;
}
// Now we search for cases where we can use a tail call without changing the
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
// concept.
// I want anyone implementing a new calling convention to think long and hard
// about this assert.
assert((!isVarArg || CalleeCC == CallingConv::C) &&
"Unexpected variadic calling convention");
LLVMContext &C = *DAG.getContext();
if (isVarArg && !Outs.empty()) {
// At least two cases here: if caller is fastcc then we can't have any
// memory arguments (we'd be expected to clean up the stack afterwards). If
// caller is C then we could potentially use its argument area.
// FIXME: for now we take the most conservative of these in both cases:
// disallow all variadic memory operands.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
for (const CCValAssign &ArgLoc : ArgLocs)
if (!ArgLoc.isRegLoc())
return false;
}
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
CCAssignFnForCall(CalleeCC, isVarArg),
CCAssignFnForCall(CallerCC, isVarArg)))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (Subtarget->hasCustomCallingConv()) {
TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
}
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// Nothing more to check if the callee is taking no arguments
if (Outs.empty())
return true;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
// If the stack arguments for this call do not fit into our own save area then
// the call cannot be made tail.
if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
return false;
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
return true;
}
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
SelectionDAG &DAG,
MachineFrameInfo &MFI,
int ClobberedFI) const {
SmallVector<SDValue, 8> ArgChains;
int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument corresponding
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
UE = DAG.getEntryNode().getNode()->use_end();
U != UE; ++U)
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0) {
int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
int64_t InLastByte = InFirstByte;
InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
ArgChains.push_back(SDValue(L, 1));
}
// Build a tokenfactor for all the chains.
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
bool TailCallOpt) const {
return CallCC == CallingConv::Fast && TailCallOpt;
}
/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
/// and add input and output parameter nodes.
SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
MachineFunction::CallSiteInfo CSInfo;
bool IsThisReturn = false;
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
bool IsSibCall = false;
if (IsTailCall) {
// Check if it's really possible to do a tail call.
IsTailCall = isEligibleForTailCallOptimization(
Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// A sibling call is one where we're under the usual C ABI and not planning
// to change that but can still do a tail call:
if (!TailCallOpt && IsTailCall)
IsSibCall = true;
if (IsTailCall)
++NumTailCalls;
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
if (IsVarArg) {
// Handle fixed and variable vector arguments differently.
// Variable vector arguments always go into memory.
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
/*IsVarArg=*/ !Outs[i].IsFixed);
bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
assert(!Res && "Call operand has unhandled type");
(void)Res;
}
} else {
// At this point, Outs[].VT may already be promoted to i32. To correctly
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
// Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
// we use a special version of AnalyzeCallOperands to pass in ValVT and
// LocVT.
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ValVT = Outs[i].VT;
// Get type of the original argument.
EVT ActualVT = getValueType(DAG.getDataLayout(),
CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
/*AllowUnknown*/ true);
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
ValVT = MVT::i8;
else if (ActualMVT == MVT::i16)
ValVT = MVT::i16;
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
assert(!Res && "Call operand has unhandled type");
(void)Res;
}
}
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
if (IsSibCall) {
// Since we're not changing the ABI to make this a tail call, the memory
// operands are already available in the caller's incoming argument space.
NumBytes = 0;
}
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int FPDiff = 0;
if (IsTailCall && !IsSibCall) {
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
// Since callee will pop argument stack as a tail call, we must keep the
// popped size 16-byte aligned.
NumBytes = alignTo(NumBytes, 16);
// FPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// can actually shrink the stack.
FPDiff = NumReusableBytes - NumBytes;
// The stack pointer must be 16-byte aligned at all times it's used for a
// memory operation, which in practice means at *all* times and in
// particular across call boundaries. Therefore our own arguments started at
// a 16-byte aligned SP and the delta applied for the tail call should
// satisfy the same constraint.
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
}
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
if (!IsSibCall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
getPointerTy(DAG.getDataLayout()));
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallSet<unsigned, 8> RegsUsed;
SmallVector<SDValue, 8> MemOpChains;
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
for (const auto &F : Forwards) {
SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
RegsToPass.emplace_back(F.PReg, Val);
}
}
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
if (Outs[i].ArgVT == MVT::i1) {
// AAPCS requires i1 to be zero-extended to 8-bits by the caller.
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
}
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExtUpper:
assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, DL, VA.getLocVT()));
break;
case CCValAssign::BCvt:
Arg = DAG.getBitcast(VA.getLocVT(), Arg);
break;
case CCValAssign::Trunc:
Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
break;
case CCValAssign::FPExt:
Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::Indirect:
assert(VA.getValVT().isScalableVector() &&
"Only scalable vectors can be passed indirectly");
llvm_unreachable("Spilling of SVE vectors not yet implemented");
}
if (VA.isRegLoc()) {
if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
Outs[0].VT == MVT::i64) {
assert(VA.getLocVT() == MVT::i64 &&
"unexpected calling convention register assignment");
assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
"unexpected use of 'returned'");
IsThisReturn = true;
}
if (RegsUsed.count(VA.getLocReg())) {
// If this register has already been used then we're trying to pack
// parts of an [N x i32] into an X-register. The extension type will
// take care of putting the two halves in the right place but we have to
// combine them.
SDValue &Bits =
std::find_if(RegsToPass.begin(), RegsToPass.end(),
[=](const std::pair<unsigned, SDValue> &Elt) {
return Elt.first == VA.getLocReg();
})
->second;
Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
// Call site info is used for function's parameter entry value
// tracking. For now we track only simple cases when parameter
// is transferred through whole register.
CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(),
[&VA](MachineFunction::ArgRegPair ArgReg) {
return ArgReg.Reg == VA.getLocReg();
}),
CSInfo.end());
} else {
RegsToPass.emplace_back(VA.getLocReg(), Arg);
RegsUsed.insert(VA.getLocReg());
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.EnableDebugEntryValues)
CSInfo.emplace_back(VA.getLocReg(), i);
}
} else {
assert(VA.isMemLoc());
SDValue DstAddr;
MachinePointerInfo DstInfo;
// FIXME: This works on big-endian for composite byvals, which are the
// common case. It should also work for fundamental types too.
uint32_t BEAlign = 0;
unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
: VA.getValVT().getSizeInBits();
OpSize = (OpSize + 7) / 8;
if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
!Flags.isInConsecutiveRegs()) {
if (OpSize < 8)
BEAlign = 8 - OpSize;
}
unsigned LocMemOffset = VA.getLocMemOffset();
int32_t Offset = LocMemOffset + BEAlign;
SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
if (IsTailCall) {
Offset = Offset + FPDiff;
int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
DstAddr = DAG.getFrameIndex(FI, PtrVT);
DstInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
// Make sure any stack arguments overlapping with where we're storing
// are loaded before this eventual operation. Otherwise they'll be
// clobbered.
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
} else {
SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
LocMemOffset);
}
if (Outs[i].Flags.isByVal()) {
SDValue SizeNode =
DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
SDValue Cpy = DAG.getMemcpy(
Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
/*isVol = */ false, /*AlwaysInline = */ false,
/*isTailCall = */ false,
DstInfo, MachinePointerInfo());
MemOpChains.push_back(Cpy);
} else {
// Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
// promoted to a legal register type i32, we should truncate Arg back to
// i1/i8/i16.
if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
VA.getValVT() == MVT::i16)
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
MemOpChains.push_back(Store);
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (auto &RegToPass : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
RegToPass.second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
auto GV = G->getGlobal();
unsigned OpFlags =
Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine());
if (OpFlags & AArch64II::MO_GOT) {
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
} else {
const GlobalValue *GV = G->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
}
} else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
Subtarget->isTargetMachO()) {
const char *Sym = S->getSymbol();
Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
} else {
const char *Sym = S->getSymbol();
Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
}
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
InFlag = Chain.getValue(1);
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (IsTailCall) {
// Each tail call may have to adjust the stack by a different amount, so
// this information must travel along with the operation for eventual
// consumption by emitEpilogue.
Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
}
// Add argument registers to the end of the list so that they are known live
// into the call.
for (auto &RegToPass : RegsToPass)
Ops.push_back(DAG.getRegister(RegToPass.first,
RegToPass.second.getValueType()));
// Check callee args/returns for SVE registers and set calling convention
// accordingly.
if (CallConv == CallingConv::C) {
bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){
return Out.VT.isScalableVector();
});
bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){
return In.VT.isScalableVector();
});
if (CalleeInSVE || CalleeOutSVE)
CallConv = CallingConv::AArch64_SVE_VectorCall;
}
// Add a register mask operand representing the call-preserved registers.
const uint32_t *Mask;
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
if (IsThisReturn) {
// For 'this' returns, use the X0-preserving mask if applicable
Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
if (!Mask) {
IsThisReturn = false;
Mask = TRI->getCallPreservedMask(MF, CallConv);
}
} else
Mask = TRI->getCallPreservedMask(MF, CallConv);
if (Subtarget->hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
if (TRI->isAnyArgRegReserved(MF))
TRI->emitReservedArgRegCallError(MF);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
// If we're doing a tall call, use a TC_RETURN here rather than an
// actual call instruction.
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
return Ret;
}
// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
InFlag = Chain.getValue(1);
DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
uint64_t CalleePopBytes =
DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
DAG.getIntPtrConstant(CalleePopBytes, DL, true),
InFlag, DL);
if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
InVals, IsThisReturn,
IsThisReturn ? OutVals[0] : SDValue());
}
bool AArch64TargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC);
}
SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
auto &MF = DAG.getMachineFunction();
auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC);
// Copy the result values into the output registers.
SDValue Flag;
SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
SmallSet<unsigned, 4> RegsUsed;
for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[realRVLocIdx];
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (Outs[i].ArgVT == MVT::i1) {
// AAPCS requires i1 to be zero-extended to i8 by the producer of the
// value. This is strictly redundant on Darwin (which uses "zeroext
// i1"), but will be optimised out before ISel.
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
}
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
case CCValAssign::ZExt:
Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
break;
case CCValAssign::AExtUpper:
assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, DL, VA.getLocVT()));
break;
}
if (RegsUsed.count(VA.getLocReg())) {
SDValue &Bits =
std::find_if(RetVals.begin(), RetVals.end(),
[=](const std::pair<unsigned, SDValue> &Elt) {
return Elt.first == VA.getLocReg();
})
->second;
Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
} else {
RetVals.emplace_back(VA.getLocReg(), Arg);
RegsUsed.insert(VA.getLocReg());
}
}
SmallVector<SDValue, 4> RetOps(1, Chain);
for (auto &RetVal : RetVals) {
Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(
DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
}
// Windows AArch64 ABIs require that for returning structs by value we copy
// the sret argument into X0 for the return.
// We saved the argument into a virtual register in the entry block,
// so now we copy the value out and into X0.
if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
getPointerTy(MF.getDataLayout()));
unsigned RetValReg = AArch64::X0;
Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(
DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
}
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (AArch64::GPR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else if (AArch64::FPR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
N->getOffset(), Flag);
}
SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}
SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
N->getOffset(), Flag);
}
SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}
// (loadGOT sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes instead of using a wrapper node.
return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
}
// (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
const unsigned char MO_NC = AArch64II::MO_NC;
return DAG.getNode(
AArch64ISD::WrapperLarge, DL, Ty,
getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
}
// (addlow (adrp %hi(sym)) %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
SDValue Lo = getTargetNode(N, Ty, DAG,
AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
}
// (adr sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
}
SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
if (OpFlags != AArch64II::MO_NO_FLAG)
assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
"unexpected offset in global node");
// This also catches the large code model case for Darwin, and tiny code
// model with got relocations.
if ((OpFlags & AArch64II::MO_GOT) != 0) {
return getGOT(GN, DAG, OpFlags);
}
SDValue Result;
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
Result = getAddrLarge(GN, DAG, OpFlags);
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
Result = getAddrTiny(GN, DAG, OpFlags);
} else {
Result = getAddr(GN, DAG, OpFlags);
}
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(GN);
if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address (for Darwin, currently) and
/// return an SDValue containing the final node.
/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
/// + "extern __thread" declaration.
/// + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i64] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first xword, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "x0".
///
/// Since this descriptor may be in a different unit, in general even the
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
/// is:
/// adrp x0, _var@TLVPPAGE
/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
/// ; the function pointer
/// blr x1 ; Uses descriptor address in x0
/// ; Address of _var is now in x0.
///
/// If the address of _var's descriptor *is* known to the linker, then it can
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
/// a slight efficiency gain.
SDValue
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() &&
"This function expects a Darwin target");
SDLoc DL(Op);
MVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDValue TLVPAddr =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
// The first entry in the descriptor is a function pointer that we must call
// to obtain the address of the variable.
SDValue Chain = DAG.getEntryNode();
SDValue FuncTLVGet = DAG.getLoad(
PtrMemVT, DL, Chain, DescAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
/* Alignment = */ PtrMemVT.getSizeInBits() / 8,
MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
Chain = FuncTLVGet.getValue(1);
// Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setAdjustsStack(true);
// TLS calls preserve all registers except those that absolutely must be
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
// silly).
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask = TRI->getTLSCallPreservedMask();
if (Subtarget->hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
// Finally, we can make the call. This is just a degenerate version of a
// normal AArch64 call node: x0 takes the address of the descriptor, and
// returns the address of the variable in this thread.
Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
Chain =
DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
DAG.getRegisterMask(Mask), Chain.getValue(1));
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
}
/// Convert a thread-local variable reference into a sequence of instructions to
/// compute the variable's address for the local exec TLS model of ELF targets.
/// The sequence depends on the maximum TLS area size.
SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV,
SDValue ThreadBase,
const SDLoc &DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue TPOff, Addr;
switch (DAG.getTarget().Options.TLSSize) {
default:
llvm_unreachable("Unexpected TLS size");
case 12: {
// mrs x0, TPIDR_EL0
// add x0, x0, :tprel_lo12:a
SDValue Var = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Var,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
}
case 24: {
// mrs x0, TPIDR_EL0
// add x0, x0, :tprel_hi12:a
// add x0, x0, :tprel_lo12_nc:a
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
HiVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr,
LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
}
case 32: {
// mrs x1, TPIDR_EL0
// movz x0, #:tprel_g1:a
// movk x0, #:tprel_g0_nc:a
// add x0, x1, x0
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
DAG.getTargetConstant(16, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
case 48: {
// mrs x1, TPIDR_EL0
// movz x0, #:tprel_g2:a
// movk x0, #:tprel_g1_nc:a
// movk x0, #:tprel_g0_nc:a
// add x0, x1, x0
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2);
SDValue MiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
DAG.getTargetConstant(32, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar,
DAG.getTargetConstant(16, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
}
}
/// When accessing thread-local variables under either the general-dynamic or
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
/// is a function pointer to carry out the resolution.
///
/// The sequence is:
/// adrp x0, :tlsdesc:var
/// ldr x1, [x0, #:tlsdesc_lo12:var]
/// add x0, x0, #:tlsdesc_lo12:var
/// .tlsdesccall var
/// blr x1
/// (TPIDR_EL0 offset now in x0)
///
/// The above sequence must be produced unscheduled, to enable the linker to
/// optimize/relax this sequence.
/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
/// above sequence, and expanded really late in the compilation flow, to ensure
/// the sequence is produced as per above.
SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
const SDLoc &DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain =
DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
SDValue Glue = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}
SDValue
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetELF() && "This function expects an ELF target");
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
if (Model == TLSModel::LocalDynamic)
Model = TLSModel::GeneralDynamic;
}
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
Model != TLSModel::LocalExec)
report_fatal_error("ELF TLS only supported in small memory model or "
"in local exec TLS model");
// Different choices can be made for the maximum size of the TLS area for a
// module. For the small address model, the default TLS size is 16MiB and the
// maximum TLS size is 4GiB.
// FIXME: add tiny and large code model support for TLS access models other
// than local exec. We currently generate the same code as small for tiny,
// which may be larger than needed.
SDValue TPOff;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
const GlobalValue *GV = GA->getGlobal();
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
if (Model == TLSModel::LocalExec) {
return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG);
} else if (Model == TLSModel::InitialExec) {
TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
} else if (Model == TLSModel::LocalDynamic) {
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
// the beginning of the module's TLS region, followed by a DTPREL offset
// calculation.
// These accesses will need deduplicating if there's more than one.
AArch64FunctionInfo *MFI =
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
// The call needs a relocation too for linker relaxation. It doesn't make
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
// the address.
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
AArch64II::MO_TLS);
// Now we can calculate the offset from TPIDR_EL0 to this module's
// thread-local area.
TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
// Now use :dtprel_whatever: operations to calculate this variable's offset
// in its thread-storage area.
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, MVT::i64, 0,
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
} else if (Model == TLSModel::GeneralDynamic) {
// The call needs a relocation too for linker relaxation. It doesn't make
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
// the address.
SDValue SymAddr =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
// Finally we can make a call to calculate the offset from tpidr_el0.
TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
} else
llvm_unreachable("Unsupported ELF TLS access model");
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
SDValue
AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
// Load the ThreadLocalStoragePointer from the TEB
// A pointer to the TLS array is located at offset 0x58 from the TEB.
SDValue TLSArray =
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
Chain = TLSArray.getValue(1);
// Load the TLS index from the C runtime;
// This does the same as getAddr(), but without having a GlobalAddressSDNode.
// This also does the same as LOADgot, but using a generic i32 load,
// while LOADgot only loads i64.
SDValue TLSIndexHi =
DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
"_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
SDValue TLSIndex =
DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
Chain = TLSIndex.getValue(1);
// The pointer to the thread's TLS data area is at the TLS Index scaled by 8
// offset into the TLSArray.
TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
DAG.getConstant(3, DL, PtrVT));
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
MachinePointerInfo());
Chain = TLS.getValue(1);
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GA->getGlobal();
SDValue TGAHi = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
SDValue TGALo = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
// Add the offset from the start of the .tls section (section base).
SDValue Addr =
SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
return Addr;
}
SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
if (Subtarget->isTargetDarwin())
return LowerDarwinGlobalTLSAddress(Op, DAG);
if (Subtarget->isTargetELF())
return LowerELFGlobalTLSAddress(Op, DAG);
if (Subtarget->isTargetWindows())
return LowerWindowsGlobalTLSAddress(Op, DAG);
llvm_unreachable("Unexpected platform trying to use TLS");
}
SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
MachineFunction &MF = DAG.getMachineFunction();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
bool ProduceNonFlagSettingCondBr =
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
// Handle f128 first, since lowering it will result in comparing the return
// value of a libcall against zero, which is just what the rest of LowerBR_CC
// is expecting to deal with.
if (LHS.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
// instruction.
if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
return SDValue();
// The actual operation with overflow check.
AArch64CC::CondCode OFCC;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
if (CC == ISD::SETNE)
OFCC = getInvertedCondCode(OFCC);
SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
Overflow);
}
if (LHS.getValueType().isInteger()) {
assert((LHS.getValueType() == RHS.getValueType()) &&
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
// If the RHS of the comparison is zero, we can potentially fold this
// to a specialized branch.
const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
if (CC == ISD::SETEQ) {
// See if we can use a TBZ to fold in an AND as well.
// TBZ has a smaller branch displacement than CBZ. If the offset is
// out of bounds, a late MI-layer pass rewrites branches.
// 403.gcc is an example that hits this case.
if (LHS.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
SDValue Test = LHS.getOperand(0);
uint64_t Mask = LHS.getConstantOperandVal(1);
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
Dest);
}
return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
} else if (CC == ISD::SETNE) {
// See if we can use a TBZ to fold in an AND as well.
// TBZ has a smaller branch displacement than CBZ. If the offset is
// out of bounds, a late MI-layer pass rewrites branches.
// 403.gcc is an example that hits this case.
if (LHS.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
SDValue Test = LHS.getOperand(0);
uint64_t Mask = LHS.getConstantOperandVal(1);
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
Dest);
}
return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
} else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
// Don't combine AND since emitComparison converts the AND to an ANDS
// (a.k.a. TST) and the test in the test bit and branch instruction
// becomes redundant. This would also increase register pressure.
uint64_t Mask = LHS.getValueSizeInBits() - 1;
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
DAG.getConstant(Mask, dl, MVT::i64), Dest);
}
}
if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
// Don't combine AND since emitComparison converts the AND to an ANDS
// (a.k.a. TST) and the test in the test bit and branch instruction
// becomes redundant. This would also increase register pressure.
uint64_t Mask = LHS.getValueSizeInBits() - 1;
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
DAG.getConstant(Mask, dl, MVT::i64), Dest);
}
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
Cmp);
}
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
LHS.getValueType() == MVT::f64);
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
// clean. Some of them require two branches to implement.
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC::CondCode CC1, CC2;
changeFPCCToAArch64CC(CC, CC1, CC2);
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
SDValue BR1 =
DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
if (CC2 != AArch64CC::AL) {
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
Cmp);
}
return BR1;
}
SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue In1 = Op.getOperand(0);
SDValue In2 = Op.getOperand(1);
EVT SrcVT = In2.getValueType();
if (SrcVT.bitsLT(VT))
In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
else if (SrcVT.bitsGT(VT))
In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
EVT VecVT;
uint64_t EltMask;
SDValue VecVal1, VecVal2;
auto setVecVal = [&] (int Idx) {
if (!VT.isVector()) {
VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
DAG.getUNDEF(VecVT), In1);
VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
DAG.getUNDEF(VecVT), In2);
} else {
VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
}
};
if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
EltMask = 0x80000000ULL;
setVecVal(AArch64::ssub);
} else if (VT == MVT::f64 || VT == MVT::v2f64) {
VecVT = MVT::v2i64;
// We want to materialize a mask with the high bit set, but the AdvSIMD
// immediate moves cannot materialize that in a single instruction for
// 64-bit elements. Instead, materialize zero and then negate it.
EltMask = 0;
setVecVal(AArch64::dsub);
} else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
EltMask = 0x8000ULL;
setVecVal(AArch64::hsub);
} else {
llvm_unreachable("Invalid type for copysign!");
}
SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
// If we couldn't materialize the mask above, then the mask vector will be
// the zero vector, and we need to negate it here.
if (VT == MVT::f64 || VT == MVT::v2f64) {
BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
}
SDValue Sel =
DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
if (VT == MVT::f16)
return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
if (VT == MVT::f32)
return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
else if (VT == MVT::f64)
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
else
return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
}
SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat))
return SDValue();
if (!Subtarget->hasNEON())
return SDValue();
// While there is no integer popcount instruction, it can
// be more efficiently lowered to the following sequence that uses
// AdvSIMD registers/instructions as long as the copies to/from
// the AdvSIMD registers are cheap.
// FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
// CNT V0.8B, V0.8B // 8xbyte pop-counts
// ADDV B0, V0.8B // sum 8xbyte pop-counts
// UMOV X0, V0.B[0] // copy byte result back to integer reg
SDValue Val = Op.getOperand(0);
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (VT == MVT::i32 || VT == MVT::i64) {
if (VT == MVT::i32)
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
SDValue UaddLV = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
if (VT == MVT::i64)
UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
return UaddLV;
}
assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
"Unexpected type for custom ctpop lowering");
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
Val = DAG.getBitcast(VT8Bit, Val);
Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
// Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
unsigned EltSize = 8;
unsigned NumElts = VT.is64BitVector() ? 8 : 16;
while (EltSize != VT.getScalarSizeInBits()) {
EltSize *= 2;
NumElts /= 2;
MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
Val = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
}
return Val;
}
SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return LowerVSETCC(Op, DAG);
bool IsStrict = Op->isStrictFPOpcode();
bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
unsigned OpNo = IsStrict ? 1 : 0;
SDValue Chain;
if (IsStrict)
Chain = Op.getOperand(0);
SDValue LHS = Op.getOperand(OpNo + 0);
SDValue RHS = Op.getOperand(OpNo + 1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get();
SDLoc dl(Op);
// We chose ZeroOrOneBooleanContents, so use zero and one.
EVT VT = Op.getValueType();
SDValue TVal = DAG.getConstant(1, dl, VT);
SDValue FVal = DAG.getConstant(0, dl, VT);
// Handle f128 first, since one possible outcome is a normal integer
// comparison which gets picked up by the next if statement.
if (LHS.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain,
IsSignaling);
// If softenSetCCOperands returned a scalar, use it.
if (!RHS.getNode()) {
assert(LHS.getValueType() == Op.getValueType() &&
"Unexpected setcc expansion!");
return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS;
}
}
if (LHS.getValueType().isInteger()) {
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(
LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl);
// Note that we inverted the condition above, so we reverse the order of
// the true and false operands here. This will allow the setcc to be
// matched to a single CSINC instruction.
SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res;
}
// Now we know we're dealing with FP values.
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
LHS.getValueType() == MVT::f64);
// If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
// and do the comparison.
SDValue Cmp;
if (IsStrict)
Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling);
else
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC::CondCode CC1, CC2;
changeFPCCToAArch64CC(CC, CC1, CC2);
SDValue Res;
if (CC2 == AArch64CC::AL) {
changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1,
CC2);
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
// Note that we inverted the condition above, so we reverse the order of
// the true and false operands here. This will allow the setcc to be
// matched to a single CSINC instruction.
Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
} else {
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
// totally clean. Some of them require two CSELs to implement. As is in
// this case, we emit the first CSEL and then emit a second using the output
// of the first as the RHS. We're effectively OR'ing the two CC's together.
// FIXME: It would be nice if we could match the two CSELs to two CSINCs.
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
SDValue CS1 =
DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
}
return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res;
}
SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
SDValue RHS, SDValue TVal,
SDValue FVal, const SDLoc &dl,
SelectionDAG &DAG) const {
// Handle f128 first, because it will result in a comparison of some RTLIB
// call result against zero.
if (LHS.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
// Also handle f16, for which we need to do a f32 comparison.
if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
}
// Next, handle integers.
if (LHS.getValueType().isInteger()) {
assert((LHS.getValueType() == RHS.getValueType()) &&
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
unsigned Opcode = AArch64ISD::CSEL;
// If both the TVal and the FVal are constants, see if we can swap them in
// order to for a CSINV or CSINC out of them.
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
} else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
} else if (TVal.getOpcode() == ISD::XOR) {
// If TVal is a NOT we want to swap TVal and FVal so that we can match
// with a CSINV rather than a CSEL.
if (isAllOnesConstant(TVal.getOperand(1))) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
} else if (TVal.getOpcode() == ISD::SUB) {
// If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
// that we can match with a CSNEG rather than a CSEL.
if (isNullConstant(TVal.getOperand(0))) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
} else if (CTVal && CFVal) {
const int64_t TrueVal = CTVal->getSExtValue();
const int64_t FalseVal = CFVal->getSExtValue();
bool Swap = false;
// If both TVal and FVal are constants, see if FVal is the
// inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
// instead of a CSEL in that case.
if (TrueVal == ~FalseVal) {
Opcode = AArch64ISD::CSINV;
} else if (TrueVal == -FalseVal) {
Opcode = AArch64ISD::CSNEG;
} else if (TVal.getValueType() == MVT::i32) {
// If our operands are only 32-bit wide, make sure we use 32-bit
// arithmetic for the check whether we can use CSINC. This ensures that
// the addition in the check will wrap around properly in case there is
// an overflow (which would not be the case if we do the check with
// 64-bit arithmetic).
const uint32_t TrueVal32 = CTVal->getZExtValue();
const uint32_t FalseVal32 = CFVal->getZExtValue();
if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
Opcode = AArch64ISD::CSINC;
if (TrueVal32 > FalseVal32) {
Swap = true;
}
}
// 64-bit check whether we can use CSINC.
} else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
Opcode = AArch64ISD::CSINC;
if (TrueVal > FalseVal) {
Swap = true;
}
}
// Swap TVal and FVal if necessary.
if (Swap) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
if (Opcode != AArch64ISD::CSEL) {
// Drop FVal since we can get its value by simply inverting/negating
// TVal.
FVal = TVal;
}
}
// Avoid materializing a constant when possible by reusing a known value in
// a register. However, don't perform this optimization if the known value
// is one, zero or negative one in the case of a CSEL. We can always
// materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
// FVal, respectively.
ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
!RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
// Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
// "a != C ? x : a" to avoid materializing C.
if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
TVal = LHS;
else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
FVal = LHS;
} else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
// Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
// avoid materializing C.
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
Opcode = AArch64ISD::CSINV;
TVal = LHS;
FVal = DAG.getConstant(0, dl, FVal.getValueType());
}
}
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
EVT VT = TVal.getValueType();
return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
}
// Now we know we're dealing with FP values.
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
LHS.getValueType() == MVT::f64);
assert(LHS.getValueType() == RHS.getValueType());
EVT VT = TVal.getValueType();
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
// clean. Some of them require two CSELs to implement.
AArch64CC::CondCode CC1, CC2;
changeFPCCToAArch64CC(CC, CC1, CC2);
if (DAG.getTarget().Options.UnsafeFPMath) {
// Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
// "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
if (RHSVal && RHSVal->isZero()) {
ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
TVal = LHS;
else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
CFVal && CFVal->isZero() &&
FVal.getValueType() == LHS.getValueType())
FVal = LHS;
}
}
// Emit first, and possibly only, CSEL.
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
// If we need a second CSEL, emit it, using the output of the first as the
// RHS. We're effectively OR'ing the two CC's together.
if (CC2 != AArch64CC::AL) {
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
}
// Otherwise, return the output of the first CSEL.
return CS1;
}
SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TVal = Op.getOperand(2);
SDValue FVal = Op.getOperand(3);
SDLoc DL(Op);
return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}
SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
SelectionDAG &DAG) const {
SDValue CCVal = Op->getOperand(0);
SDValue TVal = Op->getOperand(1);
SDValue FVal = Op->getOperand(2);
SDLoc DL(Op);
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
// instruction.
if (isOverflowIntrOpRes(CCVal)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
return SDValue();
AArch64CC::CondCode OFCC;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
CCVal, Overflow);
}
// Lower it the same way as we would lower a SELECT_CC node.
ISD::CondCode CC;
SDValue LHS, RHS;
if (CCVal.getOpcode() == ISD::SETCC) {
LHS = CCVal.getOperand(0);
RHS = CCVal.getOperand(1);
CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
} else {
LHS = CCVal;
RHS = DAG.getConstant(0, DL, CCVal.getValueType());
CC = ISD::SETNE;
}
return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}
SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
// Jump table entries as PC relative offsets. No additional tweaking
// is necessary here. Just get the address of the jump table.
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
!Subtarget->isTargetMachO()) {
return getAddrLarge(JT, DAG);
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
return getAddrTiny(JT, DAG);
}
return getAddr(JT, DAG);
}
SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
SelectionDAG &DAG) const {
// Jump table entries as PC relative offsets. No additional tweaking
// is necessary here. Just get the address of the jump table.
SDLoc DL(Op);
SDValue JT = Op.getOperand(1);
SDValue Entry = Op.getOperand(2);
int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
SDNode *Dest =
DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
SDValue(Dest, 0));
}
SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
// Use the GOT for the large code model on iOS.
if (Subtarget->isTargetMachO()) {
return getGOT(CP, DAG);
}
return getAddrLarge(CP, DAG);
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
return getAddrTiny(CP, DAG);
} else {
return getAddr(CP, DAG);
}
}
SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
!Subtarget->isTargetMachO()) {
return getAddrLarge(BA, DAG);
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
return getAddrTiny(BA, DAG);
}
return getAddr(BA, DAG);
}
SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
SelectionDAG &DAG) const {
AArch64FunctionInfo *FuncInfo =
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
SDLoc DL(Op);
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
getPointerTy(DAG.getDataLayout()));
FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
SelectionDAG &DAG) const {
AArch64FunctionInfo *FuncInfo =
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
SDLoc DL(Op);
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
? FuncInfo->getVarArgsGPRIndex()
: FuncInfo->getVarArgsStackIndex(),
getPointerTy(DAG.getDataLayout()));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
SelectionDAG &DAG) const {
// The layout of the va_list struct is specified in the AArch64 Procedure Call
// Standard, section B.3.
MachineFunction &MF = DAG.getMachineFunction();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue VAList = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SmallVector<SDValue, 4> MemOps;
// void *__stack at offset 0
SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
MachinePointerInfo(SV), /* Alignment = */ 8));
// void *__gr_top at offset 8
int GPRSize = FuncInfo->getVarArgsGPRSize();
if (GPRSize > 0) {
SDValue GRTop, GRTopAddr;
GRTopAddr =
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
DAG.getConstant(GPRSize, DL, PtrVT));
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
MachinePointerInfo(SV, 8),
/* Alignment = */ 8));
}
// void *__vr_top at offset 16
int FPRSize = FuncInfo->getVarArgsFPRSize();
if (FPRSize > 0) {
SDValue VRTop, VRTopAddr;
VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(16, DL, PtrVT));
VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
DAG.getConstant(FPRSize, DL, PtrVT));
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
MachinePointerInfo(SV, 16),
/* Alignment = */ 8));
}
// int __gr_offs at offset 24
SDValue GROffsAddr =
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
MemOps.push_back(DAG.getStore(
Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
MachinePointerInfo(SV, 24), /* Alignment = */ 4));
// int __vr_offs at offset 28
SDValue VROffsAddr =
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
MemOps.push_back(DAG.getStore(
Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
MachinePointerInfo(SV, 28), /* Alignment = */ 4));
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
return LowerWin64_VASTART(Op, DAG);
else if (Subtarget->isTargetDarwin())
return LowerDarwin_VASTART(Op, DAG);
else
return LowerAAPCS_VASTART(Op, DAG);
}
SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
SelectionDAG &DAG) const {
// AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
// pointer.
SDLoc DL(Op);
unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
unsigned VaListSize = (Subtarget->isTargetDarwin() ||
Subtarget->isTargetWindows()) ? PtrSize : 32;
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(VaListSize, DL, MVT::i32), PtrSize,
false, false, false, MachinePointerInfo(DestSV),
MachinePointerInfo(SrcSV));
}
SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() &&
"automatic va_arg instruction only works on Darwin");
const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
unsigned Align = Op.getConstantOperandVal(3);
unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
auto PtrVT = getPointerTy(DAG.getDataLayout());
auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
SDValue VAList =
DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
Chain = VAList.getValue(1);
VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);
if (Align > MinSlotSize) {
assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Align - 1, DL, PtrVT));
VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
DAG.getConstant(-(int64_t)Align, DL, PtrVT));
}
Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
// Scalar integer and FP values smaller than 64 bits are implicitly extended
// up to 64 bits. At the very least, we have to increase the striding of the
// vaargs list to match this, and for FP values we need to introduce
// FP_ROUND nodes as well.
if (VT.isInteger() && !VT.isVector())
ArgSize = std::max(ArgSize, MinSlotSize);
bool NeedFPTrunc = false;
if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
ArgSize = 8;
NeedFPTrunc = true;
}
// Increment the pointer, VAList, to the next vaarg
SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(ArgSize, DL, PtrVT));
VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);
// Store the incremented VAList to the legalized pointer
SDValue APStore =
DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
// Load the actual argument out of the pointer VAList
if (NeedFPTrunc) {
// Load the value as an f64.
SDValue WideFP =
DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
// Round the value down to an f32.
SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
DAG.getIntPtrConstant(1, DL));
SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
// Merge the rounded value with the chain output of the load.
return DAG.getMergeValues(Ops, DL);
}
return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
}
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
while (Depth--)
FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
if (Subtarget->isTargetILP32())
FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
DAG.getValueType(VT));
return FrameAddr;
}
SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
EVT VT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
int FI = MFI.CreateFixedObject(4, 0, false);
return DAG.getFrameIndex(FI, VT);
}
#define GET_REGISTER_MATCHER
#include "AArch64GenAsmMatcher.inc"
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register AArch64TargetLowering::
getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const {
Register Reg = MatchRegisterName(RegName);
if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
if (!Subtarget->isXRegisterReserved(DwarfRegNum))
Reg = 0;
}
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
}
SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
}
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return LR, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
}
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
// Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
// is "undef". We wanted 0, so CSEL it directly.
SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
ISD::SETEQ, dl, DAG);
SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
HiBitsForLo =
DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
HiBitsForLo, CCVal, Cmp);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i64));
SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue LoForNormalShift =
DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
dl, DAG);
CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
LoForNormalShift, CCVal, Cmp);
// AArch64 shifts larger than the register width are wrapped rather than
// clamped, so we can't just emit "hi >> x".
SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue HiForBigShift =
Opc == ISD::SRA
? DAG.getNode(Opc, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, MVT::i64))
: DAG.getConstant(0, dl, VT);
SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
HiForNormalShift, CCVal, Cmp);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
assert(Op.getOpcode() == ISD::SHL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
// Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
// is "undef". We wanted 0, so CSEL it directly.
SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
ISD::SETEQ, dl, DAG);
SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
LoBitsForHi =
DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
LoBitsForHi, CCVal, Cmp);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i64));
SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue HiForNormalShift =
DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
dl, DAG);
CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
HiForNormalShift, CCVal, Cmp);
// AArch64 shifts of larger than register sizes are wrapped rather than
// clamped, so we can't just emit "lo << a" if a is too big.
SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
LoForNormalShift, CCVal, Cmp);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
bool AArch64TargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// Offsets are folded in the DAG combine rather than here so that we can
// intelligently choose an offset based on the uses.
return false;
}
bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool OptForSize) const {
bool IsLegal = false;
// We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
// 16-bit case when target has full fp16 support.
// FIXME: We should be able to handle f128 as well with a clever lowering.
const APInt ImmInt = Imm.bitcastToAPInt();
if (VT == MVT::f64)
IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
else if (VT == MVT::f32)
IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
else if (VT == MVT::f16 && Subtarget->hasFullFP16())
IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
// TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
// generate that fmov.
// If we can not materialize in immediate field for fmov, check if the
// value can be encoded as the immediate operand of a logical instruction.
// The immediate value will be created with either MOVZ, MOVN, or ORR.
if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
// The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
// however the mov+fmov sequence is always better because of the reduced
// cache pressure. The timings are still the same if you consider
// movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
// movw+movk is fused). So we limit up to 2 instrdduction at most.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
Insn);
unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
IsLegal = Insn.size() <= Limit;
}
LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
<< " imm value: "; Imm.dump(););
return IsLegal;
}
//===----------------------------------------------------------------------===//
// AArch64 Optimization Hooks
//===----------------------------------------------------------------------===//
static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
SDValue Operand, SelectionDAG &DAG,
int &ExtraSteps) {
EVT VT = Operand.getValueType();
if (ST->hasNEON() &&
(VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
VT == MVT::f32 || VT == MVT::v1f32 ||
VT == MVT::v2f32 || VT == MVT::v4f32)) {
if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
// For the reciprocal estimates, convergence is quadratic, so the number
// of digits is doubled after each iteration. In ARMv8, the accuracy of
// the initial estimate is 2^-8. Thus the number of extra steps to refine
// the result for float (23 mantissa bits) is 2 and for double (52
// mantissa bits) is 3.
ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &ExtraSteps,
bool &UseOneConst,
bool Reciprocal) const {
if (Enabled == ReciprocalEstimate::Enabled ||
(Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
DAG, ExtraSteps)) {
SDLoc DL(Operand);
EVT VT = Operand.getValueType();
SDNodeFlags Flags;
Flags.setAllowReassociation(true);
// Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
// AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
for (int i = ExtraSteps; i > 0; --i) {
SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
Flags);
Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
}
if (!Reciprocal) {
EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
VT);
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
// Correct the result if the operand is 0.0.
Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
VT, Eq, Operand, Estimate);
}
ExtraSteps = 0;
return Estimate;
}
return SDValue();
}
SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &ExtraSteps) const {
if (Enabled == ReciprocalEstimate::Enabled)
if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
DAG, ExtraSteps)) {
SDLoc DL(Operand);
EVT VT = Operand.getValueType();
SDNodeFlags Flags;
Flags.setAllowReassociation(true);
// Newton reciprocal iteration: E * (2 - X * E)
// AArch64 reciprocal iteration instruction: (2 - M * N)
for (int i = ExtraSteps; i > 0; --i) {
SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
Estimate, Flags);
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
}
ExtraSteps = 0;
return Estimate;
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// AArch64 Inline Assembly Support
//===----------------------------------------------------------------------===//
// Table of Constraints
// TODO: This is the current set of constraints supported by ARM for the
// compiler, not all of them may make sense.
//
// r - A general register
// w - An FP/SIMD register of some size in the range v0-v31
// x - An FP/SIMD register of some size in the range v0-v15
// I - Constant that can be used with an ADD instruction
// J - Constant that can be used with a SUB instruction
// K - Constant that can be used with a 32-bit logical instruction
// L - Constant that can be used with a 64-bit logical instruction
// M - Constant that can be used as a 32-bit MOV immediate
// N - Constant that can be used as a 64-bit MOV immediate
// Q - A memory reference with base register and no offset
// S - A symbolic address
// Y - Floating point constant zero
// Z - Integer constant zero
//
// Note that general register operands will be output using their 64-bit x
// register name, whatever the size of the variable, unless the asm operand
// is prefixed by the %w modifier. Floating-point and SIMD register operands
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
// %q modifier.
const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
// At this point, we have to lower this constraint to something else, so we
// lower it to an "r" or "w". However, by doing this we will force the result
// to be in register, while the X constraint is much more permissive.
//
// Although we are correct (we are free to emit anything, without
// constraints), we might break use cases that would expect us to be more
// efficient and emit something else.
if (!Subtarget->hasFPARMv8())
return "r";
if (ConstraintVT.isFloatingPoint())
return "w";
if (ConstraintVT.isVector() &&
(ConstraintVT.getSizeInBits() == 64 ||
ConstraintVT.getSizeInBits() == 128))
return "w";
return "r";
}
enum PredicateConstraint {
Upl,
Upa,
Invalid
};
static PredicateConstraint parsePredicateConstraint(StringRef Constraint) {
PredicateConstraint P = PredicateConstraint::Invalid;
if (Constraint == "Upa")
P = PredicateConstraint::Upa;
if (Constraint == "Upl")
P = PredicateConstraint::Upl;
return P;
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'x':
case 'w':
case 'y':
return C_RegisterClass;
// An address with a single base register. Due to the way we
// currently handle addresses it is the same as 'r'.
case 'Q':
return C_Memory;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'Y':
case 'Z':
return C_Immediate;
case 'z':
case 'S': // A symbolic address
return C_Other;
}
} else if (parsePredicateConstraint(Constraint) !=
PredicateConstraint::Invalid)
return C_RegisterClass;
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'x':
case 'w':
case 'y':
if (type->isFloatingPointTy() || type->isVectorTy())
weight = CW_Register;
break;
case 'z':
weight = CW_Constant;
break;
case 'U':
if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid)
weight = CW_Register;
break;
}
return weight;
}
std::pair<unsigned, const TargetRegisterClass *>
AArch64TargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
if (VT.getSizeInBits() == 64)
return std::make_pair(0U, &AArch64::GPR64commonRegClass);
return std::make_pair(0U, &AArch64::GPR32commonRegClass);
case 'w':
if (!Subtarget->hasFPARMv8())
break;
if (VT.isScalableVector())
return std::make_pair(0U, &AArch64::ZPRRegClass);
if (VT.getSizeInBits() == 16)
return std::make_pair(0U, &AArch64::FPR16RegClass);
if (VT.getSizeInBits() == 32)
return std::make_pair(0U, &AArch64::FPR32RegClass);
if (VT.getSizeInBits() == 64)
return std::make_pair(0U, &AArch64::FPR64RegClass);
if (VT.getSizeInBits() == 128)
return std::make_pair(0U, &AArch64::FPR128RegClass);
break;
// The instructions that this constraint is designed for can
// only take 128-bit registers so just use that regclass.
case 'x':
if (!Subtarget->hasFPARMv8())
break;
if (VT.isScalableVector())
return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
if (VT.getSizeInBits() == 128)
return std::make_pair(0U, &AArch64::FPR128_loRegClass);
break;
case 'y':
if (!Subtarget->hasFPARMv8())
break;
if (VT.isScalableVector())
return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
break;
}
} else {
PredicateConstraint PC = parsePredicateConstraint(Constraint);
if (PC != PredicateConstraint::Invalid) {
assert(VT.isScalableVector());
bool restricted = (PC == PredicateConstraint::Upl);
return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass)
: std::make_pair(0U, &AArch64::PPRRegClass);
}
}
if (StringRef("{cc}").equals_lower(Constraint))
return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass *> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// Not found as a standard register?
if (!Res.second) {
unsigned Size = Constraint.size();
if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
int RegNo;
bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
if (!Failed && RegNo >= 0 && RegNo <= 31) {
// v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
// By default we'll emit v0-v31 for this unless there's a modifier where
// we'll emit the correct register as well.
if (VT != MVT::Other && VT.getSizeInBits() == 64) {
Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
Res.second = &AArch64::FPR64RegClass;
} else {
Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
Res.second = &AArch64::FPR128RegClass;
}
}
}
}
if (Res.second && !Subtarget->hasFPARMv8() &&
!AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
!AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
return std::make_pair(0U, nullptr);
return Res;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void AArch64TargetLowering::LowerAsmOperandForConstraint(
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Currently only support length 1 constraints.
if (Constraint.length() != 1)
return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default:
break;
// This set of constraints deal with valid constants for various instructions.
// Validate and return a target constant for them if we can.
case 'z': {
// 'z' maps to xzr or wzr so it needs an input of 0.
if (!isNullConstant(Op))
return;
if (Op.getValueType() == MVT::i64)
Result = DAG.getRegister(AArch64::XZR, MVT::i64);
else
Result = DAG.getRegister(AArch64::WZR, MVT::i32);
break;
}
case 'S': {
// An absolute symbolic address or label reference.
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
GA->getValueType(0));
} else if (const BlockAddressSDNode *BA =
dyn_cast<BlockAddressSDNode>(Op)) {
Result =
DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
} else if (const ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(Op)) {
Result =
DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
} else
return;
break;
}
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
// Grab the value and do some validation.
uint64_t CVal = C->getZExtValue();
switch (ConstraintLetter) {
// The I constraint applies only to simple ADD or SUB immediate operands:
// i.e. 0 to 4095 with optional shift by 12
// The J constraint applies only to ADD or SUB immediates that would be
// valid when negated, i.e. if [an add pattern] were to be output as a SUB
// instruction [or vice versa], in other words -1 to -4095 with optional
// left shift by 12.
case 'I':
if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
break;
return;
case 'J': {
uint64_t NVal = -C->getSExtValue();
if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
CVal = C->getSExtValue();
break;
}
return;
}
// The K and L constraints apply *only* to logical immediates, including
// what used to be the MOVI alias for ORR (though the MOVI alias has now
// been removed and MOV should be used). So these constraints have to
// distinguish between bit patterns that are valid 32-bit or 64-bit
// "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
// not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
// versa.
case 'K':
if (AArch64_AM::isLogicalImmediate(CVal, 32))
break;
return;
case 'L':
if (AArch64_AM::isLogicalImmediate(CVal, 64))
break;
return;
// The M and N constraints are a superset of K and L respectively, for use
// with the MOV (immediate) alias. As well as the logical immediates they
// also match 32 or 64-bit immediates that can be loaded either using a
// *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
// (M) or 64-bit 0x1234000000000000 (N) etc.
// As a note some of this code is liberally stolen from the asm parser.
case 'M': {
if (!isUInt<32>(CVal))
return;
if (AArch64_AM::isLogicalImmediate(CVal, 32))
break;
if ((CVal & 0xFFFF) == CVal)
break;
if ((CVal & 0xFFFF0000ULL) == CVal)
break;
uint64_t NCVal = ~(uint32_t)CVal;
if ((NCVal & 0xFFFFULL) == NCVal)
break;
if ((NCVal & 0xFFFF0000ULL) == NCVal)
break;
return;
}
case 'N': {
if (AArch64_AM::isLogicalImmediate(CVal, 64))
break;
if ((CVal & 0xFFFFULL) == CVal)
break;
if ((CVal & 0xFFFF0000ULL) == CVal)
break;
if ((CVal & 0xFFFF00000000ULL) == CVal)
break;
if ((CVal & 0xFFFF000000000000ULL) == CVal)
break;
uint64_t NCVal = ~CVal;
if ((NCVal & 0xFFFFULL) == NCVal)
break;
if ((NCVal & 0xFFFF0000ULL) == NCVal)
break;
if ((NCVal & 0xFFFF00000000ULL) == NCVal)
break;
if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
break;
return;
}
default:
return;
}
// All assembler immediates are 64-bit integers.
Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
break;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// AArch64 Advanced SIMD Support
//===----------------------------------------------------------------------===//
/// WidenVector - Given a value in the V64 register class, produce the
/// equivalent value in the V128 register class.
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
EVT VT = V64Reg.getValueType();
unsigned NarrowSize = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType().getSimpleVT();
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
SDLoc DL(V64Reg);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
V64Reg, DAG.getConstant(0, DL, MVT::i32));
}
/// getExtFactor - Determine the adjustment factor for the position when
/// generating an "extract from vector registers" instruction.
static unsigned getExtFactor(SDValue &V) {
EVT EltType = V.getValueType().getVectorElementType();
return EltType.getSizeInBits() / 8;
}
/// NarrowVector - Given a value in the V128 register class, produce the
/// equivalent value in the V64 register class.
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
EVT VT = V128Reg.getValueType();
unsigned WideSize = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType().getSimpleVT();
MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
SDLoc DL(V128Reg);
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
}
// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
struct ShuffleSourceInfo {
SDValue Vec;
unsigned MinElt;
unsigned MaxElt;
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
// be compatible with the shuffle we intend to construct. As a result
// ShuffleVec will be some sliding window into the original Vec.
SDValue ShuffleVec;
// Code should guarantee that element i in Vec starts at element "WindowBase
// + i * WindowScale in ShuffleVec".
int WindowBase;
int WindowScale;
ShuffleSourceInfo(SDValue Vec)
: Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
};
// First gather all vectors used as an immediate source for this BUILD_VECTOR
// node.
SmallVector<ShuffleSourceInfo, 2> Sources;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(V.getOperand(1))) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: "
"a shuffle can only come from building a vector from "
"various elements of other vectors, provided their "
"indices are constant\n");
return SDValue();
}
// Add this element source to the list if it's not already there.
SDValue SourceVec = V.getOperand(0);
auto Source = find(Sources, SourceVec);
if (Source == Sources.end())
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
// Update the minimum and maximum lane number seen.
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
Source->MinElt = std::min(Source->MinElt, EltNo);
Source->MaxElt = std::max(Source->MaxElt, EltNo);
}
if (Sources.size() > 2) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: currently only do something sane when at "
"most two source vectors are involved\n");
return SDValue();
}
// Find out the smallest element size among result and two sources, and use
// it as element size to build the shuffle_vector.
EVT SmallestEltTy = VT.getVectorElementType();
for (auto &Source : Sources) {
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
if (SrcEltTy.bitsLT(SmallestEltTy)) {
SmallestEltTy = SrcEltTy;
}
}
unsigned ResMultiplier =
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
// If the source vector is too wide or too narrow, we may nevertheless be able
// to construct a compatible shuffle either by concatenating it with UNDEF or
// extracting a suitable range of elements.
for (auto &Src : Sources) {
EVT SrcVT = Src.ShuffleVec.getValueType();
if (SrcVT.getSizeInBits() == VT.getSizeInBits())
continue;
// This stage of the search produces a source with the same element type as
// the original, but with a total width matching the BUILD_VECTOR output.
EVT EltVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
// We can pad out the smaller vector for free, so if it's part of a
// shuffle...
Src.ShuffleVec =
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
continue;
}
assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
return SDValue();
}
if (Src.MinElt >= NumSrcElts) {
// The extraction can just take the second half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i64));
Src.WindowBase = -NumSrcElts;
} else if (Src.MaxElt < NumSrcElts) {
// The extraction can just take the first half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i64));
} else {
// An actual VEXT is needed
SDValue VEXTSrc1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i64));
SDValue VEXTSrc2 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i64));
unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
VEXTSrc2,
DAG.getConstant(Imm, dl, MVT::i32));
Src.WindowBase = -Src.MinElt;
}
}
// Another possible incompatibility occurs from the vector element types. We
// can fix this by bitcasting the source vectors to the same type we intend
// for the shuffle.
for (auto &Src : Sources) {
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
if (SrcEltTy == SmallestEltTy)
continue;
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
Src.WindowBase *= Src.WindowScale;
}
// Final sanity check before we try to actually produce a shuffle.
LLVM_DEBUG(for (auto Src
: Sources)
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
// The stars all align, our next step is to produce the mask for the shuffle.
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
SDValue Entry = Op.getOperand(i);
if (Entry.isUndef())
continue;
auto Src = find(Sources, Entry.getOperand(0));
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
// segment.
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
int BitsDefined =
std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
int LanesDefined = BitsDefined / BitsPerShuffleLane;
// This source is expected to fill ResMultiplier lanes of the final shuffle,
// starting at the appropriate offset.
int *LaneMask = &Mask[i * ResMultiplier];
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
ExtractBase += NumElts * (Src - Sources.begin());
for (int j = 0; j < LanesDefined; ++j)
LaneMask[j] = ExtractBase + j;
}
// Final check before we try to produce nonsense...
if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
return SDValue();
}
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
for (unsigned i = 0; i < Sources.size(); ++i)
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
ShuffleOps[1], Mask);
SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
dbgs() << "Reshuffle, creating node: "; V.dump(););
return V;
}
// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, just follow it
// back to index zero and keep going.
++ExpectedElt;
if (ExpectedElt == NumElts)
ExpectedElt = 0;
if (M[i] < 0)
continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
return true;
}
// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are different.
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
unsigned &Imm) {
// Look for the first non-undef element.
const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
// Benefit form APInt to handle overflow when calculating expected element.
unsigned NumElts = VT.getVectorNumElements();
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
// The following shuffle indices must be the successive elements after the
// first real element.
const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
[&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
if (FirstWrongElt != M.end())
return false;
// The index of an EXT is the first element if it is not UNDEF.
// Watch out for the beginning UNDEFs. The EXT index should be the expected
// value of the first element. E.g.
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
// ExpectedElt is the last mask index plus 1.
Imm = ExpectedElt.getZExtValue();
// There are two difference cases requiring to reverse input vectors.
// For example, for vector <4 x i32> we have the following cases,
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
// to reverse two input vectors.
if (Imm < NumElts)
ReverseEXT = true;
else
Imm -= NumElts;
return true;
}
/// isREVMask - Check if a vector shuffle corresponds to a REV
/// instruction with the specified blocksize. (The order of the elements
/// within each block of the vector is reversed.)
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
"Only possible block sizes for REV are: 16, 32, 64");
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
unsigned BlockElts = M[0] + 1;
// If the first shuffle index is UNDEF, be optimistic.
if (M[0] < 0)
BlockElts = BlockSize / EltSz;
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
if (M[i] < 0)
continue; // ignore UNDEF indices
if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
return false;
}
return true;
}
static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
return false;
Idx += 1;
}
return true;
}
static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i != NumElts; ++i) {
if (M[i] < 0)
continue; // ignore UNDEF indices
if ((unsigned)M[i] != 2 * i + WhichResult)
return false;
}
return true;
}
static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
return false;
}
return true;
}
/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
return false;
Idx += 1;
}
return true;
}
/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned Half = VT.getVectorNumElements() / 2;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned j = 0; j != 2; ++j) {
unsigned Idx = WhichResult;
for (unsigned i = 0; i != Half; ++i) {
int MIdx = M[i + j * Half];
if (MIdx >= 0 && (unsigned)MIdx != Idx)
return false;
Idx += 2;
}
}
return true;
}
/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
return false;
}
return true;
}
static bool isINSMask(ArrayRef<int> M, int NumInputElements,
bool &DstIsLeft, int &Anomaly) {
if (M.size() != static_cast<size_t>(NumInputElements))
return false;
int NumLHSMatch = 0, NumRHSMatch = 0;
int LastLHSMismatch = -1, LastRHSMismatch = -1;
for (int i = 0; i < NumInputElements; ++i) {
if (M[i] == -1) {
++NumLHSMatch;
++NumRHSMatch;
continue;
}
if (M[i] == i)
++NumLHSMatch;
else
LastLHSMismatch = i;
if (M[i] == i + NumInputElements)
++NumRHSMatch;
else
LastRHSMismatch = i;
}
if (NumLHSMatch == NumInputElements - 1) {
DstIsLeft = true;
Anomaly = LastLHSMismatch;
return true;
} else if (NumRHSMatch == NumInputElements - 1) {
DstIsLeft = false;
Anomaly = LastRHSMismatch;
return true;
}
return false;
}
static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
if (VT.getSizeInBits() != 128)
return false;
unsigned NumElts = VT.getVectorNumElements();
for (int I = 0, E = NumElts / 2; I != E; I++) {
if (Mask[I] != I)
return false;
}
int Offset = NumElts / 2;
for (int I = NumElts / 2, E = NumElts; I != E; I++) {
if (Mask[I] != I + SplitLHS * Offset)
return false;
}
return true;
}
static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue V0 = Op.getOperand(0);
SDValue V1 = Op.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
VT.getVectorElementType() != V1.getValueType().getVectorElementType())
return SDValue();
bool SplitV0 = V0.getValueSizeInBits() == 128;
if (!isConcatMask(Mask, VT, SplitV0))
return SDValue();
EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
if (SplitV0) {
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
DAG.getConstant(0, DL, MVT::i64));
}
if (V1.getValueSizeInBits() == 128) {
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
DAG.getConstant(0, DL, MVT::i64));
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VREV,
OP_VDUP0,
OP_VDUP1,
OP_VDUP2,
OP_VDUP3,
OP_VEXT1,
OP_VEXT2,
OP_VEXT3,
OP_VUZPL, // VUZP, left result
OP_VUZPR, // VUZP, right result
OP_VZIPL, // VZIP, left result
OP_VZIPR, // VZIP, right result
OP_VTRNL, // VTRN, left result
OP_VTRNR // VTRN, right result
};
if (OpNum == OP_COPY) {
if (LHSID == (1 * 9 + 2) * 9 + 3)
return LHS;
assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
switch (OpNum) {
default:
llvm_unreachable("Unknown shuffle opcode!");
case OP_VREV:
// VREV divides the vector in half and swaps within the half.
if (VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::f32)
return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
// vrev <4 x i16> -> REV32
if (VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::f16)
return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
// vrev <4 x i8> -> REV16
assert(VT.getVectorElementType() == MVT::i8);
return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3: {
EVT EltTy = VT.getVectorElementType();
unsigned Opcode;
if (EltTy == MVT::i8)
Opcode = AArch64ISD::DUPLANE8;
else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Opcode = AArch64ISD::DUPLANE16;
else if (EltTy == MVT::i32 || EltTy == MVT::f32)
Opcode = AArch64ISD::DUPLANE32;
else if (EltTy == MVT::i64 || EltTy == MVT::f64)
Opcode = AArch64ISD::DUPLANE64;
else
llvm_unreachable("Invalid vector element type?");
if (VT.getSizeInBits() == 64)
OpLHS = WidenVector(OpLHS, DAG);
SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
}
case OP_VEXT1:
case OP_VEXT2:
case OP_VEXT3: {
unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
DAG.getConstant(Imm, dl, MVT::i32));
}
case OP_VUZPL:
return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
OpRHS);
case OP_VUZPR:
return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
OpRHS);
case OP_VZIPL:
return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
OpRHS);
case OP_VZIPR:
return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
OpRHS);
case OP_VTRNL:
return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
OpRHS);
case OP_VTRNR:
return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
OpRHS);
}
}
static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Check to see if we can use the TBL instruction.
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc DL(Op);
EVT EltVT = Op.getValueType().getVectorElementType();
unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
SmallVector<SDValue, 8> TBLMask;
for (int Val : ShuffleMask) {
for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
unsigned Offset = Byte + Val * BytesPerElt;
TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
}
}
MVT IndexVT = MVT::v8i8;
unsigned IndexLen = 8;
if (Op.getValueSizeInBits() == 128) {
IndexVT = MVT::v16i8;
IndexLen = 16;
}
SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
SDValue Shuffle;
if (V2.getNode()->isUndef()) {
if (IndexLen == 8)
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
Shuffle = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
DAG.getBuildVector(IndexVT, DL,
makeArrayRef(TBLMask.data(), IndexLen)));
} else {
if (IndexLen == 8) {
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
Shuffle = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
DAG.getBuildVector(IndexVT, DL,
makeArrayRef(TBLMask.data(), IndexLen)));
} else {
// FIXME: We cannot, for the moment, emit a TBL2 instruction because we
// cannot currently represent the register constraints on the input
// table registers.
// Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
// DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
// IndexLen));
Shuffle = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
V2Cst, DAG.getBuildVector(IndexVT, DL,
makeArrayRef(TBLMask.data(), IndexLen)));
}
}
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
}
static unsigned getDUPLANEOp(EVT EltType) {
if (EltType == MVT::i8)
return AArch64ISD::DUPLANE8;
if (EltType == MVT::i16 || EltType == MVT::f16)
return AArch64ISD::DUPLANE16;
if (EltType == MVT::i32 || EltType == MVT::f32)
return AArch64ISD::DUPLANE32;
if (EltType == MVT::i64 || EltType == MVT::f64)
return AArch64ISD::DUPLANE64;
llvm_unreachable("Invalid vector element type?");
}
SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
ArrayRef<int> ShuffleMask = SVN->getMask();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1)
Lane = 0;
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
V1.getOperand(0));
// Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
// constant. If so, we can just reference the lane's definition directly.
if (V1.getOpcode() == ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(V1.getOperand(Lane)))
return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
// Otherwise, duplicate from the lane of the input vector.
unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
// Try to eliminate a bitcasted extract subvector before a DUPLANE.
auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) {
// Match: dup (bitcast (extract_subv X, C)), LaneC
if (BitCast.getOpcode() != ISD::BITCAST ||
BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
// The extract index must align in the destination type. That may not
// happen if the bitcast is from narrow to wide type.
SDValue Extract = BitCast.getOperand(0);
unsigned ExtIdx = Extract.getConstantOperandVal(1);
unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits();
unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth;
unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits();
if (ExtIdxInBits % CastedEltBitWidth != 0)
return false;
// Update the lane value by offsetting with the scaled extract index.
LaneC += ExtIdxInBits / CastedEltBitWidth;
// Determine the casted vector type of the wide vector input.
// dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
// Examples:
// dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
// dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
unsigned SrcVecNumElts =
Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth;
CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(),
SrcVecNumElts);
return true;
};
MVT CastVT;
if (getScaledOffsetDup(V1, Lane, CastVT)) {
V1 = DAG.getBitcast(CastVT, V1.getOperand(0).getOperand(0));
} else if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
// The lane is incremented by the index of the extract.
// Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
Lane += V1.getConstantOperandVal(1);
V1 = V1.getOperand(0);
} else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
// The lane is decremented if we are splatting from the 2nd operand.
// Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
Lane -= Idx * VT.getVectorNumElements() / 2;
V1 = WidenVector(V1.getOperand(Idx), DAG);
} else if (VT.getSizeInBits() == 64) {
// Widen the operand to 128-bit register with undef.
V1 = WidenVector(V1, DAG);
}
return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
}
if (isREVMask(ShuffleMask, VT, 64))
return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
if (isREVMask(ShuffleMask, VT, 32))
return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
if (isREVMask(ShuffleMask, VT, 16))
return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
bool ReverseEXT = false;
unsigned Imm;
if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
if (ReverseEXT)
std::swap(V1, V2);
Imm *= getExtFactor(V1);
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
DAG.getConstant(Imm, dl, MVT::i32));
} else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
Imm *= getExtFactor(V1);
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
DAG.getConstant(Imm, dl, MVT::i32));
}
unsigned WhichResult;
if (isZIPMask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
}
if (isUZPMask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
}
if (isTRNMask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
}
if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
}
if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
}
if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
}
if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
return Concat;
bool DstIsLeft;
int Anomaly;
int NumInputElements = V1.getValueType().getVectorNumElements();
if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
SDValue DstVec = DstIsLeft ? V1 : V2;
SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
SDValue SrcVec = V1;
int SrcLane = ShuffleMask[Anomaly];
if (SrcLane >= NumInputElements) {
SrcVec = V2;
SrcLane -= VT.getVectorNumElements();
}
SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
EVT ScalarVT = VT.getVectorElementType();
if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
ScalarVT = MVT::i32;
return DAG.getNode(
ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
DstLaneV);
}
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
unsigned NumElts = VT.getVectorNumElements();
if (NumElts == 4) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (ShuffleMask[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = ShuffleMask[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
PFIndexes[2] * 9 + PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
return GenerateTBL(Op, ShuffleMask, DAG);
}
SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT ElemVT = VT.getScalarType();
SDValue SplatVal = Op.getOperand(0);
// Extend input splat value where needed to fit into a GPR (32b or 64b only)
// FPRs don't have this restriction.
switch (ElemVT.getSimpleVT().SimpleTy) {
case MVT::i8:
case MVT::i16:
case MVT::i32:
SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32);
return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
case MVT::i64:
SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
case MVT::i1: {
// The general case of i1. There isn't any natural way to do this,
// so we use some trickery with whilelo.
// TODO: Add special cases for splat of constant true/false.
SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal,
DAG.getValueType(MVT::i1));
SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl,
MVT::i64);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID,
DAG.getConstant(0, dl, MVT::i64), SplatVal);
}
// TODO: we can support float types, but haven't added patterns yet.
case MVT::f16:
case MVT::f32:
case MVT::f64:
default:
report_fatal_error("Unsupported SPLAT_VECTOR input operand type");
}
}
static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
APInt &UndefBits) {
EVT VT = BVN->getValueType(0);
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
for (unsigned i = 0; i < NumSplats; ++i) {
CnstBits <<= SplatBitSize;
UndefBits <<= SplatBitSize;
CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
}
return true;
}
return false;
}
// Try 64-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 32-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits,
const SDValue *LHS = nullptr) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
bool isAdvSIMDModImm = false;
uint64_t Shift;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
Shift = 0;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
Shift = 8;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
Shift = 16;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
Shift = 24;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov;
if (LHS)
Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
else
Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 16-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits,
const SDValue *LHS = nullptr) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
bool isAdvSIMDModImm = false;
uint64_t Shift;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
Shift = 0;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
Shift = 8;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov;
if (LHS)
Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
else
Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 32-bit splatted SIMD immediate with shifted ones.
static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
SelectionDAG &DAG, const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
bool isAdvSIMDModImm = false;
uint64_t Shift;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
Shift = 264;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
Shift = 272;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 8-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try FP splatted SIMD immediate.
static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
bool isWide = (VT.getSizeInBits() == 128);
MVT MovTy;
bool isAdvSIMDModImm = false;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
}
else if (isWide &&
(isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
MovTy = MVT::v2f64;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Specialized code to quickly find if PotentialBVec is a BuildVector that
// consists of only the same constant int value, returned in reference arg
// ConstVal
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
uint64_t &ConstVal) {
BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
if (!Bvec)
return false;
ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
if (!FirstElt)
return false;
EVT VT = Bvec->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
for (unsigned i = 1; i < NumElts; ++i)
if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
return false;
ConstVal = FirstElt->getZExtValue();
return true;
}
static unsigned getIntrinsicID(const SDNode *N) {
unsigned Opcode = N->getOpcode();
switch (Opcode) {
default:
return Intrinsic::not_intrinsic;
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
if (IID < Intrinsic::num_intrinsics)
return IID;
return Intrinsic::not_intrinsic;
}
}
}
// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
// Also, logical shift right -> sri, with the same structure.
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (!VT.isVector())
return SDValue();
SDLoc DL(N);
// Is the first op an AND?
const SDValue And = N->getOperand(0);
if (And.getOpcode() != ISD::AND)
return SDValue();
// Is the second op an shl or lshr?
SDValue Shift = N->getOperand(1);
// This will have been turned into: AArch64ISD::VSHL vector, #shift
// or AArch64ISD::VLSHR vector, #shift
unsigned ShiftOpc = Shift.getOpcode();
if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
return SDValue();
bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
// Is the shift amount constant?
ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
if (!C2node)
return SDValue();
// Is the and mask vector all constant?
uint64_t C1;
if (!isAllConstantBuildVector(And.getOperand(1), C1))
return SDValue();
// Is C1 == ~C2, taking into account how much one can shift elements of a
// particular size?
uint64_t C2 = C2node->getZExtValue();
unsigned ElemSizeInBits = VT.getScalarSizeInBits();
if (C2 > ElemSizeInBits)
return SDValue();
unsigned ElemMask = (1 << ElemSizeInBits) - 1;
if ((C1 & ElemMask) != (~C2 & ElemMask))
return SDValue();
SDValue X = And.getOperand(0);
SDValue Y = Shift.getOperand(0);
unsigned Intrin =
IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
SDValue ResultSLI =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
Shift.getOperand(1));
LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
LLVM_DEBUG(N->dump(&DAG));
LLVM_DEBUG(dbgs() << "into: \n");
LLVM_DEBUG(ResultSLI->dump(&DAG));
++NumShiftInserts;
return ResultSLI;
}
SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SelectionDAG &DAG) const {
// Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
if (EnableAArch64SlrGeneration) {
if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
return Res;
}
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
BuildVectorSDNode *BVN =
dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
if (!BVN) {
// OR commutes, so try swapping the operands.
LHS = Op.getOperand(1);
BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
}
if (!BVN)
return Op;
APInt DefBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
SDValue NewOp;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
DefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
DefBits, &LHS)))
return NewOp;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
UndefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
UndefBits, &LHS)))
return NewOp;
}
// We can always fall back to a non-immediate OR.
return Op;
}
// Normalize the operands of BUILD_VECTOR. The value of constant operands will
// be truncated to fit element width.
static SDValue NormalizeBuildVector(SDValue Op,
SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT EltTy= VT.getVectorElementType();
if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
return Op;
SmallVector<SDValue, 16> Ops;
for (SDValue Lane : Op->ops()) {
// For integer vectors, type legalization would have promoted the
// operands already. Otherwise, if Op is a floating-point splat
// (with operands cast to integers), then the only possibilities
// are constants and UNDEFs.
if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
APInt LowBits(EltTy.getSizeInBits(),
CstLane->getZExtValue());
Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
} else if (Lane.getNode()->isUndef()) {
Lane = DAG.getUNDEF(MVT::i32);
} else {
assert(Lane.getValueType() == MVT::i32 &&
"Unexpected BUILD_VECTOR operand type");
}
Ops.push_back(Lane);
}
return DAG.getBuildVector(VT, dl, Ops);
}
static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
APInt DefBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
SDValue NewOp;
if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
return NewOp;
DefBits = ~DefBits;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
return NewOp;
DefBits = UndefBits;
if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
return NewOp;
DefBits = ~UndefBits;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
return NewOp;
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
// Try to build a simple constant vector.
Op = NormalizeBuildVector(Op, DAG);
if (VT.isInteger()) {
// Certain vector constants, used to express things like logical NOT and
// arithmetic NEG, are passed through unmodified. This allows special
// patterns for these operations to match, which will lower these constants
// to whatever is proven necessary.
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
if (BVN->isConstant())
if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
unsigned BitSize = VT.getVectorElementType().getSizeInBits();
APInt Val(BitSize,
Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
if (Val.isNullValue() || Val.isAllOnesValue())
return Op;
}
}
if (SDValue V = ConstantBuildVector(Op, DAG))
return V;
// Scan through the operands to find some interesting properties we can
// exploit:
// 1) If only one value is used, we can use a DUP, or
// 2) if only the low element is not undef, we can just insert that, or
// 3) if only one constant value is used (w/ some non-constant lanes),
// we can splat the constant value into the whole vector then fill
// in the non-constant lanes.
// 4) FIXME: If different constant values are used, but we can intelligently
// select the values we'll be overwriting for the non-constant
// lanes such that we can directly materialize the vector
// some other way (MOVI, e.g.), we can be sneaky.
// 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
SDLoc dl(Op);
unsigned NumElts = VT.getVectorNumElements();
bool isOnlyLowElement = true;
bool usesOnlyOneValue = true;
bool usesOnlyOneConstantValue = true;
bool isConstant = true;
bool AllLanesExtractElt = true;
unsigned NumConstantLanes = 0;
SDValue Value;
SDValue ConstantValue;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
AllLanesExtractElt = false;
if (V.isUndef())
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
++NumConstantLanes;
if (!ConstantValue.getNode())
ConstantValue = V;
else if (ConstantValue != V)
usesOnlyOneConstantValue = false;
}
if (!Value.getNode())
Value = V;
else if (V != Value)
usesOnlyOneValue = false;
}
if (!Value.getNode()) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
return DAG.getUNDEF(VT);
}
// Convert BUILD_VECTOR where all elements but the lowest are undef into
// SCALAR_TO_VECTOR, except for when we have a single-element constant vector
// as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
"SCALAR_TO_VECTOR node\n");
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
}
if (AllLanesExtractElt) {
SDNode *Vector = nullptr;
bool Even = false;
bool Odd = false;
// Check whether the extract elements match the Even pattern <0,2,4,...> or
// the Odd pattern <1,3,5,...>.
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
const SDNode *N = V.getNode();
if (!isa<ConstantSDNode>(N->getOperand(1)))
break;
SDValue N0 = N->getOperand(0);
// All elements are extracted from the same vector.
if (!Vector) {
Vector = N0.getNode();
// Check that the type of EXTRACT_VECTOR_ELT matches the type of
// BUILD_VECTOR.
if (VT.getVectorElementType() !=
N0.getValueType().getVectorElementType())
break;
} else if (Vector != N0.getNode()) {
Odd = false;
Even = false;
break;
}
// Extracted values are either at Even indices <0,2,4,...> or at Odd
// indices <1,3,5,...>.
uint64_t Val = N->getConstantOperandVal(1);
if (Val == 2 * i) {
Even = true;
continue;
}
if (Val - 1 == 2 * i) {
Odd = true;
continue;
}
// Something does not match: abort.
Odd = false;
Even = false;
break;
}
if (Even || Odd) {
SDValue LHS =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
DAG.getConstant(0, dl, MVT::i64));
SDValue RHS =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
DAG.getConstant(NumElts, dl, MVT::i64));
if (Even && !Odd)
return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
RHS);
if (Odd && !Even)
return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
RHS);
}
}
// Use DUP for non-constant splats. For f32 constant splats, reduce to
// i32 and try again.
if (usesOnlyOneValue) {
if (!isConstant) {
if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Value.getValueType() != VT) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
}
// This is actually a DUPLANExx operation, which keeps everything vectory.
SDValue Lane = Value.getOperand(1);
Value = Value.getOperand(0);
if (Value.getValueSizeInBits() == 64) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
"widening it\n");
Value = WidenVector(Value, DAG);
}
unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
return DAG.getNode(Opcode, dl, VT, Value, Lane);
}
if (VT.getVectorElementType().isFloatingPoint()) {
SmallVector<SDValue, 8> Ops;
EVT EltTy = VT.getVectorElementType();
assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
"Unsupported floating-point vector type");
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
"BITCASTS, and try again\n");
MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
Val.dump(););
Val = LowerBUILD_VECTOR(Val, DAG);
if (Val.getNode())
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
}
// If there was only one constant value used and for more than one lane,
// start by splatting that value, then replace the non-constant lanes. This
// is better than the default, which will perform a separate initialization
// for each lane.
if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
// Firstly, try to materialize the splat constant.
SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
Val = ConstantBuildVector(Vec, DAG);
if (!Val) {
// Otherwise, materialize the constant and splat it.
Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
}
// Now insert the non-constant lanes.
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
// Note that type legalization likely mucked about with the VT of the
// source operand, so we may have to convert it here before inserting.
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
}
return Val;
}
// This will generate a load from the constant pool.
if (isConstant) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
"expansion\n");
return SDValue();
}
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
if (NumElts >= 4) {
if (SDValue shuffle = ReconstructShuffle(Op, DAG))
return shuffle;
}
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
// know the default expansion would otherwise fall back on something even
// worse. For a vector with one or two non-undef values, that's
// scalar_to_vector for the elements followed by a shuffle (provided the
// shuffle is valid for the target) and materialization element by element
// on the stack followed by a load for everything else.
if (!isConstant && !usesOnlyOneValue) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
"of INSERT_VECTOR_ELT\n");
SDValue Vec = DAG.getUNDEF(VT);
SDValue Op0 = Op.getOperand(0);
unsigned i = 0;
// Use SCALAR_TO_VECTOR for lane zero to
// a) Avoid a RMW dependency on the full vector register, and
// b) Allow the register coalescer to fold away the copy if the
// value is already in an S or D register, and we're forced to emit an
// INSERT_SUBREG that we can't fold anywhere.
//
// We also allow types like i8 and i16 which are illegal scalar but legal
// vector element types. After type-legalization the inserted value is
// extended (i32) and it is safe to cast them to the vector type by ignoring
// the upper bits of the lowest lane (e.g. v8i8, v4i16).
if (!Op0.isUndef()) {
LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
++i;
}
LLVM_DEBUG(if (i < NumElts) dbgs()
<< "Creating nodes for the other vector elements:\n";);
for (; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
}
return Vec;
}
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
"better alternative\n");
return SDValue();
}
SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
// Check for non-constant or out of range lane.
EVT VT = Op.getOperand(0).getValueType();
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
return SDValue();
// Insertion/extraction are legal for V128 types.
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
VT == MVT::v8f16)
return Op;
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
return SDValue();
// For V64 types, we perform insertion by expanding the value
// to a V128 type and perform the insertion on that.
SDLoc DL(Op);
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
EVT WideTy = WideVec.getValueType();
SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
Op.getOperand(1), Op.getOperand(2));
// Re-narrow the resultant vector.
return NarrowVector(Node, DAG);
}
SDValue
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
// Check for non-constant or out of range lane.
EVT VT = Op.getOperand(0).getValueType();
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
return SDValue();
// Insertion/extraction are legal for V128 types.
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
VT == MVT::v8f16)
return Op;
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
return SDValue();
// For V64 types, we perform extraction by expanding the value
// to a V128 type and perform the extraction on that.
SDLoc DL(Op);
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
EVT WideTy = WideVec.getValueType();
EVT ExtrTy = WideTy.getVectorElementType();
if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
ExtrTy = MVT::i32;
// For extractions, we just return the result directly.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
Op.getOperand(1));
}
SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getOperand(0).getValueType();
SDLoc dl(Op);
// Just in case...
if (!VT.isVector())
return SDValue();
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Cst)
return SDValue();
unsigned Val = Cst->getZExtValue();
unsigned Size = Op.getValueSizeInBits();
// This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
if (Val == 0)
return Op;
// If this is extracting the upper 64-bits of a 128-bit vector, we match
// that directly.
if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
return Op;
return SDValue();
}
bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (M[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = M[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
PFIndexes[2] * 9 + PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4)
return true;
}
bool DummyBool;
int DummyInt;
unsigned DummyUnsigned;
return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
// isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
isZIPMask(M, VT, DummyUnsigned) ||
isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
isConcatMask(M, VT, VT.getSizeInBits() == 128));
}
/// getVShiftImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
HasAnyUndefs, ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
/// 1 <= Value <= ElementBits for a right shift; or
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
}
SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
int64_t Cnt;
if (!Op.getOperand(1).getValueType().isVector())
return Op;
unsigned EltSize = VT.getScalarSizeInBits();
switch (Op.getOpcode()) {
default:
llvm_unreachable("unexpected shift opcode");
case ISD::SHL:
if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
DAG.getConstant(Cnt, DL, MVT::i32));
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
MVT::i32),
Op.getOperand(0), Op.getOperand(1));
case ISD::SRA:
case ISD::SRL:
// Right shift immediate
if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
unsigned Opc =
(Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
DAG.getConstant(Cnt, DL, MVT::i32));
}
// Right shift register. Note, there is not a shift right register
// instruction, but the shift left register instruction takes a signed
// value, where negative numbers specify a right shift.
unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
: Intrinsic::aarch64_neon_ushl;
// negate the shift amount
SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
SDValue NegShiftLeft =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
NegShift);
return NegShiftLeft;
}
return SDValue();
}
static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
AArch64CC::CondCode CC, bool NoNans, EVT VT,
const SDLoc &dl, SelectionDAG &DAG) {
EVT SrcVT = LHS.getValueType();
assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
"function only supposed to emit natural comparisons");
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
APInt CnstBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
bool IsZero = IsCnst && (CnstBits == 0);
if (SrcVT.getVectorElementType().isFloatingPoint()) {
switch (CC) {
default:
return SDValue();
case AArch64CC::NE: {
SDValue Fcmeq;
if (IsZero)
Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
else
Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
}
case AArch64CC::EQ:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
case AArch64CC::GE:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
case AArch64CC::GT:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
case AArch64CC::LS:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
case AArch64CC::LT:
if (!NoNans)
return SDValue();
// If we ignore NaNs then we can use to the MI implementation.
LLVM_FALLTHROUGH;
case AArch64CC::MI:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
}
}
switch (CC) {
default:
return SDValue();
case AArch64CC::NE: {
SDValue Cmeq;
if (IsZero)
Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
else
Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
}
case AArch64CC::EQ:
if (IsZero)
return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
case AArch64CC::GE:
if (IsZero)
return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
case AArch64CC::GT:
if (IsZero)
return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
case AArch64CC::LE:
if (IsZero)
return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
case AArch64CC::LS:
return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
case AArch64CC::LO:
return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
case AArch64CC::LT:
if (IsZero)
return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
case AArch64CC::HI:
return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
case AArch64CC::HS:
return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
}
}
SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
SDLoc dl(Op);
if (LHS.getValueType().getVectorElementType().isInteger()) {
assert(LHS.getValueType() == RHS.getValueType());
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
SDValue Cmp =
EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
}
const bool FullFP16 =
static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
// Make v4f16 (only) fcmp operations utilise vector instructions
// v8f16 support will be a litle more complicated
if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
if (LHS.getValueType().getVectorNumElements() == 4) {
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
DAG.ReplaceAllUsesWith(Op, NewSetcc);
CmpVT = MVT::v4i32;
} else
return SDValue();
}
assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
LHS.getValueType().getVectorElementType() != MVT::f128);
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
// clean. Some of them require two branches to implement.
AArch64CC::CondCode CC1, CC2;
bool ShouldInvert;
changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
SDValue Cmp =
EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
if (!Cmp.getNode())
return SDValue();
if (CC2 != AArch64CC::AL) {
SDValue Cmp2 =
EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
if (!Cmp2.getNode())
return SDValue();
Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
}
Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
if (ShouldInvert)
Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
return Cmp;
}
static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
SelectionDAG &DAG) {
SDValue VecOp = ScalarOp.getOperand(0);
auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
DAG.getConstant(0, DL, MVT::i64));
}
SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
switch (Op.getOpcode()) {
case ISD::VECREDUCE_ADD:
return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
case ISD::VECREDUCE_SMAX:
return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
case ISD::VECREDUCE_SMIN:
return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
case ISD::VECREDUCE_UMAX:
return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
case ISD::VECREDUCE_UMIN:
return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
case ISD::VECREDUCE_FMAX: {
assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
Op.getOperand(0));
}
case ISD::VECREDUCE_FMIN: {
assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
Op.getOperand(0));
}
default:
llvm_unreachable("Unhandled reduction");
}
}
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
SelectionDAG &DAG) const {
auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
if (!Subtarget.hasLSE())
return SDValue();
// LSE has an atomic load-add instruction, but not a load-sub.
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
SDValue RHS = Op.getOperand(2);
AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
Op.getOperand(0), Op.getOperand(1), RHS,
AN->getMemOperand());
}
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
SelectionDAG &DAG) const {
auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
if (!Subtarget.hasLSE())
return SDValue();
// LSE has an atomic load-clear instruction, but not a load-and.
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
SDValue RHS = Op.getOperand(2);
AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
Op.getOperand(0), Op.getOperand(1), RHS,
AN->getMemOperand());
}
SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
if (Subtarget->hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
DAG.getConstant(4, dl, MVT::i64));
Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
Chain =
DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
DAG.getRegisterMask(Mask), Chain.getValue(1));
// To match the actual intent better, we should read the output from X15 here
// again (instead of potentially spilling it to the stack), but rereading Size
// from X15 here doesn't work at -O0, since it thinks that X15 is undefined
// here.
Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
DAG.getConstant(4, dl, MVT::i64));
return Chain;
}
SDValue
AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() &&
"Only Windows alloca probing supported");
SDLoc dl(Op);
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
EVT VT = Node->getValueType(0);
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
"no-stack-arg-probe")) {
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
Chain = SP.getValue(1);
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
if (Align)
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
SDValue Ops[2] = {SP, Chain};
return DAG.getMergeValues(Ops, dl);
}
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
Chain = SP.getValue(1);
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
if (Align)
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
SDValue Ops[2] = {SP, Chain};
return DAG.getMergeValues(Ops, dl);
}
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
auto &DL = I.getModule()->getDataLayout();
switch (Intrinsic) {
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_ld1x2:
case Intrinsic::aarch64_neon_ld1x3:
case Intrinsic::aarch64_neon_ld1x4:
case Intrinsic::aarch64_neon_ld2lane:
case Intrinsic::aarch64_neon_ld3lane:
case Intrinsic::aarch64_neon_ld4lane:
case Intrinsic::aarch64_neon_ld2r:
case Intrinsic::aarch64_neon_ld3r:
case Intrinsic::aarch64_neon_ld4r: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
Info.offset = 0;
Info.align.reset();
// volatile loads with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
case Intrinsic::aarch64_neon_st1x2:
case Intrinsic::aarch64_neon_st1x3:
case Intrinsic::aarch64_neon_st1x4:
case Intrinsic::aarch64_neon_st2lane:
case Intrinsic::aarch64_neon_st3lane:
case Intrinsic::aarch64_neon_st4lane: {
Info.opc = ISD::INTRINSIC_VOID;
// Conservatively set memVT to the entire set of vectors stored.
unsigned NumElts = 0;
for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
Type *ArgTy = I.getArgOperand(ArgI)->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
Info.offset = 0;
Info.align.reset();
// volatile stores with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOStore;
return true;
}
case Intrinsic::aarch64_ldaxr:
case Intrinsic::aarch64_ldxr: {
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::aarch64_stlxr:
case Intrinsic::aarch64_stxr: {
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::aarch64_ldaxp:
case Intrinsic::aarch64_ldxp:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i128;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(16);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return true;
case Intrinsic::aarch64_stlxp:
case Intrinsic::aarch64_stxp:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i128;
Info.ptrVal = I.getArgOperand(2);
Info.offset = 0;
Info.align = Align(16);
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
return true;
case Intrinsic::aarch64_sve_ldnt1: {
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal;
return true;
}
case Intrinsic::aarch64_sve_stnt1: {
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(2);
Info.offset = 0;
Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal;
return true;
}
default:
break;
}
return false;
}
bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
ISD::LoadExtType ExtTy,
EVT NewVT) const {
// TODO: This may be worth removing. Check regression tests for diffs.
if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
return false;
// If we're reducing the load width in order to avoid having to use an extra
// instruction to do extension then it's probably a good idea.
if (ExtTy != ISD::NON_EXTLOAD)
return true;
// Don't reduce load width if it would prevent us from combining a shift into
// the offset.
MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
assert(Mem);
const SDValue &Base = Mem->getBasePtr();
if (Base.getOpcode() == ISD::ADD &&
Base.getOperand(1).getOpcode() == ISD::SHL &&
Base.getOperand(1).hasOneUse() &&
Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
// The shift can be combined if it matches the size of the value being
// loaded (and so reducing the width would make it not match).
uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
if (ShiftAmount == Log2_32(LoadBytes))
return false;
}
// We have no reason to disallow reducing the load width, so allow it.
return true;
}
// Truncations from 64-bit GPR to 32-bit GPR is free.
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 > NumBits2;
}
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 > NumBits2;
}
/// Check if it is profitable to hoist instruction in then/else to if.
/// Not profitable if I and it's user can form a FMA instruction
/// because we prefer FMSUB/FMADD.
bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
if (I->getOpcode() != Instruction::FMul)
return true;
if (!I->hasOneUse())
return true;
Instruction *User = I->user_back();
if (User &&
!(User->getOpcode() == Instruction::FSub ||
User->getOpcode() == Instruction::FAdd))
return true;
const TargetOptions &Options = getTargetMachine().Options;
const Function *F = I->getFunction();
const DataLayout &DL = F->getParent()->getDataLayout();
Type *Ty = User->getOperand(0)->getType();
return !(isFMAFasterThanFMulAndFAdd(*F, Ty) &&
isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
(Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath));
}
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
// 64-bit GPR.
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 == 32 && NumBits2 == 64;
}
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 == 32 && NumBits2 == 64;
}
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
EVT VT1 = Val.getValueType();
if (isZExtFree(VT1, VT2)) {
return true;
}
if (Val.getOpcode() != ISD::LOAD)
return false;
// 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
VT1.getSizeInBits() <= 32);
}
bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
if (isa<FPExtInst>(Ext))
return false;
// Vector types are not free.
if (Ext->getType()->isVectorTy())
return false;
for (const Use &U : Ext->uses()) {
// The extension is free if we can fold it with a left shift in an
// addressing mode or an arithmetic operation: add, sub, and cmp.
// Is there a shift?
const Instruction *Instr = cast<Instruction>(U.getUser());
// Is this a constant shift?
switch (Instr->getOpcode()) {
case Instruction::Shl:
if (!isa<ConstantInt>(Instr->getOperand(1)))
return false;
break;
case Instruction::GetElementPtr: {
gep_type_iterator GTI = gep_type_begin(Instr);
auto &DL = Ext->getModule()->getDataLayout();
std::advance(GTI, U.getOperandNo()-1);
Type *IdxTy = GTI.getIndexedType();
// This extension will end up with a shift because of the scaling factor.
// 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
// Get the shift amount based on the scaling factor:
// log2(sizeof(IdxTy)) - log2(8).
uint64_t ShiftAmt =
countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3;
// Is the constant foldable in the shift of the addressing mode?
// I.e., shift amount is between 1 and 4 inclusive.
if (ShiftAmt == 0 || ShiftAmt > 4)
return false;
break;
}
case Instruction::Trunc:
// Check if this is a noop.
// trunc(sext ty1 to ty2) to ty1.
if (Instr->getType() == Ext->getOperand(0)->getType())
continue;
LLVM_FALLTHROUGH;
default:
return false;
}
// At this point we can use the bfm family, so this extension is free
// for that use.
}
return true;
}
/// Check if both Op1 and Op2 are shufflevector extracts of either the lower
/// or upper half of the vector elements.
static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
auto *FullVT = cast<VectorType>(FullV->getType());
auto *HalfVT = cast<VectorType>(HalfV->getType());
return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
};
auto extractHalf = [](Value *FullV, Value *HalfV) {
auto *FullVT = cast<VectorType>(FullV->getType());
auto *HalfVT = cast<VectorType>(HalfV->getType());
return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
};
Constant *M1, *M2;
Value *S1Op1, *S2Op1;
if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
!match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
return false;
// Check that the operands are half as wide as the result and we extract
// half of the elements of the input vectors.
if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
!extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
return false;
// Check the mask extracts either the lower or upper half of vector
// elements.
int M1Start = -1;
int M2Start = -1;
int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
!ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
return false;
return true;
}
/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
/// of the vector elements.
static bool areExtractExts(Value *Ext1, Value *Ext2) {
auto areExtDoubled = [](Instruction *Ext) {
return Ext->getType()->getScalarSizeInBits() ==
2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
};
if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
!match(Ext2, m_ZExtOrSExt(m_Value())) ||
!areExtDoubled(cast<Instruction>(Ext1)) ||
!areExtDoubled(cast<Instruction>(Ext2)))
return false;
return true;
}
/// Check if sinking \p I's operands to I's basic block is profitable, because
/// the operands can be folded into a target instruction, e.g.
/// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
bool AArch64TargetLowering::shouldSinkOperands(
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
if (!I->getType()->isVectorTy())
return false;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::aarch64_neon_umull:
if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
return false;
Ops.push_back(&II->getOperandUse(0));
Ops.push_back(&II->getOperandUse(1));
return true;
default:
return false;
}
}
switch (I->getOpcode()) {
case Instruction::Sub:
case Instruction::Add: {
if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
return false;
// If the exts' operands extract either the lower or upper elements, we
// can sink them too.
auto Ext1 = cast<Instruction>(I->getOperand(0));
auto Ext2 = cast<Instruction>(I->getOperand(1));
if (areExtractShuffleVectors(Ext1, Ext2)) {
Ops.push_back(&Ext1->getOperandUse(0));
Ops.push_back(&Ext2->getOperandUse(0));
}
Ops.push_back(&I->getOperandUse(0));
Ops.push_back(&I->getOperandUse(1));
return true;
}
default:
return false;
}
return false;
}
bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
unsigned &RequiredAligment) const {
if (!LoadedType.isSimple() ||
(!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
return false;
// Cyclone supports unaligned accesses.
RequiredAligment = 0;
unsigned NumBits = LoadedType.getSizeInBits();
return NumBits == 32 || NumBits == 64;
}
/// A helper function for determining the number of interleaved accesses we
/// will generate when lowering accesses of the given type.
unsigned
AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
const DataLayout &DL) const {
return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
}
MachineMemOperand::Flags
AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
return MOStridedAccess;
return MachineMemOperand::MONone;
}
bool AArch64TargetLowering::isLegalInterleavedAccessType(
VectorType *VecTy, const DataLayout &DL) const {
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
// Ensure the number of vector elements is greater than 1.
if (VecTy->getNumElements() < 2)
return false;
// Ensure the element type is legal.
if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
return false;
// Ensure the total vector size is 64 or a multiple of 128. Types larger than
// 128 will be split into multiple interleaved accesses.
return VecSize == 64 || VecSize % 128 == 0;
}
/// Lower an interleaved load into a ldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
///
/// Into:
/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
bool AArch64TargetLowering::lowerInterleavedLoad(
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices, unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
assert(!Shuffles.empty() && "Empty shufflevector input");
assert(Shuffles.size() == Indices.size() &&
"Unmatched number of shufflevectors and indices");
const DataLayout &DL = LI->getModule()->getDataLayout();
VectorType *VecTy = Shuffles[0]->getType();
// Skip if we do not have NEON and skip illegal vector types. We can
// "legalize" wide vector types into multiple interleaved accesses as long as
// the vector types are divisible by 128.
if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
return false;
unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
// A pointer vector can not be the return type of the ldN intrinsics. Need to
// load integer vectors first and then convert to pointer vectors.
Type *EltTy = VecTy->getVectorElementType();
if (EltTy->isPointerTy())
VecTy =
VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
IRBuilder<> Builder(LI);
// The base address of the load.
Value *BaseAddr = LI->getPointerOperand();
if (NumLoads > 1) {
// If we're going to generate more than one load, reset the sub-vector type
// to something legal.
VecTy = VectorType::get(VecTy->getVectorElementType(),
VecTy->getVectorNumElements() / NumLoads);
// We will compute the pointer operand of each load from the original base
// address using GEPs. Cast the base address to a pointer to the scalar
// element type.
BaseAddr = Builder.CreateBitCast(
BaseAddr, VecTy->getVectorElementType()->getPointerTo(
LI->getPointerAddressSpace()));
}
Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
Type *Tys[2] = {VecTy, PtrTy};
static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
Intrinsic::aarch64_neon_ld3,
Intrinsic::aarch64_neon_ld4};
Function *LdNFunc =
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
// Holds sub-vectors extracted from the load intrinsic return values. The
// sub-vectors are associated with the shufflevector instructions they will
// replace.
DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
// If we're generating more than one load, compute the base address of
// subsequent loads as an offset from the previous.
if (LoadCount > 0)
BaseAddr =
Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
VecTy->getVectorNumElements() * Factor);
CallInst *LdN = Builder.CreateCall(
LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
// Extract and store the sub-vectors returned by the load intrinsic.
for (unsigned i = 0; i < Shuffles.size(); i++) {
ShuffleVectorInst *SVI = Shuffles[i];
unsigned Index = Indices[i];
Value *SubVec = Builder.CreateExtractValue(LdN, Index);
// Convert the integer vector to pointer vector if the element is pointer.
if (EltTy->isPointerTy())
SubVec = Builder.CreateIntToPtr(
SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
VecTy->getVectorNumElements()));
SubVecs[SVI].push_back(SubVec);
}
}
// Replace uses of the shufflevector instructions with the sub-vectors
// returned by the load intrinsic. If a shufflevector instruction is
// associated with more than one sub-vector, those sub-vectors will be
// concatenated into a single wide vector.
for (ShuffleVectorInst *SVI : Shuffles) {
auto &SubVec = SubVecs[SVI];
auto *WideVec =
SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
SVI->replaceAllUsesWith(WideVec);
}
return true;
}
/// Lower an interleaved store into a stN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
///
/// Into:
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// st3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
///
/// Into:
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
ShuffleVectorInst *SVI,
unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
VectorType *VecTy = SVI->getType();
assert(VecTy->getVectorNumElements() % Factor == 0 &&
"Invalid interleaved store");
unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
Type *EltTy = VecTy->getVectorElementType();
VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
const DataLayout &DL = SI->getModule()->getDataLayout();
// Skip if we do not have NEON and skip illegal vector types. We can
// "legalize" wide vector types into multiple interleaved accesses as long as
// the vector types are divisible by 128.
if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
return false;
unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
Value *Op0 = SVI->getOperand(0);
Value *Op1 = SVI->getOperand(1);
IRBuilder<> Builder(SI);
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
// vectors to integer vectors.
if (EltTy->isPointerTy()) {
Type *IntTy = DL.getIntPtrType(EltTy);
unsigned NumOpElts = Op0->getType()->getVectorNumElements();
// Convert to the corresponding integer vector.
Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
SubVecTy = VectorType::get(IntTy, LaneLen);
}
// The base address of the store.
Value *BaseAddr = SI->getPointerOperand();
if (NumStores > 1) {
// If we're going to generate more than one store, reset the lane length
// and sub-vector type to something legal.
LaneLen /= NumStores;
SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
// We will compute the pointer operand of each store from the original base
// address using GEPs. Cast the base address to a pointer to the scalar
// element type.
BaseAddr = Builder.CreateBitCast(
BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
SI->getPointerAddressSpace()));
}
auto Mask = SVI->getShuffleMask();
Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
Type *Tys[2] = {SubVecTy, PtrTy};
static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
Intrinsic::aarch64_neon_st3,
Intrinsic::aarch64_neon_st4};
Function *StNFunc =
Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
SmallVector<Value *, 5> Ops;
// Split the shufflevector operands into sub vectors for the new stN call.
for (unsigned i = 0; i < Factor; i++) {
unsigned IdxI = StoreCount * LaneLen * Factor + i;
if (Mask[IdxI] >= 0) {
Ops.push_back(Builder.CreateShuffleVector(
Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
} else {
unsigned StartMask = 0;
for (unsigned j = 1; j < LaneLen; j++) {
unsigned IdxJ = StoreCount * LaneLen * Factor + j;
if (Mask[IdxJ * Factor + IdxI] >= 0) {
StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
break;
}
}
// Note: Filling undef gaps with random elements is ok, since
// those elements were being written anyway (with undefs).
// In the case of all undefs we're defaulting to using elems from 0
// Note: StartMask cannot be negative, it's checked in
// isReInterleaveMask
Ops.push_back(Builder.CreateShuffleVector(
Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
}
}
// If we generating more than one store, we compute the base address of
// subsequent stores as an offset from the previous.
if (StoreCount > 0)
BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
BaseAddr, LaneLen * Factor);
Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
Builder.CreateCall(StNFunc, Ops);
}
return true;
}
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
unsigned AlignCheck) {
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
(DstAlign == 0 || DstAlign % AlignCheck == 0));
}
EVT AArch64TargetLowering::getOptimalMemOpType(
uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
bool ZeroMemset, bool MemcpyStrSrc,
const AttributeList &FuncAttributes) const {
bool CanImplicitFloat =
!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
// Only use AdvSIMD to implement memset of 32-byte and above. It would have
// taken one instruction to materialize the v2i64 zero and one store (with
// restrictive addressing mode). Just do i64 stores.
bool IsSmallMemset = IsMemset && Size < 32;
auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
return true;
bool Fast;
return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
&Fast) &&
Fast;
};
if (CanUseNEON && IsMemset && !IsSmallMemset &&
AlignmentIsAcceptable(MVT::v2i64, 16))
return MVT::v2i64;
if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
return MVT::f128;
if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
return MVT::i64;
if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
return MVT::i32;
return MVT::Other;
}
LLT AArch64TargetLowering::getOptimalMemOpLLT(
uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
bool ZeroMemset, bool MemcpyStrSrc,
const AttributeList &FuncAttributes) const {
bool CanImplicitFloat =
!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
// Only use AdvSIMD to implement memset of 32-byte and above. It would have
// taken one instruction to materialize the v2i64 zero and one store (with
// restrictive addressing mode). Just do i64 stores.
bool IsSmallMemset = IsMemset && Size < 32;
auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
return true;
bool Fast;
return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
&Fast) &&
Fast;
};
if (CanUseNEON && IsMemset && !IsSmallMemset &&
AlignmentIsAcceptable(MVT::v2i64, 16))
return LLT::vector(2, 64);
if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
return LLT::scalar(128);
if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
return LLT::scalar(64);
if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
return LLT::scalar(32);
return LLT();
}
// 12-bit optionally shifted immediates are legal for adds.
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
if (Immed == std::numeric_limits<int64_t>::min()) {
LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
<< ": avoid UB for INT64_MIN\n");
return false;
}
// Same encoding for add/sub, just flip the sign.
Immed = std::abs(Immed);
bool IsLegal = ((Immed >> 12) == 0 ||
((Immed & 0xfff) == 0 && Immed >> 24 == 0));
LLVM_DEBUG(dbgs() << "Is " << Immed
<< " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
return IsLegal;
}
// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
// immediates is the same as for an add or a sub.
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
return isLegalAddImmediate(Immed);
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// AArch64 has five basic addressing modes:
// reg
// reg + 9-bit signed offset
// reg + SIZE_IN_BYTES * 12-bit unsigned offset
// reg1 + reg2
// reg + SIZE_IN_BYTES * reg
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// No reg+reg+imm addressing.
if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
return false;
// check reg + imm case:
// i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
uint64_t NumBytes = 0;
if (Ty->isSized()) {
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
if (!AM.Scale) {
int64_t Offset = AM.BaseOffs;
// 9-bit signed offset
if (isInt<9>(Offset))
return true;
// 12-bit unsigned offset
unsigned shift = Log2_64(NumBytes);
if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
// Must be a multiple of NumBytes (NumBytes is a power of 2)
(Offset >> shift) << shift == Offset)
return true;
return false;
}
// Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
}
bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
// Consider splitting large offset of struct or array.
return true;
}
int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// Scaling factors are not free at all.
// Operands | Rt Latency
// -------------------------------------------
// Rt, [Xn, Xm] | 4
// -------------------------------------------
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
// Rt, [Xn, Wm, <extend> #imm] |
if (isLegalAddressingMode(DL, AM, Ty, AS))
// Scale represents reg2 * scale, thus account for 1 if
// it is not equal to 0 or 1.
return AM.Scale != 0 && AM.Scale != 1;
return -1;
}
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
const MachineFunction &MF, EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
Type *Ty) const {
switch (Ty->getScalarType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
return true;
default:
return false;
}
}
const MCPhysReg *
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
// LR is a callee-save register, but we must treat it as clobbered by any call
// site. Hence we include LR in the scratch registers, which are in turn added
// as implicit-defs for stackmaps and patchpoints.
static const MCPhysReg ScratchRegs[] = {
AArch64::X16, AArch64::X17, AArch64::LR, 0
};
return ScratchRegs;
}
bool
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const {
N = N->getOperand(0).getNode();
EVT VT = N->getValueType(0);
// If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
// it with shift to let it be lowered to UBFX.
if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
isa<ConstantSDNode>(N->getOperand(1))) {
uint64_t TruncMask = N->getConstantOperandVal(1);
if (isMask_64(TruncMask) &&
N->getOperand(0).getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
return false;
}
return true;
}
bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return false;
int64_t Val = Imm.getSExtValue();
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
return true;
if ((int64_t)Val < 0)
Val = ~Val;
if (BitSize == 32)
Val &= (1LL << 32) - 1;
unsigned LZ = countLeadingZeros((uint64_t)Val);
unsigned Shift = (63 - LZ) / 16;
// MOVZ is free so return true for one or fewer MOVK.
return Shift < 3;
}
bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
return (Index == 0 || Index == ResVT.getVectorNumElements());
}
/// Turn vector tests of the signbit in the form of:
/// xor (sra X, elt_size(X)-1), -1
/// into:
/// cmge X, X, #0
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
if (!Subtarget->hasNEON() || !VT.isVector())
return SDValue();
// There must be a shift right algebraic before the xor, and the xor must be a
// 'not' operation.
SDValue Shift = N->getOperand(0);
SDValue Ones = N->getOperand(1);
if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
!ISD::isBuildVectorAllOnes(Ones.getNode()))
return SDValue();
// The shift should be smearing the sign bit across each vector element.
auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
return SDValue();
return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
}
// Generate SUBS and CSEL for integer abs.
static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
// Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
// and change it to SUB and CSEL.
if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
N0.getOperand(0));
// Generate SUBS & CSEL.
SDValue Cmp =
DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
N0.getOperand(0), DAG.getConstant(0, DL, VT));
return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
SDValue(Cmp.getNode(), 1));
}
return SDValue();
}
static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
return Cmp;
return performIntegerAbsCombine(N, DAG);
}
SDValue
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isIntDivCheap(N->getValueType(0), Attr))
return SDValue(N,0); // Lower SDIV as SDIV
// fold (sdiv X, pow2)
EVT VT = N->getValueType(0);
if ((VT != MVT::i32 && VT != MVT::i64) ||
!(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
unsigned Lg2 = Divisor.countTrailingZeros();
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
// Add (N0 < 0) ? Pow2 - 1 : 0;
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
Created.push_back(Cmp.getNode());
Created.push_back(Add.getNode());
Created.push_back(CSel.getNode());
// Divide by pow2.
SDValue SRA =
DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
// If we're dividing by a positive value, we're done. Otherwise, we must
// negate the result.
if (Divisor.isNonNegative())
return SRA;
Created.push_back(SRA.getNode());
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
}
static bool IsSVECntIntrinsic(SDValue S) {
switch(getIntrinsicID(S.getNode())) {
default:
break;
case Intrinsic::aarch64_sve_cntb:
case Intrinsic::aarch64_sve_cnth:
case Intrinsic::aarch64_sve_cntw:
case Intrinsic::aarch64_sve_cntd:
return true;
}
return false;
}
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
// The below optimizations require a constant RHS.
if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue();
SDValue N0 = N->getOperand(0);
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
const APInt &ConstValue = C->getAPIntValue();
// Allow the scaling to be folded into the `cnt` instruction by preventing
// the scaling to be obscured here. This makes it easier to pattern match.
if (IsSVECntIntrinsic(N0) ||
(N0->getOpcode() == ISD::TRUNCATE &&
(IsSVECntIntrinsic(N0->getOperand(0)))))
if (ConstValue.sge(1) && ConstValue.sle(16))
return SDValue();
// Multiplication of a power of two plus/minus one can be done more
// cheaply as as shift+add/sub. For now, this is true unilaterally. If
// future CPUs have a cheaper MADD instruction, this may need to be
// gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
// 64-bit is 5 cycles, so this is always a win.
// More aggressively, some multiplications N0 * C can be lowered to
// shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
// e.g. 6=3*2=(2+1)*2.
// TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
// which equals to (1+2)*16-(1+2).
// TrailingZeroes is used to test if the mul can be lowered to
// shift+add+shift.
unsigned TrailingZeroes = ConstValue.countTrailingZeros();
if (TrailingZeroes) {
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into smul or umul.
if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
isZeroExtended(N0.getNode(), DAG)))
return SDValue();
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into madd or msub.
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
N->use_begin()->getOpcode() == ISD::SUB))
return SDValue();
}
// Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
// and shift+add+shift.
APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
unsigned ShiftAmt, AddSubOpc;
// Is the shifted value the LHS operand of the add/sub?
bool ShiftValUseIsN0 = true;
// Do we need to negate the result?
bool NegateResult = false;
if (ConstValue.isNonNegative()) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
// (mul x, 2^N - 1) => (sub (shl x, N), x)
// (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
APInt SCVMinus1 = ShiftedConstValue - 1;
APInt CVPlus1 = ConstValue + 1;
if (SCVMinus1.isPowerOf2()) {
ShiftAmt = SCVMinus1.logBase2();
AddSubOpc = ISD::ADD;
} else if (CVPlus1.isPowerOf2()) {
ShiftAmt = CVPlus1.logBase2();
AddSubOpc = ISD::SUB;
} else
return SDValue();
} else {
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
APInt CVNegPlus1 = -ConstValue + 1;
APInt CVNegMinus1 = -ConstValue - 1;
if (CVNegPlus1.isPowerOf2()) {
ShiftAmt = CVNegPlus1.logBase2();
AddSubOpc = ISD::SUB;
ShiftValUseIsN0 = false;
} else if (CVNegMinus1.isPowerOf2()) {
ShiftAmt = CVNegMinus1.logBase2();
AddSubOpc = ISD::ADD;
NegateResult = true;
} else
return SDValue();
}
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(ShiftAmt, DL, MVT::i64));
SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
assert(!(NegateResult && TrailingZeroes) &&
"NegateResult and TrailingZeroes cannot both be true for now.");
// Negate the result.
if (NegateResult)
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
// Shift the result.
if (TrailingZeroes)
return DAG.getNode(ISD::SHL, DL, VT, Res,
DAG.getConstant(TrailingZeroes, DL, MVT::i64));
return Res;
}
static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
SelectionDAG &DAG) {
// Take advantage of vector comparisons producing 0 or -1 in each lane to
// optimize away operation when it's from a constant.
//
// The general transformation is:
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
// AND(VECTOR_CMP(x,y), constant2)
// constant2 = UNARYOP(constant)
// Early exit if this isn't a vector operation, the operand of the
// unary operation isn't a bitwise AND, or if the sizes of the operations
// aren't the same.
EVT VT = N->getValueType(0);
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
return SDValue();
// Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (BuildVectorSDNode *BV =
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
// Bail out if the vector isn't a constant.
if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
SDLoc DL(N);
EVT IntVT = BV->getValueType(0);
// Create a new constant of the appropriate type for the transformed
// DAG.
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
// The AND node needs bitcasts to/from an integer vector type around it.
SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
N->getOperand(0)->getOperand(0), MaskConst);
SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
return Res;
}
return SDValue();
}
static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
// First try to optimize away the conversion when it's conditionally from
// a constant. Vectors only.
if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
return Res;
EVT VT = N->getValueType(0);
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Only optimize when the source and destination types have the same width.
if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
return SDValue();
// If the result of an integer load is only used by an integer-to-float
// conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
// This eliminates an "integer-to-vector-move" UOP and improves throughput.
SDValue N0 = N->getOperand(0);
if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
LN0->getPointerInfo(), LN0->getAlignment(),
LN0->getMemOperand()->getFlags());
// Make sure successors of the original load stay after it by updating them
// to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
unsigned Opcode =
(N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
return DAG.getNode(Opcode, SDLoc(N), VT, Load);
}
return SDValue();
}
/// Fold a floating-point multiply by power of two into floating-point to
/// fixed-point conversion.
static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (!Subtarget->hasNEON())
return SDValue();
if (!N->getValueType(0).isSimple())
return SDValue();
SDValue Op = N->getOperand(0);
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
Op.getOpcode() != ISD::FMUL)
return SDValue();
SDValue ConstVec = Op->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
uint32_t FloatBits = FloatTy.getSizeInBits();
if (FloatBits != 32 && FloatBits != 64)
return SDValue();
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
uint32_t IntBits = IntTy.getSizeInBits();
if (IntBits != 16 && IntBits != 32 && IntBits != 64)
return SDValue();
// Avoid conversions where iN is larger than the float (e.g., float -> i64).
if (IntBits > FloatBits)
return SDValue();
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t Bits = IntBits == 64 ? 64 : 32;
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
if (C == -1 || C == 0 || C > Bits)
return SDValue();
MVT ResTy;
unsigned NumLanes = Op.getValueType().getVectorNumElements();
switch (NumLanes) {
default:
return SDValue();
case 2:
ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
break;
case 4:
ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
break;
}
if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
return SDValue();
assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
"Illegal vector type after legalization");
SDLoc DL(N);
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
: Intrinsic::aarch64_neon_vcvtfp2fxu;
SDValue FixConv =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
// We can handle smaller integers by generating an extra trunc.
if (IntBits < FloatBits)
FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
return FixConv;
}
/// Fold a floating-point divide by power of two into fixed-point to
/// floating-point conversion.
static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (!Subtarget->hasNEON())
return SDValue();
SDValue Op = N->getOperand(0);
unsigned Opc = Op->getOpcode();
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
!Op.getOperand(0).getValueType().isSimple() ||
(Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
return SDValue();
SDValue ConstVec = N->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
int32_t IntBits = IntTy.getSizeInBits();
if (IntBits != 16 && IntBits != 32 && IntBits != 64)
return SDValue();
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
int32_t FloatBits = FloatTy.getSizeInBits();
if (FloatBits != 32 && FloatBits != 64)
return SDValue();
// Avoid conversions where iN is larger than the float (e.g., i64 -> float).
if (IntBits > FloatBits)
return SDValue();
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
if (C == -1 || C == 0 || C > FloatBits)
return SDValue();
MVT ResTy;
unsigned NumLanes = Op.getValueType().getVectorNumElements();
switch (NumLanes) {
default:
return SDValue();
case 2:
ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
break;
case 4:
ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
break;
}
if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
return SDValue();
SDLoc DL(N);
SDValue ConvInput = Op.getOperand(0);
bool IsSigned = Opc == ISD::SINT_TO_FP;
if (IntBits < FloatBits)
ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
ResTy, ConvInput);
unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
: Intrinsic::aarch64_neon_vcvtfxu2fp;
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
DAG.getConstant(C, DL, MVT::i32));
}
/// An EXTR instruction is made up of two shifts, ORed together. This helper
/// searches for and classifies those shifts.
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
bool &FromHi) {
if (N.getOpcode() == ISD::SHL)
FromHi = false;
else if (N.getOpcode() == ISD::SRL)
FromHi = true;
else
return false;
if (!isa<ConstantSDNode>(N.getOperand(1)))
return false;
ShiftAmount = N->getConstantOperandVal(1);
Src = N->getOperand(0);
return true;
}
/// EXTR instruction extracts a contiguous chunk of bits from two existing
/// registers viewed as a high/low pair. This function looks for the pattern:
/// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
/// with an EXTR. Can't quite be done in TableGen because the two immediates
/// aren't independent.
static SDValue tryCombineToEXTR(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
SDValue LHS;
uint32_t ShiftLHS = 0;
bool LHSFromHi = false;
if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
return SDValue();
SDValue RHS;
uint32_t ShiftRHS = 0;
bool RHSFromHi = false;
if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
return SDValue();
// If they're both trying to come from the high part of the register, they're
// not really an EXTR.
if (LHSFromHi == RHSFromHi)
return SDValue();
if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
return SDValue();
if (LHSFromHi) {
std::swap(LHS, RHS);
std::swap(ShiftLHS, ShiftRHS);
}
return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
DAG.getConstant(ShiftRHS, DL, MVT::i64));
}
static SDValue tryCombineToBSL(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
if (!VT.isVector())
return SDValue();
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() != ISD::AND)
return SDValue();
SDValue N1 = N->getOperand(1);
if (N1.getOpcode() != ISD::AND)
return SDValue();
// We only have to look for constant vectors here since the general, variable
// case can be handled in TableGen.
unsigned Bits = VT.getScalarSizeInBits();
uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
for (int i = 1; i >= 0; --i)
for (int j = 1; j >= 0; --j) {
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
if (!BVN0 || !BVN1)
continue;
bool FoundMatch = true;
for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
if (!CN0 || !CN1 ||
CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
FoundMatch = false;
break;
}
}
if (FoundMatch)
return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
N0->getOperand(1 - i), N1->getOperand(1 - j));
}
return SDValue();
}
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
// Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
if (SDValue Res = tryCombineToEXTR(N, DCI))
return Res;
if (SDValue Res = tryCombineToBSL(N, DCI))
return Res;
return SDValue();
}
static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) {
if (!MemVT.getVectorElementType().isSimple())
return false;
uint64_t MaskForTy = 0ull;
switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) {
case MVT::i8:
MaskForTy = 0xffull;
break;
case MVT::i16:
MaskForTy = 0xffffull;
break;
case MVT::i32:
MaskForTy = 0xffffffffull;
break;
default:
return false;
break;
}
if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR)
if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0)))
return Op0->getAPIntValue().getLimitedValue() == MaskForTy;
return false;
}
static SDValue performSVEAndCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Src = N->getOperand(0);
SDValue Mask = N->getOperand(1);
if (!Src.hasOneUse())
return SDValue();
// GLD1* instructions perform an implicit zero-extend, which makes them
// perfect candidates for combining.
switch (Src->getOpcode()) {
case AArch64ISD::GLD1:
case AArch64ISD::GLD1_SCALED:
case AArch64ISD::GLD1_SXTW:
case AArch64ISD::GLD1_SXTW_SCALED:
case AArch64ISD::GLD1_UXTW:
case AArch64ISD::GLD1_UXTW_SCALED:
case AArch64ISD::GLD1_IMM:
break;
default:
return SDValue();
}
EVT MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT))
return Src;
return SDValue();
}
static SDValue performANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
EVT VT = N->getValueType(0);
if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
if (VT.isScalableVector())
return performSVEAndCombine(N, DCI);
BuildVectorSDNode *BVN =
dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
if (!BVN)
return SDValue();
// AND does not accept an immediate, so check if we can use a BIC immediate
// instruction instead. We do this here instead of using a (and x, (mvni imm))
// pattern in isel, because some immediates may be lowered to the preferred
// (and x, (movi imm)) form, even though an mvni representation also exists.
APInt DefBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
SDValue NewOp;
DefBits = ~DefBits;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
DefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
DefBits, &LHS)))
return NewOp;
UndefBits = ~UndefBits;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
UndefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
UndefBits, &LHS)))
return NewOp;
}
return SDValue();
}
static SDValue performSRLCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
// Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
// high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
// to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() == ISD::BSWAP) {
SDLoc DL(N);
SDValue N1 = N->getOperand(1);
SDValue N00 = N0.getOperand(0);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
uint64_t ShiftAmt = C->getZExtValue();
if (VT == MVT::i32 && ShiftAmt == 16 &&
DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
if (VT == MVT::i64 && ShiftAmt == 32 &&
DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
}
}
return SDValue();
}
static SDValue performConcatVectorsCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
// Optimize concat_vectors of truncated vectors, where the intermediate
// type is illegal, to avoid said illegality, e.g.,
// (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
// (v2i16 (truncate (v2i64)))))
// ->
// (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
// (v4i32 (bitcast (v2i64))),
// <0, 2, 4, 6>)))
// This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
// on both input and result type, so we might generate worse code.
// On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
if (N->getNumOperands() == 2 &&
N0->getOpcode() == ISD::TRUNCATE &&
N1->getOpcode() == ISD::TRUNCATE) {
SDValue N00 = N0->getOperand(0);
SDValue N10 = N1->getOperand(0);
EVT N00VT = N00.getValueType();
if (N00VT == N10.getValueType() &&
(N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
for (size_t i = 0; i < Mask.size(); ++i)
Mask[i] = i * 2;
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getVectorShuffle(
MidVT, dl,
DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
}
}
// Wait 'til after everything is legalized to try this. That way we have
// legal vector types and such.
if (DCI.isBeforeLegalizeOps())
return SDValue();
// If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
// splat. The indexed instructions are going to be expecting a DUPLANE64, so
// canonicalise to that.
if (N0 == N1 && VT.getVectorNumElements() == 2) {
assert(VT.getScalarSizeInBits() == 64);
return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
DAG.getConstant(0, dl, MVT::i64));
}
// Canonicalise concat_vectors so that the right-hand vector has as few
// bit-casts as possible before its real operation. The primary matching
// destination for these operations will be the narrowing "2" instructions,
// which depend on the operation being performed on this right-hand vector.
// For example,
// (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
// becomes
// (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
if (N1->getOpcode() != ISD::BITCAST)
return SDValue();
SDValue RHS = N1->getOperand(0);
MVT RHSTy = RHS.getValueType().getSimpleVT();
// If the RHS is not a vector, this is not the pattern we're looking for.
if (!RHSTy.isVector())
return SDValue();
LLVM_DEBUG(
dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
RHSTy.getVectorNumElements() * 2);
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
RHS));
}
static SDValue tryCombineFixedPointConvert(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// Wait until after everything is legalized to try this. That way we have
// legal vector types and such.
if (DCI.isBeforeLegalizeOps())
return SDValue();
// Transform a scalar conversion of a value from a lane extract into a
// lane extract of a vector conversion. E.g., from foo1 to foo2:
// double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
// double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
//
// The second form interacts better with instruction selection and the
// register allocator to avoid cross-class register copies that aren't
// coalescable due to a lane reference.
// Check the operand and see if it originates from a lane extract.
SDValue Op1 = N->getOperand(1);
if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
// Yep, no additional predication needed. Perform the transform.
SDValue IID = N->getOperand(0);
SDValue Shift = N->getOperand(2);
SDValue Vec = Op1.getOperand(0);
SDValue Lane = Op1.getOperand(1);
EVT ResTy = N->getValueType(0);
EVT VecResTy;
SDLoc DL(N);
// The vector width should be 128 bits by the time we get here, even
// if it started as 64 bits (the extract_vector handling will have
// done so).
assert(Vec.getValueSizeInBits() == 128 &&
"unexpected vector size on extract_vector_elt!");
if (Vec.getValueType() == MVT::v4i32)
VecResTy = MVT::v4f32;
else if (Vec.getValueType() == MVT::v2i64)
VecResTy = MVT::v2f64;
else
llvm_unreachable("unexpected vector type!");
SDValue Convert =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
}
return SDValue();
}
// AArch64 high-vector "long" operations are formed by performing the non-high
// version on an extract_subvector of each operand which gets the high half:
//
// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
//
// However, there are cases which don't have an extract_high explicitly, but
// have another operation that can be made compatible with one for free. For
// example:
//
// (dupv64 scalar) --> (extract_high (dup128 scalar))
//
// This routine does the actual conversion of such DUPs, once outer routines
// have determined that everything else is in order.
// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
// similarly here.
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
switch (N.getOpcode()) {
case AArch64ISD::DUP:
case AArch64ISD::DUPLANE8:
case AArch64ISD::DUPLANE16:
case AArch64ISD::DUPLANE32:
case AArch64ISD::DUPLANE64:
case AArch64ISD::MOVI:
case AArch64ISD::MOVIshift:
case AArch64ISD::MOVIedit:
case AArch64ISD::MOVImsl:
case AArch64ISD::MVNIshift:
case AArch64ISD::MVNImsl:
break;
default:
// FMOV could be supported, but isn't very useful, as it would only occur
// if you passed a bitcast' floating point immediate to an eligible long
// integer op (addl, smull, ...).
return SDValue();
}
MVT NarrowTy = N.getSimpleValueType();
if (!NarrowTy.is64BitVector())
return SDValue();
MVT ElementTy = NarrowTy.getVectorElementType();
unsigned NumElems = NarrowTy.getVectorNumElements();
MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
SDLoc dl(N);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
DAG.getConstant(NumElems, dl, MVT::i64));
}
static bool isEssentiallyExtractHighSubvector(SDValue N) {
if (N.getOpcode() == ISD::BITCAST)
N = N.getOperand(0);
if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
N.getOperand(0).getValueType().getVectorNumElements() / 2;
}
/// Helper structure to keep track of ISD::SET_CC operands.
struct GenericSetCCInfo {
const SDValue *Opnd0;
const SDValue *Opnd1;
ISD::CondCode CC;
};
/// Helper structure to keep track of a SET_CC lowered into AArch64 code.
struct AArch64SetCCInfo {
const SDValue *Cmp;
AArch64CC::CondCode CC;
};
/// Helper structure to keep track of SetCC information.
union SetCCInfo {
GenericSetCCInfo Generic;
AArch64SetCCInfo AArch64;
};
/// Helper structure to be able to read SetCC information. If set to
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
/// GenericSetCCInfo.
struct SetCCInfoAndKind {
SetCCInfo Info;
bool IsAArch64;
};
/// Check whether or not \p Op is a SET_CC operation, either a generic or
/// an
/// AArch64 lowered one.
/// \p SetCCInfo is filled accordingly.
/// \post SetCCInfo is meanginfull only when this function returns true.
/// \return True when Op is a kind of SET_CC operation.
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
// If this is a setcc, this is straight forward.
if (Op.getOpcode() == ISD::SETCC) {
SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SetCCInfo.IsAArch64 = false;
return true;
}
// Otherwise, check if this is a matching csel instruction.
// In other words:
// - csel 1, 0, cc
// - csel 0, 1, !cc
if (Op.getOpcode() != AArch64ISD::CSEL)
return false;
// Set the information about the operands.
// TODO: we want the operands of the Cmp not the csel
SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
SetCCInfo.IsAArch64 = true;
SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
// Check that the operands matches the constraints:
// (1) Both operands must be constants.
// (2) One must be 1 and the other must be 0.
ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
// Check (1).
if (!TValue || !FValue)
return false;
// Check (2).
if (!TValue->isOne()) {
// Update the comparison when we are interested in !cc.
std::swap(TValue, FValue);
SetCCInfo.Info.AArch64.CC =
AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
}
return TValue->isOne() && FValue->isNullValue();
}
// Returns true if Op is setcc or zext of setcc.
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
if (isSetCC(Op, Info))
return true;
return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
isSetCC(Op->getOperand(0), Info));
}
// The folding we want to perform is:
// (add x, [zext] (setcc cc ...) )
// -->
// (csel x, (add x, 1), !cc ...)
//
// The latter will get matched to a CSINC instruction.
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
SDValue LHS = Op->getOperand(0);
SDValue RHS = Op->getOperand(1);
SetCCInfoAndKind InfoAndKind;
// If neither operand is a SET_CC, give up.
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
std::swap(LHS, RHS);
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
return SDValue();
}
// FIXME: This could be generatized to work for FP comparisons.
EVT CmpVT = InfoAndKind.IsAArch64
? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
: InfoAndKind.Info.Generic.Opnd0->getValueType();
if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
return SDValue();
SDValue CCVal;
SDValue Cmp;
SDLoc dl(Op);
if (InfoAndKind.IsAArch64) {
CCVal = DAG.getConstant(
AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
MVT::i32);
Cmp = *InfoAndKind.Info.AArch64.Cmp;
} else
Cmp = getAArch64Cmp(
*InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1,
ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG,
dl);
EVT VT = Op->getValueType(0);
LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
}
// The basic add/sub long vector instructions have variants with "2" on the end
// which act on the high-half of their inputs. They are normally matched by
// patterns like:
//
// (add (zeroext (extract_high LHS)),
// (zeroext (extract_high RHS)))
// -> uaddl2 vD, vN, vM
//
// However, if one of the extracts is something like a duplicate, this
// instruction can still be used profitably. This function puts the DAG into a
// more appropriate form for those patterns to trigger.
static SDValue performAddSubLongCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
MVT VT = N->getSimpleValueType(0);
if (!VT.is128BitVector()) {
if (N->getOpcode() == ISD::ADD)
return performSetccAddFolding(N, DAG);
return SDValue();
}
// Make sure both branches are extended in the same way.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
LHS.getOpcode() != ISD::SIGN_EXTEND) ||
LHS.getOpcode() != RHS.getOpcode())
return SDValue();
unsigned ExtType = LHS.getOpcode();
// It's not worth doing if at least one of the inputs isn't already an
// extract, but we don't know which it'll be so we have to try both.
if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
if (!RHS.getNode())
return SDValue();
RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
} else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
if (!LHS.getNode())
return SDValue();
LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
}
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
}
// Massage DAGs which we can use the high-half "long" operations on into
// something isel will recognize better. E.g.
//
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
// (aarch64_neon_umull (extract_high (v2i64 vec)))
// (extract_high (v2i64 (dup128 scalar)))))
//
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
assert(LHS.getValueType().is64BitVector() &&
RHS.getValueType().is64BitVector() &&
"unexpected shape for long operation");
// Either node could be a DUP, but it's not worth doing both of them (you'd
// just as well use the non-high version) so look for a corresponding extract
// operation on the other "wing".
if (isEssentiallyExtractHighSubvector(LHS)) {
RHS = tryExtendDUPToExtractHigh(RHS, DAG);
if (!RHS.getNode())
return SDValue();
} else if (isEssentiallyExtractHighSubvector(RHS)) {
LHS = tryExtendDUPToExtractHigh(LHS, DAG);
if (!LHS.getNode())
return SDValue();
}
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
N->getOperand(0), LHS, RHS);
}
static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
MVT ElemTy = N->getSimpleValueType(0).getScalarType();
unsigned ElemBits = ElemTy.getSizeInBits();
int64_t ShiftAmount;
if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs, ElemBits) ||
SplatBitSize != ElemBits)
return SDValue();
ShiftAmount = SplatValue.getSExtValue();
} else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
ShiftAmount = CVN->getSExtValue();
} else
return SDValue();
unsigned Opcode;
bool IsRightShift;
switch (IID) {
default:
llvm_unreachable("Unknown shift intrinsic");
case Intrinsic::aarch64_neon_sqshl:
Opcode = AArch64ISD::SQSHL_I;
IsRightShift = false;
break;
case Intrinsic::aarch64_neon_uqshl:
Opcode = AArch64ISD::UQSHL_I;
IsRightShift = false;
break;
case Intrinsic::aarch64_neon_srshl:
Opcode = AArch64ISD::SRSHR_I;
IsRightShift = true;
break;
case Intrinsic::aarch64_neon_urshl:
Opcode = AArch64ISD::URSHR_I;
IsRightShift = true;
break;
case Intrinsic::aarch64_neon_sqshlu:
Opcode = AArch64ISD::SQSHLU_I;
IsRightShift = false;
break;
case Intrinsic::aarch64_neon_sshl:
case Intrinsic::aarch64_neon_ushl:
// For positive shift amounts we can use SHL, as ushl/sshl perform a regular
// left shift for positive shift amounts. Below, we only replace the current
// node with VSHL, if this condition is met.
Opcode = AArch64ISD::VSHL;
IsRightShift = false;
break;
}
if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
SDLoc dl(N);
return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
DAG.getConstant(-ShiftAmount, dl, MVT::i32));
} else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
SDLoc dl(N);
return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
DAG.getConstant(ShiftAmount, dl, MVT::i32));
}
return SDValue();
}
// The CRC32[BH] instructions ignore the high bits of their data operand. Since
// the intrinsics must be legal and take an i32, this means there's almost
// certainly going to be a zext in the DAG which we can eliminate.
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
SDValue AndN = N->getOperand(2);
if (AndN.getOpcode() != ISD::AND)
return SDValue();
ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
if (!CMask || CMask->getZExtValue() != Mask)
return SDValue();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
}
static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
SelectionDAG &DAG) {
SDLoc dl(N);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
DAG.getNode(Opc, dl,
N->getOperand(1).getSimpleValueType(),
N->getOperand(1)),
DAG.getConstant(0, dl, MVT::i64));
}
static SDValue LowerSVEIntReduction(SDNode *N, unsigned Opc,
SelectionDAG &DAG) {
SDLoc dl(N);
LLVMContext &Ctx = *DAG.getContext();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
SDValue Pred = N->getOperand(1);
SDValue Data = N->getOperand(2);
EVT DataVT = Data.getValueType();
if (DataVT.getVectorElementType().isScalarInteger() &&
(VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)) {
if (!TLI.isTypeLegal(DataVT))
return SDValue();
EVT OutputVT = EVT::getVectorVT(Ctx, VT,
AArch64::NeonBitsPerVector / VT.getSizeInBits());
SDValue Reduce = DAG.getNode(Opc, dl, OutputVT, Pred, Data);
SDValue Zero = DAG.getConstant(0, dl, MVT::i64);
SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Reduce, Zero);
return Result;
}
return SDValue();
}
static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) {
SDLoc dl(N);
LLVMContext &Ctx = *DAG.getContext();
EVT VT = N->getValueType(0);
assert(VT.isScalableVector() && "Expected a scalable vector.");
// Current lowering only supports the SVE-ACLE types.
if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
return SDValue();
unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8;
unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8;
EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, { ByteSize, true });
// Convert everything to the domain of EXT (i.e bytes).
SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1));
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2));
SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3),
DAG.getConstant(ElemSize, dl, MVT::i32));
SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2);
return DAG.getNode(ISD::BITCAST, dl, VT, EXT);
}
static SDValue tryConvertSVEWideCompare(SDNode *N, unsigned ReplacementIID,
bool Invert,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalize())
return SDValue();
SDValue Comparator = N->getOperand(3);
if (Comparator.getOpcode() == AArch64ISD::DUP ||
Comparator.getOpcode() == ISD::SPLAT_VECTOR) {
unsigned IID = getIntrinsicID(N);
EVT VT = N->getValueType(0);
EVT CmpVT = N->getOperand(2).getValueType();
SDValue Pred = N->getOperand(1);
SDValue Imm;
SDLoc DL(N);
switch (IID) {
default:
llvm_unreachable("Called with wrong intrinsic!");
break;
// Signed comparisons
case Intrinsic::aarch64_sve_cmpeq_wide:
case Intrinsic::aarch64_sve_cmpne_wide:
case Intrinsic::aarch64_sve_cmpge_wide:
case Intrinsic::aarch64_sve_cmpgt_wide:
case Intrinsic::aarch64_sve_cmplt_wide:
case Intrinsic::aarch64_sve_cmple_wide: {
if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
int64_t ImmVal = CN->getSExtValue();
if (ImmVal >= -16 && ImmVal <= 15)
Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
else
return SDValue();
}
break;
}
// Unsigned comparisons
case Intrinsic::aarch64_sve_cmphs_wide:
case Intrinsic::aarch64_sve_cmphi_wide:
case Intrinsic::aarch64_sve_cmplo_wide:
case Intrinsic::aarch64_sve_cmpls_wide: {
if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
uint64_t ImmVal = CN->getZExtValue();
if (ImmVal <= 127)
Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
else
return SDValue();
}
break;
}
}
SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm);
SDValue ID = DAG.getTargetConstant(ReplacementIID, DL, MVT::i64);
SDValue Op0, Op1;
if (Invert) {
Op0 = Splat;
Op1 = N->getOperand(2);
} else {
Op0 = N->getOperand(2);
Op1 = Splat;
}
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
ID, Pred, Op0, Op1);
}
return SDValue();
}
static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
AArch64CC::CondCode Cond) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc DL(Op);
assert(Op.getValueType().isScalableVector() &&
TLI.isTypeLegal(Op.getValueType()) &&
"Expected legal scalable vector type!");
// Ensure target specific opcodes are using legal type.
EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue TVal = DAG.getConstant(1, DL, OutVT);
SDValue FVal = DAG.getConstant(0, DL, OutVT);
// Set condition code (CC) flags.
SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op);
// Convert CC to integer based on requested condition.
// NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32);
SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test);
return DAG.getZExtOrTrunc(Res, DL, VT);
}
static SDValue performIntrinsicCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
unsigned IID = getIntrinsicID(N);
switch (IID) {
default:
break;
case Intrinsic::aarch64_neon_vcvtfxs2fp:
case Intrinsic::aarch64_neon_vcvtfxu2fp:
return tryCombineFixedPointConvert(N, DCI, DAG);
case Intrinsic::aarch64_neon_saddv:
return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
case Intrinsic::aarch64_neon_uaddv:
return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
case Intrinsic::aarch64_neon_sminv:
return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
case Intrinsic::aarch64_neon_uminv:
return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
case Intrinsic::aarch64_neon_smaxv:
return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
case Intrinsic::aarch64_neon_umaxv:
return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
case Intrinsic::aarch64_neon_fmax:
return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_fmin:
return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_fmaxnm:
return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_fminnm:
return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_smull:
case Intrinsic::aarch64_neon_umull:
case Intrinsic::aarch64_neon_pmull:
case Intrinsic::aarch64_neon_sqdmull:
return tryCombineLongOpWithDup(IID, N, DCI, DAG);
case Intrinsic::aarch64_neon_sqshl:
case Intrinsic::aarch64_neon_uqshl:
case Intrinsic::aarch64_neon_sqshlu:
case Intrinsic::aarch64_neon_srshl:
case Intrinsic::aarch64_neon_urshl:
case Intrinsic::aarch64_neon_sshl:
case Intrinsic::aarch64_neon_ushl:
return tryCombineShiftImm(IID, N, DAG);
case Intrinsic::aarch64_crc32b:
case Intrinsic::aarch64_crc32cb:
return tryCombineCRC32(0xff, N, DAG);
case Intrinsic::aarch64_crc32h:
case Intrinsic::aarch64_crc32ch:
return tryCombineCRC32(0xffff, N, DAG);
case Intrinsic::aarch64_sve_smaxv:
return LowerSVEIntReduction(N, AArch64ISD::SMAXV_PRED, DAG);
case Intrinsic::aarch64_sve_umaxv:
return LowerSVEIntReduction(N, AArch64ISD::UMAXV_PRED, DAG);
case Intrinsic::aarch64_sve_sminv:
return LowerSVEIntReduction(N, AArch64ISD::SMINV_PRED, DAG);
case Intrinsic::aarch64_sve_uminv:
return LowerSVEIntReduction(N, AArch64ISD::UMINV_PRED, DAG);
case Intrinsic::aarch64_sve_orv:
return LowerSVEIntReduction(N, AArch64ISD::ORV_PRED, DAG);
case Intrinsic::aarch64_sve_eorv:
return LowerSVEIntReduction(N, AArch64ISD::EORV_PRED, DAG);
case Intrinsic::aarch64_sve_andv:
return LowerSVEIntReduction(N, AArch64ISD::ANDV_PRED, DAG);
case Intrinsic::aarch64_sve_ext:
return LowerSVEIntrinsicEXT(N, DAG);
case Intrinsic::aarch64_sve_cmpeq_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpeq,
false, DCI, DAG);
case Intrinsic::aarch64_sve_cmpne_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpne,
false, DCI, DAG);
case Intrinsic::aarch64_sve_cmpge_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge,
false, DCI, DAG);
case Intrinsic::aarch64_sve_cmpgt_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt,
false, DCI, DAG);
case Intrinsic::aarch64_sve_cmplt_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt,
true, DCI, DAG);
case Intrinsic::aarch64_sve_cmple_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge,
true, DCI, DAG);
case Intrinsic::aarch64_sve_cmphs_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs,
false, DCI, DAG);
case Intrinsic::aarch64_sve_cmphi_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi,
false, DCI, DAG);
case Intrinsic::aarch64_sve_cmplo_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, true,
DCI, DAG);
case Intrinsic::aarch64_sve_cmpls_wide:
return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, true,
DCI, DAG);
case Intrinsic::aarch64_sve_ptest_any:
return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
AArch64CC::ANY_ACTIVE);
case Intrinsic::aarch64_sve_ptest_first:
return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
AArch64CC::FIRST_ACTIVE);
case Intrinsic::aarch64_sve_ptest_last:
return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
AArch64CC::LAST_ACTIVE);
}
return SDValue();
}
static SDValue performExtendCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
// we can convert that DUP into another extract_high (of a bigger DUP), which
// helps the backend to decide that an sabdl2 would be useful, saving a real
// extract_high operation.
if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
SDNode *ABDNode = N->getOperand(0).getNode();
unsigned IID = getIntrinsicID(ABDNode);
if (IID == Intrinsic::aarch64_neon_sabd ||
IID == Intrinsic::aarch64_neon_uabd) {
SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
if (!NewABD.getNode())
return SDValue();
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
NewABD);
}
}
// This is effectively a custom type legalization for AArch64.
//
// Type legalization will split an extend of a small, legal, type to a larger
// illegal type by first splitting the destination type, often creating
// illegal source types, which then get legalized in isel-confusing ways,
// leading to really terrible codegen. E.g.,
// %result = v8i32 sext v8i8 %value
// becomes
// %losrc = extract_subreg %value, ...
// %hisrc = extract_subreg %value, ...
// %lo = v4i32 sext v4i8 %losrc
// %hi = v4i32 sext v4i8 %hisrc
// Things go rapidly downhill from there.
//
// For AArch64, the [sz]ext vector instructions can only go up one element
// size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
// take two instructions.
//
// This implies that the most efficient way to do the extend from v8i8
// to two v4i32 values is to first extend the v8i8 to v8i16, then do
// the normal splitting to happen for the v8i16->v8i32.
// This is pre-legalization to catch some cases where the default
// type legalization will create ill-tempered code.
if (!DCI.isBeforeLegalizeOps())
return SDValue();
// We're only interested in cleaning things up for non-legal vector types
// here. If both the source and destination are legal, things will just
// work naturally without any fiddling.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT ResVT = N->getValueType(0);
if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
return SDValue();
// If the vector type isn't a simple VT, it's beyond the scope of what
// we're worried about here. Let legalization do its thing and hope for
// the best.
SDValue Src = N->getOperand(0);
EVT SrcVT = Src->getValueType(0);
if (!ResVT.isSimple() || !SrcVT.isSimple())
return SDValue();
// If the source VT is a 64-bit vector, we can play games and get the
// better results we want.
if (SrcVT.getSizeInBits() != 64)
return SDValue();
unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
unsigned ElementCount = SrcVT.getVectorNumElements();
SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
SDLoc DL(N);
Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
// Now split the rest of the operation into two halves, each with a 64
// bit source.
EVT LoVT, HiVT;
SDValue Lo, Hi;
unsigned NumElements = ResVT.getVectorNumElements();
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
ResVT.getVectorElementType(), NumElements / 2);
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
DAG.getConstant(0, DL, MVT::i64));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
// Now combine the parts back together so we still have a single result
// like the combiner expects.
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
}
static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
SDValue SplatVal, unsigned NumVecElts) {
assert(!St.isTruncatingStore() && "cannot split truncating vector store");
unsigned OrigAlignment = St.getAlignment();
unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
// Create scalar stores. This is at least as good as the code sequence for a
// split unaligned store which is a dup.s, ext.b, and two stores.
// Most of the time the three stores should be replaced by store pair
// instructions (stp).
SDLoc DL(&St);
SDValue BasePtr = St.getBasePtr();
uint64_t BaseOffset = 0;
const MachinePointerInfo &PtrInfo = St.getPointerInfo();
SDValue NewST1 =
DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
OrigAlignment, St.getMemOperand()->getFlags());
// As this in ISel, we will not merge this add which may degrade results.
if (BasePtr->getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(BasePtr->getOperand(1))) {
BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
BasePtr = BasePtr->getOperand(0);
}
unsigned Offset = EltOffset;
while (--NumVecElts) {
unsigned Alignment = MinAlign(OrigAlignment, Offset);
SDValue OffsetPtr =
DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
PtrInfo.getWithOffset(Offset), Alignment,
St.getMemOperand()->getFlags());
Offset += EltOffset;
}
return NewST1;
}
static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT PtrTy = N->getOperand(3).getValueType();
EVT LoadVT = VT;
if (VT.isFloatingPoint())
LoadVT = VT.changeTypeToInteger();
auto *MINode = cast<MemIntrinsicSDNode>(N);
SDValue PassThru = DAG.getConstant(0, DL, LoadVT);
SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(),
MINode->getOperand(3), DAG.getUNDEF(PtrTy),
MINode->getOperand(2), PassThru,
MINode->getMemoryVT(), MINode->getMemOperand(),
ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
if (VT.isFloatingPoint()) {
SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) };
return DAG.getMergeValues(Ops, DL);
}
return L;
}
static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Data = N->getOperand(2);
EVT DataVT = Data.getValueType();
EVT PtrTy = N->getOperand(4).getValueType();
if (DataVT.isFloatingPoint())
Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data);
auto *MINode = cast<MemIntrinsicSDNode>(N);
return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4),
DAG.getUNDEF(PtrTy), MINode->getOperand(3),
MINode->getMemoryVT(), MINode->getMemOperand(),
ISD::UNINDEXED, false, false);
}
/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
/// load store optimizer pass will merge them to store pair stores. This should
/// be better than a movi to create the vector zero followed by a vector store
/// if the zero constant is not re-used, since one instructions and one register
/// live range will be removed.
///
/// For example, the final generated code should be:
///
/// stp xzr, xzr, [x0]
///
/// instead of:
///
/// movi v0.2d, #0
/// str q0, [x0]
///
static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
SDValue StVal = St.getValue();
EVT VT = StVal.getValueType();
// It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
// 2, 3 or 4 i32 elements.
int NumVecElts = VT.getVectorNumElements();
if (!(((NumVecElts == 2 || NumVecElts == 3) &&
VT.getVectorElementType().getSizeInBits() == 64) ||
((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
VT.getVectorElementType().getSizeInBits() == 32)))
return SDValue();
if (StVal.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// If the zero constant has more than one use then the vector store could be
// better since the constant mov will be amortized and stp q instructions
// should be able to be formed.
if (!StVal.hasOneUse())
return SDValue();
// If the store is truncating then it's going down to i16 or smaller, which
// means it can be implemented in a single store anyway.
if (St.isTruncatingStore())
return SDValue();
// If the immediate offset of the address operand is too large for the stp
// instruction, then bail out.
if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
if (Offset < -512 || Offset > 504)
return SDValue();
}
for (int I = 0; I < NumVecElts; ++I) {
SDValue EltVal = StVal.getOperand(I);
if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
return SDValue();
}
// Use a CopyFromReg WZR/XZR here to prevent
// DAGCombiner::MergeConsecutiveStores from undoing this transformation.
SDLoc DL(&St);
unsigned ZeroReg;
EVT ZeroVT;
if (VT.getVectorElementType().getSizeInBits() == 32) {
ZeroReg = AArch64::WZR;
ZeroVT = MVT::i32;
} else {
ZeroReg = AArch64::XZR;
ZeroVT = MVT::i64;
}
SDValue SplatVal =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}
/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
/// value. The load store optimizer pass will merge them to store pair stores.
/// This has better performance than a splat of the scalar followed by a split
/// vector store. Even if the stores are not merged it is four stores vs a dup,
/// followed by an ext.b and two stores.
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
SDValue StVal = St.getValue();
EVT VT = StVal.getValueType();
// Don't replace floating point stores, they possibly won't be transformed to
// stp because of the store pair suppress pass.
if (VT.isFloatingPoint())
return SDValue();
// We can express a splat as store pair(s) for 2 or 4 elements.
unsigned NumVecElts = VT.getVectorNumElements();
if (NumVecElts != 4 && NumVecElts != 2)
return SDValue();
// If the store is truncating then it's going down to i16 or smaller, which
// means it can be implemented in a single store anyway.
if (St.isTruncatingStore())
return SDValue();
// Check that this is a splat.
// Make sure that each of the relevant vector element locations are inserted
// to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
SDValue SplatVal;
for (unsigned I = 0; I < NumVecElts; ++I) {
// Check for insert vector elements.
if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
return SDValue();
// Check that same value is inserted at each vector element.
if (I == 0)
SplatVal = StVal.getOperand(1);
else if (StVal.getOperand(1) != SplatVal)
return SDValue();
// Check insert element index.
ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
if (!CIndex)
return SDValue();
uint64_t IndexVal = CIndex->getZExtValue();
if (IndexVal >= NumVecElts)
return SDValue();
IndexNotInserted.reset(IndexVal);
StVal = StVal.getOperand(0);
}
// Check that all vector element locations were inserted to.
if (IndexNotInserted.any())
return SDValue();
return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}
static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
StoreSDNode *S = cast<StoreSDNode>(N);
if (S->isVolatile() || S->isIndexed())
return SDValue();
SDValue StVal = S->getValue();
EVT VT = StVal.getValueType();
if (!VT.isVector())
return SDValue();
// If we get a splat of zeros, convert this vector store to a store of
// scalars. They will be merged into store pairs of xzr thereby removing one
// instruction and one register.
if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
return ReplacedZeroSplat;
// FIXME: The logic for deciding if an unaligned store should be split should
// be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
// a call to that function here.
if (!Subtarget->isMisaligned128StoreSlow())
return SDValue();
// Don't split at -Oz.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return SDValue();
// Don't split v2i64 vectors. Memcpy lowering produces those and splitting
// those up regresses performance on micro-benchmarks and olden/bh.
if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
return SDValue();
// Split unaligned 16B stores. They are terrible for performance.
// Don't split stores with alignment of 1 or 2. Code that uses clang vector
// extensions can use this to mark that it does not want splitting to happen
// (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
// eliminating alignment hazards is only 1 in 8 for alignment of 2.
if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
S->getAlignment() <= 2)
return SDValue();
// If we get a splat of a scalar convert this vector store to a store of
// scalars. They will be merged into store pairs thereby removing two
// instructions.
if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
return ReplacedSplat;
SDLoc DL(S);
// Split VT into two.
EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
unsigned NumElts = HalfVT.getVectorNumElements();
SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
DAG.getConstant(0, DL, MVT::i64));
SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
DAG.getConstant(NumElts, DL, MVT::i64));
SDValue BasePtr = S->getBasePtr();
SDValue NewST1 =
DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
S->getAlignment(), S->getMemOperand()->getFlags());
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
DAG.getConstant(8, DL, MVT::i64));
return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
S->getPointerInfo(), S->getAlignment(),
S->getMemOperand()->getFlags());
}
/// Target-specific DAG combine function for post-increment LD1 (lane) and
/// post-increment LD1R.
static SDValue performPostLD1Combine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
bool IsLaneOp) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
unsigned LoadIdx = IsLaneOp ? 1 : 0;
SDNode *LD = N->getOperand(LoadIdx).getNode();
// If it is not LOAD, can not do such combine.
if (LD->getOpcode() != ISD::LOAD)
return SDValue();
// The vector lane must be a constant in the LD1LANE opcode.
SDValue Lane;
if (IsLaneOp) {
Lane = N->getOperand(2);
auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
return SDValue();
}
LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
EVT MemVT = LoadSDN->getMemoryVT();
// Check if memory operand is the same type as the vector element.
if (MemVT != VT.getVectorElementType())
return SDValue();
// Check if there are other uses. If so, do not combine as it will introduce
// an extra load.
for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
++UI) {
if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
continue;
if (*UI != N)
return SDValue();
}
SDValue Addr = LD->getOperand(1);
SDValue Vector = N->getOperand(0);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD
|| UI.getUse().getResNo() != Addr.getResNo())
continue;
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
uint32_t IncVal = CInc->getZExtValue();
unsigned NumBytes = VT.getScalarSizeInBits() / 8;
if (IncVal != NumBytes)
continue;
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
}
// To avoid cycle construction make sure that neither the load nor the add
// are predecessors to each other or the Vector.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Visited.insert(Addr.getNode());
Worklist.push_back(User);
Worklist.push_back(LD);
Worklist.push_back(Vector.getNode());
if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
SDNode::hasPredecessorHelper(User, Visited, Worklist))
continue;
SmallVector<SDValue, 8> Ops;
Ops.push_back(LD->getOperand(0)); // Chain
if (IsLaneOp) {
Ops.push_back(Vector); // The vector to be inserted
Ops.push_back(Lane); // The lane to be inserted in the vector
}
Ops.push_back(Addr);
Ops.push_back(Inc);
EVT Tys[3] = { VT, MVT::i64, MVT::Other };
SDVTList SDTys = DAG.getVTList(Tys);
unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
MemVT,
LoadSDN->getMemOperand());
// Update the uses.
SDValue NewResults[] = {
SDValue(LD, 0), // The result of load
SDValue(UpdN.getNode(), 2) // Chain
};
DCI.CombineTo(LD, NewResults);
DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
break;
}
return SDValue();
}
/// Simplify ``Addr`` given that the top byte of it is ignored by HW during
/// address translation.
static bool performTBISimplification(SDValue Addr,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
APInt DemandedMask = APInt::getLowBitsSet(64, 56);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
return true;
}
return false;
}
static SDValue performSTORECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
return Split;
if (Subtarget->supportsAddressTopByteIgnored() &&
performTBISimplification(N->getOperand(2), DCI, DAG))
return SDValue(N, 0);
return SDValue();
}
/// Target-specific DAG combine function for NEON load/store intrinsics
/// to merge base address updates.
static SDValue performNEONPostLDSTCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
unsigned AddrOpIdx = N->getNumOperands() - 1;
SDValue Addr = N->getOperand(AddrOpIdx);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD ||
UI.getUse().getResNo() != Addr.getResNo())
continue;
// Check that the add is independent of the load/store. Otherwise, folding
// it would create a cycle.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Visited.insert(Addr.getNode());
Worklist.push_back(N);
Worklist.push_back(User);
if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
SDNode::hasPredecessorHelper(User, Visited, Worklist))
continue;
// Find the new opcode for the updating load/store.
bool IsStore = false;
bool IsLaneOp = false;
bool IsDupOp = false;
unsigned NewOpc = 0;
unsigned NumVecs = 0;
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
NumVecs = 2; IsStore = true; break;
case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
NumVecs = 3; IsStore = true; break;
case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
NumVecs = 4; IsStore = true; break;
case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
NumVecs = 2; IsStore = true; break;
case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
NumVecs = 3; IsStore = true; break;
case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
NumVecs = 4; IsStore = true; break;
case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
NumVecs = 2; IsDupOp = true; break;
case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
NumVecs = 3; IsDupOp = true; break;
case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
NumVecs = 4; IsDupOp = true; break;
case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
NumVecs = 2; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
NumVecs = 3; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
NumVecs = 4; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
NumVecs = 2; IsStore = true; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
NumVecs = 3; IsStore = true; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
NumVecs = 4; IsStore = true; IsLaneOp = true; break;
}
EVT VecTy;
if (IsStore)
VecTy = N->getOperand(2).getValueType();
else
VecTy = N->getValueType(0);
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
uint32_t IncVal = CInc->getZExtValue();
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (IsLaneOp || IsDupOp)
NumBytes /= VecTy.getVectorNumElements();
if (IncVal != NumBytes)
continue;
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
}
SmallVector<SDValue, 8> Ops;
Ops.push_back(N->getOperand(0)); // Incoming chain
// Load lane and store have vector list as input.
if (IsLaneOp || IsStore)
for (unsigned i = 2; i < AddrOpIdx; ++i)
Ops.push_back(N->getOperand(i));
Ops.push_back(Addr); // Base register
Ops.push_back(Inc);
// Return Types.
EVT Tys[6];
unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
unsigned n;
for (n = 0; n < NumResultVecs; ++n)
Tys[n] = VecTy;
Tys[n++] = MVT::i64; // Type of write back register
Tys[n] = MVT::Other; // Type of the chain
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
MemInt->getMemoryVT(),
MemInt->getMemOperand());
// Update the uses.
std::vector<SDValue> NewResults;
for (unsigned i = 0; i < NumResultVecs; ++i) {
NewResults.push_back(SDValue(UpdN.getNode(), i));
}
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
DCI.CombineTo(N, NewResults);
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
break;
}
return SDValue();
}
// Checks to see if the value is the prescribed width and returns information
// about its extension mode.
static
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
ExtType = ISD::NON_EXTLOAD;
switch(V.getNode()->getOpcode()) {
default:
return false;
case ISD::LOAD: {
LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
|| (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
ExtType = LoadNode->getExtensionType();
return true;
}
return false;
}
case ISD::AssertSext: {
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
ExtType = ISD::SEXTLOAD;
return true;
}
return false;
}
case ISD::AssertZext: {
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
ExtType = ISD::ZEXTLOAD;
return true;
}
return false;
}
case ISD::Constant:
case ISD::TargetConstant: {
return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
1LL << (width - 1);
}
}
return true;
}
// This function does a whole lot of voodoo to determine if the tests are
// equivalent without and with a mask. Essentially what happens is that given a
// DAG resembling:
//
// +-------------+ +-------------+ +-------------+ +-------------+
// | Input | | AddConstant | | CompConstant| | CC |
// +-------------+ +-------------+ +-------------+ +-------------+
// | | | |
// V V | +----------+
// +-------------+ +----+ | |
// | ADD | |0xff| | |
// +-------------+ +----+ | |
// | | | |
// V V | |
// +-------------+ | |
// | AND | | |
// +-------------+ | |
// | | |
// +-----+ | |
// | | |
// V V V
// +-------------+
// | CMP |
// +-------------+
//
// The AND node may be safely removed for some combinations of inputs. In
// particular we need to take into account the extension type of the Input,
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
// width of the input (this can work for any width inputs, the above graph is
// specific to 8 bits.
//
// The specific equations were worked out by generating output tables for each
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
// problem was simplified by working with 4 bit inputs, which means we only
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
// patterns present in both extensions (0,7). For every distinct set of
// AddConstant and CompConstants bit patterns we can consider the masked and
// unmasked versions to be equivalent if the result of this function is true for
// all 16 distinct bit patterns of for the current extension type of Input (w0).
//
// sub w8, w0, w1
// and w10, w8, #0x0f
// cmp w8, w2
// cset w9, AArch64CC
// cmp w10, w2
// cset w11, AArch64CC
// cmp w9, w11
// cset w0, eq
// ret
//
// Since the above function shows when the outputs are equivalent it defines
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
// would be expensive to run during compiles. The equations below were written
// in a test harness that confirmed they gave equivalent outputs to the above
// for all inputs function, so they can be used determine if the removal is
// legal instead.
//
// isEquivalentMaskless() is the code for testing if the AND can be removed
// factored out of the DAG recognition as the DAG can take several forms.
static bool isEquivalentMaskless(unsigned CC, unsigned width,
ISD::LoadExtType ExtType, int AddConstant,
int CompConstant) {
// By being careful about our equations and only writing the in term
// symbolic values and well known constants (0, 1, -1, MaxUInt) we can
// make them generally applicable to all bit widths.
int MaxUInt = (1 << width);
// For the purposes of these comparisons sign extending the type is
// equivalent to zero extending the add and displacing it by half the integer
// width. Provided we are careful and make sure our equations are valid over
// the whole range we can just adjust the input and avoid writing equations
// for sign extended inputs.
if (ExtType == ISD::SEXTLOAD)
AddConstant -= (1 << (width-1));
switch(CC) {
case AArch64CC::LE:
case AArch64CC::GT:
if ((AddConstant == 0) ||
(CompConstant == MaxUInt - 1 && AddConstant < 0) ||
(AddConstant >= 0 && CompConstant < 0) ||
(AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
return true;
break;
case AArch64CC::LT:
case AArch64CC::GE:
if ((AddConstant == 0) ||
(AddConstant >= 0 && CompConstant <= 0) ||
(AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
return true;
break;
case AArch64CC::HI:
case AArch64CC::LS:
if ((AddConstant >= 0 && CompConstant < 0) ||
(AddConstant <= 0 && CompConstant >= -1 &&
CompConstant < AddConstant + MaxUInt))
return true;
break;
case AArch64CC::PL:
case AArch64CC::MI:
if ((AddConstant == 0) ||
(AddConstant > 0 && CompConstant <= 0) ||
(AddConstant < 0 && CompConstant <= AddConstant))
return true;
break;
case AArch64CC::LO:
case AArch64CC::HS:
if ((AddConstant >= 0 && CompConstant <= 0) ||
(AddConstant <= 0 && CompConstant >= 0 &&
CompConstant <= AddConstant + MaxUInt))
return true;
break;
case AArch64CC::EQ:
case AArch64CC::NE:
if ((AddConstant > 0 && CompConstant < 0) ||
(AddConstant < 0 && CompConstant >= 0 &&
CompConstant < AddConstant + MaxUInt) ||
(AddConstant >= 0 && CompConstant >= 0 &&
CompConstant >= AddConstant) ||
(AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
return true;
break;
case AArch64CC::VS:
case AArch64CC::VC:
case AArch64CC::AL:
case AArch64CC::NV:
return true;
case AArch64CC::Invalid:
break;
}
return false;
}
static
SDValue performCONDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG, unsigned CCIndex,
unsigned CmpIndex) {
unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
unsigned CondOpcode = SubsNode->getOpcode();
if (CondOpcode != AArch64ISD::SUBS)
return SDValue();
// There is a SUBS feeding this condition. Is it fed by a mask we can
// use?
SDNode *AndNode = SubsNode->getOperand(0).getNode();
unsigned MaskBits = 0;
if (AndNode->getOpcode() != ISD::AND)
return SDValue();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
uint32_t CNV = CN->getZExtValue();
if (CNV == 255)
MaskBits = 8;
else if (CNV == 65535)
MaskBits = 16;
}
if (!MaskBits)
return SDValue();
SDValue AddValue = AndNode->getOperand(0);
if (AddValue.getOpcode() != ISD::ADD)
return SDValue();
// The basic dag structure is correct, grab the inputs and validate them.
SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
SDValue SubsInputValue = SubsNode->getOperand(1);
// The mask is present and the provenance of all the values is a smaller type,
// lets see if the mask is superfluous.
if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
!isa<ConstantSDNode>(SubsInputValue.getNode()))
return SDValue();
ISD::LoadExtType ExtType;
if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
!checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
!checkValueWidth(AddInputValue1, MaskBits, ExtType) )
return SDValue();
if(!isEquivalentMaskless(CC, MaskBits, ExtType,
cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
return SDValue();
// The AND is not necessary, remove it.
SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
SubsNode->getValueType(1));
SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
return SDValue(N, 0);
}
// Optimize compare with zero and branch.
static SDValue performBRCONDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
return SDValue();
if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
N = NV.getNode();
SDValue Chain = N->getOperand(0);
SDValue Dest = N->getOperand(1);
SDValue CCVal = N->getOperand(2);
SDValue Cmp = N->getOperand(3);
assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
return SDValue();
unsigned CmpOpc = Cmp.getOpcode();
if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
return SDValue();
// Only attempt folding if there is only one use of the flag and no use of the
// value.
if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
return SDValue();
SDValue LHS = Cmp.getOperand(0);
SDValue RHS = Cmp.getOperand(1);
assert(LHS.getValueType() == RHS.getValueType() &&
"Expected the value type to be the same for both operands!");
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
return SDValue();
if (isNullConstant(LHS))
std::swap(LHS, RHS);
if (!isNullConstant(RHS))
return SDValue();
if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
LHS.getOpcode() == ISD::SRL)
return SDValue();
// Fold the compare into the branch instruction.
SDValue BR;
if (CC == AArch64CC::EQ)
BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
else
BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, BR, false);
return SDValue();
}
// Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
// as well as whether the test should be inverted. This code is required to
// catch these cases (as opposed to standard dag combines) because
// AArch64ISD::TBZ is matched during legalization.
static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
SelectionDAG &DAG) {
if (!Op->hasOneUse())
return Op;
// We don't handle undef/constant-fold cases below, as they should have
// already been taken care of (e.g. and of 0, test of undefined shifted bits,
// etc.)
// (tbz (trunc x), b) -> (tbz x, b)
// This case is just here to enable more of the below cases to be caught.
if (Op->getOpcode() == ISD::TRUNCATE &&
Bit < Op->getValueType(0).getSizeInBits()) {
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
// (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
if (Op->getOpcode() == ISD::ANY_EXTEND &&
Bit < Op->getOperand(0).getValueSizeInBits()) {
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
if (Op->getNumOperands() != 2)
return Op;
auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!C)
return Op;
switch (Op->getOpcode()) {
default:
return Op;
// (tbz (and x, m), b) -> (tbz x, b)
case ISD::AND:
if ((C->getZExtValue() >> Bit) & 1)
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
return Op;
// (tbz (shl x, c), b) -> (tbz x, b-c)
case ISD::SHL:
if (C->getZExtValue() <= Bit &&
(Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
Bit = Bit - C->getZExtValue();
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
return Op;
// (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
case ISD::SRA:
Bit = Bit + C->getZExtValue();
if (Bit >= Op->getValueType(0).getSizeInBits())
Bit = Op->getValueType(0).getSizeInBits() - 1;
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
// (tbz (srl x, c), b) -> (tbz x, b+c)
case ISD::SRL:
if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
Bit = Bit + C->getZExtValue();
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
return Op;
// (tbz (xor x, -1), b) -> (tbnz x, b)
case ISD::XOR:
if ((C->getZExtValue() >> Bit) & 1)
Invert = !Invert;
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
}
// Optimize test single bit zero/non-zero and branch.
static SDValue performTBZCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
bool Invert = false;
SDValue TestSrc = N->getOperand(1);
SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
if (TestSrc == NewTestSrc)
return SDValue();
unsigned NewOpc = N->getOpcode();
if (Invert) {
if (NewOpc == AArch64ISD::TBZ)
NewOpc = AArch64ISD::TBNZ;
else {
assert(NewOpc == AArch64ISD::TBNZ);
NewOpc = AArch64ISD::TBZ;
}
}
SDLoc DL(N);
return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
}
// vselect (v1i1 setcc) ->
// vselect (v1iXX setcc) (XX is the size of the compared operand type)
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
// such VSELECT.
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
EVT CCVT = N0.getValueType();
if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
CCVT.getVectorElementType() != MVT::i1)
return SDValue();
EVT ResVT = N->getValueType(0);
EVT CmpVT = N0.getOperand(0).getValueType();
// Only combine when the result type is of the same size as the compared
// operands.
if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
return SDValue();
SDValue IfTrue = N->getOperand(1);
SDValue IfFalse = N->getOperand(2);
SDValue SetCC =
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
N0.getOperand(0), N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
IfTrue, IfFalse);
}
/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
/// the compare-mask instructions rather than going via NZCV, even if LHS and
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
/// with a vector one followed by a DUP shuffle on the result.
static SDValue performSelectCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT ResVT = N->getValueType(0);
if (N0.getOpcode() != ISD::SETCC)
return SDValue();
// Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
// scalar SetCCResultType. We also don't expect vectors, because we assume
// that selects fed by vector SETCCs are canonicalized to VSELECT.
assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
"Scalar-SETCC feeding SELECT has unexpected result type!");
// If NumMaskElts == 0, the comparison is larger than select result. The
// largest real NEON comparison is 64-bits per lane, which means the result is
// at most 32-bits and an illegal vector. Just bail out for now.
EVT SrcVT = N0.getOperand(0).getValueType();
// Don't try to do this optimization when the setcc itself has i1 operands.
// There are no legal vectors of i1, so this would be pointless.
if (SrcVT == MVT::i1)
return SDValue();
int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
if (!ResVT.isVector() || NumMaskElts == 0)
return SDValue();
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
// Also bail out if the vector CCVT isn't the same size as ResVT.
// This can happen if the SETCC operand size doesn't divide the ResVT size
// (e.g., f64 vs v3f32).
if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
return SDValue();
// Make sure we didn't create illegal types, if we're not supposed to.
assert(DCI.isBeforeLegalize() ||
DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
// First perform a vector comparison, where lane 0 is the one we're interested
// in.
SDLoc DL(N0);
SDValue LHS =
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
SDValue RHS =
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
// Now duplicate the comparison mask we want across all other lanes.
SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
Mask = DAG.getNode(ISD::BITCAST, DL,
ResVT.changeVectorElementTypeToInteger(), Mask);
return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
}
/// Get rid of unnecessary NVCASTs (that don't change the type).
static SDValue performNVCASTCombine(SDNode *N) {
if (N->getValueType(0) == N->getOperand(0).getValueType())
return N->getOperand(0);
return SDValue();
}
// If all users of the globaladdr are of the form (globaladdr + constant), find
// the smallest constant, fold it into the globaladdr's offset and rewrite the
// globaladdr as (globaladdr + constant) - constant.
static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget,
const TargetMachine &TM) {
auto *GN = cast<GlobalAddressSDNode>(N);
if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
AArch64II::MO_NO_FLAG)
return SDValue();
uint64_t MinOffset = -1ull;
for (SDNode *N : GN->uses()) {
if (N->getOpcode() != ISD::ADD)
return SDValue();
auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
if (!C)
C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
MinOffset = std::min(MinOffset, C->getZExtValue());
}
uint64_t Offset = MinOffset + GN->getOffset();
// Require that the new offset is larger than the existing one. Otherwise, we
// can end up oscillating between two possible DAGs, for example,
// (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
if (Offset <= uint64_t(GN->getOffset()))
return SDValue();
// Check whether folding this offset is legal. It must not go out of bounds of
// the referenced object to avoid violating the code model, and must be
// smaller than 2^21 because this is the largest offset expressible in all
// object formats.
//
// This check also prevents us from folding negative offsets, which will end
// up being treated in the same way as large positive ones. They could also
// cause code model violations, and aren't really common enough to matter.
if (Offset >= (1 << 21))
return SDValue();
const GlobalValue *GV = GN->getGlobal();
Type *T = GV->getValueType();
if (!T->isSized() ||
Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
return SDValue();
SDLoc DL(GN);
SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
DAG.getConstant(MinOffset, DL, MVT::i64));
}
// Returns an SVE type that ContentTy can be trivially sign or zero extended
// into.
static MVT getSVEContainerType(EVT ContentTy) {
assert(ContentTy.isSimple() && "No SVE containers for extended types");
switch (ContentTy.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("No known SVE container for this MVT type");
case MVT::nxv2i8:
case MVT::nxv2i16:
case MVT::nxv2i32:
case MVT::nxv2i64:
case MVT::nxv2f32:
case MVT::nxv2f64:
return MVT::nxv2i64;
case MVT::nxv4i8:
case MVT::nxv4i16:
case MVT::nxv4i32:
case MVT::nxv4f32:
return MVT::nxv4i32;
}
}
static SDValue performST1ScatterCombine(SDNode *N, SelectionDAG &DAG,
unsigned Opcode,
bool OnlyPackedOffsets = true) {
const SDValue Src = N->getOperand(2);
const EVT SrcVT = Src->getValueType(0);
assert(SrcVT.isScalableVector() &&
"Scatter stores are only possible for SVE vectors");
SDLoc DL(N);
MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT();
// Make sure that source data will fit into an SVE register
if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
return SDValue();
// For FPs, ACLE only supports _packed_ single and double precision types.
if (SrcElVT.isFloatingPoint())
if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64))
return SDValue();
// Depending on the addressing mode, this is either a pointer or a vector of
// pointers (that fits into one register)
const SDValue Base = N->getOperand(4);
// Depending on the addressing mode, this is either a single offset or a
// vector of offsets (that fits into one register)
SDValue Offset = N->getOperand(5);
auto &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(Base.getValueType()))
return SDValue();
// Some scatter store variants allow unpacked offsets, but only as nxv2i32
// vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
// nxv2i64. Legalize accordingly.
if (!OnlyPackedOffsets &&
Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
if (!TLI.isTypeLegal(Offset.getValueType()))
return SDValue();
// Source value type that is representable in hardware
EVT HwSrcVt = getSVEContainerType(SrcVT);
// Keep the original type of the input data to store - this is needed to
// differentiate between ST1B, ST1H, ST1W and ST1D. For FP values we want the
// integer equivalent, so just use HwSrcVt.
SDValue InputVT = DAG.getValueType(SrcVT);
if (SrcVT.isFloatingPoint())
InputVT = DAG.getValueType(HwSrcVt);
SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue SrcNew;
if (Src.getValueType().isFloatingPoint())
SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src);
else
SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src);
SDValue Ops[] = {N->getOperand(0), // Chain
SrcNew,
N->getOperand(3), // Pg
Base,
Offset,
InputVT};
return DAG.getNode(Opcode, DL, VTs, Ops);
}
static SDValue performLD1GatherCombine(SDNode *N, SelectionDAG &DAG,
unsigned Opcode,
bool OnlyPackedOffsets = true) {
EVT RetVT = N->getValueType(0);
assert(RetVT.isScalableVector() &&
"Gather loads are only possible for SVE vectors");
SDLoc DL(N);
if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
return SDValue();
// Depending on the addressing mode, this is either a pointer or a vector of
// pointers (that fits into one register)
const SDValue Base = N->getOperand(3);
// Depending on the addressing mode, this is either a single offset or a
// vector of offsets (that fits into one register)
SDValue Offset = N->getOperand(4);
auto &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(Base.getValueType()))
return SDValue();
// Some gather load variants allow unpacked offsets, but only as nxv2i32
// vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
// nxv2i64. Legalize accordingly.
if (!OnlyPackedOffsets &&
Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
// Return value type that is representable in hardware
EVT HwRetVt = getSVEContainerType(RetVT);
// Keep the original output value type around - this will better inform
// optimisations (e.g. instruction folding when load is followed by
// zext/sext). This will only be used for ints, so the value for FPs
// doesn't matter.
SDValue OutVT = DAG.getValueType(RetVT);
if (RetVT.isFloatingPoint())
OutVT = DAG.getValueType(HwRetVt);
SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other);
SDValue Ops[] = {N->getOperand(0), // Chain
N->getOperand(2), // Pg
Base, Offset, OutVT};
SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops);
SDValue LoadChain = SDValue(Load.getNode(), 1);
if (RetVT.isInteger() && (RetVT != HwRetVt))
Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0));
// If the original return value was FP, bitcast accordingly. Doing it here
// means that we can avoid adding TableGen patterns for FPs.
if (RetVT.isFloatingPoint())
Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0));
return DAG.getMergeValues({Load, LoadChain}, DL);
}
static SDValue
performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Src = N->getOperand(0);
unsigned Opc = Src->getOpcode();
// Gather load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
// for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
unsigned NewOpc;
switch (Opc) {
case AArch64ISD::GLD1:
NewOpc = AArch64ISD::GLD1S;
break;
case AArch64ISD::GLD1_SCALED:
NewOpc = AArch64ISD::GLD1S_SCALED;
break;
case AArch64ISD::GLD1_SXTW:
NewOpc = AArch64ISD::GLD1S_SXTW;
break;
case AArch64ISD::GLD1_SXTW_SCALED:
NewOpc = AArch64ISD::GLD1S_SXTW_SCALED;
break;
case AArch64ISD::GLD1_UXTW:
NewOpc = AArch64ISD::GLD1S_UXTW;
break;
case AArch64ISD::GLD1_UXTW_SCALED:
NewOpc = AArch64ISD::GLD1S_UXTW_SCALED;
break;
case AArch64ISD::GLD1_IMM:
NewOpc = AArch64ISD::GLD1S_IMM;
break;
default:
return SDValue();
}
EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
EVT GLD1SrcMemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
if ((SignExtSrcVT != GLD1SrcMemVT) || !Src.hasOneUse())
return SDValue();
EVT DstVT = N->getValueType(0);
SDVTList VTs = DAG.getVTList(DstVT, MVT::Other);
SDValue Ops[] = {Src->getOperand(0), Src->getOperand(1), Src->getOperand(2),
Src->getOperand(3), Src->getOperand(4)};
SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops);
DCI.CombineTo(N, ExtLoad);
DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1));
// Return N so it doesn't get rechecked
return SDValue(N, 0);
}
SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default:
LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
break;
case ISD::ADD:
case ISD::SUB:
return performAddSubLongCombine(N, DCI, DAG);
case ISD::XOR:
return performXorCombine(N, DAG, DCI, Subtarget);
case ISD::MUL:
return performMulCombine(N, DAG, DCI, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return performIntToFpCombine(N, DAG, Subtarget);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
return performFpToIntCombine(N, DAG, DCI, Subtarget);
case ISD::FDIV:
return performFDivCombine(N, DAG, DCI, Subtarget);
case ISD::OR:
return performORCombine(N, DCI, Subtarget);
case ISD::AND:
return performANDCombine(N, DCI);
case ISD::SRL:
return performSRLCombine(N, DCI);
case ISD::INTRINSIC_WO_CHAIN:
return performIntrinsicCombine(N, DCI, Subtarget);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
return performExtendCombine(N, DCI, DAG);
case ISD::SIGN_EXTEND_INREG:
return performSignExtendInRegCombine(N, DCI, DAG);
case ISD::CONCAT_VECTORS:
return performConcatVectorsCombine(N, DCI, DAG);
case ISD::SELECT:
return performSelectCombine(N, DCI);
case ISD::VSELECT:
return performVSelectCombine(N, DCI.DAG);
case ISD::LOAD:
if (performTBISimplification(N->getOperand(1), DCI, DAG))
return SDValue(N, 0);
break;
case ISD::STORE:
return performSTORECombine(N, DCI, DAG, Subtarget);
case AArch64ISD::BRCOND:
return performBRCONDCombine(N, DCI, DAG);
case AArch64ISD::TBNZ:
case AArch64ISD::TBZ:
return performTBZCombine(N, DCI, DAG);
case AArch64ISD::CSEL:
return performCONDCombine(N, DCI, DAG, 2, 3);
case AArch64ISD::DUP:
return performPostLD1Combine(N, DCI, false);
case AArch64ISD::NVCAST:
return performNVCASTCombine(N);
case ISD::INSERT_VECTOR_ELT:
return performPostLD1Combine(N, DCI, true);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_ld1x2:
case Intrinsic::aarch64_neon_ld1x3:
case Intrinsic::aarch64_neon_ld1x4:
case Intrinsic::aarch64_neon_ld2lane:
case Intrinsic::aarch64_neon_ld3lane:
case Intrinsic::aarch64_neon_ld4lane:
case Intrinsic::aarch64_neon_ld2r:
case Intrinsic::aarch64_neon_ld3r:
case Intrinsic::aarch64_neon_ld4r:
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
case Intrinsic::aarch64_neon_st1x2:
case Intrinsic::aarch64_neon_st1x3:
case Intrinsic::aarch64_neon_st1x4:
case Intrinsic::aarch64_neon_st2lane:
case Intrinsic::aarch64_neon_st3lane:
case Intrinsic::aarch64_neon_st4lane:
return performNEONPostLDSTCombine(N, DCI, DAG);
case Intrinsic::aarch64_sve_ldnt1:
return performLDNT1Combine(N, DAG);
case Intrinsic::aarch64_sve_stnt1:
return performSTNT1Combine(N, DAG);
case Intrinsic::aarch64_sve_ld1_gather:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1);
case Intrinsic::aarch64_sve_ld1_gather_index:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SCALED);
case Intrinsic::aarch64_sve_ld1_gather_sxtw:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_uxtw:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_imm:
return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_IMM);
case Intrinsic::aarch64_sve_st1_scatter:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1);
case Intrinsic::aarch64_sve_st1_scatter_index:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SCALED);
case Intrinsic::aarch64_sve_st1_scatter_sxtw:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_uxtw:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_imm:
return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_IMM);
default:
break;
}
break;
case ISD::GlobalAddress:
return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
}
return SDValue();
}
// Check if the return value is used as only a return value, as otherwise
// we can't perform a tail-call. In particular, we need to check for
// target ISD nodes that are returns and any other "odd" constructs
// that the generic analysis code won't necessarily catch.
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
SDValue &Chain) const {
if (N->getNumValues() != 1)
return false;
if (!N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
return false;
bool HasRet = false;
for (SDNode *Node : Copy->uses()) {
if (Node->getOpcode() != AArch64ISD::RET_FLAG)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
// Return whether the an instruction can potentially be optimized to a tail
// call. This will cause the optimizers to attempt to move, or duplicate,
// return instructions to help enable tail call optimizations for this
// instruction.
bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
return CI->isTailCall();
}
bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
bool &IsInc,
SelectionDAG &DAG) const {
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
return false;
Base = Op->getOperand(0);
// All of the indexed addressing mode instructions take a signed
// 9 bit immediate offset.
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
int64_t RHSC = RHS->getSExtValue();
if (Op->getOpcode() == ISD::SUB)
RHSC = -(uint64_t)RHSC;
if (!isInt<9>(RHSC))
return false;
IsInc = (Op->getOpcode() == ISD::ADD);
Offset = Op->getOperand(1);
return true;
}
return false;
}
bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
EVT VT;
SDValue Ptr;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
} else
return false;
bool IsInc;
if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
return false;
AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
return true;
}
bool AArch64TargetLowering::getPostIndexedAddressParts(
SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
EVT VT;
SDValue Ptr;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
} else
return false;
bool IsInc;
if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
return false;
// Post-indexing updates the base, so it's not a valid transform
// if that's not the same as the load's pointer.
if (Ptr != Base)
return false;
AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
return;
Op = SDValue(
DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
DAG.getUNDEF(MVT::i32), Op,
DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
0);
Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
}
static void ReplaceReductionResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG, unsigned InterOp,
unsigned AcrossOp) {
EVT LoVT, HiVT;
SDValue Lo, Hi;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
Results.push_back(SplitVal);
}
static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
DAG.getNode(ISD::SRL, DL, MVT::i128, N,
DAG.getConstant(64, DL, MVT::i64)));
return std::make_pair(Lo, Hi);
}
// Create an even/odd pair of X registers holding integer value V.
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
SDLoc dl(V.getNode());
SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
SDValue VHi = DAG.getAnyExtOrTrunc(
DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
dl, MVT::i64);
if (DAG.getDataLayout().isBigEndian())
std::swap (VLo, VHi);
SDValue RegClass =
DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
return SDValue(
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}
static void ReplaceCMP_SWAP_128Results(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
assert(N->getValueType(0) == MVT::i128 &&
"AtomicCmpSwap on types less than 128 should be legal");
if (Subtarget->hasLSE()) {
// LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
// so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
SDValue Ops[] = {
createGPRPairNode(DAG, N->getOperand(2)), // Compare value
createGPRPairNode(DAG, N->getOperand(3)), // Store value
N->getOperand(1), // Ptr
N->getOperand(0), // Chain in
};
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
unsigned Opcode;
switch (MemOp->getOrdering()) {
case AtomicOrdering::Monotonic:
Opcode = AArch64::CASPX;
break;
case AtomicOrdering::Acquire:
Opcode = AArch64::CASPAX;
break;
case AtomicOrdering::Release:
Opcode = AArch64::CASPLX;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
Opcode = AArch64::CASPALX;
break;
default:
llvm_unreachable("Unexpected ordering!");
}
MachineSDNode *CmpSwap = DAG.getMachineNode(
Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
DAG.setNodeMemRefs(CmpSwap, {MemOp});
unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
if (DAG.getDataLayout().isBigEndian())
std::swap(SubReg1, SubReg2);
Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
SDValue(CmpSwap, 0)));
Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
SDValue(CmpSwap, 0)));
Results.push_back(SDValue(CmpSwap, 1)); // Chain out
return;
}
auto Desired = splitInt128(N->getOperand(2), DAG);
auto New = splitInt128(N->getOperand(3), DAG);
SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
New.first, New.second, N->getOperand(0)};
SDNode *CmpSwap = DAG.getMachineNode(
AArch64::CMP_SWAP_128, SDLoc(N),
DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
Results.push_back(SDValue(CmpSwap, 0));
Results.push_back(SDValue(CmpSwap, 1));
Results.push_back(SDValue(CmpSwap, 3));
}
void AArch64TargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this");
case ISD::BITCAST:
ReplaceBITCASTResults(N, Results, DAG);
return;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
return;
case AArch64ISD::SADDV:
ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
return;
case AArch64ISD::UADDV:
ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
return;
case AArch64ISD::SMINV:
ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
return;
case AArch64ISD::UMINV:
ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
return;
case AArch64ISD::SMAXV:
ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
return;
case AArch64ISD::UMAXV:
ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
return;
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT:
assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
// Let normal code take care of it by not adding anything to Results.
return;
case ISD::ATOMIC_CMP_SWAP:
ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
return;
case ISD::LOAD: {
assert(SDValue(N, 0).getValueType() == MVT::i128 &&
"unexpected load's value type");
LoadSDNode *LoadNode = cast<LoadSDNode>(N);
if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) {
// Non-volatile loads are optimized later in AArch64's load/store
// optimizer.
return;
}
SDValue Result = DAG.getMemIntrinsicNode(
AArch64ISD::LDP, SDLoc(N),
DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
{LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(),
LoadNode->getMemOperand());
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
Result.getValue(0), Result.getValue(1));
Results.append({Pair, Result.getValue(2) /* Chain */});
return;
}
case ISD::INTRINSIC_WO_CHAIN: {
EVT VT = N->getValueType(0);
assert((VT == MVT::i8 || VT == MVT::i16) &&
"custom lowering for unexpected type");
ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0));
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
switch (IntID) {
default:
return;
case Intrinsic::aarch64_sve_clasta_n: {
SDLoc DL(N);
auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32,
N->getOperand(1), Op2, N->getOperand(3));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::aarch64_sve_clastb_n: {
SDLoc DL(N);
auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32,
N->getOperand(1), Op2, N->getOperand(3));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::aarch64_sve_lasta: {
SDLoc DL(N);
auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32,
N->getOperand(1), N->getOperand(2));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::aarch64_sve_lastb: {
SDLoc DL(N);
auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32,
N->getOperand(1), N->getOperand(2));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
}
}
}
}
bool AArch64TargetLowering::useLoadStackGuardNode() const {
if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
return TargetLowering::useLoadStackGuardNode();
return true;
}
unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal if there are three or more FDIVs.
return 3;
}
TargetLoweringBase::LegalizeTypeAction
AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
// During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
// v4i16, v2i32 instead of to promote.
if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
VT == MVT::v1f32)
return TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
return Size == 128;
}
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
}
// For the real atomic operations, we have ldxr/stxr up to 128 bits,
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
if (AI->isFloatingPointOperation())
return AtomicExpansionKind::CmpXChg;
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
if (Size > 128) return AtomicExpansionKind::None;
// Nand not supported in LSE.
if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
// Leave 128 bits to LLSC.
return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
}
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *AI) const {
// If subtarget has LSE, leave cmpxchg intact for codegen.
if (Subtarget->hasLSE())
return AtomicExpansionKind::None;
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
// implement cmpxchg without spilling. If the address being exchanged is also
// on the stack and close enough to the spill slot, this can lead to a
// situation where the monitor always gets cleared and the atomic operation
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
if (getTargetMachine().getOptLevel() == 0)
return AtomicExpansionKind::None;
return AtomicExpansionKind::LLSC;
}
Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
bool IsAcquire = isAcquireOrStronger(Ord);
// Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
// intrinsic must return {i64, i64} and we have to recombine them into a
// single i128 here.
if (ValTy->getPrimitiveSizeInBits() == 128) {
Intrinsic::ID Int =
IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
Function *Ldxr = Intrinsic::getDeclaration(M, Int);
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
return Builder.CreateOr(
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
}
Type *Tys[] = { Addr->getType() };
Intrinsic::ID Int =
IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
const DataLayout &DL = M->getDataLayout();
IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
return Builder.CreateBitCast(Trunc, EltTy);
}
void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
IRBuilder<> &Builder) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
}
Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
Value *Val, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
bool IsRelease = isReleaseOrStronger(Ord);
// Since the intrinsics must have legal type, the i128 intrinsics take two
// parameters: "i64, i64". We must marshal Val into the appropriate form
// before the call.
if (Val->getType()->getPrimitiveSizeInBits() == 128) {
Intrinsic::ID Int =
IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
Function *Stxr = Intrinsic::getDeclaration(M, Int);
Type *Int64Ty = Type::getInt64Ty(M->getContext());
Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
}
Intrinsic::ID Int =
IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
Type *Tys[] = { Addr->getType() };
Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
const DataLayout &DL = M->getDataLayout();
IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
Val = Builder.CreateBitCast(Val, IntValTy);
return Builder.CreateCall(Stxr,
{Builder.CreateZExtOrBitCast(
Val, Stxr->getFunctionType()->getParamType(0)),
Addr});
}
bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
return Ty->isArrayTy();
}
bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
EVT) const {
return false;
}
static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Function *ThreadPointerFunc =
Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
return IRB.CreatePointerCast(
IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
Offset),
IRB.getInt8PtrTy()->getPointerTo(0));
}
Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
// Android provides a fixed TLS slot for the stack cookie. See the definition
// of TLS_SLOT_STACK_GUARD in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
if (Subtarget->isTargetAndroid())
return UseTlsOffset(IRB, 0x28);
// Fuchsia is similar.
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
if (Subtarget->isTargetFuchsia())
return UseTlsOffset(IRB, -0x10);
return TargetLowering::getIRStackGuard(IRB);
}
void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
// MSVC CRT provides functionalities for stack protection.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
// MSVC CRT has a global variable holding security cookie.
M.getOrInsertGlobal("__security_cookie",
Type::getInt8PtrTy(M.getContext()));
// MSVC CRT has a function to validate security cookie.
FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
"__security_check_cookie", Type::getVoidTy(M.getContext()),
Type::getInt8PtrTy(M.getContext()));
if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
F->setCallingConv(CallingConv::Win64);
F->addAttribute(1, Attribute::AttrKind::InReg);
}
return;
}
TargetLowering::insertSSPDeclarations(M);
}
Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
// MSVC CRT has a global variable holding security cookie.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return M.getGlobalVariable("__security_cookie");
return TargetLowering::getSDagStackGuard(M);
}
Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
// MSVC CRT has a function to validate security cookie.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return M.getFunction("__security_check_cookie");
return TargetLowering::getSSPStackGuardCheck(M);
}
Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
// Android provides a fixed TLS slot for the SafeStack pointer. See the
// definition of TLS_SLOT_SAFESTACK in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
if (Subtarget->isTargetAndroid())
return UseTlsOffset(IRB, 0x48);
// Fuchsia is similar.
// <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
if (Subtarget->isTargetFuchsia())
return UseTlsOffset(IRB, -0x8);
return TargetLowering::getSafeStackPointerLocation(IRB);
}
bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
const Instruction &AndI) const {
// Only sink 'and' mask to cmp use block if it is masking a single bit, since
// this is likely to be fold the and/cmp/br into a single tbz instruction. It
// may be beneficial to sink in other cases, but we would have to check that
// the cmp would not get folded into the br to form a cbz for these to be
// beneficial.
ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
if (!Mask)
return false;
return Mask->getValue().isPowerOf2();
}
bool AArch64TargetLowering::
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const {
// Does baseline recommend not to perform the fold by default?
if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
return false;
// Else, if this is a vector shift, prefer 'shl'.
return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
}
bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
SDNode *N) const {
if (DAG.getMachineFunction().getFunction().hasMinSize() &&
!Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin())
return false;
return true;
}
void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
// Update IsSplitCSR in AArch64unctionInfo.
AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
AFI->setIsSplitCSR(true);
}
void AArch64TargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (AArch64::GPR64RegClass.contains(*I))
RC = &AArch64::GPR64RegClass;
else if (AArch64::FPR64RegClass.contains(*I))
RC = &AArch64::FPR64RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
Register NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(Entry->getParent()->getFunction().hasFnAttribute(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
// Integer division on AArch64 is expensive. However, when aggressively
// optimizing for code size, we prefer to use a div instruction, as it is
// usually smaller than the alternative sequence.
// The exception to this is vector division. Since AArch64 doesn't have vector
// integer division, leaving the division as-is is a loss even in terms of
// size, because it will have to be scalarized, while the alternative code
// sequence can be performed in vector form.
bool OptSize =
Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
return OptSize && !VT.isVector();
}
bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
// We want inc-of-add for scalars and sub-of-not for vectors.
return VT.isScalarInteger();
}
bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
}
unsigned
AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
return getPointerTy(DL).getSizeInBits();
return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
}
void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
MF.getFrameInfo().computeMaxCallFrameSize(MF);
TargetLoweringBase::finalizeLowering(MF);
}
// Unlike X86, we let frame lowering assign offsets to all catch objects.
bool AArch64TargetLowering::needsFixedCatchObjects() const {
return false;
}