|  | // Copyright 2018 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "VkImage.hpp" | 
|  |  | 
|  | #include "VkBuffer.hpp" | 
|  | #include "VkDevice.hpp" | 
|  | #include "VkDeviceMemory.hpp" | 
|  | #include "VkImageView.hpp" | 
|  | #include "VkStringify.hpp" | 
|  | #include "VkStructConversion.hpp" | 
|  | #include "Device/ASTC_Decoder.hpp" | 
|  | #include "Device/BC_Decoder.hpp" | 
|  | #include "Device/Blitter.hpp" | 
|  | #include "Device/ETC_Decoder.hpp" | 
|  |  | 
|  | #ifdef __ANDROID__ | 
|  | #	include <vndk/hardware_buffer.h> | 
|  |  | 
|  | #	include "VkDeviceMemoryExternalAndroid.hpp" | 
|  | #endif | 
|  |  | 
|  | #include <cstring> | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | ETC_Decoder::InputType GetInputType(const vk::Format &format) | 
|  | { | 
|  | switch(format) | 
|  | { | 
|  | case VK_FORMAT_EAC_R11_UNORM_BLOCK: | 
|  | return ETC_Decoder::ETC_R_UNSIGNED; | 
|  | case VK_FORMAT_EAC_R11_SNORM_BLOCK: | 
|  | return ETC_Decoder::ETC_R_SIGNED; | 
|  | case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: | 
|  | return ETC_Decoder::ETC_RG_UNSIGNED; | 
|  | case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: | 
|  | return ETC_Decoder::ETC_RG_SIGNED; | 
|  | case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: | 
|  | return ETC_Decoder::ETC_RGB; | 
|  | case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: | 
|  | return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA; | 
|  | case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: | 
|  | return ETC_Decoder::ETC_RGBA; | 
|  | default: | 
|  | UNSUPPORTED("format: %d", int(format)); | 
|  | return ETC_Decoder::ETC_RGBA; | 
|  | } | 
|  | } | 
|  |  | 
|  | int GetBCn(const vk::Format &format) | 
|  | { | 
|  | switch(format) | 
|  | { | 
|  | case VK_FORMAT_BC1_RGB_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC1_RGB_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: | 
|  | return 1; | 
|  | case VK_FORMAT_BC2_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC2_SRGB_BLOCK: | 
|  | return 2; | 
|  | case VK_FORMAT_BC3_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC3_SRGB_BLOCK: | 
|  | return 3; | 
|  | case VK_FORMAT_BC4_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC4_SNORM_BLOCK: | 
|  | return 4; | 
|  | case VK_FORMAT_BC5_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC5_SNORM_BLOCK: | 
|  | return 5; | 
|  | case VK_FORMAT_BC6H_UFLOAT_BLOCK: | 
|  | case VK_FORMAT_BC6H_SFLOAT_BLOCK: | 
|  | return 6; | 
|  | case VK_FORMAT_BC7_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC7_SRGB_BLOCK: | 
|  | return 7; | 
|  | default: | 
|  | UNSUPPORTED("format: %d", int(format)); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true for BC1 if we have an RGB format, false for RGBA | 
|  | // Returns true for BC4, BC5, BC6H if we have an unsigned format, false for signed | 
|  | // Ignored by BC2, BC3, and BC7 | 
|  | bool GetNoAlphaOrUnsigned(const vk::Format &format) | 
|  | { | 
|  | switch(format) | 
|  | { | 
|  | case VK_FORMAT_BC1_RGB_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC1_RGB_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC4_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC5_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC6H_UFLOAT_BLOCK: | 
|  | return true; | 
|  | case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC2_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC2_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC3_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC3_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC4_SNORM_BLOCK: | 
|  | case VK_FORMAT_BC5_SNORM_BLOCK: | 
|  | case VK_FORMAT_BC6H_SFLOAT_BLOCK: | 
|  | case VK_FORMAT_BC7_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC7_UNORM_BLOCK: | 
|  | return false; | 
|  | default: | 
|  | UNSUPPORTED("format: %d", int(format)); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | VkFormat GetImageFormat(const VkImageCreateInfo *pCreateInfo) | 
|  | { | 
|  | const auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext); | 
|  | while(nextInfo) | 
|  | { | 
|  | // Casting to an int since some structures, such as VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID and | 
|  | // VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID, are not enumerated in the official Vulkan headers. | 
|  | switch((int)(nextInfo->sType)) | 
|  | { | 
|  | #ifdef __ANDROID__ | 
|  | case VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID: | 
|  | { | 
|  | const VkExternalFormatANDROID *externalFormatAndroid = reinterpret_cast<const VkExternalFormatANDROID *>(nextInfo); | 
|  |  | 
|  | // VkExternalFormatANDROID: "If externalFormat is zero, the effect is as if the VkExternalFormatANDROID structure was not present." | 
|  | if(externalFormatAndroid->externalFormat == 0) | 
|  | { | 
|  | break; | 
|  | } | 
|  |  | 
|  | const VkFormat correspondingVkFormat = AHardwareBufferExternalMemory::GetVkFormatFromAHBFormat(externalFormatAndroid->externalFormat); | 
|  | ASSERT(pCreateInfo->format == VK_FORMAT_UNDEFINED || pCreateInfo->format == correspondingVkFormat); | 
|  | return correspondingVkFormat; | 
|  | } | 
|  | break; | 
|  | case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: | 
|  | break; | 
|  | case VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID: | 
|  | break; | 
|  | #endif | 
|  | // We support these extensions, but they don't affect the image format. | 
|  | case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO: | 
|  | case VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR: | 
|  | case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO: | 
|  | case VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO: | 
|  | break; | 
|  | case VK_STRUCTURE_TYPE_MAX_ENUM: | 
|  | // dEQP tests that this value is ignored. | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("pCreateInfo->pNext->sType = %s", vk::Stringify(nextInfo->sType).c_str()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | nextInfo = nextInfo->pNext; | 
|  | } | 
|  |  | 
|  | return pCreateInfo->format; | 
|  | } | 
|  |  | 
|  | }  // anonymous namespace | 
|  |  | 
|  | namespace vk { | 
|  |  | 
|  | Image::Image(const VkImageCreateInfo *pCreateInfo, void *mem, Device *device) | 
|  | : device(device) | 
|  | , flags(pCreateInfo->flags) | 
|  | , imageType(pCreateInfo->imageType) | 
|  | , format(GetImageFormat(pCreateInfo)) | 
|  | , extent(pCreateInfo->extent) | 
|  | , mipLevels(pCreateInfo->mipLevels) | 
|  | , arrayLayers(pCreateInfo->arrayLayers) | 
|  | , samples(pCreateInfo->samples) | 
|  | , tiling(pCreateInfo->tiling) | 
|  | , usage(pCreateInfo->usage) | 
|  | { | 
|  | if(format.isCompressed()) | 
|  | { | 
|  | VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo; | 
|  | compressedImageCreateInfo.format = format.getDecompressedFormat(); | 
|  | decompressedImage = new(mem) Image(&compressedImageCreateInfo, nullptr, device); | 
|  | } | 
|  |  | 
|  | const auto *externalInfo = GetExtendedStruct<VkExternalMemoryImageCreateInfo>(pCreateInfo->pNext, VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO); | 
|  | if(externalInfo) | 
|  | { | 
|  | supportedExternalMemoryHandleTypes = externalInfo->handleTypes; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::destroy(const VkAllocationCallbacks *pAllocator) | 
|  | { | 
|  | if(decompressedImage) | 
|  | { | 
|  | vk::freeHostMemory(decompressedImage, pAllocator); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo *pCreateInfo) | 
|  | { | 
|  | return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0; | 
|  | } | 
|  |  | 
|  | const VkMemoryRequirements Image::getMemoryRequirements() const | 
|  | { | 
|  | VkMemoryRequirements memoryRequirements; | 
|  | memoryRequirements.alignment = vk::MEMORY_REQUIREMENTS_OFFSET_ALIGNMENT; | 
|  | memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT; | 
|  | memoryRequirements.size = getStorageSize(format.getAspects()) + | 
|  | (decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0); | 
|  | return memoryRequirements; | 
|  | } | 
|  |  | 
|  | void Image::getMemoryRequirements(VkMemoryRequirements2 *pMemoryRequirements) const | 
|  | { | 
|  | VkBaseOutStructure *extensionRequirements = reinterpret_cast<VkBaseOutStructure *>(pMemoryRequirements->pNext); | 
|  | while(extensionRequirements) | 
|  | { | 
|  | switch(extensionRequirements->sType) | 
|  | { | 
|  | case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: | 
|  | { | 
|  | auto *requirements = reinterpret_cast<VkMemoryDedicatedRequirements *>(extensionRequirements); | 
|  | device->getRequirements(requirements); | 
|  | #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER | 
|  | if(getSupportedExternalMemoryHandleTypes() == VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) | 
|  | { | 
|  | requirements->prefersDedicatedAllocation = VK_TRUE; | 
|  | requirements->requiresDedicatedAllocation = VK_TRUE; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("pMemoryRequirements->pNext sType = %s", vk::Stringify(extensionRequirements->sType).c_str()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | extensionRequirements = extensionRequirements->pNext; | 
|  | } | 
|  |  | 
|  | pMemoryRequirements->memoryRequirements = getMemoryRequirements(); | 
|  | } | 
|  |  | 
|  | size_t Image::getSizeInBytes(const VkImageSubresourceRange &subresourceRange) const | 
|  | { | 
|  | size_t size = 0; | 
|  | uint32_t lastLayer = getLastLayerIndex(subresourceRange); | 
|  | uint32_t lastMipLevel = getLastMipLevel(subresourceRange); | 
|  | uint32_t layerCount = lastLayer - subresourceRange.baseArrayLayer + 1; | 
|  | uint32_t mipLevelCount = lastMipLevel - subresourceRange.baseMipLevel + 1; | 
|  |  | 
|  | auto aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask); | 
|  |  | 
|  | if(layerCount > 1) | 
|  | { | 
|  | if(mipLevelCount < mipLevels)  // Compute size for all layers except the last one, then add relevant mip level sizes only for last layer | 
|  | { | 
|  | size = (layerCount - 1) * getLayerSize(aspect); | 
|  | for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel) | 
|  | { | 
|  | size += getMultiSampledLevelSize(aspect, mipLevel); | 
|  | } | 
|  | } | 
|  | else  // All mip levels used, compute full layer sizes | 
|  | { | 
|  | size = layerCount * getLayerSize(aspect); | 
|  | } | 
|  | } | 
|  | else  // Single layer, add all mip levels in the subresource range | 
|  | { | 
|  | for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel) | 
|  | { | 
|  | size += getMultiSampledLevelSize(aspect, mipLevel); | 
|  | } | 
|  | } | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | bool Image::canBindToMemory(DeviceMemory *pDeviceMemory) const | 
|  | { | 
|  | return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes); | 
|  | } | 
|  |  | 
|  | void Image::bind(DeviceMemory *pDeviceMemory, VkDeviceSize pMemoryOffset) | 
|  | { | 
|  | deviceMemory = pDeviceMemory; | 
|  | memoryOffset = pMemoryOffset; | 
|  | if(decompressedImage) | 
|  | { | 
|  | decompressedImage->deviceMemory = deviceMemory; | 
|  | decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects()); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef __ANDROID__ | 
|  | VkResult Image::prepareForExternalUseANDROID() const | 
|  | { | 
|  | VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0); | 
|  |  | 
|  | AHardwareBuffer_Desc ahbDesc = {}; | 
|  | ahbDesc.width = extent.width; | 
|  | ahbDesc.height = extent.height; | 
|  | ahbDesc.layers = 1; | 
|  | ahbDesc.format = static_cast<uint32_t>(backingMemory.nativeBufferInfo.format); | 
|  | ahbDesc.usage = static_cast<uint64_t>(backingMemory.nativeBufferInfo.usage); | 
|  | ahbDesc.stride = static_cast<uint32_t>(backingMemory.nativeBufferInfo.stride); | 
|  |  | 
|  | AHardwareBuffer *ahb = nullptr; | 
|  | if(AHardwareBuffer_createFromHandle(&ahbDesc, backingMemory.nativeBufferInfo.handle, AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE, &ahb) != 0) | 
|  | { | 
|  | return VK_ERROR_OUT_OF_DATE_KHR; | 
|  | } | 
|  | if(!ahb) | 
|  | { | 
|  | return VK_ERROR_OUT_OF_DATE_KHR; | 
|  | } | 
|  |  | 
|  | ARect ahbRect = {}; | 
|  | ahbRect.left = 0; | 
|  | ahbRect.top = 0; | 
|  | ahbRect.right = static_cast<int32_t>(extent.width); | 
|  | ahbRect.bottom = static_cast<int32_t>(extent.height); | 
|  |  | 
|  | AHardwareBuffer_Planes ahbPlanes = {}; | 
|  | if(AHardwareBuffer_lockPlanes(ahb, AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, /*fence=*/-1, &ahbRect, &ahbPlanes) != 0) | 
|  | { | 
|  | return VK_ERROR_OUT_OF_DATE_KHR; | 
|  | } | 
|  |  | 
|  | int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); | 
|  | int bufferRowBytes = backingMemory.nativeBufferInfo.stride * getFormat().bytes(); | 
|  | ASSERT(imageRowBytes <= bufferRowBytes); | 
|  |  | 
|  | uint8_t *srcBuffer = static_cast<uint8_t *>(deviceMemory->getOffsetPointer(0)); | 
|  | uint8_t *dstBuffer = static_cast<uint8_t *>(ahbPlanes.planes[0].data); | 
|  | for(uint32_t i = 0; i < extent.height; i++) | 
|  | { | 
|  | memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes); | 
|  | } | 
|  |  | 
|  | AHardwareBuffer_unlock(ahb, /*fence=*/nullptr); | 
|  | AHardwareBuffer_release(ahb); | 
|  |  | 
|  | return VK_SUCCESS; | 
|  | } | 
|  |  | 
|  | VkDeviceMemory Image::getExternalMemory() const | 
|  | { | 
|  | return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE }; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void Image::getSubresourceLayout(const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout) const | 
|  | { | 
|  | // By spec, aspectMask has a single bit set. | 
|  | if(!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || | 
|  | (pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || | 
|  | (pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || | 
|  | (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || | 
|  | (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || | 
|  | (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) | 
|  | { | 
|  | UNSUPPORTED("aspectMask %X", pSubresource->aspectMask); | 
|  | } | 
|  |  | 
|  | auto aspect = static_cast<VkImageAspectFlagBits>(pSubresource->aspectMask); | 
|  | pLayout->offset = getSubresourceOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer); | 
|  | pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel); | 
|  | pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel); | 
|  | pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel); | 
|  | pLayout->arrayPitch = getLayerSize(aspect); | 
|  | } | 
|  |  | 
|  | void Image::copyTo(Image *dstImage, const VkImageCopy2KHR ®ion) const | 
|  | { | 
|  | static constexpr VkImageAspectFlags CombinedDepthStencilAspects = | 
|  | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; | 
|  | if((region.srcSubresource.aspectMask == CombinedDepthStencilAspects) && | 
|  | (region.dstSubresource.aspectMask == CombinedDepthStencilAspects)) | 
|  | { | 
|  | // Depth and stencil can be specified together, copy each separately | 
|  | VkImageCopy2KHR singleAspectRegion = region; | 
|  | singleAspectRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; | 
|  | singleAspectRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; | 
|  | copySingleAspectTo(dstImage, singleAspectRegion); | 
|  | singleAspectRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; | 
|  | singleAspectRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; | 
|  | copySingleAspectTo(dstImage, singleAspectRegion); | 
|  | return; | 
|  | } | 
|  |  | 
|  | copySingleAspectTo(dstImage, region); | 
|  | } | 
|  |  | 
|  | void Image::copySingleAspectTo(Image *dstImage, const VkImageCopy2KHR ®ion) const | 
|  | { | 
|  | // Image copy does not perform any conversion, it simply copies memory from | 
|  | // an image to another image that has the same number of bytes per pixel. | 
|  |  | 
|  | if(!((region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || | 
|  | (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || | 
|  | (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || | 
|  | (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || | 
|  | (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || | 
|  | (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) | 
|  | { | 
|  | UNSUPPORTED("srcSubresource.aspectMask %X", region.srcSubresource.aspectMask); | 
|  | } | 
|  |  | 
|  | if(!((region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || | 
|  | (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || | 
|  | (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || | 
|  | (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || | 
|  | (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || | 
|  | (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) | 
|  | { | 
|  | UNSUPPORTED("dstSubresource.aspectMask %X", region.dstSubresource.aspectMask); | 
|  | } | 
|  |  | 
|  | VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(region.srcSubresource.aspectMask); | 
|  | VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(region.dstSubresource.aspectMask); | 
|  |  | 
|  | Format srcFormat = getFormat(srcAspect); | 
|  | Format dstFormat = dstImage->getFormat(dstAspect); | 
|  | int bytesPerBlock = srcFormat.bytesPerBlock(); | 
|  | ASSERT(bytesPerBlock == dstFormat.bytesPerBlock()); | 
|  | ASSERT(samples == dstImage->samples); | 
|  |  | 
|  | VkExtent3D srcExtent = getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel); | 
|  | VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, region.dstSubresource.mipLevel); | 
|  | VkExtent3D copyExtent = imageExtentInBlocks(region.extent, srcAspect); | 
|  |  | 
|  | VkImageType srcImageType = imageType; | 
|  | VkImageType dstImageType = dstImage->getImageType(); | 
|  | bool one3D = (srcImageType == VK_IMAGE_TYPE_3D) != (dstImageType == VK_IMAGE_TYPE_3D); | 
|  | bool both3D = (srcImageType == VK_IMAGE_TYPE_3D) && (dstImageType == VK_IMAGE_TYPE_3D); | 
|  |  | 
|  | // Texel layout pitches, using the VkSubresourceLayout nomenclature. | 
|  | int srcRowPitch = rowPitchBytes(srcAspect, region.srcSubresource.mipLevel); | 
|  | int srcDepthPitch = slicePitchBytes(srcAspect, region.srcSubresource.mipLevel); | 
|  | int dstRowPitch = dstImage->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel); | 
|  | int dstDepthPitch = dstImage->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel); | 
|  | VkDeviceSize srcArrayPitch = getLayerSize(srcAspect); | 
|  | VkDeviceSize dstArrayPitch = dstImage->getLayerSize(dstAspect); | 
|  |  | 
|  | // These are the pitches used when iterating over the layers that are being copied by the | 
|  | // vkCmdCopyImage command. They can differ from the above array piches because the spec states that: | 
|  | // "If one image is VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple | 
|  | //  layers, then each slice is copied to or from a different layer." | 
|  | VkDeviceSize srcLayerPitch = (srcImageType == VK_IMAGE_TYPE_3D) ? srcDepthPitch : srcArrayPitch; | 
|  | VkDeviceSize dstLayerPitch = (dstImageType == VK_IMAGE_TYPE_3D) ? dstDepthPitch : dstArrayPitch; | 
|  |  | 
|  | // If one image is 3D, extent.depth must match the layer count. If both images are 2D, | 
|  | // depth is 1 but the source and destination subresource layer count must match. | 
|  | uint32_t layerCount = one3D ? copyExtent.depth : region.srcSubresource.layerCount; | 
|  |  | 
|  | // Copies between 2D and 3D images are treated as layers, so only use depth as the slice count when | 
|  | // both images are 3D. | 
|  | // Multisample images are currently implemented similar to 3D images by storing one sample per slice. | 
|  | // TODO(b/160600347): Store samples consecutively. | 
|  | uint32_t sliceCount = both3D ? copyExtent.depth : samples; | 
|  |  | 
|  | bool isSingleSlice = (sliceCount == 1); | 
|  | bool isSingleRow = (copyExtent.height == 1) && isSingleSlice; | 
|  | // In order to copy multiple rows using a single memcpy call, we | 
|  | // have to make sure that we need to copy the entire row and that | 
|  | // both source and destination rows have the same size in bytes | 
|  | bool isEntireRow = (region.extent.width == srcExtent.width) && | 
|  | (region.extent.width == dstExtent.width) && | 
|  | // For non-compressed formats, blockWidth is 1. For compressed | 
|  | // formats, rowPitchBytes returns the number of bytes for a row of | 
|  | // blocks, so we have to divide by the block height, which means: | 
|  | // srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth | 
|  | // And, to avoid potential non exact integer division, for example if a | 
|  | // block has 16 bytes and represents 5 rows, we change the equation to: | 
|  | // srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth | 
|  | ((srcRowPitch * dstFormat.blockWidth()) == | 
|  | (dstRowPitch * srcFormat.blockWidth())); | 
|  | // In order to copy multiple slices using a single memcpy call, we | 
|  | // have to make sure that we need to copy the entire slice and that | 
|  | // both source and destination slices have the same size in bytes | 
|  | bool isEntireSlice = isEntireRow && | 
|  | (copyExtent.height == srcExtent.height) && | 
|  | (copyExtent.height == dstExtent.height) && | 
|  | (srcDepthPitch == dstDepthPitch); | 
|  |  | 
|  | const uint8_t *srcLayer = static_cast<const uint8_t *>(getTexelPointer(region.srcOffset, ImageSubresource(region.srcSubresource))); | 
|  | uint8_t *dstLayer = static_cast<uint8_t *>(dstImage->getTexelPointer(region.dstOffset, ImageSubresource(region.dstSubresource))); | 
|  |  | 
|  | for(uint32_t layer = 0; layer < layerCount; layer++) | 
|  | { | 
|  | if(isSingleRow)  // Copy one row | 
|  | { | 
|  | size_t copySize = copyExtent.width * bytesPerBlock; | 
|  | ASSERT((srcLayer + copySize) < end()); | 
|  | ASSERT((dstLayer + copySize) < dstImage->end()); | 
|  | memcpy(dstLayer, srcLayer, copySize); | 
|  | } | 
|  | else if(isEntireRow && isSingleSlice)  // Copy one slice | 
|  | { | 
|  | size_t copySize = copyExtent.height * srcRowPitch; | 
|  | ASSERT((srcLayer + copySize) < end()); | 
|  | ASSERT((dstLayer + copySize) < dstImage->end()); | 
|  | memcpy(dstLayer, srcLayer, copySize); | 
|  | } | 
|  | else if(isEntireSlice)  // Copy multiple slices | 
|  | { | 
|  | size_t copySize = sliceCount * srcDepthPitch; | 
|  | ASSERT((srcLayer + copySize) < end()); | 
|  | ASSERT((dstLayer + copySize) < dstImage->end()); | 
|  | memcpy(dstLayer, srcLayer, copySize); | 
|  | } | 
|  | else if(isEntireRow)  // Copy slice by slice | 
|  | { | 
|  | size_t sliceSize = copyExtent.height * srcRowPitch; | 
|  | const uint8_t *srcSlice = srcLayer; | 
|  | uint8_t *dstSlice = dstLayer; | 
|  |  | 
|  | for(uint32_t z = 0; z < sliceCount; z++) | 
|  | { | 
|  | ASSERT((srcSlice + sliceSize) < end()); | 
|  | ASSERT((dstSlice + sliceSize) < dstImage->end()); | 
|  |  | 
|  | memcpy(dstSlice, srcSlice, sliceSize); | 
|  |  | 
|  | dstSlice += dstDepthPitch; | 
|  | srcSlice += srcDepthPitch; | 
|  | } | 
|  | } | 
|  | else  // Copy row by row | 
|  | { | 
|  | size_t rowSize = copyExtent.width * bytesPerBlock; | 
|  | const uint8_t *srcSlice = srcLayer; | 
|  | uint8_t *dstSlice = dstLayer; | 
|  |  | 
|  | for(uint32_t z = 0; z < sliceCount; z++) | 
|  | { | 
|  | const uint8_t *srcRow = srcSlice; | 
|  | uint8_t *dstRow = dstSlice; | 
|  |  | 
|  | for(uint32_t y = 0; y < copyExtent.height; y++) | 
|  | { | 
|  | ASSERT((srcRow + rowSize) < end()); | 
|  | ASSERT((dstRow + rowSize) < dstImage->end()); | 
|  |  | 
|  | memcpy(dstRow, srcRow, rowSize); | 
|  |  | 
|  | srcRow += srcRowPitch; | 
|  | dstRow += dstRowPitch; | 
|  | } | 
|  |  | 
|  | srcSlice += srcDepthPitch; | 
|  | dstSlice += dstDepthPitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | srcLayer += srcLayerPitch; | 
|  | dstLayer += dstLayerPitch; | 
|  | } | 
|  |  | 
|  | dstImage->contentsChanged(ImageSubresourceRange(region.dstSubresource)); | 
|  | } | 
|  |  | 
|  | void Image::copy(Buffer *buffer, const VkBufferImageCopy2KHR ®ion, bool bufferIsSource) | 
|  | { | 
|  | switch(region.imageSubresource.aspectMask) | 
|  | { | 
|  | case VK_IMAGE_ASPECT_COLOR_BIT: | 
|  | case VK_IMAGE_ASPECT_DEPTH_BIT: | 
|  | case VK_IMAGE_ASPECT_STENCIL_BIT: | 
|  | case VK_IMAGE_ASPECT_PLANE_0_BIT: | 
|  | case VK_IMAGE_ASPECT_PLANE_1_BIT: | 
|  | case VK_IMAGE_ASPECT_PLANE_2_BIT: | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("aspectMask %x", int(region.imageSubresource.aspectMask)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask); | 
|  | Format copyFormat = getFormat(aspect); | 
|  |  | 
|  | VkExtent3D imageExtent = imageExtentInBlocks(region.imageExtent, aspect); | 
|  |  | 
|  | if(imageExtent.width == 0 || imageExtent.height == 0 || imageExtent.depth == 0) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | VkExtent2D bufferExtent = bufferExtentInBlocks(Extent2D(imageExtent), region); | 
|  | int bytesPerBlock = copyFormat.bytesPerBlock(); | 
|  | int bufferRowPitchBytes = bufferExtent.width * bytesPerBlock; | 
|  | int bufferSlicePitchBytes = bufferExtent.height * bufferRowPitchBytes; | 
|  | ASSERT(samples == 1); | 
|  |  | 
|  | uint8_t *bufferMemory = static_cast<uint8_t *>(buffer->getOffsetPointer(region.bufferOffset)); | 
|  | uint8_t *imageMemory = static_cast<uint8_t *>(getTexelPointer(region.imageOffset, ImageSubresource(region.imageSubresource))); | 
|  | uint8_t *srcMemory = bufferIsSource ? bufferMemory : imageMemory; | 
|  | uint8_t *dstMemory = bufferIsSource ? imageMemory : bufferMemory; | 
|  | int imageRowPitchBytes = rowPitchBytes(aspect, region.imageSubresource.mipLevel); | 
|  | int imageSlicePitchBytes = slicePitchBytes(aspect, region.imageSubresource.mipLevel); | 
|  |  | 
|  | int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes; | 
|  | int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes; | 
|  | int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes; | 
|  | int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes; | 
|  |  | 
|  | VkDeviceSize copySize = imageExtent.width * bytesPerBlock; | 
|  |  | 
|  | VkDeviceSize imageLayerSize = getLayerSize(aspect); | 
|  | VkDeviceSize srcLayerSize = bufferIsSource ? bufferSlicePitchBytes : imageLayerSize; | 
|  | VkDeviceSize dstLayerSize = bufferIsSource ? imageLayerSize : bufferSlicePitchBytes; | 
|  |  | 
|  | for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++) | 
|  | { | 
|  | uint8_t *srcLayerMemory = srcMemory; | 
|  | uint8_t *dstLayerMemory = dstMemory; | 
|  | for(uint32_t z = 0; z < imageExtent.depth; z++) | 
|  | { | 
|  | uint8_t *srcSliceMemory = srcLayerMemory; | 
|  | uint8_t *dstSliceMemory = dstLayerMemory; | 
|  | for(uint32_t y = 0; y < imageExtent.height; y++) | 
|  | { | 
|  | ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end()); | 
|  | ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end()); | 
|  | memcpy(dstSliceMemory, srcSliceMemory, copySize); | 
|  | srcSliceMemory += srcRowPitchBytes; | 
|  | dstSliceMemory += dstRowPitchBytes; | 
|  | } | 
|  | srcLayerMemory += srcSlicePitchBytes; | 
|  | dstLayerMemory += dstSlicePitchBytes; | 
|  | } | 
|  |  | 
|  | srcMemory += srcLayerSize; | 
|  | dstMemory += dstLayerSize; | 
|  | } | 
|  |  | 
|  | if(bufferIsSource) | 
|  | { | 
|  | contentsChanged(ImageSubresourceRange(region.imageSubresource)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::copyTo(Buffer *dstBuffer, const VkBufferImageCopy2KHR ®ion) | 
|  | { | 
|  | copy(dstBuffer, region, false); | 
|  | } | 
|  |  | 
|  | void Image::copyFrom(Buffer *srcBuffer, const VkBufferImageCopy2KHR ®ion) | 
|  | { | 
|  | copy(srcBuffer, region, true); | 
|  | } | 
|  |  | 
|  | void *Image::getTexelPointer(const VkOffset3D &offset, const VkImageSubresource &subresource) const | 
|  | { | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); | 
|  | return deviceMemory->getOffsetPointer(getMemoryOffset(aspect) + | 
|  | texelOffsetBytesInStorage(offset, subresource) + | 
|  | getSubresourceOffset(aspect, subresource.mipLevel, subresource.arrayLayer)); | 
|  | } | 
|  |  | 
|  | VkExtent3D Image::imageExtentInBlocks(const VkExtent3D &extent, VkImageAspectFlagBits aspect) const | 
|  | { | 
|  | VkExtent3D adjustedExtent = extent; | 
|  | Format usedFormat = getFormat(aspect); | 
|  | if(usedFormat.isCompressed()) | 
|  | { | 
|  | // When using a compressed format, we use the block as the base unit, instead of the texel | 
|  | int blockWidth = usedFormat.blockWidth(); | 
|  | int blockHeight = usedFormat.blockHeight(); | 
|  |  | 
|  | // Mip level allocations will round up to the next block for compressed texture | 
|  | adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth); | 
|  | adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight); | 
|  | } | 
|  | return adjustedExtent; | 
|  | } | 
|  |  | 
|  | VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D &offset, VkImageAspectFlagBits aspect) const | 
|  | { | 
|  | VkOffset3D adjustedOffset = offset; | 
|  | Format usedFormat = getFormat(aspect); | 
|  | if(usedFormat.isCompressed()) | 
|  | { | 
|  | // When using a compressed format, we use the block as the base unit, instead of the texel | 
|  | int blockWidth = usedFormat.blockWidth(); | 
|  | int blockHeight = usedFormat.blockHeight(); | 
|  |  | 
|  | ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0));  // We can't offset within a block | 
|  |  | 
|  | adjustedOffset.x /= blockWidth; | 
|  | adjustedOffset.y /= blockHeight; | 
|  | } | 
|  | return adjustedOffset; | 
|  | } | 
|  |  | 
|  | VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D &extent, const VkBufferImageCopy2KHR ®ion) const | 
|  | { | 
|  | VkExtent2D adjustedExtent = extent; | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask); | 
|  | Format usedFormat = getFormat(aspect); | 
|  |  | 
|  | if(region.bufferRowLength != 0) | 
|  | { | 
|  | adjustedExtent.width = region.bufferRowLength; | 
|  |  | 
|  | if(usedFormat.isCompressed()) | 
|  | { | 
|  | int blockWidth = usedFormat.blockWidth(); | 
|  | ASSERT((adjustedExtent.width % blockWidth == 0) || (adjustedExtent.width + region.imageOffset.x == extent.width)); | 
|  | adjustedExtent.width = (region.bufferRowLength + blockWidth - 1) / blockWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | if(region.bufferImageHeight != 0) | 
|  | { | 
|  | adjustedExtent.height = region.bufferImageHeight; | 
|  |  | 
|  | if(usedFormat.isCompressed()) | 
|  | { | 
|  | int blockHeight = usedFormat.blockHeight(); | 
|  | ASSERT((adjustedExtent.height % blockHeight == 0) || (adjustedExtent.height + region.imageOffset.y == extent.height)); | 
|  | adjustedExtent.height = (region.bufferImageHeight + blockHeight - 1) / blockHeight; | 
|  | } | 
|  | } | 
|  |  | 
|  | return adjustedExtent; | 
|  | } | 
|  |  | 
|  | int Image::borderSize() const | 
|  | { | 
|  | // We won't add a border to compressed cube textures, we'll add it when we decompress the texture | 
|  | return (isCubeCompatible() && !format.isCompressed()) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D &offset, const VkImageSubresource &subresource) const | 
|  | { | 
|  | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); | 
|  | VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect); | 
|  | int border = borderSize(); | 
|  | return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) + | 
|  | (adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) + | 
|  | (adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock(); | 
|  | } | 
|  |  | 
|  | VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const | 
|  | { | 
|  | VkExtent3D mipLevelExtent; | 
|  | mipLevelExtent.width = extent.width >> mipLevel; | 
|  | mipLevelExtent.height = extent.height >> mipLevel; | 
|  | mipLevelExtent.depth = extent.depth >> mipLevel; | 
|  |  | 
|  | if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; } | 
|  | if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; } | 
|  | if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; } | 
|  |  | 
|  | switch(aspect) | 
|  | { | 
|  | case VK_IMAGE_ASPECT_COLOR_BIT: | 
|  | case VK_IMAGE_ASPECT_DEPTH_BIT: | 
|  | case VK_IMAGE_ASPECT_STENCIL_BIT: | 
|  | case VK_IMAGE_ASPECT_PLANE_0_BIT:  // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution. | 
|  | break; | 
|  | case VK_IMAGE_ASPECT_PLANE_1_BIT: | 
|  | case VK_IMAGE_ASPECT_PLANE_2_BIT: | 
|  | switch(format) | 
|  | { | 
|  | case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: | 
|  | case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: | 
|  | case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: | 
|  | ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0);  // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two." | 
|  | // Vulkan 1.1 Table 31. Plane Format Compatibility Table: | 
|  | // Half-resolution U and V planes. | 
|  | mipLevelExtent.width /= 2; | 
|  | mipLevelExtent.height /= 2; | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("format %d", int(format)); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("aspect %x", int(aspect)); | 
|  | } | 
|  |  | 
|  | return mipLevelExtent; | 
|  | } | 
|  |  | 
|  | size_t Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const | 
|  | { | 
|  | if(deviceMemory && deviceMemory->hasExternalImagePlanes()) | 
|  | { | 
|  | return deviceMemory->externalImageRowPitchBytes(aspect); | 
|  | } | 
|  |  | 
|  | // Depth and Stencil pitch should be computed separately | 
|  | ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != | 
|  | (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); | 
|  |  | 
|  | VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); | 
|  | Format usedFormat = getFormat(aspect); | 
|  | if(usedFormat.isCompressed()) | 
|  | { | 
|  | VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect); | 
|  | return extentInBlocks.width * usedFormat.bytesPerBlock(); | 
|  | } | 
|  |  | 
|  | return usedFormat.pitchB(mipLevelExtent.width, borderSize()); | 
|  | } | 
|  |  | 
|  | size_t Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const | 
|  | { | 
|  | // Depth and Stencil slice should be computed separately | 
|  | ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != | 
|  | (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); | 
|  |  | 
|  | VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); | 
|  | Format usedFormat = getFormat(aspect); | 
|  | if(usedFormat.isCompressed()) | 
|  | { | 
|  | VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect); | 
|  | return extentInBlocks.height * extentInBlocks.width * usedFormat.bytesPerBlock(); | 
|  | } | 
|  |  | 
|  | return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize()); | 
|  | } | 
|  |  | 
|  | Format Image::getFormat(VkImageAspectFlagBits aspect) const | 
|  | { | 
|  | return format.getAspectFormat(aspect); | 
|  | } | 
|  |  | 
|  | bool Image::isCubeCompatible() const | 
|  | { | 
|  | bool cubeCompatible = (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT); | 
|  | ASSERT(!cubeCompatible || (imageType == VK_IMAGE_TYPE_2D));  // VUID-VkImageCreateInfo-flags-00949 | 
|  | ASSERT(!cubeCompatible || (arrayLayers >= 6));               // VUID-VkImageCreateInfo-imageType-00954 | 
|  |  | 
|  | return cubeCompatible; | 
|  | } | 
|  |  | 
|  | uint8_t *Image::end() const | 
|  | { | 
|  | return reinterpret_cast<uint8_t *>(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1)); | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const | 
|  | { | 
|  | if(deviceMemory && deviceMemory->hasExternalImagePlanes()) | 
|  | { | 
|  | return deviceMemory->externalImageMemoryOffset(aspect); | 
|  | } | 
|  |  | 
|  | return memoryOffset; | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getAspectOffset(VkImageAspectFlagBits aspect) const | 
|  | { | 
|  | switch(format) | 
|  | { | 
|  | case VK_FORMAT_D16_UNORM_S8_UINT: | 
|  | case VK_FORMAT_D24_UNORM_S8_UINT: | 
|  | case VK_FORMAT_D32_SFLOAT_S8_UINT: | 
|  | if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT) | 
|  | { | 
|  | // Offset by depth buffer to get to stencil buffer | 
|  | return getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: | 
|  | if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT) | 
|  | { | 
|  | return getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT) + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); | 
|  | } | 
|  | // Fall through to 2PLANE case: | 
|  | case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: | 
|  | case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: | 
|  | if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT) | 
|  | { | 
|  | return getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); | 
|  | } | 
|  | else | 
|  | { | 
|  | ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getSubresourceOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const | 
|  | { | 
|  | // "If the image is disjoint, then the offset is relative to the base address of the plane. | 
|  | //  If the image is non-disjoint, then the offset is relative to the base address of the image." | 
|  | // Multi-plane external images are essentially disjoint. | 
|  | bool disjoint = (flags & VK_IMAGE_CREATE_DISJOINT_BIT) || (deviceMemory && deviceMemory->hasExternalImagePlanes()); | 
|  | VkDeviceSize offset = !disjoint ? getAspectOffset(aspect) : 0; | 
|  |  | 
|  | for(uint32_t i = 0; i < mipLevel; i++) | 
|  | { | 
|  | offset += getMultiSampledLevelSize(aspect, i); | 
|  | } | 
|  |  | 
|  | return offset + layer * getLayerOffset(aspect, mipLevel); | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const | 
|  | { | 
|  | return slicePitchBytes(aspect, mipLevel) * getMipLevelExtent(aspect, mipLevel).depth; | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const | 
|  | { | 
|  | return getMipLevelSize(aspect, mipLevel) * samples; | 
|  | } | 
|  |  | 
|  | bool Image::is3DSlice() const | 
|  | { | 
|  | return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)); | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const | 
|  | { | 
|  | if(is3DSlice()) | 
|  | { | 
|  | // When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D | 
|  | // image's mip level in order to create a 2D or 2D array image view of a 3D image created with | 
|  | // VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first | 
|  | // slice index and the number of slices to include in the created image view. | 
|  | ASSERT(samples == VK_SAMPLE_COUNT_1_BIT); | 
|  |  | 
|  | // Offset to the proper slice of the 3D image's mip level | 
|  | return slicePitchBytes(aspect, mipLevel); | 
|  | } | 
|  |  | 
|  | return getLayerSize(aspect); | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const | 
|  | { | 
|  | VkDeviceSize layerSize = 0; | 
|  |  | 
|  | for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel) | 
|  | { | 
|  | layerSize += getMultiSampledLevelSize(aspect, mipLevel); | 
|  | } | 
|  |  | 
|  | return layerSize; | 
|  | } | 
|  |  | 
|  | VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const | 
|  | { | 
|  | if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | | 
|  | VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0) | 
|  | { | 
|  | UNSUPPORTED("aspectMask %x", int(aspectMask)); | 
|  | } | 
|  |  | 
|  | VkDeviceSize storageSize = 0; | 
|  |  | 
|  | if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT); | 
|  | if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT); | 
|  | if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT); | 
|  | if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT); | 
|  | if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT); | 
|  | if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT); | 
|  |  | 
|  | return arrayLayers * storageSize; | 
|  | } | 
|  |  | 
|  | const Image *Image::getSampledImage(const vk::Format &imageViewFormat) const | 
|  | { | 
|  | bool isImageViewCompressed = imageViewFormat.isCompressed(); | 
|  | if(decompressedImage && !isImageViewCompressed) | 
|  | { | 
|  | ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT); | 
|  | ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock()); | 
|  | } | 
|  | // If the ImageView's format is compressed, then we do need to decompress the image so that | 
|  | // it may be sampled properly by texture sampling functions, which don't support compressed | 
|  | // textures. If the ImageView's format is NOT compressed, then we reinterpret cast the | 
|  | // compressed image into the ImageView's format, so we must return the compressed image as is. | 
|  | return (decompressedImage && isImageViewCompressed) ? decompressedImage : this; | 
|  | } | 
|  |  | 
|  | void Image::blitTo(Image *dstImage, const VkImageBlit2KHR ®ion, VkFilter filter) const | 
|  | { | 
|  | prepareForSampling(ImageSubresourceRange(region.srcSubresource)); | 
|  | device->getBlitter()->blit(decompressedImage ? decompressedImage : this, dstImage, region, filter); | 
|  | } | 
|  |  | 
|  | void Image::copyTo(uint8_t *dst, unsigned int dstPitch) const | 
|  | { | 
|  | device->getBlitter()->copy(this, dst, dstPitch); | 
|  | } | 
|  |  | 
|  | void Image::resolveTo(Image *dstImage, const VkImageResolve2KHR ®ion) const | 
|  | { | 
|  | device->getBlitter()->resolve(this, dstImage, region); | 
|  | } | 
|  |  | 
|  | void Image::resolveDepthStencilTo(const ImageView *src, ImageView *dst, VkResolveModeFlagBits depthResolveMode, VkResolveModeFlagBits stencilResolveMode) const | 
|  | { | 
|  | device->getBlitter()->resolveDepthStencil(src, dst, depthResolveMode, stencilResolveMode); | 
|  | } | 
|  |  | 
|  | uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange &subresourceRange) const | 
|  | { | 
|  | return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1; | 
|  | } | 
|  |  | 
|  | uint32_t Image::getLastMipLevel(const VkImageSubresourceRange &subresourceRange) const | 
|  | { | 
|  | return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1; | 
|  | } | 
|  |  | 
|  | void Image::clear(const void *pixelData, VkFormat pixelFormat, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D *renderArea) | 
|  | { | 
|  | device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, renderArea); | 
|  | } | 
|  |  | 
|  | void Image::clear(const VkClearColorValue &color, const VkImageSubresourceRange &subresourceRange) | 
|  | { | 
|  | ASSERT(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); | 
|  |  | 
|  | clear(color.float32, format.getClearFormat(), format, subresourceRange, nullptr); | 
|  | } | 
|  |  | 
|  | void Image::clear(const VkClearDepthStencilValue &color, const VkImageSubresourceRange &subresourceRange) | 
|  | { | 
|  | ASSERT((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT | | 
|  | VK_IMAGE_ASPECT_STENCIL_BIT)) == 0); | 
|  |  | 
|  | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) | 
|  | { | 
|  | VkImageSubresourceRange depthSubresourceRange = subresourceRange; | 
|  | depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; | 
|  | clear(&color.depth, VK_FORMAT_D32_SFLOAT, format, depthSubresourceRange, nullptr); | 
|  | } | 
|  |  | 
|  | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) | 
|  | { | 
|  | VkImageSubresourceRange stencilSubresourceRange = subresourceRange; | 
|  | stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; | 
|  | clear(&color.stencil, VK_FORMAT_S8_UINT, format, stencilSubresourceRange, nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::clear(const VkClearValue &clearValue, const vk::Format &viewFormat, const VkRect2D &renderArea, const VkImageSubresourceRange &subresourceRange) | 
|  | { | 
|  | ASSERT((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || | 
|  | (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | | 
|  | VK_IMAGE_ASPECT_STENCIL_BIT))); | 
|  |  | 
|  | if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) | 
|  | { | 
|  | clear(clearValue.color.float32, viewFormat.getClearFormat(), viewFormat, subresourceRange, &renderArea); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) | 
|  | { | 
|  | VkImageSubresourceRange depthSubresourceRange = subresourceRange; | 
|  | depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; | 
|  | clear(&clearValue.depthStencil.depth, VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, &renderArea); | 
|  | } | 
|  |  | 
|  | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) | 
|  | { | 
|  | VkImageSubresourceRange stencilSubresourceRange = subresourceRange; | 
|  | stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; | 
|  | clear(&clearValue.depthStencil.stencil, VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, &renderArea); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Image::requiresPreprocessing() const | 
|  | { | 
|  | return isCubeCompatible() || decompressedImage; | 
|  | } | 
|  |  | 
|  | void Image::contentsChanged(const VkImageSubresourceRange &subresourceRange, ContentsChangedContext contentsChangedContext) | 
|  | { | 
|  | // If this function is called after (possibly) writing to this image from a shader, | 
|  | // this must have the VK_IMAGE_USAGE_STORAGE_BIT set for the write operation to be | 
|  | // valid. Otherwise, we can't have legally written to this image, so we know we can | 
|  | // skip updating dirtyResources. | 
|  | if((contentsChangedContext == USING_STORAGE) && !(usage & VK_IMAGE_USAGE_STORAGE_BIT)) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this isn't a cube or a compressed image, we'll never need dirtyResources, | 
|  | // so we can skip updating dirtyResources | 
|  | if(!requiresPreprocessing()) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint32_t lastLayer = getLastLayerIndex(subresourceRange); | 
|  | uint32_t lastMipLevel = getLastMipLevel(subresourceRange); | 
|  |  | 
|  | VkImageSubresource subresource = { | 
|  | subresourceRange.aspectMask, | 
|  | subresourceRange.baseMipLevel, | 
|  | subresourceRange.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | marl::lock lock(mutex); | 
|  | for(subresource.arrayLayer = subresourceRange.baseArrayLayer; | 
|  | subresource.arrayLayer <= lastLayer; | 
|  | subresource.arrayLayer++) | 
|  | { | 
|  | for(subresource.mipLevel = subresourceRange.baseMipLevel; | 
|  | subresource.mipLevel <= lastMipLevel; | 
|  | subresource.mipLevel++) | 
|  | { | 
|  | dirtySubresources.insert(subresource); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::prepareForSampling(const VkImageSubresourceRange &subresourceRange) const | 
|  | { | 
|  | // If this isn't a cube or a compressed image, there's nothing to do | 
|  | if(!requiresPreprocessing()) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint32_t lastLayer = getLastLayerIndex(subresourceRange); | 
|  | uint32_t lastMipLevel = getLastMipLevel(subresourceRange); | 
|  |  | 
|  | VkImageSubresource subresource = { | 
|  | subresourceRange.aspectMask, | 
|  | subresourceRange.baseMipLevel, | 
|  | subresourceRange.baseArrayLayer | 
|  | }; | 
|  |  | 
|  | marl::lock lock(mutex); | 
|  |  | 
|  | if(dirtySubresources.empty()) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // First, decompress all relevant dirty subregions | 
|  | if(decompressedImage) | 
|  | { | 
|  | for(subresource.mipLevel = subresourceRange.baseMipLevel; | 
|  | subresource.mipLevel <= lastMipLevel; | 
|  | subresource.mipLevel++) | 
|  | { | 
|  | for(subresource.arrayLayer = subresourceRange.baseArrayLayer; | 
|  | subresource.arrayLayer <= lastLayer; | 
|  | subresource.arrayLayer++) | 
|  | { | 
|  | auto it = dirtySubresources.find(subresource); | 
|  | if(it != dirtySubresources.end()) | 
|  | { | 
|  | decompress(subresource); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Second, update cubemap borders | 
|  | if(isCubeCompatible()) | 
|  | { | 
|  | for(subresource.mipLevel = subresourceRange.baseMipLevel; | 
|  | subresource.mipLevel <= lastMipLevel; | 
|  | subresource.mipLevel++) | 
|  | { | 
|  | for(subresource.arrayLayer = subresourceRange.baseArrayLayer; | 
|  | subresource.arrayLayer <= lastLayer; | 
|  | subresource.arrayLayer++) | 
|  | { | 
|  | auto it = dirtySubresources.find(subresource); | 
|  | if(it != dirtySubresources.end()) | 
|  | { | 
|  | // Since cube faces affect each other's borders, we update all 6 layers. | 
|  |  | 
|  | subresource.arrayLayer -= subresource.arrayLayer % 6;  // Round down to a multiple of 6. | 
|  |  | 
|  | if(subresource.arrayLayer + 5 <= lastLayer) | 
|  | { | 
|  | device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresource); | 
|  | } | 
|  |  | 
|  | subresource.arrayLayer += 5;  // Together with the loop increment, advances to the next cube. | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, mark all updated subregions clean | 
|  | for(subresource.mipLevel = subresourceRange.baseMipLevel; | 
|  | subresource.mipLevel <= lastMipLevel; | 
|  | subresource.mipLevel++) | 
|  | { | 
|  | for(subresource.arrayLayer = subresourceRange.baseArrayLayer; | 
|  | subresource.arrayLayer <= lastLayer; | 
|  | subresource.arrayLayer++) | 
|  | { | 
|  | auto it = dirtySubresources.find(subresource); | 
|  | if(it != dirtySubresources.end()) | 
|  | { | 
|  | dirtySubresources.erase(it); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::decompress(const VkImageSubresource &subresource) const | 
|  | { | 
|  | switch(format) | 
|  | { | 
|  | case VK_FORMAT_EAC_R11_UNORM_BLOCK: | 
|  | case VK_FORMAT_EAC_R11_SNORM_BLOCK: | 
|  | case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: | 
|  | case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: | 
|  | case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: | 
|  | decodeETC2(subresource); | 
|  | break; | 
|  | case VK_FORMAT_BC1_RGB_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC1_RGB_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC2_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC2_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC3_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC3_SRGB_BLOCK: | 
|  | case VK_FORMAT_BC4_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC4_SNORM_BLOCK: | 
|  | case VK_FORMAT_BC5_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC5_SNORM_BLOCK: | 
|  | case VK_FORMAT_BC6H_UFLOAT_BLOCK: | 
|  | case VK_FORMAT_BC6H_SFLOAT_BLOCK: | 
|  | case VK_FORMAT_BC7_UNORM_BLOCK: | 
|  | case VK_FORMAT_BC7_SRGB_BLOCK: | 
|  | decodeBC(subresource); | 
|  | break; | 
|  | case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: | 
|  | case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: | 
|  | case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: | 
|  | decodeASTC(subresource); | 
|  | break; | 
|  | default: | 
|  | UNSUPPORTED("Compressed format %d", (VkFormat)format); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::decodeETC2(const VkImageSubresource &subresource) const | 
|  | { | 
|  | ASSERT(decompressedImage); | 
|  |  | 
|  | ETC_Decoder::InputType inputType = GetInputType(format); | 
|  |  | 
|  | int bytes = decompressedImage->format.bytes(); | 
|  | bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK); | 
|  | size_t sizeToWrite = 0; | 
|  |  | 
|  | VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel); | 
|  |  | 
|  | int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); | 
|  |  | 
|  | if(fakeAlpha) | 
|  | { | 
|  | // To avoid overflow in case of cube textures, which are offset in memory to account for the border, | 
|  | // compute the size from the first pixel to the last pixel, excluding any padding or border before | 
|  | // the first pixel or after the last pixel. | 
|  | sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes); | 
|  | } | 
|  |  | 
|  | for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) | 
|  | { | 
|  | uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource)); | 
|  | uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); | 
|  |  | 
|  | if(fakeAlpha) | 
|  | { | 
|  | ASSERT((dest + sizeToWrite) < decompressedImage->end()); | 
|  | memset(dest, 0xFF, sizeToWrite); | 
|  | } | 
|  |  | 
|  | ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, | 
|  | pitchB, bytes, inputType); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::decodeBC(const VkImageSubresource &subresource) const | 
|  | { | 
|  | ASSERT(decompressedImage); | 
|  |  | 
|  | int n = GetBCn(format); | 
|  | int noAlphaU = GetNoAlphaOrUnsigned(format); | 
|  |  | 
|  | int bytes = decompressedImage->format.bytes(); | 
|  |  | 
|  | VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel); | 
|  |  | 
|  | int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); | 
|  |  | 
|  | for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) | 
|  | { | 
|  | uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource)); | 
|  | uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); | 
|  |  | 
|  | BC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, | 
|  | pitchB, bytes, n, noAlphaU); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Image::decodeASTC(const VkImageSubresource &subresource) const | 
|  | { | 
|  | ASSERT(decompressedImage); | 
|  |  | 
|  | int xBlockSize = format.blockWidth(); | 
|  | int yBlockSize = format.blockHeight(); | 
|  | int zBlockSize = 1; | 
|  | bool isUnsigned = format.isUnsignedComponent(0); | 
|  |  | 
|  | int bytes = decompressedImage->format.bytes(); | 
|  |  | 
|  | VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel); | 
|  |  | 
|  | int xblocks = (mipLevelExtent.width + xBlockSize - 1) / xBlockSize; | 
|  | int yblocks = (mipLevelExtent.height + yBlockSize - 1) / yBlockSize; | 
|  | int zblocks = (zBlockSize > 1) ? (mipLevelExtent.depth + zBlockSize - 1) / zBlockSize : 1; | 
|  |  | 
|  | if(xblocks <= 0 || yblocks <= 0 || zblocks <= 0) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); | 
|  | int sliceB = decompressedImage->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel); | 
|  |  | 
|  | for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) | 
|  | { | 
|  | uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource)); | 
|  | uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource)); | 
|  |  | 
|  | ASTC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, bytes, pitchB, sliceB, | 
|  | xBlockSize, yBlockSize, zBlockSize, xblocks, yblocks, zblocks, isUnsigned); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace vk |